Skip to content

Instantly share code, notes, and snippets.

View Rsych's full-sized avatar
🙈
I may be slow to respond.

J. W. Kim Rsych

🙈
I may be slow to respond.
View GitHub Profile
@Rsych
Rsych / cnn_start.py
Created August 16, 2021 07:21
convolution neural network start
import tensorflow as tf
from keras import Sequential
from keras.layers import Conv2D
model = Sequential()
model.add(Conv2D(32, (3,3), activation='relu', input_shape=(28,28,1)))
model.summary()
@Rsych
Rsych / simpleNN_drop.py
Created August 13, 2021 01:45
Simple neural network with dropout set to
# Set dropout rate
DROPOUT = 0.1 # Drop 10%
# Build model
model = tf.keras.Sequential()
model.add(keras.layers.Dense(HIDDEN_NEURON, input_shape=(RESHAPED, ),
name='dense_layer', activation='relu'))
model.add(keras.layers.Dropout(DROPOUT))
model.add(keras.layers.Dense(HIDDEN_NEURON,
name='dense_layer_2', activation='relu'))
@Rsych
Rsych / simpleNN_HN.py
Last active August 9, 2021 08:15
simple neural network with hidden networks
EPOCHS = 300
BATCH_SIZE = 128
VERBOSE = 1
NB_CLASSES = 10
HIDDEN_NEURON = 128
VALIDATION_SPLIT = 0.2
# Build model
from keras import Sequential
from keras.layers import Dense
@Rsych
Rsych / tensorboard.py
Created August 9, 2021 06:01
call tensorboard
%tensorboard --logdir drive/MyDrive/logs/tf_simple
@Rsych
Rsych / simpleNN_evaluate.py
Created August 9, 2021 05:56
simpleNN model evaluate
# Model evaluation
test_loss, test_acc = model.evaluate(X_test, Y_test)
print('Test accuracy:', test_acc)
@Rsych
Rsych / simpleNN_train.py
Created August 9, 2021 05:53
simpleNN model train
# Model train
# Create new TensorBoard session everytime we train a model
tensorboard = create_tensorboard_callback()
model.fit(X_train, Y_train, batch_size=BATCH_SIZE,
epochs=EPOCHS, verbose=VERBOSE, validation_split=VALIDATION_SPLIT,callbacks=[tensorboard])
@Rsych
Rsych / simpleNN_compile.py
Created August 9, 2021 05:45
simpleNN compile and summary
# Model compile
model.compile(optimizer='SGD',
loss='categorical_crossentropy',
metrics=['accuracy'])
model.summary()
@Rsych
Rsych / simpleNN_model.py
Last active August 9, 2021 05:40
simpleNN build model
# Build model
from keras import Sequential
from keras.layers import Dense
model = Sequential()
model.add(Dense(NB_CLASSES, input_shape=(RESHAPED, ),
name='dense_layer', activation='softmax'))
@Rsych
Rsych / TF_board_callback.py
Created August 9, 2021 05:34
Tensorflow tensorboard callback function
%load_ext tensorboard
import datetime
# Create a function to build a TensorBoard callback
def create_tensorboard_callback():
# Create a log directory for storing TensorBoard logs
logdir = os.path.join('drive/MyDrive/logs/tf_simple',
# Make it so the logs get tracked whenever we run an experiment
datetime.datetime.now().strftime("%Y%m%d-%H%M%S"))
return tf.keras.callbacks.TensorBoard(logdir)
@Rsych
Rsych / SimpleNeuralNetwork_T&L.py
Last active August 9, 2021 05:08
Preparing dataset for our simple neural network
import tensorflow as tf
import numpy as np
import os
from tensorflow import keras
# Neural network and train variables
EPOCHS = 200
BATCH_SIZE = 128
VERBOSE = 1
NB_CLASSES = 10 # Num of outputs