Skip to content

Instantly share code, notes, and snippets.

Embed
What would you like to do?
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"import string\n",
"import re\n",
"import random"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"def generate_data(length=300000):\n",
" data = []\n",
" for x in range(length):\n",
" sample = []\n",
" strings_count = random.randint(1, 6)\n",
" digit_position = random.randint(0, strings_count - 1)\n",
" \n",
" for i in range(strings_count):\n",
" sample.append(''.join(random.sample(string.ascii_letters, 10)))\n",
" sample[digit_position] = str(random.randint(1, 9999))\n",
" \n",
" data.append('/'.join(sample))\n",
" return data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"key = lambda x: int(re.search(r'\\d+', x).group(0))\n",
"def f1(a):\n",
" return max(a, key=key)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"translation = str.maketrans(string.digits, string.digits, string.ascii_letters + string.punctuation)\n",
"def f2(a):\n",
" return max([int(i.translate(translation)) for i in a])"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"data = generate_data()"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Wall time: 679 ms\n"
]
},
{
"data": {
"text/plain": [
"'9999/dcCQDVPNvj/oSbdChQWly/PATiXgfdQo/YhRMFakrNg/sJAujfmKIW'"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"%time f1(data)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Wall time: 387 ms\n"
]
},
{
"data": {
"text/plain": [
"9999"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"%time f2(data)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.5.0"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment