Skip to content

Instantly share code, notes, and snippets.

View Vishnunkumar's full-sized avatar
😉
Exploring Dev

Vishnu Nandakumar Vishnunkumar

😉
Exploring Dev
View GitHub Profile
@Vishnunkumar
Vishnunkumar / main_es.py
Created November 27, 2020 07:26
Time series forecasting using Exponential smoothing
from statsmodels.tsa.api import ExponentialSmoothing seasonal_decompose
import statsmodels
import pandas as pd
import numpy as np
import datetime
from sklearn import metrics
def preprocess(df):
"""
Preprocess the dataframe to required timeseries format
@Vishnunkumar
Vishnunkumar / rolling_forecast.py
Created November 27, 2020 07:37
Rolling training and forecast function
def rolling_forecast_es(df, df_test, p):
"""
Does rolling training and forecast for one week at a time
"""
df_test['preds'] = 0
for k in range(0, int(len(df_test)/p)):
model = ExponentialSmoothing(np.asarray(df['Page.Loads'].iloc[:ix2 + (k)*p]),seasonal_periods=365, seasonal='add', trend='add')
model_fit = model.fit()
preds = model_fit.forecast(p)
df_es = df_test.copy()
df_es['preds'] = 0
p = len(df_test)
model = ExponentialSmoothing(np.asarray(df_train['Page.Loads']),seasonal_periods=365, seasonal='add', trend='add')
model_fit = model.fit()
preds = model_fit.forecast(p)
df_es['preds'] = preds
@Vishnunkumar
Vishnunkumar / bubble_chart_ict.html
Created November 28, 2020 11:24
plotly_bubble_chart_ict values of premier league players
This file has been truncated, but you can view the full file.
<html>
<head><meta charset="utf-8" /></head>
<body>
<div> <script type="text/javascript">window.PlotlyConfig = {MathJaxConfig: 'local'};</script>
<script type="text/javascript">/**
* plotly.js v1.56.0
* Copyright 2012-2020, Plotly, Inc.
* All rights reserved.
* Licensed under the MIT license
*/
from simpletransformers.classification import ClassificationModel, ClassificationArgs
model_args = ClassificationArgs()
model_args.num_train_epochs = 4
model_args.reprocess_input_data = True
model_args.save_best_model = True
model_args.save_optimizer_and_scheduler = False
model_args.overwrite_output_dir = True
model_args.manual_seed = 4
model_args.use_multiprocessing = True
def create_twitter_url(handle, max_results):
mrf = "max_results={}".format(max_results)
q = "query=from:{}".format(handle)
url = "https://api.twitter.com/2/tweets/search/recent?{}&{}".format(
mrf, q
)
return url
def process_yaml():
def get_KG(doc):
text = []
for tok in doc:
if tok.tag_ in ["NN","NNP","NNPS","NNS"]:
text.append(tok.text)
if tok.tag_ in ["VB","VBD","VBG","VBN","VBP","VBZ"]:
text.append('<' + tok.text + '<')
text = ('-').join(text)
text_list = text.split('<')
def query(news_df, conf):
try:
conf = conf*(100)
question = input()
question_kg = get_KG(nlp(question))
query_param = [i for i,j in enumerate(question_kg) if j != '']
columns = ["subject", "links", "object"]
col_dict = {}
{"object": "patrolling island lack boats",
"original-source": "Mumbai cops stop patrolling island due to lack of boats",
"score": "100.0"}
kg_df = news_df.copy()
G=nx.from_pandas_edgelist(kg_df[kg_df['links']=="declared"], "subject", "object",
edge_attr=True, create_using=nx.MultiDiGraph())
plt.figure(figsize=(7, 7))
pos = nx.spring_layout(G, k = 0.5)
nx.draw(G, with_labels=True, node_color='skyblue', node_size=700, edge_cmap=plt.cm.Blues, pos = pos)
plt.show()
plt.savefig('links.jpg')