Skip to content

Instantly share code, notes, and snippets.

View Vishnunkumar's full-sized avatar
😉
Exploring Dev

Vishnu Nandakumar Vishnunkumar

😉
Exploring Dev
View GitHub Profile
date_col home away score points home-adv referee opponent PI
2018-08-12 arsenal manchester city 0–2 0 1 Michael Oliver manchestercity 1.3102245221600866
2018-08-18 chelsea arsenal 3–2 0 0 Martin Atkinson chelsea 1.095206298862087
2018-08-25 arsenal west ham united 3–1 3 1 Graham Scott westhamunited 0.8275324819853656
2018-09-02 cardiff city arsenal 2–3 3 0 Anthony Taylor cardiffcity 0.5715382689257991
2018-09-15 newcastle united arsenal 1–2 3 0 Lee Probert newcastleunited 0.7149987480176946
2018-09-23 arsenal everton 2–0 3 1 Jonathan Moss everton 0.8625768578026318
2018-09-29 arsenal watford 2–0 3 1 Anthony Taylor watford 0.5499707870795425
2018-10-07 fulham arsenal 1–5 3 0 Paul Tierney fulham 0.4290960687755612
2018-10-22 arsenal leicester city 3–1 3 1 Chris Kavanagh leicestercity 0.9565589961884093
ds home-adv referee_Anthony Taylor referee_Jonathan Moss referee_Martin Atkinson referee_Michael Oliver referee_Mike Dean cum_pts_preds
0 2021-08-15 0 0 0 1 0 0 0
1 2021-08-22 1 1 0 0 0 1 1
2 2021-08-29 0 0 1 0 0 0 4
3 2021-09-05 1 0 0 0 1 0 5
4 2021-09-12 1 1 0 0 0 0 6
ds home-adv cum_pts_preds
0 2021-08-15 0 0
1 2021-08-22 1 0
2 2021-08-29 0 3
3 2021-09-05 1 7
4 2021-09-12 1 7
ds pts
2021-08-15 0
2021-08-22 0
2021-08-29 3
2021-09-05 6
2021-09-12 6
from transformers import AutoTokenizer, TFAutoModelForSequenceClassification
import tensorflow as tf
model_name = 'bert-base-cased'
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = TFAutoModelForSequenceClassification.from_pretrained(model_name, num_labels=2)
texts = ["I'm a positive example!", "I'm a negative example!"]
labels = [1, 0]
This file has been truncated, but you can view the full file.
<html>
<head><meta charset="utf-8" /></head>
<body>
<div> <script type="text/javascript">window.PlotlyConfig = {MathJaxConfig: 'local'};</script>
<script type="text/javascript">/**
* plotly.js v2.2.0
* Copyright 2012-2021, Plotly, Inc.
* All rights reserved.
* Licensed under the MIT license
*/
def pro_df(df, team):
"""
Function to get the date, home-team, away-team, points, referee and score etc
"""
df['date'] = [x[0] for x in df[0]]
df['home'] = [x[1].lower() for x in df[0]]
df['score'] = [x[2] for x in df[0]]
df['away'] = [x[3].lower() for x in df[0]]
df['referee'] = [(' ').join(x[4].split(' ')[-2:]) for x in df[1]]
preds = model.predict(x_test)
col = []
aut = []
for i in range(0, preds[0].shape[0]):
col.append(np.argmax(preds[0][i]))
aut.append(np.argmax(preds[1][i]))
re_map1 = {}
for k, v in map_1.items():
re_map1[v] = k
re_map2 = {}
dir_2 = 'working/'
test_list = []
for file in os.listdir(dir_2):
if file.split('.')[1] != 'ipynb':
json_dict = {}
img_arr = cv2.imread(os.path.join(dir_2, file))[...,::-1] #convert BGR to RGB format
resized_arr = cv2.resize(img_arr, (img_size, img_size)) # Reshaping images to preferred size
json_dict['image'] = resized_arr
test_list.append(json_dict)
test = np.array(test_list)
inputs = tf.keras.layers.Input(shape=[128, 128, 3], name='main_input')
main_branch = hub.KerasLayer("https://tfhub.dev/google/imagenet/mobilenet_v2_075_128/classification/5")(inputs)
main_branch = tf.keras.layers.Flatten()(main_branch)
main_branch = tf.keras.layers.Dense(1024, activation='relu')(main_branch)
colour_branch = tf.keras.layers.Dense(c_1, activation='softmax', name='colour_output')(main_branch)
auto_branch = tf.keras.layers.Dense(c_2, activation='softmax', name='auto_output')(main_branch)
model = tf.keras.Model(inputs = inputs,
outputs = [colour_branch, auto_branch])
model.compile(optimizer='rmsprop',