Skip to content

Instantly share code, notes, and snippets.

@Wowfunhappy
Last active March 5, 2022 01:31
Show Gist options
  • Save Wowfunhappy/a214411bb52d39bcee9497363a97558d to your computer and use it in GitHub Desktop.
Save Wowfunhappy/a214411bb52d39bcee9497363a97558d to your computer and use it in GitHub Desktop.
Modified version of kern_event.c to stop XNU 2422.115.4 to panic when running Chromium Legacy. See: https://github.com/blueboxd/chromium-legacy/issues/44
/*
* Copyright (c) 2000-2013 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. The rights granted to you under the License
* may not be used to create, or enable the creation or redistribution of,
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
*
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*
*/
/*-
* Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* @(#)kern_event.c 1.0 (3/31/2000)
*/
#include <stdint.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/filedesc.h>
#include <sys/kernel.h>
#include <sys/proc_internal.h>
#include <sys/kauth.h>
#include <sys/malloc.h>
#include <sys/unistd.h>
#include <sys/file_internal.h>
#include <sys/fcntl.h>
#include <sys/select.h>
#include <sys/queue.h>
#include <sys/event.h>
#include <sys/eventvar.h>
#include <sys/protosw.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/stat.h>
#include <sys/sysctl.h>
#include <sys/uio.h>
#include <sys/sysproto.h>
#include <sys/user.h>
#include <sys/vnode_internal.h>
#include <string.h>
#include <sys/proc_info.h>
#include <sys/codesign.h>
#include <kern/lock.h>
#include <kern/clock.h>
#include <kern/thread_call.h>
#include <kern/sched_prim.h>
#include <kern/zalloc.h>
#include <kern/assert.h>
#include <libkern/libkern.h>
#include "net/net_str_id.h"
#include <mach/task.h>
#if VM_PRESSURE_EVENTS
#include <kern/vm_pressure.h>
#endif
#if CONFIG_MEMORYSTATUS
#include <sys/kern_memorystatus.h>
#endif
MALLOC_DEFINE(M_KQUEUE, "kqueue", "memory for kqueue system");
#define KQ_EVENT NULL
static inline void kqlock(struct kqueue *kq);
static inline void kqunlock(struct kqueue *kq);
static int kqlock2knoteuse(struct kqueue *kq, struct knote *kn);
static int kqlock2knoteusewait(struct kqueue *kq, struct knote *kn);
static int kqlock2knotedrop(struct kqueue *kq, struct knote *kn);
static int knoteuse2kqlock(struct kqueue *kq, struct knote *kn);
static void kqueue_wakeup(struct kqueue *kq, int closed);
static int kqueue_read(struct fileproc *fp, struct uio *uio,
int flags, vfs_context_t ctx);
static int kqueue_write(struct fileproc *fp, struct uio *uio,
int flags, vfs_context_t ctx);
static int kqueue_ioctl(struct fileproc *fp, u_long com, caddr_t data,
vfs_context_t ctx);
static int kqueue_select(struct fileproc *fp, int which, void *wql,
vfs_context_t ctx);
static int kqueue_close(struct fileglob *fg, vfs_context_t ctx);
static int kqueue_kqfilter(struct fileproc *fp, struct knote *kn,
vfs_context_t ctx);
static int kqueue_drain(struct fileproc *fp, vfs_context_t ctx);
extern int kqueue_stat(struct fileproc *fp, void *ub, int isstat64,
vfs_context_t ctx);
static const struct fileops kqueueops = {
.fo_type = DTYPE_KQUEUE,
.fo_read = kqueue_read,
.fo_write = kqueue_write,
.fo_ioctl = kqueue_ioctl,
.fo_select = kqueue_select,
.fo_close = kqueue_close,
.fo_kqfilter = kqueue_kqfilter,
.fo_drain = kqueue_drain,
};
static int kevent_internal(struct proc *p, int iskev64, user_addr_t changelist,
int nchanges, user_addr_t eventlist, int nevents, int fd,
user_addr_t utimeout, unsigned int flags, int32_t *retval);
static int kevent_copyin(user_addr_t *addrp, struct kevent64_s *kevp,
struct proc *p, int iskev64);
static int kevent_copyout(struct kevent64_s *kevp, user_addr_t *addrp,
struct proc *p, int iskev64);
char * kevent_description(struct kevent64_s *kevp, char *s, size_t n);
static int kevent_callback(struct kqueue *kq, struct kevent64_s *kevp,
void *data);
static void kevent_continue(struct kqueue *kq, void *data, int error);
static void kqueue_scan_continue(void *contp, wait_result_t wait_result);
static int kqueue_process(struct kqueue *kq, kevent_callback_t callback,
void *data, int *countp, struct proc *p);
static int kqueue_begin_processing(struct kqueue *kq);
static void kqueue_end_processing(struct kqueue *kq);
static int knote_process(struct knote *kn, kevent_callback_t callback,
void *data, struct kqtailq *inprocessp, struct proc *p);
static void knote_put(struct knote *kn);
static int knote_fdpattach(struct knote *kn, struct filedesc *fdp,
struct proc *p);
static void knote_drop(struct knote *kn, struct proc *p);
static void knote_activate(struct knote *kn, int);
static void knote_deactivate(struct knote *kn);
static void knote_enqueue(struct knote *kn);
static void knote_dequeue(struct knote *kn);
static struct knote *knote_alloc(void);
static void knote_free(struct knote *kn);
static int filt_fileattach(struct knote *kn);
static struct filterops file_filtops = {
.f_isfd = 1,
.f_attach = filt_fileattach,
};
static void filt_kqdetach(struct knote *kn);
static int filt_kqueue(struct knote *kn, long hint);
static struct filterops kqread_filtops = {
.f_isfd = 1,
.f_detach = filt_kqdetach,
.f_event = filt_kqueue,
};
/* placeholder for not-yet-implemented filters */
static int filt_badattach(struct knote *kn);
static struct filterops bad_filtops = {
.f_attach = filt_badattach,
};
static int filt_procattach(struct knote *kn);
static void filt_procdetach(struct knote *kn);
static int filt_proc(struct knote *kn, long hint);
static struct filterops proc_filtops = {
.f_attach = filt_procattach,
.f_detach = filt_procdetach,
.f_event = filt_proc,
};
#if VM_PRESSURE_EVENTS
static int filt_vmattach(struct knote *kn);
static void filt_vmdetach(struct knote *kn);
static int filt_vm(struct knote *kn, long hint);
static struct filterops vm_filtops = {
.f_attach = filt_vmattach,
.f_detach = filt_vmdetach,
.f_event = filt_vm,
};
#endif /* VM_PRESSURE_EVENTS */
#if CONFIG_MEMORYSTATUS
extern struct filterops memorystatus_filtops;
#endif /* CONFIG_MEMORYSTATUS */
extern struct filterops fs_filtops;
extern struct filterops sig_filtops;
/* Timer filter */
static int filt_timerattach(struct knote *kn);
static void filt_timerdetach(struct knote *kn);
static int filt_timer(struct knote *kn, long hint);
static void filt_timertouch(struct knote *kn, struct kevent64_s *kev,
long type);
static struct filterops timer_filtops = {
.f_attach = filt_timerattach,
.f_detach = filt_timerdetach,
.f_event = filt_timer,
.f_touch = filt_timertouch,
};
/* Helpers */
static void filt_timerexpire(void *knx, void *param1);
static int filt_timervalidate(struct knote *kn);
static void filt_timerupdate(struct knote *kn);
static void filt_timercancel(struct knote *kn);
#define TIMER_RUNNING 0x1
#define TIMER_CANCELWAIT 0x2
static lck_mtx_t _filt_timerlock;
static void filt_timerlock(void);
static void filt_timerunlock(void);
static zone_t knote_zone;
#define KN_HASH(val, mask) (((val) ^ (val >> 8)) & (mask))
#if 0
extern struct filterops aio_filtops;
#endif
/* Mach portset filter */
extern struct filterops machport_filtops;
/* User filter */
static int filt_userattach(struct knote *kn);
static void filt_userdetach(struct knote *kn);
static int filt_user(struct knote *kn, long hint);
static void filt_usertouch(struct knote *kn, struct kevent64_s *kev,
long type);
static struct filterops user_filtops = {
.f_attach = filt_userattach,
.f_detach = filt_userdetach,
.f_event = filt_user,
.f_touch = filt_usertouch,
};
/*
* Table for all system-defined filters.
*/
static struct filterops *sysfilt_ops[] = {
&file_filtops, /* EVFILT_READ */
&file_filtops, /* EVFILT_WRITE */
#if 0
&aio_filtops, /* EVFILT_AIO */
#else
&bad_filtops, /* EVFILT_AIO */
#endif
&file_filtops, /* EVFILT_VNODE */
&proc_filtops, /* EVFILT_PROC */
&sig_filtops, /* EVFILT_SIGNAL */
&timer_filtops, /* EVFILT_TIMER */
&machport_filtops, /* EVFILT_MACHPORT */
&fs_filtops, /* EVFILT_FS */
&user_filtops, /* EVFILT_USER */
&bad_filtops, /* unused */
#if VM_PRESSURE_EVENTS
&vm_filtops, /* EVFILT_VM */
#else
&bad_filtops, /* EVFILT_VM */
#endif
&file_filtops, /* EVFILT_SOCK */
#if CONFIG_MEMORYSTATUS
&memorystatus_filtops, /* EVFILT_MEMORYSTATUS */
#else
&bad_filtops, /* EVFILT_MEMORYSTATUS */
#endif
};
/*
* kqueue/note lock attributes and implementations
*
* kqueues have locks, while knotes have use counts
* Most of the knote state is guarded by the object lock.
* the knote "inuse" count and status use the kqueue lock.
*/
lck_grp_attr_t * kq_lck_grp_attr;
lck_grp_t * kq_lck_grp;
lck_attr_t * kq_lck_attr;
static inline void
kqlock(struct kqueue *kq)
{
lck_spin_lock(&kq->kq_lock);
}
static inline void
kqunlock(struct kqueue *kq)
{
lck_spin_unlock(&kq->kq_lock);
}
/*
* Convert a kq lock to a knote use referece.
*
* If the knote is being dropped, we can't get
* a use reference, so just return with it
* still locked.
* - kq locked at entry
* - unlock on exit if we get the use reference
*/
static int
kqlock2knoteuse(struct kqueue *kq, struct knote *kn)
{
if (kn->kn_status & KN_DROPPING)
return (0);
kn->kn_inuse++;
kqunlock(kq);
return (1);
}
/*
* Convert a kq lock to a knote use referece,
* but wait for attach and drop events to complete.
*
* If the knote is being dropped, we can't get
* a use reference, so just return with it
* still locked.
* - kq locked at entry
* - kq always unlocked on exit
*/
static int
kqlock2knoteusewait(struct kqueue *kq, struct knote *kn)
{
if ((kn->kn_status & (KN_DROPPING | KN_ATTACHING)) != 0) {
kn->kn_status |= KN_USEWAIT;
printf("\nAbout to call wait_queue_assert_wait from kqlock2knoteusewait.\n");
wait_queue_assert_wait((wait_queue_t)kq->kq_wqs,
&kn->kn_status, THREAD_UNINT, 0);
kqunlock(kq);
thread_block(THREAD_CONTINUE_NULL);
return (0);
}
kn->kn_inuse++;
kqunlock(kq);
return (1);
}
/*
* Convert from a knote use reference back to kq lock.
*
* Drop a use reference and wake any waiters if
* this is the last one.
*
* The exit return indicates if the knote is
* still alive - but the kqueue lock is taken
* unconditionally.
*/
static int
knoteuse2kqlock(struct kqueue *kq, struct knote *kn)
{
kqlock(kq);
if (--kn->kn_inuse == 0) {
if ((kn->kn_status & KN_ATTACHING) != 0) {
kn->kn_status &= ~KN_ATTACHING;
}
if ((kn->kn_status & KN_USEWAIT) != 0) {
kn->kn_status &= ~KN_USEWAIT;
wait_queue_wakeup_all((wait_queue_t)kq->kq_wqs,
&kn->kn_status, THREAD_AWAKENED);
}
}
return ((kn->kn_status & KN_DROPPING) == 0);
}
/*
* Convert a kq lock to a knote drop reference.
*
* If the knote is in use, wait for the use count
* to subside. We first mark our intention to drop
* it - keeping other users from "piling on."
* If we are too late, we have to wait for the
* other drop to complete.
*
* - kq locked at entry
* - always unlocked on exit.
* - caller can't hold any locks that would prevent
* the other dropper from completing.
*/
static int
kqlock2knotedrop(struct kqueue *kq, struct knote *kn)
{
int oktodrop;
oktodrop = ((kn->kn_status & (KN_DROPPING | KN_ATTACHING)) == 0);
kn->kn_status |= KN_DROPPING;
if (oktodrop) {
if (kn->kn_inuse == 0) {
kqunlock(kq);
return (oktodrop);
}
}
kn->kn_status |= KN_USEWAIT;
printf("\nAbout to call wait_queue_assert_wait from kqlock2knotedrop.\n");
wait_queue_assert_wait((wait_queue_t)kq->kq_wqs, &kn->kn_status,
THREAD_UNINT, 0);
kqunlock(kq);
thread_block(THREAD_CONTINUE_NULL);
return (oktodrop);
}
/*
* Release a knote use count reference.
*/
static void
knote_put(struct knote *kn)
{
struct kqueue *kq = kn->kn_kq;
kqlock(kq);
if (--kn->kn_inuse == 0) {
if ((kn->kn_status & KN_USEWAIT) != 0) {
kn->kn_status &= ~KN_USEWAIT;
wait_queue_wakeup_all((wait_queue_t)kq->kq_wqs,
&kn->kn_status, THREAD_AWAKENED);
}
}
kqunlock(kq);
}
static int
filt_fileattach(struct knote *kn)
{
return (fo_kqfilter(kn->kn_fp, kn, vfs_context_current()));
}
#define f_flag f_fglob->fg_flag
#define f_msgcount f_fglob->fg_msgcount
#define f_cred f_fglob->fg_cred
#define f_ops f_fglob->fg_ops
#define f_offset f_fglob->fg_offset
#define f_data f_fglob->fg_data
static void
filt_kqdetach(struct knote *kn)
{
struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data;
kqlock(kq);
KNOTE_DETACH(&kq->kq_sel.si_note, kn);
kqunlock(kq);
}
/*ARGSUSED*/
static int
filt_kqueue(struct knote *kn, __unused long hint)
{
struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data;
kn->kn_data = kq->kq_count;
return (kn->kn_data > 0);
}
static int
filt_procattach(struct knote *kn)
{
struct proc *p;
assert(PID_MAX < NOTE_PDATAMASK);
if ((kn->kn_sfflags & (NOTE_TRACK | NOTE_TRACKERR | NOTE_CHILD)) != 0)
return (ENOTSUP);
p = proc_find(kn->kn_id);
if (p == NULL) {
return (ESRCH);
}
const int NoteExitStatusBits = NOTE_EXIT | NOTE_EXITSTATUS;
if ((kn->kn_sfflags & NoteExitStatusBits) == NoteExitStatusBits)
do {
pid_t selfpid = proc_selfpid();
if (p->p_ppid == selfpid)
break; /* parent => ok */
if ((p->p_lflag & P_LTRACED) != 0 &&
(p->p_oppid == selfpid))
break; /* parent-in-waiting => ok */
proc_rele(p);
return (EACCES);
} while (0);
proc_klist_lock();
kn->kn_flags |= EV_CLEAR; /* automatically set */
kn->kn_ptr.p_proc = p; /* store the proc handle */
KNOTE_ATTACH(&p->p_klist, kn);
proc_klist_unlock();
proc_rele(p);
return (0);
}
/*
* The knote may be attached to a different process, which may exit,
* leaving nothing for the knote to be attached to. In that case,
* the pointer to the process will have already been nulled out.
*/
static void
filt_procdetach(struct knote *kn)
{
struct proc *p;
proc_klist_lock();
p = kn->kn_ptr.p_proc;
if (p != PROC_NULL) {
kn->kn_ptr.p_proc = PROC_NULL;
KNOTE_DETACH(&p->p_klist, kn);
}
proc_klist_unlock();
}
static int
filt_proc(struct knote *kn, long hint)
{
/*
* Note: a lot of bits in hint may be obtained from the knote
* To free some of those bits, see <rdar://problem/12592988> Freeing up
* bits in hint for filt_proc
*/
/* hint is 0 when called from above */
if (hint != 0) {
u_int event;
/* ALWAYS CALLED WITH proc_klist_lock when (hint != 0) */
/*
* mask off extra data
*/
event = (u_int)hint & NOTE_PCTRLMASK;
/*
* termination lifecycle events can happen while a debugger
* has reparented a process, in which case notifications
* should be quashed except to the tracing parent. When
* the debugger reaps the child (either via wait4(2) or
* process exit), the child will be reparented to the original
* parent and these knotes re-fired.
*/
if (event & NOTE_EXIT) {
if ((kn->kn_ptr.p_proc->p_oppid != 0)
&& (kn->kn_kq->kq_p->p_pid != kn->kn_ptr.p_proc->p_ppid)) {
/*
* This knote is not for the current ptrace(2) parent, ignore.
*/
return 0;
}
}
/*
* if the user is interested in this event, record it.
*/
if (kn->kn_sfflags & event)
kn->kn_fflags |= event;
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wdeprecated-declarations"
if ((event == NOTE_REAP) || ((event == NOTE_EXIT) && !(kn->kn_sfflags & NOTE_REAP))) {
kn->kn_flags |= (EV_EOF | EV_ONESHOT);
}
#pragma clang diagnostic pop
if (event == NOTE_EXIT) {
kn->kn_data = 0;
if ((kn->kn_sfflags & NOTE_EXITSTATUS) != 0) {
kn->kn_fflags |= NOTE_EXITSTATUS;
kn->kn_data |= (hint & NOTE_PDATAMASK);
}
if ((kn->kn_sfflags & NOTE_EXIT_DETAIL) != 0) {
kn->kn_fflags |= NOTE_EXIT_DETAIL;
if ((kn->kn_ptr.p_proc->p_lflag &
P_LTERM_DECRYPTFAIL) != 0) {
kn->kn_data |= NOTE_EXIT_DECRYPTFAIL;
}
if ((kn->kn_ptr.p_proc->p_lflag &
P_LTERM_JETSAM) != 0) {
kn->kn_data |= NOTE_EXIT_MEMORY;
switch (kn->kn_ptr.p_proc->p_lflag &
P_JETSAM_MASK) {
case P_JETSAM_VMPAGESHORTAGE:
kn->kn_data |= NOTE_EXIT_MEMORY_VMPAGESHORTAGE;
break;
case P_JETSAM_VMTHRASHING:
kn->kn_data |= NOTE_EXIT_MEMORY_VMTHRASHING;
break;
case P_JETSAM_VNODE:
kn->kn_data |= NOTE_EXIT_MEMORY_VNODE;
break;
case P_JETSAM_HIWAT:
kn->kn_data |= NOTE_EXIT_MEMORY_HIWAT;
break;
case P_JETSAM_PID:
kn->kn_data |= NOTE_EXIT_MEMORY_PID;
break;
case P_JETSAM_IDLEEXIT:
kn->kn_data |= NOTE_EXIT_MEMORY_IDLE;
break;
}
}
if ((kn->kn_ptr.p_proc->p_csflags &
CS_KILLED) != 0) {
kn->kn_data |= NOTE_EXIT_CSERROR;
}
}
}
}
/* atomic check, no locking need when called from above */
return (kn->kn_fflags != 0);
}
#if VM_PRESSURE_EVENTS
/*
* Virtual memory kevents
*
* author: Matt Jacobson [matthew_jacobson@apple.com]
*/
static int
filt_vmattach(struct knote *kn)
{
/*
* The note will be cleared once the information has been flushed to
* the client. If there is still pressure, we will be re-alerted.
*/
kn->kn_flags |= EV_CLEAR;
return (vm_knote_register(kn));
}
static void
filt_vmdetach(struct knote *kn)
{
vm_knote_unregister(kn);
}
static int
filt_vm(struct knote *kn, long hint)
{
/* hint == 0 means this is just an alive? check (always true) */
if (hint != 0) {
const pid_t pid = (pid_t)hint;
if ((kn->kn_sfflags & NOTE_VM_PRESSURE) &&
(kn->kn_kq->kq_p->p_pid == pid)) {
kn->kn_fflags |= NOTE_VM_PRESSURE;
}
}
return (kn->kn_fflags != 0);
}
#endif /* VM_PRESSURE_EVENTS */
/*
* filt_timervalidate - process data from user
*
* Converts to either interval or deadline format.
*
* The saved-data field in the knote contains the
* time value. The saved filter-flags indicates
* the unit of measurement.
*
* After validation, either the saved-data field
* contains the interval in absolute time, or ext[0]
* contains the expected deadline. If that deadline
* is in the past, ext[0] is 0.
*
* Returns EINVAL for unrecognized units of time.
*
* Timer filter lock is held.
*
*/
static int
filt_timervalidate(struct knote *kn)
{
uint64_t multiplier;
uint64_t raw = 0;
switch (kn->kn_sfflags & (NOTE_SECONDS|NOTE_USECONDS|NOTE_NSECONDS)) {
case NOTE_SECONDS:
multiplier = NSEC_PER_SEC;
break;
case NOTE_USECONDS:
multiplier = NSEC_PER_USEC;
break;
case NOTE_NSECONDS:
multiplier = 1;
break;
case 0: /* milliseconds (default) */
multiplier = NSEC_PER_SEC / 1000;
break;
default:
return (EINVAL);
}
/* transform the slop delta(leeway) in kn_ext[1] if passed to same time scale */
if(kn->kn_sfflags & NOTE_LEEWAY){
nanoseconds_to_absolutetime((uint64_t)kn->kn_ext[1] * multiplier, &raw);
kn->kn_ext[1] = raw;
}
nanoseconds_to_absolutetime((uint64_t)kn->kn_sdata * multiplier, &raw);
kn->kn_ext[0] = 0;
kn->kn_sdata = 0;
if (kn->kn_sfflags & NOTE_ABSOLUTE) {
clock_sec_t seconds;
clock_nsec_t nanoseconds;
uint64_t now;
clock_get_calendar_nanotime(&seconds, &nanoseconds);
nanoseconds_to_absolutetime((uint64_t)seconds * NSEC_PER_SEC +
nanoseconds, &now);
if (raw < now) {
/* time has already passed */
kn->kn_ext[0] = 0;
} else {
raw -= now;
clock_absolutetime_interval_to_deadline(raw,
&kn->kn_ext[0]);
}
} else {
kn->kn_sdata = raw;
}
return (0);
}
/*
* filt_timerupdate - compute the next deadline
*
* Repeating timers store their interval in kn_sdata. Absolute
* timers have already calculated the deadline, stored in ext[0].
*
* On return, the next deadline (or zero if no deadline is needed)
* is stored in kn_ext[0].
*
* Timer filter lock is held.
*/
static void
filt_timerupdate(struct knote *kn)
{
/* if there's no interval, deadline is just in kn_ext[0] */
if (kn->kn_sdata == 0)
return;
/* if timer hasn't fired before, fire in interval nsecs */
if (kn->kn_ext[0] == 0) {
clock_absolutetime_interval_to_deadline(kn->kn_sdata,
&kn->kn_ext[0]);
} else {
/*
* If timer has fired before, schedule the next pop
* relative to the last intended deadline.
*
* We could check for whether the deadline has expired,
* but the thread call layer can handle that.
*/
kn->kn_ext[0] += kn->kn_sdata;
}
}
/*
* filt_timerexpire - the timer callout routine
*
* Just propagate the timer event into the knote
* filter routine (by going through the knote
* synchronization point). Pass a hint to
* indicate this is a real event, not just a
* query from above.
*/
static void
filt_timerexpire(void *knx, __unused void *spare)
{
struct klist timer_list;
struct knote *kn = knx;
filt_timerlock();
kn->kn_hookid &= ~TIMER_RUNNING;
/* no "object" for timers, so fake a list */
SLIST_INIT(&timer_list);
SLIST_INSERT_HEAD(&timer_list, kn, kn_selnext);
KNOTE(&timer_list, 1);
/* if someone is waiting for timer to pop */
if (kn->kn_hookid & TIMER_CANCELWAIT) {
struct kqueue *kq = kn->kn_kq;
wait_queue_wakeup_all((wait_queue_t)kq->kq_wqs, &kn->kn_hook,
THREAD_AWAKENED);
}
filt_timerunlock();
}
/*
* Cancel a running timer (or wait for the pop).
* Timer filter lock is held.
*/
static void
filt_timercancel(struct knote *kn)
{
struct kqueue *kq = kn->kn_kq;
thread_call_t callout = kn->kn_hook;
boolean_t cancelled;
if (kn->kn_hookid & TIMER_RUNNING) {
/* cancel the callout if we can */
cancelled = thread_call_cancel(callout);
if (cancelled) {
kn->kn_hookid &= ~TIMER_RUNNING;
} else {
/* we have to wait for the expire routine. */
kn->kn_hookid |= TIMER_CANCELWAIT;
printf("\nAbout to call wait_queue_assert_wait from filt_timercancel.\n");
wait_queue_assert_wait((wait_queue_t)kq->kq_wqs,
&kn->kn_hook, THREAD_UNINT, 0);
filt_timerunlock();
thread_block(THREAD_CONTINUE_NULL);
filt_timerlock();
assert((kn->kn_hookid & TIMER_RUNNING) == 0);
}
}
}
/*
* Allocate a thread call for the knote's lifetime, and kick off the timer.
*/
static int
filt_timerattach(struct knote *kn)
{
thread_call_t callout;
int error;
callout = thread_call_allocate(filt_timerexpire, kn);
if (NULL == callout)
return (ENOMEM);
filt_timerlock();
error = filt_timervalidate(kn);
if (error != 0) {
filt_timerunlock();
return (error);
}
kn->kn_hook = (void*)callout;
kn->kn_hookid = 0;
/* absolute=EV_ONESHOT */
if (kn->kn_sfflags & NOTE_ABSOLUTE)
kn->kn_flags |= EV_ONESHOT;
filt_timerupdate(kn);
if (kn->kn_ext[0]) {
kn->kn_flags |= EV_CLEAR;
unsigned int timer_flags = 0;
if (kn->kn_sfflags & NOTE_CRITICAL)
timer_flags |= THREAD_CALL_DELAY_USER_CRITICAL;
else if (kn->kn_sfflags & NOTE_BACKGROUND)
timer_flags |= THREAD_CALL_DELAY_USER_BACKGROUND;
else
timer_flags |= THREAD_CALL_DELAY_USER_NORMAL;
if (kn->kn_sfflags & NOTE_LEEWAY)
timer_flags |= THREAD_CALL_DELAY_LEEWAY;
thread_call_enter_delayed_with_leeway(callout, NULL,
kn->kn_ext[0], kn->kn_ext[1], timer_flags);
kn->kn_hookid |= TIMER_RUNNING;
} else {
/* fake immediate */
kn->kn_data = 1;
}
filt_timerunlock();
return (0);
}
/*
* Shut down the timer if it's running, and free the callout.
*/
static void
filt_timerdetach(struct knote *kn)
{
thread_call_t callout;
filt_timerlock();
callout = (thread_call_t)kn->kn_hook;
filt_timercancel(kn);
filt_timerunlock();
thread_call_free(callout);
}
static int
filt_timer(struct knote *kn, long hint)
{
int result;
if (hint) {
/* real timer pop -- timer lock held by filt_timerexpire */
kn->kn_data++;
if (((kn->kn_hookid & TIMER_CANCELWAIT) == 0) &&
((kn->kn_flags & EV_ONESHOT) == 0)) {
/* evaluate next time to fire */
filt_timerupdate(kn);
if (kn->kn_ext[0]) {
unsigned int timer_flags = 0;
/* keep the callout and re-arm */
if (kn->kn_sfflags & NOTE_CRITICAL)
timer_flags |= THREAD_CALL_DELAY_USER_CRITICAL;
else if (kn->kn_sfflags & NOTE_BACKGROUND)
timer_flags |= THREAD_CALL_DELAY_USER_BACKGROUND;
else
timer_flags |= THREAD_CALL_DELAY_USER_NORMAL;
if (kn->kn_sfflags & NOTE_LEEWAY)
timer_flags |= THREAD_CALL_DELAY_LEEWAY;
thread_call_enter_delayed_with_leeway(kn->kn_hook, NULL,
kn->kn_ext[0], kn->kn_ext[1], timer_flags);
kn->kn_hookid |= TIMER_RUNNING;
}
}
return (1);
}
/* user-query */
filt_timerlock();
result = (kn->kn_data != 0);
filt_timerunlock();
return (result);
}
/*
* filt_timertouch - update knote with new user input
*
* Cancel and restart the timer based on new user data. When
* the user picks up a knote, clear the count of how many timer
* pops have gone off (in kn_data).
*/
static void
filt_timertouch(struct knote *kn, struct kevent64_s *kev, long type)
{
int error;
filt_timerlock();
switch (type) {
case EVENT_REGISTER:
/* cancel current call */
filt_timercancel(kn);
/* recalculate deadline */
kn->kn_sdata = kev->data;
kn->kn_sfflags = kev->fflags;
kn->kn_ext[0] = kev->ext[0];
kn->kn_ext[1] = kev->ext[1];
error = filt_timervalidate(kn);
if (error) {
/* no way to report error, so mark it in the knote */
kn->kn_flags |= EV_ERROR;
kn->kn_data = error;
break;
}
/* start timer if necessary */
filt_timerupdate(kn);
if (kn->kn_ext[0]) {
unsigned int timer_flags = 0;
if (kn->kn_sfflags & NOTE_CRITICAL)
timer_flags |= THREAD_CALL_DELAY_USER_CRITICAL;
else if (kn->kn_sfflags & NOTE_BACKGROUND)
timer_flags |= THREAD_CALL_DELAY_USER_BACKGROUND;
else
timer_flags |= THREAD_CALL_DELAY_USER_NORMAL;
if (kn->kn_sfflags & NOTE_LEEWAY)
timer_flags |= THREAD_CALL_DELAY_LEEWAY;
thread_call_enter_delayed_with_leeway(kn->kn_hook, NULL,
kn->kn_ext[0], kn->kn_ext[1], timer_flags);
kn->kn_hookid |= TIMER_RUNNING;
} else {
/* pretend the timer has fired */
kn->kn_data = 1;
}
break;
case EVENT_PROCESS:
/* reset the timer pop count in kn_data */
*kev = kn->kn_kevent;
kev->ext[0] = 0;
kn->kn_data = 0;
if (kn->kn_flags & EV_CLEAR)
kn->kn_fflags = 0;
break;
default:
panic("%s: - invalid type (%ld)", __func__, type);
break;
}
filt_timerunlock();
}
static void
filt_timerlock(void)
{
lck_mtx_lock(&_filt_timerlock);
}
static void
filt_timerunlock(void)
{
lck_mtx_unlock(&_filt_timerlock);
}
static int
filt_userattach(struct knote *kn)
{
/* EVFILT_USER knotes are not attached to anything in the kernel */
kn->kn_hook = NULL;
if (kn->kn_fflags & NOTE_TRIGGER) {
kn->kn_hookid = 1;
} else {
kn->kn_hookid = 0;
}
return (0);
}
static void
filt_userdetach(__unused struct knote *kn)
{
/* EVFILT_USER knotes are not attached to anything in the kernel */
}
static int
filt_user(struct knote *kn, __unused long hint)
{
return (kn->kn_hookid);
}
static void
filt_usertouch(struct knote *kn, struct kevent64_s *kev, long type)
{
uint32_t ffctrl;
switch (type) {
case EVENT_REGISTER:
if (kev->fflags & NOTE_TRIGGER) {
kn->kn_hookid = 1;
}
ffctrl = kev->fflags & NOTE_FFCTRLMASK;
kev->fflags &= NOTE_FFLAGSMASK;
switch (ffctrl) {
case NOTE_FFNOP:
break;
case NOTE_FFAND:
OSBitAndAtomic(kev->fflags, &kn->kn_sfflags);
break;
case NOTE_FFOR:
OSBitOrAtomic(kev->fflags, &kn->kn_sfflags);
break;
case NOTE_FFCOPY:
kn->kn_sfflags = kev->fflags;
break;
}
kn->kn_sdata = kev->data;
break;
case EVENT_PROCESS:
*kev = kn->kn_kevent;
kev->fflags = (volatile UInt32)kn->kn_sfflags;
kev->data = kn->kn_sdata;
if (kn->kn_flags & EV_CLEAR) {
kn->kn_hookid = 0;
kn->kn_data = 0;
kn->kn_fflags = 0;
}
break;
default:
panic("%s: - invalid type (%ld)", __func__, type);
break;
}
}
/*
* JMM - placeholder for not-yet-implemented filters
*/
static int
filt_badattach(__unused struct knote *kn)
{
return (ENOTSUP);
}
struct kqueue *
kqueue_alloc(struct proc *p)
{
struct filedesc *fdp = p->p_fd;
struct kqueue *kq;
MALLOC_ZONE(kq, struct kqueue *, sizeof (struct kqueue), M_KQUEUE,
M_WAITOK);
if (kq != NULL) {
wait_queue_set_t wqs;
wqs = wait_queue_set_alloc(SYNC_POLICY_FIFO |
SYNC_POLICY_PREPOST);
if (wqs != NULL) {
bzero(kq, sizeof (struct kqueue));
lck_spin_init(&kq->kq_lock, kq_lck_grp, kq_lck_attr);
TAILQ_INIT(&kq->kq_head);
kq->kq_wqs = wqs;
kq->kq_p = p;
} else {
FREE_ZONE(kq, sizeof (struct kqueue), M_KQUEUE);
}
}
if (fdp->fd_knlistsize < 0) {
proc_fdlock(p);
if (fdp->fd_knlistsize < 0)
fdp->fd_knlistsize = 0; /* this process has had a kq */
proc_fdunlock(p);
}
return (kq);
}
/*
* kqueue_dealloc - detach all knotes from a kqueue and free it
*
* We walk each list looking for knotes referencing this
* this kqueue. If we find one, we try to drop it. But
* if we fail to get a drop reference, that will wait
* until it is dropped. So, we can just restart again
* safe in the assumption that the list will eventually
* not contain any more references to this kqueue (either
* we dropped them all, or someone else did).
*
* Assumes no new events are being added to the kqueue.
* Nothing locked on entry or exit.
*/
void
kqueue_dealloc(struct kqueue *kq)
{
struct proc *p = kq->kq_p;
struct filedesc *fdp = p->p_fd;
struct knote *kn;
int i;
proc_fdlock(p);
for (i = 0; i < fdp->fd_knlistsize; i++) {
kn = SLIST_FIRST(&fdp->fd_knlist[i]);
while (kn != NULL) {
if (kq == kn->kn_kq) {
kqlock(kq);
proc_fdunlock(p);
/* drop it ourselves or wait */
if (kqlock2knotedrop(kq, kn)) {
kn->kn_fop->f_detach(kn);
knote_drop(kn, p);
}
proc_fdlock(p);
/* start over at beginning of list */
kn = SLIST_FIRST(&fdp->fd_knlist[i]);
continue;
}
kn = SLIST_NEXT(kn, kn_link);
}
}
if (fdp->fd_knhashmask != 0) {
for (i = 0; i < (int)fdp->fd_knhashmask + 1; i++) {
kn = SLIST_FIRST(&fdp->fd_knhash[i]);
while (kn != NULL) {
if (kq == kn->kn_kq) {
kqlock(kq);
proc_fdunlock(p);
/* drop it ourselves or wait */
if (kqlock2knotedrop(kq, kn)) {
kn->kn_fop->f_detach(kn);
knote_drop(kn, p);
}
proc_fdlock(p);
/* start over at beginning of list */
kn = SLIST_FIRST(&fdp->fd_knhash[i]);
continue;
}
kn = SLIST_NEXT(kn, kn_link);
}
}
}
proc_fdunlock(p);
/*
* before freeing the wait queue set for this kqueue,
* make sure it is unlinked from all its containing (select) sets.
*/
wait_queue_unlink_all((wait_queue_t)kq->kq_wqs);
wait_queue_set_free(kq->kq_wqs);
lck_spin_destroy(&kq->kq_lock, kq_lck_grp);
FREE_ZONE(kq, sizeof (struct kqueue), M_KQUEUE);
}
int
kqueue_body(struct proc *p, fp_allocfn_t fp_zalloc, void *cra, int32_t *retval)
{
struct kqueue *kq;
struct fileproc *fp;
int fd, error;
error = falloc_withalloc(p,
&fp, &fd, vfs_context_current(), fp_zalloc, cra);
if (error) {
return (error);
}
kq = kqueue_alloc(p);
if (kq == NULL) {
fp_free(p, fd, fp);
return (ENOMEM);
}
fp->f_flag = FREAD | FWRITE;
fp->f_ops = &kqueueops;
fp->f_data = kq;
proc_fdlock(p);
*fdflags(p, fd) |= UF_EXCLOSE;
procfdtbl_releasefd(p, fd, NULL);
fp_drop(p, fd, fp, 1);
proc_fdunlock(p);
*retval = fd;
return (error);
}
int
kqueue(struct proc *p, __unused struct kqueue_args *uap, int32_t *retval)
{
return (kqueue_body(p, fileproc_alloc_init, NULL, retval));
}
static int
kevent_copyin(user_addr_t *addrp, struct kevent64_s *kevp, struct proc *p,
int iskev64)
{
int advance;
int error;
if (iskev64) {
advance = sizeof (struct kevent64_s);
error = copyin(*addrp, (caddr_t)kevp, advance);
} else if (IS_64BIT_PROCESS(p)) {
struct user64_kevent kev64;
bzero(kevp, sizeof (struct kevent64_s));
advance = sizeof (kev64);
error = copyin(*addrp, (caddr_t)&kev64, advance);
if (error)
return (error);
kevp->ident = kev64.ident;
kevp->filter = kev64.filter;
kevp->flags = kev64.flags;
kevp->fflags = kev64.fflags;
kevp->data = kev64.data;
kevp->udata = kev64.udata;
} else {
struct user32_kevent kev32;
bzero(kevp, sizeof (struct kevent64_s));
advance = sizeof (kev32);
error = copyin(*addrp, (caddr_t)&kev32, advance);
if (error)
return (error);
kevp->ident = (uintptr_t)kev32.ident;
kevp->filter = kev32.filter;
kevp->flags = kev32.flags;
kevp->fflags = kev32.fflags;
kevp->data = (intptr_t)kev32.data;
kevp->udata = CAST_USER_ADDR_T(kev32.udata);
}
if (!error)
*addrp += advance;
return (error);
}
static int
kevent_copyout(struct kevent64_s *kevp, user_addr_t *addrp, struct proc *p,
int iskev64)
{
int advance;
int error;
if (iskev64) {
advance = sizeof (struct kevent64_s);
error = copyout((caddr_t)kevp, *addrp, advance);
} else if (IS_64BIT_PROCESS(p)) {
struct user64_kevent kev64;
/*
* deal with the special case of a user-supplied
* value of (uintptr_t)-1.
*/
kev64.ident = (kevp->ident == (uintptr_t)-1) ?
(uint64_t)-1LL : (uint64_t)kevp->ident;
kev64.filter = kevp->filter;
kev64.flags = kevp->flags;
kev64.fflags = kevp->fflags;
kev64.data = (int64_t) kevp->data;
kev64.udata = kevp->udata;
advance = sizeof (kev64);
error = copyout((caddr_t)&kev64, *addrp, advance);
} else {
struct user32_kevent kev32;
kev32.ident = (uint32_t)kevp->ident;
kev32.filter = kevp->filter;
kev32.flags = kevp->flags;
kev32.fflags = kevp->fflags;
kev32.data = (int32_t)kevp->data;
kev32.udata = kevp->udata;
advance = sizeof (kev32);
error = copyout((caddr_t)&kev32, *addrp, advance);
}
if (!error)
*addrp += advance;
return (error);
}
/*
* kevent_continue - continue a kevent syscall after blocking
*
* assume we inherit a use count on the kq fileglob.
*/
static void
kevent_continue(__unused struct kqueue *kq, void *data, int error)
{
struct _kevent *cont_args;
struct fileproc *fp;
int32_t *retval;
int noutputs;
int fd;
struct proc *p = current_proc();
cont_args = (struct _kevent *)data;
noutputs = cont_args->eventout;
retval = cont_args->retval;
fd = cont_args->fd;
fp = cont_args->fp;
fp_drop(p, fd, fp, 0);
/* don't restart after signals... */
if (error == ERESTART)
error = EINTR;
else if (error == EWOULDBLOCK)
error = 0;
if (error == 0)
*retval = noutputs;
unix_syscall_return(error);
}
/*
* kevent - [syscall] register and wait for kernel events
*
*/
int
kevent(struct proc *p, struct kevent_args *uap, int32_t *retval)
{
return (kevent_internal(p,
0,
uap->changelist,
uap->nchanges,
uap->eventlist,
uap->nevents,
uap->fd,
uap->timeout,
0, /* no flags from old kevent() call */
retval));
}
int
kevent64(struct proc *p, struct kevent64_args *uap, int32_t *retval)
{
return (kevent_internal(p,
1,
uap->changelist,
uap->nchanges,
uap->eventlist,
uap->nevents,
uap->fd,
uap->timeout,
uap->flags,
retval));
}
static int
kevent_internal(struct proc *p, int iskev64, user_addr_t changelist,
int nchanges, user_addr_t ueventlist, int nevents, int fd,
user_addr_t utimeout, __unused unsigned int flags,
int32_t *retval)
{
struct _kevent *cont_args;
uthread_t ut;
struct kqueue *kq;
struct fileproc *fp;
struct kevent64_s kev;
int error, noutputs;
struct timeval atv;
/* convert timeout to absolute - if we have one */
if (utimeout != USER_ADDR_NULL) {
struct timeval rtv;
if (IS_64BIT_PROCESS(p)) {
struct user64_timespec ts;
error = copyin(utimeout, &ts, sizeof(ts));
if ((ts.tv_sec & 0xFFFFFFFF00000000ull) != 0)
error = EINVAL;
else
TIMESPEC_TO_TIMEVAL(&rtv, &ts);
} else {
struct user32_timespec ts;
error = copyin(utimeout, &ts, sizeof(ts));
TIMESPEC_TO_TIMEVAL(&rtv, &ts);
}
if (error)
return (error);
if (itimerfix(&rtv))
return (EINVAL);
getmicrouptime(&atv);
timevaladd(&atv, &rtv);
} else {
atv.tv_sec = 0;
atv.tv_usec = 0;
}
/* get a usecount for the kq itself */
if ((error = fp_getfkq(p, fd, &fp, &kq)) != 0)
return (error);
/* each kq should only be used for events of one type */
kqlock(kq);
if (kq->kq_state & (KQ_KEV32 | KQ_KEV64)) {
if (((iskev64 && (kq->kq_state & KQ_KEV32)) ||
(!iskev64 && (kq->kq_state & KQ_KEV64)))) {
error = EINVAL;
kqunlock(kq);
goto errorout;
}
} else {
kq->kq_state |= (iskev64 ? KQ_KEV64 : KQ_KEV32);
}
kqunlock(kq);
/* register all the change requests the user provided... */
noutputs = 0;
while (nchanges > 0 && error == 0) {
error = kevent_copyin(&changelist, &kev, p, iskev64);
if (error)
break;
kev.flags &= ~EV_SYSFLAGS;
error = kevent_register(kq, &kev, p);
if ((error || (kev.flags & EV_RECEIPT)) && nevents > 0) {
kev.flags = EV_ERROR;
kev.data = error;
error = kevent_copyout(&kev, &ueventlist, p, iskev64);
if (error == 0) {
nevents--;
noutputs++;
}
}
nchanges--;
}
/* store the continuation/completion data in the uthread */
ut = (uthread_t)get_bsdthread_info(current_thread());
cont_args = &ut->uu_kevent.ss_kevent;
cont_args->fp = fp;
cont_args->fd = fd;
cont_args->retval = retval;
cont_args->eventlist = ueventlist;
cont_args->eventcount = nevents;
cont_args->eventout = noutputs;
cont_args->eventsize = iskev64;
if (nevents > 0 && noutputs == 0 && error == 0)
error = kqueue_scan(kq, kevent_callback,
kevent_continue, cont_args,
&atv, p);
kevent_continue(kq, cont_args, error);
errorout:
fp_drop(p, fd, fp, 0);
return (error);
}
/*
* kevent_callback - callback for each individual event
*
* called with nothing locked
* caller holds a reference on the kqueue
*/
static int
kevent_callback(__unused struct kqueue *kq, struct kevent64_s *kevp,
void *data)
{
struct _kevent *cont_args;
int error;
int iskev64;
cont_args = (struct _kevent *)data;
assert(cont_args->eventout < cont_args->eventcount);
iskev64 = cont_args->eventsize;
/*
* Copy out the appropriate amount of event data for this user.
*/
error = kevent_copyout(kevp, &cont_args->eventlist, current_proc(),
iskev64);
/*
* If there isn't space for additional events, return
* a harmless error to stop the processing here
*/
if (error == 0 && ++cont_args->eventout == cont_args->eventcount)
error = EWOULDBLOCK;
return (error);
}
/*
* kevent_description - format a description of a kevent for diagnostic output
*
* called with a 128-byte string buffer
*/
char *
kevent_description(struct kevent64_s *kevp, char *s, size_t n)
{
snprintf(s, n,
"kevent="
"{.ident=%#llx, .filter=%d, .flags=%#x, .fflags=%#x, .data=%#llx, .udata=%#llx, .ext[0]=%#llx, .ext[1]=%#llx}",
kevp->ident,
kevp->filter,
kevp->flags,
kevp->fflags,
kevp->data,
kevp->udata,
kevp->ext[0],
kevp->ext[1]);
return (s);
}
/*
* kevent_register - add a new event to a kqueue
*
* Creates a mapping between the event source and
* the kqueue via a knote data structure.
*
* Because many/most the event sources are file
* descriptor related, the knote is linked off
* the filedescriptor table for quick access.
*
* called with nothing locked
* caller holds a reference on the kqueue
*/
int
kevent_register(struct kqueue *kq, struct kevent64_s *kev,
__unused struct proc *ctxp)
{
struct proc *p = kq->kq_p;
struct filedesc *fdp = p->p_fd;
struct filterops *fops;
struct fileproc *fp = NULL;
struct knote *kn = NULL;
int error = 0;
if (kev->filter < 0) {
if (kev->filter + EVFILT_SYSCOUNT < 0)
return (EINVAL);
fops = sysfilt_ops[~kev->filter]; /* to 0-base index */
} else {
/*
* XXX
* filter attach routine is responsible for insuring that
* the identifier can be attached to it.
*/
printf("unknown filter: %d\n", kev->filter);
return (EINVAL);
}
restart:
/* this iocount needs to be dropped if it is not registered */
proc_fdlock(p);
if (fops->f_isfd && (error = fp_lookup(p, kev->ident, &fp, 1)) != 0) {
proc_fdunlock(p);
return (error);
}
if (fops->f_isfd) {
/* fd-based knotes are linked off the fd table */
if (kev->ident < (u_int)fdp->fd_knlistsize) {
SLIST_FOREACH(kn, &fdp->fd_knlist[kev->ident], kn_link)
if (kq == kn->kn_kq &&
kev->filter == kn->kn_filter)
break;
}
} else {
/* hash non-fd knotes here too */
if (fdp->fd_knhashmask != 0) {
struct klist *list;
list = &fdp->fd_knhash[
KN_HASH((u_long)kev->ident, fdp->fd_knhashmask)];
SLIST_FOREACH(kn, list, kn_link)
if (kev->ident == kn->kn_id &&
kq == kn->kn_kq &&
kev->filter == kn->kn_filter)
break;
}
}
/*
* kn now contains the matching knote, or NULL if no match
*/
if (kn == NULL) {
if ((kev->flags & (EV_ADD|EV_DELETE)) == EV_ADD) {
kn = knote_alloc();
if (kn == NULL) {
proc_fdunlock(p);
error = ENOMEM;
goto done;
}
kn->kn_fp = fp;
kn->kn_kq = kq;
kn->kn_tq = &kq->kq_head;
kn->kn_fop = fops;
kn->kn_sfflags = kev->fflags;
kn->kn_sdata = kev->data;
kev->fflags = 0;
kev->data = 0;
kn->kn_kevent = *kev;
kn->kn_inuse = 1; /* for f_attach() */
kn->kn_status = KN_ATTACHING;
/* before anyone can find it */
if (kev->flags & EV_DISABLE)
kn->kn_status |= KN_DISABLED;
error = knote_fdpattach(kn, fdp, p);
proc_fdunlock(p);
if (error) {
knote_free(kn);
goto done;
}
/*
* apply reference count to knote structure, and
* do not release it at the end of this routine.
*/
fp = NULL;
error = fops->f_attach(kn);
kqlock(kq);
if (error != 0) {
/*
* Failed to attach correctly, so drop.
* All other possible users/droppers
* have deferred to us.
*/
kn->kn_status |= KN_DROPPING;
kqunlock(kq);
knote_drop(kn, p);
goto done;
} else if (kn->kn_status & KN_DROPPING) {
/*
* Attach succeeded, but someone else
* deferred their drop - now we have
* to do it for them (after detaching).
*/
kqunlock(kq);
kn->kn_fop->f_detach(kn);
knote_drop(kn, p);
goto done;
}
kn->kn_status &= ~KN_ATTACHING;
kqunlock(kq);
} else {
proc_fdunlock(p);
error = ENOENT;
goto done;
}
} else {
/* existing knote - get kqueue lock */
kqlock(kq);
proc_fdunlock(p);
if (kev->flags & EV_DELETE) {
knote_dequeue(kn);
kn->kn_status |= KN_DISABLED;
if (kqlock2knotedrop(kq, kn)) {
kn->kn_fop->f_detach(kn);
knote_drop(kn, p);
}
goto done;
}
/* update status flags for existing knote */
if (kev->flags & EV_DISABLE) {
knote_dequeue(kn);
kn->kn_status |= KN_DISABLED;
} else if (kev->flags & EV_ENABLE) {
kn->kn_status &= ~KN_DISABLED;
if (kn->kn_status & KN_ACTIVE)
knote_enqueue(kn);
}
/*
* The user may change some filter values after the
* initial EV_ADD, but doing so will not reset any
* filter which have already been triggered.
*/
kn->kn_kevent.udata = kev->udata;
if (fops->f_isfd || fops->f_touch == NULL) {
kn->kn_sfflags = kev->fflags;
kn->kn_sdata = kev->data;
}
/*
* If somebody is in the middle of dropping this
* knote - go find/insert a new one. But we have
* wait for this one to go away first. Attaches
* running in parallel may also drop/modify the
* knote. Wait for those to complete as well and
* then start over if we encounter one.
*/
if (!kqlock2knoteusewait(kq, kn)) {
/* kqueue, proc_fdlock both unlocked */
goto restart;
}
/*
* Call touch routine to notify filter of changes
* in filter values.
*/
if (!fops->f_isfd && fops->f_touch != NULL)
fops->f_touch(kn, kev, EVENT_REGISTER);
}
/* still have use ref on knote */
/*
* If the knote is not marked to always stay enqueued,
* invoke the filter routine to see if it should be
* enqueued now.
*/
if ((kn->kn_status & KN_STAYQUEUED) == 0 && kn->kn_fop->f_event(kn, 0)) {
if (knoteuse2kqlock(kq, kn))
knote_activate(kn, 1);
kqunlock(kq);
} else {
knote_put(kn);
}
done:
if (fp != NULL)
fp_drop(p, kev->ident, fp, 0);
return (error);
}
/*
* knote_process - process a triggered event
*
* Validate that it is really still a triggered event
* by calling the filter routines (if necessary). Hold
* a use reference on the knote to avoid it being detached.
* If it is still considered triggered, invoke the callback
* routine provided and move it to the provided inprocess
* queue.
*
* caller holds a reference on the kqueue.
* kqueue locked on entry and exit - but may be dropped
*/
static int
knote_process(struct knote *kn,
kevent_callback_t callback,
void *data,
struct kqtailq *inprocessp,
struct proc *p)
{
struct kqueue *kq = kn->kn_kq;
struct kevent64_s kev;
int touch;
int result;
int error;
/*
* Determine the kevent state we want to return.
*
* Some event states need to be revalidated before returning
* them, others we take the snapshot at the time the event
* was enqueued.
*
* Events with non-NULL f_touch operations must be touched.
* Triggered events must fill in kev for the callback.
*
* Convert our lock to a use-count and call the event's
* filter routine(s) to update.
*/
if ((kn->kn_status & KN_DISABLED) != 0) {
result = 0;
touch = 0;
} else {
int revalidate;
result = 1;
revalidate = ((kn->kn_status & KN_STAYQUEUED) != 0 ||
(kn->kn_flags & EV_ONESHOT) == 0);
touch = (!kn->kn_fop->f_isfd && kn->kn_fop->f_touch != NULL);
if (revalidate || touch) {
if (revalidate)
knote_deactivate(kn);
/* call the filter/touch routines with just a ref */
if (kqlock2knoteuse(kq, kn)) {
/* if we have to revalidate, call the filter */
if (revalidate) {
result = kn->kn_fop->f_event(kn, 0);
}
/*
* capture the kevent data - using touch if
* specified
*/
if (result && touch) {
kn->kn_fop->f_touch(kn, &kev,
EVENT_PROCESS);
}
/*
* convert back to a kqlock - bail if the knote
* went away
*/
if (!knoteuse2kqlock(kq, kn)) {
return (EJUSTRETURN);
} else if (result) {
/*
* if revalidated as alive, make sure
* it's active
*/
if (!(kn->kn_status & KN_ACTIVE)) {
knote_activate(kn, 0);
}
/*
* capture all events that occurred
* during filter
*/
if (!touch) {
kev = kn->kn_kevent;
}
} else if ((kn->kn_status & KN_STAYQUEUED) == 0) {
/*
* was already dequeued, so just bail on
* this one
*/
return (EJUSTRETURN);
}
} else {
return (EJUSTRETURN);
}
} else {
kev = kn->kn_kevent;
}
}
/* move knote onto inprocess queue */
assert(kn->kn_tq == &kq->kq_head);
TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
kn->kn_tq = inprocessp;
TAILQ_INSERT_TAIL(inprocessp, kn, kn_tqe);
/*
* Determine how to dispatch the knote for future event handling.
* not-fired: just return (do not callout).
* One-shot: deactivate it.
* Clear: deactivate and clear the state.
* Dispatch: don't clear state, just deactivate it and mark it disabled.
* All others: just leave where they are.
*/
if (result == 0) {
return (EJUSTRETURN);
} else if ((kn->kn_flags & EV_ONESHOT) != 0) {
knote_deactivate(kn);
if (kqlock2knotedrop(kq, kn)) {
kn->kn_fop->f_detach(kn);
knote_drop(kn, p);
}
} else if ((kn->kn_flags & (EV_CLEAR | EV_DISPATCH)) != 0) {
if ((kn->kn_flags & EV_DISPATCH) != 0) {
/* deactivate and disable all dispatch knotes */
knote_deactivate(kn);
kn->kn_status |= KN_DISABLED;
} else if (!touch || kn->kn_fflags == 0) {
/* only deactivate if nothing since the touch */
knote_deactivate(kn);
}
if (!touch && (kn->kn_flags & EV_CLEAR) != 0) {
/* manually clear non-touch knotes */
kn->kn_data = 0;
kn->kn_fflags = 0;
}
kqunlock(kq);
} else {
/*
* leave on inprocess queue. We'll
* move all the remaining ones back
* the kq queue and wakeup any
* waiters when we are done.
*/
kqunlock(kq);
}
/* callback to handle each event as we find it */
error = (callback)(kq, &kev, data);
kqlock(kq);
return (error);
}
/*
* Return 0 to indicate that processing should proceed,
* -1 if there is nothing to process.
*
* Called with kqueue locked and returns the same way,
* but may drop lock temporarily.
*/
static int
kqueue_begin_processing(struct kqueue *kq)
{
for (;;) {
if (kq->kq_count == 0) {
return (-1);
}
/* if someone else is processing the queue, wait */
if (kq->kq_nprocess != 0) {
printf("\nAbout to call wait_queue_assert_wait from kqueue_begin_processing.\n");
wait_queue_assert_wait((wait_queue_t)kq->kq_wqs,
&kq->kq_nprocess, THREAD_UNINT, 0);
kq->kq_state |= KQ_PROCWAIT;
kqunlock(kq);
thread_block(THREAD_CONTINUE_NULL);
kqlock(kq);
} else {
kq->kq_nprocess = 1;
return (0);
}
}
}
/*
* Called with kqueue lock held.
*/
static void
kqueue_end_processing(struct kqueue *kq)
{
kq->kq_nprocess = 0;
if (kq->kq_state & KQ_PROCWAIT) {
kq->kq_state &= ~KQ_PROCWAIT;
wait_queue_wakeup_all((wait_queue_t)kq->kq_wqs,
&kq->kq_nprocess, THREAD_AWAKENED);
}
}
/*
* kqueue_process - process the triggered events in a kqueue
*
* Walk the queued knotes and validate that they are
* really still triggered events by calling the filter
* routines (if necessary). Hold a use reference on
* the knote to avoid it being detached. For each event
* that is still considered triggered, invoke the
* callback routine provided.
*
* caller holds a reference on the kqueue.
* kqueue locked on entry and exit - but may be dropped
* kqueue list locked (held for duration of call)
*/
static int
kqueue_process(struct kqueue *kq,
kevent_callback_t callback,
void *data,
int *countp,
struct proc *p)
{
struct kqtailq inprocess;
struct knote *kn;
int nevents;
int error;
TAILQ_INIT(&inprocess);
if (kqueue_begin_processing(kq) == -1) {
*countp = 0;
/* Nothing to process */
return (0);
}
/*
* Clear any pre-posted status from previous runs, so we
* only detect events that occur during this run.
*/
wait_queue_sub_clearrefs(kq->kq_wqs);
/*
* loop through the enqueued knotes, processing each one and
* revalidating those that need it. As they are processed,
* they get moved to the inprocess queue (so the loop can end).
*/
error = 0;
nevents = 0;
while (error == 0 &&
(kn = TAILQ_FIRST(&kq->kq_head)) != NULL) {
error = knote_process(kn, callback, data, &inprocess, p);
if (error == EJUSTRETURN)
error = 0;
else
nevents++;
}
/*
* With the kqueue still locked, move any knotes
* remaining on the inprocess queue back to the
* kq's queue and wake up any waiters.
*/
while ((kn = TAILQ_FIRST(&inprocess)) != NULL) {
assert(kn->kn_tq == &inprocess);
TAILQ_REMOVE(&inprocess, kn, kn_tqe);
kn->kn_tq = &kq->kq_head;
TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
}
kqueue_end_processing(kq);
*countp = nevents;
return (error);
}
static void
kqueue_scan_continue(void *data, wait_result_t wait_result)
{
thread_t self = current_thread();
uthread_t ut = (uthread_t)get_bsdthread_info(self);
struct _kqueue_scan * cont_args = &ut->uu_kevent.ss_kqueue_scan;
struct kqueue *kq = (struct kqueue *)data;
int error;
int count;
/* convert the (previous) wait_result to a proper error */
switch (wait_result) {
case THREAD_AWAKENED:
kqlock(kq);
error = kqueue_process(kq, cont_args->call, cont_args, &count,
current_proc());
if (error == 0 && count == 0) {
printf("\nAbout to call wait_queue_assert_wait from kqueue_scan_continue.\n");
wait_queue_assert_wait((wait_queue_t)kq->kq_wqs,
KQ_EVENT, THREAD_ABORTSAFE, cont_args->deadline);
kq->kq_state |= KQ_SLEEP;
kqunlock(kq);
thread_block_parameter(kqueue_scan_continue, kq);
/* NOTREACHED */
}
kqunlock(kq);
break;
case THREAD_TIMED_OUT:
error = EWOULDBLOCK;
break;
case THREAD_INTERRUPTED:
error = EINTR;
break;
case THREAD_RESTART:
printf("\nkqueue_scan_continue was called with a wait_result of THREAD_RESTART. A vanilla 2422 XNU kernel would have panicked!\n");
error = EBADF;
break;
default:
panic("%s: - invalid wait_result (%d)", __func__,
wait_result);
error = 0;
}
/* call the continuation with the results */
assert(cont_args->cont != NULL);
(cont_args->cont)(kq, cont_args->data, error);
}
/*
* kqueue_scan - scan and wait for events in a kqueue
*
* Process the triggered events in a kqueue.
*
* If there are no events triggered arrange to
* wait for them. If the caller provided a
* continuation routine, then kevent_scan will
* also.
*
* The callback routine must be valid.
* The caller must hold a use-count reference on the kq.
*/
int
kqueue_scan(struct kqueue *kq,
kevent_callback_t callback,
kqueue_continue_t continuation,
void *data,
struct timeval *atvp,
struct proc *p)
{
thread_continue_t cont = THREAD_CONTINUE_NULL;
uint64_t deadline;
int error;
int first;
assert(callback != NULL);
first = 1;
for (;;) {
wait_result_t wait_result;
int count;
/*
* Make a pass through the kq to find events already
* triggered.
*/
kqlock(kq);
error = kqueue_process(kq, callback, data, &count, p);
if (error || count)
break; /* lock still held */
/* looks like we have to consider blocking */
if (first) {
first = 0;
/* convert the timeout to a deadline once */
if (atvp->tv_sec || atvp->tv_usec) {
uint64_t now;
clock_get_uptime(&now);
nanoseconds_to_absolutetime((uint64_t)atvp->tv_sec * NSEC_PER_SEC +
atvp->tv_usec * (long)NSEC_PER_USEC,
&deadline);
if (now >= deadline) {
/* non-blocking call */
error = EWOULDBLOCK;
break; /* lock still held */
}
deadline -= now;
clock_absolutetime_interval_to_deadline(deadline, &deadline);
} else {
deadline = 0; /* block forever */
}
if (continuation) {
uthread_t ut = (uthread_t)get_bsdthread_info(current_thread());
struct _kqueue_scan *cont_args = &ut->uu_kevent.ss_kqueue_scan;
cont_args->call = callback;
cont_args->cont = continuation;
cont_args->deadline = deadline;
cont_args->data = data;
cont = kqueue_scan_continue;
}
}
/* go ahead and wait */
printf("\nAbout to call wait_queue_assert_wait_with_leeway from kqueue_scan.\n");
wait_queue_assert_wait_with_leeway((wait_queue_t)kq->kq_wqs,
KQ_EVENT, THREAD_ABORTSAFE, TIMEOUT_URGENCY_USER_NORMAL,
deadline, 0);
kq->kq_state |= KQ_SLEEP;
kqunlock(kq);
wait_result = thread_block_parameter(cont, kq);
/* NOTREACHED if (continuation != NULL) */
switch (wait_result) {
case THREAD_AWAKENED:
continue;
case THREAD_TIMED_OUT:
return (EWOULDBLOCK);
case THREAD_INTERRUPTED:
return (EINTR);
default:
panic("%s: - bad wait_result (%d)", __func__,
wait_result);
error = 0;
}
}
kqunlock(kq);
return (error);
}
/*
* XXX
* This could be expanded to call kqueue_scan, if desired.
*/
/*ARGSUSED*/
static int
kqueue_read(__unused struct fileproc *fp,
__unused struct uio *uio,
__unused int flags,
__unused vfs_context_t ctx)
{
return (ENXIO);
}
/*ARGSUSED*/
static int
kqueue_write(__unused struct fileproc *fp,
__unused struct uio *uio,
__unused int flags,
__unused vfs_context_t ctx)
{
return (ENXIO);
}
/*ARGSUSED*/
static int
kqueue_ioctl(__unused struct fileproc *fp,
__unused u_long com,
__unused caddr_t data,
__unused vfs_context_t ctx)
{
return (ENOTTY);
}
/*ARGSUSED*/
static int
kqueue_select(struct fileproc *fp, int which, void *wql,
__unused vfs_context_t ctx)
{
struct kqueue *kq = (struct kqueue *)fp->f_data;
struct knote *kn;
struct kqtailq inprocessq;
int retnum = 0;
if (which != FREAD)
return (0);
TAILQ_INIT(&inprocessq);
kqlock(kq);
/*
* If this is the first pass, link the wait queue associated with the
* the kqueue onto the wait queue set for the select(). Normally we
* use selrecord() for this, but it uses the wait queue within the
* selinfo structure and we need to use the main one for the kqueue to
* catch events from KN_STAYQUEUED sources. So we do the linkage manually.
* (The select() call will unlink them when it ends).
*/
if (wql != NULL) {
thread_t cur_act = current_thread();
struct uthread * ut = get_bsdthread_info(cur_act);
kq->kq_state |= KQ_SEL;
wait_queue_link_noalloc((wait_queue_t)kq->kq_wqs, ut->uu_wqset,
(wait_queue_link_t)wql);
}
if (kqueue_begin_processing(kq) == -1) {
kqunlock(kq);
return (0);
}
if (kq->kq_count != 0) {
/*
* there is something queued - but it might be a
* KN_STAYQUEUED knote, which may or may not have
* any events pending. So, we have to walk the
* list of knotes to see, and peek at the stay-
* queued ones to be really sure.
*/
while ((kn = (struct knote *)TAILQ_FIRST(&kq->kq_head)) != NULL) {
if ((kn->kn_status & KN_STAYQUEUED) == 0) {
retnum = 1;
goto out;
}
TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
TAILQ_INSERT_TAIL(&inprocessq, kn, kn_tqe);
if (kqlock2knoteuse(kq, kn)) {
unsigned peek;
peek = kn->kn_fop->f_peek(kn);
if (knoteuse2kqlock(kq, kn)) {
if (peek > 0) {
retnum = 1;
goto out;
}
} else {
retnum = 0;
}
}
}
}
out:
/* Return knotes to active queue */
while ((kn = TAILQ_FIRST(&inprocessq)) != NULL) {
TAILQ_REMOVE(&inprocessq, kn, kn_tqe);
kn->kn_tq = &kq->kq_head;
TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
}
kqueue_end_processing(kq);
kqunlock(kq);
return (retnum);
}
/*
* kqueue_close -
*/
/*ARGSUSED*/
static int
kqueue_close(struct fileglob *fg, __unused vfs_context_t ctx)
{
struct kqueue *kq = (struct kqueue *)fg->fg_data;
kqueue_dealloc(kq);
fg->fg_data = NULL;
return (0);
}
/*ARGSUSED*/
/*
* The callers has taken a use-count reference on this kqueue and will donate it
* to the kqueue we are being added to. This keeps the kqueue from closing until
* that relationship is torn down.
*/
static int
kqueue_kqfilter(__unused struct fileproc *fp, struct knote *kn, __unused vfs_context_t ctx)
{
struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data;
struct kqueue *parentkq = kn->kn_kq;
if (parentkq == kq ||
kn->kn_filter != EVFILT_READ)
return (1);
/*
* We have to avoid creating a cycle when nesting kqueues
* inside another. Rather than trying to walk the whole
* potential DAG of nested kqueues, we just use a simple
* ceiling protocol. When a kqueue is inserted into another,
* we check that the (future) parent is not already nested
* into another kqueue at a lower level than the potenial
* child (because it could indicate a cycle). If that test
* passes, we just mark the nesting levels accordingly.
*/
kqlock(parentkq);
if (parentkq->kq_level > 0 &&
parentkq->kq_level < kq->kq_level)
{
kqunlock(parentkq);
return (1);
} else {
/* set parent level appropriately */
if (parentkq->kq_level == 0)
parentkq->kq_level = 2;
if (parentkq->kq_level < kq->kq_level + 1)
parentkq->kq_level = kq->kq_level + 1;
kqunlock(parentkq);
kn->kn_fop = &kqread_filtops;
kqlock(kq);
KNOTE_ATTACH(&kq->kq_sel.si_note, kn);
/* indicate nesting in child, if needed */
if (kq->kq_level == 0)
kq->kq_level = 1;
kqunlock(kq);
return (0);
}
}
/*
* kqueue_drain - called when kq is closed
*/
/*ARGSUSED*/
static int
kqueue_drain(struct fileproc *fp, __unused vfs_context_t ctx)
{
struct kqueue *kq = (struct kqueue *)fp->f_fglob->fg_data;
kqlock(kq);
kqueue_wakeup(kq, 1);
kqunlock(kq);
return (0);
}
/*ARGSUSED*/
int
kqueue_stat(struct fileproc *fp, void *ub, int isstat64, __unused vfs_context_t ctx)
{
struct kqueue *kq = (struct kqueue *)fp->f_data;
if (isstat64 != 0) {
struct stat64 *sb64 = (struct stat64 *)ub;
bzero((void *)sb64, sizeof(*sb64));
sb64->st_size = kq->kq_count;
if (kq->kq_state & KQ_KEV64)
sb64->st_blksize = sizeof(struct kevent64_s);
else
sb64->st_blksize = sizeof(struct kevent);
sb64->st_mode = S_IFIFO;
} else {
struct stat *sb = (struct stat *)ub;
bzero((void *)sb, sizeof(*sb));
sb->st_size = kq->kq_count;
if (kq->kq_state & KQ_KEV64)
sb->st_blksize = sizeof(struct kevent64_s);
else
sb->st_blksize = sizeof(struct kevent);
sb->st_mode = S_IFIFO;
}
return (0);
}
/*
* Called with the kqueue locked
*/
static void
kqueue_wakeup(struct kqueue *kq, int closed)
{
if ((kq->kq_state & (KQ_SLEEP | KQ_SEL)) != 0 || kq->kq_nprocess > 0) {
kq->kq_state &= ~(KQ_SLEEP | KQ_SEL);
wait_queue_wakeup_all((wait_queue_t)kq->kq_wqs, KQ_EVENT,
(closed) ? THREAD_INTERRUPTED : THREAD_AWAKENED);
}
}
void
klist_init(struct klist *list)
{
SLIST_INIT(list);
}
/*
* Query/Post each knote in the object's list
*
* The object lock protects the list. It is assumed
* that the filter/event routine for the object can
* determine that the object is already locked (via
* the hint) and not deadlock itself.
*
* The object lock should also hold off pending
* detach/drop operations. But we'll prevent it here
* too - just in case.
*/
void
knote(struct klist *list, long hint)
{
struct knote *kn;
SLIST_FOREACH(kn, list, kn_selnext) {
struct kqueue *kq = kn->kn_kq;
kqlock(kq);
if (kqlock2knoteuse(kq, kn)) {
int result;
/* call the event with only a use count */
result = kn->kn_fop->f_event(kn, hint);
/* if its not going away and triggered */
if (knoteuse2kqlock(kq, kn) && result)
knote_activate(kn, 1);
/* lock held again */
}
kqunlock(kq);
}
}
/*
* attach a knote to the specified list. Return true if this is the first entry.
* The list is protected by whatever lock the object it is associated with uses.
*/
int
knote_attach(struct klist *list, struct knote *kn)
{
int ret = SLIST_EMPTY(list);
SLIST_INSERT_HEAD(list, kn, kn_selnext);
return (ret);
}
/*
* detach a knote from the specified list. Return true if that was the last entry.
* The list is protected by whatever lock the object it is associated with uses.
*/
int
knote_detach(struct klist *list, struct knote *kn)
{
SLIST_REMOVE(list, kn, knote, kn_selnext);
return (SLIST_EMPTY(list));
}
/*
* For a given knote, link a provided wait queue directly with the kqueue.
* Wakeups will happen via recursive wait queue support. But nothing will move
* the knote to the active list at wakeup (nothing calls knote()). Instead,
* we permanently enqueue them here.
*
* kqueue and knote references are held by caller.
*
* caller provides the wait queue link structure.
*/
int
knote_link_wait_queue(struct knote *kn, struct wait_queue *wq, wait_queue_link_t wql)
{
struct kqueue *kq = kn->kn_kq;
kern_return_t kr;
kr = wait_queue_link_noalloc(wq, kq->kq_wqs, wql);
if (kr == KERN_SUCCESS) {
knote_markstayqueued(kn);
return (0);
} else {
return (EINVAL);
}
}
/*
* Unlink the provided wait queue from the kqueue associated with a knote.
* Also remove it from the magic list of directly attached knotes.
*
* Note that the unlink may have already happened from the other side, so
* ignore any failures to unlink and just remove it from the kqueue list.
*
* On success, caller is responsible for the link structure
*/
int
knote_unlink_wait_queue(struct knote *kn, struct wait_queue *wq, wait_queue_link_t *wqlp)
{
struct kqueue *kq = kn->kn_kq;
kern_return_t kr;
kr = wait_queue_unlink_nofree(wq, kq->kq_wqs, wqlp);
kqlock(kq);
kn->kn_status &= ~KN_STAYQUEUED;
knote_dequeue(kn);
kqunlock(kq);
return ((kr != KERN_SUCCESS) ? EINVAL : 0);
}
/*
* remove all knotes referencing a specified fd
*
* Essentially an inlined knote_remove & knote_drop
* when we know for sure that the thing is a file
*
* Entered with the proc_fd lock already held.
* It returns the same way, but may drop it temporarily.
*/
void
knote_fdclose(struct proc *p, int fd)
{
struct filedesc *fdp = p->p_fd;
struct klist *list;
struct knote *kn;
list = &fdp->fd_knlist[fd];
while ((kn = SLIST_FIRST(list)) != NULL) {
struct kqueue *kq = kn->kn_kq;
if (kq->kq_p != p)
panic("%s: proc mismatch (kq->kq_p=%p != p=%p)",
__func__, kq->kq_p, p);
kqlock(kq);
proc_fdunlock(p);
/*
* Convert the lock to a drop ref.
* If we get it, go ahead and drop it.
* Otherwise, we waited for it to
* be dropped by the other guy, so
* it is safe to move on in the list.
*/
if (kqlock2knotedrop(kq, kn)) {
kn->kn_fop->f_detach(kn);
knote_drop(kn, p);
}
proc_fdlock(p);
/* the fd tables may have changed - start over */
list = &fdp->fd_knlist[fd];
}
}
/* proc_fdlock held on entry (and exit) */
static int
knote_fdpattach(struct knote *kn, struct filedesc *fdp, struct proc *p)
{
struct klist *list = NULL;
if (! kn->kn_fop->f_isfd) {
if (fdp->fd_knhashmask == 0)
fdp->fd_knhash = hashinit(CONFIG_KN_HASHSIZE, M_KQUEUE,
&fdp->fd_knhashmask);
list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
} else {
if ((u_int)fdp->fd_knlistsize <= kn->kn_id) {
u_int size = 0;
if (kn->kn_id >= (uint64_t)p->p_rlimit[RLIMIT_NOFILE].rlim_cur
|| kn->kn_id >= (uint64_t)maxfiles)
return (EINVAL);
/* have to grow the fd_knlist */
size = fdp->fd_knlistsize;
while (size <= kn->kn_id)
size += KQEXTENT;
if (size >= (UINT_MAX/sizeof(struct klist *)))
return (EINVAL);
MALLOC(list, struct klist *,
size * sizeof(struct klist *), M_KQUEUE, M_WAITOK);
if (list == NULL)
return (ENOMEM);
bcopy((caddr_t)fdp->fd_knlist, (caddr_t)list,
fdp->fd_knlistsize * sizeof(struct klist *));
bzero((caddr_t)list +
fdp->fd_knlistsize * sizeof(struct klist *),
(size - fdp->fd_knlistsize) * sizeof(struct klist *));
FREE(fdp->fd_knlist, M_KQUEUE);
fdp->fd_knlist = list;
fdp->fd_knlistsize = size;
}
list = &fdp->fd_knlist[kn->kn_id];
}
SLIST_INSERT_HEAD(list, kn, kn_link);
return (0);
}
/*
* should be called at spl == 0, since we don't want to hold spl
* while calling fdrop and free.
*/
static void
knote_drop(struct knote *kn, __unused struct proc *ctxp)
{
struct kqueue *kq = kn->kn_kq;
struct proc *p = kq->kq_p;
struct filedesc *fdp = p->p_fd;
struct klist *list;
int needswakeup;
proc_fdlock(p);
if (kn->kn_fop->f_isfd)
list = &fdp->fd_knlist[kn->kn_id];
else
list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
SLIST_REMOVE(list, kn, knote, kn_link);
kqlock(kq);
knote_dequeue(kn);
needswakeup = (kn->kn_status & KN_USEWAIT);
kqunlock(kq);
proc_fdunlock(p);
if (needswakeup)
wait_queue_wakeup_all((wait_queue_t)kq->kq_wqs, &kn->kn_status,
THREAD_AWAKENED);
if (kn->kn_fop->f_isfd)
fp_drop(p, kn->kn_id, kn->kn_fp, 0);
knote_free(kn);
}
/* called with kqueue lock held */
static void
knote_activate(struct knote *kn, int propagate)
{
struct kqueue *kq = kn->kn_kq;
kn->kn_status |= KN_ACTIVE;
knote_enqueue(kn);
kqueue_wakeup(kq, 0);
/* this is a real event: wake up the parent kq, too */
if (propagate)
KNOTE(&kq->kq_sel.si_note, 0);
}
/* called with kqueue lock held */
static void
knote_deactivate(struct knote *kn)
{
kn->kn_status &= ~KN_ACTIVE;
knote_dequeue(kn);
}
/* called with kqueue lock held */
static void
knote_enqueue(struct knote *kn)
{
if ((kn->kn_status & (KN_QUEUED | KN_STAYQUEUED)) == KN_STAYQUEUED ||
(kn->kn_status & (KN_QUEUED | KN_STAYQUEUED | KN_DISABLED)) == 0) {
struct kqtailq *tq = kn->kn_tq;
struct kqueue *kq = kn->kn_kq;
TAILQ_INSERT_TAIL(tq, kn, kn_tqe);
kn->kn_status |= KN_QUEUED;
kq->kq_count++;
}
}
/* called with kqueue lock held */
static void
knote_dequeue(struct knote *kn)
{
struct kqueue *kq = kn->kn_kq;
if ((kn->kn_status & (KN_QUEUED | KN_STAYQUEUED)) == KN_QUEUED) {
struct kqtailq *tq = kn->kn_tq;
TAILQ_REMOVE(tq, kn, kn_tqe);
kn->kn_tq = &kq->kq_head;
kn->kn_status &= ~KN_QUEUED;
kq->kq_count--;
}
}
void
knote_init(void)
{
knote_zone = zinit(sizeof(struct knote), 8192*sizeof(struct knote),
8192, "knote zone");
/* allocate kq lock group attribute and group */
kq_lck_grp_attr = lck_grp_attr_alloc_init();
kq_lck_grp = lck_grp_alloc_init("kqueue", kq_lck_grp_attr);
/* Allocate kq lock attribute */
kq_lck_attr = lck_attr_alloc_init();
/* Initialize the timer filter lock */
lck_mtx_init(&_filt_timerlock, kq_lck_grp, kq_lck_attr);
#if VM_PRESSURE_EVENTS
/* Initialize the vm pressure list lock */
vm_pressure_init(kq_lck_grp, kq_lck_attr);
#endif
#if CONFIG_MEMORYSTATUS
/* Initialize the memorystatus list lock */
memorystatus_kevent_init(kq_lck_grp, kq_lck_attr);
#endif
}
SYSINIT(knote, SI_SUB_PSEUDO, SI_ORDER_ANY, knote_init, NULL)
static struct knote *
knote_alloc(void)
{
return ((struct knote *)zalloc(knote_zone));
}
static void
knote_free(struct knote *kn)
{
zfree(knote_zone, kn);
}
#if SOCKETS
#include <sys/param.h>
#include <sys/socket.h>
#include <sys/protosw.h>
#include <sys/domain.h>
#include <sys/mbuf.h>
#include <sys/kern_event.h>
#include <sys/malloc.h>
#include <sys/sys_domain.h>
#include <sys/syslog.h>
static lck_grp_attr_t *kev_lck_grp_attr;
static lck_attr_t *kev_lck_attr;
static lck_grp_t *kev_lck_grp;
static decl_lck_rw_data(,kev_lck_data);
static lck_rw_t *kev_rwlock = &kev_lck_data;
static int kev_attach(struct socket *so, int proto, struct proc *p);
static int kev_detach(struct socket *so);
static int kev_control(struct socket *so, u_long cmd, caddr_t data,
struct ifnet *ifp, struct proc *p);
static lck_mtx_t * event_getlock(struct socket *, int);
static int event_lock(struct socket *, int, void *);
static int event_unlock(struct socket *, int, void *);
static int event_sofreelastref(struct socket *);
static void kev_delete(struct kern_event_pcb *);
static struct pr_usrreqs event_usrreqs = {
.pru_attach = kev_attach,
.pru_control = kev_control,
.pru_detach = kev_detach,
.pru_soreceive = soreceive,
};
static struct protosw eventsw[] = {
{
.pr_type = SOCK_RAW,
.pr_protocol = SYSPROTO_EVENT,
.pr_flags = PR_ATOMIC,
.pr_usrreqs = &event_usrreqs,
.pr_lock = event_lock,
.pr_unlock = event_unlock,
.pr_getlock = event_getlock,
}
};
static lck_mtx_t *
event_getlock(struct socket *so, int locktype)
{
#pragma unused(locktype)
struct kern_event_pcb *ev_pcb = (struct kern_event_pcb *)so->so_pcb;
if (so->so_pcb != NULL) {
if (so->so_usecount < 0)
panic("%s: so=%p usecount=%d lrh= %s\n", __func__,
so, so->so_usecount, solockhistory_nr(so));
/* NOTREACHED */
} else {
panic("%s: so=%p NULL NO so_pcb %s\n", __func__,
so, solockhistory_nr(so));
/* NOTREACHED */
}
return (&ev_pcb->evp_mtx);
}
static int
event_lock(struct socket *so, int refcount, void *lr)
{
void *lr_saved;
if (lr == NULL)
lr_saved = __builtin_return_address(0);
else
lr_saved = lr;
if (so->so_pcb != NULL) {
lck_mtx_lock(&((struct kern_event_pcb *)so->so_pcb)->evp_mtx);
} else {
panic("%s: so=%p NO PCB! lr=%p lrh= %s\n", __func__,
so, lr_saved, solockhistory_nr(so));
/* NOTREACHED */
}
if (so->so_usecount < 0) {
panic("%s: so=%p so_pcb=%p lr=%p ref=%d lrh= %s\n", __func__,
so, so->so_pcb, lr_saved, so->so_usecount,
solockhistory_nr(so));
/* NOTREACHED */
}
if (refcount)
so->so_usecount++;
so->lock_lr[so->next_lock_lr] = lr_saved;
so->next_lock_lr = (so->next_lock_lr+1) % SO_LCKDBG_MAX;
return (0);
}
static int
event_unlock(struct socket *so, int refcount, void *lr)
{
void *lr_saved;
lck_mtx_t *mutex_held;
if (lr == NULL)
lr_saved = __builtin_return_address(0);
else
lr_saved = lr;
if (refcount)
so->so_usecount--;
if (so->so_usecount < 0) {
panic("%s: so=%p usecount=%d lrh= %s\n", __func__,
so, so->so_usecount, solockhistory_nr(so));
/* NOTREACHED */
}
if (so->so_pcb == NULL) {
panic("%s: so=%p NO PCB usecount=%d lr=%p lrh= %s\n", __func__,
so, so->so_usecount, (void *)lr_saved,
solockhistory_nr(so));
/* NOTREACHED */
}
mutex_held = (&((struct kern_event_pcb *)so->so_pcb)->evp_mtx);
lck_mtx_assert(mutex_held, LCK_MTX_ASSERT_OWNED);
so->unlock_lr[so->next_unlock_lr] = lr_saved;
so->next_unlock_lr = (so->next_unlock_lr+1) % SO_LCKDBG_MAX;
if (so->so_usecount == 0) {
VERIFY(so->so_flags & SOF_PCBCLEARING);
event_sofreelastref(so);
} else {
lck_mtx_unlock(mutex_held);
}
return (0);
}
static int
event_sofreelastref(struct socket *so)
{
struct kern_event_pcb *ev_pcb = (struct kern_event_pcb *)so->so_pcb;
lck_mtx_assert(&(ev_pcb->evp_mtx), LCK_MTX_ASSERT_OWNED);
so->so_pcb = NULL;
/*
* Disable upcall in the event another thread is in kev_post_msg()
* appending record to the receive socket buffer, since sbwakeup()
* may release the socket lock otherwise.
*/
so->so_rcv.sb_flags &= ~SB_UPCALL;
so->so_snd.sb_flags &= ~SB_UPCALL;
so->so_event = NULL;
lck_mtx_unlock(&(ev_pcb->evp_mtx));
lck_mtx_assert(&(ev_pcb->evp_mtx), LCK_MTX_ASSERT_NOTOWNED);
lck_rw_lock_exclusive(kev_rwlock);
LIST_REMOVE(ev_pcb, evp_link);
lck_rw_done(kev_rwlock);
kev_delete(ev_pcb);
sofreelastref(so, 1);
return (0);
}
static int event_proto_count = (sizeof (eventsw) / sizeof (struct protosw));
static
struct kern_event_head kern_event_head;
static u_int32_t static_event_id = 0;
#define EVPCB_ZONE_MAX 65536
#define EVPCB_ZONE_NAME "kerneventpcb"
static struct zone *ev_pcb_zone;
/*
* Install the protosw's for the NKE manager. Invoked at extension load time
*/
void
kern_event_init(struct domain *dp)
{
struct protosw *pr;
int i;
VERIFY(!(dp->dom_flags & DOM_INITIALIZED));
VERIFY(dp == systemdomain);
kev_lck_grp_attr = lck_grp_attr_alloc_init();
if (kev_lck_grp_attr == NULL) {
panic("%s: lck_grp_attr_alloc_init failed\n", __func__);
/* NOTREACHED */
}
kev_lck_grp = lck_grp_alloc_init("Kernel Event Protocol",
kev_lck_grp_attr);
if (kev_lck_grp == NULL) {
panic("%s: lck_grp_alloc_init failed\n", __func__);
/* NOTREACHED */
}
kev_lck_attr = lck_attr_alloc_init();
if (kev_lck_attr == NULL) {
panic("%s: lck_attr_alloc_init failed\n", __func__);
/* NOTREACHED */
}
lck_rw_init(kev_rwlock, kev_lck_grp, kev_lck_attr);
if (kev_rwlock == NULL) {
panic("%s: lck_mtx_alloc_init failed\n", __func__);
/* NOTREACHED */
}
for (i = 0, pr = &eventsw[0]; i < event_proto_count; i++, pr++)
net_add_proto(pr, dp, 1);
ev_pcb_zone = zinit(sizeof(struct kern_event_pcb),
EVPCB_ZONE_MAX * sizeof(struct kern_event_pcb), 0, EVPCB_ZONE_NAME);
if (ev_pcb_zone == NULL) {
panic("%s: failed allocating ev_pcb_zone", __func__);
/* NOTREACHED */
}
zone_change(ev_pcb_zone, Z_EXPAND, TRUE);
zone_change(ev_pcb_zone, Z_CALLERACCT, TRUE);
}
static int
kev_attach(struct socket *so, __unused int proto, __unused struct proc *p)
{
int error = 0;
struct kern_event_pcb *ev_pcb;
error = soreserve(so, KEV_SNDSPACE, KEV_RECVSPACE);
if (error != 0)
return (error);
if ((ev_pcb = (struct kern_event_pcb *)zalloc(ev_pcb_zone)) == NULL) {
return (ENOBUFS);
}
bzero(ev_pcb, sizeof(struct kern_event_pcb));
lck_mtx_init(&ev_pcb->evp_mtx, kev_lck_grp, kev_lck_attr);
ev_pcb->evp_socket = so;
ev_pcb->evp_vendor_code_filter = 0xffffffff;
so->so_pcb = (caddr_t) ev_pcb;
lck_rw_lock_exclusive(kev_rwlock);
LIST_INSERT_HEAD(&kern_event_head, ev_pcb, evp_link);
lck_rw_done(kev_rwlock);
return (error);
}
static void
kev_delete(struct kern_event_pcb *ev_pcb)
{
VERIFY(ev_pcb != NULL);
lck_mtx_destroy(&ev_pcb->evp_mtx, kev_lck_grp);
zfree(ev_pcb_zone, ev_pcb);
}
static int
kev_detach(struct socket *so)
{
struct kern_event_pcb *ev_pcb = (struct kern_event_pcb *) so->so_pcb;
if (ev_pcb != NULL) {
soisdisconnected(so);
so->so_flags |= SOF_PCBCLEARING;
}
return (0);
}
/*
* For now, kev_vendor_code and mbuf_tags use the same
* mechanism.
*/
errno_t kev_vendor_code_find(
const char *string,
u_int32_t *out_vendor_code)
{
if (strlen(string) >= KEV_VENDOR_CODE_MAX_STR_LEN) {
return (EINVAL);
}
return (net_str_id_find_internal(string, out_vendor_code,
NSI_VENDOR_CODE, 1));
}
errno_t
kev_msg_post(struct kev_msg *event_msg)
{
mbuf_tag_id_t min_vendor, max_vendor;
net_str_id_first_last(&min_vendor, &max_vendor, NSI_VENDOR_CODE);
if (event_msg == NULL)
return (EINVAL);
/*
* Limit third parties to posting events for registered vendor codes
* only
*/
if (event_msg->vendor_code < min_vendor ||
event_msg->vendor_code > max_vendor)
return (EINVAL);
return (kev_post_msg(event_msg));
}
int
kev_post_msg(struct kev_msg *event_msg)
{
struct mbuf *m, *m2;
struct kern_event_pcb *ev_pcb;
struct kern_event_msg *ev;
char *tmp;
u_int32_t total_size;
int i;
/* Verify the message is small enough to fit in one mbuf w/o cluster */
total_size = KEV_MSG_HEADER_SIZE;
for (i = 0; i < 5; i++) {
if (event_msg->dv[i].data_length == 0)
break;
total_size += event_msg->dv[i].data_length;
}
if (total_size > MLEN) {
return (EMSGSIZE);
}
m = m_get(M_DONTWAIT, MT_DATA);
if (m == 0)
return (ENOBUFS);
ev = mtod(m, struct kern_event_msg *);
total_size = KEV_MSG_HEADER_SIZE;
tmp = (char *) &ev->event_data[0];
for (i = 0; i < 5; i++) {
if (event_msg->dv[i].data_length == 0)
break;
total_size += event_msg->dv[i].data_length;
bcopy(event_msg->dv[i].data_ptr, tmp,
event_msg->dv[i].data_length);
tmp += event_msg->dv[i].data_length;
}
ev->id = ++static_event_id;
ev->total_size = total_size;
ev->vendor_code = event_msg->vendor_code;
ev->kev_class = event_msg->kev_class;
ev->kev_subclass = event_msg->kev_subclass;
ev->event_code = event_msg->event_code;
m->m_len = total_size;
lck_rw_lock_shared(kev_rwlock);
for (ev_pcb = LIST_FIRST(&kern_event_head);
ev_pcb;
ev_pcb = LIST_NEXT(ev_pcb, evp_link)) {
lck_mtx_lock(&ev_pcb->evp_mtx);
if (ev_pcb->evp_socket->so_pcb == NULL) {
lck_mtx_unlock(&ev_pcb->evp_mtx);
continue;
}
if (ev_pcb->evp_vendor_code_filter != KEV_ANY_VENDOR) {
if (ev_pcb->evp_vendor_code_filter != ev->vendor_code) {
lck_mtx_unlock(&ev_pcb->evp_mtx);
continue;
}
if (ev_pcb->evp_class_filter != KEV_ANY_CLASS) {
if (ev_pcb->evp_class_filter != ev->kev_class) {
lck_mtx_unlock(&ev_pcb->evp_mtx);
continue;
}
if ((ev_pcb->evp_subclass_filter != KEV_ANY_SUBCLASS) &&
(ev_pcb->evp_subclass_filter != ev->kev_subclass)) {
lck_mtx_unlock(&ev_pcb->evp_mtx);
continue;
}
}
}
m2 = m_copym(m, 0, m->m_len, M_NOWAIT);
if (m2 == 0) {
m_free(m);
lck_mtx_unlock(&ev_pcb->evp_mtx);
lck_rw_done(kev_rwlock);
return (ENOBUFS);
}
if (sbappendrecord(&ev_pcb->evp_socket->so_rcv, m2))
sorwakeup(ev_pcb->evp_socket);
lck_mtx_unlock(&ev_pcb->evp_mtx);
}
m_free(m);
lck_rw_done(kev_rwlock);
return (0);
}
static int
kev_control(struct socket *so,
u_long cmd,
caddr_t data,
__unused struct ifnet *ifp,
__unused struct proc *p)
{
struct kev_request *kev_req = (struct kev_request *) data;
struct kern_event_pcb *ev_pcb;
struct kev_vendor_code *kev_vendor;
u_int32_t *id_value = (u_int32_t *) data;
switch (cmd) {
case SIOCGKEVID:
*id_value = static_event_id;
break;
case SIOCSKEVFILT:
ev_pcb = (struct kern_event_pcb *) so->so_pcb;
ev_pcb->evp_vendor_code_filter = kev_req->vendor_code;
ev_pcb->evp_class_filter = kev_req->kev_class;
ev_pcb->evp_subclass_filter = kev_req->kev_subclass;
break;
case SIOCGKEVFILT:
ev_pcb = (struct kern_event_pcb *) so->so_pcb;
kev_req->vendor_code = ev_pcb->evp_vendor_code_filter;
kev_req->kev_class = ev_pcb->evp_class_filter;
kev_req->kev_subclass = ev_pcb->evp_subclass_filter;
break;
case SIOCGKEVVENDOR:
kev_vendor = (struct kev_vendor_code *)data;
/* Make sure string is NULL terminated */
kev_vendor->vendor_string[KEV_VENDOR_CODE_MAX_STR_LEN-1] = 0;
return (net_str_id_find_internal(kev_vendor->vendor_string,
&kev_vendor->vendor_code, NSI_VENDOR_CODE, 0));
default:
return (ENOTSUP);
}
return (0);
}
#endif /* SOCKETS */
int
fill_kqueueinfo(struct kqueue *kq, struct kqueue_info * kinfo)
{
struct vinfo_stat * st;
/* No need for the funnel as fd is kept alive */
st = &kinfo->kq_stat;
st->vst_size = kq->kq_count;
if (kq->kq_state & KQ_KEV64)
st->vst_blksize = sizeof(struct kevent64_s);
else
st->vst_blksize = sizeof(struct kevent);
st->vst_mode = S_IFIFO;
if (kq->kq_state & KQ_SEL)
kinfo->kq_state |= PROC_KQUEUE_SELECT;
if (kq->kq_state & KQ_SLEEP)
kinfo->kq_state |= PROC_KQUEUE_SLEEP;
return (0);
}
void
knote_markstayqueued(struct knote *kn)
{
kqlock(kn->kn_kq);
kn->kn_status |= KN_STAYQUEUED;
knote_enqueue(kn);
kqunlock(kn->kn_kq);
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment