Skip to content

Instantly share code, notes, and snippets.

View ajaymuktha's full-sized avatar
💻

Sai Ajay ajaymuktha

💻
View GitHub Profile
X = dataset.iloc[:, :-1].values
y = dataset.iloc[:, -1].values
dataset = pd.read_csv('Data.csv')
import numpy as np
import pandas as pd
r = model.fit_generator(
training_set,
validation_data=test_set,
epochs=5,
steps_per_epoch=len(training_set),
validation_steps=len(test_set)
)
test_set = test_datagen.flow_from_directory('Datasets/test',
target_size = (224, 224),
batch_size = 32,
class_mode = 'categorical')
training_set = train_datagen.flow_from_directory('Datasets/train',
target_size = (224, 224),
batch_size = 32,
class_mode = 'categorical')
from keras.preprocessing.image import ImageDataGenerator
train_datagen = ImageDataGenerator(rescale = 1./255,
shear_range = 0.2,
zoom_range = 0.2,
horizontal_flip = True)
test_datagen = ImageDataGenerator(rescale = 1./255)
model.compile(
loss='categorical_crossentropy',
optimizer='adam',
metrics=['accuracy']
)
model.summary()
model = Model(inputs=vgg.input, outputs=prediction)