Skip to content

Instantly share code, notes, and snippets.

Embed
What would you like to do?
{"metadata":{"kernelspec":{"display_name":"Python 3","language":"python","name":"python3"},"language_info":{"file_extension":".py","nbconvert_exporter":"python","mimetype":"text/x-python","codemirror_mode":{"version":3,"name":"ipython"},"version":"3.5.2","pygments_lexer":"ipython3","name":"python"}},"nbformat":4,"cells":[{"source":"## 1. Meet Professor William Sharpe\n<p>An investment may make sense if we expect it to return more money than it costs. But returns are only part of the story because they are risky - there may be a range of possible outcomes. How does one compare different investments that may deliver similar results on average, but exhibit different levels of risks?</p>\n<p><img style=\"float: left ; margin: 5px 20px 5px 1px;\" width=\"200\" src=\"https://s3.amazonaws.com/assets.datacamp.com/production/project_66/img/sharpe.jpeg\"></p>\n<p>Enter William Sharpe. He introduced the <a href=\"https://web.stanford.edu/~wfsharpe/art/sr/sr.htm\"><em>reward-to-variability ratio</em></a> in 1966 that soon came to be called the Sharpe Ratio. It compares the expected returns for two investment opportunities and calculates the additional return per unit of risk an investor could obtain by choosing one over the other. In particular, it looks at the difference in returns for two investments and compares the average difference to the standard deviation (as a measure of risk) of this difference. A higher Sharpe ratio means that the reward will be higher for a given amount of risk. It is common to compare a specific opportunity against a benchmark that represents an entire category of investments.</p>\n<p>The Sharpe ratio has been one of the most popular risk/return measures in finance, not least because it's so simple to use. It also helped that Professor Sharpe won a Nobel Memorial Prize in Economics in 1990 for his work on the capital asset pricing model (CAPM).</p>\n<p>Let's learn about the Sharpe ratio by calculating it for the stocks of the two tech giants Facebook and Amazon. As a benchmark, we'll use the S&amp;P 500 that measures the performance of the 500 largest stocks in the US.</p>","metadata":{"deletable":false,"run_control":{"frozen":true},"dc":{"key":"3"},"editable":false,"tags":["context"]},"cell_type":"markdown"},{"source":"# Importing required modules\nimport pandas as pd\nimport numpy as np\nimport matplotlib.pyplot as plt\n\n# Settings to produce nice plots in a Jupyter notebook\nplt.style.use('fivethirtyeight')\n%matplotlib inline\n\n# Reading in the data\nstock_data = pd.read_csv('datasets/stock_data.csv', index_col='Date', parse_dates=['Date']).dropna()\nbenchmark_data = pd.read_csv('datasets/benchmark_data.csv', index_col='Date', parse_dates=['Date']).dropna()","metadata":{"dc":{"key":"3"},"tags":["sample_code"],"trusted":true},"cell_type":"code","execution_count":205,"outputs":[]},{"source":"## 2. A first glance at the data\n<p>Let's take a look the data to find out how many observations and variables we have at our disposal.</p>","metadata":{"deletable":false,"run_control":{"frozen":true},"dc":{"key":"11"},"editable":false,"tags":["context"]},"cell_type":"markdown"},{"source":"# Display summary for stock_data\nprint('Stocks\\n')\n# ... YOUR CODE FOR TASK 2 HERE ...\nprint(stock_data.info())\nprint(stock_data.head())\n\n# Display summary for benchmark_data\nprint('\\nBenchmarks\\n')\n# ... YOUR CODE FOR TASK 2 HERE ...\nprint(benchmark_data.info())\nprint(benchmark_data.head())","metadata":{"dc":{"key":"11"},"tags":["sample_code"],"trusted":true},"cell_type":"code","execution_count":207,"outputs":[{"output_type":"stream","text":"Stocks\n\n<class 'pandas.core.frame.DataFrame'>\nDatetimeIndex: 252 entries, 2016-01-04 to 2016-12-30\nData columns (total 2 columns):\nAmazon 252 non-null float64\nFacebook 252 non-null float64\ndtypes: float64(2)\nmemory usage: 5.9 KB\nNone\n Amazon Facebook\nDate \n2016-01-04 636.989990 102.220001\n2016-01-05 633.789978 102.730003\n2016-01-06 632.650024 102.970001\n2016-01-07 607.940002 97.919998\n2016-01-08 607.049988 97.330002\n\nBenchmarks\n\n<class 'pandas.core.frame.DataFrame'>\nDatetimeIndex: 252 entries, 2016-01-04 to 2016-12-30\nData columns (total 1 columns):\nS&P 500 252 non-null float64\ndtypes: float64(1)\nmemory usage: 3.9 KB\nNone\n S&P 500\nDate \n2016-01-04 2012.66\n2016-01-05 2016.71\n2016-01-06 1990.26\n2016-01-07 1943.09\n2016-01-08 1922.03\n","name":"stdout"}]},{"source":"## 3. Plot & summarize daily prices for Amazon and Facebook\n<p>Before we compare an investment in either Facebook or Amazon with the index of the 500 largest companies in the US, let's visualize the data, so we better understand what we're dealing with.</p>","metadata":{"deletable":false,"run_control":{"frozen":true},"dc":{"key":"18"},"editable":false,"tags":["context"]},"cell_type":"markdown"},{"source":"# visualize the stock_data\n# ... YOUR CODE FOR TASK 3 HERE ...\nstock_data.plot(subplots=True, title='Stock Data')\n\n# summarize the stock_data\n# ... YOUR CODE FOR TASK 3 HERE ...\nstock_data.describe()","metadata":{"dc":{"key":"18"},"tags":["sample_code"],"trusted":true},"cell_type":"code","execution_count":209,"outputs":[{"data":{"text/plain":" Amazon Facebook\ncount 252.000000 252.000000\nmean 699.523135 117.035873\nstd 92.362312 8.899858\nmin 482.070007 94.160004\n25% 606.929993 112.202499\n50% 727.875000 117.765000\n75% 767.882492 123.902503\nmax 844.359985 133.279999","text/html":"<div>\n<style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>Amazon</th>\n <th>Facebook</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>count</th>\n <td>252.000000</td>\n <td>252.000000</td>\n </tr>\n <tr>\n <th>mean</th>\n <td>699.523135</td>\n <td>117.035873</td>\n </tr>\n <tr>\n <th>std</th>\n <td>92.362312</td>\n <td>8.899858</td>\n </tr>\n <tr>\n <th>min</th>\n <td>482.070007</td>\n <td>94.160004</td>\n </tr>\n <tr>\n <th>25%</th>\n <td>606.929993</td>\n <td>112.202499</td>\n </tr>\n <tr>\n <th>50%</th>\n <td>727.875000</td>\n <td>117.765000</td>\n </tr>\n <tr>\n <th>75%</th>\n <td>767.882492</td>\n <td>123.902503</td>\n </tr>\n <tr>\n <th>max</th>\n <td>844.359985</td>\n <td>133.279999</td>\n </tr>\n </tbody>\n</table>\n</div>"},"output_type":"execute_result","execution_count":209,"metadata":{}},{"data":{"text/plain":"<matplotlib.figure.Figure at 0x7fe6ec1e3400>","image/png":"iVBORw0KGgoAAAANSUhEUgAAAagAAAEdCAYAAABZtfMGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd8lFX2/99nWnqlBRI6oYigIgIKIiq4Ciq2BWXta8G2X9tvBV17Wcuq6+oqKurqKmBlVRYVWbs0AUFASugh1CSkzWQy7f7+mCfJTGaSTArMSO779eLFPPe55cxM8pzce8/9HFFKodFoNBpNrGGKtgEajUaj0YRDOyiNRqPRxCTaQWk0Go0mJtEOSqPRaDQxiXZQGo1Go4lJtIPSaDQaTUyiHZSmTSAi94jIWhFZLSIrReQEo/z/RCS+mX3eLyK3R1BnlzHmRhH5QEQGRND3FSKS1Ry7NJojBe2gNEc8IjICGA8cq5Q6BhgL5Bu3bwUSD7EJzyilhiil+gHvAV+JSLtG2lwJZB9iuzSamEY7KE1boDNQqJTyACilipVSe0XkFqAL8LWI/A9ARC4RkV+Mf49XdyAiZ4rIChFZJSJf1h1ARK4Vkf+KSFxDhiil3gO+AKYY7e4VkaXGeDOMsguBocDbxswrLlw9jeZIRzsoTVtgAdBNRDaIyD9FZDSAUup5oAAYo5Q6XUQ6A48DY4BjgRNE5FwRaQ+8ApyvlDoW+H1A3yIiN+GfoZ2nlKqKwJ6fgf7G6+eVUsOVUoOBRBGZoJT6EFgOTDFmXlXh6rXsI9FoYh/toDRHPEopOzAEuA44AMwRkcuN22L8AzgB+NqYYfmAd4DRwAjgW6XUTqO/koDuLwfOBC5SSrkjNEkCXp8uIktE5BfgVGBgM+ppNEckETkoEbnN2GD+RUTeMZYc3hCRrSLys7EMMTig/j9EJM9YDjn20Jmv0USG8vOdUuoB4BbgwnqqShPLfwF6AF2bYM5xwHpjOfCfwAXGzGgmEBKwEWk9jeZIo1EHJSJd8P9CDzF+OSzAxYAC7lRKHWcsQ/xi1D8L6K2UygWuB/R6uSaqiEhfEekTUHQssMN4XQakGq+XAaNFJFNEzMAlwDfAEuBkEelu9JcR0NfP+H/OPzGWCMOaEGDLhcA4YBZ+J6OAIhFJBi4KaFMeYFdD9TSaIxZLhPXMQJKI+PBHPBUQvDQSyETgLQCl1FIRSRORTkqpfa1hsEbTDJKB50UkDfAAm/Ev9wG8CnwuIgXGPtR0/E4JYJ5Sah6AiFwHzBURAfYDv6vuXCm1SETuBOaJyDilVHGd8W8VkT8AScBa4LTqOiLyKrAO2IPfQVbzL2CGiDiAE/HPmsLV02iOWCSSdBsi8ifgUcABLFBKXSYib+Bfm68C/gdMU0q5ReRT4K9KqUVG24XAn5VSK6v7Ky0t1Tk+NBqNRhNEWlpa0KQnkiW+dPyzou74Q3KTRWQKfoc0AP/GcjvgrtY3V6PRaDRtlUiCJMYCW43IJi/wEXBS9ZKdEbn0BjDMqF9A8IZxjlGm0Wg0Gk3ERLIHtRMYYcjBVAGnAz+JSJZx2FGA8/CvrQN8AtwEvGuc4C+Jpf2nvLw8cnNz29zYsWRHtMePBRuiPX4s2XG4bfD4FDd8f5C8Uk+z2g/MsPDnY1PpntLw43Pp/iruWlJacx1vFp4flU5umjWkbrS/h2iPXx+NzqCUUsuAD/BHK602il8B3hGR1UZZO+ARo/58YJuIbAZeBm48BHZrNBpNk9lZ4WHi54XNdk4A6w56uPXHg+ysqL+PIqeXx1eWBZU5vYqnVpU3e9y2SERRfEqpB4EH6xSf3kD9m1tilEaj0bQ2lR7F/1tcgt3TeIxWjxQzyVYTyRah0qtYXRR8BvugS3HPslJeHp1BoiX473yfUjz+czkHXaHjbCr1sLXMQ6/USAOo2zb6U9JoNG2C7/c42VfpCyk/u72TpLRMvt7tpMjp4/yeCdw0MBn/7gXsc3i54usinN7gdvkVXu5eWsp9x6eRHicUV/mIMwn/3enkpwOueu14O8/OvUNSa/rX1E+bc1DZ2dETiI7m2IHEih0azeHki3xnSNmdx6TQz1VKbm4yU49KwuWDOHOw4+iUaOaRYel8sMXBkv3BjmdVkZsLFhQ2yY6vCqrITXVwSW5S099EG6PNafElJh7qzAqxOXYgsWKHRnO4KHR6WVkYvEz3txHpnN09oeZaREKcUzVDO9h4fEQ6n4/vQI8Uc8TjplqFt07LJDMu+FH73tbKJljfdmmuFp9NRHoY4pWbRGS2iFiMujYRmWNo8S0WkW6H9i1oNBpNMD6l2FLqYVWhi5IqH8v2uwjcEeqbZmFoR1uT+423CE+NSGdQZmgkXjjuOCaFbskW7h+aGlR+sMqHM4K9sLZOo0t8AVp8/ZVSLhF5F79G2XjgaaXU+yLyEvBH/FF7fwSKlVK5IjIZeBK/dp9Go9Eccg5W+bhzcQlbyvxRdlYTpNuC/xYfldVg2q4G6ZBg5tmT0nk7z8FbG+2E7mr5ObadldGd/eMc085G+3gThc7a2gecXromt7ldliYR6RJftRafBUgAduOX/P/QuP8m/rNQ4FedeNN4/QENRPtpNBpNa/P2JnuNcwJw++CAM9iNNGf2FIjFJFzZL4m/j0ynX7qFjDgTfdNqnY3VBFMDAi0AshKClwYPhAnY0ATTqPtWSu0WkafxH9h14E/+thL/AdzqT3gXtempszHSaSulvCJSIiKZYQQ0NRqNplVRSvHdnoZzRiZbhX7prTNzGdzOxsujM2uul+6rYnWRm5FZcfRPD14G7JBggoO11wfqhgVqQohkiS9Qi68UeB9/grZIaTCWMi8vL+g6Oztbb+IfRhwOBwUFh1+Jqu73Hg2ibUO0x68mFuwItGGzw0yh28SxKW7imxjGtaPSxAFnSoN1BiRUsXXz5nrHbwmZwKlWoAjyioLvWZ3xQO3S4pr8A2wuUBS6TYxON0E9Nti9gk0U1kMc0hatn4OGFCwi+TOiRosPQETmAiOBdBExGbOoQL29ai2+3UZOndSGZk+xKK8RCRMmTGDdunXk5eVhtUa2YRqLJCYmHvbvIBZkVaJtQ7THjyU7qm3wKsULayuYu8Mf4ZZqE64bkMyZXeOxmCI7M/Tt+gr8Cz1+TupkY0yXeGZttrO93Ev7eBO3DM2iW8Dez+H6DHJNDhYUV9RczyuszTn5Q4mNR4anM7xjrQPb6/Dy7C/lLN3vIsUqPDYsjUHtIl+aPFDp5ePtlWTGmzi3e0KDn2Es/ByEIxKfXKPFZ+junY4/L83XwO+NOlcAHxuvPzGuMe5/1XrmxgY7d+5kyZIlmEwm5s+fH21zNJrfPFVexQM/lTF3W234dZlL8bfV5VzzbTEub+MRbw6Pj0+2B4dvj+4cxxld43ljTCYfndGe2WPbBTmnw0mHhPoft24lPLS8jJIq/65JudvH7YsOstQ4d1XuVvxzXUW97etSYPdw7bfFvJ3n4B9rKhg77wDv5Nn5Ir+Sqgg+y1ghkj2oZSJSrcXnNv5/BZgPzBGRh42y14wmrwH/FpE8oIhDEME35pP9Le7jm3M7NrvtnDlzGDZsGMcffzyzZs1i4sSJANx4440kJiayY8cOFi9ezKBBg3jzzTd59tlnmT17Np06dWLmzJkMGjQIgL///e+8+eabFBYWkpOTwz333MPZZ58NwKhRo9ixw5/0VSmF3W5n3rx5jBw5kvnz5/Pwww+zZ88eBg0axNNPP03fvn0BGDx4MNdeey1z5sxh165djB07lpdeegmbrWWbwhrNoaLCI9yxqIS1B91h728v9/LNbidndE0IKl+yr4q/rS7H6VUMSLeGqDckWYSTjSg6ESEzPrrKDR0TGj4/ZfcofthbxdndE/h4WyW7HcFBFBtKPBQ5vbSLb7gfh8fHtKWllNSRWnp1vR2Aj7ZV8tSIdFJtzV8zVEqhANMhVsOIyEKl1INKqQFKqcFKqSuUUm6l1Dal1HClVF+l1GQj7QZKqSql1CSlVK5SaoRSavshfQdRYM6cOUyaNImLLrqIr776isLC2pPk//nPf7j33nvZunUrVquVcePGcdxxx7Ft2zbOOecc7r777pq6PXv25IsvviA/P5+77rqL66+/nv37/c73hx9+ID8/n/z8fB599FH69u3LMcccw+bNm7n22mt5/PHH2bJlC+PGjePiiy/G46mNWvr444+ZO3cuq1evZu3atcyaNevwfTiaI46dFR7e3mTn77+U89E2B3vszdvcd3h8bChx891uJwV2Dz6l+LnQxRM7kup1TtVsKPHg8Pj4dreTnRUeCp1e7l9eSqHTR4VbhZUWurBXAkmHeuOmCXSIYENtbbGbKq/iw62OsPeX7KtfQqmaF9dVkF9R/3e0scTDbYtKOFjVeBRhuduHwxNc72CVj6nfH2Tspwf4689luH3BjrD6e126v6pmRhjIjnIPH2x18NYmO5tKGv7edRB+E1m8eDG7du3i/PPPJz09nV69evH+++9zww03AHD22WczePDgmtevv/46kyZNAuCCCy5g5syZNX1Vz7wAzjvvPJ5++mlWrFjBWWedFTTeo48+yhdffEFycjJz587ld7/7HaeccgoAt9xyCzNmzGDp0qWMHDkSgKlTp9Kxo3+GeOaZZ7JmzZpD+IlofotsLnWzdL+LVLuZ6p2HCrePIqePSq+i3OVjZaGbNUXuEOfxDyrolmxmQrcELuzV8N6GVyleW2/nq91O9jrqeyAGzwh6pJjpEG8OcjqL91XxvwInpS6FWaBzopmqBvxkqk24qFdsBVtlxpuwmvxh7/Xxeb6TnCRzWKFZ8DuoCd0Twt4D+HFvFfN2hEo61WVLmV+R/emT0mlfz4zszY12/rXRjgLizXBipzgu6JnAwoIqNpb4/yD+It+JWeD/HZOCiFDlVfxlWWnNd2czwRX9kpjSJ5ESl2Lm+grm73TWHJr+9yY7X55d/2qWdlBNZM6cOZx66qmkp6cDcOGFFzJ79uwaB9WhQ4eauvHx8UHXCQkJ2O32muvZs2fz4osvsnPnTsAfUVdUVBv6s2vXLq6++mpmzJhBz549Adi7dy9du9bmgxQRsrOz2bNnT01Z3TH37t3bKu9d89vH4fHx2no7H22rNB4SySS2989K3trkINLdiZ0VXl76tYKXfq2gb5qFPmkWph6VXLNstNvupdDpZW2xm1mbw88GwnFsOysPD0vD7lZcvLD2d2FPgHPzKtjVwCzOZoJHTkhr0RLWocAswu+6xtc4kKMzrDx4QiqTviwicFto5gZ7PT3A2uL6Z1DFTh9PrQpO8ZFiFcZ3S6Dc7WP+zmDHtaPCy59+KOHZk9JD+vp4eyVvbKy1w+mFr3dX8fXuqpBowvk7nZzQwUa/dCtPripjVYDyu8vnX1p8c6Mdq0lClOQbctYQWZh5X+BdQOEPGe8F3AtkANcC1RtCdyulPjfaTAeuBjzA/ymlFjQ2TlNoyf5RS3A6ncydOxelFP369QOgqqqKsrIy1q5d20jrYPLz87n11lv59NNPGTbMn4z45JNPRilVM9all17KjTfeyGmnnVbTLisri/Xr1wf1VVBQQJcuXVry1jRtgJ/2+/ds6ip6P1wnb1FT2VTqYVOph/k7ndw+OIXlB1yNnkUKx+nZcdx1bCo2s5BsUaRahTJ34y4zO8nM5N6JrCl24fHB5N6J9M+Izcja2wanMLSDDZ/yB3BYTEJumoUNJeFzS5kgSKnioEtR5vKFOF+fUjy1uixo38ks8NSJ6TXnsf50dAr3/lQaNDPd7fBy++ISpuXU9rXygIvn1tSftyqcU3lwRcM/Qy4fuHxND86IJEhiE3AcgIiY8B/KnYvfAT2jlHomsL6IDAAmAQPwh58vFJFcVf3k/Q0zb948LBYLP/zwQ1Bo+ZVXXsmcOXMi6qP6Y3A4HJhMJtq1a4fP52PWrFlBjuemm26ib9++3HLLLUHtzz//fJ577jm+++47TjrpJF566SXi4uJqnJzmyGJ7uQenV9EvzdKi9Azf7Hby4PKyiGdIdclJMjOkvY0dFZ6Q3EiBPPNL/Q82wa8U7gyYLsSbhcFJVVx0VAdO6GCreY8i/gf3isKG9ygA/tg/idOy4zm3R/1LX7GCWYQxXeKDyoZ3tNXroM7sFs/6g262ldfOGPMrvAzMrHVQHp/igeWlLK6zP3VFv6Sgw8LxFuHRYWk8uKKUH/fW1i2we1lUYmMQsL/SywPLS2mGLzkkNHWJbyywRSmVb/wghfuNmQjMUUp5gO1GNN8wYGmLLI0B5syZw6WXXhoyW7n22muZNm1azb5QQ1T/Avbr14+bbrqJsWPHYjabufjiixkxYkRNvY8++ojExERycnJq2r3//vuMGDGCl19+mT//+c81UXxz5szBYrEE9a/5bbOzwsOLaytq0juMzY7j7iGpzYqaKrB7eHJVecTOKTvJTGacicw4Eyd0tNEr1UK/dAtmY+z8Cg/3/lTK9vKmBUtM7p3I1IHJFDm9fLunisw4E8M7xrFr22ZyO4Zq4w3MtDbqoHLTLIzp0nxdvVjg970TWVFQylp76Kxvcu9EXt9gD3JQOyo8DAwQq/1gayU/7A12TgMzLEzpE7oHZzMLDw5N46EVZUGz3O9LbPzRp3hkRVnIrPWYdlZSrMIvxW7K6tkbq8vRGVYm90nkoRWlQTOuJItfImp4JxuXf9W4uJA0ZWIjIq8BK5RSL4rI/fjPO5UBy4E7lFKlIvI8sFgpNctoMxOYr5T6qLqf0tLSGPHPmmgQC4cCo21DfeM7PD5e32Bn7rZK6h5XuTQ3kWsGJIdts3ifi3izkBlnon28iQ4BIc1PrioL2X+4sGcCvxS7g1KfC/DEiDSGhXEWdXF5FWuK3Rys8vFIBEuE6Tbh9THtyAwTyVbfZ1Hm8jH1u4PsdnjpkWLmvuPTWLyvitmbHVS4FblpFu4/PpWcFp5rivbPQrUN8yqz+DjgHNeoLBuPDEvntQ0V/HtT7T7exYajB//5sUlfFlIa4Dgy40z8c1QGnZPqD0ffX+nl4i+LgpYPj28f+gfBNf2TuLSvP2+V26d4b4uDf2+y4/TC0A5WlCKoTUacialHJTEuJx6TCN/vqeKxlf5IvzO6xnPtgGQyjNQjV31dxLZyb9CWTVpaWtBfYBF/syJiBc4FphlFLwIPKaWUiDwCPA1cE2l/Go0mGK9STF9aWu8S2tt5/gfz1KOSibf4f4+LnT5u+fEgBXWCBo7OtHJm13hO6RLHor3B+0E3HJXM5D6JFDm9XPvVAYo9/gfGH/snReScwP+X+PEd/GfrOieaeWV9BXa3omuyme4pFtrHm1hxwMVeh5dBmVYm9UkM65waItVm4u3TM9nr8NE50YSI0CvVwiV9ElFQM6M7UrikTyJfFzgpcyuSLMK1xh8jdQ8Wby7z/3w4PD7+3+KSIOdkNcE/RqY36JzAfybrhI62moPAQIhzOqGDjSm5tbMwq0n4Q24SF/VKpNDpJTvJglcp5u9wsnhfFf3SrVxUJ7T/5M5xfHpWe9w+SLAEf18nZcVR5Gw4L1bEMygRORe4USkVosMnIt2BT5VSg0VkGqCUUk8Y9z4H7ldK1SzxBc6gtBZfdImWFp8mmCK38NKuRHY4G/+bMd3i4+YcOx6Et/cksKsq8gR6CSbFM33LqH5W2L2wosxKB5uPAUlavDTalHmEPIeZngleMq3+x+SOShOPbA/WF7yzWwVr7RY+LwrezxqXWcWkTo2HmQOst5t5ZmfojBwg1ezj/l4VpFoO3WKX0+t3qP371s5e686gmuKgZgOfK6XeNK6zlFJ7jde3AScopaaIyFHAO8Bw/MrmXwJBQRJ6ia9tEytLKrGyxHewysf13xWzv050XacEE+f2SOBfG+2NhuNGypgucTwwNC2sHdEi2jZEe/zGbHB4fJz9WWFQ4EKyVUi3mYLC7ZMswr9PC7+MWh/hln/Bn224pSlJmkNdBxVpRt1E/AESHwUUP2lk2F0FnALcBqCU+hV4D/gVvxzSjUdCBJ/myKLAaeLHvVVBp+R9xo9ppUexvdyDvbW8Qj0opShyevnXRnuIczIJPHNSOn/ITWL6cakRK1nXTS1el+FReOhoWkaixcSEbsEzpQq3CjkL9uSI9CYvo958dDJH18kOfEmfxKg4p3BEtAellHIAHeqUXd5A/b8Cf22ZaRpN6+NVis93OnlqWwpsKwWgfbyJCrePuul5EszC305MD4qYaiken+L1DXa+3plM8aYD9aohTOyRQHaS/9fztOx4+qdbuXtZSb2RcwMyLDwx3K+vtqvCw+f5Tj7Y6gh6T6k2aVEmWU30uHVwCglm4b2t4fdsMmzCURlNDxZJtJj4+0npvLxsJ5t9qRzbzsalfWNni0UrSWjaBA6Pj1l5DmblOUJSdBc6w8+UKr2KJ1aV8a9TMzGJsLPCQ4VbMSC9/jNJn+2sZFaeg85JZu48JiVEIPTfm+yGskL9+0ZX9UsKeUh0STLzj5EZ/G11OauLXFhNQrxZSLb6nc7veycSZ/bblJNs4ZoByZyeHc8La8vZ7/TRL83CJX2SSIkxdQVNZJhFmDowmbwyDz+HCb3PTbc2+4iJxSSc0c7FTbkZLTWz1WlzDsrhcEQtCCOaY8eiHQ3hU4p/b3Lwn20OuqdYuO/4tCYtX7h9io0lHjolmFh+wMWr6+0URyCOWZedFV5uX1TC2mI3gSotPVLMTOmTxBld41FKsb7Ew4J8J/8xwoTz7V5e22Bn+nGpNW1+3FvFm5salv25dVAy5/UM/92k2kw8dEJa2Hvh6Jlq4emTYu+ho2keJhGmHZvK1d8Uh0gG5aYdmY/yI/NdNUBBQUHUNkSjOXYs2tEQz62pqDkTcrDIzVXfFPHwCWk4PIqcJHODZ1+qvIo7FvudSmuwKkzY9/ZyL4+vKsPu8bEg38n6MEoAX+Q7axzUu5sdvPRraD6fJIuQlWimc6KJkVlxnNk1PqSORlNNp0Qztw5O4dE6Z8/arINqQIvv30Z5d2A7MEkpVWq0+QdwFmAHrlRKrToUxmuOTJburwo6sAhQ6lL86ceSmuvAA4R1eWldRUTOKdUqPDA0jY4JJtLjTKwrdrN4n4s4s/DulsYFTn3K70gbotDpxelRzNwQWu/yvolc1S9Jq39omsTY7DgW7Y3j693+821JFmFI+9gIamhtWqLFNw1YqJR6UkTuAqYD00TkLKC3UipXRIYDM4AR4XvXaEKZnde4c/jXRjsTeyawrczDjnIvx7S30jXJzGsb7DXLbHWxmuCc7gmkWIU9hQe5/NjOQTOx4Z3iGN7JH0TQOdHEq+vtIUspTWVTiYcFu5whYeIZFh8X9krUzknTZESEu4ek0i3Zzi67l/N6JMSccntr0RItvon4w8sB3sSfAn4afi2+twCUUktFJE1EOiml9rWW0Zojl7xSd9gltbp4FEz8vDBiUctTu8Rx/VHJZCX6gxPy8vY0uEx4Xs9Ezu6ewM4KL3mlbraUeShzKXZVeBtNrhfImmJ3iJJD71QL13YsJs2WFXE/Gk0gVpNwVf/wh2yPJJrqoCYD1elZa5yOUmqviHQyyrOB/IA2BUaZdlCaRqmryAx+2R6724fDo4JSRTTmnKwmuG5AMiOz4ujSiPRLOCwmv7ROr9TgX5MPtjp4YW3tkt3RGVZuGJiM2QQ3fn8wyK4PtjqCZk8dE0zMPCWDzZuL0Gg0DdMUJQkrsBsYoJQqFJFipVRmwP0ipVQ7EfkU+KtSapFRvhD4s1JqZXXdhqSONG2bf+Ynsqqi9tzRZVkORmf4ZyybHGae2hHZX40WUdzZzU7vxNaX71EKvi2xke80MSjZwzHJHqpX6gqcJh7YllJv25PTXVzeuWH9MY2mLREYsNVssVj8QQ8rlFKFxvW+6qU7EcmiNnFhAdA1oF2OUdaocYeDaMqaxIKkSizYsXFTHj1798FmDt1/2b29kMAUbaP6ZpNr5LTp6VO8vKcwIsn/P+QmcWb/TvXeb+ln0Lee8j5KcWxZSb3LlOP6tCe3S3zUv4NqYsGOaNsQ7fFjwYZoj18fTdlZuwSYHXD9CXCl8fpK4OOA8ssBRGQEUKL3nzTV/G+Xkz9tTOWCBYV8tztYA6ykyhck+WMR6JlS+zeUxSTccFQyJsOv9U2zcO2AJD4+sz3/HJXB2Ow4cpLMXNAzgcvqifA71IgIT4xI5+p+SSTUccBWExzX4ciMttJoDgURzaACtPiuCyh+AnhPRK4GduDPootSar6IjBeRzfjDzK9qXZM1v1X22P1nh9xKqHIrnlxdzvBOccSZhSKn11BYqKVXqiVklnVWtwSO72DD64MsIwUDQFqmiYGZkR9iPZTEmYXL+yVxdvcE3tpk5787/Ut6NwxMJiVSUT2NRtMiLb5i/E4rXP2bW26a5kjj5fUVQQEDFW7FJ9sr2VbuV2GoG9HdNz38j2dd+aBYJTPexK2DU7hxYDJVPqWdk0bTRI7M48eamGN1kYtvdleFlP9zXf0HXYceIcthNrOE3W/TaDQNox2U5pDjVSooLLsx4s3w+96JnNxZK29rNG0Z7aA0h5wv8p3klYZq1dUl3gzXDEjmd13j9XKYRqOJOGFhmoi8LyLrRWSdiAwXkftFZJeIrDT+nRlQf7qI5Bn1zzh05mtiHbdP8ep6e1BZz/jwzurETnFc1CtROyeNRgNEHmb+HDBfKTUAOAbYYJQ/o5QaYvz7HEBEBuCP6BuA/+zUi6IFx9osG0s8HAxIc2EzwfU5DuaPbx+SJVYv6Wk0mkAadVAikgqcrJR6A0Ap5alWLcevbl6XicAco952IA8Y1kr2an5jFNdJUzukg412VkWixcSk3rV5jzolmBjR6cgIitBoNK1DJHtQPYFCEXkD/+xpOXCrce8mEbnMKLvDcFzZwOKA9tVafJo2SEkd1YeMANXlq/ol0SHexL5KHxO6xZNo0Ut7Go2mlka1+ETkeGAJcKJSarmI/B0oA54HCpVSSkQeAbKUUteIyPPAYqXULKP9TPzLgx9V96m1+NoO/y2M4z8HapPw/a5dFRd1dDbQQqPRtCVaqsW3C8hXSi03rj8A7lJKHQio8yrwqfG6SVp8u5O6MjLxPqUgAAAgAElEQVQrDoupdbepdlV4eHFdBU6v4toByQzI8Ou5aS2+ltuxdF8V725xYDEJ5/VIoEOCiZ4plrDfobmqHA7UiqP27NQOVPQz+kb7u4j2+LFkR7RtiPb4sWBDtMevj0gSFu4TkXwR6WskLzwd+FVEspRSe41qFwBrjdefAO+IyLP4l/b6AMvq6//+5WV0Tzbz4skZJLVi9NYzv5SzstAv2PngilLeOb0dZh2r0SIcHh//XFvBf3fWzoCW7fenx+iYYOJPR6cwqk6gQ2lVcKa+NJtA6HldjUajCSHSc1B/wu90rMBW/Pp6z4vIsfilp7cD1wMopX4VkfeAXwE3cKNqZB1xR4WXz/KdXNQrsaFqEaOUqnFOAHsdPvY6vGQn6WNfzWVNkYtHfy5jr8MX9v7+Sh8PrijluZEZ/LTfxeZSDyOzbJTW2YNKjzNpB6XRaCIiUi2+1cAJdYovb6D+X4G/NsWQDU3IUtoYFWHSdJe5FNnREbj+zfNLkYs7F5fgCu+banD7/An7qvl+b6gnSj9CU1NrNJrWJ2amFJvL/Ic3Vx5wMXdbJfsqvWQnmblhYHKTxUEPVoU+SYvDlGkap8Du4Z5lpY06p0hJs5mwN15No9FoYsdBbS/38uK6ct7bUruhvqnUQ4Vb8dSJ6U3qqySMMypyagfVVFxexX0/lVHuDp6RXtQrgfHdEnhlfQUVbsXa4shnv+lxoh2URqOJiJZIHWWIyAIR2SgiX4hIWkD9fxhSR6uMfaqICHRO1fxS7CLStPTVhJst6RlU01mwy8mWsmBZoqv6JXHz0Sn0SrXw+PB0XhiVwdSjgtdO4+qZ8FpNhCTx02g0mvqIdAZVLXX0exGxAEnA3cBCpdSTInIXMB2YJiJnAb2VUrkiMhyYAYxoroFVXr9zaRcf+TJfuCW+ojqKBppaqrwKn4IES7DzmLcj+A+Gk7PiuLxvaCDLpN6JZMaZKbB7OL6DDatJuCFgL6qaNFttgkGNRqNpjEYdVIDU0ZXglzoCSkVkInCKUe1N4GtgGn6po7eMukuN2VenlqR93+uI3EF9t9vJc2tCUzu05RlUhdvHmmI3PVMs7K/0UuYyUX3iYcm+Kh5eUYbTq5h6VDK/N+SHNpS42VBSO3sS4MaByWEdjEmEM7rGB5UNaW8NiqQEv4PSaDSaSGmJ1FGN01FK7RWRTkb9bCA/oH211FFYB2UzEbQBf0w7Ky6fYv3B2ofjboeXgZnWsMZ9ucvJx9srKXX5OFDpw+kNvxxY3Eb3oLaWebhzcUkdB51C/6Jizuoaz6sb7NiNqMd/rqsgv8KL1Qwfbg2ePQ3tYKNzUuSz2Mv6JrGysCSoLN2mZ08ajSZymiN19CxQDtyslMoMqFeklGonIp8Cf1VKLTLKFwJ/VkqtrK4bKHW0aN1mfiixccBtoleCl1MzXHywP56FxcEHPqdm2zk+NXg/ZJfTxEPbklFhNWuDybT4eCK3vNF6RxLlHuGBrcmUeVs+c7klx87glMZzOgXy8YE45hXWzqzObu9kYgd9CEqj0dTS2lJHH+JfyttXvXQnIlnAfuN+k6SOThrYh5PqlA2wOFhYHLxMN+tAMhcc2z4odfbijXZUhDFh5T4Tffr0YfPmzW1G6ui1DRWUeR0t7mdklo0LjuvQ5P2jO3NhwI5K5u2opGeqhRsGtifJaooJWZVo2xDt8WPJjmjbEO3xY8GGaI9fH82VOlpn/LsSeML4/2OjySfATcC7IjICKGnq/lNWYuhSUplLsbXcQ//02qW+X0siD292+/yyPJmNVz1kKAWVHkW8mVYPFih3+fh3np39lT6yk8z0SLHwVUHLZytZiSZuG5zSbHsndE9gQveEFtuh0WjaHi2ROjID74nI1cAO/EkKUUrNF5HxIrIZsBt1m0TnMA4K/Mnvqh2UUor1ddQnnhieRlGVjydXhV/Ku3tZKZdlWTncfyf4lGLOZgfvb07h4IYD9E618Mf+SZzYyRbRg9/u9rH+oIe+6RZS6wk0eG5NOQsbcUj90i0MaW+jv28fXzra8cNeV0idrklmTs+Jp1OCiQ4JZgZlWonToeEajSYKtETqCGBsPfVvbolRWYkmBKi7O7bigIt4M6wtdrNknytI5y3BLAztaMPrgxfWVuAII3fkVfCvPYlY8+z8Iffw6R59v6eKV9bbqT52tqXMw93LShnS3srdQ1JpX0+EYrnLx5cFTmaut+MwZl5X9kticu/EIMdW6vLx9e6GndOIjjYeH+E/8JyXt4eHBqZx99JSlhhir33TLNw+OIW+6RZMOhRco9HEADGjJBFIosXEKV3i+KbOQ/e7PVV8tyf8g7h/hgWzCGYz3HBUMs+tKccH5CSZya/wBjm719bbObFTHL1SD8/bX7o/dKYCsLLQzU3fH+TJEel0T/Hb4vIqPtpWybe7nWws8RAYe+f0woxf7WTGmYPCur/fU0U9wYs1nJYdHAZuEuHhYWl8ke/Eq+CMnPiQc1AajUYTTWLSQQFMPy6VvmkOY+bROIMDwtDP6ZHA6C5xmIAUm4lvdjt5dGUZbuNp7wMW7a06bA5qa1n90W/7Kn3c/MNBHh2WxuB2Nmaur+C9raGKGoF8ucsZ5KC+3BWcAPC49lbizcL2cg9lLsUpXeI4PSeubjdYTcLZen9Io9HEKDHroOLMwpTcJD7b6STf3rAKRNdkMxN7BCscBB4KHdMlniKnj+fX1kYGrm9CgEVjKKXIt3uJMwmd6uyf+ZRie3mwg+qaZA56T+VuxR2LSxjfLYGPtzfsnABWFrood/tIsZr4pcjF6qLg93L74BS6JsfsV6vRaDQREakW33YRWS0iP4vIMqPsfhHZJSIrjX9nBtSfbmjxrReRM1pi4NX9k6jOYxhv9isUnNcjgeEdbfRNs3BJn0ReHp1BZnzDb2Vwu+CDvusPepqs8RcOpRTPr63g8q+K+cP/ivh4m4PNpW6W7Kti5QEXG0o8BKospVqFN07N5JzuwUtubh9hnVOvFDOTegXPcrwKlu5z4VUqZIZ5XHurdk4ajeaIINInmQ8Yo5SqK7D2jFLqmcACERmAP6JvAP4zUAtFJLexpIX1cWp2PIPbWalwK7KTzM1ODd8zxRKkWlFc5eOA09fkVB51WbrfxUfb/I7Fo+DZMDJLQXak+lOj3z44hQ4JZl7fUP8S5nUDkphiBHNYTMKszbVnmh5ZWcYjK0PbXNVPJ73SaDRHBpFKDEg9dcN5i4nAHKWURym1HcgDhjXPPD/t4s10T7E02zmB/wHfN73uLKply3wen+LFdQ07pLr0NIIhRITL+yZx93EpJIUJTkixBu8PnZYduodUlxEdbQxuZ2uSPRqNRhOrROqgFPCFiPwkItcElN9kpNSYGZBuoz4tvqgzID14whgohtocPt1Ryc6Kpqmk56YF23BG1wRmjW3HjQOTOSMnnoEZFn9I+PD0oDNPfdKsjO8WX7e7GlKtwp3HpjTtDWg0Gk0M06gWH4CIdFZK7RGRDsCXwM3ARqBQKaVE5BEgSyl1jYg8DyxWSs0y2s7En6rjo+r+ArX48vLyWvcdNcCyUiuv7q4NpuiX6OHO7s1Ln+fwwj1bUqgIo3OXbPbRNc6H3SsUVJnwGhPN9lYf9/Usp7mrinav8Nj2JPa7gjtob/VxVRcHfRN1ShGNRvPboqVafCil9hj/HxCRucAwpdQPAVVeBT41XjdJi+9w6j8l2b28uruo5nqjw8Injk7cfHRKxGoJB6t8rC5y8e3uKiq8tWey4s3C30emk2IVuiSaaw7Surz+KL5yt8JWtINB/Vv2fmf28vHTARco6JJkJjvJXK+6RH1EW3cr2uPHgg3RHj+W7Ii2DdEePxZsiPb49RFJPqhEwKSUqhCRJOAM4EERyVJK7TWqXQCsNV5/gl8W6Vn8S3t9gGWtb3rT6ZxoItnsC5r1fLrDSZ9UCxN7hibiq8v+Si9//KY4JAU6wJQ+iUE6gdXYzLV7X3klIbebTKrNxOnZ9S/1aTQazZFCJDOoTsBcEVFG/XeUUgtE5C0jnbsP2A5cD6CU+lVE3gN+BdzAjc2N4GttRIQe8V7W2oNnHKuL3Uzs2Xj7d7c4wjqnDvEmJvVu3MFpNBqNJnIiUTPfBhwbpvzyBtr8Ffhry0w7NPRO9LLWHjzTKWjkIDD4I/Y+qecQ7dX9k4jXMkEajUbTqrS5HNyj00N18fY04qCUUry/xVEjlRRIxwQTY3P0kptGo9G0Nm3OQaVaFPPOah9UVuZWlIfzPvhTXTy0ooyX69EEvCw3CWsLzmdpNBqNJjwtkTrKEJEFIrJRRL4IOAeFiPzDkDpaZexTxRTJVhNdk4NDtcPNojaXurn+u4NhU1n0TDFz2+AUzu6uZ08ajUZzKIh0BlUtdXScUqpaFWIasFAp1Q/4CpgOICJnAb2VUrn4AydmtLLNrUJ2HVHX3Y5aB6WUYu42Bzd+f5BddRxXokV4aGgqb5zajok9Elo9M65Go9Fo/LRE6mgi8Kbx+k3jurr8LQCl1FIgTUQ6tdDOVqdzUrCDCgyUeHdLJc+tqajR7aumd6qFV0ZnMLqLnjVpNBrNoaYlUkedlFL7AIzzUNVOKGaljgLpUmcG9d8dleyv9OL0KP61MXS/6Zzu8bx4cgY5Wilco9FoDguRPm1HBkgdLRCRjYRmZI+Js06RMigzONR8t8PH7YtKmNgjAWed9LT3DEllnI7U02g0msNKRFp8QQ1E7gcqgGvw70vtE5Es4Gul1AARmWG8fteovwE4pXq2BdHT4qvLqwUJLCtrWP371IwqpmQ5G6yj0Wg0mubRkBZfow4qjNTRAuBB4HSgWCn1hIhMA9KVUtNEZDxwk1JqgoiMAP6ulBoR2GeggzrcBGpOeXyKB5eX8f3e0Ci9amacnEH/jFAJo5aOHU2ibUe0x48FG6I9fizZEW0boj1+LNgQ7fGrqeugItmD6gT8ICI/A0uAT5VSC4AngHHGct9pwOMASqn5wDYR2Qy8DNzYiva3KhaTcN/QVEZmhZ9F9Ugx0y9d7zlpNBpNNGiJ1FExMLaeNje33LTDg9UkPDA0jXuWlbJsf7DKxB/7J+swco1Go4kSbU5JIhxWk3DvkNSgyL6hHayMqmdmpdFoNJpDj16/MkixmZgxOoP3tjiwmYVJvRL17Emj0WiiiHZQAaTaTFwzIDnaZmg0Go2GJizxiYjJ0OL7xLj+l4hsNcpWisjggLoxrcWn0Wg0mtinKTOo/wPWAanGtQLuUErNDawUqMUnIsPxa/EFhZlrNBqNRtMYkaqZ5wDjgZkRtP9NaPFpNBqNJraJSElCRN4HHgXS8M+azhWRN/DPjKqA/wHTlFJuEfkU+KtSapHRdiHwZ6XUyur+onlQV6PRaDSxSZMP6orIBGCfUmoVflXzaqYppQYAJwDtgLta01CNRqPRtG0iWeIbCZwrIluB2cBpIvJWgJK5G3gDqM4TVQB0DWifY5RpNBqNRhMxTRKLFZFTqF3iy1JK7RX/YaFngEql1N2RaPFpNBqNRtMYLTkH9Y6ItMe/7LcKmAp+LT4RGW9o8dmBq1pupkaj0WjaGk1Ot6HRaDQazeFAa/FpNBqNJibRDkqj0Wg0MYl2UBqNRqOJSbSD0mg0Gk1Moh2URqPRaGIS7aA0Go1GE5NoB6XRaDSamEQ7KI1Go9HEJNpBaTQajSYm0Q5Ko9FoNDGJdlAajUajiUm0g9JoNBpNTBJJwsLXRGSfiPwSUPaQiKwWkZ9F5HMRyTLKTxGREhFZafz7y6E0XqPRaDRHLo2qmYvIKKACeEspNdgoS1ZKVRivbwGOUkrdEJgv6hDbrdFoNJojnEZnUEqpH4CDdcoqAi6TAF/AdVBOeY1Go9FomkOzExaKyCPA5UAJcGrArREi8jOwG/h/Sqlf67YtLS3VSag0Go1GE0RaWlrQBKfZQRJKqb8opboB7wC3GMUrgO5KqeOAF4D/NLd/jUaj0bRtWiOKbxZwIfiX/pRSDuP1Z4BVRDJbYQyNRqPRtDEidVBCwN6SiPQJuHcesN4o7xRQZxj+IIziVrCz1cjLy2uTYwcSbTuiPX4s2BDt8auJBTuibcOhGt/y3WckXXMGyVeMIfmKMVi/eP+w2xAp0R6/PhrdgxKRWcAYoJ2I7ATuByaISD/AC+wAphrVLxKRGwA3UAlMPhRGazQaTcziqiLu7eexfjsvqNj20Ru4TxoHKelRMuy3R6MOSik1JUzxG/XU/Sfwz5YapdFoNL9JPB4SnrgD8+a1IbfE6cA2fw6uyVPDNNSEo9lRfBqNRqMJxvLtvLDOqRrrV5/g69IdPB58XXvh69oL4hIOo4W/LSJyUCLyGnA2sC/gsO5DwET8Z6D2AVcqpfYa9/4BnAXYjfJVh8D2ZpGdnd0mxw4kVuzQaMJSXkL8S49gKtiO+/SJuM+5FOS3cbzSsnpJ0LUvswOm4gM11+J0ED/ziZprJYIvpxdpw8+A3NzDZudvhUiDJN4Aflen7Eml1DFGSPl/8e9NISLjgd5KqVzgemBGaxnbGiQmJrbJsQOJFTs0mnDEzX4Jy7rlmEoKifvwNSyLF0bXIJ8P05ZfoaK04XpeD+aNvwQVOW9/AteZk+ptIkphzt9Cj7mvIoV7W8PaI4qIHFQT1STOBd4y6iwF0gKj+zQajaZeKsqwLPsqqCjujafBXh5Ze68H6/w5JNx7DYm3nI9t9ovQiJxbQ8juHSTecxWJD91I0v9dhGnzuvD1SotJuuYMxOmoKVMpafhyeuIec3aj45i8HiyL/9dsO49UWnQOSkQeMSL7pgD3GcXZQH5AtQKjTKPRaBrE+uMXiNsdVCYuJ5aff4ys/efvEffuDMw7N2MqO4jt8/cwr1kW3F/hXghwJPVhXvE9iQ9OxbR7h7+dx03c7JfCj/vxW4jPF1Tm7X8siKA6d8PT/9iQNio+eCXDsiTKM8UYpEVBEkqpvwB/EZG78KtJPNDUPurG32dnZ+slqBjD4XBQUFDQqn3GwrmLaNsQ7fGriQU78vLysNjLGTD3zbD3S9esZHen3ojbhbLaAEgs2Er2wvcRrwd7Th/Ke/SjR5j25d99QUFCJuL10G3em2SuWYLPbGHr5Fso73UUADuWLcLkqsLZMRuTq4qsH/9Lp0Wfh/Rl3rwW8x2XsOWSW3GnGRoEXg+DFoU6l93tu1JkfLYZ/YfSY0PwVnzepJvJ/fffEOV3bOZd28hf9A3ODtH5ez5aPwe5Dey9tVYU3yz8+1AP4J8xdQ24l2OUhaUh4zSxQWJiYqt+T3l5eVH/3qNtQ7THjyU7qm2Im/EIlsqKsHXalewn86v3sSxeiC+7O1VX3UnC7OdqltSSdm+n47LwM5B2e3eQaPRvXeMPYjB5PfSZ9SyuCVPwLv2ahMI9NfVVfALirKzX3oTCPfT/6j2cf34aAPOaZSF2e7v1IfOCy8i0xfkLenTH9/2nmIr2+e/nHk2X08fj/flrLGt+qmnXy3EQd+6YBj6tQ0Ms/ByEoylLfI2pSWwwXn+CX0QWERkBlCil9rXQzjbJWWedxezZs1u93+uuu44nnnii8YoazWHCvGoR1gaCISwbVmFdtABRPsy7tpH48E1B+z0NYdq1FfPKH8L2b/vvrCDnBDTonGrsWbcC25yXMO3ahuX7z4LueY4aQuWDL0O1cwKw2nDe+iie40/GPfw0nNfdDYB3wJBgW+vZ42qrRBpmHrGahFJqvoiMF5HN+MPMrzoUhkeLQYMGUVhYiMViQSmFiLB8+XI6ddJxIBpNczBVVRL35rNBZb7O3TDt2dkq/YtSxP/j3ma19aVlUHXdPcS9/RymPflB92yfvYvts3dD2rjHXwImc2hf3frg/NPDQWXePgODrs3aQQURkYNqipqEUf/mZlsUAclXjGlxHxVvftOsdiLCu+++y+jRo1tsg0ajgS5ffRR0VkiZTDin/oX4Fx/CtG9XRH24Tz0X8/qfkQN7UClpSGkxEhC9J02M5FPxibh/dxGu3/0eklJw3PM88S8+hOXXlQ2282b3wDvw+IjH8fXshzKbEa8XANOBPUhpMSpNa2xD66iZtznqZiFWSnHFFVfQr18/evTowTnnnMOmTZtq7ldWVjJ9+nSOPvpounfvzoQJE3AbkUpLlixh3LhxdO/endGjR7No0aKgvrds2cKpp55K9+7dueyyyygtrT2L8emnn3LiiSfSo0cPJk6cyObNm2vubdiwgQkTJtC9e3dGjhzJggULwr6XsrIyxo8fzz333NPiz0WjaQzThlXEvfYklq8+BqUwr1tOhxXfBNVxnzUZX4+++LK7N9qft0dfKmbMp+rK23E88W/sry/E8dyHOB59AxVfv0KDEhPKbMFzzAh2nHMljkffwD38NLw9++GaMAX707NxXXA1JKX4G6Sk47zzSbw5vRq0x3XelWBqwmPVFoevW/Dej2lLSAq9Nkujn6SIvCYi+0Tkl4CyJ0VkvYisEpEPRSTVKO8uIg4RWWn8e/FQGh9LnHnmmfz8889s2rSJAQMGcP3119fcmz59OuvXr+frr79m+/bt3HfffZhMJgoKCpgyZQr33HMPO3bs4IEHHuCyyy6jpKSkpu2cOXN45ZVX2LBhAz6fj+nTpwOwceNGbrjhBp566im2bNnCKaecwiWXXILX68XtdjN58mTOPPNMtm7dymOPPcbVV1/N9u3bg2wuLi7m3HPPZcyYMTz66KOH5XPStF0sP3xOwuO3Yf1uPvFvPkvylaeS8OSdQXV8nXL8D3nA26Nfg/35srpSeceTkBAa9auye+B45HVc4y5EJSQF3au66BrsM+Zhf+UznLc/TvExI/Hl9KTqxvuofOBlXJOug+S00AHNFpx3PI5rwhTcJ43DM2gYKim15rb7pHF4hzZ9ZcXXrU/QdeBssq0TyRLfG8DzGIdvDRYA05RSPhF5HJhu/APYrJQawhHMpZdeitnsX2MeNWoUb7/9NpdccknN/bvuuos+ffpQWVlJXFwcs2fP5vvvv6dDhw4ADB8+HPA7n/HjxzNmzBgATjvtNI4++mgWLlzIRRddBMAll1xSE11z9913M3bsWF588UU++ugjxo8fz6hRowC47bbbeOWVV1i+fDkulwuPx8Mtt/jzSJ5yyimMHTuWDz/8kDvuuAOAgoICxo8fz5VXXsnUqVq8UlMHrwfE1LTZQANYflxA3MwnGl1qc159Z01wgefUc7As+wbzrq14+xyN85YHMa/9CeuCD/F1zMY15UZIrV8ZXHXojOvSW3Bd9Ecsixdi3rDaf3B2/MVgbl4As8rs6HdgNQUK2b8bTCZUu07N+rxUSh1nWFHWLNuORCJRM/9BRLrXKQsMh1mCkbDQ4JCLZjV3/6i1eOedd4L2oHw+Hw888ACffPIJxcXFiAgiQlFRERaLBbfbTY8ePUL6yc/P54MPPmDePL8sv1IKr9fLuHHjaurk5OTUvO7atStVVVWUlJSwd+9eunatjeYXETp37syePXtwu91B7arb7tlTG630+eefk5aWxuWXX97iz0MT+5g2rMKcvxXPcSeh2meF3t+8DtuHr2HavxuxlyOVdpTVhveYEXiGnYpKTkHFJeDr0Q8sTXu4WxYvJO7Vxxt1Tq6zJuMLONCqUjOofOgVxF6OSkkHETyjzsQz6swmjU98Ip5Tz8Vz6rlNaxcJIqhOLTu3pJJTg65FO6gaWuMc1NXAnIDrHiKyAigD7jVkko4o6u5BzZ49m4ULFzJv3jxycnIoLi6md+/eKKXo2LEjNpuNbdu20a9f8JJFdnY2l156KX/729/qHWvXrtpN4vz8fOLi4khPTycrK4tt27YF2bR79246d+6My+UKalfdz9FHH11zffXVV7N//35+//vf8+GHHxIfH9+sz0IT+5h/+paEF+4HwPrfWVQ++AoqNQNcVaB8SPF+Ev72Z6TSHtRO3C4sy7/Dsvy7mjJfRnuqLv0T3uNP9tc5eACVmAx1VBGoKPM7utIi4l5+rOYwajjcyWl4L7oGTzhJILPFb+sRTIiDsmsHVU2LHJSI3AO4lVKzjKLdQDel1EERGQL8R0SOqqPbF8SRoCRRUVFR4zjsdjsPPfQQYqgvm0wmpkyZwvTp05kxYwbt27fnp59+YujQoUyePJkzzjiDs88+m9GjR+Nyufjpp5/o27dvTdj6nDlzmDRpEl26dOHxxx/n/PPPB+D8889n3Lhx/PjjjwwfPpwXXniBlJQUhg4ditfrxWKx8MILLzB16lR+/PFHFi5cyP33319js4jwzDPPcNNNN3HxxRfz7rvvEhcXF/rm0EoSv/Xx+370r5rXpoOFJP3pAlwp6djKS+jXKQdltoY4p/owHSwk4fn7KM09BpPLSfKOjXjiE9l1xsUcHHgCaZvX0G7VD6RuXhN2xqTERNGxo7A4yqjK6MjBQSOo7JDtXxoLCPI53ETzZyG1rILeAdeOfXvYatiTtmElWT/8F3dKOjsnXIGnjjNrTY4oJQkRuRIYD5xWXaaUcmOIyiqlVorIFqAvUG9sZiyeXm4ICSP7/4c//IGvv/6aAQMGkJmZyfTp03nrrdotu0cffZQHH3yQMWPGYLfbGTRoEP/5z3/o1q0bb7/9Nvfddx9XXXUVVquVIUOG8OyztWdCJk+ezHXXXceWLVsYPXo0jz32GAD9+/fnxRdf5Pbbb2ffvn0MHjyY2bNnYzabMZvNzJkzh9tvv50nn3ySnJwcZs6cWbPMGPgeXnjhBa6//nouu+wy3nnnHaxWa8j700oSv93xpfgASbu3hZTbyv2BOIkRhnHXJS1vdc1ri9NBj09ep8cnrzfaruqGvxA/3P/IsOBXmW4r30V9mJQz6DoZL7m5uUjZQRKfegOpcsLenRz1+VtUTvv7IUk9Eu3PoD6k7nJV2EoiPYBPlVKDjOszgaeB0UqpooB67YFiI3iiF/AtMEgpVRLYX2lpafPlhTW/eWLhlyHaNhyu8TdNaSUAACAASURBVC3/+5j4t55tvKKBLy0Tx2NvQGIypq0bsCz5n18s1evFnLem5rxOc/AMHo7zjlAFk7byXdSH7N5B0vQraq59nbJxPPkOlsULiZ/xSFDdymnP4h1wXKvbEO3PoJq0tLQg79voDKoeFYm7ARvwpfHX+BKl1I3AaOAhEXHhT79xfV3npNFoDh+WVYsarxSA+5xLa0KsfX0G4gpQOjDt2krcG880mDG2PpQIrok6ICcsIUES/tQi5vU/h1S1zpt1SBxUrBJJFF/EKhJKqY+Aj1pqlEajaSJlJZCUHBw+7fVg3hScQM8z4Di8g4YhxfuxLZwb0o1n0LB6h/Dl9KLynn9ge+/lsBI/4Fdg8Jx4OlJSXJMiQ5nNVF1+G746sj4aP6r6MHA1jnLweTFvCE1Ebt64CjxusIQuxR+JtJaauUajiQZKEffak1i//wxfSjrOac/gy+mFHCzE9t4rQcKnvtQMnHc949/DsJdj+ekbTKW1eUh9Hbo0HjJtMuGaPBWVnIp14Vz/Ader/4x54y8oqxXvoBMgLgGUwvLjF5h278Bz4jh8XRtWYGjTmC144xIwV/m/K1EKyzfzMO0LDUwStxvTzi34evVvuMvl32P77F18HbJwj7845DDwbwXtoDSa3zDm1UuwGmrapvISEu+5Gs+QUZhXLQpJoOfrN7h2gz0pBeftTxD36J8wu/yb9O5TJkS2AS+C++w/4D77DzVFnhNPD6nT5PNKbRhPQlKNgwKIf7P+fUPzll8bdFBSuJf4GQ8jbhfmzWuxLP2Kqmum4Rl5RqvafDhoVakj4950Eckz7v/2PhFN9PF5Me3a6j+no2kQ65ehK+qWlT+EOCcAb79jgq7/f3vnHSZlkfzxT83MRlgWlpyRDJIlqChiAAPmdJ56eup55nSnP089z5yV0zNcMGA4PMR4ihkVOfMpegYUURFEJAeBZcPM9O+P6tl9J+zu7ISdBfr7PPvsvN39vlXv+/bb1V1VXRXu1Z+vfnM5VVN+ScVJF1J9wC+yxqdD/QjFhGOqDw2l5Ai8/zpSXVVzLOEwBffeQN5z/4TyTVBViW/xQoquO5cWZ0wh/1/3QCOD6dZce/0a/P99E1m7MqXzG0JGQx2JyGDgaGAQmqhwtoj0M8m4CjYRysvLc7bPKpe0myMfCbFlM0XXnoN/6XcAhLr0IjRsrBrYi1vmmLnmBVm9HP8XHybdPjg4PgJZVVkHqsadlqC1Q1MiWIeAMn4/wQkHkPfGczVlDTmpBP77ZlyZGEPBE/dR8MR9cXX5L82kRYde0L9/csxWbiH/sb8T+GAOPrtdwRS3ZMv/3UZ4h/rjJzYWDa6gbCSIdTFls42p2Rr+HiqMAA4GZhhjgsaY74GFQN1W1xwg0xtOtxbaXjQXPmpQVYmsWQHBIHkvP1EjnAD8y74n/6WZFF1/HrJ6eeOuu2XzNr0Ky5szK+k0EtV7TMF07ZVdhhxSRtimsffCFBRScf71VB57NsbjFOFbvQJZ/kNcewBZ9RP+RQsaTb/k+y/rrgwFCbz5PHmvPAmVW8h79SnyX3umRjgBSPkmim48n8B7r6kTR4aQqVBHkbSvXYF3PXU/2jIHh4TwLV5I4a3/h+/ndVF5cWLh/+Fbii//DRUnX0RozB71X9QYCqbdRt6bszDiI9y1F6Eho/Wv/zAo2AbCOgWrCcx9PmFVaOBwKo88Vb3myjchP6/DdO7RxAw6NAbVJfHhnLb84fYaW1NowHACntVy4JP3qN6ve9w53rBUEZhAHtKA0Che9n3iCmM0D5a9buDNWXV6EErFFgr/eg3hVm0Ijp9MaOBwwr0GYFq3rZd2fUh2o25PdKPusJjyy4BRxpgj7PGdwLuR0Ecich/wgnU/r4F3o26uw804ND3y163CiI/q1m3pPeMvlH7zWaPOXz1qAksn/QKTYNYJ0HLxAvo9kji+YdgfYEun7uRt3ICvqoKNvQezoe8wipcvIVC+iZ97D2bdjmMoXLuC6hatCBWXJLxOrtH2ozn0eHF6VNmPex1BRbtO/Nx3aMKMrg7NF6VfzaP3E3+tOV4y5QTWjNy95rj9B7Pp9kqta//GXoP45vjfxV2n/7TrafFjbeSQpZOPYd3g0bT7aA5ln75L/oa1GL8fXygYdV51cUs+v2BqnJNM2Sdv0XPWQynflxEfSw44nrWee4mFd4Nwozfq1oVEoY7QFZNXrHezZUkx1xTI5Y7p5rJbO1d8yJoVFDx8O4FPdJFdtfeh5DdSOAG0mzeX0sJCKk+7NGF9/ruJVxYAvlAw6gNuM/9D2syvnZmWff5eTcgeU1jElgtuJDxweNx10kU670DWr6H4zWeiyqr2PpTSE86hFOjYRHxkCrnmIdf0ARaGw1Qeexb+Lz8hOGo3yibsjzenrrQqAo+AavnD1/Tv0DYq866sWRHVtwHa7H84rcs6wMjRVAM166hwiBZnHFizDSGvfBP9W7fEdOhSe/LmjbT4c8PbWoNDxxL47IOEdWLC9HjjKdoe/qvalVc4DJVbIAnHkGQFlOBJo2FDHV2EhjryKvmfBaaLyJ9R1V5fIDHnDtsPwiHyZj9N/hP3aVwxi/zXnqnnJAj1H0Zw+Djw+fVcz6wv751XCO/Qn+o9DwbPSkqWL23wuslCKraQ//Q0Ki65PSPXaxQikcTffhnf0kWYFiVUHXYSodETyP/XPUh5bXBXU1BI9ZRE++kdthr4fFTvexTV+x6VsNp07EaoSy/8VhUnoRCBt16meormofNGrI8g1HdHTFmHOuj5CfUaQMCzGdj/3ZcEPQIqf9ajyOaN9bIdHDqWigtvxrfkWwJzniPv7VeQivKoNlK+Cf/8eZjilgTenU3g/TfwbVxPcNRuVJx1Zb3pWzIa6sgYM19EZgLzUWF9ZnPy4HPIAcIhCu+4PKmQO1V7H0pw/GSkYguhnv2iQsCEBo+i8M7L8a1eUVNWMP0uCqbfRXDErlTveSDh7n1pcfHxcdetOO0y/As+xf/5B1HnJwP/ws+hojw+nUS2sGkD+bMeJe8/L0bnBbJRxE1+IVIVHVy06vBTMG3rGIgcthkE9zgA/79qk5TnvTmL0JDR5L00k7x3Xo1vP2ZivdcL7zAAPALK9+P3gCaXLPzH9UnxFPHaC/foQ9UJ51P1i9MIzHuHwr9dE9Wu6LaL484NzHuLvDnPUb3PYXVeP6Ohjmz7G4AbGrquw/aBvNefTToeXHDnvQn3GZywLtyrP1WHnUzhvfFdK/DJOwQ+eYdQjz5xddW7TiJo/yLZT32rl7Pi6y/ptvBjfMuXEu7YlcD8xAH3JRTE/9X/CI3YJal7SBmVFQQ+fpvCv15Tb7NY4RTq0ZfqSXV/4A7bDqrHTyb/8XtrHB58K36k+E+n1tk+OKb+9PPhLlF5aPH9tAT/vLcTCqdw63ZU/vYSCqf+IcrhItR7UHTDgiKCu+zNluKWFE2NF0qxyHtxRnoCymErRyiI78fvCXfppUvppnS73lJO/pPR+y6MPxClqosguNPuhPsNiSuPajNmD8z0v0Spt7zwL/k2rqzq0F/XHtjsp6GOXVmX34p2h9WutmT9GoquOwffymXx1/3iw+wKqGA1xVf8Ft9PSxp1mhGh8qQLU05f7rCVoaQ1wZ12J+/91xtsGuo9SFPQ14NYAeX/33sJ99VpP/s9oR13ovLkiyi4/yYkFCLUrTehOmI3hgaPxBS3RMrrTAUI0KBGIxkV3/3AgcCKiBefiBwJXIluyB1jjJlny3sCXwJf2dMjUc4dcoHyTRT/6bf4Vi0j3K4ToYEjCLz7KoNK2xK65PZog2gW4F/wv2hbSV4+5Tc8xI+fzqPvsw8g1VVU7Xc0oaFjCffq33CYnYJCKo89m8L74lM2JMLmqY81+JHW8Na6LeV/ugf/d1/hW/EjBdPvrKnLe/tV3Shso3xnGv5P308onExxS4Lj9iLvjWcTnle996ENxmRz2LYQnHhgUgIquOukBtuEO0W7qUtVZcIJbNUvz6yZoAXHTya0wwB8K5cRGjyqbvtRXj6Vx59LwYO36XVRd/fQiF3wff0Zvp/XJT4vBqlGkvgMOAz4e4L23xhj4resNxM0tB9gW0LeG8/iW6UrAt/q5fjeegmAwrUrCT5wCxV/SD5PUCqQn6MzrYSGjsW078zmHv0pv+NJ9ebxNbhXPArB3fdn87BxBN56SR0nEoT0AQj1aXgGGYeS1oSG70xoy2byn7yvxsNJNv9M/lPTqDrh/OSuEw4BkvS9+b/7KmH5lguuJ9x/GKEBw+LyAoX6DKLqyN8kx4/DNoPQwBGEO3ZNGEg2guq9DqF6r4MbvljLVoRbtalTWARHjafy6NPi9tCZLj0Jxay+Ep4/fjLB4ePwL/wCBEL9hkKLEmTDWoquPA3f2lUNXiMZG9RbdmXkLVsAIInSy3q8/ZoTZN1qCqf+geFLviU4diKVJ1+YlJvj1oy8ObPqrAt8+TG+xQsJ98yee62UR3sAhWMN+Y0UThGY0jKqpxxLcKfd8a1dhWnVmsKpl+BbU6suCI5uYDNvfShqQdVBx1Pw+L01RfmvPYP/m/mYth2o3usQjdqdAHn/fpj8WY8SbteJinOuwiTxIfu+i9/FH+7QhXC/oQAEd9mH8i49kVXLCQ0agW/dKp39bicpFxw88Pmo3mMKBTP/EVcV7tiV8qv+0ahxzXTuAQkEVHDMHuphl2723palhEbuGk2ztIyKs6+i+OqGlWupjRD1o5eIfCQib4jIblm4fkooePA2/Eu+QTDkffAGRTdfCMF4W8g2A2PiVjCxyHvp8ayyEOeiGpv3Jk2YTt0JDR6leYouv5vg8J01dtnwnamefERa167e9yjCMSpQ/+KvCcx7i6JbL6Lw5gvxLapd+fi++YKiq86g4KkHkKoK/Mu+p+CpmBTo5Zvwz3uLwJxZlHz7Of758/B/8VHC0DSVR58WNTiEe/YjNHp3aFFCuFtvJ5y2YySKEh8cPYHyax9o9KQ7nCDCSLhTdypO+b+spJavodFnMKEk9hdm2rq6DOhhjFknIqOAZ0RksDGmTktZU0SSaLH4a/p/8m5Umf+7L1nz9COsHdG0MrSpImfkr1/NjjH7EWIReO81Fozeh3BePvnrVlHVpn2joio3hG7LltLec7yyvIJV9v6z8hwOOgU54ESMPwCLvm+weUM8tJp4OH1m3pWwLvDFh8jCz5l/5nUENv/MgGk34AtWRbf575s1NFouXkDvmXfXpFSoLzvPF2ddT1Xr9tBEfaU5RHPJNQ+5pt9YHnruOJayL3SLadjnZ8G4/aha3DgnG4DSdt3wZuqqLi7hm4NPoWJpvLNQplEyciIFvXYkPshTLTIqoIwx1djAssaYeSLyLdAfSOzDSxNEkjCGon9NTVjVdfki2vY7Kbv0PWiKHeuydiX+j98l773ZDbcNhxg84/YazzWTl0fVYSc1btNnsJq8WY/iW7ea6kmH6ezeouC16HA77Xr2pnW/fs1j534yPPTtS/DLD+rcJe+vqmDAV+/jW/JNnHCKoF+n9lDSmqJHbo7K91MXgoNH0XPsrg22yxS2mnexDdNPiYezLif4wC3I8qVUH3BM6n2mTx+qguVUvz+HvKFjqD7oOLq3qk9kZBBJ3G9KkSQS1OkPkXbAWpuGozc6UfyujvOaBP4P38T/beJIvf7589SgvQ3ELZNliyl8aCr+r/7XqPO8btVSXU3+k/cT3HUypk27pM4veHBqTcI8/6fvUX7TPyG/QK8Xo+KLS23d3CFC5XFn47/spDqD2Oa/NLPeS/iXLiLcqg3+xcnNjoO7NOx95eBAixIqzrk6/ev4fFQddhILh+yWcyGdCMkkLHwUeAfoLyJLROQkETlURH4AdgZmiciLtvkE4FMRmQfMBE4zxtRvCMkmgkEKHo/PfxKBlG/Cl0Jo+pyhsiJhsf/zDym+/tx6hVNw2DjCHboQHDYOU49uWUIhfN9/nRQ7gTmzaoQTgG/tKvzfzq+9VpyA2vryOZnOPaj65Vk1x9V7HdKo831LF5H3bvxqdmPPAQQHjiA4eJT+DRtH5fHnEtxt37R5dnDYVpBqJAmAuIBnNmp5w9EFmwiBN5/Ht2JpzbERHxXtu1C0srbM/8VHdUYvaDYIBim86woCH79NqM9gtvz+Jihuiaz4kfxnHkw4AEYQ7tCFqinHEpx4YE3Zpr/fRKd3XqzzHN/SRXGeN7HI+/fD8U4AgO+HbwkNGgnEe/HRTCODN4TqSYcTHD0BgtWY9p2Rn9clTmsgPmhZgmzcUFPmW7oI38LogLgVp/6Bbzr2aZYzVgeH5oRtegt63pznoo6DEw5gVYs29HjhkZoy/9ef0tx3RgXmPk/g47cB8H87n5ZnHkS4Xcc6d2GHuvQiOH4SwVG7qRtpzIpp1Zi96Pj+qwkjOgCabr0+VFWSP2t6wirfD55zN0f7xmx1Kj4PvCrPyqNOxffdl+riXtSCUO9BhPvuSPXOe+FbuYyiP19S09b3zedxe1aCI3aFnxoXE9DBYXtERiNJ2LpL0CSGQeA8Y8wrWeC7YQSr8cWEnq869AQ2LYjeFOlf+EWzt0PlvfbvuLK6hFPVlGOpOurUel1EgyWtqfzVeRQ8NDVhRlbf0ujnRmUF/oWfE+7SA1PWQSNE1BEyybfkG/1hzNZvg6oDplN3ym+ejmz6GVPaJqrvhGPS0vtjnqUpKbVBcJ2AcnBoCBmNJCEig4CjUcHVDZgtIv1yEdHct3xplGE73LodpqwDlW3XY0pKa9QwUlGO74fvsrphNR3ImpVRKdDrQrhzDypOvYRwn0ENtgUI7nkQ4W47kDf7aVVZeYKl+n5aAsFq8p95iMB7r+Fb9ROgcfS2XDwV/6fv13ld34+L8C1aQLhz96gVmsnLq3Ge2CaQl5/QkcS0bktw5PiaFW8swh1cgmkHh2SR6UgShwAzjDFB4HsRWQiMBeoe0bKESOj4CMJde+kPEUL9hhKY91ZNnX/Bp9kXUFWVlH41j7wFHxAaMLzBwKgAhMPke8Lrx8Lk5RHqO4TQsHEa2qSRKSHC/YZQafkoPu9IfOtXAxrBu+i6c/HHRDiQUJDi68/F1CNopLqa4itPi+d1K7U/pYKqQ0+sW0B1dALKwSFZZNoG1RXw7oj90ZY1OeoUUECo35AoARXbNtOQDWspuvpMeq9eXlNWNelwqo49O2G4H9/Cz8l7+xX8H87FtzHeCdIUFlN59G8J7r5/xlYloX5D8P13Ts1xrHDywqveM34/4T474v/60/oJbCPqvWQQ7tWf4KjxBObFC6lsB+h1cNiWkHMniWzt4O614DPyPcfL84pZY2ktqw6zg6du809LWZTFneSd5j5HC49wAsh/9SlWEmDVuOh9L2WfvEXPWQ8lvE5laVsWH3IKWzp1J5xfCCnsHI8g9rkXjtyD/p+8i7+6cek41gzblbXDdqX34oUE6tmIWu4LRNHc2nbuNxZFo/ZiYAIBtcwEWJfNaBopoDnwkWseck2/OfCQK/r1ebNmWkD9CHhjuHezZXUiW662xRtWRx23GzWOsr4axaBT/2g7TYkJZdXlt3DW6oTlXf77Oq2P+W1UyPriB65N2Nbk5RE6+wq69B+WNj8Jd63360dVm1IKp16MVDfs1xgubUP1gcdTuM+hdPH5qRizC4GP3yHwybsEPvpPXPvCtu1raG6VO/cbi379CM57I2qlDtBh2Cja9W0e0TRgO3kXzZx+c+Ah1/TrQrLBYpOKJAE8CxwjIvkisgMaSSJxnJgsQ9aviToOd+pW89vE5PWRBGq0lLGlXCNaT78L/4dz1ZtwaXwiPQDf+tUEPnijlo8Na/EtWxzVxhQUEhw9gS2X30M4A8KpPoQGj6Li7Ksx/miPxqr9jqZq0uEY8REuaU3l0b+l/JZHNSBrxIOtpDXBCQdQce41hPrG29dMi1ZxZds6qg49Ma7M2aAcHJJHMm7mjwITgbYisgS4Ao23dyfQDo0k8YkxZn9jzHwRmQnMB6qBM3PhwQfEJ94qKKr5aUqyJ6AKpt1am1DslScId+5eb9bI/Kem6SZQn5+Ch2+Pqgv17MeWP97VpN5voRG7UHH65RT+7RokFMLkF1K996GYDl2oOuIUdcRoIMpx9V4H4//m87jrbm8I9+xH9Z4H1yQcDI7aDUpa55grB4etBxmNJGHb3wDckA5TaSMUjHZxFolKTxC7gmLzxrT2QvmWLiLv2UeQjeuj3LUBfD/9EHVs/H7dI2QT7flWLSPvpZn41q6Ki04Q2nGnnLhmh8ZOpLxrL/xff0ZoyGhM+85akWSk8+Au+1C1eCGBD+dq/qSJBxEcOzF7DDdjVJ5wHsEdRyGVlQTH7Zlrdhwctirk3EkiK6iKiSydVxA96w8EMC1KajaSijGwaSO0SmF2u3E9RTeeHxXepj4ER++BadWa/FdrI0IVPHl/wrahgSMaz0+GYLr2IujxfGwUfD6qjj2LqmPParjttg6fn9CYibnmwsFhq0Q2EhbmHBLriZafH9cmU3aogpn/SFo4AYS796HqsJPi1Ixx/BW3JJRlm5ODg4NDc0Yy0czvF5EVIvKpp6yNiLwiIgtE5GURKbXle4jIehGZZ//+mE3m60SM/SnRxlITYwtIRUD5vvmCvLkvJKwLl7Zhy4W3EO7occ4QH0GbFbXyyFPrvXbFGZdDUeM23jo4ODhsS0g11NEfgNnGmJtF5GLgElsGMNcYc3Bm2WwkYh0k8hIIqFapraD8/51D4KO3CO24E3mv1h24PbjLJEJDx1B+7f3kzXkO36IFLOkxiI42xXJwwv6EXn8W/+L41Bbl1z5AuHvvuHIHBweH7QkphTpCQxrtYX8/BMyhVkBlL5F9kpDqaBuUKUhmBdWwms733VcU3XUlQL0pLgCC421en/wCqicfCcDPCxfSseZifip/dS7F154ddV6oV3/C3XbAwcHBYXtHqjaoDsaYFQDGmOVAB0/dziLysYg8LyK5SbSUzAoqzgbVsIDKm/t8UuSDA0cQ7tGnwXbhfkOoOuREjIiq/0bsSsVZVzboxu3g4OCwPUCS2aZkV1DPedJtrDXGlHnq1xhj2opICRAyxpSLyP7AHcaY/rHX27BhQw3RbITXaLnoS/pNn1pzvLHnAL751YVRbdq/9wrdZj9ec7xyzF78uO8v673u4LsuoWB9fFSIUH4B3/7yfNp8/j7GH2DFrvsRjHVlrweBzT8T9gcINzLYq4ODg8PWDm8Ei9LS0qjZeapu5itEpKMxZoWIdAJWAhhjahIAGWNeFJF7RKTMGLO2Tua6dYXCooyuGvybV0UdF7VuExdmJ7AyOk9P241rKG4g1EegZQkkEFDBQ39Nl732h732B6AuBV1zCSeSaz5yTb858JBr+s2Jj1zzkGv6zYGHXNOvC6mGOnoW+LX9fSLwbwARqTGxiMhYdIVWp3ACaHn6ARTe/Pt4tVw6iNsHFe9mHopJ8+7/6n/ImnqSyIXD+FYuS1hVvfchjWbRwcHBwaF+JONm/ijwDtBfRJaIyEnAjcAkEVkA7G2PAY4Ukc9F5GPgduAXyTARmD8vKiZduojN9prQzbxTN0I7DIzmI9bxYdPPyNpVGvlh/eqEWWQrjzy10XmYHBwcHBwaRjqhjvZJ0PZu4O5UGPH90HDW2KRRVRF9nMBJAiA4fjL+RbUp4ANvv0r1lGPxff81BffdVJPJ1hS1INyuUzyZg46nekr9disHBwcHh9TQbCJJxEYfT+taMSq+ujLAVo/bC+NJGOhf9j2+b+dTeNefotKsy5bN+H+Ijkhevcs+VB35m4QJBx0cHBwc0kdSo2tjoknYur+IyEIR+UREkgoo51uXOGdSSogLdVRHwNVWrQkNHRtVVHzNWfVGH4/AuLQJDg4ODllFstP/acC+MWWRaBIDgNfRaBJY9/I+xph+wGnA35IhIAm841JFMjaoCILjJ6dEIzhyfErnOTg4ODgkh6TczJOMJvEGKrQOwYZFMsa8LyKlEZf0+mjIujVgTGbczWOdGeoTUCPHYwqLkYryuDpT3JLNt0xHyjfjW7wQ/+KFyKYNBEfuRrhX3PYuBwcHB4cMIp10G1HRJDwu5l0BbxKkH21Z/QKqqgLKN0GLEmT5UvJmPwUFRVTtd1Tjk7xVN+xmXoP8AoJj9iDvPy/GX2aXfaBlKaZlKaEOXQiN2SPBBRwcHBwcsoFM5oNKO3PuD/+bR0Xbjgy89xryV/0IwMYl37Hk4JMbdZ0eq1fR1nO8fN161noiVsRGr2jZczD9EgioRd0HUp7hSBfZiJyRCnLNR67pNwceck0/gubAR655yDX95sBDrujXt0E4HQGVMJoEumLq7mnXzZY1iF6lLSBUTtGq2uZtP32Xkm49qd7vaExpWT1n16KgMFql17F7D9rGRJKIQp8+hN5+PsrlPNSlF10n7pvRCBfNZbd2rvnINf3mwEOu6TcnPnLNQ67pNwceck2/LjTGR7q+aBK/xkaTsOUnAIjIzsD6huxPNQTWrcYfkzIdIP+FGRTecZnaqGLgn/cWhXdcRv5TD8AmDfgam7DQ1LEPqgY+H1suvo2qQ08k1KMPob47Unn6ZS5oq4ODg0MOkdQKykaTmAi0FZElwBVo9IjHReRkYDFwNIAx5gUROUBEvgE2Aycly0zhvTcSrsPe5P/2S2TdakxZ+1q+Viyl8M4/IeEwzHubvNnPULXvkQTmvR19coKMunEoakHVYSfBYUmz6+Dg4OCQRSTrxZd0NAnb/uxE5cnAV0/iQN+KpYQ8Airw6QcqnCxk888UPPVAPD/1ePE5ODg4ODRP5DwMQri0TdJtZdmS6OOVSZm2IL+wMSw5ODg4ODQDpCWgROQ8EfnM/p1ry64QkaUiMs/+7VffNSouuAGTZLBV3/JoAeVbkayASkLF5+Dg4ODQrJCyF5+I7AicAowGgsCLIhJJOTvVGDO1zpM9CO8wkPJr7yfwybuY/AJM5gRBDQAAIABJREFUWQd8Py6i4F/3xLX1/fQDVFchq5cj1dX4YlZUoQHD8S/4X9x5DTpJODg4ODg0O6TjZj4IeN8YUwkgInOBw21do9zfTPvOVE86vOY43LZDQgHl//xDWpy6H2LCcXUAW867loIZfyVv7gvRFc4G5eDg4LDVIR0V3+fA7jZobDFwALrnyQBn2UCx93mDyCYLkyC1BYCYcJ3CybRoBS1KCPUbGl/nBJSDg4PDVgcxCfYWJX2yJi88C9gEfAFUAjcAq40xRkSuBTobY07xnrdhw4YaonXtXu76ygw6fPBa0rxs7tKLr0++jKKfFjPw/muj6j75wz2YQF7S13JwcHBwaBp4NwiXlpZGad/SElBRFxK5DvjBGPM3T1lP4DljzDBvW6+AqhPG4Pv6M/LmzCLvnVcabF69895UnnE5VFXS8tTowOubHnyjZtNtLndMN5fd2rnmI9f0mwMPuabfnPjINQ+5pt8ceMg1/QhiBVRasfhEpL0xZpWI9AAOA3YWkU7GmOW2yeGoKjCVixMeMIzKAcOonnIMsmYV4XYdMe0745//EUV/vjSqebjPYP2RX0DVpMPJf/UpAKomHeEiQjg4ODhshUg3WOyTIlIGVANnGmN+FpG7bJLCMPA9mhMqLYS79YZuvWuOQyN2Zct515L/8uP4fvye0IDhVE/Yv6a+6rhzCI3YFQRCg3dKl7yDg4ODQw6QloAyxkxIUHZCOtdMFqFRu7Fl1G6JK0UIDRndFGw4ODg4OGQJOY8k4eDg4ODgkAjZiCTRRkReEZEFIvJyKm7mDg4ODg4OKQuomEgSI4ADRaQPmvZ9tjFmAPA6cEkmGHVwcHBw2L6QzgqqJpKEMSYERCJJHAw8ZNs8BByaHosODg4ODtsjMh1JojvQMZKg0Lqbd0ifTQcHBweH7Q2ZjiRRBZxojCnztFljjGnrPS+pjboODg4ODtsVYjfqpuUkYYyZZowZbYyZCKwHFgArRKQjgIh0AlamQ8PBwcHBYftEul587e3/SCSJR4FngV/bJicC/06HhoODg4PD9ol0VXxzgUgkiQuMMXNsZImZqD1qMXC0MabuPO4ODg4ODg4JkLFgsQ4ODg4O9UNExORw0M01/cbCRZLYRiGiEXIj/7dXiEjO+riIdBSRolzR9/CxXfeBCCLvIsfPIz+HtJsD/UZhmxRQIrKLiAzMAd1jRORqEWnbcOus8nEm1g6Yi9mSiIy2DjI5gYgcISJzRKStMXVkuMwu/WIRmQb8HchZDgMRaS8i/wLOzBUPlo8OIjIuh/RHishD6B7NXH0TR4vI66itvsmRa/qpYpsSUCLSU0TmANcCJU1EU0SkQET+AVwAfABszMUsTUT6iMhHwF7AR03Ng4i0EpH7gCfQCCNNDhG5EfgdcLcxZk1Tr6BEJA+4BdgC/NIY82lT0vfwMQh4A/gRfR85gYhcDLwDHJSL1ayIHAA8DHwEPJsjHg4HLgJuMsbM2N7op4N00200N5wIvGWM+WNTEbSZgyPpevcyxmwWEX+O9LzjgDeNMb/LAW1QwRgE+hpjgpHCptB7W2FcCHQF9jHGbBGRfNSBpykhQCnwe8vDQOAb7/NoIuwEPGCMmQogIi2NMZuakgHr3TsOmGyM+c5T3iT9wdLoD0wzxvylnjbZoh3BnsAtxpiXbVADY4zZkmm6zYV+JrFNrKBEJGBnRq2A523ZL0VkaETdlumZk4h4hfswYAcrnM4FHhaRX4nI4EzSTMBDxM4UEZCFwGIRKRGRO0TkAhE52Ns2yzgCFZBBEZksInuJSEE2B6PIezCKLcAOwGAROQVdOdxq40Zmi36XyL4/i85AEZAnIg8C04D7ROQc2z4r31wCW1cboK+IdBeRJ4E77TdRluD0bGFvYKMx5jsRGSYiB4kmOc1mf2htf/ps3+gIfCwiO4vIXBG5WUTOzxZ9i1aWl4i9Z6nl57fAf/D0h22Ufsaw1QooEdlTRA4C8MxO+wE9ROQOIBLl4mnbJiO2CPuRPQ1MiZQZY94BCkXkn8AA4ElgJHBljCDLGETkQlR1gTEmskroiA7Qf0RXDsvRzjjcrvQyJqTsgLNnTPEcYKyI3AP8H6pqu1VExmSKrof+viLyDXCkR1C3QCcopwO7Ab8HCoBTRCSjmStFxCcitwGfAtdFyo0xi4Fi4F7gA2PMLsD9wNUi0i7TNjERKRK1Mz0m0bbPz9HV7J3oto+n0XBkx2RjsmInRUeISIGn+COtksuB+4CjgQdEZErCi6RHv7eIzAKm20lRyI4LIeAK9N5vQZ/D/4nI5Cx8ExNEZBnwMoAxpspWtQB2QVe1U4C/Akdl+rvINf1sYKsTUKL2nmnA48DFItILagTQc+gH+YMxZrIx5nSgREROT5NmZAAciXb2QmBEhLbFvcBkYKox5ingDjT009h0aCfgxSci16OrlR3trCiC6cAkoKcx5kJjzL8sX9dCZozDojgd+AS4yapxIlgOtARKjDH7ACcDG1Ch5U+XtoeHAehgtxAdeLoAGGM2o3vvRgL/M8YsBK5H9+QVZoq+RSs0zuQZ6OTEO+hehKpV1lm+/gO8aMsyBhEpRCdi+UBrYKLnOf8I+IFexpjHjDHPAu+jkzjJ8MC8O/A18AgwznNtg/aJ3YE9jDG/AmZjY3hmir7FpcBm4Af0nURwFXrPPY0xzxlj3gVuRDMxZMxhQkRKgEMsH2UicqynegbaJ4uBFcaYt9CoO0dlgnZzoJ8tbHUCyhhTiToiHAS8AJztqbsPWIKuIiJ4kPTSinjtSQtRwXApqkKZ6Gk6y9afaI+DaIf4MlXaMXzki4jPCuJngCOB84Az7MoBY8wS9H5LRVOfALwJfJ7BAakIWAUMRWfph3tmzf9FB+VeIlJmjFmJOgu0txHvU4aI+EWksz1cCtxgjNkfFRQHe3iYDbxk+cMYswx9D2mvXERkrIj0FbXnrEdXiC+gapMTI+o7Y8zn6KppT1HHnfGo6u+DdHmwfPSwdCqAV40xRwD3ACcA3Wzd16hQ/EpEjrOnBoGAMSacYTVbHvpdXAEch27eB+0fX6MTiMhs/QNUy5D25n0R6eTRUFwJnAs8BUzyTFyrbd0AsZFvgPZoH0mXfkBE+otIkTFmI/APY8yDaMqhmyPtjDHzLV/rgH1tcRD4cGum3yQwxjT7P1Rl8xtgjD3OR4XOzmgopd09bXcDXkNnB79Fg9iOT5HuqcDH6Izr0Ji6M1CVwUhPWX/0A7wWVf3ciH68ksa9B9BV0EzgqgT1DwI3e479aOf8sz3vW2BKms9/X7TT97PHxfb/ePush3najgamogPmrmgalpPSpH+GfQ/Po4K5jadub+AVNP2L35Z1tvc/A50p3g4UpEG/ELgL+B4VPP+Oqe+N2prO9JQVAefb9/MecGwGvoPuqPpmrn3HQ2PqZ1qaRfa4Bbp6eQsdoD4FxmWAj/7oJG3PSB+N9AvgVXR1G/DwfIHleyjwmH03+WnQHwX8D9WYPAgUeuraATcAt8accwNwK/C27S+903wGh6NxRp+xz7Z1TP1c4DrPcUt0hfNPdCU7PfIdbY30m+ov5ww08BKKgL+hq4AL0BXKTp76Vrb8kZjzxqP2h5ne9o2kPQZdEYxFZ4fvAft56newHf6CmPO6o2qnlOjGXMuH2pMeBHrY5/BHoIunzRDgM2BHT1kBuqS/AChLk4cr0EF+Kup0cGZM/V/scyjzlBXaAewx4Kg06bdBBdOOwP52cLspps0/vB+j59kNBwZn4D30BV7zHM+xz7bQHufZAWOWp01kgO6Qwe/hd+ikqAi4BhWK3u8hMjkbEnPeDngmcWnyMAlV292CrkIuBdp56o9HB80+MeedhU6YrkiRbiTqjaB55k6zx/9CJ0PFnvpxqPAa6z0ftdHulYFn0MJ+k+Ps8f3oKs37DQ4GfsYKYg9/XVG161ZLvyn/cs5AAy8iH1VTdLPHF6IOCN09bYaguu9J6OqhWxr0/J7fU7wDIaq6WBjT/jBUx308cE2WnsEjwCn29yDUMeIYPCsCNGvxA+iAfAR2cEx0X42kXYBuNu1hj/dBZ2BHeNrsgO63GWrbD7TlsTwkvYoE8jy/J6BbB0CFzgjbBw70tOmBCrGj7Me6UyxtwNfIe+/n+d0HHQgjK8ixqGrPKxz8qNB4ExVgw7z3neo7iOHpOexKHuiETsKmxbS51vLxO+D6+vp4ijycD5xgf49GtQSxk4PHgZPt75087877fTXqfcRc/z7PcyhFV0SHUbuCLkE3qj9sn8WRsf0xBZqtYo7fx2omUGFwE6pi9Hve+W1oVvG7gNO3Zvq5+mt2NijrCdRD1HW6ALUp9QYwxtyKOh4cEGlvVN//AjqALEdnu412qxaRK4EbRORAW1SFDo4ROtOB1dZ7LoLX0WXzHeiHkhZEXZZvFZGTRWSoLZ4HFItIC2PMl6i9Yxd0JhTBi+gH+RLq1hu7Bylp+4/1jusLNfa+HVHnD4B3La3jrIEeY8widKU6A13hHmjLg/Z6EbuMSZL+VcAj9j/GmLmoy/ZBRu1vX6Pv+2jPtZcAPdGBa4Ux5iPvNY0iKRuUaBSMV4D7RV2SxwIbbXWZfZ4fAF+hk5YIRqICsgCdrHzqve/GvAPLx+4i8pKIXO/pk69Ra9xfjgrlQhHZ33PqV8BlaCbruA26KfAxVkRGeJwaOqMrWVBHmaeB4SLi3Zh9Geop95X9X6CkTcg62Ugj3sfxIvK8aISWSDSKTUC+tb1sQFfqx6MTEYzaY7oBv0Dfy5smjX1ool6Ir4vIjSJyjC1+Bhhi72U+qj7tjk5iIn3doGPIJmPM37ZW+jlFriWkZ0ZwFKqqmoXqVM+x5X8HTgNa2ONJ6OzBZ4/3RI3m00lh9YTOhj9CVyDHo7aOfWzdxxE+7PHuqFCKLJvvR3XrnTNw/6ejg29EV/4E6iV2JKrWGmnbtUIH6PH2eGd0oLg2Tfq7og4Gb9h7utOWH40KvojKqhc6IzvQHne2z+ktYHQa9PuiAnAauq/sQ+wK1r7/xzxtR6Ousr1Q9doZ6AfbJVX69rp72L7wC9SWcSV2FYKuFG5EM0aDrtoWAW3t8e+JtkGlZHdEZ8CXojaWY1HHh7WoLbIdanM9xLZta9ueZI8Ho6usX2eAj/boCuRTVKX2oS3vjk6SIv2xDeq1eIk9LrL9YzkaSSPVd1Fi6b6BfuM3oWNBG+BXtq6Xp/2nwL729yTblyak2R86ohOvh1ENwXH2ui3RidhUYKJt2w2dQERW2UfaPtp1a6XfHP5yzoB9mDsQPegeBdyNqvj2RWdpI6gdJP9D7QA5FNgtDdrj8BjxUQHxN/t7D2AZUGqPB6I2l4gRulWqdGN4yEMHwyH2uKu9//HoyuwuVIff1dbfhnWYQAeutp5rNVqVgQ58d1GrSuyGGmC7ogLxAeB3tq7YHkcGg4FopIDItXykMCiig+thnuMR6CCdb/n4F3BR5LmjwrS1PW7pOc+fCv3IdYCDPMe/AJ6wv3uiqsVfY1WQ6CAZZ2MiDTUaOsAfhRWEtuwFaoXQCagKMfIt3AacYX8XZoIP+8wvINr55gvgOPv7UuBBT51XQHXEo35Nk4/zPe94EDoOdLHHM9CJSUT9fA1wTKrPvQ76JXicW9AJ40Oo23oH+xxupnaS8gS1ardMqHRzSr85/OWcAc/DH+X53RtVbbWyx7fYF7E3Opg/SYYMfXZQKqR2RXYAKhwiA8Dd6IB8NDqTeTTD9x3RF3cm2vbyGrUCe5IdiB5GVRZvo/tKvNdJSTDYc/OBEfZ3RI//CLo6E3R19SW1dpV/AwcnuE46A3OB5337LM1/eupHoiuWE9BV1r/xCObIeY2kWZTgPXjtJLuh6suIM8RkdJ/dv9HV/rRsDARYoYdOPgL2XXi9RWegRvLT0dXr4ek8hzp4GEa0nfP3wPn2d1d0ZXO2Pb6KBCt4UrT7eN5Fsfc6qGfaKPt7F3QF8RiqUlxEBhxiEvBS4vndDh2X2tvjAeiE9WVUcMwjDRt4c6Sf67+cM5DghQg6Q3ja86F2QJf1s4H59qWkMktv8MO1A9AlnuNiVOc+AxWUeY2l2xg+7P23sPc/2FNehqr+nifGczCVZ1xfGbpC+drb2e0ANR34zg6YJZmkn6DNfqhA9vK1p+Xj9nTfA+pYcjkJ3M89A+T/AX+OqcsDfolVrWS7L9j/b+BxKUcnVUfbQSltr7Rk+EJXccd4jndBBfXbqLdrysKBJDQRqGv7q3jc020/PQMVVP0zfP+JvpGBwHMJyg9DV3vpuM43ONHJJv3m+tf0BOsZWKhdxRzifRHU2nz6kKK9J2agmxzLB7Urh2epXSkMpXZWn7ZgSsDTcDyzTM+A1B+r848cR3iIuY+U91d5n3dsGapOeT5BXUtgUKZp1tFuGvAr+3siCWbjyXzUCc6JzMZ3Ryc8w+tpOxU1MgdQldeoTPAQex717EdBZ8nz7O8yPCspbz9ItS80xD+qMs2zz6pdpB/a/4XE7MVKgX5brBeg/b4TChpU1f+g/T2INNT6DfCzL3by5fkeI//3QzfDggYKSMvG5X1/nt9DYt9Jtuk3578m8eITkbZigxMaY6qtt1qppz7ifRPx7OkPPC4i7UTDGh1i6781xvyUCg/GGCOaQO52VHfbK8bTLxKXax3QT0SeQFUHeRG+U6GbCKKBK+9HZ+I178DYnofe//siMk5E5gKHWd6C9j4a5RlnaYr3t4hchE2J4a2z76Az8F8RKRORh0TkeFu3yRjzpT2/UX3Hw3NYRIaIyFUeT0VvOKnIdf1AtYg8igqKTjHXa5R3ouf+gvb/f1BHjJNEw8TE8iuobfQM1CmnIxoZIfZ6KUXIiJwnGs9wpogcao9jn2s/4D8icha6Uhkfw6fPWDSGvud9RPho73kHNWGpbH0eapPcIiIRuwfGmApjzGex5yRJ32+vsQbYQUS+RlX3g2PaRfpmD8AvIpehK/iWMfWZwulohJaa78vzbHdHvSbvR+1uFZkgaL/pfiLyPDo2dY+tzyb9Zo2mkILozu830IRhV6D6+2fQWYB3JhmZKdyLqpLm4fGiayTN2FlIR9QT6Kt6zhmChsR5H2t4zsC9x/Kxo6Xxh3rOuci2mY11RsjCO5lGzP4VT909aASKt1C1Ysp7SPCsmNAZ9/6oJ+Qj6J6qM2Lb2eOVaOSGUzN4z4Kqi69AnWPa2n4Z94xRgRhG1ZqZ2OwrMcdj0A3QD6D5kqZTqymoWREBF1s+pqER8zPdD3ZDXdOfImbDu6fNQeimzznAo2g6lUzR74sOymuoZ0WAeiduQQPztkyTZkRTI6jt82BP3amoQ1JsfxRUpfkt6e9pih0TWtv3X+eYk0n6W9Nf9i7sMdqjdpyT0E2MU23Z2agDwrGRF+A59xNbl1IojphBcQo2NA6ar+gDat3IYzthN9Q2kdYHkICHYlQ4R7xtHgeetb8T2UAuAs6t63pJ0vcOcoIava+k1g31IOBqoh0zIu1vR43PvWLr0nwmd6G2rdH2+ABUWHX23iMqHE7Cbi2wZamo86YCf7S/I4blfFQAR7zOTkcH3Q6e8yJ8eCMRpOyEEsNTgf1/CfBb+3sPdA/XeQm+hcPwqLPS4YNaNbYfXYHcgm6VmIwO1G8Dlybov8ehDgp7p9MfYq65NyqYL7T3dKHnmwgk4PlQEqg3U6XvKesHrEA9JwtRJ5yHErVHNTkt0uEh5npl9n87++wjHokJzQmZpr81/GXnotEdMfISuqErk79GylHHhxuI99Zp9EuwH7l3JrQnKhCfRp0qIqFRLkNVFBE9etqDTgN8HYGqZmaj9q197L2XY8PBeD7CRIbZVAZm76o0sm+nDboamoGq9g4H7o19X95zInVpDIjeFctodBW7kNq9G6WWp1szef+ec3dHZ+YDUG+8yMRkIioQIq7yz6ACMZCIj1R5oFbQRf4fiXVwQVePN9rfJfZbeIlaYZ3I5paSd17M9+j1zHsQDeHV0x4PRr3hSmP4TtlbElXN7Ys6NEQmQKNJsHJF9zIdHukb6b5/z3VLYo73RtWJp1n+RqKTmTtQQf0ZHlt3qv0/9luIof8euq/rV6hK/y/ExAzN5DPYWv8yZoMSjSwciS4QFo0GMQu4W0T+hKZduBnoIyKdjDFr0WgNnY0x5damELEPbG4k7fZoh79CRLpZvfQeqBfWb9FZ0oWiieWeQ2ePR2Tivj087CkiO3iOC0WT5v0ZDfuyDyqgjkU/guvQDgo20raxvdFzjaTtLKJ5gfrb64REpFhE/gw8LyLXoo4fF6IuqZFo7DuLSFsTs6vfGLPCXtNvGhH5WkSmisgf7e9IYrr1qGCaZK87nVod/wZ7PElERiSik+z9J+DFZ9TO9Ao6CXoSnR1jjJmDpmU4RDSp2/3o/qYyWx/FR6o8eJ5rxMZVgKZI2QWNMTlERLoajXxQga60f23PjYt8EPueGoL3e7TH56D2rMulNg14NdBWRPKNRiT4DNU01Jxn1E7ktRs1yIdoWpib0EniaajH4Q22ugyN+PGybRuJRH8d+p3+FXhBRFql8f5FNAL+L4GL7HtGRE5AV46z0M3IL6IamwvRvXe3oKrlmsSOyfb/BDx0EZHh4kkmKRrZ/kzU/vwsun2kEzphPUxEJopIGxG5F5sOI9VnsC0gbQFlO8FVqL1igC1rh+66fwDNCXQROjD/F/gGnS2A7rOpsgNxozqB7YARA+lq1G61AlWTGHRmXoqqkJ5BXVSvNRqC5jtgNxEpTrXzxfBShg60D4nIb2xxJfqx52PDL6HCYSWqa78O2EtE9qyLh0YIhi7ohuK7rWDMQ2eDq9DZWhfgOjtoT0PfywR0U2ideXlS+DCeBi4Qzdd0t4jsYzRp2kw0u+tkdM/MDiJyiD3nS+A3xphPGkmrIUSe3VnogBsGNtgBCnRFexBwojHmOTS+3Mp0CCaYpBRYoXCHLXoU7asTUGecz9A+cyBq+/gI6CweB6IU+dhbRF4H9vEMzMehat4jUKF0Azp5eBNVN+4tInugK96EaRga2R9+g3rl9TXGHI4KgONEMzx3An4SkVb2upX2W3wMFVLfo7H2fm7cnUfxaiy/Bh0H9rFVPdAIJdOMMdei9rc7rdA9Af1u96W2/zQadky8Du1jV6PfxWW2Og+1rUfSk0w1Gs7rLnRsvAi19X1nNH3Q9o10ll/oi1yJdqqunvLO6Is5HRUMD1AbqmhXNHTL66idqU0KdA9ADcy/tsclqIA6Hh0EIqqcy9EBCOAc9MPcGe2wGQs1b683C/X4ehdVF0XUIxfi2dxr+Tzd/h6WQR5eQFWoZ9njbvZvln0mr+EJHoo6CMynNphnRlzW0YgPT6FRGB721F+B2n4EXSXMz9S9J8HTFeigOxH1xBuOzpQfJjpVSDppUcrQScJcVOBi73Vn+zz2tmXjUYG9r60/D11dDEPtTVPT4KHQflPvoYNtIbWOF7ejdpwbUdtPJBJLKTqQPo7aHY/OwHMPoCvWiAo18u2faMsHoZqMc1EHgeH2uxiRAdoH2vuPbFEoQVPF3ECt/XGqp/04dIyKuJYXkd4ev33RifJ19hsrQse8n23/OxCNynEvtTbpMmwAbHTsTJn+tvaXbmcYB4Q9xxPsy+iBzgJeBnb11A+2H83RpLGxDvWACqMrsgNtJ7jIdr5jgem23T9RAbGv/XCvSoduHbxE9OqPWB5Go/aNS+2H2gU1gP4VnbF/7hkcovZZNIJmN1R1uKs9bovq0M9E1QYRR4hLgavt79PR+Gg9Pdf5C/CLDD+HMnRmfhS66TkS+Xo8qlY71R5n9D0kwd9idID+te2bCT0Y07h+okmKoFqK87GGd9t2DioM+trjlvbdzceGE0qRhz549q95+xW6SgoSHS9wGKp2PAYVop0y+Dz+RW2kCa8N7DN0gjkCXVm+hNqe0s6XZa8/1o4NX6HCfxCq2bkTdVTqgq5eI2HFTiJB1Pc06MeOiZEoJL+z/aK17SeRTMjDUYF6flN9C1vTX1oqPmPM+8DTIvK4tXfchnrALUG9teYCy63aaSY6YIaMMTONZvxMle5/sTlgUIH3V9TW8AMqAPwisi+aeqA9Ont8yxhzRTp0G8BTqOPFh2gMuYvR2eo6VBDsin4gxxpjZtn7MN7/jcDu6Md3jYgMNWoj8KOzr5fR1SLox7nAqvw6Wb6GAojIXpaf+SndbQyM0f1ZRm2Lf0bv/0k0mvVwVDi8ga7yMMZ8nYU9LHGQ2n1FF6MD0YNo7MDLYurToSFG7WnrUGFzDiqQL0EF1GNAOxG5TEQOQO0NL6GR+kFdvTuhziPT02ClAiiydozJwJkicqWl+byl+b3l+WR00B5ijJmBTiyOsH0lLdj3+ia6n7C9UZt0xA73gqX5iTHmPOD3xphhxphH06ULYDTS/N9Q55glqKDsiar1d0Zt4dcAfxKRF9AJxdxM0Lb03weeFN2/CTopwBgzFQ0RNRLV7IxA3canAX8xxtyeKR62KWRgxtAa2IwNsOopj+xveB7VuV6dSclq6W5AZ0c3obOwGbbuGDSgbGlTSXpUvTgTHYy+QGfqz6AG+APRjyLiwptyQFMPvVmocfc3aPifQegEYVd0FTUI9Rp7GPgJtcl5Y891ISYLZ4afR1ZXLI3kJaLqmw0cmal34Ll+ZPV4mOcdn2P7522okBqMBvN8mZiIFKTonZeAj3zUKWgxGqPvNlS1OwOdwU+w72K2/S539pw7Fk8OrAzwElm1nB9TPoOYOJJZeN9tUJVaJ3S19nd0e8mD1Oapao2NCp8F+mX23e9ojyMqzofx7HWiibUIW+Nfpl7IlcBs+zs2HE93YtxUM9gRrgNesL9PRFcsAXSmcjKqf86qG7mHl9aobe1OT1l/1JvQh6oZnydDahRgJ1SV1tMKpKdQQR1AVUqPefga5Dkvqy6rHmFwDNbORHT8tIwMxinwVYLOWOPCFWWQRl2TlIe1vfwGAAAEY0lEQVTRAMheF++UwxMlwcdArAOMPf4NcJv9XZNUMtvvA92U/T7wJ3S1/hLqNZd2epokaF+L5oEC1bTcboXWJ3jU3FmkfzXwTkzZc2TAzrY9/WXyhXxP7ew043Hr6qG7hNrsmllbESTBh6B2oEn2OHa3eEsybPxEvYNush/gPaihW+wAdQ+eyAO2vEmEA1lesaTI05520MiagCbxJKUfMQFdsz1JSMDXw8Rs/G4qPtAV/R9sXz2tie/7e6zTBzpJnADs3oT0F6OOERHV+z9RW2XOvoOt7S+imkgbopkeHzLGFDTYOIPIFd0EfAg6W74PmGUy9WDrp1mGfoRjjDELRKSPMeZbEQmYNDKIZoi3EvSDvMoYMy+XvFh+Gr2VIRUaqFrtRWPMq3YfWZPvYRGRAKq5mIJuBP0SzaW1qql58fCU9eefgOYxqCdpflPS9dD/BWoD+wC4zzi38UYjkKkLGWNmiEgHu5kv6c2dWyvdBHwYETnJqJNAU9FcKyJTUdvGUGPMt7a8Jt26aeTmzgxiNOqU8b8c0Y9CE/aLPmhAz5SC2WYCxpignSAMAy42ujE5J0LCw1OT08312GCMeSwyUTPGbPuBXbOAjK2gHGrR1AOBiLyExktbm6sBKBa5HAxzCREpa8pJSjKwKzvJ4WTFwSElOAHl4JAFNBcBneNVtINDWnACahtBruwdDg4ODtmCE1AODg4ODs0STZJR18HBwcHBobFwAsrBwcHBoVnCCSgHBwcHh2YJJ6AcHBwcHJolnIBycHBwcGiWcALKwSFDEJHvRaRcRDaIyFoReUtETksmrYiI9BSRcCbSfzg4bCtwH4ODQ+ZggCnGmFI0yvyNaB6q+5M4V+z5Wc+R5eCwtcAJKAeHzEIAjDEbjSam/AVwoogMFpEDRGSeXWEtFpErPOe9af+vF5GfRWQcaGJBEZkvImtE5EUR6dG0t+PgkDs4AeXgkEUYzf68FM2CvAn4lV1hTQFOF5GDbdMJ9n8rY0wrY8z7InIImqriUDQz9H/Q6NgODtsFnIBycMg+lgFlxpi5xpgvAIwxn2Ozy8a09ar4TgNuMMZ8bePp3QiMEJHuTcG0g0Ou4QSUg0P20RVYKyJjReR1EVkpIutRAdSunvN6AndYh4u1wBrUTtU1+yw7OOQeTkA5OGQRIjIG6AK8BTyKJrXsaoxpDfyd2hVToqCYS9AstGX2r40xpqUx5r2m4N3BIddwAsrBIQsQkRIRORC1GT1iVXstgXXGmGoRGQsc6zllFRBGEx5G8HfgUhEZbK9ZKiJHNs0dODjkHhnLqOvg4ADAcyISRIXNfOBWVNAAnAlMFZG7UK+9x4DWAMaYLSJyHfC2Tdm+nzHmGRFpAcyw3nsbgFfRDMoODts8XLoNBwcHB4dmCafic3BwcHBolnACysHBwcGhWcIJKAcHBweHZgknoBwcHBwcmiWcgHJwcHBwaJZwAsrBwcHBoVnCCSgHBwcHh2YJJ6AcHBwcHJol/h8j5cvGCz98PwAAAABJRU5ErkJggg==\n"},"output_type":"display_data","metadata":{}}]},{"source":"## 4. Visualize & summarize daily values for the S&P 500\n<p>Let's also take a closer look at the value of the S&amp;P 500, our benchmark.</p>","metadata":{"deletable":false,"run_control":{"frozen":true},"dc":{"key":"25"},"editable":false,"tags":["context"]},"cell_type":"markdown"},{"source":"# plot the benchmark_data\n# ... YOUR CODE FOR TASK 4 HERE ...\nbenchmark_data.plot(title='S&P 500')\n\n# summarize the benchmark_data\n# ... YOUR CODE FOR TASK 4 HERE ...\nbenchmark_data.describe()","metadata":{"dc":{"key":"25"},"tags":["sample_code"],"trusted":true},"cell_type":"code","execution_count":211,"outputs":[{"data":{"text/plain":" S&P 500\ncount 252.000000\nmean 2094.651310\nstd 101.427615\nmin 1829.080000\n25% 2047.060000\n50% 2104.105000\n75% 2169.075000\nmax 2271.720000","text/html":"<div>\n<style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>S&amp;P 500</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>count</th>\n <td>252.000000</td>\n </tr>\n <tr>\n <th>mean</th>\n <td>2094.651310</td>\n </tr>\n <tr>\n <th>std</th>\n <td>101.427615</td>\n </tr>\n <tr>\n <th>min</th>\n <td>1829.080000</td>\n </tr>\n <tr>\n <th>25%</th>\n <td>2047.060000</td>\n </tr>\n <tr>\n <th>50%</th>\n <td>2104.105000</td>\n </tr>\n <tr>\n <th>75%</th>\n <td>2169.075000</td>\n </tr>\n <tr>\n <th>max</th>\n <td>2271.720000</td>\n </tr>\n </tbody>\n</table>\n</div>"},"output_type":"execute_result","execution_count":211,"metadata":{}},{"data":{"text/plain":"<matplotlib.figure.Figure at 0x7fe6ec491c50>","image/png":"iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXl8XGX1/99nlqyTtU3XpE2XtLSlpWwtCGWVXQqK8iuLgooIgoioIOLXDRFB/SooCMomIgJfEAFF9h3aItDSQre0dE337Otkluf3x71JZu7MJJM2yyRz3q9XX80897n3ee5kcj9zznOec8QYg6IoiqKkGq7BnoCiKIqixEMFSlEURUlJVKAURVGUlEQFSlEURUlJVKAURVGUlEQFSlEURUlJVKAURVGUlEQFSlEciEiWiNwoIutEpEVEqkXkXRG50tFvgog8LSI1IlIvIm+JyLw41ztWRMIR//aKyCsicnQP89jkOC8sIm/E6Xet3bdNRD4QkZPi9DldRJbZfT4RkW/vy3ujKAOJZ7AnoCgpyF3AscBVwAogHzgYmODo92egDDgF2AvMAUIJrmnsa+wExgA3A/8RkVnGmC3dnHMz8DtA7Lb2yA4icjXwY+BS4D3gK8AzInKYMeYju89hwD+BW4FFwHzgbhFpNsb8qdt3QlEGEdFMEooSjYjUAjcYY+7sod+/gE3GmCt76Hcs8ApQZozZbreNA7YBXzfG/DnBeRuBPxtjftHNtbcB9xtj/iei7V3gI2PMV+zXfwMmGmOOjuhzK/B5Y8zk7uauKIOJuvgUJZYdwKkiUtRDv38AXxaRE/ZhjDb7f28P/a60XYIfichtIlLccUBEyoFxwPOOc54DIt2HR9ltzj4TbaFUlJREBUpRYrkEmA3sEZEPReRuETkrsoOIHAP8Afgh8BcRWeQ43iYiZ8a7uIjkAbcAAeC1buZxO3Ahlrvxx1iuxHdEJNM+PhbLDbjTcd5O+xgR/eL1wdFPUVIKXYNSFAfGmHdEZAowDzgSOAZ4XESeNcZ0CNUtwAPGmN+KyCvASyIywRhzq4jMxfry93bEZQVYKyIAOcBW4IvGmFXdzOO3ES8/FpEPgPXAZ4FH+uBWpecuijJ4qEApShyMMWFgif3vtyJyAfBXEVlgjHkTmAvca/f9UEROxhKpciwBetIYUxN5SeBkLMulxhhTvw9z2igiu4Byu2kHlsiMwRKuDkbbx4joN8ZxudH2nHagKCmKuvgUJTnW2P+Psv/fimVZAWCMWYblgjsfuAD4QZxrbDbGbNwXcQIQkfH2+FvtMTcB2+1xIzkVeCvi9dtx+pxmz2f7vsxFUQYCtaAUxYGIvAb8HStsew9QAdwE1ACv2t1uAu6zLZoHADfwafv/duDrwLWRl+3lHI7ACm54BagGZmCFnG8Cnozo+ivgJhFZY8/3y1jh7l+N6PNb4G0R+TnwV+AI4ErgW72Zk6IMNCpQihLLs1iW0E+x9kDtBt4ALu5w2xlj/mKL0w1YQRUGeBM4ERgP/J+IbDHG/MG+Zm/3c/iBzwHXA7lYIenPAz8zxrR0dDLG3CYiGViCORpYDZzZsQfK7vOeiJwN/AL4Dpab8fpE4e2Kkir0uA9KREqBB7E+/GHgT8aY34vIz4Cz7LZdWH+8O+1zbsdyITTb7cvt9ouw/qANcJMx5sF+uStFURRlyJOMQI0BxhhjlouID3gfS5i2GWOa7D7fBGYaYy4XkdOBK4wxZ4jIfOA2Y8wR9p6S94BDsNwd7wOH7Ks/XlEURRne9BgkYYzZ2WEB2YK0GhjfIU42uViWFMBCLIsLY8xSoEBERmMt0r5gjKk3xtQBL2At5iqKoihKDL1ag7JDaOcCS+3XPwe+BNQBx9vdxmNHGdlss9uc7VV2Wyf19fWad0lRFCVNKSgoiAomSjrM3HbvPQ58q8N6Msb80BgzAfgb8M1Ep+7jXBVFUZQ0JimBEhEPljj91RjzVJwuD2NFHIFlGZVFHCu126qIzgbd0a4oiqIoMSRrQd0HrDLG3NbRICJTI46fTddGxqex3H4deznqjDG7sEJkTxKRAjtg4iRik1wOGpWVlWk5to4/+HNI9/tPlTno+IP/GXDS4xqUiByFtTN+pYgswwoR/wFwiYhMx6p/sxm4DMAY86xdHG09Vpj5l+32WhG5ESuSzwA/tYMlFEVRFCWGHgXKGPM21u54J870/ZHnxK2PY4x5AGvXvaIoiqJ0i+biUxRFUVISFSib8ePH99xpGI6dCuMriqLEQwXKJicnJy3HToXxFUVR4qECpSiKoqQkKlCKoihKr9jWFOTBdc0s3eWPe7wxEKY5EI57rDdouQ1FURQlaer8Yb72ei2tISsz3U8Py+fYcVmdx1/c1savljcQDMMVB/o4Z3L0EsK6ugAbG4McXpJJcVb3NpIKlKIoipI0z2xu7RQngL9VtnQKVHvIcNvKRtpt4+mOj5v41OhMxuS4eHd3O3+rbGFFTQCAXE8TfztxBIWZiUVKBUpRFEVJmjd3RLv11tUHO39+f287TYEu8Qob+PqbNZRkudnQEIw6rzloeHFbG1+YkjhIS9eg+ojFixdzyimnMGHCBCZPnsxpp53G8uXLO49v3ryZM844g7KyMubMmcOjjz4ac42ioiJKS0spKytj1qxZ3HDDDSSq1zV79mzGjh1LWVkZZWVlnHPOOVHH77jjDqZPn86ECRP45je/SSAQ6Dy2ZcsWzjzzTMaNG8f8+fN5/fXX++hdUBRluOMPxT6Tfv9RI43tYf61uTXmWEO7iRGnDrY2hbodSy2oPqCxsZFFixbxu9/9jrPPPpv29nYWL15MRkZGZ58bb7yRiRMn8swzz1BdXU1VVWyeXBHhrbfeory8nPXr13PGGWdQUVHBxRdfHLfvo48+yjHHHBNz7OWXX+b222/nmWeeYfTo0VxwwQXcfPPN/OhHPwLgkksuYf78+Tz++OM8//zzfOlLX2LZsmUUFxf33ZuiKMqwIBg2PFzZwoqadibmedjdGhv88MQnrTzxSaw49URVc3zh6mBYCdRxT+/e72u8tnBUr8/ZsGEDIsJnP/tZADIzMznuuOOi+ng8HsaNG4fL5aKkpISSkpKY60RaS1OnTuXII49k1apVCcdNZF098sgjfPGLX2TatGkAfO973+PSSy/lRz/6EevXr2fFihU8+eSTZGZmsnDhQv74xz/y9NNPxxVCRVHSm5e2tXHf2mYA3tsT6KF3YgSYO9LLsr1d19jW3L0FpS6+PmDKlCm43W4uv/xyXnrpJerqYnPgHnLIIfzhD3/g5ZdfTuqaa9asYfHixRx00EEJ+1x66aVUVFRwzjnn8NFHH3W2r169mgMPPLDz9ezZs9mzZw91dXWsWbOG8vJycnNzO48feOCBrF69Oql5KYqSXryzq73X5+R4hGx3VynA/AzhjgVF/HJ+YVS/eNZYJCpQfUBeXh7PPfccLpeLq6++moqKCs477zz27t0LwJIlS7jzzjv5xz/+wVVXXdUpUhs3bmTKlClR1zrmmGOYNGkS559/PhdddBEXXHBB3DHvueceVqxYwcqVKzn66KM555xzaGhoAKC5uZn8/PzOvh0/NzY2xhwDKCgooKmpqW/eDEVRhhVr65K3mtwCn5uUzcMnjuCZ00byjVk+zpuawz3HFjOzyEumWxiV3SU7PZVQH1YuvsGkoqKCO+64A4D169fzta99jeuvv54///nP3HPPPVx88cV86lOf4qGHHuLcc8/lrrvuYvfu3TFrSG+88Qbl5eU9jjdv3rzOn7/97W/z97//vTNQIzc3l8bGxs7jHT/n5eXFHANoaGjA5/Pt660rijJMqfWH2RVh5bjEso4iI/U6OKs8my9MzqbU1yUr58aJ0Buf6+7RcupgWAnUvqwf9QdTp07l/PPP54EHHgAgGAx2RtEdfPDB3HfffVx44YUUFRVx//3398mYItK5JjVjxgxWrlzJWWedBcCKFSsYNWoUhYWFzJgxg02bNtHc3Nzp5vvoo48499xz+2QeiqIMH9Y5rKep+R7uWFDE1qYQV7zZtVn323PyOKs8O6lrlua6o9ahukNdfH1AZWUlf/jDH9i+fTsA27Zt44knnui0cs4++2zuvvtu3nnnHYwxjBo1igkTJrB7925crt7/CrZt28bSpUsJBAL4/X5uv/12ampqOOKIIwBYtGgRDz30EGvXrqWuro7f/OY3na7CKVOmMHv2bG655Rb8fj/PPPMMq1atYuHChX30biiKMlxYVRstJNMLPXhdwuR8D388pohFU3K4/uA8Fk7MSnCFWGYXZ/TcyWZYWVCDhc/n4/333+fOO++koaGBgoICTj31VH76058ClkA1NjZy9dVXs337dsaPH89ll11GKBTivPPO48UXX2T8+PGISA8jWTQ1NXHNNdewefNmMjMzmT17No8//jiFhdYC5IknnshVV13FmWeeSVtbG2eddRbf//73O8+/9957ufzyyykvL6esrIwHH3xQQ8wVRYmiKRDmn5uiQ8enF3o7fy7P83DZrN4vDZwwPpOnN3n5qLZnK0oShSoPBvX19akzGWXAqKyspKKiIm3nkO73nypz0PGjx39oXTP3rGnufJ3lFv7+6REUdZOaKFnCxnD6s3toC0UvzRQUFER9S1cXn6IoihJDR868DhZNzekTcQJwiTBvVGaP/dTFpyiKosRQ0xYdaTd/VPJrR8lwwvhMSrI1m7miKIrSS2r90QJV3EfWUwfHjcviuHHdB1eoi09RFEWJImQMte3RAtVdWYz+QgVKURRFiaKh3RCOCFnzeYVMd3JRxn2JCpSiKIoShXP9qa/de8miAmXT0tKSlmOnwviKoqQW/b3+lCwqUDbx6jOlw9ipML6iKKlFjT+6DEZxlgqUoiiKkgLUpIgFpWHmiqIoacA7O/08v7WNigIP51Xk4O4mtZpzDaqvNuj2FhUoRVGUYc57e9q54d16DPD6Dj9728JcPScvYf9UsaDUxacoijKM8YcM//thY1RxwH9uamXpbn/CczY2DpE1KBEpFZFXRORjEVkpIt+0228VkdUislxEnhCR/IhzrheRSvv4yRHtp4rIGhFZJyLX9c8tKYqiKB38dV0z21tCMe2/XNbIK1VtVNZH59z7pCHIhoZg52sXUJHvZTBIRhaDwDXGmFnAkcCVInIA8AIwyxgzF6gErgcQkZnAucAM4DTgTrFwAX8ATgFmAefZ11EURVH6gcc2tPBQZfxtJLX+MD97v4GvvV7LUxu7+rywtS2q36ElGalrQRljdhpjlts/NwGrgfHGmJeMMR2OyiVAqf3zQuARY0zQGLMJS7zm2f8qjTGbjTEB4BHgrD69G0VRFAWwhObOj5ui2hI98P+4qpnmEGxrCvLExmhBO6m056zj/UWvZFFEyoG5wFLHoa8Az9o/jwe2Rhyrstuc7dvsNkVRFKUPaQmGuWtVU0z7jw7LZ1pBbGxcW8jwam0mv1nRSCAiPqIgQzh67OAJVNIFC0XEB7wG3GiMeSqi/QbgEGPMOfbr3wOLjTEP26/vwRIvAU4xxlxqt18IzDPGXNVxrciChZWVlft3Z4qiKGnKM3syeXpvdKbwS8a1ML8gwA6/i59v9NFues6t95VxLRxZ0HPl2/0hskiis2BhUmHmIuIBHgf+6hCni4HTgRMiulcBZRGvS+02ASbEae9x0gNBOldUTffxB3sO6X7/qTKH4TJ+YyDMK+urISJu78KKHC6cYVWurQB+Xxrg3jXNvLu7PeF1Divx8sVDJyLd7Jfqb5J18d0HrDLG3NbRICKnAt8DFhpjIuMVnwYWiUiGiEwCpgLvAv8FporIRBHJABbZfRVFGYJsbgzy+48auXtVE9VtsVFiyuDwj09aaQp0iVOeVzhvak5Un+mFXm49ojDh+lKmG66Zkz+o4gRJWFAichRwAbBSRJZhyfINwO1ABvCifRNLjDHfMMasEpHHgFVAAPiGsfyIIRG5Eiv6zwXca4xZ3R83pShK/9CxJPDc1jZ+t7KRjpRtW5qCnFaWTWMgzAnjszpLM3zSEGRtXYAjRmf2OhtBnT/MlqYgo7PdjM5x9+l9DDdCxvD2Dj+bGkPcv7Y56tgXpuSQ643/3n96fBYvbovdD/Xl6bmMyx3897xHgTLGvA3Em2lCW9QYczNwc5z254DpvZmgoiipwcOVzdy/tjlqEb2Dt3e28/ZOy130wNpmbj2ikF2tIW54t55AGPK9TTx4woikit7V+cP8aXUTz27pCnc+tSyL6+bmDfo3+lTl/za0xg2KyPMKn5uUnfC8Q0syGJnlYm9EaqPphR4+Pzkn4TkDiaY6UhSlE3/I8MePm/i4NsC4HDcHjfBSnOViVU2Axz5pTeoau1rDXPRqTVRbQ8Dw4rY2vjAl8YMvbOCpjS38eU1zlIsKLItt/qgMjh/ffYnwdMQYwz82xt/r9IXJOfgSWE8AHpfw40PzuePjJlpa/RwzIY8vTMnB40qNLwIqUIqidPLM5lb+uckSosr6IK/vSJwOp7csr27vFKiXtrXx2IYWSn1uvj0nj5q2MDdt8rGlLdYK6OBPq5tYMDYzZR6eqcCmxiDfXVwXZQF14PMKn5uc2HrqYPaIDO46ptgO0hjbH9PcZ1SgFEXpZNnexFFdTrLdQmsouW0qAB/XBDDG8M6udn7+QQMA6+qD1PvD7GwNU9XW/ZrHjpYwq2oDzBmRkdR4TYEw/9rcSmvQ8JmJ2ZRkD/6aSl/z2xWNccUJeraehgJDe/aKosRgjOGFra18551a7lvTREsw9gG2syXEtqYgzn2QVc3JReN9blI2tx9dGPdYRYGHLHeslVPXbnh/T4BbljdEtb+/NxAzbrZbuHymj3mjosXImWW7O+74qIm7VjXzl3Ut/Oz9hph7Heq0hwwra+LvURqX4+KcJKynVEctKEUZJgTDhps+aODV7V1uuff3Bnhrh5+fzyvsjMp6cF0z969pxmA9yI4bl0VFyMUUY2KE4ohRGSxx7JVxC3zzQB8A43LcnYlIcz3C/ccXMyrbjTGGvW1hvv1OHdsirvndJXU93seMQg8/O7yAkmw3GxuDUcdagsmJTCBs+E9ETrmVNQG2NIWYmGc98na1hFhXH2TOCC8FGUPze/q25hDhOG/H6ROy+OoBuUPeegIVKEUZNvxrc2uUOHXwSWOI81+u5vCSDDLcdEbbAWxvCfPw+hYgj2PaGqIi9PK9wi+PKGTpbj/XLanvbD+rPLszmu77B+dx28omjDFcPSePUbYbTUQoyXbzmYnZcaPLumNheZc7LtsTbYklK1CbHMIGsKYuwMQ8D5X1Ab7xZi2BMBRmCL85sojy/KHn/nOKN8DBI71876DhE+2oAqUoQ5xg2IqQ+93K7oXgv3u6X196wxEQUeqzHtrzR2Vy8fRcntrYwtQCLxdPz+3sM2dEBvceV5zwmgvLs/jPllY2NyXnOhR7vA5y9lGgKutjH96raoOcUgZ/iQiVr2s3fPX1Gib63Hy5xJV470wKsHS3n4fWtTAyy8Xls3wxIjw628Ut8wuHjTiBCpSiDDmMMaxvCLK3LUy+18VtKxtZF+eBvL+U5nY9Hi6enhslTMmS43HxqyMLueyN2qj1ozyv8JsjC7lmcV1USPn80dGlHZwC1bpfAmWt17y1M1aoNzeFuKXFR/6Ydg4piR+Esao2QFvQcPBI74CLwPr6AD9YWk9HTMqr2/0UZUTP4eLpuWTEWfsbyqhAKcoQ49ktbfzqw8ak+wsQ77F+xSwfa+sCvFQVP5S8tI8yCYzKdvOTw/L53pI6/CFrDevauflMs9PtPFzZzJ62MKNo4eqDRkSdu68uvngCtaEhyJamxELeGhauXVLH9+bmcVJpFlubQvi8wogsN3d+1Ni5D+zUsiy+f3B+wuv0NcYYfv1hI86Aydr26IbyvOH3OB9+d6Qow5yHKpt77mTztRm5zCzy8sDaZj6s7or4OmNCFp+fnM0r210JBWpiXt+ty8wZkcG9xxazdHc7s4q9HFBoVWidWeTl5/OsaMDKympGZEWPmeN2ClSYj2sCLN3t57CSjLgh58YYNsQRqLCBW5d3L+xBAzcva+TmZVY/j8CcEV4+2Nv13r2wtY0rDvSRN0BBCJX1QdbUdW8hu+jb31eqoAKlKEOI3a0hdrQkF2p91JgMPj85h0y3cPDIDPwhw2vb28j1uDhqTAYiErc2EMCYHBdHju7bOkClPg+lvt49cpwuvpU1AV7eVksYeGhdC3cuKOKAouhy5A0Bk3B/1kcJwrITETREiRNAGNjTGh4wgdqaxPrdyWVZ5HiGftSeExUoRRlCrKiOfcCOznZx9Zw8Ml3Ch9XtHDkmk+kFnph1kky3cEpZ9N6Y8QnceH85fkRKrGc4H7o7I8Q5DLy10x8jULtb+z+z+t62EJPzB+bx6byfigIPF1Tk0B4y+EMwMtsVs19suKACpShDhE2Nwc4MDB1ML/Rw+1FFndnDEy3wJ8IlwmElXt7b0yV8vz6ysPN6g41zDcpJvI27u5K0MJ0UesLUBZOzQqoTZG+IR317mH9vbqUgw8XJZVl4e5mqabdjrBPHZ3LcuPTISagCpShDhF/HCYz4yvTc/RaTL0/3sbqmmuaQi9MnZHHoSG/PJw0QThefk7o4ArXbUZtqeqGHtT2s4QgwJTvI+43JCXyyAlXnD3P5mzWdbtnNjUG+cWBeUud24LSgRg3DlE2JGH5OS0UZhjQFwjHrJzke4cDi/ReTWcVebpnayBMnj+DauYNfpC6SngTqnV3tnPviXq5fWteZ0mm3w4I6anQmB43o/n36zMQspuck7xpMlP8ukmDY8NP366PWDJ/e3Ia/F/kLwVrviiSdBEotKEUZAmxsiLUAvntQXsJCdL0l00VMBF0q0JNAAexuDbO7tZ27VzXz7Tl5MRZUSbaLz0/O4cPq+rjne12waGoOO7fs5qnqHJrtUPZzJmUzpcBDjkcIheHGCPdqIgvq35tbeXV7G3NGZFDrD7PMEWDRFjIs3eXnmF646HbFWFDpY1eoQCnKEOATh0AdPy6TE9KgNlJPa1CRPLWplSsP9MVYUKOz3Rw00ktxpitqzerCihyKMl0cVpLB+FwPLR7DTfMKeGpTK2U+NxdWdG18/bA6enNvtT/W2npte9f+tMg1PScvbGtLWqD8IUN9xH4nF1Dcy8rEQxkVKEUZAmxoiH4gThmgCLLBxuMSMlzQnmRMwiWv1cSkVRqV7cItwlWzffzkPcsKGpPj4ovTYtfv5o7MYO7I2HWoEQ5RWFUbZNnedg62+3YUekyGt3a2885OP58a03MY/x6H9TQy25VW9bDSR4oVZQizoSH6G/lAhTinAsm4+TqIl/OvI/HsceOyuOPoIq6dm8efjynuVXBJPPfnD5bWU227E1+pamNXa3wVjTf921Y2EoyXitxBR6b4DkaloBu2P1GBUpQUxhjDg+ua+bg22sU3NcEG2+FIbwTKybQCT5QQzSr2cvqEbPJ6WWIj2yPkOvMChgzfWVxHUyAclaUjEhdw7dw87lxQRKQe7moNs3hXz8UhnX06EvimC+nzKVeUIUbIGG5b0cTTm1uj2sty3ZRkpc93y3jFD5Nhcp5VTr6vmJjnZpXji8KmxhAXvlwd43Y7Z3I2FfkephV6O63dU8uy+PeWrhpVT21qYcHYxG6+kDG87iifclQSbsHhhAqUoqQoty5r5PltbVFtXhdcPWf41PtJBudG1UTctaAItwuMgcJMV5+HY3/1AB/fWRxbcLGu3eBMx3vx9NyYVEhnT8qOEqj39gTY2hSkLEH6p49rAlFBHTkeGbYZIxKhAqUoKcju1lCMOPm8wi/mFcRNkDqciSzHkYhR2a6YlEd9zaElGbz0mRL+d0Ujz25pS9ivLNcdN09fRYGXWUWeKHftdxfXUZLtZnS2i8M97qh6VKsd1tqRozNSJsPHQJE+fgJFGULsdCyOF2YIvz+qKO3ECUgqs8WYAdq86nEJ18zJ48KKnJg1qQ6mFyb+3n9WeU7U612t1gbsl6v8/H5bDo0R4YqfOAoSdmSATydUoBQlBXGm8JlZ5GVSGkXuRXLqhK4Et1lu4bq5setKAxk84HEJl8zw8e/TS/jZYflkxwlVT8Rx4zIpzIgvbM0hF+/v7QqKcG7OTqfIzQ7S744VJUk2NgS56YMG6trDfOWAXE6fkN3zSX2EsxhdYRptznRyUmkWHoF19UFOHJ/J5HwPW5pCPLahhZCx1uU+M3HgfjeRHDMuiwl5Hn61vIFVtUEOH5XBqWWJN+FmuIXvHpTPzz+opy1OZqXK+iDHjbMCJJwl3ScNw4KEPZF+d6woSfKrDxtYb3+LvXV5IyOyXMwfNTBRVPUOC6oojQUK4PjxWRw/vuv112f6+OykbNbWBZmS72FcH1X/3RfK8zzcsaCYlmA4qZpMR4/N5J+nlLC9JcTiXX7+vLqrAGVHJeCq5lDU5uTCDKE4jSI3O0i/O1aUJNhQH4wJKb5lWSOBJDZXdrC3LcRvVzTyuxWN1PSiPANArSN1QmEv9+2kA6Oy3SwYmzmo4hRJbwoGZnmEyfkePuUoCtkhUM7UVuno3gO1oBQlLn9fH1tWvcYfZlVtgIOSDFS48f2Gzg2cmxqD/O6ooqTHd65BpbOLbzhT5nNHpXKq9YepbgvFrD+l6/qjfuoVxcEj65t5qcof91hVc3IlGdqCJiq7wPLqAGGTvPVVF2NBpVd4cbrgcUlMXsV19UE2NkZ/zian4foTJCFQIlIqIq+IyMcislJErrLbPy8iH4lISEQOcZxzvYhUishqETk5ov1UEVkjIutE5Lq+vx1F6T27W0P8e28mz25pZfEuP3evirWeOtiepEDFy3bd3otK5LVqQaUNzrRVlfXBGBdfulpQydx1ELjGGLNcRHzA+yLyArAS+Cxwd2RnEZkBnAvMAEqBl0SkAqto5R+AE4HtwH9F5CljzJo+uxtl0FlfH2BtXZD5ozMYOQQSW7YFDde8U8e25izYE1ux1kmyFlS8ekH+sCGLaEvo1ao2Xt+ZxWcK2zksoly7BkmkDxUFXqBr4+/HNYGYz1l5Xur/LfUHPQqUMWYnsNP+uUlEVgPjjTEvA0hszpWzgEfxwS4+AAAgAElEQVSMMUFgk4hUAvOwBKrSGLPZPu8Ru68K1DAgGDb8+sNGnttq/aH5vMKDx49IqcijYNhQ6w9TkOHqrPPzn62tbEsgOi7gi9Ny+Mu6ls62ZAWqJk4pcmcl1ac3tfK/KxqBTF5bXMdPDsvnuHFZNAfCMWHmBRokMWypcFhQS3dHJ4gdl+PqVQDGcKJXdqOIlANzgaXddBsPLI54XWW3CbA1on0blnApw4C/VbZ0ihNY6Wn+s7WVCypyB3FWXTQGwlz9dh0bGoK4xdpTMjLbxZJuMkpfOjOXT5dmxQiUMabHXHjxLKj2CIHa2RLiTkf9oF8tb2RSnoer34nO9+bzCt40qgGUbkzO9+ASSBQgmq7uPeiFQNnuvceBbxljkqvMtR9UVlb29xApMWYqjL2/4wfC8H/r83Auab6zpY55bO98XR0QXqvNoNBjOLaoPapOTn/f/zN7MtnQYG2gDBlY3xBkfUPi/ofmBTgkvJ2aLZAh+bQba7LNQcOyNRvI83Qf8LB+dyYQvWGzcuNmWrMs4XpydyZtoejjzUHDRa/WxFwrV4ID8vkY7M9gKsxhsMYfm+Gjyh/fjVcYaKCycs+AzGMw7r+ioiLhsaQESkQ8WOL0V2PMUz10rwLKIl6X2m0CTIjTHpfuJt0fVFZWDviYqTB2X4z/3JZWmkKx6zcfN3sZWz4Fn9fF7tYQ3329prN8tSd/BJfM8PXJ+MmwensN1nJqz0z0ublxwchOt8r4quqoqKrQiDIqetiwa5oaoDo6oejo0glU2AlNG2rrgJ7rAQGUFWRRUTE2qb77ymB/BlNhDoM5/oGNDVRti5+A9tDyUVSMT65E/P4w2O9/PJJ1bN4HrDLG3JbgeKT/4WlgkYhkiMgkYCrwLvBfYKqITBSRDGCR3VcZwrQFDfevTRz19pn/7OXuVU38YGl9pzgBvLY9fhh3X+MPGX7yXn3nBshE5LnDHDE6g9MnZPHbTxVF+fydYcCPbWh1nh7D1qbY8SLXoKrjrFEl4vOTc3rupAxpDilJnAg2XTfpQhIWlIgcBVwArBSRZViFT36A5b/4PTAS+JeILDfGnGaMWSUijwGrgADwDWOMAUIiciXwApYw3muMWd0vd6UMGH9b35yw1HUHf1/fEtO2rTlEMGxiCr31NU9tao0RwwMKPVwyw8f6+gBbm0JMyvcwK1jFjGlj4l5jYXl21L6o/+5pZ21dgOkJskvHq4AL0QKVbGaJe48tZkoaVc9NV+aNykRowDiiPL0uKE2RTBmDQTJRfG8Did6hfyY452bg5jjtzwHTezNBJXXZ1hTkEYf4jM91Jx3ptqc1zNgk/vh2t4b4sDrArCJvr9Pa/Hd3rBttwdhMDivJiArr7s71PmdEBnOKvayo6dp4+7fKFn52eEFM33V1Ae5bE9+i7BAoY0xMlN/vPlUYExxRnudWcUoTijJdlGeF2NgW/fue4PP0+5e4VCY9YxeVfaahPcx9a5q4+u1aLnylhkDEc7Y408Wfjiniqtk+5hR7yexBSzqErCYgbG6M74Lb3Rriy6/WcNMHDXz5teqYDM/dYYyhsj4Q074vma8vmBbtZntzhz/unB+qjLUWO+jYu9sYMFHvW6YY5o7M4FuzfVH9jxydXuW9051D82M/q5Pz09d6AhUopZf8+sNGHlzXwvLq2D+my2b6yPW6+NykHG4/uoinTinhW7N9jMmJ/zGrag7yny2tXLc+n4tereGuj2ODQ5/a1Epz0LI8/CH467rE611Oavxhuxx3F0+fOnKf9hTNK8mI2q9igIcd1uOyve28sSPx2lq7HUfstJ4KPNbrs8uz+dqMXEpz3RwzNpPzK3TtKZ04rqg9ZkPutIL0K1IYifoPlKQJhA1vJXgAzy72clJp9Df+LI/w2Uk5LCzPprotzOMbWnjsk64Ag49qA7wZcb3/+6SF8ypyogTkmU3RAQkvV/n5n0OTm+96R2DEjEIP+fu44VVEuKAih5+81xWb/uK2NsLG8HFNgCn5XlbVxop2JB0uPuceqQI7ZN0aIzdl9o4pA0umC248vIBrl9SxoyVMaa6bUyf0f/ReKqMCpSTNrpYQ8Zb2XcC3ZvsSbl51izAq2820Qi/QJTgvbosWu5CBLY1BZkdkC89wCwSST7IayXpHPjNnzrPesmBsJmU+N1ubLF9d2HTdw/aW6HsRYFKem08iwtMTCVS+p3elOJThS5nPw33HjWBHS4jSXHdnxpN0RV18aUx7yPCbDxv42Sc+Hq5sJthDraPtLbHBD6OzXXz/4DymJuGKGJ9EgIMz7ZA3zifUJJkV3Jlwc+p+huu6RfhiktbNOZOzWTA22qLsECini6+wh02/SnqRbdeKSndxAhWotObxT1p4ZnMbW/1u/rS6me8vraOxPfG3+R0O8TilLItHTxrJyWXJBR1M8Ll7/MBtaYoeIxBnOrX+5B7oexzh76W+/XcYnFSayadGd18PqizXzSUH+GIeMB1BEjWOWt8FKlCKEhcVqDTmnZ3RIdjv7Qlw2Zu1/He3n8c/aWFFdfTxKocFNS6ndxFGuV4X0wq7F4ltEQIVihOODV2WXGMgzH+2tPLmDn/cWkvOzbAj+iBxrYhw7dx8ihNkF3cB3z84nyyPkOkUqARBEuriU5T46BpUmvJhdTsfxVnUr2oO8b0l9Z2vfzm/gCPscOcdzdEP0rG9FCiAg0dmsKYucaj41uauY7X+cNwEmi9ta2NGkYcfvlvfWRTw4um5XDw92v3mXOtJJCq9pTDTxfUH53Hd0vqY+S2amsOsYsvdmelyWlBWZ2cxwny1oBQlLipQacgLW1v5xbKeax8B3LO6uVOgnGtQyawpOTlkpJe/r098vKo5RMgY3CLsTZCh4p+bWgkboirW/mtza5RAtQTDtEVkbvC6IM/bdz79w0dlctunClm8qx2DJYYVBR7Omdzl7nRaUB3ZzOsdoe8+twqUosRDBSoNce7fASvqLN5jsiMSzhjDDodA7YsFdWBxBj6v0GRH5o3MctEaCNIcsqybQNha6yr1edjZmjgjxdObo8PP97aFaQsasuwU6c5UQsWZrh5LZPSW2SMyoiIOnTg3KnesQdU7LCifW118ihIPXYNKM7Y3h9jUGPvgP2hE91F49e2GlmCXhGW5haLM3j/wsz3CtQflUZLloszn5ufzCijNjH5AX/lWLYte2hu15ygZIi28/lh/6i2J1qAaYgRKLShFiYdaUGnGO7vib7Q9qTQrbnYIgLAxMe69cTn7bpEcMy6LBWMzO8+fnB1kbUvXR7Gu3UB77x/aVc2hzszP/bX+1BtiBCpkaAsaIoP4PAIpVHRYUVIKFahhgjGGquYQy6sDrK8PMj7XzcLy7JiH5NI4FWQPzQtwSlkWv1nRGDcooc5vYkLMk0ny2h2R4jYlO7nksj2xeJefJze20BqMjf4bkTXwOc0y4gRJNDji5gsyXPSx51FRhg0qUMOAxza08NiGFvY6rIZnNrfyy/mFURnANzg2r/76yEIK6jbjcQnFma6YawDsbgvFsaD67oE/KYFAubAyelcUeDl7UjZ3rWqKCoxw8uyW+AXfAEYMigUV/dofMjHrT/kZqk6Kkgh1Lgxx3tvTzp0fN8UVli1NIe78uCtarzkQjrIs3AJzI9aeEm1cv+yN2qicebD/FlQk+R4TV/AWTc3hvuNHcP0h+cwo8jLBt+9jFqfCGlQoNoJvXxLXKkq6oH8dQ5yXE5SJ7uDD6kBnaqCtzbFWUGStme5cTesciVfH96EFBXDmxOikmLke4azy6AwVY/ZjzFRYg2oPx1pQKlCKkhh18Q1hwsawxBH0MK3AEyUmjQFrbarU5+lMctpBmcMiKfd52NkSu0YVj760oAD+39QcRue4WbzLj9clnD4hm9EOQXJWsJ2S72FnS6izHEcicjzCnB6iFPuDeGtQKlCKkjwqUEOY1bVBaiNcRrke4Y4FRVy3pI4P9nat1aytC1Lq87CtKdoKKnPkpju/IoclcSrQOhFgTHbfCpRLhBPGZ3HC+MTlBQ4Z6WV2sZeVNQEyXHDNnDy2NAW5ZXnspuOLpuXQHoadLSE+NykbX7yss/1MVpwovgaHi0/XoBQlMSpQQ5j390aLybxRGXhdwvRCb5RA3fhBAy9VtbHGkdrIaUHNLvZy2Uwfd62KLRwYyWBlWnaJcNtRhaypCzIux01hpotZxV4m+Dxc8VZtVN9jx2V1hpwPFhkODW8PQ52zWGGGi7g1TBRF0TWooczaumjBObTEympwQJyErIt3tUdZWxArUCLCoqk5vLZwFKfbhdJGZ7u477hiPj85m1yPMCLTxeUzo0uTDyQuEWYWeSmMWFOaWeRhSoQYjc91MzFv8Etlu0RiyoU4s2Ooi09REqMW1BBmrSPp6nRbmGYVe3HR/RfzLLd0a2FcOzefb8zykesRRIQrD8zjspk+DOB1pZZbSkT48WH53L2qCX/IcMkBPtwpsrmoJMvF9pau38RKR5h8QYZA93EuipK2qEANUarbQlGh5V4XlOdZv86RWW7Or8jhocrYnHtgrXtcNtNHXg/rMs51G0+KCVMkE3webppXONjTiGFGkTeq2q4zoEMtKEVJjArUEMVpPU3N90RZNpfM8HFKWRbL9gYIhg0jslyMzHLb/7tSWmyGEzOLvLxcFT+9FFgC1f2Kn6KkLypQQwR/yBAIm06rxrn+NK0wNoy6zOeJidRTBpZZRd2HtxdkigqUoiRAn15DgJXV7fzPf+upazdM8Lk5ekwmT26MLjcRLzBCGXymFHjwuuKXrvcIZA9CNKSiDBXUAT4EeHBdi5XhGyt90cPrW2gNRa9lDMZGVKVnvC5hekH8342VKFYFSlESkbICdeP79Z0lstOdLU2JS6SDlQi1L5O3Kn3LzOL41m2BbtJVlG5JWYF6ucrPa9s1/hZiK7A6mTPCq9/EU5iZCdah8jWCT1G6JaX/QtbVdW85pAOtjgJ3QMzmz7nq3ktpEgVKaIi5onRPSv+F7Gjpm0J2Q5k6h/U0MsvFnQuKKLLdQ2U+NyeXZcc7VUkRSrLdlMQp96ECpSjd0+NfiIiUisgrIvKxiKwUkavs9iIReUFE1orI8yJSEHHO7SJSKSLLRWRuRPtFIrLOPudLPY3dk2srHaiPk7utosDLX04YwR8XFHHfccVke9S9l+rEc/MVZOrvTVG6I5mvcEHgGmPMLOBI4AoROQD4PvCSMWY68ApwPYCInAZMMcZUAF8H7rLbi4AfAYcD84EfR4paPOIV4UsHjDFUt4VoCoRjLKgi+6GWn+FiRpE35dIOKfGZVRwrUPmDkGFdUYYSPW6eMcbsBHbaPzeJyGqgFDgLONbu9hfgVSzROgt40O6/VEQKRGQ0cDzwgjGmHkBEXgBOBR5NNHZ1WxhjTFoEADS0h3l2SysrawKsqglQ227wSGz4eKG6hYYkcS0o/V0qSrf0aneniJQDc4ElwGhjzC6wRMwWIYDxwNaI07bZbc72KrstIUFjlcguHOaukEAYrnq7lk2N0WtuQUNU2QyAgkGoDKvsPxUFHjxi/U47UBefonRP0k87EfEBjwPfMsY0Ac5NSok2Le3XX2F1Grj5Pmj0xohTItSCGppkuqUz23wHfV30UVGGG0lZUCLiwRKnvxpjnrKbd4nIaGPMLhEZA+y226uAsojTS+22KuA4R/urPY294pOthH0DE25eWVk5IOM4eaMuN+m+7XV7qKzc3udzGKx7T5XxB2IOJ/o8rK3LIWiEg3wB2ndupHLnwIydDDoHHX8wxq+oqEh4LFkX333AKmPMbRFtTwMXA7fY/z8V0X4F8KiIHAHU2SL2PHCTHRjhAk7CWrPqlswRY6iY0P9h1JWVld2+Uf3F5sYg61bXRLWNzXGxoyW+5TitbCwVYzP7dA6Dde+pMv5AzaECOPqAELX+MBUFHlz22mq63H+qz0HHH/zPgJMeBUpEjgIuAFaKyDIsV94PsITpMRH5CrAZOBfAGPOsiJwuIuuBZuDLdnutiNwIvGdf46fGmLqext/bOrxdfP/eHJ30dU6xl1Kfmx1b4mfRKNT0OEOaUdluRqlrT1GSIpkovreBRH9Rn05wzpUJ2h8AHkhybgDUDuO9UP6Q4bmt0UJ0Znk2O5oTr0cVx9nwqSiKMhxJ+addc2D4JoxdsstPQ8T95XmFY8ZmMio7/q9lRpFHk8IqipI2pL5ABYevBfXa9uhKqyeVZpHpFkYnEKFb5xemxZ4wRVEUGAoCNUwtqLagYfGuaIE6YXwWED/8+LsH5ZGnIeaKoqQRKf/Eaw4OT4FaVt0elaV8ZJaLmUXWkmBJHBffYSUZAzU1RVGUlCD1BWqYWlC7HdGJh5VkdIYde1zCgjGZEce8jNG1J0VR0oxepToaDIbrGlRzIPq+8h3h4zccks8/N7UQMrBwopbTUBQl/Uh9gQqYYZkw1um69Hmijdksj7BoavIZJhRFUYYbKe/iCxoYjluhnK7LXO/wEmBFUZT9JeUFCobnOlSTw8WXq0UHFUVRohgaAjUM16GcLr5cLV6nKIoSxZB4Kg5HC8p5Tz518SmKokQxNARqGO6FirGg1MWnKIoSRcpH8UFsSPZQwxjDS1V+KusCnFiaxfRCb+walFpQiqIoUQwNgRriFtSL2/z8YlkDAP/Y2MrvjiqKY0ENCWNWURRlwFCB6kf8IUN9e5g3d3Tl3Asa+OZbtTjvSNegFEVRohkaAjUEgyRWVrfz3SV1+OOUdnLeTYYYPC4VKEVRlEiGhF+pP9agGtvD7G4NEQz3j/jdtrIprjjFI9s19ARYURSlvxkSFlSjbUE1BcL8Z0sbuV7hlLIs3PuY/ujuVU38fX0LAAIUZboY68nhmlFBphTs/1uyqyXE+oZg0v2z3SpQiqIoToaEQO1qDWGM4boldXxcaz34NzQE+eaBeb2+Vp0/zKO2OIHlbqvxh6nxe/nZ+/X85YQR+z3fJbvbe9VfLShFUZRYhoSLb6dtkXSIE8ATn7Tu07V2tYZI5DDc3BSitQ8CMpY4ChH2hFpQiqIosQwJgdrVGmZtXfIus+7oKeCiYT8z0/pDhg/29s6C8oc1QEJRFMVJygpUQUR9pJCBldWBmD77EuDQU8h6w34GZCzf295tcMQXp+XEtJV4h/ZGZEVRlP4gZdegxua4qW/vsprejuM2awmamEJ/PeHM4OCkvr33ovfubj93r2omxyO4e5hOWa6H7x6Ux68/bOxsm5qTZLifoihKGpHSArUmwq3XFMc11xw05Gf07rotPVlQvXTxBcOGmz5oSFrYyvPcVBR42NES4tUqP3NHejkiu75XYyqKoqQDKeviG5Pj7rHPeS9V88Ge3q339PUa1M6WUNLilOsRKgo8iAhfm+Hj4U+P4Nq5+WSm7G9BURRl8EjZR+PYJAQK4DcrGjEmebdck6O2lPMNaOili6+uF/2nFXqGXel6RVGU/iJlBerAYm9S/aqaQ7T1YgnHaUGNzY0Wwhe3tfHvza20JFkksdafvMX1pWm5SfdVFEVJd1JWoCbne/j6jFzG5biZku/h9AlZCfs29iLyzrkGNc5hqW1tDvGrDxu5+u26pCyzum4E6oZD8smzk8CeVJrJ3BHJia6iKIqSwkESAOdV5HJeRZfV4RL41+a2mH5NAcOo7OSu6Qy2GJMTX6PX1QfZ1BhiUn73b1EiC+rI0RmcVJrFUWMyaGg3Sa2pKYqiKF2ktEA5yUlQdTZe6HjYGBraDQUZErXu0+xw3TktqEhq/GEm9TCn2jhBFVfM8nFqWZY9Zxc5Q+pdVhRFSQ16dPGJyL0isktEVkS0zRGRd0TkQxF5SkR8EceuF5FKEVktIidHtJ8qImtEZJ2IXLcvk01U1K/RYRXV+sN87fVazn5+L1e/U4c/1HXcuQY1LjexQNUnEdHndPHdcEg+X5iSQ15GynpPFUVRhgTJPEXvB05xtN0DXGuMOQh4ErgWQERmAucCM4DTgDvFwgX8wb7OLOA8ETmgt5NNVBbdaUE9v7WNDXY28Q+rA/xnSyvPbmnlsjdq2NwUHVHRnUAlE3LudPEVqTApiqL0CT06n4wxb4nIREdzhTHmLfvnl4DngR8BC4FHjDFBYJOIVALzsKpaVBpjNgOIyCPAWcCa3kw2N4GLz2lBVTVH5+174pNWtjbHD/Ubnd2dBZVEkIRDxAozNYxcURSlL9jXr/sfi8hC++dzgVL75/HA1oh+VXabs32b3dYrEq1BNTpEwrmXKZE4gVVqfWRW/LchGQuqxmlB6a5bRVGUPmFfn6ZfAa4Qkf8CuUDv0jnsI7ne+NNtcoSOJ5vwNccjuET43KT4IYA9rUEFwyZGDAvUxacoitIn7FN8mTFmHfa6lIhUAGfYh6qAsoiupXabABPitCeksrIypq2m1Q34Ytq3V9dTWbmz8/WeRh/Qc1h3JiEqKys5HBhV7uK9Ri/PVXftt9pR10Rl5e6E59cFBMjvfO1zh9m4YX2P48Yj3v0OJOk+/mDPId3vP1XmoOMP/PgVFRUJjyUrUGL/s16IlBhj9tjBDz8E7rIPPQ38TUR+i+XCmwq8i2WpTbXXsnYAi4DzejvpjMYgbKqJnVyWj4qK0s7X7Zv2QsKyhF0UZHu7xqmsZGzpWJ57q7bzeMCTTUVFYk/ki9vagIbO16NyvN2+2YmorKzcp/P6inQff7DnkO73nypz0PEH/zPgpEeBEpGHgeOAESKyBfgxkCciV2BVTP+HMeYBAGPMKhF5DFgFBIBvGCsdQ0hErgRewBKre40xq3s72cT7oBwuviQTvhY71osKHKU7enLxvVwVvWl4/ujMpMZVFEVReiaZKL7zExy6PUH/m4Gb47Q/B0zv1ewc5CdY34lMdeQPmaRz88125Ptzrh91lzi2zh/mv7ujl95OHK8CpSiK0lcMqRX9TLfwhcmxAQ2NAUMgbNjdGmJzY/Kl4Q8piS4mlesVXBFGVGvI0B6KL1Kv7/ATeag8z8oZqCiKovQNQ+6J+o1ZPo4Yncl3Ftd1tu1tC3PSv/b0+lozi6ItKJcIBV6hNsJyagiEGemODbh4eVu0e+/E8VlaSkNRFKUPGVIWFICIcPBI735P/IjRGXhdsYLidCPW+2MtqF0tIVbUBKLaThyfONu6oiiK0nuGnECBZemMTpCFPBnyM4TLZ8aGqwMUOzbtrqsPxPR5xREcMbPI023KJEVRFKX3DEmBAqv4375M/vCSDJ48ZSQT8+J7N+c4Aife3umP6fNSVXSbWk+Koih9z5Bbg+rgtAnZHDk6k+q2MIWZwps7/PxuZVNMv0+Pz2TJ7naaAgYX8P+m5uDuZq3oqDGZ/GVdS+fr9/a04w8ZMt3WORsbgp2JaMFS+OPGafSeoihKXzNkBQqgMNNFob2XKZGLbUKeh0tn+li808+0Qi8zirqvaltR4GFklou9bVboelsIPtjbzpH2Hifn3qdDSryMyFL3nqIoSl8zZF18ThJlJc/3CqOy3Zw1KadHcQIrCOOoMdEW0Tu2m88YEyNQ6t5TFEXpH4aNQCUqqT55H/YmHTUmen/UOzvbCRvDmrogO1q6NgV7XbBgrLr3FEVR+oNhI1Ada0ROnHudkmHuiAyyI65X7Q+zri567Qlg3qgMfAkyrCuKoij7x7B+uuZnCJ44e516IsMtzBsVbUW9vcsfk5uvLHdIL+EpiqKkNMNKoD7tyIV3wdTcfb6W08331g4/9Y7ihPkZmjlCURSlvxhWAvXZSTmdufTKfG4WlscvRJgM80dnRr05GxtDPPZJa1SfRMlrFUVRlP1nWPmoZhV7efjEEVTWB5k70kt2gvIcyVCQ4WL2CC8fVsdmkojsoyiKovQPw0qgwIrmSxTR11tOLs3qQaDUxacoitJfqAnQDadNyOKymYnXsdSCUhRF6T/0CdsNLhEWTc3l10cUxj2ua1CKoij9hz5hk2C8L77LMM+rLj5FUZT+QgUqCUqyYt+mDBf7tMdKURRFSQ4VqCSIJ0SOPbuKoihKH6MCpSiKoqQkKlBJohU1FEVRBhYVqCTJSpCMVlEURekfVKCS5JIZvqjXF0/f9zx/iqIoSs+oQCXJp8dnMa3ASrwxLsfFaWVaqFBRFKU/GXapjvqLLI9w54IidraEGJnlJms/8vwpiqIoPaMC1Qs8LqHUp2+ZoijKQKAuPkVRFCUlUYFSFEVRUhIVKEVRFCUl6VGgROReEdklIisi2g4SkcUiskxE3hWRwyOO3S4ilSKyXETmRrRfJCLrRGStiHyp729FURRFGU4kY0HdD5ziaLsV+LEx5mDgx/ZrROR0YIoxpgL4OnCX3V4E/Ag4HJgP/FhECvrkDhRFUZRhSY8CZYx5C6h1NIeBDoEpBKrsnxcCD9rnLQUKRGQ0lsC9YIypN8bUAS8Ap+7/9BVFUZThyr7GTH8beF5EfgMI8Cm7fTywNaLfNrvN2V5ltymKoihKXMQY03MnkYnAM8aYOfbr24BXjTH/FJHPA183xpwkIs8ANxtj3rH7vQRcCxwPZBpjfmG3/xBoMcb8b+Q49fX1PU9GURRFGZYUFBREZUDY1yi+i4wx/wQwxjyOtbYElmVUFtGv1G6rAibEaVcURVGUuCQrUGL/66BKRI4FEJETgUq7/WngS3b7EUCdMWYX8DxwkogU2AETJ9ltiqIoihKXHtegRORh4DhghIhswYra+xpwu4i4gTbgUgBjzLMicrqIrAeagS/b7bUiciPwHmCAn9rBElE4zTtFURQlfUlqDUpRFEXpG0REzCA+eAd7/N6gmSTSCBGRyP/TEREZlM+8iIwWkezBGDtiDmn7e++g43cwyO9FxiCOnQrjJ01aCZSIHCkiBwzCuItE5GciMmKgx46YwzeAiwEG+tuTiBwmImMGckzH+OeIyGsiMsIYEx7gsXNE5H7gbqBiIMeOmEOJiPwd+MZgjB8xj1EiMn+Qxj5YRP6CtVdzwP8G7DmcKyKvALDA1YQAACAASURBVJ8d6LFTYfx9IS0ESkQmishrwM+BvAEaU0QkU0T+hLVv7F2gcaC/uYnIFBF5HzgBeH8gxxeRfBG5B3gcOGygxnXM4ZfANcAdxpjqgbSgRMQL/ApoBc4zxqzo4ZT+mMMM4FWsqNnHB3r8iHlcB7wDnDnQVqyd4eZB4H3g6cGwokXkc8D3gFuMMY+k2/j7SroUN7oIeMsY88OBGtAYY+wHFMAJxphmEXEPwje3+cDrxphrBnhcsEQxCEw1xgQ7GgfCB24LcRbWhvBPG2NaRSQDCPTnuM5pYGVc+Y49/gHA+sj3YgA4FLivY8+hiPiMMU0DOD4iMgHrc3iyMeaTiPZ+/RxEXH8acL8x5vZu+vTX2B0cD/zKGPO8iORgPSJa+3rcVBm/rxjWFpSIeOxvS/nAv+2280Rkdoe7ra+/TYlIpOjPASbZ4nQV8KCIfFFEZvblmI7xO9aZOsQxC9gsInkicpuIfFtEFkb27UfOwRLHoIicLCIniEhmPz+UPGD99dl/gJOAmSLyVSwL4tciMqufxh4nVmqvDsYC2YBXRB7Aymt5j4h80+7f539/cda5ioCpIlImIk8Av7f/Bor7euxuOBFoNMZ8IiJzRORMESnpr8+BiBTaP7rsz8NoYJmIHCEib4jIrSJydX+MHUG+PZeO9Z5t9nwuBd4k4nMwTMfvE4adQInI8SJyJkDEN9UKYIJYGTC+DFwBPGn36ZM1CfuP7kngjI42O6NGlog8BEwHngAOBn7iELI+QUS+S1cuxA5LYTTWQ/qHWNbDTqwP50G2ldcnImU/eI53NL8GzBORO7EyilyDJRCHO8/vg/FPEWt7w+cjRDoX64vJZcDRwHeATOCrInJoH47tEivt1wrgpo52Y8xmIAf4M/CuMeZI4F7gZyIysi/Xw0QkW6x1pkcleq3zIywr9vfAY1if+9OBRf3xBcX+InSOiGRGNL9vHZL/Ae4BzgXuE5Ez4l5k38eeLCL/Av5mfxEK2c+AENb2mNOxXK5PAteKyMl9+Tdgz+EYEdmOvc/TGNNuH8oFjsSyaM8A/gh8oa//FgZ7/L5m2AiUWOs99wP/B1wnIuXQKUDPYP2BbjXGnGyMuQzIE5HL9nPMjgdhR1b3LGBux9g2fwZOBv7XGPMP4DagHZi3P2M75uESkV9gWSyz7G9JHfwNa2P0RGPMd40xf7fn9HPY/8VisbgMWA7cYrtzOtgJ+IA8Y8ynga8A9Vii5d6fcR1zmI710KvEegiNAzDGNAObsb4UfGiMqQR+gZXtJKuvxsf6tjoKuBzrC0nkg/d7WO6VWntObwL/sdv6BBHJwvrilYGVvPm4iPe3CnAD5caYR40xTwNLsb60SR8/nBcA64C/AvMjrm2wPgsLgGONMV8EXgIWiLVxv6/4Adb+y61Yv4sOfop1vxONMc8YYxYDvwS+Cn0XMCEiecBZ9jyKReT8iMOPYH0Oc4BddhLutcAX+mLsVBi/Pxg2AmWM8WMFIpwJPAtcGXHsHmALliXRwQPsx/1L9HpSJZY4/ADLpXJcRNd/2ccvsl8HsT4kq/d17Ig5ZIiIyxbhfwKfB74FXG5bDxhjtmDda4GITLFPfR34qI8eTtnAHmA21rf1z0V8e/4v1oO5XESKjTG7sQIGSowxof0ZVETcIjLWfrkNKwfkaVhisTBiDi8Bz9nzwxizHev93y/rRUTmichUsdZ06rCsw2ex3CcXdbjvjDEfYVlNx4sVrHMUluvv3f0Z357DBHuMNuBFY8w5wJ1Y2VxK7WPrsARxjYhcYJ8aBDzGmHAfu9m8WH8HPwYuADrciB9hCdc4utKivYvlVYjZsN8bRGRMhDfiJ8BVwD+wMteUQ6c34SfAdBEpsfuWYH0u9guxlhGmiUi2MaYR+JMx5gHg+9hliOw5rLLnVUtX+aIgVvKCITt+v2OMGbL/sFw3lwCH268zsETnCOApYEFE36OBl7G+MVwKfAwctY/jfg1YhvUt7GzHscux3AgHR7RNw/qD/DmWG+iXWH/Mso/je/5/e2ced2VV7fHvYgYZX1CZcU6QSUWcpxAxxQFHctZriZqlJtfEWzgRmopz5jUFURRwTnDIGfWmDV7TQrNrqfd+Si01zcrK2PeP33o4m8cDvOc557znRffv8zmf8+xnWns/e1hrr7X22mgWtBBF5chfnwN8J0q3RY31Un/uVWCvKr77BNQBNvZ0F//f3r/xyOjeMcAsNHBuBywBjqmy3k/w778YMeVe0bVxaDuXoUBbP9fPyz4fSY2XoeDFRWh3Aq4CXkOM557c9Q2QrenE6Fxn4BSvl2eAQ6ss/yCkwlni9Toid32h0+vs6bXQ7OUpNEi9AGxdTR6idj0N2DVrl1l7AB5Cs9p2UZ5P9XyPABZ4nXQoSHsL4OdIOzIH6BRd6wPMBC7OPTMTuBh42tvIBlWWf3/gbSQc3gn0zF1fAsyI0l3RDOdmNIudl/WdNZF+S/wanoGCFdMZbYb4hDf6XwNbRte7+/mbcs9tj+wQC+P7K6S9FZoZjEXS4jPAHtH19b0TnJp7bhBSPxWiG72nDbInzUEBeJ/wdP/onuHAi8Bm0bmOaIp/KtBUBf3paJCfhZwOTsxdv8LL3xSd6+QD2QLgoCrL3wsxps2AL/ggd2Hunv+MO2b03UYBw6qkvxHwSJR+3L9pJ0+394FjUXRPNkivU6P2fxoSgjoD5yGGGLf/TBgbnntufSKhrco8jEdqu4vQTGQa0Ce6fjgaODfMPXcSEpKmF6CZRb4x4Ea0iwLArUgA6hJd3xoxr7Hx88gm+/kalH8t74Nbe/p6NEuL+9ww4AOcCUf5G4BUrmss/Zb6NTwDBSunA1JbDPT06cgBYVB0z3CkCx+PZhADq6DXNjreKx4QkSrj17n7JyG99+HAeXUo/03Av/nxUOQYMZloVgCcCdyABuUD8EGyXJkqoNsRLTgd7OndkDR2QHTP+mjdzQi/f1M/n6ff7Nkj0D463gktGQAxndFe9xOjewYjJnaQd9wt87SBNhXQ3zg63hANiNnscSxS7cUMoi1iHE8gBjYyLnORb5/Lz734zB3oi4Su2bl7zvc8nAZ8e1VtumAeTgGO9OMxSCuQFwpuA4714y2jOov7U7PrIffu70ffoAeaEU2iNGvuhhamz/XvcGC+DRag2T2XfhbXRCBmcCFSMbaN6voS4FE0656yJtNvxG+NsUG5Z9Bgk/t0R2RT2gAghHAxcjzYM7s/SPd/HxpM3kSSb8Wu1WZ2NjDTzCb6qX+gQTKjMw/4o3vQZXgUTaUvp7TzcCGYXJcvNrNjzWyEn34O6GJma4UQXkJ2j21ZcRPI+1EHfQC5+ObXITXLBuTecRvBcjvfZsjpA+BHTucwN9QTQvgtmqHORzPbiX7+Y39fZpsJzaR/DnCT/xNCWILctvcOsr29gur54OjdbwBD0CD2VgjhZ/E7g7BaG5QpAsYPgetNrsljgT/75Sb/jj8GXkaCSobNEXPsiASUF+IyN/fbex52NLMHzOzbURt8hJKB/03EjDuZ2ReiR18GzgL2o8wC3Ury4PkYa2ajI6eGfmgGC3KQuQsYZWbxguyzkLfcy/7fUaTDv9y5xppZD4eb2WJTNJYsEsWHQAe3vbyPZueH47suBNljBgKHoPp4IlSx/szkgfiomV1gZpP99N3AcC/HUqQ6HYSEl6x9BzRefBhC+N6aSr9haDSHXN0PdfQXkbPBncDJfv5a4HhgLU+PRxJFG0/viozn8ygwe0KS8c/QLORwZPPYza/9d5YPT++ImFI2lb4e6dr7VVn2KWgAznTntyNvsQORamtzv687GqS39/Q2aNA4vwra2yEHg8e8LFf6+YMR08vUVush6Wyip/v593kKGFMF/Y0QA5yN1pP9FJ+5er0viO4dg9xm10MqthNQ5+1fBf2dvf4PQTaNs/GZCJotXACs6+nBwG+B3p7+OivaoCq2NSIpeBqysxyKHB/eRfbHPsjGuq/f29vvPcbTw9As6+hq8uDPrY1mIS8gtdpP/fwgJBhlbbAX8lg809OdvV28iaJoFKHdzWk+hvrzhajf9wKO8GvrRfe/AEzw4/Hefnaqsg+ui4StuUgrcJi/tysSvmYBu/i9A5HwkM2uD/R2OWBNpd/oX8MzsJrKWZ8VB96DgKuRim8CktpGUxosn6Q0UI4AdqiC9tZExnzEJL7nxzsDvwN6eHpTZHvJjNLdi9KN6LVHg+JwTw/wsm+PZmVXIX3+AL9+Ce4wgQax3tG7KlJtoAHwKkpqxIHIGDsAMcMbgNP8WhdPZwPDpihiQPauNhQboIcBk6L0aDRYd/B83ApMzb43YqY9Pd01eq5tQfpdgb2j9CHA7X48BKkVj8bVj2iw/ISNiYKqNDTAH4QzQT93HyUmdCRSH2Zt/xLgBD/uVKM8dED2tdjh5pfAYX48DZgTXYsZ1LpEatei+UCqxKxeh6I+39/T85EwkqmczwMmFynrKuh3I3JqQQLijchtfR3/Bt+hJJzcTkntVpUatTXQb/Sv4RloRgVtER1vgNRb3T19kVfOODSg30GNjH8+QHWiNCPbEzGIbEC4Gg3MByPp5pYaljnTH/djRfvLI5SY9XgflOYiFcbTaI1J/J6izKEDMNqPM53+TWhmZmh29RIl28o9wD5l3lO4gyD1WFbPbZzmzdH1zdGs5Ug0y7qHiClnz1VAr3OZ7x/bSnZAqsvMGWJ3tLbuHjTDn13rAQFneEjgaOd1EHuHzkeG8ilo1rp/0fKvIg8jWdG2+XXgFD8egGY3X/H0OZSZtVPA9hPVQZf4HcgzbQs/3hbNIBYgdeJvqdIJZiV56RYd90Fj0Nqe/hwSTh9EjOM5qrB3t0b6jfw1PAMVVJIhqeGuqOOug6b6DwNLvaKKDMir7cg+GJ0ZpbsgHfx8xCjbV0q3uXnwsq/lZR8WnW9Cqr/F5LwGK/22qzqHZiivxA3fB6p5wG984OxWS/pl7tkDMeM4X7t6Pi6r5vsjh5JvUsb1PBoo/x24NHetPfBFXMVSz/r3/8eIXMqREHWwD0xVe6Y1J19oFjc5Sm+LmPTTyLu1EIOgGVoH5Nb+EJFrurfNExCj2qTGZS/XLzYF7i1zfhKa7RVym/d3rFbAqSf91vhreAaiD7zSAYbSLGbfuHIo2Xw2pKC9Jzfg7Z7PB6UZxA8ozRhGUJLuq2JMZfIzikjijAanTXD9f5bO6OfKUMjWEH/n/DmkWllc5lpXYGiV5W2WlI9mKEf48S6Ukcqb08Fz92dS+Y5IyBm1intnIWNzO6T22qJa+vlnWMWaFCQpP+fHTUQzqbjui9b/6vKOVKXt/Tv1ydqe/3citxarQtq9cQ9A78tlGQ1S68/x46FUocJfTX4m4AJX1P+y/z3QYlhQUICqbFxx3UXHw/P1UW/6rfXXUC8+M+ttHrAwhPBP91jrEV3PPHIyT59NgNvMrI8prNG+fv3VEMLvi+QhhBBMm8ldhvS56+U8/bJYXe8BG5vZ7Uid0D7LdxG6eZgCWV6PJPLl9RK8JaKyP2tmW5vZEmCS5+tjL0Ol3nEWH5vZVHxLjPiaf/t+wE/MrMnMbjSzw/3ahyGEl/z5itpSlN9lZjbczM6JvBTjMFLZe9sC/zSzWxCz6Jt7X7M9E6Oyfez/TyInjGNM4WLyeTVkDz0BOeKsi6Ij5N9XcXSM7BlTHMOFZrafp/Pfc2PgSTM7Cc1Uts/lsU1wVEI/qocsH2tH3355OCq/3h7ZIv9mZpntgxDCRyGEF/PPNIN2W3/+HWB9M3sFqemH5e7L2uNgoK2ZnYVm7V1z12uFKSgiy/L+FH3XHZHH5PXI5vZRLQh6H97YzBajcWhQ/no96bdaNJI7otXgj6FNxKYjXf7dSDKIJctMergOqZSeI/Kiq5BmXjJZF3kHvbyKZ4aj0DjP4oboKsudz8Nm/v5vrOKZqX7Pw7hDQo3rYja5dSzRte+i6BNPIZVi4fUkRDMmJHl/AXlA3oTWVJ2Qv8/Tb6PoDV+qUXkNqYinI4eY3t4WP/FtETNchlSa1S70tVx6K7Tw+Qa0X9I8SpqB5TMi4AzPw2wUIb/W9b8Dck2/k9wC9+ievdHCz8eBW9A2KrWgvREalN9hFTMC5Jn4NxSQt2uVNDOtjCF75z7RtS8hB6R8GzSkznyV6tc05ceAnl73Kx1fakl/Tfm1PMHIcI/sOMegBY2z/NxXkAPCoVmlRM8+79cKhefIDY574SFy0L5FP6bkRp5vmAORnaImnSIq+z6UvG9uA37gx+VsIVOBr67sfc2gHQ92hozfZ1NySd0bOJcVnTKy+y9Dhuj18teq/B5XIdvWGE/viZhVv7h8iEEcgy8p8HOVqvNmAf/hx5mBuQNivpnn2RQ08K4TPZflIY5IUMj5JJefjv5/JvBlP94Zrd36Wpm2P4lIpVVNHiiprduiWchFaGnE7miwfhqYVqbNHoacFMYVbQe5941DTPl0L8/pUR9oVya/+1FGtVmUfnRuY+At5DXZCTne3FjufqS1WauaPOTe1+T/ffy7Zx6JZU0Htabf2n8tS2zFxplVzEA0M7kmO48cH2bySQ+eiivGO30sHe2KGOJdyKkiC5dyFlJZZHr1qgfgVeTpAKSmeRjZtnbzcv8VDw0TdcpyhtpKB+d4Npqt3emFZkPzkWpvf+C6fD3Fz2TXqhgY41nLGDR7/TWldRw9PE8X16rs0XM7Ign9c8gbLxNGdkFMIXOTvxsxw3bl8lCEPiUml/0fiDu1oFnjBX7czdv+A5SYdDlbW9HoC3H/iz3z5qCQXUM8PQx5xPXI5buQlyRSzU1ADg2Z0DOGMjNWtJZp/6w9VFPnufd2y6XHIXXi8Z6/zZEQczli0i8S2bWLtvl8+8/Rfwat6zoCqfCvIBcftJbfYE381d0GZYo2nEUZWGaKBrEIuNrMvoW2X/gOsKGZ9Q0hvIuiNfQLIfzVbQuZreAvFdJeG3WC6WY20HXVOyOPrC8jyel00yZz9yJp8oBalNvp72pm60fpTqaN8y5FIWB2QwzqUNQpZqAGCx5tO3jrjN7RLFuLaX+gTfwd/zKzLmZ2KbDYzM5HDh+nI/fULAr7NmbWO+RW94cQ3vJ3tg0VRMA2s1lm9h9+nG1Q9yfEmMb7e+dR0ve/7+nxZja6HJ3mlL1MPtoE2Zl+iASfO5CUTAjhcbQ9w76mzd2uR+ubmvz6CnkoQj/6npl9qyPaFmVbFFNyuJkNCIp+8BGaXR/tz34i+kG+flaHuP95+mRkz/qmlbYC/yfQ28w6BEUleBFpFpY/F2Qrim1Hq8yHaRuYC5FAeDzyNpzpl5tQlI8H/d4s+vwM1CevAe4zs+5Fvrm/00xR778ITPX6xcyORLPGRWgh8v1IO3M6Wm93EVInL9/Usbltvkwe+pvZKIs2kjRFtD8R2Zt/gJaL9EUC6iQz28XMepnZdfh2GEW/wZqOujEobxjnILvF5/xcH7QC/wa0N9BUNDj/BPgfJEGA1tv8wwfjihqGN8rMaPpHZLd6C6lNApLQeyBV0t3IbfX8oHA0vwF2MLMuRRtklI8mNNjeaGbH+em/o47fAQ+9hBjE20j3PgP4vJntujL6zcmXmfVHC4mvdqbYHkmGf0CSW39ghg/cs1F97IQWh650f54CneQu4FTTfk1Xm9luQRuoLUS7vO6O1s6sb2b7+jMvAceFEJ6vkNaqkH2zk9Cguwx43wcq0Ex2b+CoEMK9KMbc20WJlRFMOjpTuNxP3YLa5k7I+eZF1E4mIvvHz4B+FjkMFczHODN7FNgtGpwPQ+rdAxBTmomEhieQunGcme2MZrplt2KooB0ch7zyNgoh7I8YwGGmHZ37Ar83s+7+zr97v1uAmNRrKNbeB5WXfHk+g+c1oD6/m18ajKKSzA4hnI9sb1c6wz0S9dMJlNpNxfDxbwZqW+eivnCWX26P7OjZ1iSzgkJ4XYXGwanIzveboK2CPruox7QMVe7bqKENiM73Q5U1BTGGGyiFKtoOhXJ5FNmZehWguycyOB/t6W6IQR2OBoVMrfNNNBgBnIw66jaoEdck/Ly/axHy/PoRUhtlqpLTiRb2eh6n+PHIGtG/D6lOT/L0QP8t8m/xCFEQUeQksJRSUM9qbSxZWW9FhvdDgLnR9enI/mNotrC0Hm2xTH6mo4F3F+SJNwpJzHNZcZuQomrMJiQcLEGMFi/jNv4dxvm57RGjnuDXv4ZmGCORvWlWFWXt5H3oGTTgdqLkeHEZsuVcgOw/WeSVHmgwvQ3ZGw+u8nu3QzPVTHWa9fOj/PxQpLX4KnIQGOX9YHQN6nqilz1bltANbQ8zk5LdcVZ0/9ZoPMpcyztT3bq+CUgonuH9qjMa3z7wdjcRReS4jpINugkPdo3GycL0P02/+rxUFb4sSu/kFTQYSQYPAttF14d5JzqYKhbbIY+oZWhGNtEbxlRvkIcC8/y+mxGTmOAd+Zxq6JbJR6Znv8npj0F2jmnecfsjg+g1SHL/RTRQrLDuopn0BiK14Xae7o306SciFULmCDENONePp6A4aUOi91wBHFLjb9CEJPSD0GLnLAL29ki19iVP13SR5Wry9joapI/29ljWe7Hgu8sJJoa0Fafgxne/93HEDDbydFevs6V4OKGCediQaN1a3JbQLOljVowVOBKpHScjJtq3Rt/iVkpRJmL714tImByNZpUPINtTVftkRe8f6+PAy4jxD0VanCuRY1J/NHPNwogdQ5mI71XQz49/WfSR07xN9PQ2ku2CPAox1FNaqg+sKb+6qPhCCM8Cd5nZbW73uAR5wL2BvLaWAG+6+mkhGjj/FUJYGLQDaFG6P8H3hUEM7xpkd/hfxATamtkEtBXB2kiafCqEML0auqvAncjp4qcojtwZSHJ9DzGD7VCHOTSEsMjLEOL/ZmJH1BHPM7MRQbaCtkgSexDNEkEd9Veu8uvreRoBYGaf97wsLVzaCCFobVaQTfFSVPY7UFTrUYhBPIZmeYQQXqnDepYVYKW1RWegAWkOiht4Vu560fdbkB3tPcRsTkaM+EzEoBYAfczsLDPbE9kcHkCR+UGu3n2R08i8KrLyEdDZbRm7Ayea2dlOc7HTfM3zfCwauIeHEOYjgeIAbyOF4XX5BFo7uHaQ/Tmzwd3n9J4PIXwN+HoIYWQI4ZZqaGYIijD/PeQU8wZilEOQCn8bZPc+D/iWmd2HhIkltaDt9J8F7jCt1QQJBIQQZqHwUJsjLc5o5DY+G7gihHBZrfLwqUG9OB+SEv6CB1iNzmdrHhYjPey5daD7PpKYLkSS2Xy/NhkFlO3REtwfqRYXooHpl0hivxsZ4ieiTpK58xYKahrRWoQMvceh8D9DkWCwHZpFDUXeY3OB3yNbXBx/rj+5HTlr/C3qNmupMB+Zqu9h4MBafPvo3dmscVJUryd7e7wEMalhKKDng+SiUVDQO69MPjogJ6DXUYy+S5BKdz6S4nfyOnjY++E20bNjifa/qjIf2azllNz5+eTiRtahnnshlVpfNFu7Fi0lmUNpj6qeeET4OtBv8nrfzNOZinMu0VonWlBzsCb+6vtyrbN52I/zIXkGkXNbrSHdGcB9fnwUmrW0Q9LLsUgnXTc38igfPZFd7cro3CbIk7ANUjEupgYqFWBLpEob4gzpTsSg2yHV0oIoT0Oj5+rqvhoxhMm4nYkVY6nVZFCuME/dkOT6iXBFNXr/ygSTuSjgceziXTg8UTPysSnu+OLp44BL/Hj5ZpL1rAe0EPtZ4Ftohv4A8pqraiuaZtI+H+0DBdKqXOZM63ki1XYd6Z8L/Ffu3L3UwM72WfnVn4BUCZmkWtO4dauh+walHTfrNjNYTR4M2YLGezq/erwrNTSGIk+hC70zfhcZvM0Hqu8SRSDw8y3CHKjjrKVgfnb1waMuzJnygsnG5AK61ls4KJOvueQWe7dEPtAs/hvePo9v4TK/hjt8IKFwJ2q07X0z6b+OHCMydfvNyE7ZkLa/pv0ylUTdYNr98cYQQsfV3vwpoJvLgyHJ+fvAolDnj+2u7a8BW4UQfmVmG4YQXjWzdqGK3URrlLduqHOeE0J4rsF5qXj5QqXvR2q1+0MID/n6sRZfx2Jm7ZCmYi+0GPQltIfWH1o6L56fun73ldCcjLxHO7Qk3Yj+IcgG9mPg++Gz7jZeIdrVm0AIYb6ZreOL+5q9yHNNpZvLQzCzY4IcBVqC3rtmNgvZOEaEEF7188u3Ww8VLvKsIcYgp4yfN4j+crRQW9gQBfWsOIhtrRBC+NgFg5HAGUGLkhvCKDw/jaDZ0HEghLAgE85CCJ/uwK51QN1nUAlCSw4KZvYAipv2biMGhXJo1KDYKJhZU0sJJs2Fz+ysgUJKQkJFSAwqIaGOaC2MucGz54SEQkgM6lOKRtk9EhISEmqFxKASEhISElolGrqjbkJCQkJCwsqQGFRCQkJCQqtEYlAJCQkJCa0SiUElJCQkJLRKJAaVkJCQkNAqkRhUQkIdYGavmdlfzex9M3vXzJ4ys+Obs6WImQ0xs2XVbv+RkLCmI3WAhIT6IAB7hRB6oAjzF6B9qK5vxrPmz9d1f6yEhNaOxKASEuoHAwgh/DloQ8pDgKPMbJiZ7Wlmz/kM63Uzmx4994T//8nMPjCzrUGbC5rZUjN7x8zuN7PBLVuchISWRWJQCQkthKAdn/8P7YD8IXCEz7D2AqaY2T5+607+3z2E0D2E8KyZ7Yu2rNgP7Qb9JIqSnZDwqUViUAkJLYvfAU0hhCUhhF8ChBB+ge8ym7s3VvEdD8wMIbziMfUuAEab2aCWyHRCQiOQGFRCQstiAPCumY01s0fN7G0z+xNiQH1W8dwQ4HJ3uHgXeAfZqQbUP8sJCY1BYlAJCS0EM9sK6A88BdyCNrMcEELoCVxLacZULkDmG2g32ib/9QohdA0hPNMSeU9IaAQSg0pIqDPMrJuZTUQ2o5tctdcVeC+E8E8zGwscDwciYQAAALdJREFUGj3yB2AZ2vQww7XANDMb5u/sYWYHtkwJEhIag7rvqJuQ8BnGvWb2MWI2S4GLEaMBOBGYZWZXIa+9BUBPgBDC38xsBvC0b9u+RwjhbjNbC5jv3nvvAw+h3ZMTEj6VSNttJCQkJCS0SiQVX0JCQkJCq0RiUAkJCQkJrRKJQSUkJCQktEokBpWQkJCQ0CqRGFRCQkJCQqtEYlAJCQkJCa0SiUElJCQkJLRKJAaVkJCQkNAq8f8RiKazHl5ijwAAAABJRU5ErkJggg==\n"},"output_type":"display_data","metadata":{}}]},{"source":"## 5. The inputs for the Sharpe Ratio: Starting with Daily Stock Returns\n<p>The Sharpe Ratio uses the difference in returns between the two investment opportunities under consideration.</p>\n<p>However, our data show the historical value of each investment, not the return. To calculate the return, we need to calculate the percentage change in value from one day to the next. We'll also take a look at the summary statistics because these will become our inputs as we calculate the Sharpe Ratio. Can you already guess the result?</p>","metadata":{"deletable":false,"run_control":{"frozen":true},"dc":{"key":"32"},"editable":false,"tags":["context"]},"cell_type":"markdown"},{"source":"# calculate daily stock_data returns\nstock_returns = stock_data.pct_change()\n\n# plot the daily returns\n# ... YOUR CODE FOR TASK 5 HERE ...\nstock_returns.plot()\n\n# summarize the daily returns\n# ... YOUR CODE FOR TASK 5 HERE ...\nstock_returns.describe()","metadata":{"dc":{"key":"32"},"tags":["sample_code"],"trusted":true},"cell_type":"code","execution_count":213,"outputs":[{"data":{"text/plain":" Amazon Facebook\ncount 251.000000 251.000000\nmean 0.000818 0.000626\nstd 0.018383 0.017840\nmin -0.076100 -0.058105\n25% -0.007211 -0.007220\n50% 0.000857 0.000879\n75% 0.009224 0.008108\nmax 0.095664 0.155214","text/html":"<div>\n<style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>Amazon</th>\n <th>Facebook</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>count</th>\n <td>251.000000</td>\n <td>251.000000</td>\n </tr>\n <tr>\n <th>mean</th>\n <td>0.000818</td>\n <td>0.000626</td>\n </tr>\n <tr>\n <th>std</th>\n <td>0.018383</td>\n <td>0.017840</td>\n </tr>\n <tr>\n <th>min</th>\n <td>-0.076100</td>\n <td>-0.058105</td>\n </tr>\n <tr>\n <th>25%</th>\n <td>-0.007211</td>\n <td>-0.007220</td>\n </tr>\n <tr>\n <th>50%</th>\n <td>0.000857</td>\n <td>0.000879</td>\n </tr>\n <tr>\n <th>75%</th>\n <td>0.009224</td>\n <td>0.008108</td>\n </tr>\n <tr>\n <th>max</th>\n <td>0.095664</td>\n <td>0.155214</td>\n </tr>\n </tbody>\n</table>\n</div>"},"output_type":"execute_result","execution_count":213,"metadata":{}},{"data":{"text/plain":"<matplotlib.figure.Figure at 0x7fe6ecd26b38>","image/png":"iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd4VFX6xz9najJpQCCh9yIqIBbsgnUV3XVVVFQs6w+77urq6urau7u6q7sI6qprhdgRUBAVlCK9g5SElkJIzySZXs7vj5lMptyZTCCSYM7neXjI3HruzL33e95y3iOklCgUCoVC0d7QtXUDFAqFQqHQQgmUQqFQKNolSqAUCoVC0S5RAqVQKBSKdokSKIVCoVC0S5RAKRQKhaJd0ioCJYQ4XwixTQixQwjxgMb6e4QQW4QQ64UQ3woh+oStuz6433YhxHWt0R6FQqFQHP6Igx0HJYTQATuAs4F9wCpgopRyW9g2Y4EVUkqnEOJWYJyUcqIQojOwGjgWEMAa4FgppfWgGqVQKBSKw57WsKDGAPlSyr1SSg+QB1wcvoGU8kcppTP4cTnQK/j3b4D5UkqrlLIWmA+c3wptUigUCsVhjqEVjtELKAr7XExAtOLxf8DcOPuW0CReIaxWqyp3oVAoFL9ysrKyRPjn1hCopBFCTAKOA8YeyvMqFAqF4vCjNVx8JUDfsM+9g8siEEKcAzwI/DboCkx6X4VCoVB0PFpDoFYBg4UQ/YQQJmAiMCt8AyHEaOA14HdSyqqwVd8A5wohsoIJE+cGl7UL8vPzO9R51fnb/vwd+drbQxva+vo78rVrcdAuPimlTwhxJ4EEBx3wlpRyqxDiCWCVlHIO8HcgDfhECCGAvVLK30spa4QQTxHI5JPAE8FkCYVCoVB0cFolBiWlnAcMi1r2WNjf5ybY9x3gndZoh0KhUCh+PahKEgqFQqFolyiBUigUiiC9esWMcukw52/ra9dCCZRCoVAEsVgsHfb8bX3tWiiBUigUCkW7RAmUQqFQKNolSqAUCoVC0S5RAqVQKBSKdokSKIVCoVC0S5RAKRQKRRty4YUX0r9/fzweT/MbdzCUQCkUCkUbUVhYyPLly9HpdHz99ddt3Zx2xyGdbkOhUCjaE+NmlR/U/j/8Lueg9s/Ly2PMmDEcd9xxTJ8+nYsvDsz1evvtt2OxWNi7dy/Lli1jxIgRvPvuu/zrX/9ixowZ5Obm8uabbzJixAgAXn75Zd59910qKyvp3bs3f/vb37jooosAOO2009i7dy8AUkpsNhtz5szh1FNP5euvv+app56itLSUESNG8NJLLzF06FAARo4cyU033UReXh7FxcWcc845TJs2DZPJdFDX3BKUBaVQKBRtRF5eHldccQUTJkxgwYIFVFZWhtbNnDmTRx55hF27dmE0Gjn33HMZPXo0u3fv5re//S0PPfRQaNsBAwbwzTffUFRUxAMPPMAtt9xCeXlAfJcsWUJRURFFRUU888wzDB06lFGjRlFQUMBNN93E888/z86dOzn33HOZOHEiXq83dNwvv/ySL774gg0bNrB582amT59+6L4clEApFApFm7Bs2TKKi4u55JJLOOaYYxg4cCCffPJJaP1FF13EyJEjMZlMXHTRRaSmpnLFFVcghODSSy9l06ZNoW0vvvhicnIC1tzvf/97Bg4cyJo1a2LO98wzz5CXl0d6ejpffPEFv/nNbxg7dix6vZ677roLp9PJihUrQvvceuut5OTk0KlTJ84///yIcx4KlEApFApFG5CXl8eZZ55Jp06dALjsssuYMWNGaH23bt1Cf6ekpER8Tk1NxWazhT7PmDGD008/nX79+tGvXz+2bdtGVVXT1HvFxcXceOONvPbaawwYMACA/fv306dPn9A2Qgh69epFaWmpZhtSU1NpaGhojUtPGhWDUigUHZaDjSEdKE6nky+++AIpJcOGBWYqcrlc1NXVsXnz5hYdq6ioiLvvvpvZs2czZswYAE4//XSklKFzTZo0idtvv52zzjortF/37t3ZunVrxLFKSkro2bPnwVxaq6IESqFQKA4xc+bMwWAwsGTJEoxGY2j5DTfcQF5eXlLHaBQgu92OTqcjOzsbv9/P9OnTI4TnjjvuYOjQodx1110R+19yySW88sorLFq0iFNOOYVp06ZhNptDItceUAKlUCgUh5i8vDwmTZoUY63cdNNN/PWvf2Xs2LHNHiMwOTkMGzaMO+64g3POOQe9Xs/EiRM56aSTQtt9/vnnWCwWevfuHdrvk08+4aSTTuL111/n/vvvD2Xx5eXlYTAYIo7flohGFW7PWK3WNmlkfn4+Q4YM6TDnVedv+/N35GtvT21QtA1ZWVkRqqiSJBQKhULRLlECpVAoFIp2iRIohUKhULRLlEApFAqFol2iBEqhUCgU7RIlUAqFQqFol6hxUIB+zWKMC2bh79Uf92X/B+aUtm6SQqFQdHg6vECJmkpS/vMoQkrYvAqZ2QnPRde0dbMUCoWiw9MqLj4hxPlCiG1CiB1CiAc01p8uhFgjhPAIIS6NWucTQqwVQqwTQsxsjfa0BOPcjwLiFMT8yX8PdRMUCoXiF+WCCy6IKETbWtx888288MILrX7cRg7aghJC6IApwNnAPmCVEOJLKeW2sM32AtcD92kcwialPPZg23GgCPuhrc6rUCgUACNGjKCyshKDwYCUEiEEq1evJjc3t62b1m5oDRffGCBfSrkXQAiRB1wMhARKSlkYXKdVsqhtCz61g3pTCoWi4yGE4KOPPuKMM85o66a0W1pDoHoBRWGfiwmIVrKYhRArAS/wgpTyy1Zok0KhUDRL+vXjDmr/hnd/OKj9o2uhSim54YYbWL58OS6XK2YadofDwZNPPsns2bOpr6/n6KOPZubMmRiNRpYvX84jjzzCjh076NevH88//zynnHJK6Ng7d+7kzDPPZNeuXZxxxhlMmTKFrKwsAGbPns2zzz5LaWkpo0aN4qWXXmLw4MEAbNu2jXvvvZfNmzfTu3dvHnvsMc4777yYa6mrq2PixImMHj2aZ5555qC+l0baQ5JEPyllqRBiALBACLFRSrk73sb5+fmtevI+dXV0TXCO1j5fsrTVedX52/78HfnaW7MNvXr1wmKxtEJrDi3nn38+06ZNw2Aw8PDDD3PLLbewcOFCAB588EH27NnDwoUL6dq1KytXrkSn01FSUsLVV1/N22+/zbhx41iwYAHXXnsta9asCU2ImJeXxxdffEHv3r2ZPHkyDz74IFOnTmX79u3cdttt5OXlcfLJJ/PKK69w1VVXsXz5cvx+P1deeSWTJ09m1qxZLFmyhGuuuYYlS5bQv3//UJurq6u59NJLGT9+PPfff3/ca7Pb7ZSUlEQsS1QYuDUEqgToG/a5d3BZUkgpS4P/7xZC/ACMBuIKVGtXOTYHexBa51DVzNX5O9K528P520sbDhWTJk1Cr9cDcNppp/HBBx9w1VVXhdY/8MADDB48GIfDgdlsZsaMGSxevDg00+2JJ54IBMRn/PjxjBs3DoCzzjqLo48+mu+++44JEyYAcNVVV4W+14ceeohzzjmHqVOn8vnnnzN+/HhOO+00AO655x7eeOMNVq9ejdvtxuv1huaSGjt2LOeccw6fffYZ9957LxCY5HD8+PHccMMN3HrrrQmv12KxtOi3bQ2BWgUMFkL0A0qBicBVCbYPBX2EEJ0Au5TSLYToCpwC/HIpIYmbo1AoFIeUDz/8MCIG5ff7efzxx5k1axbV1dUIIRBCUFVVhcFgwOPxRFgujRQVFfHpp58yZ84cIOAq9Pl8nHvuuaFtGueDAujTpw8ul4va2lrNqd979OhBaWkpHo8nYr/GfcOnhZ83bx5ZWVlcd911B/19RHPQAiWl9Akh7gTmE0hbf0tKuVUI8QSwSko5RwhxPPAF0Am4SAjxuJRyBDAceF0I4Qvu+1xU9t8vj0qSUCg6LAcbQzpYomNQM2bM4LvvvmPOnDn07t2b6upqBg0ahJSSnJwcTCYTu3fvDk0T30ivXr2YNGkSL774YtxzFRcXh/4uKirCbDbTqVMnunfvzu7dTU4rKSX79u2jR48euN3uiP0aj3P00UeHPt94442Ul5dz+eWX89lnn5GS0nqFDlplHJSUcp6UcpiUcoiU8vngsseklHOCf6+WUvaRUmZIKbsFxQkp5TIp5Ugp5Wgp5Sgp5Tut0Z4WofRJoVC0ExoaGkLCYbPZePLJJ0Mz2+p0Oq6++moefPBBysvL8fv9rFixAp/Px5VXXsmcOXP44Ycf8Pv9OJ1OFi9eTFlZWejYeXl55OfnY7PZeP7557nkkkuAwNTvc+fOZenSpXi9Xl555RUyMjI4/vjjOfHEEzEYDEyZMgWv18uPP/7Id999x2WXXRY6rhCCf/7zn/Tv35+JEyficrla7ftQtfiUQikUijZAa0r1a665htzcXIYPH84pp5wSMXU7wDPPPMPQoUMZN24cAwYM4KmnnkJKSd++ffnggw/4+9//zqBBgxg5ciSvvvoqfr8/tO+VV17JzTffzPDhw5FS8uyzzwJwxBFHMHXqVP785z8zePBgFixYwIwZM9Dr9ZhMJvLy8vjqq68YOHAgDz74IG+++WbIzRh+DVOmTCEnJ4drr70Wj8fTOt9RR5/y3fzuvzAuiMxsbzT7VZKEOn9HOnd7OH97aYOibVBTvkchVQxKoVAo2iUdXqBUkoRCoVC0T5RAKYFSKBSKdokSKIVCoVC0S5RAqSw+hUKhaJcogVL6pFAoFO0SJVBKoRQKRRC73d5hz9/W166FEiiVJKFQKIJEV9ruSOdv62vXQgmUEiiFQqFolyiBUigUCkW7RAmUsqAUCoWiXaIESgmUQqFQtEuUQKksPoVCoWiXKIFSKBQKRbtECZQyoBQKhaJdogRKi7BJvhQKhULRNiiB0poKUQmUQqFQtDlKoKSGGPl9h74dCoVCoYhACZTWlPdaoqVQKBSKQ4oSKC13nnLxKRQKRZujBErLglICpVAoFG2OEigVg1IoFIp2SYcXKKFhLWktUygUCsWhpVUESghxvhBimxBihxDiAY31pwsh1gghPEKIS6PWXR/cb7sQ4rrWaE+L0LSglEApFApFW2M42AMIIXTAFOBsYB+wSgjxpZRyW9hme4Hrgfui9u0MPAocS6Cmw5rgvtaDbVfS+FUMSqFQKNojrWFBjQHypZR7pZQeIA+4OHwDKWWhlHIzscNifwPMl1JapZS1wHzg/FZoU/KoGJRCoVC0S1pDoHoBRWGfi4PLDmTfkhbs2zqoLD6FQqFolxy0i+9Qk5+f36rH62utJTtq2d7du3DV2X+R8yVLW51Xnb/tz9+Rr709tKGtr7+jXfuQIUPirmsNgSoB+oZ97h1cluy+46L2XZhoh0QXcyCY0zNilvXr2xfZsx/5+fmtfr5kaKvztsX5vX7J29tsrKpwc2KOiT8ckcaugoIOc/3t6dzt4fxt3Ya2vv6OfO1atIZArQIGCyH6AaXAROCqBNuHT3DxDfCMECKLgLvxXOCvrdCm5NGIQQm/T7OGrKL1WbrfxfSCoLVq9XJkZyPd2rhNCoWifXDQMSgppQ+4k0CCwxYgT0q5VQjxhBDiIgAhxPFCiCJgAvCaEGJTcN8a4ClgNbACeCKYLHHoUDGoNuXVLQ0Rn59dV9dGLVEoFO2NVolBSSnnAcOilj0W9vdqoE+cfd8B3mmNdhwQqhZfm1LvjuwgNHiU7apQKAKoShJqoG6bkm5UUxorFAptOrxA+TUtKDUO6lChBEqhUMSjwwtUhd0bu1AJ1CEj3djhb0GFQhGHDv92qHNpiJFy8R0ylAWlUCji0eEFSmhk8alq5oeONEOsQGklVioUio5HhxcolWbetuh1sQLlUF+/QqFACVScLD4VgzpU+DU6CA2+Dn9bKhQKlECpNPM2xqdhwDb4VFxKoVAogdKMQSmBOnT4NL7qBq8SKIVCoQRKWVBtjE/TxacESqFQKIHStqCkikEdKrQmNFYCpVAoQAmUpgWl0swPHSoGpVAo4qEESsWg2pThe1Zz16YPGFW5LbRMZfEpFAo4DGfUbW1UDKrt0P+8ljvnPg3ApB2zufLcl9iT2VtZUAqFAlAWVBwLSsWgDgXmt18M/a1Hctfm6YDK4lMoFAGUQCkXX5uhq9gX8Xl4zU5AxaAUCkUAJVDKxdfuUAKlUChACRQCZUG1FxplyeYTmiWQFApFx0IJlMZAHKFiUG2KH4FNTf2uUHR4lEBpDcpVAtUmhFuzVreyYhWKjo4SKJUk0S6xupUFpVB0dJRAqRhU+0EqC0qhUDShBEpl8bUbwnP3lEApFAolUGqgbrtEufgUCoUSKGVBtRvC3a11yoJSKDo8rSJQQojzhRDbhBA7hBAPaKw3CSHyhBD5QohlQoi+weX9hBB2IcTa4L+prdGeFrVdw4LSFC3FIUW5+BQKxUEXixVC6IApwNnAPmCVEOJLKeW2sM3+D6iWUg4RQlwJ/B2YGFxXIKU89mDbcaDoVBZfu0GoJAmFQhFGa1hQY4B8KeVeKaUHyAMujtrmYuDd4N+fEhCzRtq0ro22i0/FoNoaFYNSKBStIVC9gKKwz8XBZZrbSCl9QK0QoktwXX8hxBohxEIhxGmt0J4W0d7GQbl9Ek8HNR5UFp9CoQinreaDanwXlQJ9pZQ1QohjgZlCiCOllA3xdszPz2/VhgzQsJZqq6soCZ6ntc+XiHX1Bt7aZ8EnM7nauofTO3sO2bmjORTXPTrBuhqH55B+99F01HO3h/O3dRva+vo72rUPGTIk7rrWEKgSoG/Y597BZeEUA32AfUIIPZAppawOrnMDSCnXCiF2AkOBtfFOluhiDgQtR1KnzCwsQ4aQn5/fqudbV+lm5m4HfTP0XDc0DaMu0rv5wDeVuILW23v7LVx3fDcMukPvAW3t606epl/D5tMxaPBgdKIjXX/bnrs9nL+t29DW19+Rr12L1hCoVcBgIUQ/AhbRROCqqG1mA9cDK4DLgQUAQoiuBJIn/EKIgcBgYFcrtClpBIcmBlXt9PPXFbW4fEApGIXgumFpkdu4IttS4/LTLVXf6m05HPADDR5JpklNvaFQdFQOOgYVjCndCcwHtgB5UsqtQognhBAXBTd7C+gqhMgH7gb+Glx+BrBRCLEW+Bi4RUpZe7Btagmaaea/QAzq4532gDgFeXu7LWK91GhHR0sTiP4tVBxKoejYtEoMSko5DxgWteyxsL9dwBUa+30OfN4abThQDtVA3c01ieNJWokRbl9Hk6hI6lQmn0LRoek4lSSkxLBwFuapT6Jf+UNosWYW3y8wULfEltht6NGYl6qjGRDRzjxlQSkUUOX0sbbCja2F6b36dT9h+eMlWP50GfqNK36h1v2ytFUW3yFHv3YJKe/8EwDjigXYc97A33/oIavFV+NKfHNpWlAaovWrQeM71kV1DJRAKTo6u+u83LmkBptX0sOi442xXcgwJmFXSIn5vZfRWWsAMH/wH+x/P/EXbm3r02EsKHPetMjP018F4rj4fK0rUC4NV11uauRXryVGv2oXn9cbs8jgj1ymBErR0fnv1gZs3sB7oNTuZ36RM7kdbXXoqstDH3VlxYdlAYIOI1C68n0Rn8WuQCUm3S80H5SoKsewYgGicj+FDbEvY31U+rSWGLkPv/speXyx34kxRqB+xQKtUCTBT2XuiM/fJClQutqq2IVuV2s06ZDSYVx80eg8gR9Ly8UnD7KnISpKsTw6GWG3IVMsVN72byAzYpvomJOWi8/1a3bxaQiUHolO+vGLQL9Jq6J5md3HB/k2TLpAmn6W6TDuY9XXYvr6I9DrcY+fCJb0tm6Rop2Too8ddiGlpMjmI8ukCz0Pwlodsx1uN6RYfukmtiodRqAaDKmkex0xy6PjHsBBW1CmL95B2ANp5MJpp8+89+DIOyO2iRaojubiExouPghYUS69CdD+Tv620kpBXWDf/Q4fz4zp9Ms18hcm9d+PoN+xCQBdyW6cf3qmjVukaO+kGCIFSkrJI6usLNnvJs0geO7ELEZmmxC1sQIlPK7DbujKYdz9jEXUViEqSjXX2Y2pmsu1BEr6Dk6gDD99G/H5iK2LYraJtpg0LahfsUBpWVAQGYeK/k6qnf6QOAEs3e/WHD92WOByhMQJwLB2acSU9wqFFtEW1NZaL0v2B9yANq/k35sCVeLEr8TF96sRKMOKBVjunUjafVdh+uj1mPUOo4ZpG++FIA/SxZdEmnqsi6+DpZl7tceFGSMEKvI7cWh0HJyHa5xOy4J02g99OxTtFp/G+8kcVVhmRVmk6DR24LQESiiBajvMrz+DCL70TF/PgPrIghQeozlmH78rTsDxIC2oZPD4I6tHaCZJ/KpjUNrKEi5Q0UkiNk/s93G4zrwrPO7YZQ11bdASRXulXiNJyBt1u0fX82xEMwalcc+1d341MSgR9cLT7S/Gn9EUn4jOEAOor6iMSl0Ibrt7G3L599ClT8Jz1nv8vPFzA4UNPiYMtHB6DzM2j59kQt0S8ElodCm7/dDNUc0dm6dj8nt4/cgrcfnavnCjX0o+2+Vg6X4Xx3Y1cfUQS6sUsBUHYEE1ptuGY3X7ybUchvUKNVycwlZPG0+PpmhH1Gp0vpxRHdl4AqWz/josqF+NQDWH0Rv749SWVcZMXAWgs9WRMu0pBvcfDvc9BxnagfgPd9iZvTdghW2utvLpeV2ZtcfBHVHb+cJeOl2ctdSZ0vHqDHj8YAjasB6/5NHV0zi5fAMAA+uKmXvs1BZfZ2uzocrDq1sCfu31VR76ZegZ2zPl4A8cJwaVSKAaNC2ow9TK1BBoYasDU1YbNKb9IipKMS6YhczIwnPeZWAwtnWTDhm1GoP7YwVKe1+tJImWxKDm7HXw4z4XI7ONXDW4dTqlB8KvxsUXQ5T/1uSNNW/tlRUJD5GxZyvm91+Juz5vZ1PMwCdh0T4n35fEug2l0IGUPLFqCvO/upmvvr6NobV7Il7Abp8MiRPA4LoijPU1Cdt3INS5/RFuMZdP8ubWBp5dW0e+Nfal+e9N9RGfn19XH7PNARHHxZcoSaJBI5PksB3MqxGDEg2t9N3+WvB6SP3HXzB9PQPzR69hmtH2HbaDwe7149DwAsRD04LyNm9BSSnjuPiSE6gt1R5e3FDPqgo3b22z8cO+trO8fr0CFYXJF/slu6tizWCPiHQX6Xdu1TyeXyOAWWr3U9gQ++L1CR2n7l/HhYWBbL5sl5Vr8udECJQn2rkMyHgxsgNk9h4Hl35TyaXfVDJ7TyDl/q1tDXyQb2d+sZN7f6qNyRwsd0S2y9FamYVJuPjcfklhg5epm+v5bJddU4ysh+n0w5ouTq0YlMuBqKnskBl++vzNgQoIQQzrl7Vhaw6Ot7c1cOHXlVz9XSXrKpOLBVk1LKjo50/r7nfanQiHLWa5x5Gc0Lz+c+R8sW9tizt/7C/Or8PFp/nwNi3zSYlZw4KipjLio82Qws1nPM6HC/4aWibiZFZFv7gBVlVo33h+oePPG9+NWHZh4SLyww4h3bFiJJyxN9mB4vFLXvu5gcYO2Gs/N3BB3xSWbNzLtDXT6G6v5M3hl7FoxO/o32pnjY9IwsVn80juWlKTsKKE1kN8OOByuYnJK40SKF1hASkvPYCutgrvCWNx3vE4NDOBo2HFAoyzP0Rm5+K6/h5kl26a2+2t9/L02jrKHT6uH5bGpQPa3wBO/ebVEZ9FbVXgWW+FSSw3VbmZvddJn3Q9Vw6yYNIYANtaFFg9vLcj8B6pcUs+2GFjdFdTs/vVatz30S4+r1b2b3VlzDIAp8MZe89psLk6svNUao99xvRrl2LOm4a0pOG68S/4+w5O4sgt51dhQWmOfQobbOvy+knxx/ZY9VFmsESwO7N35EbO2MG9gGb5op112i9dgH4NsW0Mv7mkxnn0jvhpx74dW7B+9gG+vTvjbhPdtvAkA5tXsqvOyy0/f8wJFVvoYyvj4TWvU1sVmf3YXCKh2yf5cZ+TTVUtzBBKMFC3kQqnv9lyR3UacanDAZcr9vty1lkjPptmvhsqWWNY9SO6nT8nPKawVmP+7/Poi3ZiWP8Tps/eirvt/7bbyLd6sbolr25uoKod5uuLLVEC5fWAreVuUL+UVDl9oeetzu3nz8tqmV/s5K1tNvIKftn0/kZxamRNZeKpdxrRcvG5olx8WsNTvNUaY6AAlyM5j0yzXT6vh5Q3X0BXVox+9/Zf1PV62AuU/evPSPvL1THLwysVOOOYtqn1kT+kX+hw64xIXZObT3g9mu4oLVdePFI13It703tExFi03Hl6DTMdoGHrFtKfvYtes97E8vgt2Av3NNuGrRrzUW2t9YbcjgBG6aN7/qqIbRK9/qWU3LeslsdW13HX0lpm7m7Bg56EBZUMh2sMyuOO/T08dZEWlGHN4sjPUQPAozGs+jEifd24ZF7cbZcV1mEOJg75JCwubWcZXrZ6DHt2xCzWjK0kwO71c9viGi6bX8Vti2uwuv2sqXBHPHvRk4e2Jj4pWVbW/HfrlzJm3JNWkoQj6rXj8cOJZRt4Zclz3Lf+bSweB74abYFyO5tvR+PQF530M7CuiBSvk3RjpHWpK9kTSOgJYvh5bbPHPVAOaxdfXoGNyR/9R3Od1e4KpXs77dpWUKYt8mb3CwFC4E+xoLeH9dScdkiPzK4qrD+4HqdO+iPGOWkJlDGOi2//ooV0Dw4GNvq92N58GcuTLyc839aa2Bf/Ng3RumD2S7gWd4XzLsVz4dUkkqittV42hrkDPtvl4PeNriK3C+MPs8HlxHPWxZCWEblzHAsquqJ5cxwu46Aa66VlGnV0MuvwuGK/e299M+OgdInT6UXl/tiFXi8YIh9z/dZ1zJr3OJ1cdbw5fAL/PfJyzQzJtkS/dZ1mnUxdbRW+Xv2TPs5Xe51srw3cU/lWL98VOzFpJBaUO3zkpLb+cIUN5S7NKjFSSkTQVbm+0s0Tq63UeyQTckw0Di4Jdb6k5PodX3J8+RYW9hqD9F+F0AVsC72tjpeXPo9R+qAM7IZUXMN6aLYlGYGqdPpJ8Tr538KHGVJXSKmlK38+6wmgyVWsGfb1+5q9Pw+Ew9aCcvkk727U7ikAWG1NP4YCyZR0AAAgAElEQVQrzg/TxRGZJddYpNSfElkWSWi42optXjLcDfRu0HgpJEGKzx0x6E64YttodMUKlCgr4ZifPo1YNmDvevzN1A/UsqB2lGsHP821lZg/fgNd0a6ELr4NZXbGlG2kf10gkF1kC7hRvH5JxdQXMX84BfOnb5L6rwdjr6PVLKjkX6yitgr96sWBpIMovH5JvtVDeXQXtZV4fHUd1y2o5prvq1hf6cbr0Ugzby6LT5/4BRBdsR9AVJXFLDPOep9slxU9klu2fsIga2FMbEO3Nx/j3I/QFe1K3KZfCBEVfwoRViFhY5WbZWUuzYoLjTQOkWjk0112zS7Xmjjx44PBNP1VTrv/Aj6efw996yN/m3CP6lvbbNS4JV4Jn5enYA++GBotqN8ULeWuzdM5uXwDD637L76tG0P7Dt60MCBOQW7c/gU1ZdrZyd4kkq6KGnxcuvs7htQVAtDDXslZOxdGhCNK6zTep/Zfxgo9bAXq5xoPXZzW+BuEvQDj9RyyPJFfqj84XslvihIojfhQr72bmDP3dmZ+80eeWvnvpkSNJLOtujlrMBU2uTCEO/YcRlekMOp2bsXytz9oHm/n1p2IqnKM8z5Gv2VNxLpyh48ijRl9nRpZjBHn/zoPCZi9LobV7sbiCWujlJz1/sNMXfI0ed/dx9nFgQyrEpuPx1dWM2BdkztKn785tvRKEll8ABfvXsAX8+7i1UVPkWuPFZZkLShRVYbloT+Q+p9HsNxzOYbvZyKC8+VIKXlqTR03/VjD1d9Vsb6+dR0LP9d4+DHoQrN5Jf/d2qDp4rPX1jKt2MLuOq/2fdScQBXGxiO1RCvaJTN566dUh7mTdIUFpD5xG+a8aaQ+Ohmxb2/C8/4S+DZqC5S/JuD1+DDfxh+X1vLgCitPrdG2PLXqNOqFwK6R6r0uybhQsuiKdmH65hN0SAbWl/DC8n9i9DWdwxbWO90U5oVwSxGy+BqTJJ5Z9e/Ia1j9Y+hvLS9Lbbl2koRPoxMcTZHNx9h9kd99L1sZ9eEWtkdD6GzJVUGRUvLalgZuWFjF29samq2ledgK1KYqD11cCQTKGy5QyQUHZdCC8kVZUFo10sZvmkmaN3DcC4qWMLI6IDYtsQBGv3wnhu+/BLRHeZuiBMr02ZuaJXIAbAvnYXl0MuYZU0n9+73oVzXdxD/GGceQ7arVXN6IqK8h093A9O/v58PvH+Djb/9Mjj0gNLo92xlUHCh2apB+Hl0TmBBy2s8N7N6l0ZOPjh3EGQdlkk3fXxdnLQ+ue4M+tjJOrNjEnzZ9ELN9rdufVMFY4/dfhvzmQkpS3nsZy4M3oCssYGN1k4B4JbxanMbcQkfCnnlL+Gl/5Pe/pcaLzx37O2a6G1hbb+Tun2qob4jtsNQsXcQnG/dT7dQQZYcdXYXG9x4tUBrXdOr+dVQ2uHB6JftcOvTfzQxZuMLvx6xR2/JAsXv9PLrKyiXzKnhtQw3GWe+T+tSdGL94JzShnqm2krSq2GsB8AWt34/Xl3Lf+rd5fNUUdm3fTbUzcB+E3wv77LH3WCezDofGkI499ZHPrc3j53/bGnj95wbNWFBCbPUYv54RsWhIXSE3bW3yfDjqGjB++R7Gme+Q5Yq0nKUMvMitbj9mX+x9ogtLCmus/B/O+N0LNZvlT0KgKipqGFW1LWJZlqs+4jvwayRbuOuTS16ZV+Qkb6edPfU+3tthZ2V5Ysv1sBWojdXuhAIlwnorniR8rxCMQQF+c2Qyplaq+Qklkb3QiQVfA5CikRARt41SkvLevxD79qLTML/NUS4+Q5RlFM5pqz6LqOVm/GFO6O8f4wTAuzqbGQjs8fCbPYtCGYjdHVVcsTMQePcURN7EjWK9vMzNgPpioom2oOKVOkoJE6ihtXswhBXePa10DSafm1P2r+O4ii0gJS6fdhpsNMYfZse2yWnHOPdjTQF/YX09r205uPEfhQ1e3tthY0lQoHLtlSEr1Kfh4styN4CUWN2SzzaXx6zPrS3hvGl3ceeX23hitZWd1qbvSleyW7MN5ulTIuN9Gh0hi89F7a7dXP5tJY/tyoAl8yPWG9b/1PzFJsnM3Q4Wlbpw2h2c/OGTmD97C33BZswz30G/OpAUkrZbe+whgKytwuuXPLD+LSbunMdFhYt4Zelz3L20mvO/ruD8rytC43a2VHtASvR+X0iY691+7F5Jn/pSbt2Sx/mFixHSH2FBQuD3f3eHnRkFdv62MnFHLgJbPZanbseokdBy/faZHFldAECPt57G/PnbmL94h6eiLCSnT9LgkfgkHFsRm7npyuwa+tutS97al0lUkui0dVXEMwfQ2VUXkVHo0+jwu62Bd4/LJ/lyj4N3t9s03eUvrI8Usjl7ExsPh6VAef2SLdXehC6+8Cw+X5LplTLo4vNFCdT7Gyp5YHkte+vjW0eDrQGfbYpGj6c5TJ//D53GOKgUjRhUshg2B7Lx6j3+wIOqQbazGQvK6+Gmnz+OWHbDjoDFV+bXGMcRfAkMrIsVKMOSb0Ju1221HrZWaieuhAtUdlQHxOJz8dn8u/n30ud4fdET3BJsm1YFjGi8Zu0RIMaf5rMojoB/sku7jTFICVEdjGqnn5t/rOZ/W+sxFxXw8tLn+Gru7cyadwcjqnZoCpRR+kKdrp92artpetkreP6nF1lY4uS2xdUBdyCgK9IebiC8Hkx505o+xylI29lVF3LjVKR0buaCE+D1xk2AAdhY7SHbWcsbPz7GqWXrItbp8zcH/ojq/IQjaqupcfo4r7hp0G4fWxnsL8blA5cP3t9hJ9/qYes+K68veoIVX1zFK0ufw+RzU+P247HbeWfhQ0ze9jlPr/oPE3bNpzL4e5W7dUgpI+6JLTVealx+cLswffAfUl56AP2mVVrNwzT3I3SlRZrr9EgeX/0qFo+DTtua9j+lbAO9wmLZ9R4/tW4/6W4b90SNnwSQ9qaOk1vXgtJPSQjUoIIVMcs6u+sismW9WgIVzEB9a2sD/9pYz/+227h/eW1EEWyt6YP2NxPzPSwFqqDOi8Mn6ZLIRRV8GZY7fOyoSK4n7I/j4iutrmdFuZsX1gd+BK+Gqdy3oRSLx0GKRs2/5tDnb9IUqFR3mOV2gO6mnVZv3Dy85gQKjwev0I57VGuMm8kMxvT615fErDOuXEjKKw+zrMzFrYtqWFSkLb5XbZvFF/Pu4slV/6GPxtixHmFxqJu2fQYEsrOao84Qf4hipZbLLEhzbj5RXUHqI5NJv/l8Uv7zaMhNNbfIgcfj480fH+PD7x/gtP2Bl3EndwPX7pilKVAAPW0ByyndFf+ePbJ2FxN2zcftJ/Qi1WvEnxoxrF3S1N44sYJMd9P5aswaJZQTjMlrRL/qR9Lu+C1pt12IYel8zW2qK2t5a+HDDK+NtfhEfS34/XTdG9+C0tdVU1sT2zGN7hguKXXRdeU3HFcZsEBOLVvP+UVLqHNLeu9cExF/fmD92wDssHp5oyRVM/GmxuXH/OYLmL79DMPGFaT8++HYMVlSYpod64YOZ2B9CXdsmRGzfFxY3KfeI7Ha3Ty/4l8M1HiWhKPpt5Jxko200DVTzdzr8TK6ZF3M8h72SoZ8+ALG2R+C24VPIybvbajH5ZPMCrOI9tT7IlLsN2iMlTQ3M0D6sBSoTVWBh7uLK35gTno9bKpyc92CKnZWJTc+xx+yoCIFyhKciffnYKq2W2MgnEH6GVG9g2xdy4OtutoqzM7YF1K4QIn6FrgZAH9WoBccPXj4zJ7mUIHJrs0IlM9Wjy9O6mh9XazANAqelgUFYNiwnP8tCbxIDXHm3OpuK6ePrYzxhYuZvO3zhO0DuGzXfHZXa1s6VU4fq8pduHySCnFgBW6biz8Yf5iDPmi9GFYvQr8h0ANdUurizH0rGFW1PWafs/atxB9HoHrZAwIVLhha3L3pffrUl1IVFNd4FhSAN2wAcDwLKtPTdL5Ur0Y9yWJtF2I45rypCKcD4XZhnvFqzFg3t09ywbrP6G2PdV8CiHorFO4k3dn04o92YZnqqnHsj82cTfdEPuOf7nLwh7XvRyy7Y3NAGCzlsRZOSvCa9zoNmmPC/FvWYVyxoKmtbhf6gkj3my5sAspEXLL7u5hlZ5Q2WVT1Lh89P53CSeUbY7YD0IWNj9TFuY8092umFp9/V4HmrOMAwzYvxPzpf0l59QnNzoq/oY71Ve6YbNC5RU330qpgvGlAXTGX7PqOPvWlVPwaLaiNjQKV4AUrPV4+yLfj9KEZaNTcJxiDinYHpYU9sD4pcVdrDxYcVruH0RkHNi4npya2p5QW9tBppQsnotHFGS1QJ7pLuKl0Ifeve5PT9iceYCdqq/GJ2FvkP5vqsNbFvkC7OmvQ+30MrNN2cQCkWgMWUEvHO8XjwXVvMmHuSzHLd9R6mPx1Ie9/tZJbF5ZjTNBRMyW4PxpjE6KmEvObL5DyysPoCrY07ftllAtmxjScXokEbtvyUdzjxhOoHrZAinBWMwKV4nPz+OpXqXN6oMGKbm9+3G1NHid43OjyN2N+7SnNbcIFsZM7NuC9amkzgzHtDegqm+5RUW8NxR11BVswLPue0korZ5TGSR8HRF0NVWsiXWfLc0dFWPFGpw1ZEptVOGHXN7z1wyPMnzOZ67fPxOaVmKLusUaXcUP0RGPAUTVNAv/fqNpzer+PAV+8GtvehihLbsfmOFcWSXS7AI6p3EanYIe7x7Zl9F3xddz9wwfwixaEFPQet2YN0UbSd2yIu64Rw/qfODpqmAuAtNWzbH9sW1aWu0OdvJXlbk4tXcuH39/P39a9wYzv/4KpUjsZJnS+ZlvUztCtXcqm6qFA8xbUinI36W4bR9Q03/uDMBdftAUVll7t9YNXq5Q9MNS6h7T0o5M6VzTda2Jf6haPPTSgT1Rp9zrjIWz1pD5xG5c7jZyJGbshlfOKlkaMmWgOo9dFFw0XwrfbK8m1xlpQAxr24TalYkmQKKILBmBbS6AATi9aTkV9PakZgcHAFQ4fU+Zt5Mv5D2Hxudie1R99gge5m6OGkvRczXXVTj9kgXf6a6StDPR8/ds34f7HB7GDjwFXTS2Tf6ym2OajT4IxcrIZF1+Gp3m39KjqHYyaemnM8nqjBa/Q0zlMaFL/cg36mvjV+zPdDeikn26O6pisMoCTF33A+hHHMuK4o6hy+lhU6qJbip5Tu5sQQqCrjj22qCxDv3ElKe8EOhD9DSkRnb2Y7etr8W+KFLDlOaMYVrubXEfTM5e+J9YFGB6TumvzdH7uPEj7JFKSYY/t2I6s2s6arkdyRukaLtr7A36hY+pREynM6Mllu74lq2xPzD7fbS+n0zA3xwTr6lXtLUyq1p0WeiSnl65hdv8zGbb5h4h1PgT6MEe9wWGj8Sluzm0Xjtnnps4t6WQO9tb8foyz3kdfWIDnzN/Ra9f6pI6T4oi9P1Iq9vGTRsUMv4SttR4GZhgQ+/byzMpXQgKd4nNzVvFyYGTcc7WKQAkhzgdeJmCRvSWlfCFqvQl4DzgOqASulFIWBtc9CNwIeIE/SSm1nddBUl59nJRzXoa0bgmz+KTXy7Da3by6+Ck6NdMbDe0TdPF5TZG3mSXM7PVJib9WO/vtqLo9ZGUcWKyoR22sWyzdY8flB5MedC20oAD0u7Yy4oBa04SWoOU4qiK+k0buX/cWniOOSXi8xrJPWun4u/uOYkBh8704LRzFxaQOH87mPeXUv/FP3i5ZHlo3zLon4b7dnNVxBUrs2ITppVcwlTV1IEw2K9ZvZpJ66bUx23dy11Ns89HdVoEuQRUOf5xEgp72CiwG0ayLLxH5Wf3o4rRGCFQicQIYL0s4b+7tEUIQTqrPxYD/Pspfyv/OKk+TMF/cP5W7R6SHxpSFo8/fhOHLJjdbtDht6jKEEdVNlp+uppIBUYOo9/QfRWXhjxHtyi6On0TRyENr39Bc3s1Zoxl7nVgwl5PLNnBsZZP4nVOynEU9juOMUu3s2f1l1Ty9rJbp52STk6rHvU/btQ3QYLTEuCGjGbtvFbP7nxlKOGjk8RPu4KlVU0KfDc4mgdK3IAZl9rkpd/joZA50xI1fvod55juBY65ZTGqCfZujz7ZlnJT2HbP6nxWzbketl7oaKy8t+0eMCzHXnngs5kG7+IQQOmAK8BvgKOAqIcQRUZv9H1AtpRxCQMj+Htz3SOAKYDhwATBViMSlinVeD9ftmAVA5wQC5Xa7uWbH7KTFCQi5s7xRFlT4g+X1x68H1rtuHyZbgrFZCTD5YnvUaV4nruCLTGj0UNuKXHsVljg9YeO2xL2wxviGwR8pfC+NvJ654+8+4DbVFRXyzForu95/h3PDxCkZch1ND8mlu75l/pzJfPbNnzizZAUnvPtYhDg14lryPQB2vVnzmCeVJxZaf5yeby9bGZOPSKNzEhZUPAoy+2I1JTOvcxPZBeviilMj3R1V3D7/ecw+N4OshfSt38es3TZm7nFo3p/mT/6LXiP5p5GFPcfgiPP9AZSndmHY8IFUmSPLjPUui+/ObKSPTbtDN7CuSHN4RbbLGiFOjcQTJ4DJ2z7npcXPsm3mLERVGdnW+BZzTUZOs20+qXwjZq8LXZTolKV2DcXHAYweZyi+p9OapSEOZr+bleVu1la48TkdIXFqLe7a9CFCxoY4CmqcHPXBs5oFs5sb6tIaFtQYIF9KuRdACJEHXAyEd3MuBh4L/v0p0FhA73dAnpTSC+wRQuQHjxeb6xjGUTUFnLR/fULxsTk8jC9aEne9Fk0xKO0kCQgKVJ32lyqkxDT7fc11AB69CWML09CtVVYyenaNK1D7uw0k64KL2fb1PEZrPGDxmDPwbBbkHoeQfl5a/mKL2pTjqCYtTjC1OVK92haUV6fHZdGeuTgZlq3fybdHjOa5gvi++3h0C76Yryz4mr9seAcIuI//sTw2ttVI76o97NhbQro5E4s98rfR+70JX2wAfo2BuhB4sV775IX442RPlmX1xOPxxk00ANjRqR89E6w/GEZU57N05qTQ5xJLNx6uv5cLjGW0NA1FP+RIanZlkmrXvrcL+h9Ht1QDlQeT9h7FoLqi5rNXW8CpZeth3nqYF39iUwB3Ridops5tis/NSeUbY54Nl96IzZhKRrgF5rBBehb6OOMJtTD73Ly5LeCaf6J4JhcmvWdydHbX09NWQUl6LkfU7OLq/Dl0d1TRzWWlT712rKm536I1kiR6AeFdzOLgMs1tpJQ+wCqE6KKxb4nGvjGkep0x8ytF43a0/AXqj2NBWcJKe3ilRB9HoEC7tEwj9vSWP2jWNQGtDk8tDccovfjOvpgnL3yaddnRhivM63MqD5x4D5/3Pxu32YK0pOO46ym+Ou8uFvU8nj3R04skQY6jKuI7aQmpvsB+0YF4m8GCNBpxmA7Mi9+rXmPKlSS5cO8iTijXrlSRiG0FxaGYWjiPr57KmPLEGV2GOPOMQaCjo48To/PqjSzvc0LCY+dn9aOuhRZUPFZ1O4qfe8d32/ayV/D4slfYuq3l5ZCOPnKAdko74NSbyJwwiTSDoDK19QSqu72y2ezVXwJ/Zpekthu7b5VG581AvTEtYpkI1r7Tt8CCSvG5QUpu3zydC1dMT3q/ljCorojzipby7oIHGV+0hGMrt8YVJzg0FtSBcFCzg2mNDYimS1X8TLJ4NMag9lkbCE91CLcWCnbtZnjNgfVOG1LSybK2LJbkX7aQ7cOGckR1leaP5RWCwvx8OkkL9cbYl/v67CP4vvfJfN/7ZDL7X052ig6EILeiDkhJ6GKJR7bLygBd84OIy1K7xLiNUr0uUrzOmGyuMks2oqaaOnNG5PivJOlbXxr3pd4cQ+oKmbZYO7stEbv37mOchqvzgiQsd5NGoDkZ/DodBV0HQWz2eoidmX2wGmMFqigtN67rKx71KVm4L5tIxRtP0C1OvKBfQ6mm+yYRdr2ZVH8DVnNsoglA8TmX45FurBWlVKUkZ1nvSe+Jo1tPhu+OnynYp2E/Zo254Zrj2dE3UZyWy9QlT7d4341dhoCx+QkKIeBSjHbPenQGGqKe7aLtW3FYbYgkp3GHpszPi8Km2InHppzhjChP3iPTyBDrXi4tXBCR1BFOZUqniA5CV2ctiX6N1rCgSoC+YZ97B5eFUwz0ARBC6IFMKWV1cLs+zex7QAwKVnZoCY2ljjr37hexPNzF17tff9KirIc5v7sff/c+NIe/c/N+6GiOLd3Ah2UZ6OME1eXlNzFkyBAG52TSYEqLWV+emg1AnzQ9J408giFDhzJkyBBOGRhICrAbWj4+KN1jJ53mxeCdYb/njeETIpYdVVPA/Dk3xaTa7k/NplvXbBxp2i+j7Vn9E56rX8M+etmS6zhUmrMotrT8t4jGYW3QTBZJhjR3pMDXpmTFbCMzYpdlZ1lw5vZPeGynIQWvJfbFvyx3VMsaCbjTshg1eiTmPxx4fHB/8B4MpzyrB0ceMRSpj62EUHDprXS/Onhf9+1FpTk5gapM7UzGpFsTbjPEmtjSK8gdGrPsqWNv5fOB51KU3j2pdoTjFTpeP/JKuvTp2/zGBDwL0WLv1hljBGpagY43q7q1KEkCSEqcADYffQ7S1NR5feSEO5Pa7+I9C8htiB8vf+K423Ebm945zXUWWkOgVgGDhRD9gtl6E4FZUdvMBq4P/n050DjibRYwUQhhEkIMAAYDK1uhTQnTWePR6OLzRLn4wrNvvH5iAr+1vYZgf3Qq3lEnJTy+K6Plrgqz30Nd/nbs9bEuvrrjzyT9uMA5e1r0MW4ACASaAY7PiezBHdEp8GJwGFpuQaV57Bhdzb+Y13Q7Coc+UgDPLlmhmYZenpqNXoDDEvtSBnh55LXUnXt53HNleOy8tOwfzbYJoMzSlRvPfJoFPccktX08ch1VMXXLkiUjSqDs196N/W//ZvelN2N/7DUaps7GNuXLmP1MZjPOrj3jHvfbXoH7YVS/WFEoSu9BfmZyL8pGvGkBF5xuzOm4rrodf7ee+Lvm4h15YlL71xnT+PMpD8Qsr+kUmLMo1xkbmKk/8rjQ3+lGXdIuvgZLJzoNHsy8PqfG3aa7I3HWmP/oY2OWbcgOiJbVpG3tafHnk+/nb2P+yKSzX2BF7khMXeK7+LwaYw3D0bKgDE4bK8rd6BKUlQJoGDo66TZH0KMv9sdfZ/O5f+DW0x9lbt8zKLF0a3a3nnHiiY3syOoHnWLvzXgctEAFY0p3AvOBLQSSHrYKIZ4QQlwU3OwtoGswCeJu4K/BfX8GPgZ+Br4GbpfJlKY+SPw9+2kub3TxudIiH4hsZ23IfeT1yxi/rzE1BdIycN79DO7fTiIejQ97xDmbuTkBjqzZiTnK7fXVw5+iu+ux0GR03S16TRdfRVCgTugWKVBdUnTkpurw6QwtKjgJAcE2NOOGqzFlsCujd1ICWGXOwqM3ohfgN8T2qMdfMI1VOSNwXHkbjrviu+IGJOH6BTCkpWHs3IX7T7qXv514N540bVEEqM2I/1Ama7FplYvKiJrqxWg04h86ktojT8A/8AjNMVaBxhtJy4jtiECg6sJHgy9gcKaBwT1jX+rlqdlMOfpqGgzJJxR7OodNVHf+FdhfnI79pY9w3vsCzusSW1WFad254/SHAy+lKPz6wD0nh0UOhKjPjPy+0wwi6SQJR0bgXq++4k62dB6ED6EZl02Ef+BQGnKaRLwwrTtVXXoxrqeZe0+Mb3Xvz+jOfSfdxycDz+Pek+5jUc/j+abPaRQErz0tO/5LeUMzbfRqCFS6N/D8mfyJY1Duq2+PyABspDgtl3+MuiHufrnZ6che/cmZeC07egd+o63xxpYliVtnoEtONvrOyQtUq8SgpJTzgGFRyx4L+9tFIJ1ca9/ngOcO5Lx1qVl8P2Asl/wcbbAlaGtaJsTp9Ta6+LxGE/6szuisgQCeHkmOo5rStBy8EgxRfl9TStBK0OlxT5iM95iTsTx1R+y5zbHutNKr76Hnh/GzxQCOri6IsQhzukT6qbNMgj0aQlNtzkQv4JiusS/+Swak8trPNtw6o+bo9nike+zoNOpxhbOm21EgRFICVRZ0AemE0LRIyi2B9Wa9CLy8D5J6g4V3zsxmRbmLwWdfhNs/Fj6cgn7lD9SYMnjh1D9xYUoNPTqn0eu40XCP5q1LryTiOQt6juHN4ROY/v39EcujxzkZzckV/ZSdu9HJJLDrzTGW6OXn/pOS9O48PzwNsT9WdMtSu7A5eyjjx7+GTvr5Ybb23GLhVA6OtSga8Z75W3w/zEFfWBCxfEOXofx7xCS2dBmMV2ega0psJ8wQdKPnjv8d/p++DI0Z895wT8R2Oak60rKTSzDwBhMRLhzRnddvepkXK+yc1yuF0U9fnNT+AM4uOehueQDfjGlIJF2vup3ZgwPu8DKN6TsaaRBGfug1hh96aVvlIiv+NazvekSoZqAWGalGGqJqSWa4GwUq/nMr9XpMA4bw6fDfcsXWwDuy1pTOpwPP44Mhv2WgxqwDjRzdI9CZthh0vHpaZ+YXO3GXDgWNIRzV5syERRMaKUvN5vjcFGT0dEYJOOwqSYRTb+mMK06V6njIjCyIM4q/0ZqREmR2d7A2ZZj0sFcGBMovMUYVhDWlRgqPf/BRbMo9ihFlWyKWY4x9WRtPPQfvxsUYNsX3bB5XEXmcBkMqnVMjX2gZRl0ohTv6mo7uYsRiiH1JXDnIwoAMA+mftSyO0tldF3dG3EbWdDsSAEcSMa6yoAClG0XCRAeDTiAzY+MRWi/rRBjT0kg1CMb1DLRN0hnXbY/AH+7FbDJz1c5dDBlyZmBdAoM+GYHyHHMyOy39+Sl3FKeUNY2Nih4AbTSZNMPKrituxvxx06BT94UTGew34jTEXnNJendGdDFyYo4J2RBrgXXtmQsusBtTAyI34Egsu+O/GAHSemhPHw6ATo/r2j9ieeaPTe01mLj/5PsiEhvO7Glmy29u5KhvAkVZfUJHzwsCzhVdny/cBj4AACAASURBVIG4HngJ36rF6IePwnjsyVDQJHhCCJ4/rRsNealx68SFtg3Wn9QLwe1HZQCB70CmpiEcyc0MII1m/IOH4HhkSsy6LhpC24i/GU+Iv3tvHCaLZgLQhuxhGns0kZNhpj4qvpwVzIKNV6ZLCoHruoDYV19yE3dkj8Tsc7My52icwWdSKyTQiCXMSu+TbuD/jkjH5xkJGjOv/OWk+/jD9i/o7Kojq3suOX0CLmjT/MiSSKWWbpzW3QzNzP4dzmEtUD6jCalv2SV4zr4YPO6Ih76RxpRhnwR/di76XU1ZLD2CvlWfxxuYX6axDQhSNHq/WqV8nDL2Jk61pOC6+g4MDzYJlM9oQuf1IIIvx+hpJ2zGVDqbI4+VaRK4NQLOAMd3084gEkJwYm7LY1DJ9JbWdDsKICYGpYUzmEnYP8NA4aDjGbyzqR5bQWZU8onBiGfshRh//AqAjwadz4qckfxz2d81j+3409OkvvJwxLI+3jiDqVM0OjtC4D3mFM05kZIZBN7lxFN4yJiJ86fE37MwGjUFynPOJYiq8kA5mnEXIXN7c4qUFBx5Bl3WNc35tbLb0XQx6/jLMRkIIUDDWr9/bD967Xbj8EquHGRB7zsdggLlz+pMYef+9N/TVM16Yb/TOLNn4nb7h47E/dtJoSre8uo7SCEbwmZwvrBfKv2GXslunxNRuAvzub8lI7cp4cB35LFw5LHEs09yUvXYUzNJr08sUKkW7XtNZnbWFKg5/cZyQcmykMvec/I5CY9v1MVPPp7Z/+y4664cZAGTmaVjLuecJZHDY3wINnUZkvC82WlmKi2RbrHGosLRFpS/ex9cEybj79kP2as/AJOGZbCp6xl4Jdxg0nHjD4G4n1ZIIIQ51srRD9QW0q2dB3L3qQ8CMP3sbNxperDVxwhUevfu9O1ixHv8GaHpgJrj8BYog1kzZhEPf+eueM4YDx43xm8+RRdVEaKxqKyUEpkd6W/uHhQof9S8P06DWdM6MWhUhtB0LQqB7NkP5w1/xvzuv0CnY9/ZE+i56Sf0JXs0r8NutNAtqkx9pknHV33HcnPYrJ3TB48HYuNPrY1MTQOXAxHsGcmUVHZlBMZXJePiaxz30S9dz5wRZzHyx+l0dVnxIfjXyOtjtnfdcC/e0afyxNp6vut6DAjB1KMmcvuWvIjt/n3Z89x4bGziSkZWBi2ZFMV1/d1ISxq6/UXodzVfZiec3r26MdyoY3tGM5a+Ic6jaE7FHRXr0QvBEddeh9z0TWjix96TbuDjkdkYgi9Rf9fIjDOZloElxcRNw5vuBc9vJoDJjKjcj/fU36CrrIFXAgJlN6bSf/KtZJiaj5G6J0zGM+4iMBiRnbL5Q7GT59bV4ZMwYWAq/TMMgIFu197c7LHiYbNkQX1ii1VkaseqZGYnKIt1Zw2cdB3u2jMxzXof2aUb7stvhurElWDyBp3PxOCknY1Upnbhq35nxGxr1sPgTAMTBgZe9nvGTWDBrq2cta+pM7o5eyj1pnTKUzqTE2dMkNlkpKpTpCXbO1jnMdqCctzzHLJ77NjGEdmB311KSbZZR5XLH9eCkjq9dlp8Wgb2zrlYaiJ/h8Y5qYZmGehhCd4vlthhDoNzM3AD3lPOxfrdbLKKd2ieP5zDWqD8RhPS0PzLd1+v4XS5+Aq8Rx8f6CWnWLA/+w7pd/wuYrvGuZz8gIx6wBvnIZLRAqU3k2aMfYi1as0NTIvfA/Oe+Tu8J4xD+LxUlleRK3xxBcpljr2xjDpBdVZ3Xhx5AxN3zmVPRk/eHfZ7Mo2CIZ0S/8zeUSdh2NCy8kDh+LNz8A0/FtO3nyGFDtfE2znGZGJ9lSepcVZz+o0l26wjw6TDk2Jh4rkvcer+tRRk9WN7pwGxO+h0+EafQidjPQQnFZw16jI6O61ctXMuAHvTe1DVO9Djc/7hPlL+11Qtw3tibL2wRMguObhu+Rv4vKTfmLiXHc6/RlzLTcF7w2dqxpJM4j6OaFN2DvYn/4th7VJ8Q44m84ioFPIUC+6Lr8P05XtIgxHXpD/GHsRgxHNuU7HZLn1h89X30rW6nLQTT6Nb3+QHcYc/L+f0TmFUthGPn6YX1kHiSI2fyAKB+Jp9oHahZqkhXN4jjqHv0EH4GIRjzLimFc0I1PtDf8fw2t0MshayuMdxpJ48lj4njiF9nQebo6kDetPwNK4ZEvmcdk8z8teT/swlu75jfNFifELHS8FEhW2dBpCzP1ag3DoDCEFt50iBGlmdz4s//T2yugSAMXGHXQjB6K5Gvitx4dKb8Ah9bL3NVAvEqThn7NMfogTq1B6BZ/zm4emEKtVp7d+4zJxC8QOvMnHuTipSOvNDgvYe3gJlMifl4qs4+hQyTzwzcmF6bEadOZgR4w+6+MJpdPERVaLGqTfRxawhUBoWVIpoxveanhlw85RX4T1hHKa52tM1eOLE3TJNgrwh48kbMj607KQuRvSJyxviGXcR+k0rEX4/voHDsaZl0WVTCwQrxYL7mjvxjr0QaTIjc3txT72XVzbVk0biigZruh7JstxRjMoIZLrZPZJacyZf9RvX7GlvOyqdozob8UoYlGngRtcfWNp9ND3tFXzb+2TONwXuDe/p5+PZm49+8yq8o0/9//bOO8yuovzjn/feuzVbspueTSUhpJOEEAiBUJMgvUtvohRFRcECKCIgTYIK6k/pIAoooPQm3YaCBQQEAakmSCeEJFve3x/vnN2zZ8+9e9veLZnv89znnv7OnDMz77x1aJ2zMPu6hZFM8VFlLYPWxAfZ3j9uCxLN61i04q/8YcTGXD/5E3zanWstz8yoNZ0Elemepgk0OzVOHNbtdSTNW+8MyRSapWtv8wZTqVm2a85liWJYVXyqpnyxNsYD9r3yWu4YtxUNaz/gyo324LzhaVR8Marblm3zq+MhCyfyqWrzJB2UEn65dAjVqQTfW9TKqY+9zwsftDB2UJJlY7uWZWRVkjZJcOOkpdw4aWmnc38fOpXFMcvfNDvHpzX1Q7swk23ili7JIiB47tBy7nt9LYjwYfmgLip7jVHvtZ8bPR7+0TkT3VkL4uPUWjfamOS/OuyurZts1b49alCKt6u6d37p1wxKyyrQLFR8ybExs/AYBBKUKujQzgyqadVKUGVtJIXS2lQFQ8u7MoA4FZ/WZJ4FhtG2wVTaho7otMZOgJY4Wwmm5lv5cWcmOKq6+4Gidd6WrD7rChJvraB1+iasuyyzV2GXsjYOBxHaxm7Qfmx8bYrlWzQg77TAjV3veWzYTM6adzT/HTSMNkk4NRB81JK9ATUpwrZNNhCsarb7/jiyIy1PTSDZJlOsPeyELvfng+TgBlgRz6AaGur59OQjSLa10JpIsfmIjsGiewkqh6W7c4AOic/S3t+wNiaA+7n68Vw093Ca2+CQKdUMqYxv63FeYy2hwTIX7DyukuqU8PKHLSwZU9mu3h9VneSnWzewcnUbQyoTsSvFjqtNUpaA5pgm/o/GrgHCYAxqg7oUb6wu441Bw7vN2KFZMKh5Qzuu+bAshkGlGV8A2iZmdugIY93uh1B54TNI8zpap8ymNbTSQXlSGF6dYMXqzP29Xy5YGEDLK7Lq2LXjJ2T1vGDZ6DagbdioTvEDY1a/yaIVf+XDVZ0ZVEuqgkSMhPLgVod22r9xzn60bL5dJ1fzdbsclL4wIrTM3zr2lFbFSyW1MavyjajK7hPr6PG0zt4MUilaYqTLTGiJSqfh58YY6wGeGjmT12tGtHs/bVAXMKj8wuCqU13rXtnNctL5INUUH0MHMHZoDWUJaE2kSAgcM73jO2kvMaiBgpaYyd3bNcP4zY5D+fWyoXxqanpJvXXm/E7763Y+MOvUQ1GICNs1VXLE1BrG1HSe3ydFGD0omXYZ8+pUgkM2jLf7PN04OTZerjWRYsmYSmrKhPeyCRTOoh2NGtRBJ9YOVZVegmqZu4i2kMq0OYO6vHXGfFafew2rT7mIj7+2vIvab8yg7ifP/ZpBkQWDWpMsZ3BTBlfZEIK0G395cx2fe3wdfxjROUnmkc/e1IVBtcW4jgPM/cR2/Hm4C3AbPJFxe+4NFVV8/NXlNG+2Het2OYh1ux8ae2+AlgVpBv7q+EZeH2PQHpGHqqU5F0mvriGzyiyNumDBwtkMckxlZHWC7ZrsPc4ZEj9w7DUxc+xE3CShJyK+1y3dpz3rfRS1tYP46eJGPj+rhsu3aWyXCqF7BpWPim99QmtMouUP6odTnUq0r2+U9t45C2nechlaXkHLnIWs26Or402pcOhGgxhb07VPrk2W80LUYxWoq66gKiXUpBKszibAOsuJzicnmZQUx6AyqfioqGTN8d+mZdYCmhcti7dthp81ZARtU2ZBjClmzKDu23y/7hVSXoF2YxR8o66J4cn4QXpNsrxdagrj7tfMEeLimQewaGWH2+2Md//NIx91ZlBaEc+gRjfU8PHJF3DFa+8xdUQts4bbR2+bNJ21x30zY5kDtG0wlZYhI0hFFitMpmFQtTHOGsPzYVAZMitE0bJoaeZOkWbgnTBnFlcnq3n5w1amNZRR5ZjVDmMquPzp93mvpaMumw8v56ANc89y3hNJSdqmbkzzsn0pv+uGrierqplYl2JiXdc6p5Mk2+ElqIzQuq5tck1DlurLRJK1n/46a4/6WlrjfykxqjrJq6u6OtVHY50Akm58qy0X7hq3JQszrDO2LlGWdf0OnVLNmlYl9dcaiCZEyaDiA2ibMos1J8aHdeSCqYNTzItJIBBGv2dQad1zHd4aMpZ0CUrWpSpiGVSA5wdP6GSYTGkb61ZFYl8yGL8nNZQzKY8Ese0QoW3TrSEyGJbXxKsz6mJsYSPz8KJqiUlSmg7Ni3fq/qIItLYeBtUyBLrYDapTCb45cRXv1I5hYm2KSfX5N9ForFixsG7vT5F86s8kX3up0/HuZp4ZkWM83/oGqe1qg2oZkmPy1j7AnAAq0sRTrUl21R4EknVdWYLrxi5i2auPdgr4DqM5h0nOoLIEJ8yupfyZsfBihGY3DKpY2HFcFTuO60YzUpKS9BAS5eVIN7rkj4anT465LqZBRLEmEscjH3ZeS0a6G3gKREvYBdahqS6+3HGq73wG6WwlqNYps8yrJ0e0ZfA8A6hNKTuMqcyZOYWlrOpQpoiio7zC3M6jiIn9aIeXoAqC1Md4ig3LPbt4X0B5GqXGmriQDNcuGiqE1kSKz295CvsuWR57/1rJvQ21jY8JEs4hFVFPo18zKKmoINFNx24ZlYFBZRF7Em00NREX41RlzzKotg2mdTlWNjg+IPHj1q4qrTjbTLc0s2S6zVvntyZna1N2XpW54tApgzh0SjVLxlRw4RaDqYxxnCgW2sZNZu2BHfkWtaLS4uzSIcM71WQSEv26K/Y4UjEMqmJo99m1+yLSOVHESVCBhqg+NNF8qW5MbGbxtWkyyWRC64Su3oO55MrrafRrvUKyoqLbwLSyseln+M1ZZDmIBppGV4It62EGhQhr9zmKil9dCoAmU7RFgzIdwkb5UqBl03gvwy7XTZtL6pkOW17L5unTwhSCiqRwZAZvrmKjedm+tA0bTeKVf1ud0mUgByRTp89jYFnfUFldxcMj57XHCt09Zgsaq/vneytPo+JbFzceuUl0Q8QB6olh02l6+aHO9ydyfx86vOsC5rKq+1RmpUI/Z1CVJDKo+FokSf3Y9AsJZsOgoiq+wZGYgfKeZlBA8yf2BxESr79M89Y7x0bGA2wzuoIf/XMVq5pNkvrS7OzXr8kV67bfI62HXhTNS/cm+dyTSGsLLfMXm1fPAEHrvEW0zku//lCANaM3YFUqTcJT78HXLapTwvGbncBeL91HmyS4eeL2XJgm7qmvI132qFmjarvag1zbiHoqPj50BrtGGFRZRR6u83GSezcrFZQS/bpnpCorkAyd+9WakYysS89AWrJS8XW+pj6SILQyTYLKoiKVojlTzJRDdSrBTxY3cPeraxhfk2p33S4G2oaOoGXjhZQ9cietk2dY3rIs0TpvS1affy3ywbu0Tcg+0G8gIVVZwWe3+gZf+dtlzHj3hU7n4tQsHp1RlRLWpir4xYYdauW4ZTz6A8rTqPiaGmK8c50JIxpC8oRbLSCMOC/ebLBul4Mov+3a9v2WRUvyek5PoH8zqIoKJIOjw6v1TczLkOzyvYU7wo1Ptu//tqnrKqFRG1RUxVdVXZXF4uelQ9OgVFHUXG2jxpH47yvt+62TZ7Lu0C+y7pAv5OUNpUNGDJisBvkgJcI/Gydz2HZnM/GD19jplYc5YPU/SQ0a1G0siQexCZkzLX/RlxHHoMoSkIzTxjjvzqjd6o0YG1TtipfoPr9+VzQv24fkk4+RfPl5WuYtonXmpnk8pWfQrxlUWWUlKU1fhXca06v3ADbacSnPPnIrU998lrcq6vnptK5LikclqKiKr1vvrH6KtYedQNU5lh5IRWje1UlwfcRVt78h7L7yUt0YfjjzQPbZdRgt/n1mhaqUMKkuxQsf2HRwZmNZxuUv+jLibFA1ZQmQrmNJ2lRuIrxd1cCQj+MzoOcCrWvg42/9hH8/+wyTp88o+HnFRL9mUKmKcqQtvQT10Yj0HnwAZeVlDP/OxZxy19P8bm0tq2IC5brYoCISFGkCdfs7WqfN5eMTzib5zF9pmbsFbWM26P4mj7SY1pCiPAHrXOqxHcdWdmR+9sgK39ykjkuf+YhkAo6amn6xvb6OihjTWW2ZoIk4J4n0Q/Q947figGc7VhNvjfH4zRqJRFZ5/EqNfs2gpLySRGv6l9o2qvsYnfKyFI2TNmDVv7uudAldVXzRBcK6zbHWj9E6Z2H+mb89OqE6leCMTev5+b9XM6wywWemlc7bcKBgfG2KMxZkH0TeVxEvQQnErT6dIYzmiil7sP+rDyIfmVYn37CPvox+zaC0vIJUS3wVXqptIjlxclbPyaQpiI1NCKO87806PPomNhtRkdcKxh4DC3FxULVlCTQur2cGBvVOWQ2rT72Ist/fS1vTRFo2z22ds/6Afs2gKC+nLGYZ9dvGLeaiWQfztZrs4gIyKVpio7s7lWHgSlAeHh7FR5zfVm2ZxI4l4STCYRVx+/nR41m3z1HFLmKfQf90g3HQ8grKYvS5l0zbh7crBzOuJjv+m1GC6iZWSrtZiM7Dw8MjjDgvvpqyRHzi6ZAEFY1r/Pysga8m7tcMirIKykR4qqFDlfd2RT0rqoexbGwlI7JYrA8ypwNa262Kz0tQHh4e2SNWxVceL0GFkwhv21TJpsNsPJrZWMYOTQN/7OnfKr6ycsoSLVw4+1BO/8sPqWxdy3lzjuSw6XUcksPyDJm4dHcqPq0qTeZfDw+PgYE4J4naskSsNibsWVeRFM7bvJ7mNoubWh+8QPs3g0okKEsKfx86lT12vKj98HmDUzl9vHSXLh68ll2nDIY0S7C01Tes18GnHh4euSMum3ltmcSnDou4mYtI2mzoAxEFqfhEpEFE7hGRf4nI3SIS6wMqIoeJyHPuukNDxx8QkWdF5K8i8oSIDM21DGUx3CWV48winQ2qJqkZVXitM+b7LNQeHh45IV2gbqwNaj1PJFzo6Po14D5V3Qi4H/h69AIRaQC+CWwKbAacFmFkB6jqXFWdp6pv5VqAOCeJmKwoGZHu8tqUpl0xF+hTKUE8PDz6B+KcJNJ58a3viYQLZVC7A1e57auAPWKuWQbco6rvq+p7wD3AjsUqQ5wElcxRgkqnDqxNasYFCVtnbJITHQ8PD4+4FXVryxIQk8lBk+uRPi8GhTKo4aq6EkBVV0Ds6upNwKuh/dfdsQCXO/XeqfkUoBgSVJrkwtQmlUQaCeqDkRPRwUNyI+Th4bHeI9YGVS7xxvC2tq7H1iN0Kz+KyL1A2BNAsNyXcQyl65KumXGgqv5XRAYBN4nIwar6s2xufGPr3Vn5/POsahGgrvO5V18h8b/sP+xb75QDXQ2UNak2Vrz5HnGLIawcuxGrnn8+axq54vkefLan37fpr8917wtl6GnazW0Anc31K195kfcTMDdy7VsrVvC/Er6L3njvG24Ys+y8Q7cMSlXTLg4iIitFZISqrhSRkcCbMZe9DmwT2h8DPOCe/V/3/5GI/BxYAGRkUGsPOA6tH0Ld5ttRJ8LqljZ4vrPpaoMJ4xmfw+qyT764GlZ2TVRfm1RGT4hfnrxxy+0ZleHFFoLnn38+40fraXj6vUd/fa57XyhDKWirKnUvvsUHbmHRpMDMKZNjTQ3DhjQyuETvoi98+ygKVfHdAhzutg8DfhNzzd3AEhGpdw4TS4C7RSQpIkMARKQM2AV4qjuCzTvuR8vC7dvF4biU++lUdumQyYsvGWODWpsso2L67NyIeHh4eGA278/OrKEsYemLvjKnNn1YTGtraQvXx1Coi8i5wA0iciTwMrAfgIhsAhytqp9R1XdF5AzgL5gK8HRVfU9EqjFGlQKSwH3AJTlXIOa7FsNJYlBKLBiusqsN6pmRM5jsUxx5eHjkiWVjq1g8yia/VXGDWIA2z6Dyhqq+A+wQc/xx4DOh/SuBKyPXrAbmF0If4plLroawODEyWGI5ERM8958Jc8kuT7qHh4dHPDIyJgcdOrIEJem78FGmxKv4BlfYwVR510C5tzec19NF8vDwWA/x2pJPtm+31TXQsunWvVia3seAiAKb2VDGU+82AzCkIsGI6tz4biyDchJUKin8bchGzHn7XwA8Vz+e1Di/uqyHh0fx8b8F2zN04iQSb75O8+KdM64HtT5gQDCoz82q4fy/fcjaVuVzM2tyt0HFHBtc4RiUCKcs+AKf/ecvSGgbl0zbl6MHDYjX5uHh0dcgQsuipb1dij6DATHSTh1cxmXbNOZ9f9xyG4ENKpWAldVD+eamx7efG5nlMh4eHh4eHvnD26DIrOKLY17Dq/xr8/Dw8Ohp+JGW+AwjgZMEwNajOlzKNx9RTk2Zf20eHh4ePY0BoeIrFHGBvYPLE7DGtk+eV8fM/3xMq8JuEwb+KpYeHh4efQGeQRHvJFFf0SElVSSFfSf5lXM9PDw8SgmvqyLezhTYoDw8PDw8egd+FCaNm7lnUB4eHh69Cj8KA6tbuiZHqswiDYmHh4eHR8/BMyjgw+b1e1EwDw8Pj74Iz6CAD9Z5BuXh4eHR1+AZFLBdU2fX8U2HlfdSSTw8PDw8AngGBYyrSbLLeGNSI6oSHDO9ppdL5OHh4eHh46CwNaVO3LiO42bUkBKhPNcleT08PDw8ig7PoEKoTnmB0sPDw6OvwI/IHh4eHh59Ep5BeXh4eHj0SXgG5eHh4eHRJ+EZlIeHh4dHn4RnUB4eHh4efRKeQXl4eHh49El4BuXh4eHh0SfhGZSHh4eHR59EQQxKRBpE5B4R+ZeI3C0i9Wmuu1NE3hWRWyLHJ4jIH0XkORH5hYj4wGEPDw8PD6BwCeprwH2quhFwP/D1NNedBxwcc/xc4AJVnQK8B3yqwPJ4eHh4eAwQFMqgdgeucttXAXvEXaSqDwCrYk5tB9wYun/PAsvj4eHh4TFAUCiDGq6qKwFUdQUwPNsbRWQI8K6qBosxvQaMLrA8Hh4eHh4DBKLadbnzTheI3AuMCB8CFDgVuFJVG0PXvq2qQ9I8Z2vgy6q6m9sfAvzBqfcQkTHAHao6O3rv+++/n7mQHh4eHh79HvX19Z2WkujWKUFVl6Q7JyIrRWSEqq4UkZHAm9kWRFXfFpHBIpJwUtQY4PVs7/fw8PDwGNgoVMV3C3C42z4M+E2Ga8X9wngA2DfL+z08PDw81iN0q+LLeLNII3ADMBZ4GdhPVd8TkU2Ao1X1M+66h4GNgBrgbeBTqnqviEwErgMagL8CB6tqcyEV8vDw8PAYGCiIQXl4eHh45A4REe2lwbc3aecKn0liPYaISPh/fYOIlLz9i8gIEakqNd2YcqyX3xwgeP+9/A7K11PaOWG9ZlAislBEpvYC3f1F5NvOk7FXICLH4eyHpZ5Nich851RTcojI3iLyoIgMCYU4lIJutYhcAfwE2LBUdGPKMUxEfgEc14tlGC4im/UC3bkichWwG5S+3bsy7Cci99MLMZ+9STtfrJcMSkTGi8iDwJlAbYloiohUiMhPgROAx4APSz2LE5FJIvI4FiT9eCnpi0idiFwK/AqYXyq6IfrnAF8Cfui8SEvS/kWkDDgf+Bg4QFX/UQq6MeWYhjkmvY59g94ow1eB3wO7llKCFZGdgKuBx4Fbekl63gs4CThXVa9bX2gXgvU1991hwKOqemqpCKqquoEKYDtV/UhEkr0wi9sMeEhVv1RiumBMsQWYrKotwcGe1ok7JlwJNAE7qOrHIlIOlMohR4B6LA7wYye1/zv8DkqETYDLVXU5gIjUqGpchpcegYiMw9rfUlV9MXS8x75/6NlTgCtU9QcZrukp2gG2Bc5X1btFpBobFj4uNt3epl1MrFcSlIik3MypDrjdHTtARGYF6rZiz6wiCXBnAxMdc/o8cLWIHCIi04tJM0I/sDMFzLESeFlEakXk+yJygojsFr62B7E3xhxbRGSpiGwnIhU9ODilwHqi64wTgeki8ilMgviuiMzoAbqjRSQc3D4KqALKRORK4ArgUhE53l3fI/0wxtbVAEwWkbEiciNwkWv/jTG39wS2Bz5U1RdFZLaI7Coiw3qIOQx2mwnXDkYAfxWRzUXkYRE5T0S+WGy6EdS5sgQ2n9dceT4DPEKoDQww2kXDgGdQIrKtiOwKEJqxbgiME5HvA0cAnwVudtcUxS7hOt/NwM7BMVX9PVApIj/D3O5vBOYC35IeyOQuIidiag1C7vsjsIH6VEyCWIE11o2dlFcUJuUGoG0jhx8EFojIj4CvYOq274rIpsWgGaK9TET+DewTYtCDsEnJMcCWwJeBCuBTYmERxaCbEJELgH8AZwXHVfVloBq4BHhMVRcClwHfFpGhxbaFiUiVmJ3peuls53wKk2AvwsJDbgZ2wQsgdwAAHb9JREFUAvYv9uTETYD2FpGK0OHH7ZR8A7gU2A+4XER2jn1IfnQ3EJHbgGvd5KfV9ftW4DSsvudjdf+KiCwtZrt3ZVgsIm8AdwOo6jp3ahCwEJNkdwZ+DOxbzPbfm7R7AgOWQYnZe64Afgl8VUQmQDsDuhXrpK+q6lJVPQaoFZFjCqQZDIZzsc5QCcwJaDtcAiwFlqvqTcD3gXXAgkJoR8qREJHvYBLLDDdrCnAtsAQYr6onquovXJnOhMINx2I4BvgbcK5T6wRYgcXC1arqDsCRwPsY00oWQjdEfyNs4HseG4xGA6jqR1is3lzg76r6PPAdLIavshi0sVnrcOBYbCISHnhPwtQs77ryPALc6Y4VDSJSiU26yoHBwDahd/s6kAQmqOr1qnoL8CdswiZFnJxsBTwHXANsFnquYm1gK2BrVT0EuA/YSkQaikEbOBn4CHgV+w4BTsfqOV5Vb1XVPwDn4FZQKJYUJyK1WBLtk4FGETkwdPo6rP1VAytV9VHgX3QkK+i3tHsKA5ZBqepazBFhV+AO4HOhc5cCr2CSRIArKeB9SGd70vMYczgZU6tsE7r0Nnf+MLffgjWaZ/KlHSpDuXSkjvo1sA/wBeBYJ0Ggqq9gda0XkUnu1oeAp4o0QFUB/wNmYTP2vUKz6D9jA/QEEWlU1Tcxx4FhqtqaL0ERSYrIKLf7GnC2qn4CYxi7hejfB9zlyoaqvoG9+7wlGBFZICKTxew572FS4R2YGuWwQH2nqk9hUtO2Yk46izDV32P50o6UY5yjswa4V1X3Bn4EHIqlEUNVn8OY4rMicpC7tQVIqWpbEVVtZVj7Pw04CAhUiE9hjGs0EMzcH8O0Ce/lS0xERoY0EN8CPg/cBCwJTUyb3bmNRGSYu3YY1h4KgpjpYIqIVKnqh8BPVfVKbDmi84LrVPVpV653gWXucAvwl/5IuyRQ1QHzw9Q3RwGbuv1yjOlsjqVR2ip07ZbAb7EZxGeAfwKL8qT7aSwTxjnAHpFzx2IqhbmhY1Owjnkmpg46B+vUkif9FCYF3QCcHnP+SuC80H4Sa7wXuvteAHYu4L0vwzrEhm6/2v0vcu94duja+cBybPDcAngYOKIA2se6d387xpAbQue2B+4BpgFJd2yUq/d12Azye0BFHnQrgYuB/2CM5zeR8xtgtqbjQseqgC+67/FH4MAitPmxmDrnYfdNZ0XO3+BoVrn9QZgE8yg2YP0D2KzAMkzBJmPbBu0xaAfAvZhEmwqV9wRX5lnA9e57lOdBdx7wd0wjciVQGTo3FDgb+G7knrOB7wK/c21jgwLrvheWg/TX7n0Ojpx/GDgrtF+DSTk/w6TXa4P+0p9ol+rX6wUoSiWs4/8fJgmcgEkom4TO17nj10TuW4TZIm4IX58j7U0xyWABNmv8I7Bj6PxE1yFOiNw3FlNB5UU39JwELrM8MM69g1OB0aFrZgJPAjNCxyowkf8EoLEA+qdhA/1yzPHguMj5H7j6N4aOVboB7Xpg3wJoN2CMaQbwCTfQnRu55qfhThp6ZxsD0wugPRn4bWj/QfcuK91+mRtAbgtdEwzSw4vY9r+ETYCqgDMwphhu+8FEbGbkvomEJmwF0F+Cqe3Ox6SRk4GhofMHYwPopMh9n8UmR6flSC/IfiPYGnJHu/1fYJOe6tD5zTDmtSB8P2aH3a4IdR/k+t1mbv8yTEoL97PpwAc4BhwqXxOmau13tEv56/UCFKUSJindCYxx+ydiDghjQ9fMxHTiSzAJYkwB9JKh7Z3DgyKm0ng+cv2emA78YOCMHqj/NVh+QzBp4Wpgf0KSAbba8eXYwLw3brCMq1MOdCuwwNNxbn8HbHa2d+iaiVjszSx3/VR3PEo/K+kRKAttL8bCBcCYzhz33XcJXTMOY2L7uk68SZQukMiS9oah7UnYoBhIjQsw1V6YOSQxpvEQxsBmh+uazzuPKdOtOKkdGIlNuK6IXHOmK8eXgO9kas950P8icKjbno9pA6ITgl8CR7rtTULfK9yPsvoGkedeGqp7PSYR7UmHtFyLBaNf7eq/T7Td5UGzLrL/J5z2AWMI52IqxmToO1+ArTh+MXBMf6TdW79+a4NyHkLjxNynKzCb0gYAqvpdzPFgp+B6NRvAHdigsgKbAefsWi0i3wLOFpFd3KF12EAZ0LkWeMt50AW4HxOtv491pLwh5sL8XRE5UkRmucNPANUiMkhVn8HsHwuxmVKAO7HOehfm6huNQ8rKBuQ85CZDu51vBub0AfAHR+cgZ6xHVV/CJNTrMMl2F3e8xT0vsNFoFrRPB65x/6jqw5jr9q5qdrfnsG+8X+i5rwDjscFspao+Hn6mGjLaoMQyX9wDXCbmnrwA+NCdbnTv7zHgWWyCEmAuxhgrsInJP8J1zfadh8qxlYjcJSLfCbW/39Jh6F+BMeNKEflE6NZngVOwFa+7BOjmUg5nc5sTcmoYhUmvYI4xNwMbi0g4EPsUzGPuWfdfYWS11TnVSBbf4GARuV0sA0uQhWIVUO7sL+9jEvnBuFUT1GwyY4BPYt/iIS0g9kzM+/B+ETlHRPZ3h38NzHR1eBpTmY7FJi5Bm1ZsjFilqv/X32j3KnqbQ+b6wzr8k5izwU3A8e74T4CjgUFufwk2w0i4/W0xA/q15CE9YTPkxzEp5GDM7rGDO/fXoBxufyuMKQWi9WWYzn1UgXU/BhuEAz36rzCvsX0w9dZcd10dNlAvcvubY4PHmQXQ3gJzMnjA1eUid3w/jOkF6qsJ2GxtF7c/yr2fR4H5edKejDG/K7BYsr/gpFb3za8PXTsfc6GdgKnZjsU68ug8aW/tvvsnMbvGt3BSCCYtnAOMcPvjgJeAIW7/y3S2QeVrY0xiqrO/Awdijg/vYLbHoZh9dXd37RB37RFufzomZR1eSDkwh4KrsUHwKuAv7vhYbEIUtL0GzGPx626/yrWHFVgWjVzp1jp6D2B9+FysrzcAh7hzE0LX/wNY5raXuHazuMB+NwKbYF2NaQIOcs+twSZcy4Ft3LVjsElDIFnv49pjU3+j3Rd+vV6AHD/WRDoPvPsCP8RUfMuw2dscOgbLR+gYKGcBWxZAezNCxnyMSfyf294aeAOod/tTMdtLYJiuy5duiF4ZNjjOdPtNru6LMKnsYkyv3+TOX4BzmMAGsiGhZ+Wk5sAGwYvpUCOOwYyzTRgzvBz4kjtX7faDQWIqljkgeFaCHAdIbJDdM7Q/Bxusy10ZfgGcFLxrjJEOdvs1ofuSedCuAXYN7X8S+JXbHo+pFA/HqR6xAbOLjYnC1GhVrq2PCB27gw4mdCimQgza/QXAsW67stByuPd8Ap0dbf4JHOS2T8ZW1w7OhRnUCEIq13zKgKkRg+85Devno93+ddgkJFAznwHsn++7TkO/lpBDCzYpvApzWx/u6n8eHROTX9GheitIjdubtPvCr9cLkMcHmxfa3gBTb9W5/fPdx9oeG9BvpEjGQDdQVdIhke2EMYhgUPghNjDvh812fl7EOgf65FF0tsH8lg5mvcQNTFdj6ozfYbEm4efkzBzcfeXAHLcd6PevwSQzwaSrZ+iwsfwG2C3mOXl1GExFFnzjhKP3s9D5uZjkcigmZf2GEEMO7suSVlXMew/bSrbEVJaBM8RSLKbuN5hkf0VPDAw4podNNlLu/Yc9Q6/DjObHYBLrXvnUPwP92XS2aX4Z+KLbbsIknM+5/dOJkdbJfWIUvP/q8P2Yd9o8t70QkyKux1SJL1GA80uGstSGtodi484wt78RNiG9G2MeT1CAjbsv0e7tX68XoICPJtgs4uZQ5x2Oif33AU+7D5fPgNxtZ3aD0tdD+9WYLv46jFGW5Uo32zK4ug9ydZ8eOt6Iqf5uJ+I1mOu7zXQMk1KeC3cEN2BdC7zoBs/aYtGOuWZHjBGHy7StK8P38n33mCPJN4hxOw8Nll8BLoycKwMOwKlaCv119+3d/wOEXMqxCdR+bpAq2EOtuzJhEtz+of2FGJP+HebVmjOTIAtNA+bSfi8ht3TXHo/FGNWUItc7ri9MBW6NOb4nJu3l7DLv7u92YtNTtPvqr9cLkOFDpB1k6JBidg9/LDpsPpPI094TGfSWRstBhwRxCx0Swyw6ZvgFMaaY8mxMaOYZGqCm4OwAwX5AP1KHvOwe4fccPYapWW6POVcDTCsmvTTXXQEc4ra3IWZmnk1nD10bzMy3wiY3G2e4djlmdE5haq95hdBOdx8Z4lOwWfMTbruRkCQV/u75fPvuyo6pScvcexoatDn3X0kkDisHukNw3n+u/8YyGkyVf6XbnkYBavtuyrMMN8kK9bngf0csIBYsEUBBNq7ws932zOh36EnaffnXp7z4RGSIuASGqtrsPNbqQ+cD75zA42cK8EsRGSqW1mh3d/4FVf1vPmVQVRVbVO57mH53QsTTL8jb9S6woYj8ClMtlAXlzoduFGJJLS/DZubt30ldy8Tq/icR2UxEHgb2dOVqcXXI2jvO0ZPwtoichFsSI3zOvftRwJ9FpFFErhKRg925Var6jLs/67YVKmubiMwUkdNDHorhFFLBM5NAs4j8HGMYIyPPy9or0dFtcf+PYA4YR4iljYmWUzA76LGYA84ILDtC9Hl5ZcUI7hPLYXiDiOzh9qPvckPgERH5LCatLIqUM6EO2dIOfYOgDMNC7709DZU7X4bZID8WkcAGgqquUdUno/d0Qzfp7n0bmCgiz2Gq+emR64I2OA5IisgpmKReEzlfLByDZWFp70Oh97kV5il5GWZvW1MoMddnNxSR27FxZ2z0fE/R7tPobQ4Z/mGR4Q9gC4qdhun0f43NFMKzy2A2cQmmUnqCkBddjjSjM5URmKfQsxnumYmlx/kTzhhdYL2jZZjhnv+1DPec5K65D+eQUORvcQWReJbQuR9h2ScexVSKecWWEJKYsNn3JzDvx2uweKpjo9e5/TexDA6fLkI9BVMNn4Y5wgxxbbDLO8UYYRumyizYzkFEwsGCvv+F2TJ/7+iUh8oZtPuvunJcgWXHL+Z33xJzS7+JSGB76JpdsQDQB4GfY8unFEp3MjYwv00GqQDzSPwYS8ZbUyDNQBMjmJ1zt9C5T2NOR9G2J5gq8wUKi2mK9vnB7nunHU+KRbs//Xq/ACHDPWbHOQILbFzujn0Oc0A4MPhIoXv/5s7lmyokPEDujEuTg61b9BgdbuTRRjoGs1cUpYOE6r4bHd44vwRucdtxNpGTgM+ne14WtMMDnmBG8G/R4aK6K/BtOjtlBNd/DzNKT4ieK+BdXIzZtea7/Z0wZjUqXDeMSRyBCydwx3JR5y0HTnXbgaG5HGO6gefZMdjAOzx0X0A/nJUgL6eTmDJVuP+vA59x21tjsVtfiGn3exJSbeVbDjrU1UlMEjkfC4lYig3YvwNOjmmrB2GOCtvn8/0jz9oeY8YnunqcGGr3qZiy7kGMSjPHeseprjcEVmLekpWYw81VcddjmppBhZQh9KxG9z/Uve/AGzHWVFBM2v3h17vEOzfU4EONwSSTHwfHMceHs+nqzZPzh3IdPzxT2hZjiDdjThVB6pRTMNVFoF8veCDKUKa9MVXNfZhtawdX79W4FDGhDhpntM3VbTcsjQYxPA2YNHQdptrbC7gk+p3C9wTn8hwcw5LLfExyfZ6OmI56V57vFqve7p6tsFn6Rpg3XjAJ2QZjCIF7/K8xRpiKo58P7fC7DP3vg3NowaTGc9x2rWv3d9HBpONsbflkYAj3u7Bn3pVYqq7xbn865hVXHylzzh6SmGpuGebQEEx05hMjrWKxTHsF7aCQ9x15bm1kf3tMnXi0K99cbALzfYxBP0nIlp1PO4+2+QjtP2IxXYdgKvsfEMkHWsz698dfbyx7PDKUZaBNLBvEbcAPReSb2PIL5wGTRGSkqr6DZWsYpaqrnX0hsBl8lCPtYViHOE1Exji99daYZ9ZnsFnUiWKLzd2KzSr3Lka9Hf1tRWRiaL9SbPG8C7FUMDtgDOpArIOchTVgcBm31bXW0DOysreIrRE0xT2jVUSqReRC4HYRORNz+DgRc1cNsrBvLiJDNBLlr6or3TOTmmUWbBFZLiKnuu1gkbr3MMa0xD3zWjr0/u+7/SUiMieORjb1jpQhoWZnugeb8NyIzZRR1QexJRp2F1vk7TIsvqnRne9EP1faofuCdxnYuCqwJVEWYvkkZ4pIk1oWhDWYZH24u7dLFoTot8mEcL9z+8djtqxvSMeS4M3AEBEpV8tO8CSmUWi/T81eFLYfpS2D2NIv52KTwKMxL8Oz3elGLLvH3e7aIOv8WVg//DFwh4jU5fu+nT00KSIHACe5b4uIHIpJjLdhQch3YhqZE7E4u/MxNXL7Yo7ZtPMY+qNFZGMJLR4plsn+OMy+fAsWHjISm5DuKSLbiEiDiFyCWw4j3/r3d5SMQblGcjpmt9jIHRuKReJfjq0NdBI2OP8Z+Dc2owCLt1nnBuOcGolroIEB9S3MbrUSU50oNkuvx9RJv8ZcWM9US0vzIrCliFTn0zgj5WjEBtyrROQod3gtNgCU41IvYQziTUwPfxawnYhsm45+lsxhNBZI/EPHFMuwWeL/sJncaOAsN4BfgX2PxViAaNp1enLsNDcDJ4it1/RDEdlBbTG1G7BVXpdi8TMTRWR3d88zwFGq+rcc6GRC8K4+iw26bcD7brACk2B3BQ5T1VuxHHNvFkIwZlJS4RjD992hn2PtcjHmePMk1kZ2wewgjwOjJOQslEcZtheR+4EdQgP0QZhad2+MKZ2NTRgewlSN24vI1piUG7skQ5bf/yjMK2+yqu6FMYCDxFZxHgn8V0Tq3PPWur52Pcak/oPl2vsgv5q3p7Jqxb59PaadAJOYzlXVK1T1TMzudpFjtodifXMZHW0mJ7jx7iysTX0ba/+nuNNlmN08WJJkuVrarouxce8kzL73otrSQOsvSiGmYR/6TazRNYWOj8I+3jEYY7icjlRFW2DpXO7H7EwNedDdCTM6H+72azEGdTA2MATqnW9ggxLA8ViH3Rxr0EVJR++edRvmAfYHTH0UqExOJBTY68p4jNueXST6d2Cq08+6/THud5t7F78llEgUcxZ4mo7kngW7q2MZH27CsjFcHTp/GmYDEkxaeLoH22IiRPMvmGrvKcyd/3wsviq8PEgh9W7EJgYPY4wWV8fN3XvY3h1bhDHqZe78FzBJYzZmb1qeJ/1K13f+iA26lXQ4XXwPs+ecg9mAgowr9dig+kvMzrhfAfVPYVJqoDYN+vZh7vg0TFPxecxJYGPX9ucU4Tvv4uodhCPUYkvCnE2HzXF56PrNsDEocC2vIv9YvmXYJPgs14+qsPHsA9fedsEycVxCh825EZfcGhsX86I90H6lIWIfvy20v9h9sHHYTOFuYIvQ+emuM+1HAYF3mFdUGyaR7eIaykmucR4IXOuu+xnGJJa5Dn16IXRjyhHo3K9x9Odj9o6TXScejRlIf4zN4J8KDRidYjCypDcGUxtu4faHYLr14zCVQuAIcTLwbbd9DJYvbXzoOT8APlnE+jdis/R9sUDnIAv2Iky99mm3X9RgywzlehkbpA937TDWa7GA58dNSgTTXHwRZ4R31z6IMYTJbr/Gfa+ncSmF8qA/iVC8WrgNYVJSC51zBc7GVI77Ywx0ZBHewS/oyDARtn09iU0g52DS5F2Y7angNbLc8xe4vv8sxvCnYZqbizBnpNGYxBqkDjuCmEzvedKOjndB1pEvuXYw2LWLYOXjjTFm+sVStPv+9CuJik9V/wTcLCK/dHaPCzAPuFcwz62HgRVO/XQDNnC2quoNaquA5kv3z7g1YjCG92PM/vAqxgSSIrIMW45gGDarfFRVTyuEbgbchDld/AXLJfdVbAb7LsYMtsA6z4Gqepurg4b/s8RWWKc8Q0RmqdkMktjM7G5MSgTrtP9yKr+RrkyzAERkO1eWp/OurYOqxWWp2RMvxOp9I5bZemOMSTyASXio6nM9ENfSDumIK/oqNihdieULPCVyvhAaomZHexdjNsdjjPjrGIO6HhgqIqeIyE6Y/eEuLCs/mLv3SMxp5No8i7EGqHI2jaXAcSLyLUfvdkfvP668R2KD90xVvQ6bTOzt2kZecN/wISxecJiazTmwvd3haP1NVb8AfFlVZ6vqz/OlF4Zadvn/wxxiXsEY5XhMbb85Zus+A/imiNyBTSIeLhLtPwE3isVmgk0EUNXlWFqouZjWZg7mNn4F8ANV/V4x6A8olIoTYrOGj3AJVkPHg/iH2zG97Ld7gO772OzpXGyWdp07tz+WULa+RO/gYEyVcz0m4h+O2b0uwyS8M+hw6805sWmE1m2Y0fcoLAXQNGxisAUmRU3DPMiuBv6L2eLCeehGE1mhs4jvoUcllyzLEKj67gP2KcY7jzw/kBr3DH3T411bvABjUtOx5J53E8lIQR7eeTFlKMecf17G8vNdgKlyr8Nm84vd+7/P9b/NQ/cuILT+VQFlCKSWL0aOX0ckV2QPfOMGTK02EpPWfoKFj1xJx/pUg3GZ4ItMu9F96xluP1BvXk0o1okSaQv666+0xCzO5j63HU3JM5aI+2oR6Z4F3OG2D8OklhQ2mzkS00/3mBt5qByDMbvaRaFjUzBPwgSmYryd4qhWNsHUaeMdQ7oJY9ApTL10fahM00L39Zg7a4gp7I+zM9E5p1rBg3KO5anFZrBd0hUVkUa6ScnVWLLjsJt3XumJsijDVJzDi9s/CrjAbbcvItlT3wALwP4T8E1MKr8L85oraPmZLGmfia0DBaZJ+Z5jWn8jpM7uIdrfBn4fOXYrRbCxrS+/0hM0lUIwYy1q3rpu6L5Cx+qbPSIZZFEGwWxBS9x+NJq8hiIaRzHPoXNdx/wRZvgWN2D9iFAWAne8xxkEPSy55FiWbd0g0pNMOW5SsiGRhK49WYaYMl1NJMi7p8uASe5fc23y6BJ/5//gnD2wieBiirDcfZa0X8YcIwL1+s8w22TJ23t//AVqiJJBbDXIq1S1otuLBwDdSBkEmz1fCtymPfzynWv7f4BNVfVfIjJJVV8QkZQWsLJoEcpVi3XU01X1iV4sR85hC/nQwFRrd6rqvS52rKQxLSKSwjQUO2NBoc9g62f9r5TlcGXp8XceQ3N/zGu0vJR0He1PYvavx4BLdX13G88RqVITVNXrRGS4C/LLKsizP9ONlEFF5Ag1Z4FS0HtHRJZjdo5ZqvqCO96+3LrmEOhZRMzHHDL+3gu021HCNjAJS/CZUxLbYkFVW9ykYDbwVbWg5F5hFr3U73qt76vq9cGETFUHdmLXHkDJJSgPQykHBxG5C8uf9k5vDBAx5Sn5wNibEJHGUk1KsoGT6qSXJiceHlnDMygPjxKhLzDmXpSaPTxyhmdQ6wl6w/bh4eHhUQg8g/Lw8PDw6JPoUyvqenh4eHh4BPAMysPDw8OjT8IzKA8PDw+PPgnPoDw8PDw8+iQ8g/Lw8PDw6JPwDMrDowchIv8RkdUi8r6IvCMij4rI0dksJyIi40WkrRjLf3h49Ef4hu/h0bNQYGdVrccyy5+DrUN1WRb3iru/x9bG8vDoy/AMysOj5yEAqvqh2kKUnwQOE5HpIrKTiDzhJKyXReS00H0Puf/3ROQDEdkMbHFBEXlaRN4WkTtFZFxpq+PhURp4BuXhUWKorfT8Grby8SrgECdh7QwcIyK7uUsXu/86Va1T1T+JyO7YshV7YKtAP4Jly/bwGHDwDMrDo3fwBtCoqg+r6j8BVPUp3EqzkWvDKr6jgbNV9TmXU+8cYI6IjC1FoT08SgnPoDw8egdNwDsiskBE7heRN0XkPYwBDc1w33jg+87h4h3gbcxO1dTzRfbwKC08g/LwKDFEZFNgNPAo8HNsEcsmVR0M/IQOiSkuUeYr2Iq0je7XoKo1qvrHUpTdw6OU8AzKw6NEEJFaEdkFsxld41R7NcC7qtosIguAA0O3/A9owxY8DPAT4GQRme6eWS8i+5SmBh4epUXJV9T18FgPcauItGDM5mnguxijATgOWC4iF2Nee9cDgwFU9WMROQv4nVu2fUdV/bWIDAKuc9577wP3Yqsme3gMKPjlNjw8PDw8+iS8is/Dw8PDo0/CMygPDw8Pjz4Jz6A8PDw8PPokPIPy8PDw8OiT8AzKw8PDw6NPwjMoDw8PD48+Cc+gPDw8PDz6JDyD8vDw8PDok/h/IcI/YSGINqAAAAAASUVORK5CYII=\n"},"output_type":"display_data","metadata":{}}]},{"source":"## 6. Daily S&P 500 returns\n<p>For the S&amp;P 500, calculating daily returns works just the same way, we just need to make sure we select it as a <code>Series</code> using single brackets <code>[]</code> and not as a <code>DataFrame</code> to facilitate the calculations in the next step.</p>","metadata":{"deletable":false,"run_control":{"frozen":true},"dc":{"key":"39"},"editable":false,"tags":["context"]},"cell_type":"markdown"},{"source":"# calculate daily benchmark_data returns\n# ... YOUR CODE FOR TASK 6 HERE ...\nsp_returns = benchmark_data['S&P 500'].pct_change()\n\n# plot the daily returns\n# ... YOUR CODE FOR TASK 6 HERE ...\nsp_returns.plot()\n\n# summarize the daily returns\n# ... YOUR CODE FOR TASK 6 HERE ...\nsp_returns.describe()","metadata":{"dc":{"key":"39"},"tags":["sample_code"],"trusted":true},"cell_type":"code","execution_count":215,"outputs":[{"data":{"text/plain":"count 251.000000\nmean 0.000458\nstd 0.008205\nmin -0.035920\n25% -0.002949\n50% 0.000205\n75% 0.004497\nmax 0.024760\nName: S&P 500, dtype: float64"},"output_type":"execute_result","execution_count":215,"metadata":{}},{"data":{"text/plain":"<matplotlib.figure.Figure at 0x7fe6ec438080>","image/png":"iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXe4ZEWZ+P95u/v2zWlyHoaZyzAkBQmysEhUd10XXQXB/SqrrGERdw0/V2BZkTWiuGvAhAlcAyrqCuwKIyKKkrPAMNPDwIQ7M3dmbs6d6vdHd997+nSd1PGG+jzPPHP7nNNddc6pqrfeUG+JUgqDwWAwGGYaoVpXwGAwGAwGHUZAGQwGg2FGYgSUwWAwGGYkRkAZDAaDYUZiBJTBYDAYZiRGQBkMBoNhRlIWASUirxWR50Vkm4h8VHM+KiK3iEhMRB4QkTXZ4yeJyBOWf28oR30MBoPBMPuRUtdBiUgI2AacA+wFHgEuUko9b7nmn4BjlVKXichbgDcqpS4SkQYgrpRKi8gy4ClguVIqXVKlDAaDwTDrKYcGdTIQU0rtVEolgFuA823XnA/cnP37VjLCDKXUhEUYNQJGMBkMBoMBgEgZfmMlsNvyeQ8ZoaW9RimVEpEBEVmglOoTkZOB7wJrgLfptKfBwUGT7sJgMBjmOO3t7WL9XKsgialKKKUeVkodA5wEXCUi0RrVyWAwGAwziHIIqG4y2k+OVdljVvYAqwFEJAy0KaX6rBcopbYCI8AxZaiTwWAwGGY55RBQjwAbRGRtVvu5CLjNds3twCXZvy8A7gEQkcOyAgsRWQtsBF4qQ53KQiwWm1flmvJrX/58vveZUIda3/98vncdJfugsj6ly4HNZATed5RSW0TkWuARpdQdwHeA/xaRGNBLRogBnA5cISJxMgES/2TXrAwGg8EwPylHkARKqTvJaD/WY9dY/p4ELtR87wfAD8pRB4PBYDDMLUwmCYPBYDDMSIyAMhgMBsOMxAgog8FgMMxIjIAyGAwGw4zECCiDwWAwzEiMgDIYDAbDjMQIKIPBYDDMSIyAMhgMBsOMxAgoC0PxNJMpkzjdYDAYZgJlySQxF7juiSF+vXuCRQ0hPntKOxva62pdJYPBYJjXGA0KiA0m+PXuCQAOTaT55nOjNa6RwWAwGIwGBfyuezLv8yMH4zWpRzKt+M2eCfb0R1mTUtSHxftLBoPBMEcxAgqomyF65Jf+PMztOyeARnY8OshnTumodZUMBoOhZsyQobm2REIzQ1PJCKcMD/TEGU6ka1gbg8FgqC1GQDFzNCg7E0kTUWgwGOYvM3Rori4zRYOyY8STwWCYzxgfFFA3M+UTaSOhDIZ5jVKKO3dP8ExfgrNWNHDikmitq1RVjIACQlIooZIzQDqo2lfBYDDUkPv2TXLdk8MA/O+uCb5/9gLWtMyfYduY+ICURhJUO6OE0tRBVy+DwTB/+MTjQ3mfv791fq3RNAIK0MUiTFRZQOmKM1mXDIb5jT2Qd/doqjYVqRFGQAEpTTT3eJUj6HQWRSOgDAaDlboZGtBVKcoioETktSLyvIhsE5GPas5HReQWEYmJyAMisiZ7/FwReVREnhKRR0TkrHLUJyhJjSmt2hqUTkDNBD+YwWCYOczUJTGVomRvm4iEgBuAc4C9wCMi8iul1POWyy4F+pRSXSLyFuBzwEXAQeBvlFL7ReRo4C5gVal10jGWTPOfTw3zZG+CM5bXc9nRLVPh5ToNajIF1YyXSWuCyo0GZTAYrEQ0AV1zmXLI45OBmFJqp1IqAdwCnG+75nzg5uzft5IRZiilnlJK7c/+/SzQICIVSSN+T/ckd3dPcmgizS9eHOexQ9P59nQa1LjRoAwGwwwjGq51DapLOQTUSmC35fOe7DHtNUqpFDAgIgusF4jIm4HHs0Ku7OwYSuZ9ftHyWSeL/GZxSKYVP3thjM89OcTTvcUnmdUKKCOfDAaDhfmmQdUqoD7vKWfNe58BzvP6YiwWK6rA3v4GoH7q876DvcTUXgAO9uafA3ipex9L273Lu6cvyo97GgG4e/c4V68bYXl98Bx6w0kB2vKO7dqzh5b+2kTtFPucTfmzu+yZUH6t61Dr+88vvz3v3MToMLHYgSqVXR26urocz5VDQHUDayyfV2WPWdkDrAb2ikgYaFNK9QGIyCrgF8DblFIveRXmdjNuNI8OwcB0MtbWjgV0dbVk/p4chr7xvOs7Fi+F+B7P8m56eADIaE5xJfwpsZgrj2lz/Y6O3okUxHrzji1bvpKupfUO36gcsVis6Odsyp+9Zc+E8mtdh1rff0H5W/KF0cKONrq6KuKmr/m96yiHie8RYIOIrBWRKJngh9ts19wOXJL9+wLgHgAR6QDuAD6qlHqwDHVxJGGzoVnXF+iCJPxG8dm/e/eeCXrGgms9JszcYDBYSWt84/Nti7iSBVTWp3Q5sBl4FrhFKbVFRK4Vkb/JXvYdYJGIxIAPAFdkj78PWA98TESeEJHHRWRRqXXSkbQJkrhFIugyNvj1QdmFSErBT18YC1w/EyRhMBis6CbJ821IKIsPSil1J7DRduway9+TwIWa730K+FQ56uBFgYCyvHz7Ocg2Dh9PRzfLuWPXOG87opmOev/yX+e1MhrU3GYypbh95zh1An+1ppHofJseG1yZSBYem2+BU/Mm62BCuZj4NC993K+A0hybTMHPXxzj0iNbfNdPJ+jmW2Ocb1z76CD392T8l0/0Jvj4ie0e3zDMJ3QaVGqeqVDzZl2y3VdkNfHp1kH5TRbr1F5++eI4owF2xDUmvvlFPKV48MD0soR7907ybF9FVlgYZim6dGvzbdI6pwTUn3vjPNAzqfUpFQZJeJj4ivRB5RhJqLwt3L0wQRLzi6RSBe/8R9vnV6Zqgzs6DWq+TVrnjID6yfYx3v+nAa58aJBrHx0qOF/og5r+WyfQ/GaS0G2TkeMbz43wo9io6zXTddAcc2mMWwcS/OyFMV4a1hiqDTMe3at9qCduJiWGKYwGNYd8UF9/bmTq7z/sm6RnLMXSpum8IHYzXl4UXwkalNeE5sYto6xuifCXy93XM+l8UE6D1daBBJfd109KQd0W+N6ZC1g1jzYxmws4ZQ4ZSppACUMG3SRZN1bNZeaMBmXn4ET+m7S7g7x8UL7XQdkuO3ZBYSrBrQPevgVdaU4y8ltbRqbKTaQzQtAwu3Ca2Awk52yXNAREa+KbZ5uYztneYJ+H2m23VhOfPszcXzn2geadRzYXXONH1umucbI3P3owX+A90DPpXYBhRuEsoPQaVDKtGJhM+zIXG+YGWhOf0aDmBvZXa3/XibyFuoXf96tB2U1zrXXCPx2VH17ux7FZSpBEgGBBwwxBaXVmGEgUdsl9Yyne8bs+3nDXIa58aFDrMzXMPbRh5vPs3c9ZAWWnQIPyMvH59UHZPodECNueqh9BEyTMvH6epdyfizi1CZ0GdcfO8amtvh88EOe+fUZjVkrxQM8kv+2emLORbboxaL5pUPPGs27XMhLWKL5ScvHZLgsLRER/zYM9k/zixXFWt4R515EtNFguDBIkUR8S3+u0DDMTp4nwoMYH9cNYfuqsH8XGOHNFQyWqNWu4aesoN2/LPJffLI3y2VM6alyj8qMNkphn3X7OCii7rV4XxfeT7WPc3T1BbLAwVNuvgLIPNCGBsG3PlpRS9E+mufrhQZIKHj4ALRHhHZZME9owcycBFRZIzLOWOscI6oOyMmxsulPCCeDBnjgHxlMsaZxbpgW9D2p+9ft5ZOLL/zycUHz9uRGtcIKMcPBj5bNrPgIFJr5kGm7dMZb3e9YOBvoZtVNjbDA524rihcEkP31hjNhg7TM2pJ18UD6i+Ibi82uQ8sNgfO4JbZ0GZdZBzRHEpsXYM0n4YdJHmy808UlBSvyUUp5bcAQJkjBJRYOzczjJe+/rI5HOmGG/cUYnXe2FSwIqxYHxFP+7c5wVzWFevarBUYMa9KFBjc63UcoHdqvFXEDvg5pf737OCii7ia+YBW6Tae9Gb28vISncljmlYMxjUElpZtRODtGGuWXJqAo3bR2d8kOmFNzwzAhfOq2zKmUn0or3/KGf/uyMZyiuOHlJVHvtSCpEPKXyJiHNETFCyYO5OGfTR/FVr3ylFDduGeX/do1zRHsdV53QRmeAHRrKwbww8aWU0mYd9yJepIDSmfhGPHxGeg1K/x2dBjXfZlZBediSmBXgqd7qmfnu6Z6YEk4AX312xDUDiT0ApjU6B0ffEtD1i9AcfES19kFtG0zy4+1jDMYVjxyM8z8vBt/nrlTmhYAqNjTTj6nf7oNyCpLwymzulPpGh04b9NLQ5gr375/kLb85xNvu6eWZANm/ozVs6d2jheZdt7cVtzWG1rrCys/nBbsJjbV8Ls7P9Jkkqlf+97flZ6ix+82rwZwVUNb3WOysw5eJz/ZZ74Py9htoNSiHeuvWbY3Og6i+lFJ84alhesbT7B5J8dVnhn1/t66GNiB9hKbz+4rbBmCddjA8D963Ezp/8lwMv9YGSVQxFmQmBIvOCQHlNZss9kEX64MqWKjry8Tnv9PpGunIPFjBd2AsTa/FVLZlwH8m97oa2oB0Gq9bk7VrULpX2+8ngmeOYn8+oO8/sx2dic9kkpiF6F5ZngZV5Ev1E7lq7yviYOLTmeC++swwP4qNkkgX7g0EzrMlnUboJQDnAqV0zlqa+HT1dlPqCwVU4cV981hA6Sac88XEV81s5jNBFs6JKD5d47QeK94H5T3r1mWS0Jn4dPxsxzgAvZNpjuooDHl2GpB1smh+mPiK/25NNagASwig0MSnG5DnswalE9hOAurAeIrYYJKjOuuqHoFWKrow8zSZiNS3HdE0J0Pr7ZTljYnIa0XkeRHZJiIf1ZyPisgtIhITkQdEZE32+AIRuUdEhkXky8WWr9Wg8gRUBX1Q9iAJpCDVkVf5P98xrs9m7mji02lQlRuwkmlF70SqqLVk5UT3jPwGC0RnmIAKEiShswDMZwGls2zonvHukSTvvLePf3t4kEt+18shv1sUzAASaeXY/2/aOsojtqjUSjATzKYlCygRCQE3AK8BjgYuFpEjbZddCvQppbqALwKfyx6fAK4GPlxKHbw0qOJ9UMHLzvig8gdDP2tYtD4opyAJTb0qtU5mNJHmX/7Uz5s29/LeP/TTN1G7gVEnIP3Wpq6Ga8f0M36XIAnjg3JFHyRReOyW7WNTpu+huOL7W6sfhVYsXsmq/+tp/wFCs5lyaFAnAzGl1E6lVAK4BTjfds35wM3Zv28FzgFQSo0ppe4HSkrPrBVQljlq8T6o4FF8IY2Jz4+/QHdFMA2qMgLq17sneLY/E4zwwlCSX9jWQjzVG+eKBwf43JNDDFU43UzcwyavlHLUqHQaVLVCtXXv0U0ZtYdR6973/BZQhcf++U8DvOHOg/x8x3T7/N9dE3nX3L5zvNJVKxu6CD4rvVWYKNZefyqPgFoJ7LZ83pM9pr1GKZUCBkRkQRnKBvR76+Sb+Ir7XX/roPI/hzWZJPzkTtOHmeuv1Q14XuusiuXmrflrIX5gyaz9QM8kH7p/gAcPxPm/XRN847mRitQhh+4Wc/1460CCi+7u5Zw7DvLDWOEOw7qpRrXSt+k04UBBEppr57eA0j+8gbjiq8+MTGn5dlP7TBhw/aKL4LNSDffTTHhetQqSKPrxxmKxgmOZNHftecd2d+9lwVBm5v/iWBhoKfieF5Np0ZaXI9NP8svdvn07eydDQGugsvb3HAAa846Njo8Tix0quDaebMP+CPf2DhKL7Q9Uphu5+06lWrHPY2KxGGMpuHJb/r0/sX+UWKynrOVbeWkkAuTvWLxt+3aawvC13U30jGcCTb6zZYRNyX20Rqa72OBoE5AfiPLsthfyrvEqv1gGhxuB/NRGu7v34NQmd+/dT2xsehFyPFX4vvcNjhGLHSxbHa2U894rUQddO8iRBn761G7OWRAnKq0kVWHbLaXsahCLxdg57j6GiFIVqaf1N8fGmrGLiEqU2dXV5XiuHAKqG1hj+bwqe8zKHmA1sFdEwkCbUqqvmMJ0NzMcT8O2/IF8+YoVdC2rB2DkUBx2DgQuazItrg8vmVbw/PQgEZJM/RpGkrAj2O0tWrwY9udrIJH6Brq6VhRcm956oGB6E2pqpatrVaAyc4wm0owlFYuz2xXEYrGp+w5tP1gw3e/q6uLZvgRs6887Pqwirs/LL9byrezbOwG7h/KOrV23no76EL27eoGMbSyN0Lx8LV2WyMjogX4Yzc88sWzNOlY0FzqnnMovlsaBQRjKt2IvX7ESdg1qr+9cvJSuw6YnK6ktBwquGZOotm2USrnvvRJ16Nk3Cbv1zw4yfanr8CZaXjrE2Hi+pul1b7W+/1z5o4fi8JLzmBUOhcpeT/u9Nxzoh7H8PrNhw4aCRNyVpBwmvkeADSKyVkSiwEXAbbZrbgcuyf59AXCP5neKvmudsSM/SKJIH5TH13Qh5pn/g9+K1nylqbdSSnttsSa+Jw/FufA3vVzwm16+8NSQ9xey6BZL1lW43epNfJl62O/fbtbVtYGxKi1u1jnw3dxf1rqmlH5z+P7JdMV9aFv6E9y8dZSneysfMRYEr/6ca4aNsziDrNd+dNUIStX5PqudsaNkDUoplRKRy4HNZATed5RSW0TkWuARpdQdwHeA/xaRGNBLRogBICIvktFloyJyPvBqpdTzwepQeMwaJVXsOOQVZq6L4AOIFCH2dQO+zgzt1EBGiozi+97W0akIwNt3TvDmw5t8fU9X30q7RXRl5p6H/f7tQkHXBqqVv1DnS3RfB+XdduPpTP2bKzQreGk4yeV/7Cel4Htb4Wt/2clRndXbnsQNTwGVfSSNdifULMJLQFVD9k5qovLjaUWkiks2yuKDUkrdCWy0HbvG8vckcKHDd9eVWr4uosX6eotdB+UVxWef24ayc7diGo9uC3ft2iiHAavYhbr2rN4P9sQ5wfLZaZJuX0wK+nsISkop9k2GWJlM02ST9NooPpU5bteu7Jfq2kDVBFTgdVDTf7u13f7JNM2aRLLl4Cfbx/Lq/cWnh7nxVWWLayoJr+CW3BPRDaSTKZXZkdrCnpEkP3lhjI76ECfPEJk2E4IkJjVtL56CpipGLsz6TBJ37Bzn+qcK1wRYO1exEdheGoF94AmVYOLTZi7WNJCEg8QoVxTfZFr5MrY6JexMljDDiqcU/3J/P1v6W1m8t4///IsOVrdMN1HtAs200q4Bsz87XRuonoAqPorP7bX2TaZZFTz2xxePH8o3621z2Hm6FnhrUOJ43WA8nbc1fEopPnD/AIeyk9zdnQ0cu7Hga1XHK8w8ZBlj0krx0nCKzvpQQbaM3okUgrCgIfhERjchLMckNAizK/eHBp1wgvJkkvBKdeRk4rMni/VVlkYj0abIcRiwijXxFdbD3+84DRKlNOAHeybZkl1zdXAizZ2789exOJn4dMLZXg2dP6+WGpTrQl2ric/lukqGmrfVMnmhB15zsVzNdW3RvjX88/3JKeEEcG9/fanVKwteGlTuHpVSXPXwIO+8t4+//20vT1omFr94cYwLftPLm39ziF+9FHwNmG7SrOuDlWTmtkIfuAmecuTiK9YHVYyJT58YUqNBOdxzIl2e2Y2X7dtang6d3dov9n2TDtlMt04mPp1wLgySKCzPaxAoF7pJhetC3TwTn/N11zw6xDeeHalICqrWSke8lIDX/eY0Vt2kb3DS3VcJM2OvLb/98M99CR7syQilsaTiq89mIoFTSvHlP2c2xkwr+O7zI4HvS+uDqnK2qFktoNwGmPwgiWJ9UO7nCzcrzPmggndunXDR3Z7bmDqaUMQGE9zwzDD/u3Pc8751s3i/Qs5J05pMK1JKcfeeCe7cNR5o8BywhU3a66/PwaYY09jv7JpHbX1QGhOfy/XWWarXO7zlhTH+sLekRCxaWjS+rZmya7OXlp8T8LrZ/kC2EaWVYu9oSqvdViptWBC8Uh3l/EM54ZQjljXF2rXrwbgKNHlUSmmfc+6ZTqYUv941zh/2TlRUoM9qH5TbAGM9U7QPysPE5xxmHrwsrQalDZJwvpmdI0mueXRwKnNFMq04f51zVJ6uwd6+c4KnG5p5c904rz+s0dGZ7yS84ynFfz09zB07M+a5B3riXHtSu/5iGwO2TuUnVDyV1g8odq2ltj6owmOuPijLF/y4Fm94ZphzVjUUUTNndEK1bzLff1MrvF5brp3oBtjBeJq0Ulz98CD39+jD53sn0loB7YeheJpn+hJsaI+U9Ky8fFC5iaTTVQfHCxvOUCJNQ8RfnRJp/SQqV+6/PTzAowczAVZ/39XEuzZVxhk6qzUotwGmLNttpN3VffupUkx8Wg1KF3ruci/fe340L63SnXsmnC/G2YywcyLCF54eZteIs2PcSTMaS6op4QTw+32Tvk1pAzapZ9eCnPx0ukzu/fE0Vz88wAWbD3Hz1lGHMPPKxsVPJBWPHYyzf0yz5btrstjpv/3kkez3k5MrILr2qBv0akHCpwali0IbiqfZPph0FE5Q/F5bQ/E0l97bx1UPD/L2e/p4oYTAEi8NKpHOjA9OEx27eRyC5et0yvX37S2j7BxOTgkngB/GKpeEd85qUPkCqrgOrBDiaah3mHQ4+aAku+17EJeQfxOf848+3ZcfMr6lP4lSynHlt5ed+/tbR53DzB2e6W6NUOudSLGqxbupFQgoWx/RB0noo/hu3THG/rHMD3xva2FuPqisD2oypfjH3/exZ1RvVyl1HZSVSqyJmdCMrQcnUtjTRdUCL9N7Iq2yJqrCc5OpzBovN4oVUHfunuBgdmCfSCm+/tww15/aWdRveWlQkOkPThOdg+OFNz/sM9J3YDLNxb/t1Z57pj/BV56pXib1Wa1BufqgLH+X4kR2K8NuBrE+zKCDhs7cllaFM+2gTsr+Sef6e83S9mlm/jnsGbdz7BgqPKGbzemwm/js780ptF23BiwnnNyopInvnu4JR+EE/sLMD46neP8f+50vzJJSGYFczv17dAPkgQpoUI8fjHPDM8M82OPfj+bVnxPpzD/dVfG0osGjcxa7pcw93fkWC6uWERQ/k6eJpLMv86DmHoZ9atp3eGR9L+W+gjKrBZSbicY6sJcS3Pa2e3q57L4+YoOFL6Vwq43phh90LZBTcIL18MHxFO/zMWBZ2elipvPSoIZdTAJOg8QOzezU79YAdg3KXj2tiS9d/BowPwJqJJHme8+P8M3nRgKFddu3erDjVnLuMfz0hTFPf0uOG54Z4a7d7mUGQdc2rLPygcl0yRpobDDBhx4Y4NYd41zx0KDvlEperzuZVlrzXua7ytMnXawG1eSRuWLfaKogzN0JP1F8kynlaOEoRYO6eZve4lALZrmA8mfiK2UN63BC8Vx/UrtBmJOJD4JrUE4N0nrYa2ajY5eLOcNTQMXTLkESDgJqqLA83WzOzniyMMrILgSDmPj84EdAfe7JYW7eNsaPt49x1cMBEg57/LQfE9/PdgR73597srCNDsbTfHvLCDdtHQ2067JOu85pUP/19DBvuOsQF919iGf6ip9N32uLPnzY5y6xXhpUPK2PQMuc8zb5O2lQo4k0X/nzMFc8OMAjBwo1vmaXHGdffHqYi3/bywWbD/GAD23Ry7oBmf6ru81L7+3j0YOFz9KvD6qY8bJSkXyzW0C59HLrMy5HeOxz/ckCk145BZSTBmWt+83bgjsjXxpxNjN5zYCHXBq000RQZ87r9bHVtl17Ap9RfKr4sOBtg5mJh7P2qvjDvunBZEt/0rcWpU/xajkfYEddv1i/9Xx/giseGuD8Ow/xg9gYN20d1QowJ3STlwMTKfaMJKcWfQ7GFTeWsAfYruH8djGSUOwYSvLzA/Vs3j2hjSQE7+eTTDubwnVpsez0TaZ5aTjJh+7v5/I/9mcy95MJBvj5i+M8eCDOlQ8NZnZRsNCkWTumlGLncJL/yT6zeDqz068XfnxQk2mlfU8vDCULlmyAPw2q2MChSiWYmNUCym2AzcskUaaHZ/eR2DuQdf1T0LVQfjSoYogNFK9BuZ0O4tfz44Ma1Az8BeugHKL4is1DCPCrl8b56Qv6AUPnc/Hrn/ASmu5h5r6KcCSZVvzbw4MFa2T+tH/S92RNb+JL84DtN+2BOUGwR4keGE9x2X393NnbwKefGOKaRwa1fdxrnE2klaMQS6SVtwY1meb6p4Z5/FCCZ/oSfOrxQdJK8SOLYEmqzPO0orPwjacUd9t8U/b8lzr8aFCTKRXIzLpnNMUXnx7m448OsnVAX4diIw+/9uxIgcAuB7NaQLmZaPJy8ZVpgaHdl+IUZg7BM5o7vVt7JwjKc/2JAsGaw4+d2+kapyAJHX58UP06Dcrug3Iw8Y2UGC7+e4eFrns1QQ69PlY7KqXo8QjScDtbant9rj9Br+adp5S/QIdEWm86KjZ4QEcyrQoyh9zfE89rb3/cH+cD9/cXaOB+giSctOJcAIUbfROpPNPl3rE0PZrnZi9BV2bfRFpr9vbCjwY1kVK+rstxT/ck//PSOPfuneSKBwe0zzFWpID6xYvjfOrxzHY9e0dTfOBP/fy/3/ayuUS/6JwVUFYTSrmWu9g1Afv7tU6gyhX6e92Tw/zWYz2TG2lwtHn7maU5EcQM5UeD0gnRZFrRO5Hi+1tH+c2eCf2WJOnSNCiA7UN6050uivFfHxx0fB+7R5L8etc4scGk58ARZMv3oLj1i+5R7wHo+X797DpNYS67Ytk3lvJl2dg6kOSy+/p50TLIe02OMhqU/lzchwalW1fWrTGVt9oW8+rmLn2TaV4IKKDSSuHDKs5kMpgGZaU/rtimsa6UkhT4wQNx0krx9WdHeLI3wZ7RFJ9/ash3cIaOubsOyvK3n8WOfrAPtE6ZJDJ/l29xyqefGGJjR/Gv6o/7J/mrNY0Fx4PMvqy8NJwMNMvvnUy5rscC/cA3mYL3/bHfNWQ8pVTJAgoy2bvPWdnAcCLN5t4osfpxdjv4765/api/WFaft9/QjqEk7/1Dn+canRyVNPG5vdbu0RQnuXx310SIT/zJORhEF/AylsyY/qIh4bRl0bxoVsdyXHyjdnrG01z+x36uP7WDTZ11ngLJh3KLAAAgAElEQVTcVYNKFZdZ5lmN0LaPKzprQ/doStt+3fqD35REE6nS1vLpohW3OZj+/DKaUNxnsfok0rBtIMkrFkeL+r1ZrUG55+Kb/rtcGpTd1FCYi2/672IymjuRUvDLF8cdFwx78ejBuFZb8puQ0s47f9fH44f8N+TJlHvABcCAZr1W72Tacz1TJkii9Bf82ME4Sin+9cEBfnagkc89OcxPHHxT4ylVsNjz21tGfAsn8Mhm7jIAr25xbwRKFdbNit2sZueuXvds3rqF2Fc8OMgnHhvi3x8Z5OvP+guacIsu1TGaVFO/7W3ic/ZB+dGgdOiiFe3ptHRC0e6zm66Hc1n2ca09KnxSky5sMqCJz84BWyh6PO0eVOUHnSAvZX3erBZQ7uugpv8ulw+qwMRnOx8qIUjCjt3h+n+7Jlxn3W5MptCGnRZr4itGHOzxaPi6KD4/xFP+zCFePHowztaB5NR2H17YByO31Dk63J58Sulz4QGcuDjKv53Q5vjdjz86xLe2OK9j2euy+Brg4SH3me7O4cLvWwMlfrZjnBueGeYLTw1pUzzl8KNBrWvNF8Y5wesnSMJJg4qnvaP4dDxXpAb1x31687pbUmb77zRGhNOX1/OmdY0F15WiQdn9kd2T4aLHmByPaJYKWAOGRhNpvv7sCO/+fR/f3zrqKbxmuYByC5Iovw/K7uwvZ5i5nQ+/rJUFls3Hxn2Ex1rpas83Cf5RE2xRrAZVDNaIrWRaceuOMa59dJC7do+TVsoxkMMLL83MLwfG09wVwNfntojZC8E7OtPJz1IncN6qBo7q1Jt8f+8wIOawa1AppfIGiXpxr5ifkP5bd4xz+84JrnxoAKUUB8ZTfPD+ft68+dBUiLVbnscc/3R0S14/GkooJpLKV5CEk5k0l8MuKPpNMfM/64SOU6t263v2c7nMF/adgING8dmxa1A7J/InBGcsr+cNhxW6Btx4xGX91TN9Cf7x93385IUxtg0m+e7W0YJIUzuzTkBZG7bfbOZBfFDNLqvBvYIkwmU08UXDErhxWDl3ZX526/t7CkOMq7UfEpDnz7l7zwQ3PDPC7/ZO8pknhrnqoUFfi3l1DJUxtPWXL/pfGFtquV5N0ikTQi5DSbTIXYu7R1OklWLfWIqPPDDAubcf5Pw7D/GjWEbrao2Ur028OJyibzLND2NjPHEowaGJNN94boR9oylfGtSC+hCLbDvBHpxIlRRm7mcdlF/s/cnpnelw63v2c43ZgcWeomk8pV8H5Zee8RTxlKJ/Mo1Sil02AXVEe4SXLwqWe1H3Xofiab77/Aj//Md+9tlM9l5Rg7NOQF1vWWzo1wcVpEG2uGzU5uWDsn4zUqKJLyzw+sMaKTLrP69cGs27l6G4KrAPV1ODsgoouznswQPxwJFOOYYqkMnbD6VEJim87fJOeRBzyxeKNcUk0pmJ1veeH+WRg3EUGW3wxi2jbBtI0Bou71qW3ol0wW6ut+0c96WBdtSHWGzbsuLAeNpTg8os1HUKM/fWwPzy9edG8qILJwNM+NxMfHa/Ui4Yxz429YylvBKWuPJcf5K33dPLG+86xMcfHSrQoLo6Ipy2rN7T7+nFjVtG+f62Ma026RXwMusEVMLSsf2mOtLtTOuE2z4wdnNSoYnP6oPyXaQWATrrQ5xX5D4/rXUhXrkk35/wJ5v5p6oCyhLeXGyuMx3l1KCClVvas/N69NsdZpY5DaqUyNTu0RRPafLe3bl7gnLv9K5bYuAVqJGjPRpiSWN+hQ6Mp3ylOnJbB1Uuk/9ECt57X99UBGoQX6hb37NPvHOa00KbNrnb53N0I7e+6/f7JjUaVB11IeGbZ3TyyZPaedem5pLLs+O1+WRZmqOIvFZEnheRbSLyUc35qIjcIiIxEXlARNZYzl2ZPb5FRF7tVVaucSmlPE18kynFN58bYYtLNgU7bhpUSrknoQ2X0QeVE3ZvPtx5w0E3co5VKw/aHJi6LRXKxYqm/KbVPZqa8gv2lSOqIctguew1ASlFgwLvQdJJQOWeailziy39Ce3C0992T1DGtbhAZo2ZHbfgiRwtdUJdSFjSkD9oHhxPe0ZLJtMuG2qmVd4kt1QmU5nURUo5C0UdgXxQWQ1qke1ZOC2DKAeLG0J0Zn3gTZEQpy+v5/Rl7hGexeAVUl+ygBKREHAD8BrgaOBiETnSdtmlQJ9Sqgv4IvC57HePAi4ENgF/BXxN3BbLMB2RN+6QKDFHWsEvdmSSfAbBTUBB/sDgFiQRNJu5nZyAO7wtwjGdwezAQmYPq5MWR/PMjrtHUowlMyaSm7aO8nyJax7c2NhRR3t0uvREGjbvniCeUtosB8VSKxOftdwgA1MOe5Tequb8wcdJQOXafylawI0OUX6DccXOifIujfyzJq2Pn8WgHVlVzq5B7R9PeZo3E2mlDYfPnAuWBcUPP94+xi9fGg8U3eoWQWs/l/NBLbY9Cz/Jjhc1hDyzrOs4QrPucnlTuGSBYY9ErIaJ72QgppTaqZRKALcA59uuOR+4Ofv3rcDZ2b//FrhFKZVUSr0ExLK/50iuY3ol7UwrxTddwm2dsK8Ot5Mbi5JpxY+35/9+OaP4rL+1qDHYa2oICyERmutCrLQMfAq4c9cE7/l9HzdtHS1bjkIdK5vDUzOwHNc9Ocz7/9TveyGilYYwvGxhoaD2ay4qlQsOz+9YVg2qGDOj/dmva80fEHSaB0zPOJ3C0GcaT/cFC7/P0ZFtO3YflJ/3PZRQ3N3tHM1YiZ2Uv/znYElzrVpS70SKjz0yyL/8qZ+to+ECH1ROg1pQHwo8YC9rDPP2I4Kb5ja0FQqoaFhY1lSaP2qd7Xfv84g6LYeAWgnstnzekz2mvUYplQIGRWSB5rvdmu/mkZtBum3EB8Wt1QE/GlRmF8tPPzHEs7Y1M+VcB2UVUEEDJawZDuzh5l9+ZoQdmrUs5WZlc1gbEbk1gLnVyuKGMJ8+uZ3lTbVxm27syBeOVg2qmJBz+yLPw9ryO76TCSgXKfaaIn2T1aaYyQhAR1b7tmtQ5ZiQuO2CUC2sVu5PPT7EH/ZN8lRvgm/vbSrY3yynQUVCUjDp82JRY4i3rG/k26/q5MundfCmw/1FBq9o1guiUgImWuqEdpuT02vZQq1SHRU9ek8kksRiMZ4digDOM4O+/gEguM10cqgfcO7827bv4M8jEe7ZW+gbGh0ZJhY7AMDYaCNQXHoPgH17u4kNZlrxxIj+txZE0qxvSvKIbXFlJJ0gFosB0JGox+1+WsNpLl42wY3dxfm6nFD9+5B4PeXaIrxJTbL3pRc4rSXKrWPFh9/b2dScoDce4kDCueMJiuhAN9A6daxvLD71jLeOhoGWQOX2Dw5ifaeTA720R+oZTLoPQAf7BonF9rMpBQsirfR5XF8qy6Mp1jameHCw+LZcDHWTw8RiBxlNCjC9MNnv7sxuDIxOAqVpAqWye/8BYok4B+IhHj803a4GkiGe3jeItd+MDvQRi+0DoEWa6Q0wbEcmhti+PTMmNQLhkWj2L3fGDu0npnFStyYbKGZcBWgPJTm0fy9u47adcgiobmCN5fOq7DEre4DVwF4RCQNtSqk+EenOHnf7bh4qFKarq4vnXhyDbme1ur29A/qDb/C3ZukiOOT8u2sOO5ybHx8ECm3r7W2tdHWtAqBzaBCGi89EvnrlKrqy+asWjg/DQOG93HzeEn4UG+ORoXw/W3tTPV1dywF4Zfskvzw4qC3j1asaeN8xLbRHQ9zYfaDouuo4ZeNaHkmMwGhp2dhzLG1vpqtrBU+GxuBA8XsQWWkICx86cQk/3zHOnS5Zl5c0hjlh4zrYcWjq2LjKtEOA/fsmYZf+GTvR1NoGA9NlLl2ymPXpSc8UUg0t023s5vVprnxosKRNAwEW1occ/YLfOXcpX31mBAbLt1uvH45dtZCudZlJU8fOg9r9jfwQkszM3arxJkN1FG9jKY5FDaE84drauYiurmbu3zoK5LsK4pFGYFo4rFq6iK5ssNSq/gF27vdvNu1atpCuDdOTz73NE3BgyPN7xxy+iq72wsnlsZEx7u4rrv+tbm/ksNULYbf/jT/LMf16BNggImtFJApcBNxmu+Z24JLs3xcA92T/vg24KBvltw7YADzsVljOfOwVqlzsUgf7Yjg7KaUctx2wPsxymviiDpO9lohozWiNlntYr7ElQyaE/aoT2gpU7nKxoD7kaS4NQu63ypEl/swV9Xz2lHZuOmsBXe11vFzj27KyImuutL6TTGaPTCMrxgdlX/ogAmtavOeLp1oiqVrrQlzo02TjxsVdztpzQ1g4schEn6Ww2mJiOqy1+Hn0SYujtESCBxeUG3sE3Hgq4yq4W5O9xD5ZsJrsFzcE0/zsgRVLGv19f4GDKXGVjzZ6WKu+jMWNoYJsGF6UPDplfUqXA5uBZ8kEPWwRkWtF5G+yl30HWCQiMeADwBXZ7z4H/BR4Dvg/4DLlsXewXx9UMZFVUJhOxE5SOef2y9uwsMQnmyegNBGBEQERmXImW7E27w4HAdRSRGSPE0saQxxh8XX9zdoGRMR1TVlQcvUth4CaSCpeubR+yuF7xor6Al+HlRVNYUSEVpvAHY4rxpJpPv+U80619ui8HAVLFIC1Dh07x4a2CGfYlg6csDg65a8BOGtFcPPL6cvqtZGidaGMX/WUpdGCjA45FjWEOG5Becy4VlZbBkK7Yz0IpyyJFkzwaiGgVtrawY+3j/GTF8a0a5nsKdWsk2bde3DzSy1usAso7z4p4DhxXd8W0W7MaOVVy+vRBTEvaQxTHzC6uSwjiFLqTqXURqVUl1Lqs9lj1yil7sj+PamUujB7/pXZiL3cdz+jlNqglNqklNrsVVZqSoNyd5YOFblOpdHj6adc9prxiuIL4uC0CjutgMr+1Ema2a1Vg4qEJO9zjuYyaje9E2k+eXI7lxzRxHs2NfNPR2X8MW5po4KSE3bhEsP3oXDLiKZIiM+c3MEbDmvkaE2Ou5zDuM0mcIcTaX7lkR7pNIe1I3YBJSKsdZmdttQJX/3LTups999SF+LGVy3gX45t4SundfChl7UGynp/3qqMoNaFFecGxqZIiG+/aoH2+7ecu9AzHc5aF8e6fQAFiIrKG0hL0aBOXhIt6D/VFk+XHtmsHVe+8Zw+ytg+dFkF1HE2bf/slfV8/ETn5MGLbBpTZ33IU8C0RcVxmUxHfYh3bXL3t568pF47AV7SGHK0Bjkx6zJJpMmY2bzCzIeLtFl7de6UiwaVL6AKX5CT2uz1WzpFJNeAljaFuXhDvonGHrmnM7WVU3ikVGZ29I4jW7i4q5nmbIXLKQTLaeLTrQtZ3x7hA8e1ajvfiqym1WS7n7Gk8kzRdMnGJu2ztoeJh8RdgzphUdRRu1/SGOaN65o4dmGU1roQHzquVXudnb9e08BVx2cGN7t2CPnWhI76wswkkGmHTmbxRQ0h/vmYFj5+YuFWETneuK7QRLmwLp0XEWvPau6XFU2ZZRZlVOQDceLiOi48vJEL1zd5ug7csGpNxy6o492bmtnYEeHNhzfy0Ze3cdyCOjY57Bdn17hCIp5alNdE+i0bmnjrBr1ZeGljiCM7I9okzquaI9U38dWCZNp7HVSxGQa8fVDOiyS99oPqrPf/cvJ9UHoTX45/2NjMqUszg8fqljCvtyWZ1QooW6/9xyOnI2vCqLIIsGbNvvcrm8NFDTilCCi7H+6tLj4XnVDNaVB2TXQ8qTzDZJsiIb5xRmfBcXuYeUgyE5jGkP73grgKX7O6ketf2eF53alL66c2zWvVFGAfTJx8ig2atvK+o1u49dWL+LvDmxwXin73zAXaVF4r6vMfjh/fnI6Tl2TuT9d/Ks25K+u5/tROLjumlfqwBB6YrSy3rD0SEd7a1cw3z1jA5dnfFhG+eFonf69p13aNG7z9UH4m0k7v9N9f0U5YROuHOrIzEjjJ8azcUTeRVvR5+KCKzdHmJaCSLpmSrbM+3St28gfpf2v6b10js6rg9WHhUye3M5pQNESk4PrM4uN8k6h9sLlgfROTacXO4RQn1vXy29FOntJkAQiCbkBb3xbhP05q5/n+BO+9rz/Ab2VNfEUEn5y5op5XLK7jsYMJTl0a1ZpFc+iE6pSAsnXKsaR7uq0cq1sidNaH8iZV9lx6ITKDz4r6FC+M6xdJBsHLVA35s+s2zbuy9wUnn6LOhGwt32kwW9kcpj4sfORlrXl+vGNb8ttdULNQjpOzGp+u/1SarbZsGbpn5IfmiPgKNqoPC+/Y2Myvd01MBZCdu1JvXs4IKOe+7ccVoTMBfuDYFo7J+iM3ddTxkmW95RdO7SAsQjQczLI1KwXUcNw7zXzxJj4/QRL6c9Z3pqtfkFlUyLJUTCfX7ONoSITWqP73/Zj46sPCpUdmzFux2AGeTvkXphet12skunJzpiQ/A6iVnGZTTPDJZEpx2dH+zF4dGi03l13EPtCOp9TUXjde2Kttbx65trMsmuYFjVsr6CDrZ1C3Jh/VaVD233j16gb+x5KZ/OzsAKib1Fnfr+5dN0emtYrXrW2kuU64p3uSozrreHk6P2S/2IjY4xflBFRRXy8Je2RosbthL8sG6PghEhKue2U7/71tjLbodH+242Xi8xPZq3um1jb6tiOa2T2a4sB4irduaJra8n1eaFAHfCQbLXaVQzSUCSd2ClN3iw60PnvdwBXk3eRpUJoBoC5Ap9Wlb7Kb+OzYE1PaecfGZp7qjbOyOczbN+oFlE4bacs2/qAaQS5UuJjBKkjUVlMkxFmdk/yuPzP4Xnb0dCe3D7TjSeWaNudv1k6br+zVtn8tp30vr9e37XKsBnj1qgY2Z8Oaj+yI5Jl67AEgUCh4juqs49yV9dzdPUlHVLgwuzZHZ+KzB+rYsZtSz1zRwJkrMs8ru/55imKUj/rw9Psqdu+sILz/mBa+8sz0+qBTl+ZrL7pn5IegmVO62uv4D8328FaWepj4/Eykde/U2qdXNIe54fRC03YkJITFf7Lj2SmgNJmYy0U4lOkQTgLKTXOzvnadgAoyuHqGmQdot8UESdgDAuycsbyeSza6rwjX+XNydQkablqKD8rv2o8cFy+d4MJjlhENCestASd+fFAhMpOj9qjwtq7p52O/XV2QBMDyqL5tB9WgdBOMDx3XymGtYSZSir9blz+p0Gnfund09Svaec9RKVrqQlMCQKdBeSUoDRI0UMw7/wuLgAgioMIoUg6JbuyLbXO87+gW3nR4E4sbQty3f5ITFkX5C1v0pq7vr2+LEA1lAh9+ukMfDbq8xNx3Orw0KF3OSzu6CZNfTTUakoJ8g07MUgFVuVxydSEhIkLCIRjVLQux1Qc1qplZB+lo4TwBVXg+SLZ0nYDysmt7DTB+GqNOQOW0uaB+hZYiTXx1IfirNcHy1onAJs26oEIfVJpR20TkJ+ctZOdwiq6OSJ6pxP4knEx8ThpUUDNVZ31oStsBePemZhoiGQe7Dp2W7TSTtidw9fJB6QgioETcrRp2IgL/aNm7KEhbW9+UYttY/rB43SntNEUywQiX/zHfb9oUES7ImrjPWNHAGSv0bW1Vc5iWOpmauJ64uI7rT81oGA8fmHQUUKUmZ9XhNGETFGeuaJjy3bmh1aB8jkn1YfA7hM9KAXWwghpUJJTVThweoJvkt06S7AMXBDPxWX9LG8UXSIPSmPi8NChPAeV9M7rfyAmtILPaENMDXlAT3w2nd5YtW4Z9IB6M52/5UhfKDN72ARwKTXwFUXzZ/xfWKaKhwv2MiolEu+qENl69Ok5jWDh2ofugowsz9zuwa018ZRRQ4G7VsLKpI8KbD29iZfP00BZE+1zfmCwQUBs76uioD2m3p/HbD6Nh4crj2/jWlhFa60Jcfsy0T7TJ5UeqpUFdfkwLmxLdHL1xqa/f0E2Y/PbpTFs2GlRRRERcF7K5aVDWPnfikig7R6ZnRUe0R7SDq9Orsmpj2ii+QD4onaBw71leAspPx9Tdb+4Z1YWc791Oc51MPY8g49rLF9YVZCEvBfuga1/x7/bM7I/LHsWXc4SHJBP1Z19fVYwfJSTCyUv8ZZbQzYj97kpRlIkvoE8m7GLVyLG4IcTXzyhcUBxMQBWOLTlNUuf3DfJeTltWr1247fas7BkoyoGu78dTKpCfUzf++J3QBBm7ZuU6KN1uoOWiLuSercBNg7J+7YLDm6Zm3GGBD72sVatB2RfV5vAy8QUx+Wg1KA8Tn9cMuNjQ3ZzQyqxP8fcdqzkyiIAqZXGkDvszOWQL1tEFheSwR2K57casW0NSoZSJrnhtJpdDG8Xn8eyL0aC8cGqTQUx862wCqiE8HYGne73liBB0ElB1ocoIKB1+o1FzlKJBqQC5PGalgDpYQQ0qLO7agVuQhFXrWdYU5luv6uSDx7bwzTM6ObKjTus/2eAgoLzWQQUxdekc4F65+Jo8RgS/pg2rPbsuRF5aHF2D1g3EVgEb5L7Lvf7FPujaUya5Cf2CMHNNstgcupRHukjOShP32c10kxm7hvTXNj/g3x4WLMmtH9+jk7AI0g7qQypvwesb1zW5au+l7pwNzub21c3hsvy+DnsYvD3Hoxe6Z+r3OQdJ5D0rTXy6NBrlQkRcVVD3IIn8z6taInnZf3X9x0mDsq6D0q85cKxGAfZszuDHxOd+3m9jvPTIZvaMJOmfVLz7qOY8Z3x9WAo2+1vUEGbvmPOi4iBBEkH8dH6wP5MgJr4CH5RDkATAGo0GVYvFpn41qGgoo/XlFmbqzNlvPryJhw/EOTSR5rRlUV7hkb/PTub3PDa3c3hGQSJGwwLv2tQyZYqzphAqJTDADSdrxWElJMn14t1HtXDFgwMMJRSnLo2ysSPC9kPe38uh61t+NdUgebxnpYCqNMVqUF6TXN3sX7e1MvhIdVRiFF+pQRJ+XQgbO+r40bmLtOd02tLixlCBgGrN06D8lRv0Wj/YBxJ7S3CLjLSfKRBQlr91GlRNTHw+RxKRTADA157NrAO6/JjCBaKHt0X4wdkLGU6kWdQQ8r34NIefd+n0jJwmgdpysv8f5ZDd3c+xoERCQn24cPfhUpLkenFUZx0/PGchg/E0K5r9LwbOUYoG5b5fRT7zTkA1hr1j8N3MSOMuGpTX69HN/hc0hLQbxlV6HZRXVJiXDypog9ahq8NCTXbrZZaooyAO1nJkPrfi9UyCaFBJm3ZiNQ+vagkXhFVXQ4M6vDXMDkt6mhMC7AO1saOOL51WuDDTSkNEaIgU51PxI6CcJm0vW1TnuIbJjlvz0o0L5TLBNYWlIAnAugoKKMhkD9FlEPGDVoPybeKb4z6oUvDSDMB98HcPknD/bd3PRhwSK3ptWBgkk0RzXYhTLL6gV2sSdNrx85xKRdegdfvdLLM4igOZ+MqtQXmMkm5BEn5THUFGGK20hRdXIxvCB45rJZTVC5sjwt9pMo3XCj++RydtJiziq817oR+US/5ZQG9y3+iQoXwmoNWgfM49goS4zdwnUCGaIkKvxy7k5Qgz16ETYJFQxtb8mG2rb88giYAd49oT27lj1zgRyeQ+86IWGaABOjU93roWJEi1yu1gLk2Dyj9XmOoo//Pxi6LsHs0sUwgB69oqH8113MIoVx02wmjbCk5eHGVhwN1bK4m/IAnn5/+a1Q38aPtYSXUoxazlxXEL69iT3bxQgPce1RI4A0o1KSWKb84HSZSCnySlbgObexSf++/qOlkkJFpV3jpj1FU5qPxoiAhvPtx5m4laoNNGddFq+QIqmMO7nHi1HdcovoIgCVsUn+36SzY2cWgixd6xFG9Z31Q1YbG2MU1XwAi7auDPxOd8bm1rhE2dEbb0u+/fFbQO5QrEufyYFhojwq5Dg/y/Y5fwMo+F1bVGZ2r3648zAsoFP4kQ3S5x80F5CSjd+Yjobc3Wa3X+nupvWl1+dM9S9wiXNRanQZVbQEVD07n2dLgFntjP2G/dLngXNoT59CneezrNF/xMTLxm8K9d1cCW/hHXa9zrUHgsiE/UjaZIiPcf00ostp+uGS6cnPByceQIEsU373xQfmY8xWtQ7i9INweOhLx9UDqCzEJmKros47qNKK1raoJoUOU28YmIqxblFrpvr7b9/ZVpnJuzlKpBAZy1sjQ/lG6iOF/fWykugDm/UNdK0OfkZ8bjZslxWyPs9TB1UWWRUGZgs26it7Ep6TkQBwnVnKnoBJRXnsUgvrdKuNGcBFRE4GhNaHIOr2rXYJnTrMLPxNLLH9QWDZV9b6j5+to660N5a8TOWuF/oe/r1vg3IZf0ukSkU0Q2i8hWEblLRLQbkYjIJSKyLXvd2y3HPykiu0RkqNg66KK+3PDTQN1m3qWY+HTkBNG/ndDGxRuauGh9E+9d6e3MrVyyp9pRF4IzbA19U2e++dNJ6Ni3dYfya1CZ3yw8FgKuOL5tauddHV7zolk/U6ww/qL4vK/55MnueyUFZb5qUACfOaWDi9Y3cckRTXzk5f42BAW4aEPT1K69bQ6brOYotV9cAdytlNoI3ANcab9ARDqBjwEnAacA11gE2W3Z40WjWzfjhp9By23mXUqQhJvW01Ef4j1HtfDeo1toiXirR3NBg7I/54UNIU5cHGVVdsuJpojwgWNbbd8pfMjnrarnU5qBpxIalG5jv6tOaONcjzDmkMdc22hQ7pTDxAdw8uIobz68sWya1Hx+bR31Id57dAvvOLLFM/OMlSWNYb535gKue2U7N5250PXaUl/T+cDN2b9vBt6gueY1wGal1KBSagDYDLwWQCn1sFKqp5QKeO38WgzlTpGTo5xaT5DFbjOVDx2XL3w+eGwr9WHhysNG+Orpnfz32QsKspHrBqqrjm/T7puj06pK5VhLDrMQcLUP4QQ+NKj5PBX3gb9MEt4XiQiXH9PKXa9bzA/Ozs98vqYl+Fhi3lpxdNSHOGVJPQs8FIxSh+IlOQGjlNoPLNFcsxLYbfncnT1WFhbUB7sFP7QbZ5wAACAASURBVON6sZE5XtsTqDIKldkvnuCclQ389ZoGVjSFeMv6Jk7KLiaOhuDoBXXa0Oq6EKy1DCRHtEemnNf/ajEzrG0J88ql5Y+GuvTIZt60rpHTlkW5/tQOX8IJiovwNEzjJytIkIllSIRVLRH+NrsmsDkifPA4/2Yq6+8YKofnFFNEfgNYd7ESMuPj1ZrLqz9ujvYD/qNzhkdGAGdndiwWY3S4AQiW3RdgX88BYom44/meviiQ7yCMxWKO9cgn34Q1NDxMLHYgcB39EovFWFPfwq5J/azSqd5BeWNz5h/AC9v9/f5bF4W5JdlASODCzmFisV4AuoAPrwnTmwhxQmuCF7b3FV0vt/Jf20CmyQ1AbMDf742PN+PW3Xbv3EmiPu1ZdjWodfm6OkyMNeHWbwGG+vqIxfYFKuf1TXDaBqEhpGjqH9CWnU9+PxweHiIWK8kIVEAtn38tyu7q6nI85ymglFLnOZ0TkR4RWaqU6hGRZYBuxOwGzrR8XgX8zqtcP0QE1i9fDAeHfX+nqbkZRpyFSFdXFwvGh2FAvwWzG52LFtO13nkx7NM7xqAnfx2G7uXEYrHC41vyH21zSytdXasC19EPufKvWJTgsvv6tde4Napyle9EF/Ca45zPVbr8Ymg+2A9jhTuy5lh32FpWtUQqUnYQal2+Ux3a+gdc+y3AssUL6XLY0r6UsvOw9cO2tray9sNaPv+Z8O7tlGriuw34h+zflwC/0lxzF3CeiLRnAybOyx6zUpSe3FEfCpzyx4+KV6wPymsBWjnXLlXDBXVUZx2ff2V5o57mK14N3JiK3PETxVepvZPcMNGXlaXU53sdGeGzFTgH+CyAiLxCRG4EUEr1A58AHgUeAq7NBksgIteJyG6gMRtu/rEghTdGJPANuA3sORt0kMWgVuzpawrKLupX9XjtiFsuTlpSzzrNQmJDMLzGTiOf3PEzEQ06WS0H5r1VlpLCnJRSfcC5muOPAe+2fL4JuElz3UeBjxZbfjQkgZ3LTnEM79rUzOuyu34WrUF5BEmUokG996hmvvHc6NTnt26oXl69uRCQUWvEQ4eqUW7eWYOf52OmUXOPWZ2Lry4U3DTy+rWNPHwg35bdUif8vcV2Xew2DUkvDaoEu9z5hzWxfyxNbDDB69Y25u3UW2nmQER7zfHUoKpTjVmLH6tGLcykJvqyssxyAeVPg1raGKJnPM2Ji+s4VRN6bNd8it3ozmscL2Wcb4wIHygiDLYcvO+YFv71wcHpz0cX7phqcMd7HVR16jFb8aVB1cLEV/0i5xWzXEB5d+yljSFuPmshQ9mtpnWzLLvvqFgN6vUe+yxVYuFoNThhUZTXrWng3r2THLugjteuLn3zt/mGCZIoDV8aVBXq0R4VBuPT48WxC9xD3w2lMTtHzCzRkHeQRGtdyHOraXt6vSDRQEImRc9b1jd5bjB20pIo69sivDCU2ZPm6hPafJdTSyIh4SMvb+MjL691TWYvZqFuafgLkqj8Q7zy+DaueniQtILVzWHOLjFDusGdWS2gMiY+90bZ4iPazR68EESDuuH0To72OYsKiXDD6Z3c3zPJssaw7+8ZZj+eGlRVajF78WPiq4aQf+XSer51xgL2jCY5aUm0JqHt84nZLaDC3o1SJ6BC4h5RF2QmFjTpZGNEOMfMuuYdXhMpM86548fEV61IyPXtEda3z+qhc9YwqydudSHxbJStGgni9Z0gGpSZQRn84NVKjAvKHT9LP4pdv2iYucxqARUNeXdsnQbllQw2yDqoBrOAxeADr3mMGVzdmSkmPkN1mdUCyp8PSqNBedy132zmzRFhadOsfoSGGYIZW93xtw6qChUxVJVZPbr6M/HpNCj37/hdT3Hcwjoz8zX4wkTxlYYfDWqFZk8ww+xmlguo4oIkvISKXw3qZQvLv9+QYW7ivQ6qKtWYtXgJqJMWR1nbagIX5hqz+o1GQ14ZzvQmviWNIXonp9NH2H/Drw/qZQtNmLjBH95RfEZCuaGLrP2LpVEuWN/EYDzNacuC799mmPnMeg3KSxvSaVCXH5OfMsi+YNaPBtUYFrpMqKnBJ25NalZ3wiqh06DqQsLxi6KcuaKBOqOCzklm9QhbF/bOxafToI7qjPDh41r5/b4JjlsQ5VUr8mdffnxQxyyoMyHmBt+4NSnTjLzRC6jq18NQXWa3gPKRLFYXJCEivP6wRl5/mD53nh+HrDHvGYLgqkEZAeWJzlISNUs85jyzeg4S9RUkUZlbNALKEAS3ZmoElDc6q4Yx6819ZrmAEkIuXT8s0FBE5KlXs4+G4MhOI6AM/nEbS02AhDfGxDc/mdWv2CvMvLVOkCI6v9eAcfSCOjN7MwTCLd7UtCRvdCY+0wfnPrNbQHkESVTOvGfWPxmC4dZOjSvFG90zis7q0cvgh1n9ir0ySfjZakOHl9J1nNkmwxAQtzZlNAFvnMLMDXObkgSUiHSKyGYR2Soid4lIu8N1l4jItux1b88eaxSRO0Rki4j8WUQ+HbR8r2SxukzmfvBq90cZ/5MhIG5NqrnIidR8QrdQ1yzzmPuUqkFdAdytlNoI3ANcab9ARDqBjwEnAacA11gE2eeVUpuA44HTReQ1QQr3ShZbrAa1oS1CWzT/uyEys7h/PraFhmL3hDfMW9wmUkZAeWNMfPOTUtdBnQ+8Kvv3zcC9ZISWldcAm5VSgwAishl4rVLqJ8DvAZRSSRF5HFgVpPBMJgnn88UKqEhIuOLlbXz5yT46m+r5yMvbWNwYIpWGjnrTKwzBcWs1LUH2d5mnGBPf/KRUAbVEKdUDoJTaLyJLNNesBHZbPndnj00hIh3A64EvBinca6FuKUESf7GsnsXrR+jqWl70bxgMOdw0qGInUvMJnTnPhJnPfTwFlIj8BlhqPQQo4GrN5S4bqTv+fhj4EfBFpdRLQb7rlSzWdHzDTMFtvZ4x8Xmj1aBM+OOcx1NAKaXOczonIj0islQp1SMiy4ADmsu6gTMtn1cBv7N8vhHYqpT6ir8qT7Nn54vZhtumPT/ef4hYbG/Qn80jFouV9P3ZVq4pvzLlDwzUAw3ac/HhQWKxnoqVHZRal6+rw96xMNCSd+zQ/n3ExpIVL7va1LL8WpTd1dXleK5UE99twD8A1wGXAL/SXHMX8KlsYEQIOI+sn0pEPgm0KaUuLabwIzYcnpmXxg5pzx++cildK/WDgh9isZjrw6sUtSrXlF+58hcmR6B3THtu1ZIFdHU1V6zsINS6fKc6pPoTsLM/79jaVSvoWlrebTZqff+1LL/W966jVCvudcB5IrIVOAf4LICIvEJEbgRQSvUDnwAeBR4CrlVKDYjISuAq4CgReUJEHheRdwYp3CuThDHxGWYKrqZoExXqicnFNz8pSYNSSvUB52qOPwa82/L5JuAm2zXdlCggoyEhnnZ2exW7DspgKDcmSKI09KmOalARQ1WZ1a84LO7O54UNs/r2DHMIt5bYbEZaT/TroIxgn+vM6p4h4hxmftqyKEsai0hlbjBUALekxc3GxOeJWQc1P5nVGxaC3gf1oeNaed3a4oMjDIZy465BmYHWC62Jz8w/5zyzWoMCvYA6aUlU26ANhlrh7oOa9d2w4pggifnJrO8ZZrM3w2zARPGVhsnFNz+Zm684cD4Lg6GyuM2jmoyJzxOdRcRkM5/7zE0BZTDMMJw6WmNYjDnaB2bL9/nJrH3F79zY7HjOKFCGmYZTFJ9ZA+UPnQ/KhJnPfWZdFN97NjWzsCHMeavKm+LEYKgkTmOpieArHpMrdu4z6wTUxV3OmlMOZXQowwzDaSw1e0H5ozEsrGgKsXcsDcD6tojr2jLD3GBO9o5Os6mgYYbhNJYaDcofIsKHX9bG6uYwa1vC/MuxLd5fMsx6Zp0GpeODx7XypaeHSQMXb2iiycxKDTMMpxZpBJR/XrE4yn+fs7DW1TBUkTkhoM4/rJETF9eRSMNhrXPilgxzDCcNypj4DAZn5sxovrJ5ztyKYQ5iNCiDIThm+mYwVAETZm4wBMcIKIOhCjiGmZs0RwaDI0ZAGQw1xCSKNRicMb3DYKgCZqGuwRAcI6AMhirgJIaMic9gcMYIKIOhCjhpUMbEZzA4Y3qHwVAFxEGHMhqUweBMSQJKRDpFZLOIbBWRu0Sk3eG6S0RkW/a6t1uO/1pEnhCRP4vI18Qk1zLMUZw1KNPkDQYnStWgrgDuVkptBO4BrrRfICKdwMeAk4BTgGssguwCpdTxSqljgSXABSXWx2CYkejEkACNRoMyGBwpVUCdD9yc/ftm4A2aa14DbFZKDSqlBoDNwGsBlFIjACJSB0QxWzkZ5ig620BTRAgZo4HB4EipAmqJUqoHQCm1n4wWZGclsNvyuTt7DAARuRPYDwwBt5ZYH4NhRqIz8RnznsHgjijlrrSIyG+ApdZDZDSdq4GblFILLNf2KqUW2r7/YaBeKfXp7OergTGl1H9arokCPwS+oZT6rb0Og4ODU5WMxWL+785gmCE8NhThG935e5mtqk9xzeEjNaqRwTAz6Orqmvq7vb09b9bmmWFVKXWe0zkR6RGRpUqpHhFZBhzQXNYNnGn5vAr4na2MuIjcRsZkWCCgrFhvptLEYrGqllfrck35lSt//75J6B7MO7aguYGuruUVLzsItS6/1nWo9f3P53vXUaqJ7zbgH7J/XwL8SnPNXcB5ItKeDZg4D7hLRJqzQg0RiQCvA54vsT4Gw4xEZ8wzWSQMBndKFVDXkRE+W4FzgM8CiMgrRORGAKVUP/AJ4FHgIeDabLBEM3CbiDwJPA70AN8osT4Gw4xE54Mya6AMBndK2kRJKdUHnKs5/hjwbsvnm4CbbNccAE4upXyDYTZjskgYDO6YHmIwVAETxWcwBMcIKIOhCuiWOxkTn8HgjhFQBkMV0HW0ZmPiMxhcMT3EYKgCujSTJorPYHDHCCiDoQroOprxQRkM7hgBZTBUAZ0PqiViup/B4IbpIQZDFTALdQ2G4BgBZTBUAbNQ12AIjhFQBkMVMBqUwRAcI6AMhiqQ1Gwa0Bg2AspgcMMIKIOhCoxrJJQu9NxgMExjBJTBUAVGdSqUwWBwxQgog6EKLKw3Xc1gCIrpNQZDFXj5ojpWNoenPr9nU7PL1QaDAUrcbsNgMPgjJMJXT+/kzt0TLGkMcdaK+lpXyWCY8RgBZTBUiY76EBdtaKp1NQyGWYMx8RkMBoNhRmIElMFgMBhmJEZAGQwGg2FGYgSUwWAwGGYkJQkoEekUkc0islVE7hKRdofrLhGRbdnr3q45f5uIPF1KXQwGg8EwtyhVg7oCuFsptRG4B7jSfoGIdAIfA04CTgGusQoyEXkjMFRiPQwGg8EwxyhVQJ0P3Jz9+2bgDZprXgNsVkoNKqUGgM3AawFEpBn4IPDJEuthMBgMhjlGqQJqiVKqB0AptR9YorlmJbDb8rk7ewzgE8D1wHiJ9TAYDAbDHEOUck9iKSK/AZZaDwEKuBq4SSm1wHJtr1Jqoe37HwbqlVKfzn6+GhgDfgv8h1LqfBE5DLhdKXWsrg6Dg4Mm06bBYDDMcdrb2/NS/HtmklBKned0TkR6RGSpUqpHRJYBBzSXdQNnWj6vAn4HnAq8QkR2AHXAEhG5Ryl1tvdtGAwGg2GuU6qJ7zbgH7J/XwL8SnPNXcB5ItKeDZg4D7hLKfUNpdQqpdThwOnAViOcDAaDwZCj1Fx81wE/FZF3AjuBCwFE5BXAe5RS71ZK9YvIJ4BHyZgGr80GS/jGrvYZDAaDYe7j6YMyGAwGQ3kREVE1GnxrWXZQTCaJeYxk9xzP/T/fEJGqt38RWSoijdUuV1OPefnOAXLPv8bPIDpPyw7EvBZQInKqiBxZg3IvEpH/EJGF3ldXrA6XkfUfVns2JSInZoNqqo6IvElE7hWRhUqpdBXLbRKR7wHfBLqqVa6mHotF5MfAZTWswxIROaUG5R4vIjcDfwvVb/fZOlwoIvcAb5xPZRfLvBRQIrJWRO4ls0C4tUpliojUi8iNZBYnPwwMV3sWJyLrReQx4GzgsWqWLyJtIvJt4FbgxGqVayn/s8CHgK8qpXqrpUGJSB3weTLr/S5WStUkrZeIbCITQdtN5h3Uog4fBe4HXl9NDVZE/hr4PvAYcFuNtOe/Az4CXKeUumW+lF0K83XDwkuAPyqlrq5WgUoplR2oAM5WSo2KSLgGs7hTgN8rpT5U5XIhIxSTwAalVDJ3sNI28awQbiCzQPxcpdS4iESBRKXKtFcBaAc+nC37SGC79RlUiVcA31VK/SeAiLQopUaqVbiIrCHT/l6tlNphOV6x92/57SOA7ymlvuxyTaXKznEW8Hml1F0i0kRmWKhIkoJall1O5pUGJSKR7MypDfjf7LGLReTYnLmt3DMrEbFOAo4D1mWF0z8D3xeRt4nIUeUs01Z+zs+UE44NwE4RaRWRL4nIB0Xkb63XVpA3kRGOSRF5tYicLSL1FRycIpDpidnOuA44SkQuJaNBXC8iR1eg3BUiYl3cvhxoBOpE5Cbge8C3ReT92esr0g81vq5OYIOIrBaRnwNfybb/BZqvV4JzgGGl1A4ROU5EXi8iiyskHDqyf4ay7WAp8ISIvFJE/iAinxORD5S7XBtt2brkfD57svV5N3AfljYwx8ouG3NeQInIWSLyegDLjLULWCMiXwLeAbwP+GX2mrL4JbKd75fA63LHlFL3Aw0i8gNgI/Bz4Hjg4zZBVhZE5P8jY9ZAKZXTFpaSGaivJqNB7CfTWF+W1fLKIqSyA9BZtsP3AieLyNeAfyVjbrteRE4qR5mWsl8jItuBN1sEdDOZScl7yay7+zBQD1wqmWUR5Sg3JCJfAJ4GPpU7rpTaCTQB3wIeVkqdCnwH+A8RWVRuX5iINErGz/QTyfdzPkNGg/0K8FMybf6vgYvKPTnJToDeJCL1lsOPZU7Jv/P/t3fm8XYVRR7/VvaEbDwCZA87JCQQFAMCCSBLlFV2hh0GJUFRUDKMoIYtBgQCKIgOS1gEE1BASQIIggRQUGRQMCAMisyMAo4grqhAzR+/Ormdw03y7vLuewn9+3zu554+W3WfXqq6qroarkLLUq4xsz2rvqQ+uhuY2QLgxhB+3op+/xYwE5X3AlT2fzOz3ZvZ7iMPU8zsN2gNKO7+j7i0BhGgAI0LVwAHNbP9dybtjsBqy6BM9p65wC3AaaZwSgUDugN10v92993dfRowwMymNUizGAy3Qp2hDzCxoB24EtgdmOPutwKXAv8AJjVCu5SPbmb2BTRj2TykpgI3osXSY9z9VHf/RuTpXGjccGzCNOAJ4PxQ6xR4CegPDHD3XYHjgNcR0+reCN2E/qZo4HsODUbDAdz9L2it3lbAT939OeALwChUT83AQBSPcjoSRNKBdwZSs7wW+XkQuDPONQ1m1gcJXb2AwcBOybf9X6A7sJ67z3f37wCPIoHNmiicTAaeBW4Atkne66gNTAZ2dPcjgXuByaZF/M3A6cBfUPzP6cn5s1A5x7j7He7+Q+A84F+heQ4TZjYABdE+HWgzs8OSy/NQ++sHvOzuDwG/AA5a1Wl3FFZbBuXuf0eOCHsDi4CPJ9euAl5EM4kC19LA97Bl7UnPIeZwOlKr7JTcuiCuHx3pN1Gjebpe2kkeeplZt2DCtwMHAp8EpscMAnd/EZV1kJltGI8+ADzVpAGqL/A7YAKS2PdPpOgfowF6PTNrc/dXkOPA2u7+Vr0Ezay7mQ2L5P8As939Q4hh7JPQvxe4K/KGu/8Gffu6ZzBmNsnMNjLZc/6AZoWLkBrl6EJ95+5PoVnTziYnne2R6u9H9dIu5WN00HkDuMfdDwC+AhyFwovh7s8ipviMmR0ej74J9HD3t5uoauuJ2v9M4HCgUCE+hRjXcLT9Dqj8mwI1Ld5PYWZDEw3EmcAngFtRBJv1YKkG4UxgUzNbO+5dG7WHhmAyHWxiZn3d/U/Af7j7tWg7oi8W97n7ksjXa2iXB9D3f2xVpN0SuPtq80Pqm+OB90W6F2I626IwTJOTe3dAAWsPAj4K/BzYvk66HwH+E0lkHy5dm45UClsl5zZBHfNcpA46D3Vqq5N+DzQLuhlF6ihfvxb4YpLujhrvxfHc88CeDXz3qahDbBzpfvG/fXzjLZJ7twbmoMFzO2AxcGwDtKfHt1+IGPKaybVd0PYuY4HucW5YlHsekiAvQcGMa6XbB7gMeAExnm+Xrm+AbE0nJuf6AidHfTwCHNaENj8KqXMWR51OKF2/OWj2jfQaaAbzEBqwfgZs02AeNkHC2M5FeyzaAXAPmtH2SPJ7SuR5AjA/6qNXHXTfA/wUaUSuBfok14YAs4ELS8/MRjsoPBxtY4MGy74/ikF6e3zPwaXri4FZSbo/muV8Hc1ebyz6y6pEu1W/Ts9AUwqhjv9VNBM4Bc1Q3ptcHxjnbyg9tz2yRdyc3l8j7fehmcEkJDU+Anwwub5+dIhTSs+NQiqouugm7+lGRJYHRsc3+CwwPLlnPPAksHlyrjea8p8CtDVAfyYa6Ocgx4MTS9e/FOVvS871iQFtPnBQA7TXRIxpc+BDMdCdX7rnP9JOmnyzLYFxDdDeCPhekv5+fMs+ke4ZA8iC5J5ikF6niW3/U0gA6ou2r5lbavuFIDa+9Nz6JAJbA/R3Q2q7C9Bs5HRgSHL9CDSAblh67mNIOJpZI70i+o2hPehOiPQ3kNDTL7m+DWJek9LnkR32A00o+xrR77aJ9NVolpb2s3FoQ9ZekS7yNwKpWlc52q38dXoGmlIIzZTuBEZG+lTkgDAquWc80onvhmYQIxug1z053jMdFJFK47nS/fshHfgRwDkdUP4bgH+N47HIMeJQkpkB2u34GjQwH0AMltXKVAPd3mjh6ehI74qkswOSe9ZHa28mxP2bxfky/XbNHoGeyfEUtFwAxHQmRr3vldwzGjGxg6ITv7dMF+jWTtobJ8cbokGxmDVOQqq9lDl0R0zjAcTAtkjLWs83r5KnO4hZOzAUCVxzS/ecG/n4FPCFFbXnOuifDBwVx1sjbUBZILgFOC6O35vUV9qP2lUHpfdelZR9EJoR7UdltjwALUa/Psp/YLnd1UFzYCn9KKF9QAzhfKRi7J7U80Vox/HLgGmrIu3O+q2yNqjwEBptcp/ujWxKGwC4+4XI8WCP4n6XDWARGlReQhJwza7VZnYmMNvM9opT/0ADZUHnRuD/woOuwH1oan0p6kh1w+TCfKGZHWdmxf5ZjwP9zGwNd38a2T/eT2VjSBADPwZJuX/yd65DapcNKDzkNoKldr7NkdMHwA+DzuFhrMfdf4VmqPPQzHavOP9mvK+w0Xg7aJ8F3BD/uPti5Lq9t8vu9iyq44OT974IjEGD2cvu/pP0nS6s0AZlinzxXeBqk3vyJOBPcbktvt+PgGeQgFJgK8QYeyPB5GdpWdv7zZN8TDazu8zsC0n7+x4VQ/9LiBn3MbMPJY8+A5yBdrx+xwLdWvIRNreJiVPDMDR7BTnG3AZsaWbpQuwzkMfcM/HfW2T9rXCqsXbUwRFmttAUgaWIQvFnoFfYX15HM/IjkNCByyYzEjgE1cUD3sDaM5P34X1mdp6ZHRqnbwfGRxmWIJXpKCS4FG3a0RjxZ3f/6qpGu1PR2Ryy1h/q8E8iZ4NbgZPi/NeAE4A1Ir0bkjC6RXpnZEC/kTpmT0hC/gmahRyB7B67xrX/LPIR6cmIKRVT66uRzn1Yg2WfhgbhQo/+TeQ1diBSb20V9w1EA/X2kd4WDR7nNkB7O+RkcH+U5ctx/mDE9Ar11XpIWtsr0sPi+zwEbF0n7Y0Q85uL1pI9Rsxao87nJ/dujVxo10NqtumoIw+vk/aOUe+HILvGmcQsBM0WzgPWjfRo4FfAWpH+NMvaoOq1MXZHqrOfAochx4dXke1xCLKv7hv3rhX3HhvpcWiWdUwj+UAOBdejQfA64LE4PwoJREXbWxN5LH4m0n2jPbyEomjUSndA0Lsf9eHzUV9fEzgyrq2X3P8zYGoc7xbtZkqD/W5dJGBdjzQBh8d7+yOBaw6wU9w7EgkNxcz6wGiPI1Y12l3h1+kZqLGy1mfZgfcg4HKk4puKpLeJVAbLB6kMlBOAHRqgvQ2JMR8xia/G8Y7Ab4BBkd4M2V4Kw/TAeukm9HqiwXF8pEdE2bdHs7LLkF5/RFy/iHCYQAPZWsm7alJzoEHwMipqxJHIODsCMcNrgE/FtX6RLgaJzVDkgOJd3ahxgESD7H5JeiIarHtFHr4BzCi+NWKkgyPdP3muex20+wN7J+lDgG/G8RikUjyGUD2iAfMdNiYaU6P1jba+bnJuERUmdBRSIRbt/iJgehz3aTQf8Z1PYVlHm58Dh8fx6Wh37eJayqDWJVG51pMHpEYs6nMs6ufDIz0PCSGFmvkc4NB6v/Vy6A8gcWhBQuF1yG19nSj/F6kIJt+konprSI3bmbS7wq/TM1BHhb0nOd4AqbcGRvqCqKxd0ID+LZpkDIyBqg+VGdkeiEEUg8LlaGA+GEk7NzWxzIU+eRjL2mC+R4VZ7xYD0/VInfEwWmuSvqdm5hDP9QImxnGh378BzcwMza6epmJj+TawT5X31NVhkIqsqONuQe/ryfWt0MzlKDTL+jYJQy6eayetvlW+e2or2QGpLAtniN3Rmrpvo5n93I4YGAimh4SNHvH9U8/QechoPg3NWPevp/wroL8Fy9o0Pw2cHMcj0Azn45E+iyqzdWoXjIrv3y99HnmnvSeO349mEfORKvFXNOD8soK8DEiOh6BxZ+1Ib4oE0rsR83icBmzcXYl2Z/86PQMNVJohKeK2pPOug6b99wJLouLqGZBX2pljUPpMku6HdPHzEKPsWSvd9uYhyr5GlH1ccr4Nqf4WUvIarPXbrugcmqU8m3aEGLBuBH4Zg+eAZtGucs8HESNO87Rz5OGSer89ciT5HFXczpPB8t+Ai0vXegL/QqhaGv2trO7j/34Sl3Ik/K5TewAAEfhJREFUQB0cg1TDHmoryxOawR2apN+PmPTDyKu1ZiZBOzQNyKX9HhK39GiP0xGj2qTJ5a7WFzYD7qhyfj8026vZZT6eX6lg01G0u+qv0zOwgopY7iBDZRazb1pZVGw+G1Knvac06O1ezgeVGcR3qMwYJlCR8BtiTFXysyWJ5JkMUJsQdoAiXdAvlaEuu0f6ncvnkJplYZVr/YGxzaS3nPvmAkfG8U5Ukczb09mTewvJfDISbrZcwb1zkNG5B1J7vacR2st7jhWsT0FS8+Nx3EYyk0rrvZ66X1nekZq0Z3ynIUWbi/8+lNZh1UB3LcL7L/pvVUaDVPnXxvFYGlDbryQ/UwkhK+lzxf8H0YJYUCCAhmxc6bvjeHy5HjqSdlf+dSkvPjNbyyKAobv/MzzWBiXXC++cwuNnE+AWMxtiCmu0b1x/3t1/W08e3N1Nm8pdgvS765U8/Yq4Xa8BG5vZN5FqoWeR73rolmEKank1ksyX1pNHy0Rlf9TMtjGzxcB+ka83owzt9o4LepYem9kMYkuM9Fp8+2HAj82szcyuM7Mj4tqf3f3peL7dbSvJ69tmNt7Mzko8FNMQUsU7uwP/NLObEMMYWnpfu70Sg+6b8f8gcsA41hQ2ppxPQ3bQ6cgBZ10UHaH8vrqiYhTPmWIY3mxmH450+VtuDDxoZh9Ds5XtS/ns5oH20k7qoMjD2sl3XxqGKq73RDbIv5lZYQPB3d9w9yfLz6yEbvd49vfA+mb2LFLNjyvdV7TB0UB3MzsDzdT7l643C9NQFJalfSj5npORp+TVyN72RqPEos9ubGYL0bgzqny9o2h3aXQ2h0x/aGX4/WhDsZlIp387khRS6bKQJq5EKqXHSbzoaqRZllTWRZ5Cz6zgmfEoPM6jhDG6wXKX87B5vP/fV/DMjLjnXsIhocl1MZfSepbk2ldQ9ImHkEqxrrUlJDMmJH1/CHk/3oDWU00v3xfpV1AEh480oZyGVMMzkSPMWtEG3/FNESN8G6kyG7ZzUJrhoEXfv0C2zB8EnV5JPot2f1rkYy6Kjt/Met8BuaXfSmlhe3LP3mgB6PeBm9D2KY3S3QgNzL9nBbMC5JH4NxSMt3+DNAtNjCE75z7JtY8gp6Ny2zOkynyextY0lfv84Kjv5Y4nzaK9Kv06PwOJ4R7ZcY5FCxvnxLmPIweEw4pKSp59Iq7VGyokHSD3JMLkoH2LfkTFjbzcSEcie0VTOkhS9n2oeOPcAnwnjqvZRGYAn1je+9pBOx3wDBnBz6Tioro3cDbLOmUU91+CjNLrla818C0uQ3atrSO9B2JWw9KyISZxLLGcIM7Vos6bA3w2jgtDcy/EdAvPs2lo4F0nea6gn0YlqMvppEqeesf/Z4CPxvGOaO3WJ6u0+/1IVFv15oOKuro7molcgJZE7I4G7IeB06u01cORo8Iu9dR/6V27IGZ8apTj1KTd96iS1w9TRaVZY7mrqa43Bl5G3pJ9kMPNddXuR5qaNRrJQ/KutvgfEt+78EasaipoJu1V4de5xJdtqEVFjUQzkyuK88jxYTbv9OapuaKi46eS0s6IId6GnCqK0ClnINVFoV9veCBaQZ4OQKqae5Fta9co91+JEDFJB61mtK3VbTedjRZreNZEs6F5SLW3P3BluZ7SZ4prdQ6O6cxlazRzfY7Kmo5BkZ8Lm1XueGYyktI3Rd54hRCyE2IIhXv87YgR9qhGvx7a6bdM/g8kHFrQrPG8OB4Q7f4uKky6mq2tnggMab9LPfOuRaG6xkR6HPKKG1TKc80ekkg1NxU5NBSCztZUma2itUz7F+2gke9deu+AUnoXpE48IfK3FRJgLkUM+kkSW3Y97bzc5ku0H0Fruo5EKvsvUYoH2szyr4q/ztj2eGgSZeBtUzSIBcDlZvZ5tP3CF4ENzWyou7+KojUMc/e/hn2hsBn8pUbaa6MOMdPMRobeekfkmfVRJEWdatps7g4kVR7QjHIH/Z3NbP0k3ce0ed7FKBTMrohBHYY6yCzUgCEibnu01uQd7bK3mPYI2iTe8ZaZ9TOzi4GFZnYucvg4FbmrFlHYtzWztby0yt/dX453dvd2RsE2szlm9tk4Ljap+wNiTLvFO2+kovd/PdK7mdnEajTaU+5SHrq57EzfRQLPt5CkjLt/H23RsK9pk7er0fqmtri+DP1aaSfPFd+ysHH1RluivB/FkxxvZiNcURDeQDPrY+LZd0RBKNfNipD2u0ifhGxZn7PKluD/BNYys16u6ARPIo3C0udc9qLUfrTcPJi2fjkfCYEnIC/D2XG5DUX3uDvuLaLOz0L98ApgkZkNrPd7hz20u5n9CzAj6hYzOwrNGBegRch3Io3MqWid3QVIjbx0M8f2tPMq9Ieb2ZaWbB5pimR/IrIvfwctDxmKBNL9zGwnM1vTzK4ktsOot/yrOlrGoKKRnIXsFpvGuSFoJf41aG+gGWhw/jHwX0iiAK23+UcMxjU1kmighQH1/5Dd6mWkOnEkpQ9C6qTbkQvrua6wNL8EdjCzfvU0zlI+2tCAe52ZHR+n/44GgF5E6CXEIF5BevhZwAfMbOfl0W8ncxiOFhJfHkyxJ5ISf4ckueHArBjA56L6mIIWiC53n54aO81twCmm/ZouN7NdXZup3Yx2ed0drZ9Z38z2jWeeBo539ydqoLMiFN/qY2jQfRt4PQYr0Ax2b+Bod78DxZh7pRGCVYSS3sEYLo1TN6F2OQU53jyJ2sheyA7yE2CYJc5CdeRhFzO7D9g1GaAPR2rdAxBTmo0EhgeQqnEXM9sRzXKrbsnQzvo/HnnlbeTu+yMGcLhpF+ehwG/NbGC87+/R1+YjJvUCirX3x/pKvjSU1Vuo7gch7QRoxnS+u89193OR3e3LwWyPQn1zKpU2UxNivJuF2tTZqP2fEZd7Irt5sSXJHFfYrsvQuDcD2fd+6doa6N2LVkzTUEW/ghrdiOT8MFR50xBjuIZKqKLtUDiX+5Cdac066O6BjM7HRHoAYlBHoIGhUO98Dg1KACehDrstatBNCUcf71qAPMB+iNRHhcrkVJKFvZHHaXG8RZPoL0Kq049FemT8FsS3+B5JIFHkLLCESnDPht3VUcSHW1E0huuT6zORDcjQbGFJB7bFbgnNx5Bq7ynkzn8BWl+Vbg/SSLnbkGCwGDFaoozbxnfYJc5tjxj11Lj+STTT2ALZm+bUSb9P9J1H0KDbh4rTxSXInnMesgEVEVcGoUH1FmRnPLiB8vdAs9RCbVr07aPj/FikqfgEchLYMtr+xCbU815R7mI5wgC0JcxsKjbHOcn926AxqHAt70v9a/mmIiF4VvSjvmg8+2O0t71QJI4rqdic24jg1mhcrIv26vZrDRFV/ttJekpU2GgkKdwNbJdcHxed6WAaWHiHvKLeRjOyvaKhzIjGeRhwY9z3dcQkpkaHPqsRulXyUejcbwj6WyN7x+nRiYcjA+kVSIJ/KhkwllmD0U56I5HacLtIr4V06ycilULhCHE6cHYcT0Px0sYk7/kScEgTy9+GpPSD0ELnIgr29ki99pFIN3Wx5Qry9Ws0SB8T7bCq12ID768mlBjSXJxMGOHj3u8jhrBRpPtHfS0hQgrVQX9DkvVqaRtCs6Q3WTZW4BZI5XgoYqBDm/ANvkElwkRq+3oSCZAT0WzyLmR7aniPrHj/pOj7zyCGPxZpbr6MnJGGoxlrETrsWKpEeq+Tdnm8K6KOfCraweBoF8XOx1siZnpyK9r9qvRriYrP3R8FbjOzW8LucRHygHsReW4tBl4K9dPNaOB8y91vdu0CWi/dHxN7xCCGdwWyP/w3YgLdzWwq2o5gbSRVPuTuMxuhuwLcipwuHkOx5E5DEuxriBlshzrPYe6+IMrg6X87MRl1ynPMbILLZtAdSWZ3o1kiqNP+IlR+QyNPEwDM7AORlyV1lzbgrnVZLnvixajc30KRrbdETOJ+NMPD3Z/tgHUtS2GVdUWnoUHpWhQv8IzS9UZomMuO9hpiNichRvwZxKDmA0PM7Awz2wPZH+5CUflB7t5DkdPIjXVm4w2gb9g0dgdONLMzg97CoPdC5Pc4NHiPd/d5SJg4INpGXYg6fACtF1zbZXMubG+LgtYT7v5J4NPuvoW731QvvRSu6PJfRQ4xLyJGOQap7bdFtu5zgM+b2SIkRCxuEu1HgW+Z1maCBAHcfQ4KC7UV0tpMRG7jc4EvufslzaC/WqFVnBBJDX8hAqwm54v1DwuRXvbsDqD7OpKezkdS2ry4digKKDuoRd/gCKTKmY+m+Mcgu9fVaIZ3DhW33poDm5ZoLUBG3+NRCKCxSDDYDs2ixiIPsuuB3yJbXBqHbjilHTqb+B06dObSzjwUqr57gQOb8c1L7y9mjfsldXpStMWLEJMah4J73k0pIgV1eOdVyUMv5PzzaxSf7yKkyp2HpPkp8f3vjf63bfLsJJL9rxrIQzFrObl0fh6lWJEdUMdrIrXaUDRb+xpaPnItlf2pBhOR4JtMuy3qevNIF+rN60nWOtEibcGq+mstMa2zuTeOyyF5RlFyX20i3VnAojg+Gs1aeiBp5jikn+4wN/IkH4ORXe3LyblNkCdhN6RiXEhzVCvvReq0McGQbkUMugdSL81P8jQ2ea7D3FkTpnAoYWdi2ZhqDQ/KNeZnAJJg3xGuqIk0lieUXI+CHadu3nWFJ2pHHjYjHF4ifTxwURwv3USyo+oALcB+FPg8mpXfhbzmGtp+pp20z0X7QIE0KZcE03qCRJ3dQbTPBn5QOncHTbCxvVt+rScolUIhsTY1bt1K6L5IZffNDpkZtCMPhmxBu0W6vJq8P000jiLPofOjY34FGb4tBqyvkEQhiPMdziDo4JlLjXnZOQaRjmTK1YSSjSkFdO3IPFTJ0/WUFnl3dB7QzP3fo02e0OJ6foFw9kCC4BSasN19O2n/GjlGFOr1ryPbZMvb+6r4K9QQLYNpN8jr3L33Sm9eDeiW8mBIer4KWOAd/PHDtf0F4H3u/gsz29DdnzezHt7AzqJNyNcA1FHPcvfHOzEfNS9bqIcGUq3d6e73xNqxlq5pMbMeSEOxJ1oU+jTaP+t3rcxH5KXDv3kVmocir9FeraQbtA9B9q8fAVf5u91tvEb0aDVBd59nZuvEIr92LfJclemW8uBmdqzLWaAV9F41sznIzjHB3Z+P80u3W/caFno2EVsjh4yfdgLtpWhhG9gQBfisKYhts+Dub4ZQsAVwmmtRcqcwi07qd53W9919fiGQufvqHdi1A9DyGVSG0MrBwczuQvHTXu2MAaJKflo+MHYmzKytVUJJexCzOusk4SQjo93IDCojo0XoCoy5E2fNGRk1IzOodwk6w/aRkZGR0Qgyg8rIyMjI6JLoUjvqZmRkZGRkFMgMKiMjIyOjSyIzqIyMjIyMLonMoDIyMjIyuiQyg8rIyMjI6JLIDCojowNhZi+Y2V/N7HUze9XMHjKzE9qznYiZjTGzt5ux/UdGxqqI3PAzMjoWDuzp7oNQZPnz0D5UV7fjWYvnO2xvrIyMrozMoDIyOh4G4O5/cm1EeQhwtJmNM7M9zOzxmGH92sxmJs89EP9/MLM/mtk2oM0FzWyJmf3ezO40s9GtLU5GRmuQGVRGRovh2un5f9DOx38GjowZ1p7ANDPbJ26dEv8D3X2guz9qZvuibSs+jHaBfhBFy87IWO2QGVRGRufgN0Cbuy92958DuPtTxE6zpXtTFd8JwGx3fzZi6p0HTDSzUa3IdEZGK5EZVEZG52AE8KqZTTKz+8zsFTP7A2JAQ1bw3Bjg0nC4eBX4PbJTjej4LGdktBaZQWVktBhm9j5gOPAQcBPaxHKEuw8GvkZlxlQtUOaLaEfatvit6e793f2RVuQ9I6OVyAwqI6NFMLMBZrYXshndEKq9/sBr7v5PM5sEHJY88jvgbbThYYGvAaeb2bh45yAzO7A1JcjIaC1avqNuRsa7EHeY2ZuI2SwBLkSMBuBEYI6ZXYa89uYDgwHc/W9mNgt4OLZt/6C7325mawDzwnvvdeAetGtyRsZqhbzdRkZGRkZGl0RW8WVkZGRkdElkBpWRkZGR0SWRGVRGRkZGRpdEZlAZGRkZGV0SmUFlZGRkZHRJZAaVkZGRkdElkRlURkZGRkaXRGZQGRkZGRldEv8PBp+8b4hb0PYAAAAASUVORK5CYII=\n"},"output_type":"display_data","metadata":{}}]},{"source":"","metadata":{"collapsed":true,"dc":{"key":"39"},"trusted":true},"cell_type":"code","execution_count":null,"outputs":[]},{"source":"## 7. Calculating Excess Returns for Amazon and Facebook vs. S&P 500\n<p>Next, we need to calculate the relative performance of stocks vs. the S&amp;P 500 benchmark. This is calculated as the difference in returns between <code>stock_returns</code> and <code>sp_returns</code> for each day.</p>","metadata":{"deletable":false,"run_control":{"frozen":true},"dc":{"key":"46"},"editable":false,"tags":["context"]},"cell_type":"markdown"},{"source":"# calculate the difference in daily returns\nexcess_returns = stock_returns.sub(sp_returns, axis=0)\n\n# plot the excess_returns\n# ... YOUR CODE FOR TASK 7 HERE ...\nexcess_returns.plot()\n\n# summarize the excess_returns\n# ... YOUR CODE FOR TASK 7 HERE ...\nexcess_returns.describe()","metadata":{"dc":{"key":"46"},"tags":["sample_code"],"trusted":true},"cell_type":"code","execution_count":217,"outputs":[{"data":{"text/plain":" Amazon Facebook\ncount 251.000000 251.000000\nmean 0.000360 0.000168\nstd 0.016126 0.015439\nmin -0.100860 -0.051958\n25% -0.006229 -0.005663\n50% 0.000698 -0.000454\n75% 0.007351 0.005814\nmax 0.100728 0.149686","text/html":"<div>\n<style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>Amazon</th>\n <th>Facebook</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>count</th>\n <td>251.000000</td>\n <td>251.000000</td>\n </tr>\n <tr>\n <th>mean</th>\n <td>0.000360</td>\n <td>0.000168</td>\n </tr>\n <tr>\n <th>std</th>\n <td>0.016126</td>\n <td>0.015439</td>\n </tr>\n <tr>\n <th>min</th>\n <td>-0.100860</td>\n <td>-0.051958</td>\n </tr>\n <tr>\n <th>25%</th>\n <td>-0.006229</td>\n <td>-0.005663</td>\n </tr>\n <tr>\n <th>50%</th>\n <td>0.000698</td>\n <td>-0.000454</td>\n </tr>\n <tr>\n <th>75%</th>\n <td>0.007351</td>\n <td>0.005814</td>\n </tr>\n <tr>\n <th>max</th>\n <td>0.100728</td>\n <td>0.149686</td>\n </tr>\n </tbody>\n</table>\n</div>"},"output_type":"execute_result","execution_count":217,"metadata":{}},{"data":{"text/plain":"<matplotlib.figure.Figure at 0x7fe6ec2f9e80>","image/png":"iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd4VFX6xz9nenoIIQECBAKhdxCRJigqIooFFRXLuvayuuqqWNa22H7q6q5ddNV1JRZEERURKYJKlx4glEASAuk908/vj0kmM5k7kwlEAnI+z8ND7rnt3Jm553ve97znPUJKiUKhUCgUxxu61q6AQqFQKBRaKIFSKBQKxXGJEiiFQqFQHJcogVIoFArFcYkSKIVCoVAclyiBUigUCsVxSYsIlBBikhBihxBilxDiAY39Y4UQ64UQDiHExY32uYQQG4QQvwkhvmyJ+igUCoXixEcc7TwoIYQO2AWcCRwE1gLTpZQ7fI7pAsQC9wHzpZRf+OyrkFLGHlUlFAqFQvGHw9AC1xgBZEkp9wMIITKAqYBXoKSUB+r2aamhaIE6KBQKheIPRksIVAqQ47Odi0e0wsUshFgDOIHnpJRfNT6gvLxcpbtQKBSKPzhxcXF+BktLCNTRkiqlzBdCdAOWCCE2Syn3tXalFAqFQtG6tESQRB7QxWe7U11ZWEgp8+v+3wcsA4a0QJ0UCoVCcYLTEgK1FughhEgVQpiA6cD8EMd7TTghRHzdOQghEoFRwPYWqFPYGJZ/Q/S14/3+1ZOVlXUsq9Lq91X3b/37n8zPfjzUobWf/2R+di2OWqCklC7gDmARsA3IkFJmCiGeEEJMARBCDBdC5ADTgDeFEFvqTu8DrBNC/Ab8CDzjG/13TBAqRkOhUCiOR1pkDEpKuRDo1ajsMZ+/1wGdNc77FRjYEnVQKBQKxR8LlUlCoVAoFMclSqDUNCyFQlFHSkrKSXv/1n52LZRAKRQKRR2RkZEn7f1b+9m1UAKlUCgUiuMSJVDKw6dQKBTHJUqgFAqFQnFcogRKzYNSKBSK4xIlUAqFQqE4LlECpVAoFK3IeeedR9euXXE4HK1dleMOJVAqSkKhULQSBw4cYNWqVeh0Or799tvWrs5xx/Gw3IZCoVC0CuPnFxzV+csuSDqq8zMyMhgxYgTDhg3j448/ZurUqQDcdtttREZGsn//fn799VcGDBjABx98wD//+U/mzJlDcnIys2fPZsCAAQC8/PLLfPDBBxQVFdGpUycefvhhpkyZAsCYMWPYv38/AFJKqqurWbBgAaNHj+bbb7/lqaeeIj8/nwEDBvDiiy/Ss2dPAAYOHMiNN95IRkYGubm5TJw4kTfeeAOTyXRUz9wclAWlUCgUrURGRgaXXXYZ06ZNY8mSJRQVFXn3ffnllzz66KPs3bsXo9HIWWedxZAhQ9i3bx/nn38+Dz30kPfYbt268f3335OTk8MDDzzAzTffTEGBR3xXrlxJTk4OOTk5zJo1i549ezJo0CB2797NjTfeyLPPPsuePXs466yzmD59Ok6n03vdr776innz5rFp0ya2bt3Kxx9/fOw+HJRAqSg+hULRKvz666/k5uZy0UUXMXjwYNLS0vjss8+8+6dMmcLAgQMxmUxMmTKFiIgILrvsMoQQXHzxxWzZssV77NSpU0lK8lhzF154IWlpaaxfvz7gfrNmzSIjI4Po6GjmzZvHOeecw+mnn45er+fOO+/EarWyevVq7zm33HILSUlJxMfHM2nSJL97HguUQCkUCkUrkJGRwYQJE4iPjwfgkksuYc6cOd797dq18/5tsVj8tiMiIqiurvZuz5kzh7Fjx5Kamkpqaio7duyguLjYuz83N5frr7+eN998k27dugFw6NAhOnduWGRCCEFKSgr5+fmadYiIiKCqqqolHj1s1BiUlNplyrJSKP7wHO0Y0pFitVqZN28eUkp69fKsVGSz2aioqGDr1q3NulZOTg533303X3/9NSNGjABg7NixyLq2zWq1MmPGDG677TbOOOMM73nt27cnMzPT71p5eXl07NjxaB6tRVECJd2BZW4X6NVHo1Aofh8WLFiAwWBg5cqVGI1Gb/l1111HRkZGWNeoF6Camhp0Oh1t27bF7Xbz8ccf+wnP7bffTs+ePbnzzjv9zr/ooot45ZVX+Omnnxg1ahRvvPEGZrPZK3LHA6oVDmZBKRQKxe9ERkYGM2bMCLBWbrzxRh588EFOP/30Jq8h6rw8vXr14vbbb2fixIno9XqmT5/OyJEjvcd98cUXREZG0qlTJ+95n332GSNHjuStt97i/vvv90bxZWRkYDAY/K7fmgh5AjTG5eXlv1slDcsWYPnPC35lVe98DyYzWVlZpKen/163Dkpr3Vfdv/XvfzI/+/FUB0XrEBcX56eKKkhCS6DdrmNfD4VCoVD4oQTKrTEGdQJYlQqFQvFH56QXKKEZJKFRplAoFIpjykkvUNpBEkqgFAqForVRAqUx3iSUBaVQKBStjhIozSAJJVAKhULR2iiB0hIjJVAKhULR6iiB0hpvUmNQCoVC0eq0iEAJISYJIXYIIXYJIR7Q2D9WCLFeCOEQQlzcaN+1deftFEJc0xL1aRZu5eJTKBR/bM4991y/RLQtxU033cRzzz3X4tet56hTHQkhdMCrwJnAQWCtEOIrKeUOn8P2A9cC9zU6tw3wd2AonqVt19edW3609QobFWbe6qzIt7H8oJUBbU2cn2pp7eooFMeEAQMGUFRUhMFgQEqJEIJ169aRnJzc2lU7bmiJXHwjgCwp5X4AIUQGMBXwCpSU8kDdvsbmyjnAonpBEkIsAiYBn7RAvcJDc6KuEqhjxe5yB4+u9fRHFufZiDcJjp9cygrF74cQgk8++YRx48a1dlWOW1pCoFKAHJ/tXDyidSTn5tWVHTPURN3W5cNdNX7bT6yr4K0+rVQZxUlH9LXjj+r8qg+WHdX5jXOhSim57rrrWLVqFTabLWAZ9traWp588km+/vprKisr6d+/P19++SVGo5FVq1bx6KOPsmvXLlJTU3n22WcZNWqU99p79uxhwoQJ7N27l3HjxvHqq68SFxcHwNdff83TTz9Nfn4+gwYN4sUXX6RHjx4A7Nixg3vvvZetW7fSqVMnHnvsMc4+++yAZ6moqGD69OkMGTKEWbNmHdXnUs8Jl808KyurRa/XvqiYDo3KDmTvw1pt/13uFy6tdd9jff/s0mhA792u7xqcLM9/vN37eLh/S9UhJSWFyMjIFqjNsWXSpEm88cYbGAwGHnnkEW6++WaWLl0KwMyZM8nOzmbp0qUkJiayZs0adDodeXl5XHnllbz33nuMHz+eJUuWcPXVV7N+/XrvgogZGRnMmzePTp06ccMNNzBz5kxef/11du7cya233kpGRgannXYar7zyCldccQWrVq3C7XZz+eWXc8MNNzB//nxWrlzJVVddxcqVK+natau3ziUlJVx88cVMnjyZ+++/P+iz1dTUkJeX51cWKjFwSwhUHtDFZ7tTXVm4545vdO7SUCe0dJZj06b4gLLUTp1xd+muspkfA9oUlHLA6ggoP1me/3i69/Fw/+OlDseKGTNmoNd7Omhjxozho48+4oorrvDuf+CBB+jRowe1tbWYzWbmzJnDihUrvCvdnnrqqYBHfCZPnsz48eMBOOOMM+jfvz+LFy9m2rRpAFxxxRXez/Whhx5i4sSJvP7663zxxRdMnjyZMWPGAPDXv/6Vt99+m3Xr1mG323E6nd61pE4//XQmTpzI3LlzuffeewHPIoeTJ0/muuuu45Zbbgn5vJGRkc36bltCoNYCPYQQqUA+MB24IsTxvunUvwdmCSHi8EQUngU82AJ1Ch81BtWqRBhaf80ZhaK1+N///uc3BuV2u3n88ceZP38+JSUlCCEQQlBcXIzBYMDhcPhZLvXk5OTw+eefs2DBAsDjKnS5XJx11lneY+rXgwLo3LkzNpuNsrIyzaXfO3ToQH5+Pg6Hw++8+nN9l4VfuHAhcXFxXHNNywdhH7VASSldQog7gEV4ROZdKWWmEOIJYK2UcoEQYjgwD4gHpgghHpdSDpBSlgohngLWARJ4QkpZdrR1auYDBJapMahjRoReCZSi9TjaMaSjpfEY1Jw5c1i8eDELFiygU6dOlJSU0L17d6SUJCUlYTKZ2Ldvn3eZ+HpSUlKYMWMGL7zgv7adL7m5ud6/c3JyMJvNxMfH0759e/bt2+dXp4MHD9KhQwfsdrvfefXX6d+/v3f7+uuvp6CggEsvvZS5c+disbRcJG6LzIOSUi6UUvaSUqZLKZ+tK3tMSrmg7u91UsrOUsoYKWU7KeUAn3Pfrzuvp5Tyw5aoT/Mqr4IkWhNlQSkUDVRVVXmFo7q6mieffNK7sq1Op+PKK69k5syZFBQU4Ha7Wb16NS6Xi8svv5wFCxawbNky3G43VquVFStWcPjwYe+1MzIyyMrKorq6mmeffZaLLroI8Cz9/t133/Hzzz/jdDp55ZVXiImJYfjw4Zx66qkYDAZeffVVnE4ny5cvZ/HixVxyySXe6woheOmll+jatSvTp0/HZrO12OehMkkoF1+roiVQajkuxcmA1pLqV111FcnJyfTp04dRo0b5Ld0OMGvWLHr27Mn48ePp1q0bTz31FFJKunTpwkcffcTzzz9P9+7dGThwIK+99hpun/bt8ssv56abbqJPnz5IKXn66acB6N27N6+//jr33HMPPXr0YMmSJcyZMwe9Xo/JZCIjI4NvvvmGtLQ0Zs6cyezZs71uRt9nePXVV0lKSuLqq6/G4QgcVz6iz+hkX/Ld9L9/Y1o016+s5uF/4+45QAVJHAPe2FbFJ3v8Q81f61VOv14nx/MfT/c+Hu5/vNRB0TqoJd8bo8agWhW3xudf41JuP4VCoQRKU4w0J+8qfhdcGv2DWrcSKIVCoQRKe3FCZUEdM7QESllQCoUClEDhcCmBak2MtZUMKdxOnK3CW1ajLCiFQsEJmOqopTlU7SStcaFy8R0TRFkxt/z3L8RXFlFkjuP6CbM4GJWkLCiFQgEoCwrcLo0yJVDHAuPCT4mvLAIg0VbOTds/BZSLT6FQeFACpaL4Wg3jsgV+21MO/AQoF5+i9aipqWn6oD/o/Vv72bVQAqUm6rYeQXSoVllQilaicabtk+n+rf3sWpz0AqXWgzr+UBaUQqEAJVCaLj7N0HNFyyO0f35qDEqhUIASKG13nnLxHSO0hahGffwKhQIlUGqi7nGIsqAUCgUogVJRfK2JCpJQKBQhUAKlovhaD43lBkAFSSgUCg8nvUDpVBRfqyGDjUG5RMBKowqF4uTjpBcotaJuKxLEgnIjqNXKIqtQKE4qlEBp9dSVi+/YEMKTV+VQAqVQnOyc9AIl1DyoViS4QimBUigUJ71AqWSxrUgQFx9AlUN9BwrFyc5JL1BaFpRy8bU+yoJSKBRKoNQ8qNZDWVAKhSIESqCUi6/1CClQyoJSKE52TnqBUlF8xydKoBQKRYsIlBBikhBihxBilxDiAY39JiFEhhAiSwjxqxCiS115qhCiRgixoe7f6y1Rn2bVXc2DakWUi0+hUATHcLQXEELogFeBM4GDwFohxFdSyh0+h/0ZKJFSpgshLgeeB6bX7dstpRx6tPU4UpRAtSIhXHyVyoJSKE56WsKCGgFkSSn3SykdQAYwtdExU4EP6v7+HI+Y1dO6ide05kEpF9+xQU3UVSgUIWgJgUoBcny2c+vKNI+RUrqAMiFEQt2+rkKI9UKIpUKIMS1Qn2ahovhakxAuPqf6DhSKk52jdvEdIfUtUz7QRUpZKoQYCnwphOgrpawKdmJWVlaLVqS9wx5QVlJUTH7dfVr6fuHSWvc9lvfvZ7djalSmk27cQkdxpbVVP4OT9d7Hw/1buw6t/fwn27Onp6cH3dcSApUHdPHZ7lRX5ksu0Bk4KITQA7FSypK6fXYAKeUGIcQeoCewIdjNQj3MkVCrCzQi28THEZ2eTlZWVovfLxxa677H+v4Gjc/e4HZi15tw6I2t9hm05ud/snz3x2sdWvv5T+Zn16IlXHxrgR51EXkmPMEP8xsd8zVwbd3flwJLAIQQiXVBFggh0oAewN4WqFP4aIw3SeXiOza4nAFFRrenTAVJKBSKo7agpJQuIcQdwCI8gveulDJTCPEEsFZKuQB4F/ivECILKKYhgm8c8KQQwg64gZullGVHW6fmoFIdtSIaAmWomzhd7ZC4pUQXItJPoVD8sWmRMSgp5UKgV6Oyx3z+tgGXaZz3BfBFS9ThSNHKXC5dSqCOBUJToDxlEqhxSqKNSqAUipMVlUniKOZBSSn5IdfKv7ZUsq3E0cIVOwlwBaaZqnfxgQo1VyhOdloriu+4QcvFJ8N08S07aGPWhgoAvsyuJWNiW5Ii9C1avz80GgJlkA1lnmwS6vNUKE5WTnoL6mgySTy5vqLhFAmf7qlpqWr98XG7NT97XwtKBUooFCc3SqA0BUojw7kGjZvPA1XhnadAM0AClItPoVA0oARKy8XnPrKG0aJXA/phE6QTYPATKBWsolAcDeJQLuJwbmtX44hRY1Ba7rwjnAdlDmO4pKYuhU+k4STvGziVBaVQ/J4Yv5mD+dO3ALBdeiOOKVe1co2az0neSoIIcNQRtouvMU1ZULMzqzjv2yKuXFzMb0WBKZZOKjQCJEArSEKhUDQbtwvT1x95N03fzNFe++44RwmU1hhUGF+k1DgmlEDtKnPwUVYNEiizSz7OOrkDKrTmQEFjF9+J90IpFMcDoqwYUVvdsF1TBRp5R493lEBpjkE1bUHVujTOC3H8h7uq/bbXFp54P5YWJchnrFx8CsXRI4oOBxbaao99RY4SJVAa403C6US/djlxOzcGHY+qsAc2nsE8Ui4p+eXQSS5IjQkyBmXwES615IZC0TTVDjcLD9SyubihjdEVBwqUsNuOZbVaBBUkQWAjGLVxJWxcSRpgL8nDfs3dAcdUaqiRXcOqAthY5NC4izZSyhPRVdx8wggztzpPhg9CoThyXFJy64pS7xSXmUNiOKdzBKLoUODBNusxrt3Rc9JbULom1MD045ea7ihtC0r7Wj/kav8wnI2O31bi4NIfirllRyyf7G75Maqscgf/WF/OA6vKWj01kwgSJOErULYgntYtxXau/rGYSxcVsSL/xOsVKhQtxbpCu9/8y2d+qwRAp+HiOxEtqJNeoMJZ3l2UFgeU1VtQereLOFslSIld41JWp+SnII1o43Gs/+ysosjqxo1g9o4qKrUueIQszbNy60+lLM6zsbrAzpPry4MK6jEh2Dwo6WNBaVikhbUuZq4pJ6faRaHVzUubKwOEXvHHQb9hJZEPXk3EE7eiO7Cntatz3JFdof0eiWJlQZ14SIkoL/EbV2rKggIQhfkBZZV2SbvaEj794R5+XPBnXvn5WVwaUTK/HLZRE8RVVduofF1hg1XjcMOm4pazct7KrML3dodr3ewu13azHRPCmAdl0xCo17dV+QVPlNrclNjUWNWRUGx1kVXuwH28+pRra7C88wy6/Bz0ezMx/e/frV2j444Ig3bksLYFFb5ASSkpsbpbvfN38giUrZaIp+8i6i8XE/Hw9VBVDoRnQekKDwaUVTjc3Lj9M1KrPOI1+vBvdD+w2btflBVjWPEd2zduD3rdxgIVcN8WSkxR5XBzqCbwOXeWtaKbL2iYeUOP0OqSbC918ODqMp77rYJyu5uVhwKtUSVQDYiiQ5i+eA/Dkq8ghEtnx7bdvPTxcm5eVszM1eWa0yZaG/22dYiahuhXw46NJ+RcHvA0+AeqnBTUtmw6NK2pLdLtRmgESWALz8XncEvu/qWMixcVccPyEoqsrZfC7aQJkjBs+AX9Lo+A6A9mY/rqv9ivugN9WAKlbUHdnP2jX1n/7LXAmVBdSeQj1yMqy7lP6Nk79lE2tOsbcA1fy0orICBIzEWzyQ2SI3BnWetZUOHMg6pxSv6+tpwiq+c72lfp1IyULFMC5cHlxPLPh9Dnehalthcdxn7ZTQGH6dcuY8hrTzJculnbrh+3jv07W0scDGhrOtY1Dol+97aAMlFRioxLaIXaHDlSSl7YVMk3B6wYdfDw0FjGd7R497ulZHGujXK7m54ar2pulZMdZU4GJxpJtDSdrqamtJQYjc5JuBbU0jyr13uTXeni2/1WrukVFda5Lc2JZ0H5uIZ2lTm4ekkxF31fFDQQwcuWtX6bpkWf8+628rBuqeXic1YELvxbZokFwLjkK0Sl59oG6WLmb+9oXtfXgqrQaHmrWyiTQk61tkDtCMOCklIyO7OKaYuKeHhNGRUtNS4Wxjyoaqf0ihPAjiCCWtoCAuWWknUFdnaUHjurUhzOw/Lvv2N55WFEXnbgAdYazO+/SMTjN2P48csmr6fL2uoVJwDTNx9rWhzGH7/ydsxOKdzGqQVbjs9gk+0bA4o0o9OOV6oqMPz4JZtXrOabA572yeGGOfUBUE4n2Ky8t6Oap3+r4LVtVbx4INrPms0qd/CnZSX8Y0MF1y8tocTq/1u3a7jgrIcC2ysAd5jzoF7ZUuW3/d7O6iBH/v6ccAIVdcdU9JtWU+1w89CacnKqXJTa3Ly8uRKbzRF0Mlq+K7B3uHn1prDuqSsI/MITczIDyuzCY5Dqt67zK+9Wmad5XV8LSqvhDzZ21VxyqrQb9v2VLvZXOrltRQnnflPI7MyqgGO2lzr5KKuGIqubnw/ZmZ/d/Ml+ovgwut3b/N16zqZTHYVLSwjU4+squG9VGbesKGVxybGxJCyzn8Ow7icMG37G8sZTAWJiXDwP49Kv0e/bieXDl9H5iI8W+uysgDKtBt2Q+Zvf9tm5P9N4TrTh1x8xv/4EhqVft7hb7XCNi0U51tCuo5oqjAcCn0cXRKCKrS7u+aWUixYW8tGuphvU/ZVOXt1ayVf7an6fMTink8jHbsLy4cuMfvdBztu/3LtrZ5kTw+qlRN0ymag7LqR08bfefQesenb5jA3Pzqz2eg0qHJLvcvzfP61AJ0eBhnsPsFaHZ0FVh9Hu6PbuwPLC37C8+phmB76lOOFcfKK2GtMX7/Kevq9f77pT4R5i738BY1kR9nMuxX7l7X7nVdkCe8Zn5f4S3j01xqA65wWOLRkcdT8AXXi67xvFp7X2UVWjH4pufxb6HRtx9RuGu1NaWPcAyAni4nMDszZUcKiwjI61JcxxpDDBx/UA8N9GL/vsHdXM6Nm0uS/KijFlvIHx18XeMme/YVj/9gIIEXQMKkI23+3YXIEyrPgO49KvcXfujm36LeS4zH6RlstKTdza7Fo0E7fb63IG0OfsgRr/DoL5M3/L27BiIfYrbgt6SV32zoAy/d4dONt1CFmV1MqDbHBJ9lY4WVFmJHn7Vjq++RQAxtVLqW3TFtfgUU0+UjgcqHLyp6UluCTEmQTvjU+grYbbSr9zs/b4cKG2QH28u4YNRZ53fPaOak5NNpEeZ/Tud0mJXnjGa2wuzxhL/e+myim5Kr1lXVj6nZv8xPSJda/xXZexuIWnbTB98iaiLqjqbxv/w6JOo3HoPfXNr3HRK97z9+oCzzEDincxvHAre2xDIX2E97paThZXkM+opqaWprpeWmIdMM7ldmH51yPoSos829ZarPc938SVj4wTzoIC0GfvYt7ehp5E29pSnlz3GsYyzwdm+v6zwBTzNYG9qrNyfw3rfrrykoAGtV1JYAp7g6OukRPhfay+FlK5hgVV7SNaur07iHjsJswfv0bEP+5El7svrHtAcIEC0Gfv5KuFd/DJ4vt4deU/+Hx3pd/+Cm84vZNBRTtIrC0J656NxQnAsG09un07PS4Mp7YrzUxdXaUkvSybtrWlWJzWkL345giUOJyHZfZz6Pdsx7jsa4yL5nobtnrKnMfgtdCw9F9ffZCX9kfxnx1VZJUHfj6iJtDC9UW/d0dAmW5fozKNz7Fr5UG+21/LzT+V8GF+JDkf+Auj+YN/hrxvc5ifXesdWy23Sz4ONt9v+2+axS4NbwbA3L3+n2d9rkuXlPxjfTnnflPIg6vKsLskG4vtfr+ZdzKrcbWwFSUKAju1Iw57OiRGl8Mv00O0s5aBJbu8241Fp1/Jbt5d9ii3b8vg6W9mIg7u9zk2sN5FOYH3BrDWNO39qA+m6leym5u3fcLwgq0YG70OorigQZwAw5Y1zcrz992BWp5YV87ipoZlOAEtqHrqv8MJeav5x5p/YXb7v9CGNctxnN+QXl5nDXwR2trCG4MCPHMIIqO9mzE1gWNQBqcdp1uSWeFmQKN97y95iDJzDOWmGLa36c7naWf5jUFVakz8rfZJ9WNYu9ybN1DUVmN59e/UPPvfJqstpSS3OrhVcs+mD4hxeD6bUwq3kfbeTcToXHDamdin34pLesTpwyUP0as8mypDBLphL+Du0S/gPgCirpfaWJzqsWdu4p6DybTfXMbTGvtjnJ6X6P9WvcCEgw3jhiXmWP466gG2JaQHnNMcgTL+8IXftvmL99iYMtWvzOYWONwSYzhhlFJiWLEQfeYGnEPH4Drl9JDH6vL2ISOigMBrb8kpIbNNGzJ31fDZtmJ+anx6dFzwa1dXotNY9ydAtDTeg3h7Je1qizkcmQhA97L9fvt1JYXB79tMPt9bS5/SPQwr3MbapAHM3duNO/vHBBzn3KYtUGjlmNMgq85NtiLfxuI8T8dxVYGdz/bWEKURmv3LITtjO5jDfIomcLvRZ20NKL4o+0dWtR9MrCOwszyscBvr23neqfrOav00i79u/gBdXaZPg3Qh572P7fbHAE/2mmt3fsm1O78iNyqZh069O6gFZa9pWhD2VDhJL8vmzZ+eIMJl48Ydc7l53GM43OO974OrNlDodHnZuLv2bPL6vxyy8dxGTyd46UEbBh1+ASONOWEFSkg3Uuh48LfZAeLkwb/BN1iPbqCvuqqWKB+BiqstDTjG6LTxQ66VZI3q9C/d7f37vAM/8bdN/2FD3kXQ/jqIjgsSJNHwDPqsLX77dPk5iMO5yOROAIjsLNzLv0XfPgX3+PPAHAFAkdWN1QWx9iqm7/4Ws8vOJ93PpSCyLQBDiv0bsLZVdY3R95/hGnAKbtmDKft/old5NuDp7TmWf4OtTqA2F9t5c3sVWeWOCAGvAAAgAElEQVROdAI6RRlItbgJZvCvq7Gw2eUgxa0tmiNz19G78xl+4gSQYKvg7+ve4PKzXvS4CH0o0xD3YIjyQAtQa+mTSxcV8dQpcU1Gtuk3/Yrl3ecAMP7yAzWPv4m7W2/NY83/eRHj8gVIvR7H5CsC9sfZGqzX1CqNXnCIQW69hnsPQLd3u+e8ut9DffBOY7pWHvQKlFOEsbDZETKobDdvL3kYfd37OT91PFVj7iI6oY33GH1tNdF52pNydUWHaOwPcEtJvK2Cmb+9Q4/yA3zafRJf9DwXt5R8e8C/UX4ns5rrNSLSHl1bzv+NjCO+0XV1oplzPVxOIp69x899W8/pB9fRxlpOjD3QEj6lYCtv970MwBsIkV/jedLBxf7frWHbeuod0uayQm7a+jEAfcv28ucdc2lfU4QWDmvTArW73MHTa14hwtXg8p6Y+yultnEkRXh+F8VlVcQ2Ok/sz4KuPXG4JQv211Jmc3NeaoT3nHq+a/R9vLCpMqRAnZAuPgCzy45Oupu0gmqcbn49bENo9Bybw62L85mTVSdyUhJfG2hBmZw2Vh22I8N08Q1dMw/z+x73iVbqJN/BSndi+4D9hvUrkVLy/aYDuGbdTcySeUR+/CqmB671ugHq3XuPrn+DmzI/59pd83nx1+cR0k2CNfAZfNHt3k5C+WEe3fCmX7nxJ8+grt0leXJ9BdtLPeHfNpenB7Zzb/BB0/oxXkOQKL62tSXcv/FdzX3dK3NJqwy0EpozD0orh6KWwJXZJS9trgwob4xp3vt+2+aPX9c8TpQVY1y+wPO3y3+tnnrifBqubhWBgTWi2lOf/ZVO5u2rYV9Fg8jrNNx7AMLhQF/nLtNn/kbU367UPC7W594O3VH0W6sqQCPCFTzuqGm7vvWKE8AF+5eR8PA1GH5e5C2L2p+lvU4bYCo9HOCmLLNJrspawJl5q0mtyudvm/5Dz6LdHKhyaWZj2VOh3Tl6b0c1uJzot61n78+/Mu37QiZ9U8h3B8IPDNJv/FVTnMBj/Zx3YLmmBTWgJMvjygasZWVY/vkQaY9exVW7FgQcK/UNjX7aTv9x9PP3L6dn+f7GpwDgCkOgqvftCQjqGlGwxe8dc2oMl9j3egJa3txWxStbqvhgVw0PrCrzm+hrd0lWNJrH2NSKBSe0QHWoDuF6kJKCWheXLvJMRIxyHJ1AmZ1W3sqspsbpRlZXYdKwAEwOO1tLHLjCFCgA49pl4HZpRvH5hpk7NX5cukO5ZOyuofrrz4i1N/xoTKUF3oYzp9pFck2Rn0XSp2wfwwq306e0iaiwPdt59uu/Bd2fVe70C1Spp32tdg8OoKLK87IHEyiAgSWB0Vv1nJm7CoA+pXv45Id7WfDtrYzM+klzcFdrbtmBEONxjdlX6Wpy0UR99i7/7UaNk377BiyvPILlnzObvF+8vUEQu2pEftaUV3CgysntK0t5ZUsVf15Wwq66qQJa40/1GDatAocd85v/CHpMrKNBoJxHKFCGVT8Sdfc0ov5yEcYF/2vY4bAjyoo5VOVgRMGWgPNMNZVY3n4a/SbPdyv2aluDAHq7LSCYpMjqYlAjK+P87KU8uLqMTI2pCcuDhNTvKnfS4YfPiHj+Xga+PZM/rfkPVpfk1S2V2MvLobbGM9YSYrzK9P3nQfcBXLhviV9noB6DdDG4yPMdpiz9FMPGX4gsPcxft3wYeBFdg0DZCd/alY1THVWVezo2PlN3RqyeG3BeorWUtl+8jWHlQnC7sFVrtKXZWZTZ3Mzd1yDm+ypdbPHJ+bn5CPJ/nrAuvn/9/AxLUk4Nul+4nHycVeO1QqKPUqAsLo8bKK/aRddK7UABs9tOsc2NLozJv351LTxEhSPQ7eBrQRVV1NK50f7y/dnUFM/h6r3fB5yrO5QDeCb5Taxr1H35189PN5nmybBlDYGjAyB1Oj7cWU3lt3P5ZfOHVJiiefDUv7IxsQ8A7WuCdxzsVk/joD+CcHKAM/JW807fS3l4w9t0r/A84+Nr/03Rpi5EDR4OQEGti5mry9lT4WRcBzOPDY/1RnC57IEvidlpw2bQHn/IrXbRO167w+F0S2x6E2aX9gDxwm35nP/igxiC7G9MXJ1AxUsr1xQHBvDYKip4ekOFt9fpBn7Ms9Ez3hgYDOGDbus6DCu/R1cWmFOynlh7FSlVh+hfspsYjR4+TicYQjQXUmLKeMMbmWb68gMcZ12MLm8/lpceRFdZRufkLkSH8HhEvPQgmZfeQ8L+4AIFoCstxB3l+WWKw3l0eedFEov8p32clfsLL1ZeB3qjxhUgpeowY/PXkxPdnl/aD0YKHfE1pSSvW+o95tK93/Njp5E8tfbfJHza0OmSkVHYJ12OY+o1gReuDR3I0rXqIGPz12vuO6VwK6vaD+baXfNDXsPXgqoxRoQ81hffibq63duIeOZuhNOBq9cgav/2f7iKChmXvTLgvCinlW7LP4PlYLVZcdYEvg+RB/fy2YHANnZ9oZ0hiR43+erDnnc/2l5Nj4oD7IzvRq0huHsPWsiCEkJMEkLsEELsEkI8oLHfJITIEEJkCSF+FUJ08dk3s648Uwhxdrj37Fe6hzvrfK+a1NawociOxWmlV9k+4rReuhDIKP+mOaLO/BaAo0T7Rbc4PV+A2dW8nkJl9l7yq11EOmq5c8tHPLH2VXqWZfuNQRWWB375idlbuWvrR17x9KV+Nc38slou2bsoYL/J7TyiOUcAORFJfLK1kLu2fITJ7STRWsbs5Y/xqG4br46Op48reKSfpc63HcqCCkV6xQHOKtpI77KGKEY9kvj3nwenE7eUPL2+nPxiT2P/U76NZQcbeswR1oqAa7axBZbV45uFw22tYXvGJ+x45QXyd+ziuwNWSk1aEg57K5zsXfRDUPHSot7Fd1PmXAwa833cVZUBk5V/K7IjSov8oqoaoy88qOlS9GVY4XY+/eFeZq39F4karl9R6SnbWebgxU0V/C+rmtwqp9dlKvIP+NVBOOzocvZifvUxdHXnRh8+4HfNKkNg49rns5dILs5peGYEO+NS/etSF7QhSouIeO4eErM2BFwnzlHNqEPagRZX75zP54vu5r7N7/PKL89y4b4lAJxxcLWfa9Eg3cxe/hgdGo3piJpqzF+8R97q1f7Rf1JqJpZuzCX7tAOITikIDKzQwuVjQbmDrFenhbDbvMFM5k/eQtRF0up3bsK4bAHxvyzC0ETn2vLhyzg1LCijvZb1WwMji9f7LMy66rCdPqV7mLvobmYvf4y5399FG2voIZqjtqCEEDrgVeBM4CCwVgjxlZTSt0v3Z6BESpkuhLgceB6YLoToC1wG9AE6AYuFEOmyBRKD2aqqsB8+xJfLHtZ84ZrC1a03hq0NbjHfQUNnkB9hfeNrcTVvVv5nP2Wyt1cvHtv0HufXTegbVriNqye/0nBtZ/OuKWqqEGXFXLtgFl2qW3b2vRSC3qV7A4Rx6mdPYK+8DLc1MICknvoG23AE853qmbXxzYAyc2kBrv1ZrLTH8VDG3+haeZCFXcbw9+F3sDLfxpkpFqipou/hwAnW8fZKDkW107xX/SRnUVyAfda9jKhrPIu3r+D9815lhEYju6+4hpVFktRK7XDfYMTZK+lRvp9Ldnytud9orUZIN9fsms+EvDVsSOzD2gnXBlhPWxLSSak+TIKP8GotYOfLyALtcZN6ipYsoigzk0zi0MWksDEqiXfa9UenEzwxPI4JOwMnvVteezxkBOC3XcZxmYb170tWXCp74jrTy2dcpbawEBOeuUShnmtyzgqWp4zwK+tZls1dW/3F+ord3zAvbaKmpyEUNZ/8h1tre/Dq2ARMeuHpKFQ2v62pp3fZPmLsVRSZ40gMYWm6fIJYRDPCu81OG6U2SduawgBXtPmjf9Ej3OsUaf+u4/L3QKdkABJrS5j522w6VheQUz0dMfZsjPnZ/HvlLOLrOmJJ1lIu27MQCIzMraclXHwjgCwp5X4AIUQGMBXwfWumAo/V/f05UJ+W+AIgQ0rpBLKFEFl111t9tJXKK6rghry5RyROJb2GE+MTsQcNouOS4C7TthDqG+xgAuXSG9BrTFC9c+vHuITOK04A7WuL6X1oOy6Zgl4IP4HUokZvJtLnGFFdScRD1zGkuumB/uZicdk0x+AATAs/pV3nQcHPdWpbUPNTx3Nezkr0Qa7ri04jEg9Ad2A3Sb+uI61u/GbygRUs6jSKNcbhOKsqiX30z5rnhbSg6tJEWf/7Ook+Pfu21nL6HtyiaSH9Y9EuDsWl8FiYc8bqibdV8vCGt4Pmh4y1V3Hnlv9xTZZHwPqX7sbevgv6eP/GbHub7hjdTj+BOlpS579NKjCsUfn6xD68YrudMwoC0xI1FZ6+IPX0JgVqXbt+2Bu56RI+fIGi7n0wrV0R8twz81bTr2Q32TEdqTZGAtqT89Mq8/jyuzvoVFMQ8nouncHv9zmkeAf3ff0INasTiNXZ/Tq0jXHqjRia8KzokAwt3M6hyHZNCFSD40s4wu+4Wlw2Dte6SF6zvOmDQ5C6QzvBQa+ybBZ38kzovm1bBqfnezLqOD59ka9MSby2okGc6hmXvy7gOr60hEClADk+27l4REbzGCmlSwhRLoRIqCv3dbbn1ZUdNbaiIs4uy9bcVxSZQGKNduOxtU0Pas6/mSGr/efL1DesDjcQRKDMXoHS7tVUt+9GbJ52AMDdWwJdMEOKtlPjnEiMURDhDt5Tyhw4kb/3uJIPv7rVT8h0jcQpJ7YjbZ59C+Gwc/eaarZX6xh5eBMv/vp/Qa+thdllJ94evPHrXLA76L568W48BlUYkcDe9BGk7wwvu4cW+h0bGbrT/+V7+ZfnuHziCxxcmkd8iXYDVC9QUY4apmYvoXPVITpVHcbkdrC/Q29kxFiExryWLlWHiHYGujuSKgvYE9WRtIrAiMNQNGXFGKXLK0713LDitYDjtrXpQYeaQj836O/FsKJM7l/5MlX2Upozi6jSGElmmzQORySQHELI93bqj7k0UOgSH9PubDTmg6UP4RR6vu0ylq/OvJ0z8rT7vk2JE8Btox/iml3zGX24QYyHFmVCcO+ql4rkriQcDB78U88phVv98lFq4XY6vWMz+mZYUBEuG4dqXAxdvSTsc7SIrdR+4F71vzcpuWD/Mm+50e1i2of3aZ9Tvp9Qo3atFSTRQgtJBKdxVI8vzqgYrI4aLA7/qJb8yESuO+Np7nJW063Wiq/TJ6JOoPYdyCExXzu3Xn3jG2zcoSohKahAaTGsKJNtWXtpa5R0C+Hiqzx7Ko6DEVQZI4NaWhsS+zD3jFuYdtDj7ouxWLBZTZrjAE1hcdo40xj8rbTYgo/3xdmrmLnh7QA/vFPo+a37qKMSKOOqHzXL3132KHqC+9bj7RUY3E7e+OlJ+pb5RzYOK9oOW77QPK9L1UHN4JvOVYdY77LTuerocpSV9RoCB/ZpTmkIxbY23RlQsqvpA1sI3zl+4bI7MZ0oA+RHtgspUMauXTl8lMs9GKSLC/YvY8AG4V0ep7nsi0lhfbt+FFviGboks0mPhi9fdJvIkChbeAIVzjhUbQ1f/baPFIsLd234Y+sWp43cbVvQ7w10c7cEfUv3YHQ56OVsehwuXFoiSCIP6OKz3amuzJdc8AShCSH0QKyUsqTuuM5NnBuUish4HEcwqbBNQhus0W0Cyt11utmxY0fikvznHdWLT1KHFKLd2j/OeisrmIsvru/AZtWzb8luEtslk56eHlT0HAYTfQcMICnGQmWdG8MXu87AK/1ncMu4x+jTN530dM+/EameSZnNiQKqx+J2kG46sjGkc3J/0RwkrjBFozv1DHb3Hn1E1w1FtLPW28HQYkLeGhZ//ecAcWqKnuX7NQeVJxxcTf+S3X7zfZqLtERgvGVmQLBOU9h1Bg7EdOBwRNsjvndLo9UJcvUayIj2ESEjXnclpDF6QHfvpPKjpdvGpU0fFITP084GIciO7cR/e54f8tgiSzw74rsBcCCqPR+lT6HtwCFh3ad7ZS7dNeb6+aKzW/lnThSP7o3DZg//PbS47Lg2BgaUaFEUEdg+NkW8vYop+5dztbF5noNQtIRArQV6CCFShRAmYDrQOE7ya+Daur8vBeptzPl4giVMQohuQA9gTbg3Lk7qxr2j7m92hQ3SjU1DoOon2LoBafYPf6zvMdndoNeYqAYeF4ze7Qoa0KBL7hhQ9kn3SXzRbSIFiakB+4zSRdXqn0FKzEGuuftKz/PHmXRUaQjUmqQB/LfXBbiFjn4JDb78XvEe47n6CCwogISq8NLfzOl+bljHHYpoS6xZz4qL72d+6viA/SvbB77gB2PaU2E8+iSfQ4p3EO1sfpb2PqXa2Q5OKdzGU2v/dVR1sl9yAzIhiaj4xnP2Q/Nb2z5IoaNAQ6C2tel+VHU6Eoos8Zxz3tss6djg9Xcj6DhuHKclmzkUqR2cAnBg5BRijIICy7Fd/8ndvjPutsne7SpDBAtSG1JY/dRheMA5Lp2Bl6c8wbUTZnHhOf9ixpnPMWbqh0w752Xy4zpi6BY8BKG6iVDrxlhcNpCSWpdEHySnpRYRLhtTs8Nz7xXHB7ZV4XDfpv9w5rzgiWOXdBzBv25+P+xsJUctUFJKF3AHsAjYhifoIVMI8YQQYkrdYe8CiXVBEHcDD9adux34FNgOfAvc1pwIPhERqdkoN3leaRHOmOAWlJRAY4Fy1q/nIkOmTbK4bEHHoFz9T8Ed13DfxSkj+b/B1/P00JtYePsbVD//ETnd/Bti/fLvqKq1eXNx1fNr0iBeHHgt7SecCUC8WUelRmNdYvbkb4vQC7rFNHh06/8+UoEyNREVBrCpbS9Wdmg8rK7N4chE4kw6TCYjTw6/jXEXfMCfT3+SJR1H8En3STx6yp0Uj5zkPd7dMZVV1zzJtjbhxh41j4/Sp7Bw3J+8PWEtQoXkhnJbNYVLp8dxxgWee2gEhJSbogPK6vlfT88rF5mUFLBvbbv+/NR+aLPrc7j7ECpezKD2ziebfe7yDsOxGcyIOx4le8Ll5HQdzMFrHyS2ezoTOprZM+I8v+M3j5jKpyNmMP+yxxl6yYVEG3WUWOI45CO4ZaZonhlyA9vj06hJCMywUhiTHFDWGKnTUfXqlzhGnhmwzzH6bKz3PMOepJ5kxXbhwVP/isMcyZtj23BZWgTtegb+5ipM0XwX249tCelY6wTHarDgFjocbnB36RF0AvSLg65rsr6+GKQbU116t1DTGGRULG6j/8hg5+rwchnWJHdp+iANtNPONfDioOvo36MDm9JGhnW9FhmDklIuBHo1KnvM528bnnByrXOfAZ45kvuKiEjs5iMQqLJC3N0DX9T6VPguCdLkL1D1otOUQMXYqwPExIvZgvXOp8j78F32yEheGXC1d1eHKD0yuRMl026l8/81rIJ6asFm7vpmuzfsEaDcGMWdYx9GL+DmugSO8SadN1LJlyKLJ7tYnzYGDD7JT+v/PhIXH6C9pHQjPuk+Cas+vLWVCiISiDMJ9D712pTYm02JDXntCq+8m8iR40Cvx9V3KBP1Bn75OQ0KwlvXKxzKTDE8NOIu1iQPZNkFSZR8FQlfBAYiNIfP0s5mYecxjCjYgikhgaurt2DYGHysrapNB/QGj7Xr6torYEXnH3tP4uLNgRkL/jJ6Jr+0H0KHSB3XDe7q6fL5sDZpAN91GUvHmkISrWV+mSuCsa3DAFL/7knH5UpsT9XsRUQ+egO6/ANNnFlX15SRJEfoGNoxGv11/ouYGHSCqy8YRUH1lUStWYIjrQ9p19+MKzeP9HRP6HEbITEbdDw/+M88+Ns7OHQGnhh+u2eF6olTubN/DK7Hb0HvE2pf8KeZvLUyk6FF2+lUXcBAjfFoV+/BEBOPc/TZAWOXzhHjke07U/HIazz7WyXVTjcP9ommdxsjvdsYgRjkbKN3HhHApjY9KA6VcssSSWa3UxiwJ3AC9o8pIzkn52dO1ciyEYwIpxV7iEniALZLb4B1K7Fs1XZK2XWGoNG4DBsNG78Lqy7fdR7DuTmBE3wbU6M3UxGdwKC2JuYOm8qwPT83ec4Jm+oIPAIlI4L3JsHT4NiG+2eYdkyYij5ew4IS9RaUDLCg6vNk2V1gChEE0NRL707vz5o/P80jI+6iMKLBddEx0mPydumbTmabhrWedEi67/f3G1vrsh48NLTB/RNvEppjUMV1AtU/IXBG/YODY6jVm72WY3PQVQSf6wRQaGnDjymneusaCrvOQKk5lliTLuQijWaTEdeQUbgGngoGIzohGD68n+axTqHn/jvm4Rh9Tsh774npxPdpE7BefRcvXfoCk857izXJA5mR7vksE/v2abL+oTiU3IPlZ97ApsTezO57KR0vuBhXn8Ehz6lOahiWdfXz70jV/uUp8jpoZ43+NXkQUQbBs6fGE90+Gan373/OmDKC6LTuTD/rRSaer53vsDEl0Yn+BUYTtfc+h/38GdjPnxHy3HXt+rE2qT+Tu0R4M3kEIASRV96EfDkDw18egwj/37BZL7i6ZxQ/dRzOeZPfYOq5r7GhXV96xhm4uY/n3bdfegPS6OkIuXoPInXoIM67bhrF188k5jbtIQDn8HGe43v0q8su76G6Y1dke8/nnx5nZPbpbciYmMgZKf7tgf3yW/y2/5c+hWDUv9t7Bk0M2GfVGak2RLAqKfjUDC0i69ojLYFyjD2Xmlnv4ZxwAc4bHmB3XODwAcBnacHfjfRBfXF2CM+KeqPfdB4e8RfN9seX/TEdGZpkwawXVHbry/s9p4b0UMAJnOoIQGeJQEaGHoNY3XM8Y664CtPm1Qi7FWm24JhwPpYtgYOF4YxBOZ1OzPbg4xXxYcw96dsm8GNvX/cjNuoE2R37+OXJG1rovziiVW/myh6RnNGxofGPM+so1viBlJg9AtVPQ6AmdfFkG9Z90fIris5NOwuXzoBV17QFVWyJRwgd0UaB1RW8LhaNZRIiemg31qXmWBIiDNgvuR7D6iV+vd2qHgOZOOBBr8tlchcLowfHcr1b0vOQjdLD+VzY2zM24u5y5OM2lcZI9vzpEf7Rqx1bSxwkR+rpEKnHld4/5HnWpE7ebNHOUWdjP7gffdZWnKdNxDVsLPsdgVFSTqEjwWLg0WGxpMYYAAPOcZMxLvUMB9snX8GADrG80sGTfaLE5oZGaddkVCyP9L2OWT7jZz90Oo3Go3+yXQfs027w/J2zF3Mja/D7odNYQ1uWppyKyaBjSmrzxlgac1V6FJM6W7C7PHn03FJyYbcITHUL6bn6Dafmuf8iSgpxp/UGIUiPM3oWLJRpSL0e4fKPBHQNHeP5IzIa25/uw/TpW8iYOA6cfaVf1JYIIqyOM6eSnZWNbscmvkkdx2/t+gat//l1z1/Z9xTyFrYjxScV2PddxoAQbGkbfLKqFsEEqvLcKxHTGzwwtGnLJ1c9R/rC/3Dxvh+8bukyUwxfdJvIVbu/0b5BRBT2mx9C/9Tt3s+uMCqRdtWB0bvVBgvfdx7Dxra9eXv7m6Ts154ucTiiLSOTPG1WG7OON/pN552+lxJqJtwJLVCGyEgMEaFdVEUjJyET21Pz3IfoMzd6ekzJKUTkZQccWz8BTkqgsYvP6fkhSGvowfR2ztC5uMAz/pMUoaOg1vNj6RVvwOyzamVSWmfPaF4dQxvlGXMbzdzU199yjDfpyNYYgyq2xCOAvm20c5INbdfyy5tLvYF53Ty9xXAsKIAYk0AnBOM7mj1ZpTUIWNkTkMmdkGYLolEizBJzLG3MOmTbZBznTMP0zRzvPuPQkVyXHsfcvTV0jjbwp7rlFww6wfiOFrKqnQ0NkzkCd9tkv4wFMjJac/HAzJRBdD68i2hnLU6h5/Hht/NgeioGnWBwYsPn7E5NR0bFeLOTN8bZ3qfnarZgv+pOv/2RFiMvD5jhN3duc7+J/PfMBCINDU4R27V/xXnK6Ui9AXevhgjS+txozmFjMaxvmOxqn3Il3ztG06n6EOPy1/NTh+HsSg09ZuU+4wJoJFA9rrqG+bvdJNvcXNcrSnPF3OZSf43pPbR76bJtMrKtxtiTEDhHn+PNwA/gTk5BtmmwDJ2nTsB56gQArFlhTgPRG0i+9R7e2l7FNwes0Mjyn9zFQq1TkhZr4NLuddZ4tJl7Rj3ATZmfoZNufkkewlfdzgAgMz4Np9CHnX5sbP56DkUmBox3u/oNC2jUbx2ezPx2d/F5/oVckLmA3bmFvJx6PnnR2mN10mAEkxl3t95Y73gS48qFuFLTiRp8Gvz9xoDja+rGsQ9HJrLuhmdJKN+KqCzH8tYsv+PclkgmpHjag7RYAy6dHlcTyW5PcIGKIsoY/AE3JfSkSx9Pz0QmJOEc3ZDqT2osgy3rXF3aFpSnAcwpDG0h9TFoJ6X1jVox6ASPDI3ljW1VGHWCOwf4i405tavfduMIM4cxsNGPDRLFV2yOo2uMnpjGy2L+jtim30qx1WO5hTMGpXe7iDV56tcl2sCZbWz8WBr4jJoLCOp0uDv3QL/bf/5IqTmOBLPnmvap16DLzsKwbR2ubr1xjD+fGVFRYS1dD2CfdgPmt59BSDfO4eOwT76CiKdu8y4gWU9J+248MOBGTju0ka1t09kZ340nNKw+DEZsV92J+YOXAoQVAI1oT1+MOsHnaWdzZt5qBpRkUW6MIuWyK/zECQAhcPULHqTiGHMO+g0rEVLiTuqI48ypXLv5MO+KabzbZxoAM3uE/oxcA07B1bEr+oPZnu2eA0hOjOW5xJCnHVMcZ0zFsGKhdwl5+wUaSV6PAINOcHv/GG7uG83WEgerC+zkVDkZ1NbExWmBbs12ETr2xHXhgZH3BlzLZjCzJ7azd921prhj2xyu3/EFtkbvl94c+N6Y9IJpaZGQ1gf36D5Q4WTzMk/wTZUhIjCC1cfN6ho6GtfQuqkfUuKObxuQdNjhk+mjfbQRV5e6iM1GAjXolP6Y69qhvkny/B4AACAASURBVG0M6CDE7EQPJ7RAmaIiiTYGHz9ZkHYGtwSxHNwdA/2y9UtyaEfxeVx8m3NDT5rsrtPu/f9wwT2M9dke2NbEG+O0w2cdcQm4Y+KD5vVyaQhUjFFoRvEVW+KZoOHea2ncHbpgu/h63L0GIuMSYL5nZr5VH8YYlN5EnI+ATm9vJa19Au9khjcJ0ZWqJVCxDKpfbNAcgfX+FzzLJVgiAhY8bArnqLNwdeuFqCz3rCSs03ncZ8v93SOdEqI5GJXE3O6ejtCd/YOPjzpHn43zlNNx6PQcvvdGb9YHq94EXUJHJh6ucWE1WLjx9CdIq8glNyqZb1O1xxlC4Ro6htrH3kR3cD/OIaPAHMHIOAd5OjOrCuyMTDKFXEwOAJ0e61+f9izvIt3YL7qu2fX4vXF364X1jicwrPoRd+9Bfh3VlqDeQva1krVoZwndSSzTSDxcbbDw3ZBpTFsbmGkm0mXzS28GHoFqqtFPizVwTmcL3+dYKTPFBAiU75icH0Lg6jUIXYhMFB2jGjritstuxvzpW95rmsc3TDmJNOjoHmfwrnwcjBNaoIyRwQVqS0I6eYPG+7nO/DAFNpz16U7cMtCCqp9829SyHT01BOrNSTM577yzQp7nhxC4u/dBtzEw4geCCZTOG4XoS5Uxkn5BRLqlsF1+C47J0zX3Nc6jpsVbfS8lzuz/PUVoWR5BcGs06Gmd2/m9LJ6LNj/isx7ZoQvSx+i2XXpjgEAlJyfwpy5RLDtoZUCCiQu6NhEhaTJjBBaPv552371AjKOatwfN4LrE0HOfzkjxCIhTZ2BXfFcGtT3y79fdrRfubg0BuAYBjwwLsbS8BjKpI7abHzriOhwLXMPH4ho+tukDf0faWvT0aWMgs1S7UbZpvCt2nZHk6dew8NA+JuU0HfVWHyzSFH8dEINRBxXmGGiU5imoQAGuIaMx+giUy6ezl2DWEW9q2HacexkYjegOHsAx4XxoNOm8f4Lxjy1QREQRrdPxzwHXeBf2suqM3Hfa39jcthfTk0PPwi+I60hSeWBmXolGFF+YAhVR7B8S7Bx8GjOuCB1JpoVzxAQMQQTKbQrs1Zr1YEHjyxZCM4KvJdFyI12SFsHcvbVIocOqM2IJMj9iTbv+LEkZyRmNXJAmLXdeENypgQPMXVMSaf7yaM0gJh7rnx/wLvcuhcA1+DSubRfFtRpLiodiyrmj+FfXD6hySE6PKGlymfHTks20s1RTaHVj1MEdISw1xfHFMyPiufB77TRhWuO1epOJQW2NLNaHGWii0fHWwmIQ3DcoFkunBGg04TyUQDmHj8Wd1BFdgafdzB42CaMOdAJu7RftH1Si0+M4e1rQa03pEsFpyaEF9YQWKGmJIMotmJ1+HvtjOpBcW8zCzmO884FGJIV++OJ2qZoCZXXBt4c9KS/qqc8O0ZRANc5o3Hg+Vbg4Tzkd+b9/aw6kN558B55oo8yUQbgQ3hQ7PycPJs4kSGlsSTTCPvUaTF81rNyZd+Y0Un4MvTJoPTImDnfnwEi3m/tEk2DWUWpz4zJawOYvF88MvoGFXcZ4JgoLQZzJX6C6x4b/03SndA0s1B39wHxTOMedS21kFPpdWzxzZzTGNcMh0aLnb0M8Y3ZZWU1nHo0x6Zg9PoFtJQ56xBlIivj9n1XRMsSbdYxtbw5Y+hwIGE8CiI4wUSME9nDbkTAFqh4ZrWEthxAojCZq73se4w/zkNGxJE+eztc6E5LmeT0AuscZ6N6EBJ3QAoUlgiiHACECMhZclhZRN6kuONXDTofdDVbK1rqsBP/cXInJ5fATqDhHNZMOrCDK0cyUOKYjjJIzmXGMPgfTIg2h0BgIBXDGJfBun0u4IXMuxZZ43ukzjc7RhqChsvU4Jl6Ebm8muuwsnOOnUNa5T9gC5ewzFHSBrkWTXnBVuueHbo60gM1faMs7pftNLO4S49/I9o43MKitkU3FHmG7b1AIa1jjpZQxzXNTHSmu4eNw1c2pOZbEmXSMat+8xkhxfGAO0p/QHK+tm7DtNIU3oV5qdF5DoTUWH8qCAk/krH1GQ2Tp0U0iCM0JLVDSEkm0xlzj81Mt3Na/6SSb6edMZM8Pn9C9ZB9uBHN6TPbus+uMuBF+WSEe/G12wIQ8x4gJ6PftRFeovYiXjDxy94tjwvmaAhUs8CDGqOPtvpfxfq8LcQkdLp2B8U0MzALI2DZY72tYcsOxI/xsx6GixOrRa6xZc+ukgRRutrKp2MHQRCPjO/o/kxCCF06LZ9VhOwlmneY8Ll98rUBpNOIc0vJJZxWKlsAUZFw8MTZwjFTWCVRW+z4QzoK7zewQu7sHzt+SRzFW29Kc8AIV5Qz8sqPDDKnW6w1E/+N1Zn64iLyIdmxP8Bls///2zjvOquJ64N+zfWFhYekdVERQEBRF7A0w9t67RtH8kmiiSSyJvSvRRE2xYIkGNfZeYo9RE0uisZGYYDSKUZGoqLDs+f1x5rJ33963u6/se2+X8/183ufdfubeO3fOzDlnZkRYVN2bfrGJw+oav2TV//27xTWaRqzC14f/gIoXn6H8xaep+OuzSOgrpVJG47rZ16516CiWr7E25W+0HMpH0rSgeoWAkaUxU0G/DiioVnLLO54tlk9of2w3+bx1aH6/XrVcvGENy5rSf7CVZcImQzpWI1y63T6wfDllH/ybpTN2hbrMBll1nEKRzr86ul+CYogU1Ii1+cOgyS3mokqlUcohg28XYPkquY2U0tl0aQVFTQ/qEsa/qk0XuZdAz5611G64Ja8taG26u3P0lhz65u0tto34PGX69NqeUF1L4/StaJy+FV8v/Zry116k7IN3Wb7aBAtLzoFlm+/YSkENr0tuTfSqaq2M+ld3Xv+npgFD0IGZj3rcNMT66osIVflyn1TXsnSP1p0IHafUSJfnK2sSjGUVVkTXVJRz4rRjOPu5i9MqqY6Oe9mChNZS6tiPxaRLj8VHRUViaylpSJy2SBcwdvmae/N1WUtlMPyLlgqqlb22qprlk6ezbJs9clZOYFEzqfTvmUZBJYTc56MXfzqWT+jYSOWtzhuZ2bAujtOdSNf1pbImwZcawsZ7VAhfVPbguxudwPSdb+DBMLV6nI506UiicdK0lusJI7wXiy6roJavPhEgsR9U0pA4bZE2hkCEh0a0zAg9G1v2/G9vLMCcqaxqNShnOrNa7wRl3T8LEx+07geWROpApulYmhJqunTng9Ic6Tjdn3QmvuoeCYEQwWS3IkJOhGXllbwcG+U/IikKsCN8vc/RaI3JbhowlMbJ07O6TmfQ5Ux8y1dbE62sWhFF0jOhtZRpo6GtIjypd3cc7Z35zJOZsnTng5CPP6R8/is0bjgz0bEJUFfV+ln0r81OQX192A+oubx5/p/lw8dQ/u4/WxzTOL5jCmrZdvtQ9v4Cyt5bwLJZe6AJkUOOs7KQTkFV1SZUCiutVZQawv1yv9YKqjqNb7o9dOgollxwI/959imGbLwl5BDYlW+6nIL68sct5+ZJir2vyKCTJ7Q98s2n1emd7VrXm6bRyaNp55WKyg711E8aby/bFlTjupvSuN5mlL/wFMvHr0PjRjMp//XZLQ/q3adD19I+/VpECTrOykxSmHldpSBJ3SXKkxXUP+pbT4XR54uPabuXZnq0d18+HzO+pJQTdEEFlUpSr/s2ZmxIvkYb+xa1oaCWTd96RZRNKZCkZ1sNINpRKir46v9Oa17/cgnaoycSprv/6sBjsruu46zkJEWt9q6UVjMoAM0tqJRzmqSMLytqVsz0DVC2NGHg4S5Ol1dQSSxvykxDtdWRdVFVegXV2M5keIWmR4bBIRlR24MlP76cymcepmnISBqnl44j1XG6EtUJFp66yrLkPkyhAtyQYAlZ0H8V1vjgtVbbuxNdNkiiLUbUZaZ327IIpmtBfTZwZGHMexmw7oCqFpF8O7c3WGmG6NBRLN39cBsNugBDCTlOdySxBVUlycOiBQU1OqFMu2dqywGal23yjVbHdHW6hYI6dlJzIMMafSoSZ6xti7baHekU1OfTZ2U8bUNnU10uXLBBHzYfWs1uq9Ry+PhOjjB0HCdjkvpB9aosSx6yK/SDGpMwNuU/h09k2cbbANDUpz/LZu3R6piuTrcw8e00upaRdeV89FUTmwyubnfsuVTaakElBUksR6jeNL9zyuSLNfpWcurUwoxD5zhO5iRF8fWuKkOTBnqtMLNf34QO94uWKl9/80d8vfdsqK1b0am3O9Ft7mhKO5OFtUVbCuqLitZmstcHjGN0/wFZy3McZ+UlSUH1qpRWU/wAbSqd95eE6eF7dSyativSLUx8udJme0uELypaZpyXxm3WqelxHKf7khRm3quyLHGyQW0jSjjDWLAuiSsokkPV49w3snnA13d7DuKtiR7B5jhOdqQLkkhuQTUrqJPWaeluOGSN7u9j7jYmvlxoz2V16Vr78mlVL3ot+4JbVpnFxvWlMxy94zhdi7Rh5kkjkccKpy2GVvPYe1U8s3ApExsqmTm8M2diKg1cQdF+M/KLyh78as29Vqzv6jOYOo6TJWlbUEk1ZW2eraGiTDh7Wh8amzTj0XK6KjmZ+ESkr4g8JCJvisiDIpIYPiYiB4nIW+G4A2PbHxORN0TkJRF5UUT655KebGmrBZU01t/q9a7XHcfJjnQ+qESaWk8ntLIoJ8jdB/Uj4BFVHQc8CpyQeoCI9AV+AqwHTANOSVFk+6jqFFVdR1U/yjE9WZHuIVSJcvc3+nPA6s0mvQl9K1ijjysox3GyI20UXxIJCmplIteSdicgCmm7FngcU1pxZgEPqepiABF5CNgGuCnsL3qgRrp+U7XlSpkIh47ryZheFfxvaRMzR9Rk3M/KcRwnImk2oHSzgEvT8k5OTWmTq4IaqKoLAVT1AxEZmHDMMCA+T/p7YVvE1SKyHLhNVc/MMT1Zka7FXFtmcZwiwpbDur9D0nGczkdE2HCQBTsArNO/MnFWBsBbUO0dICIPA4PimwAFTk44PNPI/H1V9X0R6QncJiL7q+pv2jph/vz5GYpon48/qQJad8itLdNOkdcRiiXX5Rdf/sp876WQhkLI3rseGpZX06Qws2Ex8+ebd2NKynGffPQR7xfwWRTjuY8dm36G7XYVlKrOSLdPRBaKyCBVXSgig4EPEw57D9g8tj4ceCxc+/3w/4WI3AisD7SpoNq6mWx55e0lsPDzVttryrVT5LXH/PnziyLX5Rdf/sp876WQhkLKnpSw7bNR4+i14M0V671n7kzdmMKkpxTefSq5+n/uAg4OywcBdyYc8yAwQ0TqQ8DEDOBBESkXkX4AIlIJbA+8mmN6siKdSynLyWgdx3Gy4r2tdqep3mbpXjZ965KbMaHQ5OqDOg+4WUQOBRYAewKIyLrAkap6hKouEpEzgD9jJsDTVPVTEemBKaoKoBx4BLgix/RkRTo9FPmgHMdxCsGXQ0ez5IIbkS+XoPUNJTdjQqHJSUGp6ifA1gnbXwCOiK1fA1yTcswSYGou8vNFW1F8juM4BaW6Fq3O71xuXRU3YpE+iq/GW1CO4zhFwxUU6UczdxOf4zhO8XAFRfv9oBzHcZzC4wqK9C2oGh8T1nEcp2i4gsJbUI7jOKWIKyjaiOJzBeU4jlM0XEHRRgvKw8wdx3GKhiso0j8EDzN3HMcpHq6gSN9Zu4crKMdxnKLhCorkhyBAlT8dx3GcouFFMMlBEj0qJK1vynEcx+l8XEGRHCTRM90UzI7jOE5BcAVFckfdnulmuHQcx3EKgiso0rSgKvzROI7jFBMvhUmO4uvhJj7HcZyi4gqK5IfgJj7HcZzi4goKKEtoQnmQhOM4TnFxBYX7oBzHcUoRL4XxKD7HcZxSxBUU3g/KcRynFHEFRXILqoe3oBzHcYqKKyiSgyTqKv3ROI7jFBMvhUnTD8pbUI7jOEXFFRRp+kG5D8pxHKeouIIiuQXlUXyO4zjFJScFJSJ9ReQhEXlTRB4Ukfo0x90vIotE5K6U7aNF5FkReUtEfisiFbmkJ1uSovjcxOc4jlNccm1B/Qh4RFXHAY8CJ6Q57nxg/4Tt5wEXqerqwKfAYTmmJyuSVJEHSTiO4xSXXEvhnYBrw/K1wM5JB6nqY8DnCbu2BG6Nnb9LjunJiuUJM7v7bLqO4zjFJddieKCqLgRQ1Q+AgR09UUT6AYtUtSlsehcYmmN6smJJY2sNlTTLruM4jlM4RDWh+RA/QORhYFB8E6DAycA1qtoQO/ZjVe2X5jqbAd9X1R3Dej/gj8G8h4gMB+5T1Ump5y5evHhFIufPn9/BW+s4by0p54IFdS22XTF+cd7lOI7jOC0ZO3bsiuX6+voWLYN2gxJUdUa6fSKyUEQGqepCERkMfNjRRKnqxyLSR0TKQitqOPBee+fFbyZfjGlSfv3+RyxeanpwmxE1jB07kPnz53eKvPYollyXX3z5K/O9l0Iain3/K/O9J5Grie8u4OCwfBBwZxvHCq3jER4D9ujg+Z1GRZlw3gZ92GhwFduOrGH2hLr2T3Icx3E6lVzDus8DbhaRQ4EFwJ4AIrIucKSqHhHWnwTGAXUi8g5wmKo+jEUBzhORM4CXgKtyTE/WrNGnkrPW71Ms8Y7jOE4KOSkoVf0E2Dph+wvAEbH1TdOc/09gWi5pcBzHcbonHkztOI7jlCSuoBzHcZySxBWU4ziOU5K4gnIcx3FKEldQjuM4TkniCspxHMcpSVxBOY7jOCWJKyjHcRynJHEF5TiO45QkrqAcx3GcksQVlOM4jlOSuIJyHMdxShJXUI7jOE5J4grKcRzHKUlcQTmO4zgliSsox3EcpyRxBeU4juOUJK6gHMdxnJLEFZTjOI5TkriCchzHcUoSV1CO4zhOSeIKynEcxylJXEE5juM4JYkrKMdxHKckcQXlOI7jlCQ5KSgR6SsiD4nImyLyoIjUpznufhFZJCJ3pWyfKyJvi8hLIvKiiEzKJT2O4zhO9yHXFtSPgEdUdRzwKHBCmuPOB/ZPs+/7qjpFVddR1b/mmB7HcRynm5CrgtoJuDYsXwvsnHSQqj4GfN5JaXAcx3G6Ibkqh4GquhBAVT8ABmZxjTNF5GURuUhEKnNMj+M4jtNNEFVt+wCRh4FB8U2AAicD16hqQ+zYj1W1X5rrbIaZ83aMbRukqguDYroC+Luqnpl67uLFi9tOpOM4jtPlqa+vl/h6RXsnqOqMdPtEZGFMyQwGPswkMbHW1zIRmQt8P5PzHcdxnO5Lria+u4CDw/JBwJ1tHCvh17zBlBoiIpj/6tUc0+M4juN0E9o18bV5skgDcDMwAlgA7Kmqn4rIusCRqnpEOO5JYBxQB3wMHKaqD4vI74H+mOJ6GZitqktyuSHHcRyne5CTgnIcx3EyR0REi1T4FlN2pniI90pMMK2u+F/ZEJGC538RGSQitYWWm5COlfKdA0TPv8jPoGollZ0RK72CEpHpIrJGgWXuLSKni0hixGOB0nA0wX9Y6NqUiEyN/I+FRkR2E5HHRaSfqjYVUG6PEAj0K2BsoeQmpGOAiPwWOLqIaRgoItOKIHeKiFwL7AiFz/chDXuKyKPALiuT7GxZaRWUiIwSkceBM4FeBZAnIlItIr8GjgWeBz4rdC1ORFYVkReALYEXCilfRHqLyJXA74CphZIbk38u8D3gMlX9uFAtqNCN4gLgS2CfYo2YIiLjgceA97B3UIw0/BB4BtihkC1YEdkWuA54AbirSK3nXYHjgfNUdd7KIjsX2g0z78YcBDytqicXQpiqaqwj8paq+oWIlBehFjcNeEJVv1dguWBKsRFYTVUbo42dbRMPSrgGGAZsrapfikgVsKyzZKYmAajH+gF+GVrsf48/gwKxLnC1qs4BEJE6VU03wkveEZGRWP6bqapvx7Z32vuPXXt1YK6q/qyNYzpLdsQWwAWq+qCI9MCKhS/zLbfYsvPJSteCEpGKUHvqDdwbtu0jIhMjk1s+a1ciEq8ETALGBOX0HeA6ETlARCbkS16C/MjPFCnHGmCBiPQSkUtE5FgR2TF+bCeyG6YcG0VkpohsKSLVnVg4VYB9ieFjHANMEJHDsBbEhSKyZifIHSoi8c7tQ4BaoFJErgHmAleKyLfD8Z3yHSb4uvoCq4nICBG5Ffh5yPsNCad3BlsBn6nq2yIySUR2EJEBnaQc+oTFspAPBgEvicgGIvKkiJwvIsfkW24KvUNaIp/PuyE9RwBPEcsD3Ux23lgpFJSIbCEiOwDEaq1jgZEicglwCPAt4PZwTM6+ifDx3Q5sF21T1WeAGhH5DRZ2fyswBTg1RZHlBRE5DjNroKpRa2EQVlCfjLUgPsAy69qhlZcXJRUKoC1SNj8OrC8ilwM/wMxtF4rIevmQGZM9S0T+DuweU9A9sQrJbGBjrFN4NXCYWLeIfMgtE5GLgL8CZ0XbVXUB0AMbLeV5VZ0OXAWcLiL98+0LE5FaMT/TTdLSz/kq1oL9OdY95HZgW2DvfFdOQgVoNxGpjm1+wXbJj4ErgT2Bq0Vku8SLZCd3FRG5B7ghVH6Wh29+OXAKdr8XYPf+AxGZmc98H9KwqYj8B3gQQFWXhl09gelYS3Y74BfAHvnM/8WU3Rl0awUl5vOZC9wC/FBERsMKBXQ39qH+W1VnqupsoJeIzM5BXlQYTsE+hhpgciQ3cAUwE5ijqrcBlwBLgfWzlZuQjjIRORtrsawZak0RNwAzgFGqepyq/jak6UzI3XEsxmysX9t5wawT8QHWF66Xqm4NHAosxpRWeS5yY/LHYQXffKwwGgqgql9gffWmAH9R1fnA2Vgfvpp8yMZqrQOBo7CKSLzgPR4zsywK6XkKuD9syxsiUoNVuKqAPsDmsWf7HlAOjFbVm1T1LuA5rLImeaycbAK8BVwPTItdV7E8sAmwmaoeADwCbCIiffMhGzgR+AL4N/YeIk7D7nOUqt6tqn8EzgUOg/wFTIhIL2wQ7ROBBhHZN7Z7Hpb/egALVfVp4E1gj64uu7Po1gpKVb/GghF2AO4D/i+270rgHaw1EXENWT4TaelPmo8phxMxs8rmsUPvCfsPCuuNWKZ5PRu5KWmoEpGyoIDvAHYHvgscFVoQqOo72H3Wi8iq4dQngFfzVEDVAv8FJmI19l1jteg/YQX0aBFpUNUPscCBAaq6PFuBIlIuIkPC6rvAOar6DUxh7BiT/wjwQEgbqvof7Nln3YIRkfVFZDUxf86nWKvwPsyMclBkvlPVV7FW0xZiATobYaa/57OVnZKOkUHOV8DDqrobcDlwIDA87HsLU4pviMh+4dRGoEJVm/JoaqvE8v8pwH5AZEJ8FVNcQ4Go5v48Zk34NFthIjI4ZoE4FfgOcBswI1YpXRb2jRORAeHYAVh+yAkxt8HqIlKrqp8Bv1bVa7DpiM6PjlPV10K6FgGzwuZG4M9dUXZBUNVu9cNMOIcD64X1KkzpbIANxbRJ7NiNgd9jtYgjgL8BG2Uh85vAS1iNbOeUfUdhJoUpsW2rYx/mmZg56Fzso5Ys77kCawXdDJyWsP8a4PzYejmWeX8azvsHsF0Oz3wW9kGMDes9wv9G4flOih07FZiDFZ4bAk8Ch+Qg+6jw7O/FFHLf2L6tgIeA8UB52DYk3Pc8rAZ5MVCdhdwa4FLgX5jiuTNl/yqYr+no2LZa4JjwPp4F9s1Dfh+BmXOeDO90Ysr+m4PM2rDeE2vBPI0VWH8FpuWYhtWxytgWUX6M8gHwMNairYil99iQ5onATeF9VGUhdx3gL5g15BqgJravP3AOcGHKOecAFwJ/CHljlRzvfVdsDNI7wvPsk7L/SeCs2Hod1sr5DdZ6vSH6XrqS7EL9ip6AvN2Iffy/xFoDx2KtlHVj+3uH7dennLcR5o+4OX58BnLXw1oG62O1xmeBbWL7x4QP4tiU80ZgJqiMZaZcp4wwsjwwMtz/ycDQ2DFrAa8Aa8a2VWNN/mOBhhzkn4IV9HOwwIOjU/b/LNx/Q2xbTSjQbgL2yEF2X0wxrQl8IxR056Uc8+v4Rxp7ZmsDE3KQvRrw+9j64+FZ1oT1ylCA3BM7JiqkB+Yx338PqwDVAmdgSjGe76NK2Fop540hVlnLQf4MzGx3AdYaORHoH9u/P1aArppy3rewytEpGcqLRr8RbA66I8P6b7FKT4/Y/mmY8lo/fj7mh90yD/feM3x308L6VVgrLf6dTQD+R1DAsfQNw0ytXU52IX9FT0DebsRaSvcDw8P6cVgQwojYMWthdvEZWCtieJayymPL28ULRcykMT/l+F0wG/j+wBmdcO/XY+MbgrUWrgP2JtYywGY7vhormHcjFJZJ95SB3Gqs4+nIsL41VjvbLXbMGKzvzcRw/Bphe6r8DrUegcrY8qZYVwEwpTM5vPPtY8eMxJTYHuEjXjdVLlDWQdljY8urYoVi1GpcHzPtxZVDOaY0nsAU2KT4vWbzzBPSdDeh1Q4Mxipbc1OOOTOk43vA2W3l5yzkHwMcGJanYtaA1ArBLcChYXnd2PuKf0cdegcp170ydu/1WItoF5pby72wzujXhfvfPTXfZSGzd8r6cwTrA6YQzsNMjOWx93wRNuP4pdh4o11OdrF+XdoHFaKERoqFUFdjPqVVAFT1Qiz4YNvoeDU/wH1YwfIBVgvOKLxaRE4FzhGR7cOmpVhBGcm4AfgoRNBFPIo1rS/BPqSsEQthvlBEDhWRiWHzi0APEempqq9j/o/pWE0p4n7sY30AC/VN7YfUIR9QiJBbDVb4+NbEgj4A/hjk7Bec9ajqP7HW6TysVbt92N4Yrhf5aLQDsk8Drg//qOqTWOj2Dmp+t7ew97tn7LrvAKOwwmyhqr4Qv6YabfqgxEa+eAi4Siw8eX3gs7C7ITy/54E3sApKxBRMMVZjFZO/xu+1o888lo5NROQBETk7lv9+T7Oj/wNMGdeIyDdip74BnITNGNCqg24m6Qg+t8mxoIYhWOsVLDDmdmBtEYl3iiZaYgAAFpRJREFUxD4Ji5h7I/xXm1hdHoJqpAPvYH8RuVdsBJZoFIrPgargf1mMtcj3J8yaoOaTGQ7shb2LJzSHvmdi0YePisi5IrJ32HwHsFa4h9cwk+kIrOIS5WnFyojPVfWXXU12USm2hszmh330r2ABB7cB3w7bfwUcCfQM6zOwWkZZWN8Cc6LfQIatJ6yG/ALWCtkf83tsHfa9FKUhrG+CKaWoaX0VZnMfkuN9z8YK4ciO/jssamx3zLw1JRzXGyuoNwrrG2CFx5k5yN4QCzJ4LNzLz8P2PTGlF5mvRmO1te3D+pDwfJ4GpmYpezVM+c3F+pL9mdBqDe/7ptixU7EQ2tGYme0o7EMemqXszcJ73wvza5xKaIVgrYVzgUFhfSTwT6BfWP8+LX1Q2foYyzHT2V+AfbHAh08w32N/zLe6Uzi2Xzj2kLA+AWtlHZxLOrCAguuwQvBa4M9h+wisQhTlvb5YxOIJYb025IcPsFE0MpXbK8h7DPt+z8O+877AAWHf6NjxfwVmheUZId9smuN3NwirYF2HWQL2C9etwypcc4DNw7HDsUpD1LLePeTHYV1Ndin8ip6ALF7YGFoWvnsAl2EmvllYDW4yzQXmUzQXlhOBjbOUO42YMx9TEr8My5sB/wHqw/oamO8lckz3zkZmivxKrHBcK6wPC/e9EdYquxSz6w8L+y8iBExgBVm/2LUyMnNgheClNJsRh2PO2WGYMrwa+F7Y1yOsR4XEGtjIAdG1ysiwgMQK2V1i65OxwroqpOG3wPHRs8YUaZ+wXhc7rzwL2XXADrH1vYDfheVRmEnxYILpESswW/mYyM2MVhvy+aDYtvtoVkIHYibEKM9fBBwVlmtyTUd4zsfSMtDmb8B+YflEbHbtaF9cQQ0iZnLNJg2YGTF6n+Oxb3xoWJ+HVUIiM/MZwN7ZPus08nsRC2jBKoXXYmHrA8P9n09zxeR3NJvecjLjFlN2KfyKnoAsX9o6seVVMBNX77B+QXhhW2GF+q3kwSEYCqoamltj22IKIioULsMK5j2x2s6NebzfyJ48hJY+mN/TrKhnhILpOsyc8Qesr0n8Ohkrh3BeFTA5LEf2/euxlplgravXafax3AnsmHCdrD4YzEQWvd+yIO83sf1TsJbLgVgr605iCjk6r4OyahOee9xXsjFmsoyCIWZi/enuxFr1czujYCAoPayyURGefzwydB7mNJ+NtVh3zeb+25A/iZY+ze8Dx4TlYVgL5//C+mkktNbJvGIUPf8e8fOx6LR1wvJ0rBVxE2ZK/Cc5BL+0kZZeseX+WJkzIKyPwyqkD2LK40Wy9G+Xmuxi/4qegBxfnGA1idtjH/BArOn/CPBaeHmZ1prb/ZhDoXRCbL0HZoufhynJykxkZpKGcN89w31PiG1vwEx/95ISNZjpc21rG9ZKeSv+IYQC6wbg7VB49sqX7IRjtsEUcTxNW4Q0XJzts8cCSX5MQth5rLD8AfDTlH2VwD4EU0se8nWb7z78P0YspByrQO0ZCqmcI9TaSxPWgts7tj4dU9J/wKJaM1YSdMDSgIW0P0wsLD3kx6MwRbV6nu876VtYA7g7YfsuWGsv45D5cH67FZvOkl2qv6InoJ2Xkbagobkls1P8hdHs91mVLHw+KYXezNQ00NyCuIvmFsNEmmv4OSmmhPSsTazmGSugVif4AaL1SH7KPWTl94g/49RtmJnl3oR9dcD4fMpLc9xc4ICwvDkJNfOOfOyxY6Oa+SZYxWbtNo6dgzmdKzCz1zq5yE53Hm30T8FqzS+G5QZiLan4e8/m3beXdsxMWhmeU/8oz4X/GlL6YWUgtx8h+i98u4mKBjPjXxOWx5Olyb4D6ZlFqGTFvrnofxusQyzYIAA5+bji1w7La6W+h86UXcq/koviE5F+EgYxVNVlIWqtPrY/itCJon5WB24Rkf5iwxrtFPb/Q1Xfz1S+qqrYpHIXY/bd0SlRftG4XYuAsSLyO8y0UBmlOVOZSYgNankVVjNf8Z405Ezsvp8TkWki8iSwS0hXY7iHDkfHBXkSXxaR4wlTYsT3hec+BPiTiDSIyLUisn/Y97mqvh7O73DeiqW1SUTWEpHTYhGK8SGkomuWA8tE5EZMYQxOuV6HoxKD3Mbw/xQWgHGI2LAxqekUzAd6FBZ8MwgbHSH1elmNihGdJzaG4c0isnNYT32WY4GnRORbWGtlo5R0lmmgo7Jj7yBKw4DYc18xDFXYX4n5IL8UkcgHgqp+paqvpJ7TjtzycO7HwBgReQszy09IOS7KgyOBchE5CWup16XszxezsVFYVnxDsee5CRYpeRXmb/sqV2Hhmx0rIvdi5c6I1P2dJbukKbaGTP1hvcMfwyYVOwWz69+B1RbiNcyoRnEFZlZ6kVgkXQbyUmsqg7BIoTfaOGctbHic5wjO6BzvOTUNa4br/6iNc44PxzxCCEjI83uYS0p/lti+y7HRJ57GTIpZ9S0h1mLCat/fwKIfr8f6Ux2VelxY/xAbweGbebhPwczCp2CBMP1C/mv1TDFF2ISZMnP2c5DSwsE6fb+J+TKfCXKqYumM8vwPQzrmYqPj5/O9b4yFpd9GSqf22DE7YB1AHwduxKZPyVXualjB/DFttAqwiMQvscF463KUGVlhBPNz7hjb900s6Cg17wlmyvwHufVpSv3m+4T3nbY8yZfsrvQregKijBL7+Hpgg10+gQ2oCjaG3mWEaBZaNodfDvsyHrIjpYDcjjBMDjZv0fM0h5GnZtLhmL8iLx9I7L53pDka5xbgrrCc5BM5HvhOuut1QHa8wBPMCX4qzSGqOwCn0zIoIzr+YswpPTp1Xw7P4lLMrzU1rG+LKash8XvDlMQhhK4EYVsm5rw5wMlhOXI0V2FKN4o8m40VvANj50Xy46MSZBV0kpCm6vB/AnBEWN4M67v13YQ8vwsx01a26aDZXF2OtUQuwLpEzMQK7D8AJybk1f2wQIWtsnn/KdfaClPGx4X7OC6W7ysS0rozCSbNDO87yXQ9FliIRUvWYAE31yYdj1lpeuaShti1GsJ///C8o2jERFdBPmV3hV/xE9Ays0YvazjWOvlFtB0LfDiH1hE9Gb2s8OHHa0pbYMrwdiygIho65STMdBHZ13MuiNpI026YqeYRzLe1dbjnJYQhYmIfaJLTNtOw3XhLNOrD0xdrDc3DTHu7AlekvqP4OdG+LAvHeMtlKtZynU9zn476kJ4L83Xf4ZxNsFr6OCwaL6qEbI4phCg8/g5MEVYkyc9GdvxZxv53JwS0YK3Gc8Nyr5DnH6BZSSf52rIZgSH+zcUj867BhuoaFdYnYFFx9SlpzjhCEjPNzcICGqKKzlQSWqtYX6Zdo3yQy/NOuW6vlPWtMHPikSF9U7AKzCWYgn6FmB87m3yemudTZD+L9ek6ADPZ/4yUsUDzef9d8VcUH5TY6MPRSANNYqNB3ANcJiI/waZgOB9YVUQGq+on2IgNQ1R1SfAxRH6DLzKQOwD7IE4RkeHBbr0ZFpl1BFaLOk5ssrm7sVrlbnm87y1EZExsvUZs8ryfYkPBbI0pqH2xD+QsLANDGHFbQ26NXaND/haxOYJWD9dYLiI9ROSnwL0iciYW8HEcFq4ajcK+gYj005Re/qq6MFyzXDs4CraIzBGRk8NyNEndp5himhGueQPNdv/FYX2GiExOktGR+05JQ5man+khrLJzK1ZTRlUfx6Zo2ElskrersP5NDWF/C/mZyo6dFz3LyMdVjU2JMh0bS3ItERmmNgrCV1jL+uBwbqtREFLfTVvEv7mw/m3Ml/VjaZ4SfBnQT0Sq1EYneAWzKKw4T81fFPcfpU2D2NQv52GVwCOxKMNzwu4GbHSPB8Ox0ajzZ2Hf4S+A+0Skd7bPO/hDy0VkH+D48G4RkQOxFuM9WCfk+zFrzHFYP7sLMDPyiskcO5LPE+QPFZG1JTZ5pNhI9kdj/uW7sO4hg7EK6S4isrmI9BWRKwjTYWR7/12dgiqokFFOw3wX48K2/lhv/Kux+YGOxwroPwF/x2oVYH1uloYCucMZJWTQyIH6EeazWoiZThSrpddj5qQ7sBDWM9WGpXkb2FhEemSTOVPS0YAVuNeKyOFh89dYAVBFGHYJUxAfYnb4s4AtRWSLdPI7qByGYh2JLwtKsRKrJf4Xq8kNBc4KBfhc7F1sinUQTTtPT4Yfze3AsWLzNV0mIlurTaZ2MzbL60ys/8wYEdkpnPM6cLiqvpyBnLaIntW3sEK3CVgcCiuwFuwOwEGqejc2xtyHuQhMqJRUB8VwSdh0I5YvN8UCb17B8sj2mB/kBWCIxAKFskjDViLyKLB1rIDeDzPr7oYppXOwCsMTmKlxKxHZDGvlJk7J0MH3fzgWlbeaqu6KKYD9xGZxHgy8LyK9w/W+Dt/aTZiS+hc21t7/srvzFUNZLcfefT1mnQBrMZ2nqnNV9UzM7/bzoGwPxL7NWTTnmYwIZd1ZWJ46Hcv/J4XdlZjPPJqSZI7asF2XYmXe8Zh/7221aYFWXgrVVMNe9odYxhsW2z4Ee4GzMeVwNc1DFW2IDenyKOZn6puhzG0xp/PBYb0XpqD2xwqGyLzzY6xQAvg29sFugGXovAxHH651DxYB9kfMfBSZTI4j1rE3pHF2WJ6UJ/n3YWbTb4X14eF3T3gWvyc2kCgWLPAazYN75hyujo34cBs2GsN1sf2nYD4gwVoLr3ViPiyLyfwzZtp7FQvnvwDrXxWfHiSX+27AKgZPYoqWcI8bhOewVdi2EaaoZ4X938VaGpMwf9OcLOXXhO/mWazQraE56OJizJ9zLuYDikZbqccK1VswP+OeOdx/BdZKjcym0Xd9UNg+HrNUfAcLElg75P3JeXjP24f7jroj9MKmhDmHZp/jnNjx07DyJwotryX7vnyzsErwWeE7qsXKsv+F/LY9NhLHFTT7nBsIA1tjZWJWsrvbr3CCLAM0xdY3DS9tJFZbeBDYMLZ/Qvig9iTLzndYVFQT1hrbPmSU40Pm3Be4IRz3G0xJzAof9GnZykyTjsjmfn2QPxXzd5wYPuKhmIP0F1gN/tVYgdGiD0YH5Q3HzIYbhvV+mG39aMykEAVCnAicHpZnY+OljYpd52fAXnm8/waslr4H1tE5GgV7I8y89s2wntfOlm2kawFWSB8c8mBi1GIO10+qlAhmuTiG4IQPxz6OKYTVwnpdeF+vEYYUykL+qsT6q8XzENZKaqTlWIGTMJPj3pgCHZyHZ/BbmkeYiPu+XsEqkJOx1uQDmO8p5zmywvXXD9/+G5jCH49ZbX6OBSMNxVqs0dBhh5Aw0nuWslPLumjUke+FfNAn5Ito5uO1MWV6TCHyfVf6FczEp6rPAbeLyC3B93ERFgX3Dha99STwQTBB3YwVnstV9Wa1mUCzkfknwhwxmLL7BeZ/+DemBMpFZBY2HcEArFb5tKqekq3MdrgNC7r4MzaW3A+xGuwiTBlsiH08+6rqPeEeNP7fQTbBPsozRGSims+gHKuZPYi1EsE+2jeDyW9wSNNEABHZMqTltazvNqBq/bLUfIk/xe77Vmxk67UxJfEY1sJDVd/qhH4tK5DmfkU/xAqla7DxAk9K2Z+LDFHzoy3ClM23MUV8AqagbgL6i8hJIrIt5n94ABuRHyzcezAWNHJDlsn4CqgNPo2ZwNEicmqQd2+Q96+Q3kOxwnstVZ2HVSZ2C3kjK8I7fALrLzhAzd8c+d7uC7JeVtXvAt9X1UmqemO28uKojS7/Sywg5h1MUY7CzPYbYH7uM4CfiMh9WCXiyTzJfg64VaxfJlhFAFWdgw0LNQWz2kzGwsbnAj9T1YvzIb9bUUhtiNUcviAMshrbHvWBuBezzZ6eZ5mLsdrTeVgtbV7Ytzc2mGx9ge5/f8yUcxPWxD8Y83tdhbXwzqA5rDfjgU1TZN2DOX0Px4YAGo9VCjbEWlHjsQiy64D3MV9cfBy6oaTM0JnH59CpLZcOpiEy9T0C7J6PZ55y/ajVuEvsnX475MWLMCU1ARvc80FSRqQgi+i8hDRUYcE/C7Dx+S7CTLnzsNr8puH5PxK+vQ1i565PbP6rHNIQtVqOSdk+j5SxIjvhHffFzGqDsdbar7DuI9fQPD9VH8JI8HmW3RDe9ZphPTJvXkesrxMFshZ01V/hBVpfm0fCcuqwPCNICWHNk8yzgPvC8kFYq6UCq80citmnOy2MPJaOPphP7eexbatjkYRlmInxXvJjWlkXM6eNCgrpNkxBV2DmpZtiaRofO6/TwlljSmFvgp+JlmOq5VwoZ5ieXlgNttVwRXmUka5Sch020HE8zDur4Yk6kIY1CAEvYf1w4KKwvGISyc56B1gH7OeAn2Ct8gewqLmcpp/poOwzsXmgwCwpFwel9TIxc3YnyT4deCZl293kwce2svyKI9TMClGtNa9j17Uh8x2aZ9/slJZBB9IgmC9oRlhP7U1eRx6do1jk0Hnhw7wcc3xLKLAuJzYKQdje6QqCTm65ZJiWLUIh0plKOalSMpaUAV07Mw0JabqOlE7enZ0GrOX+o5Anjyzwe/4XIdgDqwhuSh6mu++g7AVYYERkXv8N5psseH7vir/IDFFQxGaEvFZVq9s9uAvLTEiDYLXnK4F7tJMffght/xewnqq+KSKrquo/RKRCc5hZNA/p6oV9qKep6otFTEdGXRaylYGZ1u5X1YdD37GC9mkRkQrMOrEd1in0dWz+rP8WMh0hLZ3+zBNk7o1FjVYVUm6QvRfm/3oeuFJX9rDxDKkohlBVnSciA0NHvw519OyKMhPSoCJyiFqwQCHkfSIiczA/x0RV/UfYvmK6dc2go2cemYoFZPylCLJXUMA8sCo2wGdGg9jmC1VtDJWCScAP1TolF0VZFOm7K9q3r6o3RRUyVe3eA7t2AkVpQTmFLRxE5AFs/LRPilFAJKSn4AVjMRGRhkJVSjpCaNVJkSonjtNhXEE5ToEoBcVcxFaz42SMK6iVhGL4PhzHcXLBFZTjOI5TkpTcjLqO4ziOA66gHMdxnBLFFZTjOI5TkriCchzHcUoSV1CO4zhOSeIKynE6ERH5l4gsEZHFIvKJiDwtIkd2ZDoRERklIk35mP7DcboinvEdp3NRYDtVrcdGlj8Xm4fqqg6cK+H8Tpsby3FKGVdQjtP5CICqfqY2EeVewEEiMkFEthWRF0MLa4GInBI774nw/6mI/E9EpoFNLigir4nIxyJyv4iMLOztOE5hcAXlOAVGbabnd7GZjz8HDggtrO2A2SKyYzh00/DfW1V7q+pzIrITNm3Fztgs0E9ho2U7TrfDFZTjFIf/AA2q+qSq/g1AVV8lzDSbcmzcxHckcI6qvhXG1DsXmCwiIwqRaMcpJK6gHKc4DAM+EZH1ReRREflQRD7FFFD/Ns4bBVwSAi4+AT7G/FTDOj/JjlNYXEE5ToERkfWAocDTwI3YJJbDVLUP8CuaW0xJA2W+g81I2xB+fVW1TlWfLUTaHaeQuIJynAIhIr1EZHvMZ3R9MO3VAYtUdZmIrA/sGzvlv0ATNuFhxK+AE0VkQrhmvYjsXpg7cJzCUpQZdR1nJeNuEWnElM1rwIWYogE4GpgjIpdiUXs3AX0AVPVLETkL+EOYtn0bVb1DRHoC80L03mLgYWzWZMfpVvh0G47jOE5J4iY+x3EcpyRxBeU4juOUJK6gHMdxnJLEFZTjOI5TkriCchzHcUoSV1CO4zhOSeIKynEcxylJXEE5juM4Jcn/A+w8GsoHu15LAAAAAElFTkSuQmCC\n"},"output_type":"display_data","metadata":{}}]},{"source":"## 8. The Sharpe Ratio, Step 1: The Average Difference in Daily Returns Stocks vs S&P 500\n<p>Now we can finally start computing the Sharpe Ratio. First we need to calculate the average of the <code>excess_returns</code>. This tells us how much more or less the investment yields per day compared to the benchmark.</p>","metadata":{"deletable":false,"run_control":{"frozen":true},"dc":{"key":"53"},"editable":false,"tags":["context"]},"cell_type":"markdown"},{"source":"# calculate the mean of excess_returns \n# ... YOUR CODE FOR TASK 8 HERE ...\navg_excess_return = excess_returns.mean()\n\n# plot avg_excess_returns\n# ... YOUR CODE FOR TASK 8 HERE ...\navg_excess_return.plot.bar(title='Mean of the Return Difference')","metadata":{"dc":{"key":"53"},"tags":["sample_code"],"trusted":true},"cell_type":"code","execution_count":219,"outputs":[{"data":{"text/plain":"<matplotlib.axes._subplots.AxesSubplot at 0x7fe6e9eee780>"},"output_type":"execute_result","execution_count":219,"metadata":{}},{"data":{"text/plain":"<matplotlib.figure.Figure at 0x7fe6e9ef3d30>","image/png":"iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X20XHV97/H3J4EDB5cJBgxW8kAkB5LgdQkoeukDbfACsTbHWpHESqPgxSVGW26XRaxXm1srFaugYLQtUQOohwgWk4gY2/hQK0J49NYkMhQSyAlXVhKSEpjmie/9Y/8O7AwzZ2ZyTrL3nPN5rTUre//2b3/3d+8z2d/Ze34zo4jAzMysbMYUnYCZmVk9LlBmZlZKLlBmZlZKLlBmZlZKLlBmZlZKLlBmZlZKLlA2okh6taS7JFUlPdLmuo9K+ujBym00k/ScpHfm5l8q6Z8kbZe0T9IUSWMlfUXSltT2O0XmbMVzgRrFJH0tnThuqbNsblq2u4jchuAqYAdwEvD6eh0k/aWkRw9VQpKmpmM58Ngh6V5J7zqAWIc098HU7NOzqcB/S9J5dbq/Asg/z94PvAE4E/gN4HHgj4B5wO+ntp8d3D2wsnOBGt0CeAx4i6SX1yx7H7DhkGc0dD3AjyPi8YjY2qCPyPb9UArgD8hO1KcC3wZukPSmNuMMW+6SDh+GMJeS7dNJwLuAfmCFpM/lO0XEkxGRf7HTA/wyItamZZFi9EfEXalt74EkNEz7ZWUQEX6M0gfwVWAV8CPgw7n2ycBu4H8Du2vWOR34PvA08CRwKzAlt/yE1NYPPAP8AnhXTYwfAv8IfAx4AtgKLAWOapLvK4A+4Cng2RTn9LRsKvAcsC/378frxFjQqB/wKPBXwDUpp/8HfA4YUxPjg8A6oAr8CvgoMHaQvAdyO7OmfQvwmVaPbwu5f7Qm1j8CP6w57tcD/wfYDGzOrbuo2X7X2a/ngHfWaX9/Wvbb9fqm7eX3YXXKLb9vj7R6vFO8vwa+mI7pnan9JcDngU3puXgv8Id1/i7nAytSn/8AFtTsz0vSsXkM+C/gEeAjueUTga+lv9d/Av+a33c/hnCOKjoBPwr8479QoN4JPJRrXwTcnk6Iu3Pts9KJ8+Nkr4BPAW5OJ42u1OfVZK+qXw1MAz5AVuzOysX5IbAN+CzZq+Y3pRPjoib53gXcB/z3tO2+FGcC2ZXFxHQS+VSaflHBA44ArgQ2Ai/P90snuq3AXwAnAm9Pub8nt/5fpX5z0wnuPLIrzYa5U1OgyO5czEttf9Pq8QWObJJ7vQK1uua47wAWAzOAU1rd7wb71ahAjUl/ly/U6wsck/52P0r7cXR6fIasQLwcOKbV452Wb0/HbTowI7e/q9Pz5QTgvWQF5vdq/i4Pk91efBXwN8AeYHou/o9Snz9IcX4LuDgtOxL4JbCM7Mr4VcAVZMX05KL/j3f6o/AE/Cjwj/9CgTqC7JXnWenk8jjwVl5coL4KfKMmxhFkrzznDrKd24C/z83/ELi/ps9i4N8GiXE22avrk3NtXWRXAh/Ltb3oRF0n1l+Se4Ves+5tNW23A19P091pX8+p6XMh8NQg2xs4Ee4kK0B70vwTwAntHN8mubdSoNa3u9+D7FfdApWW3QmsbNR34LlXs84n2P+FUkvHO+X/g5o+v0t2lf3SmvYlwLdr/i5/mls+huwq6H/WPO9ObbCf7yZ7UVR7lf0vwOfa/T/px/6Pw7BRLyJ2SboRuAQYB4wlu+VR+yb+64ETJT1d034E2St+JHWTnWjeQvZGd1d6/LBmnQdr5jcD5wyS5ixga0T8Kpf3bkl3kV1pDJcH6uR1Qpo+heykeaukfJ+xQJekY6Lx+16QnczuI7uy/BzwVxGxIbe86fEdBvc2aB9svw/EcLxX1s7xvrtm3deRHbfNNeseDjxU0/f552JEPCfpSeC41HQaWTG8v0GOryN7nu+o2U4XWYG0IXCBsgH/QHbynAx8NSL21fyHg+zV5Y1kt5lqFw6cKP6O7FbIZWQngmfITsbjavrXjg4MyjFoZ7C8Bv59O1Cps+62JrE3R8QjwCOSLgB+Lun/RsTDufjNjm8jz9VZp95ggWcarD9sfw9JY4GTyW7JDkU7x7t2v8aQ3fZ7HS8+LrX7OpR9HwOsJbvjULsdF6ghcoEyACJinaQ1ZMN+FzTodg/wmoh4dJBQv012a+hWAGVV7iSyN96H4pfAMZJmRMT6FPsIsqHK17UZazfZq/ADyeG/gBMj4vsHsP7zImK9pOVk78P1puZWjm+j3J8EXlnTdirNC9vB8D6yFyTfGmKcoRzve8je1+qOiLVDyOFe4GWSTouI+xps50Lg6YjYMoTtWB1leMVq5XEOcOwgJ8hPATMl3STp9ZJOkPR7kq6RdELq8yugNy2fRXZlVnvibFtErAbWAN+QdKakVwM3kN3G+XKb4R4FXiHpjZKOSbclW8nhGbJj8ClJl0o6SdIsSRdI+ts2c4B0tSnpDWm+lePbKPd/Bi6Q9D9SXp8je4/lYBsv6ThJkyT9pqQvkI14uyYifjqUwEM53un58s/AtyX1Spom6TRJCyVd3EYOq4GfAjenzwaekJ5/AzG+TvY3+W469lMlnSHpI5LmHtCO2/NcoOx5EfFfEbF9kOXrya6wXgLcQfYK9+/JRjINrHcZ2Siz1cAPyIb41r6SPtD3JnqB9cBKsttHE4E3RUT+Vk8rsW9LOX2X7Mrjw62uGxGfBP4X2YiwB8iGFP8Z2Ulq0FXrxPoF2SCVK9N8K8e3Ue6fTm19wE9S/2XNcmjS3kyQXb1uJrudexPZRwHeEhF/PhzbaPF4N4o9l+zzZp8jG6a+Engz2UjBwdatbXsz2aCRL5E9/24kG4lIROwiG1x0D/AVshdot5K9n7ixhV20QSiNOBm8U/bJ8GvICtqSiPh0zfIuslezp5ONBrsgIh5Ly64ALgL2ko2WWdVizC+QDXN9abNtmJnZyNP0CkrSGLJXSeeSjaqZL2lGTbeLgW0R0UNWdK5K684C3gHMBOYAi5UZNKak08nuH0ezbZiZ2cjUyi2+M4BKRGyMiD1ktxB6a/r0kn0TAGTftzU7Tc8F+iJibxpOW0nxGsZMxeszZLcu8qNiardxdqs7aWZmnaeVUXzHk31wc8AmsgJTt08anrxD0oTUfmeuX39q0yAxF5J9aPDXNcOca7exXdKE/PsPO3bsGOrnLszMrCDjx4/f76R/sIaZv+gDNC2tJP0G2fdinXWwtmFmZp2hlVt8/cCU3Pyk1Ja3iewDngMf0huXrmz6B9pr1m0U81Sy7wJ7OP2kwFGSBj71/Xysmm2YmdkI1EqBWgNMT+P7u8i+5HJ5TZ8VvPDhzvPJhhiT+s2T1CVpGtkXOd7dKGZE3B4Rr4yIV0XENODZiDgpF6veNqxAlUq9D/ibdTY/r8uh6S2+9H7PQrLPawwMCV8naRGwJiJWkn0B442SKmSfXJ+X1l0raRnZV4HsAS6NbFx73Zj1Np+brrsNMzMbmVr6HFSn8CCJQ69SqdDTM1zfY2pWDn5eF6N2kIS/ScLMzErJBcrMzErJBcrMzErJBcrMzErJBcrMzErJBcrMzErJBcrMzErJBcrMzErJBcrMzErJBcrMzErJBcrMzErJBcrMzErJBcrMzErJBcrMzErJBcrMzEqp6Q8W2qGx+Zm9/Lr6XNFptK165ER2btlddBptOa57DK98iZ/6ZmXX0v9SSecB1/DCr99+umZ5F3ADcDqwBbggIh5Ly64ALgL2An8aEasGiynpeuB1KfRDwLsj4llJC4DPAJvSsusi4isHtNcl9Ovqc1z2s+1Fp3GAdhWdQFuuPvNoXvmSorMws2aa3uKTNAa4DjgXOAWYL2lGTbeLgW0R0UNWdK5K684C3gHMBOYAi5UZLOafRcRrI+K1wOPAwtx2+iLitPQYMcXJzMxerJX3oM4AKhGxMSL2AH1Ab02fXmBpmr4FmJ2m55IVlb0RsQGopHgNY0bETgBJArqB/M+47/dzwGZmNnK1UqCOJ7uSGbAptdXtExH7gB2SJtRZtz+1DRpT0leAJ4CTgWtz/d4m6QFJyyRNaiF3MzPrUAfrneIhXelExEXpCupaYB7wNWA58I2I2CPpErIrtrMbxahUKkNJ4ZCrHjmx6BRGjWq1SqWyseg0rOQ67RzSqXp6ehoua6VA9QNTcvOTUlveJmAysFnSWGBcRGyT1J/aa9dVs5gREZJuBj4MfC0insotvp70Plcjg+10GWUj4TprsEGn6u7upmdyZz0/7NCqVCoddw4ZiVq5xbcGmC5pahqtN4/saiZvBbAgTZ8PrE7Ty4F5krokTQOmA3cPFlPSielfkb2HtT7NvyK3vV5gbTs7amZmnaXpFVRE7JO0EFjFC0PC10laBKyJiJXAEuBGSRVgK1nBISLWSlpGVkz2AJdGRACNYgpYKumlZFdZDwLvT6l8SNLcFGcb8O7hOQRmZlZGyurFyLBjx46O3Zn7t+zu4M9BdZarzzyaU4/tKjoNKzHf4ivG+PHj9xu/4K86MjOzUnKBMjOzUnKBMjOzUnKBMjOzUnKBMjOzUnKBMjOzUnKBMjOzUnKBMjOzUnKBMjOzUnKBMjOzUnKBMjOzUnKBMjOzUnKBMjOzUnKBMjOzUnKBMjOzUnKBMjOzUmqpQEk6T9J6SQ9JurzO8i5JfZIqku6UNCW37IrUvk7SOc1iSrpe0gPpsUzSUc22YWZmI0/TAiVpDHAdcC5wCjBf0oyabhcD2yKiB7gGuCqtOwt4BzATmAMsVmawmH8WEa+NiNcCjwMLB9uGmZmNTK1cQZ0BVCJiY0TsAfqA3po+vcDSNH0LMDtNzwX6ImJvRGwAKilew5gRsRNAkoBuIBps4+w29tPMzDpMKwXqeLIrmQGbUlvdPhGxD9ghaUKddftT26AxJX0FeAI4Gbi2wTa2p22YmdkIdNhBiquhrBwRF6UrqGuBC3jhyqnlbVQqlaGkcMhVj5xYdAqjRrVapVLZWHQaVnKddg7pVD09PQ2XtVKg+oH8gIRJqS1vEzAZ2CxpLDAuIrZJ6k/tteuqWcyICEk3Ax8mK1ADsfbbRqOkB9vpMtq5ZTewq+g0RoXu7m56JnfW88MOrUql0nHnkJGolVt8a4DpkqZK6gLmActr+qwAFqTp84HVaXo5MC+NwJsGTAfuHiympBPTvyJ7D2t9Lla9bZiZ2QjU9AoqIvZJWgisIitoSyJinaRFwJqIWAksAW6UVAG2khUcImKtpGXAWmAPcGlEBNAopoClkl5KdpX1IPD+lErdbZiZ2cikrF6MDDt27OjYnbl/y24u+9n2otMYFa4+82hOPbar6DSsxHyLrxjjx4/fb2yBv0nCzMxKyQXKzMxKyQXKzMxKyQXKzMxKyQXKzMxKyQXKzMxKyQXKzMxKyQXKzMxKyQXKzMxKyQXKzMxKyQXKzMxKyQXKzMxKyQXKzMxKyQXKzMxKyQXKzMxKyQXKzMxKqaUCJek8SeslPSTp8jrLuyT1SapIulPSlNyyK1L7OknnNIsp6abU/gtJ10sam9rPkrRd0n3p8bGh7bqZmZVZ0wIlaQxwHXAucAowX9KMmm4XA9sioge4BrgqrTsLeAcwE5gDLFZmsJg3RcSMiHgNcBTw3tx2fhIRp6XHJw9sl83MrBO0cgV1BlCJiI0RsQfoA3pr+vQCS9P0LcDsND0X6IuIvRGxAaikeA1jRsQdubh3A5Ny8/v9HLCZmY1crRSo44HHc/ObUlvdPhGxD9ghaUKddftTW9OYkg4DLgTyBeuNku6X9N10dWZmZiPUYQcp7nBc6SwGfhwR/5bm7wWmRsSzkuYAtwEnNVq5UqkMQwqHTvXIiUWnMGpUq1UqlY1Fp2El12nnkE7V09PTcFkrBaofmJKbn5Ta8jYBk4HNaVDDuIjYJqk/tdeuq8FiSvo4cGxEXDLQFhE7c9Pfk7RY0oSI2FYv6cF2uox2btkN7Co6jVGhu7ubnsmd9fywQ6tSqXTcOWQkauUW3xpguqSpkrqAecDymj4rgAVp+nxgdZpeDsxLo/ymAdPJ3ldqGFPSe8kGT8zPb0DScbnpMwA1Kk5mZtb5ml5BRcQ+SQuBVWQFbUlErJO0CFgTESuBJcCNkirAVrKCQ0SslbQMWAvsAS6NiADqxkyb/BKwAfi5pAC+nUbsvV3S+1OcKnDB8BwCMzMrI2X1YmTYsWNHx+7M/Vt2c9nPthedxqhw9ZlHc+qxXUWnYSXmW3zFGD9+/H7jF/xNEmZmVkouUGZmVkouUGZmVkouUGZmVkouUGZmVkouUGZmVkouUGZmVkouUGZmVkouUGZmVkouUGZmVkouUGZmVkouUGZmVkouUGZmVkouUGZmVkouUGZmVkouUGZmVkotFShJ50laL+khSZfXWd4lqU9SRdKdkqbkll2R2tdJOqdZTEk3pfZfSLpe0tjcsi+kWA9Ieu2B77aZmZVd0wIlaQxwHXAucAowX9KMmm4XA9sioge4BrgqrTsLeAcwE5gDLFZmsJg3RcSMiHgNcBTw3hRrDnBi2sb7gC8f+G6bmVnZtXIFdQZQiYiNEbEH6AN6a/r0AkvT9C3A7DQ9F+iLiL0RsQGopHgNY0bEHbm4dwOTctu4IfW5Cxgv6bhWd9TMzDpLKwXqeODx3Pym1Fa3T0TsA3ZImlBn3f7U1jSmpMOAC4HvNcijv3YdMzMbOQ47SHE1DDEWAz+OiJ8dyMqVSmUYUjh0qkdOLDqFUaNarVKpbCw6DSu5TjuHdKqenp6Gy1opUP3AlNz8pNSWtwmYDGxOgxrGRcQ2Sf2pvXZdDRZT0seBYyPikpo86sWqa7CdLqOdW3YDu4pOY1To7u6mZ3JnPT/s0KpUKh13DhmJWrnFtwaYLmmqpC5gHrC8ps8KYEGaPh9YnaaXA/PSKL9pwHSy95UaxpT0XrLBE/NrtrEc+JPU543A9oj4dct7amZmHaXpFVRE7JO0EFhFVtCWRMQ6SYuANRGxElgC3CipAmwlKzhExFpJy4C1wB7g0ogIoG7MtMkvARuAn0sK4NsR8cmIuF3SmyU9DDwDvGe4DoKZmZVPS+9BpZF1J9e0fSI3vYtsOHm9da8ErmwlZmo/fJA8FraSr5mZdT5/k4SZmZWSC5SZmZWSC5SZmZWSC5SZmZWSC5SZmZWSC5SZmZWSC5SZmZWSC5SZmZWSC5SZmZWSC5SZmZWSC5SZmZXSwfo9KDMzAPTkZrS1s354YEq1yph1O4tOo21xzHHExFcWncawcYEys4NKW3/NUX97WdFptOWoohM4QM9+5OoRVaB8i8/MzErJBcrMzErJBcrMzEqppQIl6TxJ6yU9JOnyOsu7JPVJqki6U9KU3LIrUvs6Sec0iynpA6n/PkkTcu1nSdou6b70+NiB77aZmZVd00ESksYA1wFnA5uBNZK+ExHrc90uBrZFRI+kC4CrgHmSZpH90u5MYBLwz5J6AA0S86fACuBHddL5SUTMPbBdNTOzTtLKFdQZQCUiNkbEHqAP6K3p0wssTdO3ALPT9FygLyL2RsQGoJLiNYwZEQ9GxGNkRaxWvTYzMxuBWilQxwOP5+Y3pba6fSJiH7Aj3Z6rXbc/tbUSs543Srpf0nfT1ZmZmY1QB+tzUAfjSudeYGpEPCtpDnAbcFKjzpVK5SCkcPBUj5xYdAqjRrVapVLZWHQao8aUarVjP1fUaarVKo912Lmvp6en4bJWClQ/MCU3Pym15W0CJgObJY0FxkXENkn9qb12XbUQM/abidiZm/6epMWSJkTEtnpJD7bTZbRzy25gV9FpjArd3d30TO6s50cn68RvZOhU3d3dHXfuG0wrt/jWANMlTZXUBcwDltf0WQEsSNPnA6vT9HKywRJdkqYB04G7W4wpcldiko7LTZ8BqFFxMjOzztf0Cioi9klaCKwiK2hLImKdpEXAmohYCSwBbpRUAbaSFRwiYq2kZcBaYA9waUQEUDcmgKQPAn8BHAc8KOn2iLgEeLuk96c4VeCC4TsMZmZWNi29BxURdwAn17R9Ije9i2w4eb11rwSubCVmar8WuLZO+xeBL7aSr5mZdT5/k4SZmZWSC5SZmZWSC5SZmZWSC5SZmZWSC5SZmZWSC5SZmZWSC5SZmZWSC5SZmZWSC5SZmZWSC5SZmZWSC5SZmZWSC5SZmZWSC5SZmZWSC5SZmZWSC5SZmZVSSwVK0nmS1kt6SNLldZZ3SeqTVJF0p6QpuWVXpPZ1ks5pFlPSB1L/fZIm1GznC2nZA5Jee2C7bGZmnaBpgZI0BrgOOBc4BZgvaUZNt4uBbRHRA1wDXJXWnUX2Q4YzgTnAYmUGi/lT4GxgY00ec4AT0zbeB3y5/d01M7NO0coV1BlAJSI2RsQeoA/orenTCyxN07cAs9P0XKAvIvZGxAagkuI1jBkRD0bEY4DqbOOG1OcuYLyk41reUzMz6yitFKjjgcdz85tSW90+EbEP2JFuz9Wu25/aWonZLI+BWGZmNgIdrEEStVc/ZmZmbTmshT79wJTc/KTUlrcJmAxsljQWGBcR2yT1p/baddVCzKiTR71YdVUqlUaLSql65MSiUxg1qtUqlcrG5h1tWEypVjmq6CRGiWq1ymMddu7r6elpuKyVArUGmC5pKvAEMA+YX9NnBbAAuAs4H1id2pcDX5d0NdntuOnA3WRXbs1iiv2vxJYDHwBulvRGYHtE/LpR0oPtdBnt3LIb2FV0GqNCd3c3PZM76/nRycas21l0CqNGd3d3x537BtO0QEXEPkkLgVVkhWVJRKyTtAhYExErgSXAjZIqwFaygkNErJW0DFgL7AEujYgA6sYEkPRB4C+A44AHJd0eEZdExO2S3izpYeAZ4D3DeSDMzKxcWrmCIiLuAE6uaftEbnoX2XDyeuteCVzZSszUfi1wbYNYC1vJ18zMOp+/ScLMzErJBcrMzErJBcrMzErJBcrMzErJBcrMzErJBcrMzErJBcrMzErJBcrMzErJBcrMzErJBcrMzErJBcrMzErJBcrMzErJBcrMzErJBcrMzErJBcrMzErJBcrMzEqppQIl6TxJ6yU9JOnyOsu7JPVJqki6U9KU3LIrUvs6Sec0iynpBEk/T+3flHRYal8g6UlJ96XHRUPbdTMzK7OmBUrSGOA64FzgFGC+pBk13S4GtkVED3ANcFVadxbZL+3OBOYAi5UZLOangc9GxEnA9hR7QF9EnJYeXzmgPTYzs47QyhXUGUAlIjZGxB6gD+it6dMLLE3TtwCz0/RcsqKyNyI2AJUUb7CYs4Fb0/RS4K257ajVHTMzs87WSoE6Hng8N78ptdXtExH7gB2SJtRZtz+11Y0p6RjgqYh4rsG23ibpAUnLJE1qIXczM+tQhx2kuEO50mm07nLgGxGxR9IlZFdXZzcKUqlUhpDCoVc9cmLRKYwa1WqVSmVj0WmMGlOqVY4qOolRolqt8liHnft6enoaLmulQPUDU3Lzk1Jb3iZgMrBZ0lhgXERsk9Sf2mvXVb2YEbFV0tGSxqSrqOe3FRFP5fpfT3qfq5HBdrqMdm7ZDewqOo1Robu7m57JnfX86GRj1u0sOoVRo7u7u+POfYNp5RbfGmC6pKmSuoB5ZFczeSuABWn6fGB1ml4OzEuj/KYB04G7G8T8TlpndYpBivkdAEmvyG2vF1jb2i6amVknanoFFRH7JC0EVpEVtCURsU7SImBNRKwElgA3SqoAW8kKDhGxVtIysmKyB7g0IgKoF3N92uRHgD5Jfw3cn2IDfEjS3BRnG/Duoe++mZmVVUvvQUXEHcDJNW2fyE3vIhtOXm/dK4ErW4mZ2h8F3lCn/aPAR1vJ18zMOp+/ScLMzErJBcrMzErJBcrMzErJBcrMzErJBcrMzErJBcrMzErJBcrMzErJBcrMzErJBcrMzErJBcrMzErJBcrMzErJBcrMzErJBcrMzErJBcrMzErJBcrMzErJBcrMzEqppQIl6TxJ6yU9JOnyOsu7JPVJqki6U9KU3LIrUvs6Sec0iynpBEk/T+3flHRYs22YmdnI07RASRoDXAecC5wCzJc0o6bbxcC2iOgBrgGuSuvOIvul3ZnAHGCxMoPF/DTw2Yg4CdieYjfchpmZjUytXEGdAVQiYmNE7AH6gN6aPr3A0jR9CzA7Tc8F+iJib0RsACop3mAxZwO3pumlwFsbbOPslvbQzMw60mEt9DkeeDw3v4mswNTtExH7JO2QNCG135nr15/aVC+mpGOApyLiuVz78Q22sV3ShIjY1sI+lN6px3bxo7kTi07DbNg9N/NUdi79UdFpWAc6WIMkdAjWHco2zMys5FopUP1AfkDCpNSWtwmYDCBpLDAuXdn0D7TXrFs3ZkRsBY5O71HVbuv5WDXbMDOzEaiVW3xrgOmSpgJPAPOA+TV9VgALgLuA84HVqX058HVJV5PdopsO3E1WGGtjzkvrrE4xbk4xv5OLVW8bzxs/fryvqszMRghFRPNO0nnA58kKy5KI+FtJi4A1EbFS0hHAjcCpwFZgXhoUgaQryEbg7QH+NCJWNYqZ2qeRDZp4GXA/8K6I2DPYNszMbORpqUCZmZkdav4mCTMzKyUXKDMzK6VWBkmY7UfS8cBUcs+fiPhJcRmZDV29z1VKmhYRjxaV02jnAmVtkfRp4AJgLbAvNQfgAmWdboWkORHxn/D8V7UtA15dbFqjlwuUteutwMkRsavoRMyG2afIitTvAycDNwB/XGxKo5sLlLXrEeBwwAXKRpSI+K6kw4FVwEuBP4yIhwpOa1RzgbJ2PQs8IOlfyBWpiPhQcSmZHThJ15Ldph4wHvgPYKEkP7cL5AJl7VqeHmYjxT018/cWkoW9iD+oa22T1AWclGZ/lX4yxazj+bldLi5Q1hZJv0v2u1wbyL5RfjKwwMPMrdP5uV0+LlDWFkn3Au+MiF+l+ZOAb0bE6cVmZjY0fm6Xj79Jwtp1+MB/YIA0yunwAvMxGy5+bpeMB0lYu+6RdD1wU5r/Y178JrNZJ/Jzu2R8i8/akn725APAb6WmfwW+GBG7i8vKbOgaPLcX+0PpxXGBsrZIuhC4LSKezrW9JSJWFpiW2bBIo/hOJvtclEfxFcwFytozUrV7AAAECElEQVQiaTvZKKf5EbEutd0XEacVmpjZEHkUX/l4kIS161HgIuAWSeenNhWYj9lw+SxwTkScFRG/A5wLXF1wTqOaB0lYuyIi7pN0FvBNSW8AxhadlNkweNEovvTdfFYQX0FZu54AiIgtZK8wA/8cgY0M90i6XtLvpsc/4lF8hfJ7UGZmeBRfGblAWVskvRy4HJgFHDnQHhGzC0vKbJikUXwzgefIRvH54xMF8i0+a9fXgXXANGAR2YinNUUmZDYc0g8V/gfweeA64GFJc4rNanTzFZS1RdK9EXG6pF9ExGtS25qIeH3RuZkNhaT1wFsi4uE0fyLw3YiYUWxmo5dH8Vm7Bj64+ER6xbkZmFBgPmbD5emB4pQ8AjzdqLMdfC5Q1q5PShoP/DlwLTAOuKzYlMwOnKS3pcl7JN0OLCMbnXo+vn1dKN/iM7NRTdJXB1kcEXHRIUvG9uMCZW2RNA34IHACuSvwiJhbVE5mNjL5Fp+16zZgCbCCbCiu2YiQfqDwS8BxEfFqSa8B5kbEJwtObdTyFZS1RdJdEfGGovMwG26Sfgx8GPj7iDg1tf17RPibUgriKyhr1+clfQJYBTz/CfuIuK+4lMyGxVERcbe033cf7y0qGXOBsvb9N+BCYDYv3OKLNG/Wybakzz4FgKS3k7570orhW3zWFkkPA7P8FTA20kh6FfAPwJnAU2Q/LfOuiNhQZF6jma+grF3/DhwNPFl0ImbDKSIeAd4k6SXAmPyvRlsx/F181q6jgfWSvi9peXp8p+ikzIZK0qckHR0Rz0TE05JeJskj+ArkW3zWlvRDhc/PAr8NzIuIUwpKyWxYSLp/YPReru2+iDitqJxGO19BWVsi4sfAfwJvAb5GNjjiy0XmZDZMxqbfhAJAUjdwxCD97SDze1DWkvQhxvnpsQW4mewK/PcKTcxs+Hwd+JfcVx+9B1haYD6jnm/xWUskPUf2C6MX536O4JGIeFWxmZkNn/T7T2en2R9ExPeLzGe0c4Gylkh6KzAP+E3gDqAPuD4iphWamJmNWC5Q1pY0BLeX7FbfbOAG4J8iYlWhiZkNkaQ3kv2EzEygCxgLPBMR4wpNbBRzgbIDJullZL+Zc0FEnN2sv1mZSbqH7C7Bt4DXAX8CnBQRVxSa2CjmAmVmRlagIuJ1kn4REa9JbS8aem6HjkfxmZllnpXUBTwg6Sqy7+HzR3EK5INvZpa5kOycuBB4BpgM/FGhGY1yvsVnZqOapCkR8VjRediL+QrKzEa72wYmJN1aZCK2PxcoMxvt8r9Q6A+el4gLlJmNdtFg2grm96DMbFSTtI9sUISAbuDZgUVA+IO6xXGBMjOzUvItPjMzKyUXKDMzKyUXKDMzKyUXKDMzK6X/D7Mko5ah1NiQAAAAAElFTkSuQmCC\n"},"output_type":"display_data","metadata":{}}]},{"source":"## 9. The Sharpe Ratio, Step 2: Standard Deviation of the Return Difference\n<p>It looks like there was quite a bit of a difference between average daily returns for Amazon and Facebook.</p>\n<p>Next, we calculate the standard deviation of the <code>excess_returns</code>. This shows us the amount of risk an investment in the stocks implies as compared to an investment in the S&amp;P 500.</p>","metadata":{"deletable":false,"run_control":{"frozen":true},"dc":{"key":"60"},"editable":false,"tags":["context"]},"cell_type":"markdown"},{"source":"# calculate the standard deviations\nsd_excess_return = excess_returns.std()\n\n# plot the standard deviations\n# ... YOUR CODE FOR TASK 9 HERE ...\nsd_excess_return.plot.bar(title='Standard Deviation of the Return Difference')","metadata":{"dc":{"key":"60"},"tags":["sample_code"],"trusted":true},"cell_type":"code","execution_count":221,"outputs":[{"data":{"text/plain":"<matplotlib.axes._subplots.AxesSubplot at 0x7fe6e9e127b8>"},"output_type":"execute_result","execution_count":221,"metadata":{}},{"data":{"text/plain":"<matplotlib.figure.Figure at 0x7fe6e9eee4a8>","image/png":"iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X28XFV97/HPN4GYAyVg1GhNcmIwh0Cg+IAERS0IykNrOdgWTHwANW2tEPBaa1HqvTQvqdxyq6Cl1qoRQ4qmNL1qEn1R1ChV4UIQfCInMkoIJEEwiUBChiQkv/vHWgd2JnPOTM5DZp8z3/frNa+z99prr/ntOWv2b/bea2YrIjAzMyubMa0OwMzMrB4nKDMzKyUnKDMzKyUnKDMzKyUnKDMzKyUnKDMzKyUnqBFG0lpJlw9T29Mk7ZF08nC0PxBDGZOk6yXdMhRxDQVJp0j6maSdklbu57p7JL1tuGJrV/X6m6Qpkr4jaZuk3bnsMElflfSYpN2SOlsX9ejlBNUHSeMlfUzSfZK2S9os6U5J8wt1Pr+/O5YRoN8vxkm6Ir+Bd0t6WtIWSXdIWiDpecMQz4PAi4A7ml1B0tsl7amz6FLgvKEKbAj8C3AX8BLgj+tVONB9LCfNPYXHFkk/lHT2ANoqxfujkHR6H9vy+/oGSa+pqV6vv10OPB84HvjdXPY+4CTg5Fz20PBuRXtygurbZ4F3AB8EjgFOBa4DjmhhTENC0kH9LW6iibWkN/Fk4DWk1+VPgJ9L6hp8hM+K5NGI2L0fq4k6iTYitkbE40MX3aB1Ad+OiI0R8VirgykI4OWk//FrgHuAr0k6plUBSTp4kE0E8EekbZoF/CWpn/xA0v94plL9/tYF3BkR90fEo4WyeyNida4/oF88GILtGt0iwo86D+C3wEX9LL8C2APsLvy9IC+7lPSm3go8DHwFeFFh3VPyOm8EbgWeBO4Fzqp5jpcBtwFPAb8gffpfC1xeqNPsc/0B8H1gO/DevOx8oAJUgR+Q3sB7gJMbbPd9dcoPzW19p6Z8To6vmmP/BNCRl/0Z8Bgwrmady4B1eXpabUzAlcDq/Lo9SDoSOaxme4v/ly/mZV8Cbql5rr8GfgXsAH4JvL9m+VpgAXAtsBn4NfBJYEyD/nMU8I38f9kKLANe2k+MF+xnH9tD+hR/A/AE6RP8h2vWPwj4O+D+/Pr/DPiLBnGfkp/nxYWy38nPd3FN3TflfrMdWA98EZjYZOxvq2nrW73/p8Lr/jHgn4FNwO3NbnedbdqnDxWW/UP+30+vV7deX8qx7Sk8Vjb7euf6lwA3kvr+V3L5JFL/fDRv1/eB1w9gn/EC4HpSP60CPcC7CstfCiwl7d+2AP8FHDdc+9HBPloeQFkfpB3gMuC5fSw/BPi3/AZ9Qe5gz8nLLgFOy539pFznu3U62z35Tf7S3PEfAw7PdcbnN/1y4Ljczp3ANvZOUM0+12rgD3O9FwOvAJ4m7ey7gHPzG2t3vTdyob26CSov+6vc5vPy/LtIO/W35ed9HfBjYFFePiG/0c6raefnwMfy9LTamEinXE4GOoE35G27Pi87GLgor9P7f+lNXtdTSFDAxfn55+X/wV/kN/W7C3XW5m34m1znT4GdxTp1XofxwDrSTvfl+bVeCdxH2okdlOPaQ/ok/0zf2Y8+tof0gWQeMD1v8x7gDYX1v5Rf79Pz63geaafUX+x7Jaj8ev51bvvPC/VOy6/dRcCRwAnAd4Dv5eWHNoi9mQT1GPC/gBnA0c1ud51t6i9BPS9v71/V62857h8Ci/N2HJbXWQJ8L5cd0ezrneP4TY57eu5T40nJ5qbcV44EPkLqizP3c5/RQzpt/AbSqeM3AucXtuVh0hmPWaT3/adyPM9r9T637v+u1QGU9UHaAa4l7XB/Avwr0F1T5/PkT08N2npF7vS/W9PZugt1endYb8rzf0b6JDWhUOfYXOfyATxX7Q5hMfD9mrKLGVyCOjOv/6o8v5Z9P0G+PsfT+6b6CrC8sPxVuY2uPN/nzqWwzrlAtTD/dmB3nXq1CepB4KqaOp8EflmYXwt8rabON4Eb+4lnHumDxHMLZZNIRxrvKJTt83+p01bdPpbXvaambDXw93l6en4dj6qp8z+Be/p5vt7+0nvk13v0sKamL34X+HjNup257vFNxN5MgvrW/m53H9vUbx8i77T7qpu39XMN+tJLmnm9c9u1bb0r98UxNeXfAT5Z83/pb58xL/ex3+1jO68AbqspE+nMwaX99cNWPfq7FtHWIuI2SS8FZpPOw/8+sFTSNyOiu791JZ0KfJj0KeUInr3WN430ZoB0Tvwnhed7NI8QemEuOgboiYgnCnXulbTXNZT9eK5VNWHOAr5dU/YDmrsG1ZfedUPS83MMn5T0iZo6QfpU/CNgEfB1Sc+PiE3ABaTz/ZU+n0T6Y+D9uY0JpG0eJ+lFEfHrpgKVDgOmkE6lFN0KXCppfEQ8lct+XFNnI2mH1JdZwOqI+G1vQf7//oL0IWOo/KRmfiPP9p8TSK/1XZKK/9ODgF0N2g3gDNLpplmk07LvKvZF4ETgJEmX1Fm3C/hpsxvRjzv7KO9vuwei7jXL/fQqmn+9a9+LryINtHh871UZR0o4vRrtM15J6ncPU9+JwKskba0pH0/6n5WOE1Q/ImIP8P/y4xpJbwcWS3p9RNTu2ACQNJV07WER6drFJmAqKRmMq6m+s04TTQ9c2c/nerLZdgfhONKbaC3P9q1LSadCaq3Pf28hnwaU9BngraTTOnVJOol0KuTvSaeefkv6APEl9t3moVL7fwrKMcCov7jG5PnXkE4V1dZrZF1EbAR+Jekp4KuSZhWS7hjS9ZvFddZt9CEh2PeDUL3BAn312SH7f+QPUi8gnd4ejP15vWu3awzpKPBc9n1dttfMD2afMYa0b7i4zvOUafDQM5yg9s+a/HdS/rsTGFtT50TSJ5IPRMQOAEknsv+f0FYDfy5pQu8nV0nHAocP0XOtJp3GLHrdAOIkP+9hpOsp342ILbnsIdK1gy/2tV5E7JF0I/BOUmKbAPx7P0/1WuA3EXFF4bnPr6mzM5cr8nmMOs+7VdJ60pHxNwuLTgXWFo6eBuJe4L2SJhZeixcCM4F/3M+26vWxZvwo/50WEd/st2YDEfEtSRXSKaLeEW93AcdGRH879r5if5R0HRQASc8hHakNNkkMxN+QTuN/dZDtDOb1vovU/7fmswiDieHdkl6cP1zUe54LgQ0RUS/RlU4ZPgWWkqTvSXqvpBMkdUo6nTSi6Lekc9KQdqhHS5ol6XmSxpFGsgXw15JeIulc0nnofZ6iQQhfJl3HuFHS8ZJeDSxk709Ug3mua4DXSLpSUpekt5AGOTRjrKQXSnqRpJmSLgBuBzpIF397/S3pdNnlko6VdJSkcyV9tqa9G0inpBYAK6L/Ide/AF4g6T2Spufnfl9NnbX5b7ek50s6tI+2rgIukfRnkmZIei/wXtLR2WB8mXQ0+++SXiHpBNJF9YfoP/nWU6+PNRQRvyJdJ/m8pHdIemnuR++W9KEGq9frL/8I/GU+aod0lNst6ROSXibpSElnSfpCTjj9xf7t3NarJR2X4xyuo9+iibnfdko6TdJiUp//UEQ8MJiGG7zef9Ng9RtJr9U3JL1J6XtbsyV9WNI5hXqN9hlfIQ3OWSbp9LxPOK3wAe460geGZZJel5/ndXkf8Or93+oDoNUXwcr6IH2yupV0umI78ABpR3p0oc5zgRWkkTTFYbTvI3WUJ4H/Jp3P3w38fjx7wXOvoby5fCeF4cakYeY/JJ0yqJCGhd/P3qP4BvRceVlxmPntpGHmzQyS2J0fu0ijlO7I5RPr1D8nb8O2/DrdDXy0Tr27c5tvrimfVhsTKZE9TLqIv4J0WnA30Fmo88n8vysOM9/rwnYu+yB7DzO/pGb5Xq93Lms4OIZ0Tn8FaaDLE8DXgSNr6uym8SCJvvrYPuuy70ADkU6DriZ9VeFR0oerP+nn+frrL6tr2n8t6RTt4/l/cS+FIfj9xP7C/Ho8lvvue3M7xbb3ed2b3e466/T2od7HNtKIykXASU30t5U0GCTR7Ovd1/88v1b/TPoQ81T++5/Ay/Zzn1Ecrr49x1JcPpV0WvYRnv3qxw2kI7+W73drH8pB90vSWaTvgYwBFkbEP9QsH8ezn4I3AW+NiAclTSSNuT+RNAz40sI6c0lDKfeQLnK+I/LpEDMzs4an+CSNIR0ankkagTRX0tE11eYBWyKii5TIrs7lTwEfJX1KLbY5Ntc7JSJeTvpC23zMzMyyZq5BzQYqEbEuInaRzqXXDrPuJh0uQzpiOh0gIrZHxG2k0ydFvedSD8tDMieQjqLMzMyA5kbxTWbvH0JcT0padetExG6lX/id2Ncpu4h4WtJFpCOnbaTrIBfV1nv88ccH+90EMzMbIQ4//PC9BoIM1yi+fkebKP1Y6ftIFwAnkxLVsNxCwszMRqZmEtQG0k+Y9JqSy4rWk0aH9F5fmtBgwMPLST8c/ECev4n0BTczMzOguQS1CpiRx8yPI/069bKaOstJXwCD9AOJ9e4BUzyq2gDM0rP3D3oT6UcOrSQqlT5/achsVHKfL5+G16DyNaX5pO8p9A4z75G0AFgVEStIXyBdnL9tvpmUxIB0B1jSLwCPk9QNnBERa/L635e0k/RdiHcN8baZmdkI1tT3oFrFgyRap1Kp0NVVyt+PNBsW7vOtd6AGSZiZmQ2KE5SZmZWSE5SZmZWSE5SZmZWSE5SZmZWSE5SZmZWSE5SZmZWSE5SZmZWSE5SZmZWSE5SZmZWSE5SZmZWSE5SZmZWSE5SZmZVSUwlK0lmS1ki6T9JldZaPk7REUkXS7ZI6c/lESSslbZX06Zp1Dpb0r5J+IWm1pLcMzSaZmdlo0PB+UJLGANcBpwMbgVWSvh4RawrV5gFbIqJL0luBq0n3hHoK+ChwXH4U/S3wSETMzM8zcbAbY2Zmo0czR1CzgUpErIuIXcASoLumTjewKE8vJSUzImJ7RNwG7KjT7nuAq3pnGtwi3szM2kzDIyhgMvBQYX49KWnVrZPvwPuYpIl9JR1Jh+fJKyWdCvwSmB8Rv9mf4Mtu45NP80h1T6vDGJDq+Els27Sz1WEMyAs7xvDiQ5vp2mZWZsP1LlaD5QcBU4AfRMQHJX0A+ARwwTDF0xKPVPfwgdsea3UYg1DvwLf8rjn5CF58aKujMLPBaiZBbQA6C/NTclnRemAqsFHSWGBCf6fsImKzpCcj4qu56D9Ip/z6VKlUmgi1XKrjJ7U6hLZUrVapVNa1OgwbgUbifmak6+rq6nNZMwlqFTBD0jTgYdLgh7k1dZYDFwJ3AOcBK+u0U3tUtVzSGyLiu8AbgdX9BdHfRpRVOkU2Mo9CRrKOjg66po68/mKtValURuR+ZjRrmKDyNaX5wC2kQRULI6JH0gJgVUSsABYCiyVVgM2kJAaApLXAYcA4Sd3AGXkE4IfzOtcAvwHePcTbZmZmI1hT16Ai4mZgZk3ZFYXpHcD5faw7vY/yB4FTmo7UzMzain9JwszMSskJyszMSslfFjGzIaNHN6LNj7Q6jAHprFYZ07Ot1WEMSDzvhcSkF7c6jCHnBGVmQ0abH+GQ//2BVocxIIe0OoBB2P7ha0ZlgvIpPjMzKyUnKDMzKyUnKDMzKyUnKDMzKyUnKDMzKyUnKDMzKyUnKDMzKyUnKDMzKyUnKDMzK6WmEpSksyStkXSfpMvqLB8naYmkiqTbJXXm8omSVkraKunTfbS9TNJPB7cZZmY22jRMUJLGANcBZwLHAnMlHV1TbR6wJSK6gGuBq3P5U8BHgQ/20fZbgCcGFrqZmY1mzRxBzQYqEbEuInYBS4DumjrdwKI8vRQ4HSAitkfEbdS5raykQ4EPAFcOMHYzMxvFmklQk4GHCvPrc1ndOhGxG3hM0sQG7X4M+Eeg2lyoZmbWToZrkIT6XSi9DHhpRCzLdfutb2Zm7aeZ221sADoL81NyWdF6YCqwUdJYYEJEbOmnzdcAJ0i6HzgYmCRpZUSc1tcKlUqliVDLpTp+UqtDaEvVapVKZV2rw2hLndXqiL5txUhVrVZ5cATuIwG6urr6XNZMgloFzJA0DXgYmAPMramzHLgQuAM4D1hZp51njpIi4rPAZwFyu8v7S07Q/0aU1bZNO6lz+c2GWUdHB11TR15/GQ1G6g3/RrqOjo4RuY9spGGCiojdkuYDt5BOCS6MiB5JC4BVEbECWAgsllQBNpOSGACS1gKHAeMkdQNnRMSaYdgWMzMbRZq6o25E3AzMrCm7ojC9Azi/j3WnN2h7HXB8M3GYmVn78C9JmJlZKTlBmZlZKTlBmZlZKTlBmZlZKTlBmZlZKTlBmZlZKTlBmZlZKTlBmZlZKTlBmZlZKTlBmZlZKTlBmZlZKTlBmZlZKTlBmZlZKTWVoCSdJWmNpPskXVZn+ThJSyRVJN0uqTOXT5S0UtJWSZ8u1O+QtEJSj6SfSfr40G2SmZmNBg0TlKQxwHXAmcCxwFxJR9dUmwdsiYgu4Frg6lz+FPBR4IN1mv4/EXEM8ArgdZLOHNgmmJnZaNTMEdRsoBIR6yJiF7AE6K6p0w0sytNLgdMBImJ7RNxGzW1lI6IaEbfm6aeBu0m3kjczMwOaS1CTgYcK8+tzWd06EbEbeEzSxGYCkHQE8EfAd5qpb2Zm7WG4BkmoqUrSWODLwLUR8cAwxWJmZiNQM7d83wB0Fuan5LKi9cBUYGNOOhMiYksTbX8O+EVE/FOjipVKpYnmyqU6flKrQ2hL1WqVSmVdq8NoS53VKoe0Oog2VK1WeXAE7iMBurq6+lzWTIJaBcyQNA14GJgDzK2psxy4ELgDOA9YWaedvY6qJF1JSmTzmoih340oq22bdlJz+c0OgI6ODrqmjrz+MhqM6dnW6hDaUkdHx4jcRzbSMEFFxG5J84FbSKcEF0ZEj6QFwKqIWAEsBBZLqgCbSUkMAElrgcOAcZK6gTOArcDlQI+ke4AArouILw7t5pmZ2UjVzBEUEXEzMLOm7IrC9A7g/D7Wnd5Hs/6SsJmZ9clJwszMSskJyszMSskJyszMSskJyszMSskJyszMSskJyszMSskJyszMSskJyszMSskJyszMSskJyszMSskJyszMSskJyszMSskJyszMSskJyszMSqmpBCXpLElrJN0n6bI6y8dJWiKpIul2SZ25fKKklZK2Svp0zTqvlPTT3Oa1Q7M5ZmY2WjRMUJLGANcBZwLHAnMlHV1TbR6wJSK6gGuBq3P5U8BHgQ/WafpfgHkRcRRwlKQzB7YJZmY2GjVzBDUbqETEuojYBSwBumvqdAOL8vRS4HSAiNgeEbdRc99zSS8CDouIVbnoBuDcgW2CmZmNRs0kqMnAQ4X59bmsbp2I2A08JmligzbXN2jTzMzaWFO3fB8ADXWDlUplqJscdtXxk1odQluqVqtUKutaHUZb6qxWOaTVQbSharXKgyNwHwnQ1dXV57JmEtQGoLMwPyWXFa0HpgIbJY0FJkTElgZtTm3Q5l7624iy2rZpJzVnN+0A6OjooGvqyOsvo8GYnm2tDqEtdXR0jMh9ZCPNnOJbBcyQNE3SOGAOsKymznLgwjx9HrCyTjvPHFVFxK+BxyXNliTgAuDr+xu8mZmNXg2PoCJit6T5wC2khLYwInokLQBWRcQKYCGwWFIF2ExKYgBIWgscBoyT1A2cERFrgIuBLwHjgW9GxM1Du2lmZjaSNXUNKiePmTVlVxSmdwDn97Hu9D7KfwT8XtORmplZW/EvSZiZWSk5QZmZWSk5QZmZWSk5QZmZWSk5QZmZWSk5QZmZWSk5QZmZWSk5QZmZWSk5QZmZWSk5QZmZWSk5QZmZWSk5QZmZWSk5QZmZWSk1laAknSVpjaT7JF1WZ/k4SUskVSTdLqmzsOwjubxH0hmF8g9I+rmkn0q6Md9ryszMDGgiQUkaA1wHnAkcC8yVdHRNtXnAlojoAq4Frs7rziLdhuMY4GzgM0peDFwCvDIijifd9mMOZmZmWTNHULOBSkSsi4hdwBKgu6ZON7AoTy8FTsvT5wBLIuLpiHgAqOT2AMYCh0o6CDgE2DjgrTAzs1GnmQQ1GXioML8+l9WtExG7Sbdzn1hn3Q3A5IjYCHwCeDCXPRYR3x7QFpiZ2ajU1B11B0D9LpSOIB11TQMeB5ZKeltEfLmvdSqVytBGeABUx09qdQhtqVqtUqmsa3UYbamzWuWQVgfRhqrVKg+OwH0kQFdXV5/LmklQG4DOwvyUXFa0HpgKbJQ0FpgQEVskbcjlteu+Ebg/IrYASPq/wMlAnwmqv40oq22bdgI7Wh1G2+no6KBr6sjrL6PBmJ5trQ6hLXV0dIzIfWQjzZziWwXMkDQtj7SbAyyrqbMcuDBPnweszNPLgDl5lN90YAZwJ+nU3qsljZck4HSgZ3CbYmZmo0nDI6iI2C1pPnALKaEtjIgeSQuAVRGxAlgILJZUATaTR+RFxGpJNwGrgV3ARRERwJ2SlgL35PJ7gM8N/eaZmdlI1dQ1qIi4GZhZU3ZFYXoHaTh5vXWvAq6qU74AWLA/wZqZWfvwL0mYmVkpOUGZmVkpOUGZmVkpOUGZmVkpOUGZmVkpOUGZmVkpOUGZmVkpOUGZmVkpOUGZmVkpOUGZmVkpOUGZmVkpOUGZmVkpOUGZmVkpNZWgJJ0laY2k+yRdVmf5OElLJFUk3S6ps7DsI7m8R9IZhfLDJf1HLr9X0klDs0lmZjYaNExQksYA1wFnAscCcyUdXVNtHrAlIrqAa4Gr87qzSLfhOAY4G/hMvkEhwKeAb0bEMcDL8A0LzcysoJkjqNlAJSLWRcQuYAnQXVOnG1iUp5cCp+Xpc4AlEfF0RDwAVIDZkiYAr4+I6wHy8icGtylmZjaaNJOgJgMPFebX57K6dSJiN/C4pIl11t2Qy6YDmyRdL+luSZ+T1DHAbTAzs1GoqTvqDoAaLD8IeCVwcUTcJela4MPAFX2tUKlUhjC8A6M6flKrQ2hL1WqVSmVdq8NoS53VKoe0Oog2VK1WeXAE7iMBurq6+lzWTILaAHQW5qfksqL1wFRgo6SxwISI2CJpQy6vXXc98FBE3JXLlwL7DL5odiPKatumncCOVofRdjo6OuiaOvL6y2gwpmdbq0NoSx0dHSNyH9lIM6f4VgEzJE2TNA6YAyyrqbMcuDBPnweszNPLgDl5lN90YAZwZ0Q8Ajwk6ahc73Rg9SC2w8zMRpmGR1ARsVvSfOAWUkJbGBE9khYAqyJiBbAQWCypAmwmJTEiYrWkm0jJZxdwUUREbvpS4EZJBwP3A+8e4m0zM7MRrKlrUBFxMzCzpuyKwvQO0nDyeuteBVxVp/wnwIn7E6yZmbUP/5KEmZmVkhOUmZmVkhOUmZmVkhOUmZmVkhOUmZmVkhOUmZmVkhOUmZmVkhOUmZmVkhOUmZmVkhOUmZmVkhOUmZmVkhOUmZmVkhOUmZmVUlMJStJZktZIuk/SPjcWzPd7WiKpIul2SZ2FZR/J5T2SzqhZb0y+5Xvt/aXMzKzNNUxQksYA1wFnAscCcyUdXVNtHrAlIrqAa4Gr87qzSLfhOAY4G/iMpOLt4N+Pb1RoZmZ1NHMENRuoRMS6iNgFLAG6a+p0A4vy9FLgtDx9DrAkIp6OiAeASm4PSVOAPwC+MKgtMDOzUamZBDUZeKgwvz6X1a0TEbuBxyVNrLPuhsK61wAfAgIzM7MaTd1RdwDU70LpD4FHI+LHkk5tVB+gUqkMUWgHTnX8pFaH0Jaq1SqVyrpWh9GWOqtVDml1EG2oWq3y4AjcRwJ0dXX1uayZBLUB6CzMT8llReuBqcBGSWOBCRGxRdKGXF67bjfwR5LOBjqAwyTdEBEXDGQjymrbpp3AjlaH0XY6Ojromjry+stoMKZnW6tDaEsdHR0jch/ZSDOn+FYBMyRNkzQOmAPUjrpbDlyYp88DVubpZcCcPMpvOjADuDMiLo+Izog4Mre3sr/kZGZm7afhEVRE7JY0H7iFlNAWRkSPpAXAqohYASwEFkuqAJtJSYeIWC3pJtJIvV3ARRHha05mZtZQU9egIuJmYGZN2RWF6R2k4eT11r0KuKqftm8Fbm0mDjMzax/+JQkzMyslJygzMyslJygzMyslJygzMyslJygzMyslJygzMyslJygzMyslJygzMyslJygzMyslJygzMyslJygzMyslJygzMyslJygzMyulphKUpLMkrZF0n6TL6iwfJ2mJpIqk2yV1FpZ9JJf3SDojl02RtFLSvZJ+JunSodskMzMbDRomKEljgOuAM4FjgbmSjq6pNg/YEhFdwLXA1XndWaTbcBwDnA18RpKAp4G/iohjgdcAF9dp08zM2lgzR1CzgUpErIuIXcAS0i3bi7qBRXl6KXBanj4HWBIRT0fEA0AFmB0Rv46IHwNExDagB5g8qC0xM7NRpZkENRl4qDC/nn2TyTN1ImI38LikiXXW3VC7rqSXAC8H7tiPuM3MbJRr6o66A6CmKkm/Qzrien8+kupTpVIZirgOqOr4Sa0OoS1Vq1UqlXWtDqMtdVarHNLqINpQtVrlwRG4jwTo6urqc1kzCWoD0FmYn5LLitYDU4GNksYCEyJii6QNuXyfdSUdREpOiyPi64PZiLLatmknsKPVYbSdjo4OuqaOvP4yGozp6fdzpg2Tjo6OEbmPbKSZU3yrgBmSpkkaB8wBltXUWQ5cmKfPA1bm6WXAnDzKbzowA7gzL/sisDoiPjWYDTAzs9Gp4RFUROyWNB+4hZTQFkZEj6QFwKqIWAEsBBZLqgCbSUmMiFgt6SZgNbALuCgiQtJrgbcDP5N0DxDA5RFx8zBso5mZjUBNXYPKiWNmTdkVhekdpOHk9da9CriqpuyHwNj9DdbMzNqHf0nCzMxKyQnKzMxKyQnKzMxKyQnKzMxKyQnKzMxKyQnKzMxKyQnKzMxKyQnKzMxKyQnKzMxKyQnKzMxKyQnKzMxKyQnKzMxKyQnKzMxKqakEJeksSWsk3SfpsjrLx0laIqki6XZJnYVlH8nlPZLOaLZNMzNrbw0TlKQxwHXAmcCxwFxJR9dUmwdsiYgu4Frg6rzuLNIpjLfLAAAGoklEQVRtOI4BzgY+o6SZNs3MrI01cwQ1G6hExLqI2AUsAbpr6nQDi/L0UuC0PH0OsCQino6IB4BKbq+ZNs3MrI01c8PCycBDhfn1pARTt06+A+/jkibm8tsL9TbkMjXR5oj3iueP43vnTGp1GGYHzJ5jXsG2Rd9rdRg2SgzXIAkNU7tmZtYmmklQG4DOwvyUXFa0HpgKIGksMCEituR6U+us20ybZmbWxpo5xbcKmCFpGvAwMAeYW1NnOXAhcAdwHrAyly8DbpR0DenU3gzgTlJibNQmhx9+uI/EzMzaVMMEla8pzQduISWWhRHRI2kBsCoiVgALgcWSKsBmUsIhIlZLuglYDewCLoqIAOq2OQzbZ2ZmI5RSvjAzMysX/5KEmZmVkhOUmZmVUjODJKxNSJoMTKPQLyLiv1sXkdnwkjQxjzgulk2PiLWtisme5QRlAEj6B+CtpAEtu3NxAE5QNpotl3R2RDwBz/w8203Aca0Ny8AJyp51LjAzIna0OhCzA+jjpCT1h8BM4Abg7a0NyXo5QVmv+4GDAScoaxsR8Q1JB5O+8nIY8JaIuK/FYVnmBGW9tgM/lvQdCkkqIi5tXUhmw0PSP5FOYfc6HPgVMF+S+31JOEFZr2X5YdYO7qqZ/1FLorB++Yu69gxJ44Cj8uwv8q1QzEY19/vycoIyACSdSrqn1wOkX6OfClzoYeY2mrnfl5sTlAEg6UfA2yLiF3n+KOArEXFCayMzGz7u9+XmX5KwXgf3vkkB8kimg1sYj9mB4H5fYh4kYb3ukvQF4N/y/NvZ90Ky2Wjjfl9iPsVnAEh6DnAx8Lpc9H3gnyNiZ+uiMhteffT7z/gL6+XgBGUASHon8LWI2Fooe3O+35fZqJVH8c0kfS/Ko/hKxAnKAJD0GGkk09zem0dKujsiXtnSwMyGkUfxlZsHSVivtcB7gKWSzstlamE8ZgfCJ4AzIuKUiPh94EzgmhbHZJkHSViviIi7JZ0CfEXSScDYVgdlNsz2GcWXf5vPSsBHUNbrYYCI2ET6FBn4lgM2+t0l6QuSTs2Pz+NRfKXha1Bm1rY8iq/cnKAMAEkvAC4DZgHje8sj4rSWBWV2AORRfMcAe0ij+PzVipLwKT7rdSPQA0wHFpBGNa1qZUBmwy3fqPBXwKeA64BfSjq7tVFZLx9BGZB+kywiTpD004g4PpetiogTWx2b2XCRtAZ4c0T8Ms+/FPhGRBzd2sgMPIrPntX75cSH86fKjcDEFsZjdiBs7U1O2f3A1r4q24HlBGW9rpR0OPBB4J+ACcAHWhuS2fCQ9Md58i5J3wRuIo1cPQ+f2i4Nn+Izs7Yj6fp+FkdEvOeABWN9coIyACRNBy4BXkLhyDoizmlVTGbW3nyKz3p9DVgILCcNtzUb9fINCv8FeGFEHCfpeOCciLiyxaEZPoKyTNIdEXFSq+MwO5Ak3Qp8CPjXiHhFLvt5RPhXVErAR1DW61OSrgBuAZ75Fn1E3N26kMyG3SERcae01+8iP92qYGxvTlDW6/eAdwKn8ewpvsjzZqPVpvzdpwCQ9Kfk36W01vMpPgNA0i+BWf6ZF2snko4EPgecDPyWdNuZd0TEA62MyxIfQVmvnwNHAI+2OhCzAyUi7gfeKOlQYEzxjtLWev4tPut1BLBG0n9JWpYfX291UGbDSdLHJR0REU9GxFZJz5XkEXwl4VN8BkC+UeEzs8DrgTkRcWyLQjIbdpLu6R29Vyi7OyJe2aqY7Fk+gjIAIuJW4AngzcCXSIMjPtvKmMwOgLH5nlAASOoAntNPfTuAfA2qzeUvKs7Nj03Av5OOrN/Q0sDMDowbge8Ufvro3cCiFsZjBT7F1+Yk7SHdRXRe4ZYD90fEka2NzOzAyPd/Oj3Pfisi/quV8diznKDanKRzgTnAa4GbgSXAFyJieksDM7O25wRlAORhtt2kU32nATcAX42IW1oamNkwkvRq0u1ljgHGAWOBJyNiQksDM8AJyuqQ9FzSfXHeGhGnN6pvNlJJuot0BuE/gFcBFwBHRcRHWhqYAU5QZtbGJN0VEa+S9NOIOD6X7TP03FrDo/jMrJ1tlzQO+LGkq0m/w+ev35SE/xFm1s7eSdoPzgeeBKYCf9LSiOwZPsVnZm1HUmdEPNjqOKx/PoIys3b0td4JSf/ZykCsb05QZtaOinco9JfSS8oJyszaUfQxbSXia1Bm1nYk7SYNihDQAWzvXQSEv6hbDk5QZmZWSj7FZ2ZmpeQEZWZmpeQEZWZmpeQEZWZmpfT/AT1LzVUdsPS0AAAAAElFTkSuQmCC\n"},"output_type":"display_data","metadata":{}}]},{"source":"## 10. Putting it all together\n<p>Now we just need to compute the ratio of <code>avg_excess_returns</code> and <code>sd_excess_returns</code>. The result is now finally the <em>Sharpe ratio</em> and indicates how much more (or less) return the investment opportunity under consideration yields per unit of risk.</p>\n<p>The Sharpe Ratio is often <em>annualized</em> by multiplying it by the square root of the number of periods. We have used daily data as input, so we'll use the square root of the number of trading days (5 days, 52 weeks, minus a few holidays): √252</p>","metadata":{"deletable":false,"run_control":{"frozen":true},"dc":{"key":"67"},"editable":false,"tags":["context"]},"cell_type":"markdown"},{"source":"# calculate the daily sharpe ratio\ndaily_sharpe_ratio = avg_excess_return.div(sd_excess_return)\n\n# annualize the sharpe ratio\nannual_factor = np.sqrt(252)\nannual_sharpe_ratio = daily_sharpe_ratio.mul(annual_factor)\n\n# plot the annualized sharpe ratio\n# ... YOUR CODE FOR TASK 10 HERE ...\nannual_sharpe_ratio.plot(title='Annualized Sharpe Ratio: Stocks vs S&P 500')","metadata":{"dc":{"key":"67"},"tags":["sample_code"],"trusted":true},"cell_type":"code","execution_count":223,"outputs":[{"data":{"text/plain":"<matplotlib.axes._subplots.AxesSubplot at 0x7fe6e9e9e898>"},"output_type":"execute_result","execution_count":223,"metadata":{}},{"data":{"text/plain":"<matplotlib.figure.Figure at 0x7fe6e9e1af98>","image/png":"iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd8XNWZ//HPozbSqNmSMe5NkunFBePQbGxTE0potjAtCQnZhM1uNllISAFCQkLqbpbNhl8CoVumhRaajSkBAjZgmnFRca+olxn18/vjXpHxaGRJRrZH0vf9eull33vP3Dlz5859zjn3mTPmnENERCTeJBzoCoiIiMSiACUiInFJAUpEROKSApSIiMQlBSgREYlLClAiIhKXFKD6OTP7i5m9ELF8o5mt2w/Pu97MbviM+5hlZu1mNqqv6jVQRL+vA4GZjfff7xMOdF2kf1CAimJmo8ysycy2mFl/PD6/AmYe6EoAmNm5ZvZ3M6sws3ozKzaz+8wsI6JYv/winplt8C+27WYW9l/bLWaW3Mv9LDSz9hibvgVc3De17fScXzKzt82sxsxqzexjM7ujB3XqC3H/fptZqv9erjOzkH/+Ljeza6PKjTOzJ82s0j+Wr5nZjBj7mxVxrrSbWbmZLTOzk7qpx4aox7Wb2asxyl3nl200s3fN7LQYZc42s5V+mTIz+/beHJv9rT9egPe1rwBPAtXAOQe4Lr3mnAs55yoPdD3MbA7wKPA8cCJwFPANoBYI7IfnT9rHT+GAnwMjgALge3hB5cZe7seIcdF2ztU552o+ayU7PZnZVcAfgDuBacBU4Hogsbs69VUV9tF++9IfgcuA7wCHAbOB24EhUeX+BOQDZwDH4jUO27rYp/PLjADmAGHgWTMbt4d6dJxjB/uPGwGcG1nAzP4d75z7AXAMsAR4ysyOjCgzHXgc+Jtf5ibgVjP72h6eOz445/Tn/+F9eDYAnweuA56JUWY9cDPwX0AFsAP4LZAQUeYlvJP3h8B2v9w9QDCizF+AF6L2fRnQHrE8Ae8ivxVoAD4ALot6zG77wTtZiyOW2/E+NJH/tgPj/O3pwH8DW/zneAf4YtRzHAO8ATQCa/Fa9uuBG/ZwLH8HLO/meM/y6zQPeMV//lXAmVHlfgp87G/fBPwfkBWx/UqgBe9C8q5fzzM6jgVQCJTiXRReAMZH7f804DUg5B+Hu4Ccbure6fUDjwArelD3zIjXH/3+3OVvuzvG+fFd/3U0ASXAv+3FOf5X4KFu3pOu6pQE/MI/Rk3+e1UY9fh0vM/GJv99KAO+528b7+/zhIjy3wPKgZP85ZP896LW/1sJnNZFXfP9/c2MWn+8vz7PX77afw/CeJ/Fl4FRezgGVcA3enAsnwZu70G5jvN8VMS6UX4dv9qbcyxGmS3ALVHrlne8Z/7yA8BrUWV+CZT19vzZ33/qQe3ubCAFeBa4D5jbRQvnWmAbMMP//7V4F8lIFwJD8U7O+cAX8Fqqe+LYveWaAbyId7E9ErgDuMvMZvVgPx1GACP9f0cBS/EuLDv97U/j9W4uBo7Au4AuMrNTwRvuwGt5VQDTgSuA/wQO6qYO24F8Mzuum3KG1/L8KXA08BZQZGbZEWVCeBeZw/CO8yy8oBopAe/i+W3gUOBtf/1I4F+Ai/Aufll4QR//9c3Ba10+iHeMz8O7kH5apifMbIq//+aoTbHq/nt/2xt45w54reSRwL/5y7v1YMzsm3gNo1uBw/EuML8wsy9FlLmpB0Nz24HpZlbQxfbX91Cnn+ONMHwL71y5H7i/41zx/Q3vXP8m3vtwBfBJ9JOY53/8cqc4514zs0TgCeAfeL2NKXit/VCsijrnSvyyl0dtuhJ4wzlXambT8M7pnwGTgVOAe7t47R22A2ea2dBuyj0GfMk/h3qr0f+3uyHha/0hwY/M7L/NLKdjg5lNwPtMPx/1mOfwzsUOJ/rrosuMj/v7vwc6QsbTH96F6pcRy88AP4kqsx54PGrdM8ADEcsvASujyvwBeD1iOVYPaiHQ1oM63tHVfvB6Deu6eOzP8D58Hb2n2Xgf/syocncCj/n/vxqvJRvZYzkCr/W3px5Uml/XNrxg/jjehS0nokxHa/28iHXD/XUxW81+mfOBcMTylf7znBBV7kZ//cSIdQX+/k+NeK9ujXrcOL/M0Xuow3q8Fnkd3sWmHS84ndPN+xdd95jveYz3dRPw86gyvwVKIpa/Cazq5vkPBl71j8t6oAj4Krv37jvVyX8/G4FrotY/Biz1/z/X3++ULp57vL99DvAwXkNpdMT2If72U3rxmb0GrweW5C8n+8tXRxzvKiCjF/s8wT82rcD7eA3D86LKnIL32fk2sBlYELW9seNcIKoHBWTijbA0AYfvoR7f9o/VEXgN3jX+X8Df/jl/v/lRj/sGUBex3NRxPCLWHe4/dlpPj8uB+FMPymdmo/GG9u6JWH0f8JUYyRLvRS1vw/vgR3q/B2W6q1Oamf3Cbz1VmFkdcBbeB71XzOxy4N+Bc51zm/zV0/HuB20zs7qOP7wLVL5f5jBgtXOutmNfzrlVwB7vjzjnws6584GJeMM4W4DvA2vN7JDIokQcK+fcLrwPzqfHyswuMLNXzGyrX78HgBQzGxH1tG/T2SfOufUR+y/Gu4Ad4a86Dvj3qNe/yq9XV72MDv+LN/x5Il4A/h/n3FORBXpR9y6ZWSYwBvh71KZXgAl+Lxfn3P86546Ifnwk59xO59wpeBeoW4F6vN7YR2Y2bA8Pzce7+MeqQ8dzTgWqnHMr9/Ry8ILvEXjDelsj6laN1zh6wcyeMbPrzWzynl4PsBhvWPEL/vI5QBB4yF9eghdsNpjZIjP7qpnl7mmHzrk3gDy8XsjdeI2mR8zsiYhitwF3O+d+5z/3/5jZdQBmdixej/71qNe91j8HqvGGlS93zn28h3r8zjm3zDm3yjn3KN5nvwD44p7q3wtxfz9QAeqfvoJ3PFaaWYuZteANBYygc7JE9DCOo/Ox7K5MO51PkOju/q+BS/F6ArPxLobP4g1D9pifLXQHcIVzbkXEpgS8D8vR/r47/g7HG+78zJxzm5xz9zrnrsUb8nF49/ciRR+rjrphZsfjXWxexmsNTwG+7peJPA5tzrlY++lOAt7F5piovwK8Y70nlc65MufcO8AC4HwzK+zY6Gd09aTu+51zbq1z7k/OuavxhtPG4A2F7klfXdCexmu4nBWjXl/DC3Qv4PU8PjKzr3a1Iz+oPYU3lAjecN+THQ0q51wDXjLI+Xj3T78OlPhDsl1yzrU75970g8QXgauAc8zsZL/IsXj3O3HOvQ+cDlxvZn/Aawj+1e2erOT8MkfjjSJMcM49RC/4Da2dePemwRsNMbxrVKSD/W1ElItVxkWVizsKUHjj4cCX8YbAjmX3C1URsC+yXXbhjR9Hmha1fDLe0OGjzrkP8VqC3bUod2Nmk/CGYX7it8IivY03rJLmX2gj/7b4ZT4GDjOzrIh9HgFk00vOy0rbgdci7akT8XpBNzrnVjjvvsPYXjz+IDOb2LHgt8iH4fWSwDsGR8R4/WXOuZj3PmLxg+PPgN909GjwWuDd1b3Zr1eXF3/nXB1eD/SUqE2zgfXOucZOD+qdTXjDVR3vS6w6leANFcWqw0f+/98BhprZ1D08l8PrRV6Fdz/1ik4FnPvYOfdfzrmz8XpU3X3+7gHO9t/bs9l9FATnec05d5NzbhreRfnSbvYZbY3/b8cx2kzEsfB7jWf4+10IxPqO4Ebn3Hq3l9mZ/ijPcP+5cc5twBuZOSOq6Jl4iSYdXo9R5iy/Ptv2pi77zYEeY4yHP7yhvVZgTIxtp/nbOu7bdMqswRtPXhax/BLw/6LK/ICIrBn+OV7/DWAS3r2eHUSM/eON03+MNwx1uP881VHP1eU9KCDVf/zjeC2myD/zyzyP9+E7D69VOxXvJvlX/O1peB+Cp/BafzOBN/GGhvZ0D+pGvOSH2XgtviPxeoRtwJf8Mh33oEZFPbYFr7cX+d582a/fFXgf0LaI9+RKoLmLOtTj9WCm4Q1pvgG8HVFmNt6F9zd4DZJJeB/wP+OP9Xfx+mKdByn+sfpeL+o+3V8+Hy9wpnfxvv4LXibg1XjDbdfgBZWrIspcizccu6dz/Q/Aj/GC5zj//b7Xr8Ocbup0G17Cw0V4Pcwb/Nc3O2L/r+BlTp7rv+8nRJxL44nI4gMu8F9Dx/Y8vESXE/26fQ4v+N3dzWtKxPvsvIsXfCIzas/F69FMxWscfBHvnupVe9jfy/7xnebXYy7eOV+Ofw+Vf973/BXecOXReEPZdf77FHkvO+Z53s1rmomX5j7Fr8MZ/usrYff7hf+Gd44vBA7xj18YODKizHS8c/ynfpkr/ePeZQZhvPwd8ArEwx/eBfy1LrYl4nWrf+Ivl9F9gFpGNwHKX/d9vAtWLV6r8l/YPUCNwRtmqsNLNb8xxnPtKUB13JSO/OtIHe64QAbw7kWU4t3Y3YaX9DE7Yp/H4LXCwngXn0tiHYeo1zYbWOSXC+H1GP9OxM1kYqTf+uub8QOUv3wz3oWnDm94aD49D1Dr8Fq16/16xEozP9FfX+M/xyqivjoQY98xX7//nlYA2T2pu1/mt/iNE/6Z0r3b++qv+w67p5n/a4zX29rNuX4+3vm+yX8/t+M1Uk6PKherTkn+ubLZP1c+AuZHPa7jawtb/TKlwHVR52Nkmvk5eBf0r+MNQz0aUbcteN9JytzTa4qobxvw66j1J+Nlwu703/+1wH92s6/r8ALtDv8xG/CC+KFR5c7EO6ergEq8DMQZeEGwFbh2T+d5N3WYgveZK+efn7vbgeExyv6nX8cwXhCbF6PMWXgp+2G8z0Kvv6JwIP46WtF7ZGZn4n23IQG40zl3WxflLsRr9U93zr3rr/s+Xguy1T8oA2r6FolfZnYjsNA516thURGJD91+297PYLsdr5u7DVhhZk8459ZElcvASyN+M2LdYXit7cPwegNLzazA9SQqiojIoNaTJIkZeDMTbHTOteAlDZwXo9wteOOfTRHrzgOKnHOtzruhV+zvT0REZI96Ml/ZaPysEd8WooKMn7I5xjn3bMd3ASIe+4+I5a3+uk/V1NSoNyX7RHV1NaBzTKS/yM7O3i2b9TNPqOmnov6WzlP9iIiI7LWeBKiteGmOHcb46zpk4qVZvuwHqxHAk2Z2bg8eKyIiElNP7kGtwJv0c7yZpeB9Y/7Jjo3OuVrn3HDn3CTn3ES8JIlz/Cy+J4H5Zpbif1kyH2+mXfmMiouLD3QV+h0ds97TMes9HbO+020PyjnXZt4Pdb3AP9PMV5vZzXg/LfB09EPwp0Rxzn1sZg/hfVm0BW8Ke90PEBGRbvXoHpRz7jm8byBHrruxi7JzopZ/jjdNv4iISI9pLj4REYlLClAiIhKXFKBERCQuKUCJiEhcUoASEZG4pAAlIiJxSQFKRETikgKUiIjEJQUoERGJSwpQIiISlxSgREQkLilAiYhIXFKAEhGRuKQAJSIicUkBSkRE4pIClIiIxCUFKBERiUsKUCIiEpcUoEREJC4pQImISFxSgBIRkbikACUiInFJAUpEROKSApSIiMQlBSgREYlLClAiIhKXFKBERCQuKUCJiEhcUoASEZG4pAAlIiJxSQFKRETikgKUiIjEJQUoERGJSwpQIiISlxSgREQkLilAiYhIXFKAEhGRuKQAJSIicSmuAlSotf1AV0FEROJEXAWoS5ZU8OfV9VQ1KVCJiAx2PQpQZnamma0xs3Vmdn2M7deY2QdmttLMXjWzQ/31480sZGbv+n9/2NPz1Lc47i8OMX9JOb/7oI5tDW1796pERKTfS+qugJklALcDc4FtwAoze8I5tyai2APOuTv88ucAvwPO8reVOOem9qZSze3wxIYwT20IM2tUgEsLghRkJ/dmFyIi0s91G6CAGUCxc24jgJkVAecBnwYo51x9RPkMIHKMzva2cu3AS9uaeGlbE9MPSqYwP52pw5Ix2+tdiohIP9GTIb7RwOaI5S3+ut2Y2TfMrAT4BfCtiE0TzOwdM3vJzE7a0xN984gMhqfFrtLbn7TwnX9Uc82rVby8rZE253pQdRER6a/MdXOhN7MLgTOcc1/zly8DZjjnvtVF+QXAmc65q8wsBUh3zlWZ2VTgceDwyB5XTU3NpxUoLi6m1cHymmSerwywrSmxy3oNT27j9NxmTshuJjmuUj1ERKSnCgoKPv1/dnb2bsNjPQlQM4GbnHNn+svfA5xz7rYuyhtQ5ZwbEmPbS8B3nHPvdqyLDFCR2p3jzZ3NLCoJ8WFlS5f1GxpI4KJJaZw7IY3MQRSpiouLd3tjpXs6Zr2nY9Z7OmZ7LzpA9eSKvgLI9zPyUoAFwJORBcwsP2LxC8A6f/0wP8kCM5sE5ANlPaloghknjAjwPycN5faThnLiiJSY5aqa2vnT6gbmL6ng/1bVU96ozD8RkYGg2yQJ51ybmV0LvIAX0O50zq02s5uBFc65p4FrzWwe0AxUAVf6Dz8F+ImZNePlPFzjnKvubSWPzEnmZzOGsKGulaKSEEu3NNIa1e8KtToWl4Z4tCzE6WNTmZ8XZHxmT3JAREQkHnU7xLevdTXEtye7wm08UhriqY2NhNtiP9yAE0ekUJifzhE5Ay9FXcMIvadj1ns6Zr2nY7b3oof4+mUXY3haIt84MpPLJ6fz+IYwj5aFqG7ePVA54LUdzby2o5ljcpO5ND/IjOEpSlEXEekn+mWA6pCZksDlk9O5JC/Ic5vCLC4NsS3UeZqk9ytaeL+ihkmZiSzIT2fO6ABJCQpUIiLxbECkvQUSjfMmBrl3Ti4/npZFQXbsuFtW18atK2tZ+GIFj5WFCEffyBIRkbgxIAJUh6QEY87oVP7fKUP59cwhTB0W+97TznA7v/+onvlLy7l7bQM1zZqcVkQk3vTrIb6umBnTh6cwfXgKa6pbKCoJ8cq2JqL7S7XNjrvXNlBU0sDnx6VxcV6QEcGuvxwsIiL7z4AMUJEOHZLMTdOz2VLfyuLSEM9tbqQlqsPU2AaPrg/z1w1h5o4OUJifzqSsAX9oRETi2oAa4tuTMRlJfOeYLIrm5bKwIEh6UuckiXYHS7Y08eWXK/nem9W8X9HMgU7DFxEZrAZdNyE3NZGvHpbBpflBntrYyCNlIcobO9+DenNXM2/uaubwoUkU5qdz4ogUEpSiLiKy3wy6ANUhPTmBBflBLpiYxtKtjSwqCbG5vvM0SR9XtfKjFTWMy0hkQX6QeaNTSUlUoBIR2dcGzRBfV1ISjbPHpXHPqTncclw2hw2NHbM31bfxy/fquPTFCopKQjRE38gSEZE+NWh7UNESzDh5ZICTRqTwfkULi0pCvLWruVO58sZ2/vhxPfeta+D8iWlcODFITuqgj/MiIn1OASqKmXHssBSOHZZCaU0ri0oaWLatifaoXImGVscDxSEeKg1xpj857ZgMHU4Rkb6ipv8e5GUn8cNp2TwwN5cLJqYRiPEVqZZ2eGpjI1csq+Smt2tYW931b1eJiEjPKUD1wMhgIt86KpPF84Zx5eQgWckxUtSBl7c1cc2rVfzHG1W8vUsp6iIin4XGpHphSCCBLx2awYL8dJ7ZFOah0hA7w52TJd4tb+Hd8momZyexID/IrFEBEpWiLiLSK+pB7YW0JOPCSUEemJvLDVOymJQZe3qkdTWt/OSdWi5/sYIn1odo6uK3q0REpDMFqM8gKcE4fWwqd87O4RfHZ3NMbuzJabeF2vndh/UsWFLOfesaqNPktCIi3dIQXx8wM2YeHGDmwQFWVbawqKSB13Z0TlGvanbcuaaBB4tDnDM+lYvyggxP0+S0IiKxqAfVx47ISeanM4Zwz6k5nD0ulRhT/hFuczxUFubSpRXctrKWjXWt+7+iIiJxTgFqHxmfmcR1x2axaF4u8/OCBGNEqlYHz25u5MqXKvnB8mpWVSpFXUSkg4b49rGD0hL5lyMyuGxykCc3hHmkLExVU+d7UK/vaOb1Hc0cnZNMYUGQmcNTMGX+icggpgC1n2QmJ7CwIJ2LJgV5fnMjRSUhtoU6T077QWULH7xVw8TMRArzg8wZnUpSggKViAw+GuLbzwKJxrkT0rhvbg43Tc9icnbsNsL6ujZuXVnHwhcreKQsRLhVKeoiMrgoQB0giWbMHpXKHacM5TefG8L0g2KnqO8Mt3P7R/XMX1LOX9bUUx1jeFBEZCDSEN8BZmZMOyiFaQelsK7am0X9lW1NRIeh2hbHPetCFJWGOHtcGjMSjIIDUmMRkf1DASqOTB6SzI3Ts9na0MpDpWGe3RQm+ju9TW3w1/VhniCTOY01LMgPkp8du/clItKfaYgvDo1OT+LbR2dSNG8YlxUEyYg5Oa2xdGsTV79SxXVvVrOyXJPTisjAoh5UHMtJTeDqwzK4tCDI0xsbeag0RHlj53tQy3c1s3xXM4cNSaIwP8hJIwMkKEVdRPo5Bah+IJiUwCV5Qb44MY2lW7wU9Y31nVPUV1e38uO3axmbnsj8/CCnj0klJVGBSkT6Jw3x9SPJCcZZ49L4y6k5fHNMA0cOjX3vaXNDG79+v47CpRUsKm6goUWZfyLS/yhA9UMJZhyb2crtJw/l9ycOYebBKTHLVTS1c8fqBi5ZUsEdH9dT0di51yUiEq80xNfPHZ2bwtG5KZTVtlJUEuLFrY1E/+xUQ6tjUUmIR8pCnDE2lQV5QcZk6K0XkfimHtQAMSkriRumZvHg3FwunJRGaoxf8Whph6c3NnL5skp+vKKGNVWanFZE4pea0QPMwcFE/vXITK6YnM7j68M8tj5ETfPuXSoHvLq9iVe3NzFlWDKF+UGOO0iT04pIfFGAGqCyUxK48pB05ucFeWZzmIdKQ+wIdU6WWFnewsryGvKzkigsCDJrZECT04pIXNAQ3wCXmmRcMDHI/XNy+eHULPKyYrdJSmpbueWdWi5fVsHj60M0Rd/IEhHZzxSgBomkBGPemFT+PGsot83M5tjc2Cnq20Pt/NeH3uS0965toDZ6riURkf1EQ3yDjJlx/PAAxw8PsLrKm5z279ubiO4vVTc77lrbwIMlIc4Zn8rFeUGGp8XIvBAR2UcUoAaxw4Ym85PjstlU38rikhAvbGkk+ju9jW2Oh8vCPLY+zLwxqRTmB5mQqdNGRPY9DfEJ4zKS+M9js1g0L5fC/CDpSZ2TJNocPL+5katequSGt6r5sKL5ANRURAaTHgUoMzvTzNaY2Tozuz7G9mvM7AMzW2lmr5rZoRHbvm9mxWa22sxO78vKS98alprINYdnsPi0XL52WDo5gdinxxs7m/nX16u59rUq3tjRRLtmUReRfaDbAGVmCcDtwBnAEUBhZADyPeCcO9o5NwX4FfA7/7GHA5cAhwFnAX8wfdkm7mUkJ3BpQTqL5uXy3WMyGZMe+97TR5Ut3LC8hi+/XMlzm8K0tCtQiUjf6UkPagZQ7Jzb6JxrAYqA8yILOOfqIxYz4NMfhD0XKHLOtTrnNgDF/v6kHwgkGl8Yn8Y9c3K4eXoWhw6Jfe9pQ10bv3ivjkuXVvBwaYhQqzL/ROSz68nd7tHA5ojlLcQIMmb2DeA/gGRgTsRj/xFRbKu/TvqRRDNmjUrllJEB3qto4cHiECs+6XwP6pPGdv53VT33rmvg/IlpXDAxyNAuhglFRLrTZ1cP59wfnHP5wPXAj/pqvxI/zIwpw1L41eeG8KdZQ5k7OhDzBKprcdy3LsT8JeX81wd1bGvQLOoi0nvW3c+Em9lM4Cbn3Jn+8vcA55y7rYvyBlQ554ZElzWz54AbnXNvdZSvqan5tALFxcWf9fXIfvZJs7GkMsBr1Sm0uNi3Fw3H9KwWzsxtYlyqhv9E5J8KCgo+/X92dvZuF5GeBKhEYC0wF9gOLAcKnXOrI8rkO+dK/P+fA/zIOTfDT5J4ADgeb2hvCVDgIp40MkBJzxUXF+/2xh5o1U3tPLY+xF/Xh6lr6fotPe6gFArzg0wZlrzfJ6eNt2PWH+iY9Z6O2d6LDlDd3oNyzrWZ2bXAC3hDgnc651ab2c3ACufc08C1ZjYPaAaqgCv9x35sZg8BHwMtwDdcdxFR+qUhgQS+fGgGC/KD/G1jIw+XhdgV7txbWvFJMys+aeaQIUkU5gc5eWSARCV2ikgM3fag9jX1oPZOvLfSWtsdL25tZFFJiA11Xd+DGpOeyPy8IKePTSWQuG8DVbwfs3ikY9Z7OmZ7L7oHpRQr2SeSEowzxqZx1+wcbp2RzZE5sSen3dLQxm8+qKNwaQUPFDdQHz3XkogMWppUTfapBDNOGBHghBEBPqxopqg0xOs7OqeoVza186fVDTxQHOLc8WlclJfGsFg/Cywig4YClOw3R+WmcFRuChvqWllUEmLplkaif3Yq1OooKg3x6PoQp41JZUF+kHEZOk1FBiMN8cl+NyEzie9P8SanvXhSGqkx7j21tMMzmxq5clklP1pew8dVLQegpiJyIKlpKgfM8LREvnlkJpdPTufxDWEeKwtR3bx7l8oBf9/RxN93NHFsbjKF+UFmDE/Z7ynqIrL/KUDJAZeVksAVk9OZnxfk2U1hFpeG2B7qnCzxXkUL71XUkJeVxIL8IKeOCpCUoEAlMlBpiE/iRiDROH9ikPvm5PKjaVnkZ8VuP5XWtvKzd2tZ+GIFj60P0diqbyqIDEQKUBJ3khKMuaNT+dOsofxqZjZTh8VOUd8Zbuf3H9Yzf2k596xtoKZZKeoiA4mG+CRumRnHDQ9w3PAAa6paWFQS4tXtTUT3l2qaHX9Z28CikgY+Pz6NSyYFOTioFHWR/k4BSvqFQ4cmc/Nx2Wypb2VxaYjnNjcS/Z3exjZ4tCzM4+vDzB3tpahP6mKYUETin4b4pF8Zk5HEd47JomheLpfmB0lP6pwk0ebghS2NfPnlSr73VjUfVDRzoKf0EpHeU/NS+qXc1ES+dngGCwuCPLUxzMOlYSqaOt+DenNnM2/ubOaIoUnMTk8izzkSlKIu0i8oQEm/lp6cwIL8dC6YGGTJlkaKSkNsru88Oe2qqlZWVaXzdHUlC/KDzBuTSrJS1EXimob4ZEBISTQ+Pz6Ne07N4ZbjsjlsaOy218b6Nm57z5ucdnFJiFCa33r/AAAYT0lEQVSrMv9E4pV6UDKgJJhx8sgAJ41I4f0KL/PvrV2dJ6ctb2zn/z6u577iBs6fkMYFE4PkpKq9JhJPFKBkQDIzjh2WwrHDUiitaWVRSQPLtjbSzu7DevUtjvuLQywuDXHW2DTm56cxOl0fC5F4oE+iDHh52Un8cFo2c1M/YUX7wfxtU5imqNtULe3w5MYwT28MM2tUgML8IJOHxP6CsIjsHxrTkEFjWIrjW0dlsnjeMK6cHCQruXOSRDvw0rYmvvZqFd95o4q3P1GKusiBoh6UDDpDAgl86dAMFuSn88ymMA+VhtgZ7pws8U55C++UVzM5O4nC/CCnjAqQqBR1kf1GPSgZtNKSjAsnBXlgbi43TMliYmbs6ZHW1bRy8zu1XP5iJU9sCNMU/SuLIrJPKEDJoJeUYJw+NpW7Zufwi+OzOTon9r2nbaE2fvdBHQuWlHP/ugbqoudaEpE+pSE+EZ+ZMfPgADMPDrCqsoUHSxp4fUfnFPWqZsef1zTwQHGIcyakcvGkIAelaXJakb6mHpRIDEfkJPOzGUO459Qczh6XSowp/wi3OR4qDVO4tILbVtaysa51/1dUZABTgBLZg/GZSVx3bBaL5uVySV4aaYmdI1Wrg2c3N3LlS5X8cHk1qypbDkBNRQYeDfGJ9MBBaYl844hMLi9I54kNYR4tC1HV3DlZ4rUdzby2o5ljcpMpzA9y/PAUTJl/IntFAUqkFzJTErhscjoX5wV5bnMji0tCbAt1npz2/YoW3q+oYVJmIgvy05kzOkCSJqcV6RUN8YnshUCicd6ENO6bm8ON07KYnB27rVdW18atK2tZ+GIFj5aFCLcqRV2kpxSgRD6DRDNOHZ3KHacM5defG8K0YbFT1HeG2/mfj+qZv7Scv6yppzrGb1eJyO40xCfSB8yM6QelMP2gFNZWt1BUEuKVbU1Eh6HaZsc960IUlYb4/Lg0LskLMiKoFHWRWBSgRPrYIUOSuXF6NlvqW3moNMyzm8NEf6e3qQ0eWx/m8Q1h5owKUJifTl4Xw4Qig5WG+ET2kTEZSfzHMd7ktJcVBMmINTmtg6Vbm/jKK5Vc/2Y175VrclqRDmqyiexjOakJXH1YBpcWBHlqQyMPl4Uob+x8D+qtXc28tauZw4YmcWl+OieOSCFBKeoyiClAiewnwaQE5ucHuWBSGku3NLKoJMSm+s4p6qurWvnRihrGZiSyIC/IaWNSSYnxBWGRgU5DfCL7WXKCcda4NO4+NYefHpfNEUNjtxM317fxq/fruPTFCopKGmjQ5LQyyKgHJXKAJJhx0sgAJ45I4cPKFh4sCfHmzs6T05Y3tvPHjxu4b12I8yakceGkNHJTlfknA58ClMgBZmYcnZvC0bkplNW2UlQS4sWtjUT/7FRDq+PBkhAPl4U4c2wq8/OCjMnQR1gGLg3xicSRSVlJ3DA1iwfn5nLhpDRidZRa2uGpjY1cvqySG1fUsKZak9PKwKTml0gcOjiYyL8emckVk9N5fH2YR9eHqI2anNYBr2xv4pXtTUwd5k1OO/0gTU4rA4cClEgcy05J4MpD0pmfF+SZzWEWl4TYGe6cLPFueQvvltdQkJ1EYX6QU0Zqclrp/xSgRPqB1CTjgolBzh2fxkvbmigqCVFa2/kHEotrWvnJO7WMCiZwSV6Qs8alEVCKuvRTPboHZWZnmtkaM1tnZtfH2P5tM1tlZu+Z2RIzGxuxrc3M3jWzlWb2eF9WXmSwSUowThuTyp9nDeW2mdkcmxt7ctptoXb+68N65i8p5951DdQ1K0Vd+p9ue1BmlgDcDswFtgErzOwJ59yaiGLvAtOcc41m9nXgV8ACf1uDc25qH9dbZFAzM44fHuD44QE+rmphUXGI13Y0ET1JUnWz4641DTxYHOLc8alclBdkeJpS1KV/6EkPagZQ7Jzb6JxrAYqA8yILOOdecc41+otvAqMjNmt8QWQfOnxoMrfMyOaeOTmcPS6V5Bif6sY2x0NlYS5dWsEvVtayoa7z8KBIvOlJgBoNbI5Y3sLuASjaV4BnI5YDZrbczN4ws/O6epCIfDbjMpK47tgsFs3LpTA/SDCpc9uw1cFzmxu56qVKfrC8mo8qlaIu8atPkyTM7DJgGjArYvV459x2M5sILDOzD5xz6/vyeUXkn4alJnLN4d7ktE9uCPNIWZiqGD+Q+PqOZl7f0cxROV6K+syDNTmtxBfrbmp/M5sJ3OScO9Nf/h7gnHO3RZWbB/w3cIpzrqKLff0FeMo591jHupqamk8rUFxcvLevQ0S60NIO/6hJ5vmKALtaur7/NCrQxhk5TczIbiFG50tknygoKPj0/9nZ2budeT0JUInAWrwkie3AcqDQObc6oswU4GHgDOdcacT6IUDIOddsZsOA14HzIhMsIgOU9FxxcfFub6x0b7Afszbn+Pv2JhaVhFhb3fU9qOFpCVw8Kcjnx6eydX3poD5me2Own2efRXSA6naIzznXZmbXAi/g3bO60zm32sxuBlY4554GfgmkAw+b9zX2jc6584HDgDvMrM1/7M+jsv9EZD9JNGP2qFRmjQywsryFRSUhVnzSeXLaXeF2/ndVPfeua2BWdoCrx7UzJKBZ0WT/67YHta+pB7V31ErrPR2zzoprvED18tYmuvqmVCARzhqbxvy8ICPTlaLeHZ1ney+6B6VmkcggVpCdzI+nZXP/3FzOn5BGSowrQlMbPL4hzMJlFdzyTg0lNcr8k/1DAUpEGJWeyL8fncni04Zx+eQgmcmdsyTaHby4tYmrX6niP/9RzcryZg70CIwMbJqLT0Q+NTSQwFcOzaAwP8jfNjby4Npaqlo7t2NXfNLMik+aOXSINzntSSMDJCpFXfqYApSIdBJMSuDivCBHtm1lY+oYikpDbKhr61RuTXUrN75dy9j0RObnBzl9TCopmpxW+oiG+ESkS0kGZ45L467ZOdw6I5sjc2JPTru5oY1fv1/HgqUVPFjcQH2LJqeVz049KBHpVoIZJ4wIcMKIAB9WNLOoJMQbOzunqFc2tfP/VjfwQHGIcyekcdGkNHJj/SywSA8oQIlIrxyVm8JRuSmsr22lqDTE0i2NtEXlSjS0OhaVhHikLMTpY1JZkB9kbIYuN9I7GuITkb0yMSuJ70/xJqe9eFIaqTHuPbW0w982NXLFskp+vKKG1VVKUZeeU5NGRD6T4WmJfPPITC6fnM7jG8I8Vhaiunn3LpUDXt3exKvbmzg2N5nCgiAzDkrBlPkne6AAJSJ9IislgSsmp3PJpCDPbQ6zuDTE9lDnZIn3Klp4r6KGvCwvRX32qABJCQpU0pmG+ESkT6UmGedPDHLfnFx+NC2LvKzY7eDS2lZ++m4tly2r4LH1IRpb9aVf2Z0ClIjsE0kJxtzRqfx51lB+OTObKcNip6jvCLXz+w/rmb+0nHvXNlDTrBR18WiIT0T2KTNjxvAAM4YHWFPlTU776vYmovtLNc2Ou9Y28GBJiC+MT+WSvCDD05SiPpgpQInIfnPo0GRuPi6bzfWtLC4N8fzmRqK/09vY5nikLMxf14eZN9pLUZ/YxTChDGwa4hOR/W5sRhLfPSaLonm5FOYHSY/xE75tDp7f0siXXq7k+29V80FF5y8Gy8CmZomIHDC5qYlcc3gGCwuCPLUhzCNlYSqaOt+D+sfOZv6xs5kjh3op6p87OIUEpagPeOpBicgBl5GcQGFBOovm5fLdYzIZ28UPI35U1cIPltfw5ZcreXZTmJZ2Zf4NZApQIhI3UhKNL4xP4+45OfxkehaHDYk9yLOhro3b3qvj0qUVPFQaItSqzL+BSEN8IhJ3Es04ZVQqJ48M8F6Fl/m3fFfne1CfNLbzh1X13LuugfMnpHHhpCBDA2p3DxQKUCISt8yMKcNSmDIshZKaFopKQizb1kT0yF59i+P+4hAPlYY4a1wa8/OCjOpimFD6DzU1RKRfyM9O5ofTsnlgbi5fnJhGIEb8aW6HJzaEuezFCm5+u4biGk1O258pQIlIvzIymMi/HZXJ4nnDuHJykKzkztl87cBL25r46itVfPcfVbzzSTPOKaGiv9EQn4j0S0MCCXzp0Azm5wd5ZlMjD5WG2BXunCzx9ictvP1JNZOzk7i0IMjJIwMkKkW9X1CAEpF+LZiUwEWTgpw/IY1lWxtZVBJifV1bp3Lralq56e1aRqcnMj8vyBljUwnE+A0riR8a4hORASEpwTh9bBp3zc7h58dnc3RO7Mlptza08dsP6liwtIIHihuoi55rSeKGelAiMqCYGZ87OMDnDg6wqrKFB0saeH1H5xT1qqZ2/rS6gQeKQ5wzPo2L89IYlqrMv3iiHpSIDFhH5CTzsxlDuOfUHM4am0qMKf8ItToWl4ZYsKSCX75Xy8a61v1fUYlJAUpEBrzxmUlcPyWLB+flckleGmkx7j21OnhmUyNXvVTJD5dXs6pSKeoHmob4RGTQGJ6WyDeOyOTygnSe2BDm0bIQVc27p5874LUdzby2o5ljcpO5ND/IjOEpmDL/9jsFKBEZdDJTErhscjoX5wV5bnMji0sa2BbqnCzxfkUL71fUMCkzkQX56cwZHSApQYFqf9EQn4gMWoFE47wJadw3N5cbp2UxOTt2m72sro1bV9ay8MUKHisLEW7Vl373BwUoERn0Es04dXQqd5wylF9/bghTh8VOUd8Zbuf3H9Uzf2k5d69toKZZKer7kob4RER8Zsb0g1KYflAKa6u9WdRf3dZEdBiqbXbcvbaBopIGPj8ujYvzgowIKkW9rylAiYjEcMiQZG6ans2W+lYeKg3z7OYw0d/pbWyDR9eH+euGMHNHByjMTz8wlR2gNMQnIrIHYzKS+I9jvMlpFxYESY/xZap2B0u2NPHllyv5/aYg71doctq+oAAlItIDOakJfPWwDB46LZevH57BsNTYl88PG5L5t9er+eZrVfx9exPtClR7TUN8IiK9kJ6cwIL8IBdMTGOpPznt5vrOk9N+XNXKj1bUMC4jkQX5QeaNTiVFk9P2inpQIiJ7ISXROHtcGvecmsMtx2Vz+NDY7f1N9W388r06Ln2xgqKSEA2anLbHFKBERD6DBDNOHhngf08ayn+fOISj0mNPkVTe2M4fP67nkiUV/Gl1PZWNClTdUYASEekDZsYxuSl8a1yIu2bncNqYALEmnWhodTxQHGL+0nJ+834tW+o1OW1XFKBERPrYpKwkfjA1mwfn5nLhxDRi/YpHSzs8tbGRK5ZVctPbNayt1uS00XoUoMzsTDNbY2brzOz6GNu/bWarzOw9M1tiZmMjtl3pP26tmV3Rl5UXEYlnI4KJ/OtRmSw+bRhXHZJOVkqMFHXg5W1NXPNqFf/xRhVv71KKeodus/jMLAG4HZgLbANWmNkTzrk1EcXeBaY55xrN7OvAr4AFZjYU+DEwFTDgHf+xNX39QkRE4lV2SgJXHZLO/Lwgz24Ks7g0xM5w53tQ75a38G55NZOzk1iQH2TWqACJg3gW9Z70oGYAxc65jc65FqAIOC+ygHPuFedco7/4JjDa//8ZwAvOuRrnXDXwAnBm31RdRKR/SUsyLpgU5IG5ufxgahaTMmNPj7SuppWfvFPL5S9W8MT6EE1tg7NH1ZMANRrYHLG8hX8GoFi+AjzbxWO3dvNYEZEBLynBOG1MKnfOzuG247M5Jjf25LTbQu387sN6Fiwp5751DdQNsslp+/SLumZ2GTANmLU3jy8uLu7L6gx4Ol69p2PWezpmvdebY5YDXDscyjITea4iwHt1STh2H9aranbcuaaB+9fVc8qQZublNJGTPDB6VQUFBV1u60mA2gqMi1ge46/bjZnNA74PnOIPBXY8dnbUY1/am4rK7oqLi3W8eknHrPd0zHpvb49ZAd49kU31rRSVhHhhcyPRPzvV1G4sqQzwUlWA08aksiA/yPjMgTshUE+G+FYA+WY23sxSgAXAk5EFzGwK8EfgXOdcRcSm54HTzCzbT5g4zV8nIiIxjMtI4rpjsyg6LZcFeUGCMSanbXXw7OZGrnypkh8sr2ZV5cBMUe829Drn2szsWrwEhwTgTufcajO7GVjhnHsa+CWQDjxsZgZsdM6d75yrMrNbgLcBB9zsJ0uIiMgeDEtN5OtHZLBwcpAnN4R5pCxMVVPne1Cv72jm9R3NHJ2TTGFBkJnDU7ABkvnXo76hc+454JCodTdG/P+0PTz2buDuvaueiMjglpmcwMKCdC6aFOSFzY0UlYbY2tB5ctoPKlv44K0aJmYmUpgfZM7oVJJiTWXRj2gmCRGRfiCQaJwzIY175+Rw0/QsJmfH7l+sr2vj1pV1LHyxgkfKQoSjb2T1IwpQIiL9SKIZs0elcscpQ/nt54Zw3EEpMcvtDLdz+0f1zF9Szl/W1FMdY3gw3g3c9A8RkQHMzJh6UApTD0qhuKaFRSUhXt7aRHQYqm1x3LMuRFFpiLPHpXFJXpCRwdhfEI436kGJiPRzBdnJ/HhaNvfNzeG8CWmkxLiyN7XBX9eHWfhiBT99p4aSmvjP/FOAEhEZIEanJ/Hto73JaS+fHCQzOcbktA6Wbm3i6lequO7NalaWx+/ktBriExEZYIYGEvjKoRkU5gf528ZGFpeGKI/xA4nLdzWzfFczhw1JojA/yEkjAyTEUYq6ApSIyAAVTErg4rwg509MY+mWRopKQmys75yivrq6lR+/XcvY9ETm5wc5fUwqKYkHPlBpiE9EZIBLTjDOGpfGX07N4WczsjlyaOzJaTc3tPHr9+soXFrBouIG6lsObOafelAiIoNEghknjghw4ogAH1Q0s6gkxD92NncqV9HUzh2rG7i/OMS5E9K4aFIaubF+FngfU4ASERmEjs5N4ejcFMpqW1lcEmLp1kaif3aqodWxqCTEI2UhzhibyoK8IGMy9l/Y0BCfiMggNikrie9PzeLBublcNCmN1Bj3nlra4emNjVy+rJIfr6hhTdX+SVFXD0pERDg4mMi1R2ZyxeR0Hl8f5tH1IWqad+9SOeDV7U28ur2JKcOSKcwPctxB+25yWgUoERH5VFZKAlccks4leUGe3RxmcWmIHaHOyRIry1tYWV5DfpaXoj5rVKDPJ6fVEJ+IiHSSmmR8cWKQ++fk8qOpWeRlxe7PlNS2csu7tVy+rIK/rg/R2IeT0ypAiYhIl5ISjLljUvnzrKH8cmY2U4bFTlHfHmrnvz+sZ8HScu5d20Bt82dPUdcQn4iIdMvMmDE8wIzhAdZUtfBgSYi/b28iur9U3ey4a20DD5aEOGd8KhfnBRmetncp6gpQIiLSK4cOTeYnx2Wzub6VxaUhnt/cSPR3ehvbHA+XhXlsfZh5Y1IpzA8yIbN3IUdDfCIislfGZiTx3WOyKJqXS2F+kPSkzkkSbQ6e39zIVS9VcsNb1XxQ0fmLwV1RD0pERD6T3NRErjk8g4UFQZ7aEObhsjCVMX4g8Y2dzbyxs5kjc5K5ND/IzINT9jg5rXpQIiLSJzKSEygsSKdoXi7fPSaTsemx7z19VNnCDctr+PLLlXvcn3pQIiLSp1ISjS+MT+Oscam8vr2JRSUhVle3diq3oa7zzOqRFKBERGSfSDTjlFGpnDwywHsV3s/SL9+le1AiIhInzIwpw1KYMiyFkpoWikpCLNvWRHs33+lVgBIRkf0mPzuZH07L5iuHtvHc5vAeyypJQkRE9ruR6Yl86dCMPZZRgBIRkbikACUiInFJAUpEROKSApSIiMQlBSgREYlLClAiIhKXFKBERCQuKUCJiEhcUoASEZG4pAAlIiJxSQFKRETikgKUiIjEJQUoERGJSwpQIiISlxSgREQkLvUoQJnZmWa2xszWmdn1MbafbGbvmFmLmV0Qta3NzN41s5Vm9nhfVVxERAa2bn9R18wSgNuBucA2YIWZPeGcWxNRbCNwJfDdGLtocM5N7YvKiojI4NGTn3yfARQ75zYCmFkRcB7waYByzm3yt8X6hXnrg3qKiMgg05MhvtHA5ojlLf66ngqY2XIze8PMzutV7aRLBQUFB7oK/Y6OWe/pmPWejlnf6UkP6rMa75zbbmYTgWVm9oFzbv1+eF4REenHetKD2gqMi1ge46/rEefcdv/f9cDLwJRe1E9ERAapnvSgVgD5ZjYe2A4sAAr3UP7Te05mNgQIOeeazWwYcAJwW2Th7Oxs3aMSEZFOuu1BOefagGuBF4BVQJFzbrWZ3WxmXwAws+lmthm4CPijmX3oP/ww4G0zWwm8CPw8KvtPREQkJnMuVuKdiIjIgaWZJEREJC4pQImISFxSgBIRkbikACUiInFJAUpEROKSApSIiMQlBSgREYlL/x+7Vglbl957wQAAAABJRU5ErkJggg==\n"},"output_type":"display_data","metadata":{}}]},{"source":"## 11. Conclusion\n<p>Given the two Sharpe ratios, which investment should we go for? In 2016, Amazon had a Sharpe ratio twice as high as Facebook. This means that an investment in Amazon returned twice as much compared to the S&amp;P 500 for each unit of risk an investor would have assumed. In other words, in risk-adjusted terms, the investment in Amazon would have been more attractive.</p>\n<p>This difference was mostly driven by differences in return rather than risk between Amazon and Facebook. The risk of choosing Amazon over FB (as measured by the standard deviation) was only slightly higher so that the higher Sharpe ratio for Amazon ends up higher mainly due to the higher average daily returns for Amazon. </p>\n<p>When faced with investment alternatives that offer both different returns and risks, the Sharpe Ratio helps to make a decision by adjusting the returns by the differences in risk and allows an investor to compare investment opportunities on equal terms, that is, on an 'apples-to-apples' basis.</p>","metadata":{"deletable":false,"run_control":{"frozen":true},"dc":{"key":"74"},"editable":false,"tags":["context"]},"cell_type":"markdown"},{"source":"# Uncomment your choice.\n# buy_amazon = True\n# buy_facebook = True","metadata":{"collapsed":true,"dc":{"key":"74"},"tags":["sample_code"],"trusted":true},"cell_type":"code","execution_count":225,"outputs":[]}],"nbformat_minor":2}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
You can’t perform that action at this time.