Skip to content

Instantly share code, notes, and snippets.

@alexandrehuat
Last active December 5, 2024 15:13
Show Gist options
  • Save alexandrehuat/f0c7854e911847ef74e79b60cbd9747c to your computer and use it in GitHub Desktop.
Save alexandrehuat/f0c7854e911847ef74e79b60cbd9747c to your computer and use it in GitHub Desktop.
Breaking down misconceptions on screening tests in the era of COVID-19.ipynb
Display the source blob
Display the rendered blob
Raw
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"name": "Breaking down misconceptions on screening tests in the era of COVID-19.ipynb",
"provenance": [],
"collapsed_sections": [
"87FY1F2GRhO8"
],
"authorship_tag": "ABX9TyNcb9kakcbUkyKru3Gwvmzu",
"include_colab_link": true
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
}
},
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "view-in-github",
"colab_type": "text"
},
"source": [
"<a href=\"https://colab.research.google.com/gist/alexandrehuat/f0c7854e911847ef74e79b60cbd9747c/notebook.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "sZWCi4nFxxSE"
},
"source": [
"\n",
"# Breaking down misconceptions on screening tests in the era of COVID-19\n",
"\n",
"**Author:** Alexandre Huat\n",
"**Date:** 21 June 2023 (v4)\n",
"\n",
"**Recommended requirements:** Basic level in algebra and probabilities\n",
"\n",
"_\"Too long, I didn’t read.\" — Just read the introduction, the boxed equations and figures._\n",
"\n",
"## Foreword\n",
"\n",
"Many statistic-based decision support tools used in medicine, biology, psychology and many other fields, including engineering, suffer misconceptions. This interactive article breaks down one of the most harmful misconception of the century: the [base rate fallacy](https://en.wikipedia.org/wiki/Base_rate_fallacy#Example_3:_Terrorist_identification). Briefly, this bias makes people confuse the \"sensitivity\" of a screening test, confusingly named \"false positive rate\", with the false alarm rate.\n",
"\n",
"Worryingly, this often results in overconfidence in positive test results. Most often, it means overestimating a threat, thus leading to excessive engagement in combating the threat, from low overanxiety to paranoia.\n",
"\n",
"This article goes through the statistical theory of screening tests through an interactive application on COVID-19, so that readers become immune to the bias rate fallacy.\n",
"\n",
"## Introduction\n",
"\n",
"Imagine that you are suspicious of having COVID-19. Organisations provide detection tests for the disease. **You take the test and you get a positive result. But, what is the probability that you are actually infected?** The first part of this notebook will adress this question.\n",
"\n",
"The second part will address the question of the spreading of COVID-19. Numbers of \"cases\", or positive tests, are often broadcasted on TV and radio stations. However, they do not depend only on the dynamic of the epidemic and are very often badly used.\n",
"\n",
"Numbers of cases are meaningless without a total number of tests because 10 thousands cases for 100 thousands tests (10%) is not the same as 10 thousands cases for 10 million tests (0.01%). Numbers of cases over population sizes are even more meaningless since the whole population is never tested, except in very particular settings as that of the subpopulation of a hospital where admission requires testing.\n",
"\n",
"Nevertheless, all these data are still not enough because tests are prone to errors. To control for the spread of the virus, the real infection rate has to be effectively estimated.\n",
"\n",
"## Part 1: Interpreting test results right\n",
"\n",
"Before diving into mathematical formulas, let us introduce a few notations. Let $F$ mean \"you are infected\", $G$ mean \"you are not infected\", $P$ mean \"the test is positive\" and $N$ mean \"the test is negative\". **We are looking for the probability of the event \"I am infected given that the test is positive\"**, hence denoted $\\Pr(F\\,|\\,P)$.\n",
"\n",
"From basic probability calculus, we have **Bayes' theorem**:\n",
"\\begin{equation}\n",
"\\Pr(F \\cap P) = \\Pr(F\\,|\\,P) \\Pr(P) = \\Pr(P\\,|\\,F) \\Pr(F) \\iff \\boxed{\\Pr(F\\,|\\,P) = \\frac{\\Pr(P\\,|\\,F) \\Pr(F)}{\\Pr(P)}}\n",
"\\end{equation}\n",
"\n",
"In other words, the probability of being infected given a positive test equals to the proportion of people testing positive among those infected (sensitivity), times the proportion of infected people in the overall population (prevalence), over the proportion of positive tests among tested people.\n",
"\n",
"**Lexicon**\n",
"* Usually, $\\Pr(F\\,|\\,P)$ and $\\Pr(G\\,|\\,N)$ are designated as \"posterior probabilities\" because they allow to make an opinion about the infection status after the test is taken.\n",
"* $\\Pr(F\\,|\\,P)$ is called \"positive predictive value\" (PPV) or \"true alarm rate\" because it predicts whether we are infected given a positive test.\n",
"* $\\Pr(G\\,|\\,N)$ is called \"negative predictive value\" (NPV) or \"true silence rate\" because it predicts whether we are not infected given a negative test.\n",
"* $\\Pr(P\\,|\\,F)$ is called \"sensitivity\" (Se) or \"true positive rate\" (TPR). **Be careful, if you confuse it with the positive predictive value, you fall in the base rate fallacy.**\n",
"* $\\Pr(N\\,|\\,G)$ is called \"specificity\" (Sp) or \"true negative rate\" (TNR). **If you confuse it with the negative predictive value, you fall in the base rate fallacy.**\n",
"\n",
"We now need concrete numbers to figure $\\Pr(F\\,|\\,P)$ out. For instance, let us say that the test documentation says: \"sensitivity = 99.99%, specificity = 97.8%\". From Bayes' theorem, we have $\\Pr(F\\,|\\,P) = \\frac{0.9999 \\Pr(F)}{\\Pr(P)}$. To determine $\\Pr(F)$ and $\\Pr(P)$, we develop the equation.\n",
"\n",
"$F$ and $G$ are complementary so:\n",
"\n",
"* $\\Pr(P) = \\Pr(P\\,|\\,F) \\Pr(F) + \\Pr(P\\,|\\,G) \\Pr(G)$\n",
"* $\\Pr(G) = 1 - \\Pr(F)$\n",
"\n",
"$P$ and $N$ are complementary so $\\Pr(P\\,|\\,G) = 1 - \\Pr(N\\,|\\,G)$.\n",
"\n",
"As a result:\n",
"\\begin{align*}\n",
"\\Pr(P) &= \\Pr(P\\,|\\,F) \\Pr(F) + (1 - \\Pr(N\\,|\\,G)) (1 - \\Pr(F)) \\\\\n",
"&= 0.9999 \\Pr(F) + (1 - 0.978) (1 - \\Pr(F))\n",
"\\end{align*}\n",
"\n",
"In this equation, the only unknown is now $\\Pr(F)$, the disease prevalence.\n",
"\n",
"Many methods and studies can allow to estimate $\\Pr(F)$ and these estimates are necessarily subject to debate. It should not be estimated from screening tests but from more reliable evaluations. Recall that the positive rate $\\Pr(P)$ is not the infection rate $\\Pr(F)$.\n",
"\n",
"Yet, estimates of prevalence can still suffer from [selection bias](https://en.wikipedia.org/wiki/Selection_bias): it can change from a (sub)population to another. That is why, new estimates must always be integrated in our understanding of the disease. A study report can only complement another.\n",
"\n",
"The disease prevalence highly influences the test predictive values. For instance, if 1.5% of the population is infected, then you have 41% chance of being infected when positive. It is very low (a coin toss has a false alarm rate of 50%), but it will increase as prevalence, sensitivity or specificity increases. For instance, if specificity increases to 99.8%, then 88% of positive people will actually be infected.\n",
"\n",
"In the Python application below, numbers and graphs show more thoroughly how the test and epidemic properties influence predictive values. Other convenient calculators can be found on the MSD Manual website ([PPV](https://www.msdmanuals.com/professional/multimedia/clinical-calculator/positive-predictive-value-of-a-test), [NPV](https://www.msdmanuals.com/professional/multimedia/clinical-calculator/negative-predictive-value-of-a-test); in \"fraction\" mode, enter 0.56 for 56%).\n",
"\n",
"To synthesize this exercise of probability, two general formulas must be known:\n",
"\n",
"\\begin{equation}\n",
"\\boxed{\\text{PPV} = \\frac{\\text{Se} \\times \\text{P}}{\\text{Se} \\times \\text{P} + (1 - \\text{Sp}) \\times (1 - \\text{P})}}\n",
"\\end{equation}\n",
"\n",
"\\begin{equation}\n",
"\\boxed{\\text{NPV} = \\frac{\\text{Sp} \\times (1 - \\text{P})}{\\text{Sp} \\times (1 - \\text{P}) + (1 - \\text{Se}) \\times \\text{P}}}\n",
"\\end{equation}\n",
"\n",
"where $\\text{P}$ is the prevalence and other abbreviations are defined above.\n",
"\n",
"For your information, $1 − \\text{Sp} = \\text{FPR}$, the false positive rate (FPR), that is, the rate of positive tests among uninfected patients.\n",
"\n",
"*Proof (NPV).*\n",
"\\begin{align*}\n",
"\\Pr(G\\,|\\,N) &= \\frac{\\Pr(N\\,|\\,G) \\Pr(G)}{\\Pr(N)} \\\\\n",
" &= \\frac{\\Pr(N\\,|\\,G) (1 - \\Pr(F))}{\\Pr(N\\,|\\,G) \\Pr(G) + \\Pr(N\\,|\\,F) \\Pr(F)} \\\\\n",
" &= \\frac{\\Pr(N\\,|\\,G) (1 - \\Pr(F))}{\\Pr(N\\,|\\,G) (1 - \\Pr(F)) + (1 - \\Pr(P\\,|\\,F)) \\Pr(F)}\n",
"\\end{align*}\n"
]
},
{
"cell_type": "code",
"metadata": {
"id": "Pw1uBMG8vIjB"
},
"source": [
"# Initialization\n",
"# Type Shift+Enter in this code cell at least once.\n",
"import sys\n",
"import numpy as np\n",
"import pandas as pd\n",
"import seaborn as sns\n",
"sns.set_style(\"whitegrid\")\n",
"import matplotlib.pyplot as plt\n",
"\n",
"def check_values(*values):\n",
" for value in values:\n",
" if isinstance(value, np.ndarray):\n",
" error = ((value < 0) | (value > 1)).any()\n",
" else:\n",
" error = not 0 <= value <= 1\n",
" if error:\n",
" raise ValueError(\"expected values between 0 and 1\")\n",
"\n",
"def ppv_fn(preval, sensi, specif):\n",
" check_values(preval, sensi, specif)\n",
" tmp = sensi * preval\n",
" return tmp / (tmp + (1 - specif) * (1 - preval))\n",
"\n",
"def npv_fn(preval, sensi, specif):\n",
" check_values(preval, sensi, specif)\n",
" tmp = specif * (1 - preval)\n",
" return tmp / (tmp + (1 - sensi) * preval)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "vq4jMdiGysOY",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "95890541-c27d-40ff-891f-d6dcd393bf74"
},
"source": [
"# Enter your own values of prevalence, sensitivity and specificity, then type Ctrl+Enter to print the predictive values.\n",
"# For XX%, enter 0.XX.\n",
"preval = 0.03\n",
"sensi = 0.98\n",
"specif = 0.99\n",
"\n",
"try:\n",
" ppv = ppv_fn(preval, sensi, specif)\n",
" npv = npv_fn(preval, sensi, specif)\n",
" for name, value in [(\"Prevalence\", preval), (\"Sensitivity\", sensi), (\"Specificity\", specif),\n",
" (\"True alarm rate\", ppv), (\"True silence rate\", npv)]:\n",
" print(f\"{name}: {value:.3f}\")\n",
"except (ValueError, TypeError) as exc:\n",
" print(f\"{type(exc).__name__}: {exc}\", file=sys.stderr)"
],
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Prevalence: 0.030\n",
"Sensitivity: 0.980\n",
"Specificity: 0.990\n",
"True alarm rate: 0.752\n",
"True silence rate: 0.999\n"
]
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "WDOJVIxB3Mgi",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 514
},
"outputId": "45ecf21b-0345-47e1-b8fd-c321c20c4a89"
},
"source": [
"# Chart of predictive values in function of prevalence, sensitivity and specificity.\n",
"fig, (ax, bx) = plt.subplots(1, 2, figsize=(10.6, 4.8))\n",
"fig.suptitle(\"Predictive values in function of prevalence, sensitivity and specificity\")\n",
"ax.set_xlabel(\"Prevalence\")\n",
"bx.set_xlabel(\"Prevalence\")\n",
"ax.set_ylabel(\"PPV\")\n",
"bx.set_ylabel(\"NPV\")\n",
"preval = np.linspace(0, 1, 11)\n",
"prevals = np.linspace(preval[0], preval[-1], 100)\n",
"axlims = (-0.025, 1.025)\n",
"ax.set_xlim(*axlims)\n",
"bx.set_xlim(*axlims)\n",
"ax.set_ylim(*axlims)\n",
"bx.set_ylim(*axlims)\n",
"cmap = plt.get_cmap(\"Set1\")\n",
"sensi_vals = [0.70, 0.90, 0.99]\n",
"specif_vals = [0.70, 0.90, 0.99]\n",
"for i, sensi in enumerate(sensi_vals):\n",
" color = cmap(i)\n",
" linestyle = [\"-\", \"-.\", \"--\", \":\"][i]\n",
" for j, specif in enumerate(specif_vals):\n",
" marker = \"o^v<>sD*\"[j]\n",
" plot_kw = dict(c=color, ls=linestyle)\n",
" if j == 0:\n",
" ax.plot([-1], [-1],\n",
" label=f\"Se={sensi:.0%}\",\n",
" **plot_kw)\n",
" ppvs = ppv_fn(prevals, sensi, specif)\n",
" ax.plot(prevals, ppvs, **plot_kw)\n",
" npvs = npv_fn(prevals, sensi, specif)\n",
" bx.plot(prevals, npvs, **plot_kw)\n",
"\n",
" scat_kw = dict(marker=marker, facecolors=\"none\", edgecolors=color)\n",
" ax.scatter(preval, ppv_fn(preval, sensi, specif),\n",
" #label=\"$\\Pr(+\\,|\\,F)$={:.3g}%, $\\Pr(−\\,|\\,G)$={:.3g}%\".format(100 * sensi, 100 * specif),\n",
" **scat_kw)\n",
" bx.scatter(preval, npv_fn(preval, sensi, specif),\n",
" **scat_kw)\n",
" if i == len(sensi_vals) - 1:\n",
" scat_kw.update(edgecolors=\"k\")\n",
" ax.scatter([-1], [-1],\n",
" label=f\"Sp={specif:.0%}\",\n",
" **scat_kw)\n",
"ax.legend(loc=\"lower right\", ncol=2)"
],
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"<matplotlib.legend.Legend at 0x7f2de29cc9a0>"
]
},
"metadata": {},
"execution_count": 3
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<Figure size 1060x480 with 2 Axes>"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA34AAAHgCAYAAAD62r8OAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3wWRd7Av7tPTZ70RkJCQhKSUBIIVekdBFGKBVEQu+jZ3ztFz9Pz7jy7nl2sYEVRQEB6ERABkd57KiG9PL3tvn88yRNCCE2K4nz5PB/y7M7OzM4zOzu/mV+RVFVVEQgEAoFAIBAIBALBJYt8sSsgEAgEAoFAIBAIBILzixD8BAKBQCAQCAQCgeASRwh+AoFAIBAIBAKBQHCJIwQ/gUAgEAgEAoFAILjEEYKfQCAQCAQCgUAgEFziCMFPIBAIBAKBQCAQCC5xhOAnEAgEAoFAIBAIBJc4QvATCAQCgUAgEAgEgkscIfgJBAKBQCAQCAQCwSWOEPwEgrNgwIABTJ482f99/fr1ZGRksH79+nNWRkZGBm+++eY5y+9i8Xu+j8mTJzNgwIBzmmdOTg633XYbnTt3JiMjg6VLl57T/M8VEyZMYMKECRe7GielrKyMBx54gMsuu4yMjAymTp16sat0Xvgj/BaXGgUFBWRkZDBz5szTSn+249ibb75JRkbGGV/3e+aP3l+bel/Pnj2bK664gnbt2tGlSxfg7O/19/zeE/y50V7sCggEZ8rMmTN5/PHH/d/1ej3NmzenZ8+e3HvvvURFRV3E2p0ZK1euZNu2bdx///0XuyqCc8TkyZMpKCjg4YcfJjg4mMzMzItWlwMHDrBgwQJGjx5NQkLCRavH2fLcc8+xevVq7rvvPqKioi5qWwoufS7UePzee+/RqlUrBg0adF7LEZw+Bw8e5PHHH6d3797cddddGI3Gc5r/pk2bWLNmDRMnTiQkJOSc5i0QnAlC8BP8YXnggQdISEjA5XKxceNGvvrqK1auXMm8efMICAi4oHXp2rUr27ZtQ6fTndF1K1eu5IsvvjjhRGPbtm1oNJpzVUXBCfj3v/+NqqrnLD+Hw8HmzZuZNGkS48ePP2f5ni0HDhzgrbfeolu3bo0Ev48++ugi1er0WbduHQMHDuT222+/2FURXGLEx8ezbds2tNr6adD5GI/vuece7rrrrgbHpkyZwtChQ4Xgd5E40fv6l19+QVEU/v73v5OUlOQ/frbj5PH9ZfPmzbz11luMHj1aCH6Ci4oQ/AR/WPr06UNWVhYA1113HWFhYXzyyScsW7aMESNGnPAam81GYGDgOa+LLMsYDIZzmue5zk/QmDMV1E9FRUUFwB/ixa7X6y92FU5JeXn5BWnL8zUuCH6/SJJ0RmPs2Y7HWq22gXApuPic6H1dXl4OQHBwcIPjZztOive34PeKsPETXDJcfvnlgM92A3wqdx07diQvL48777yTjh078te//hUARVGYOnUqV155JVlZWfTo0YOnnnqK6urqBnmqqso777xDnz596NChAxMmTGD//v2Nym7KZmDr1q3ceeeddO3alezsbK666iqmTZvmr98XX3wB+OwB6j51HGsjsHDhQjIyMvjll18alT19+nQyMjLYt2+f/9jBgwd54IEH6NatG1lZWYwZM4Zly5adtP3cbjfdunVroEZbh8ViISsrixdeeAEAl8vF66+/zpgxY+jcuTPZ2dnceOONrFu37qRl1N33iezqmrKF+f777xkzZgzt27enW7duPPzwwxQVFTVIk5OTw/3330/Pnj3JysqiT58+PPzww5jN5jOqS53dz0cffcTXX3/NoEGDyMzM5JprrmHbtm0nzevNN9+kf//+ALz44otkZGT48z6Te87IyOBf//oXS5cuZcSIEWRmZnLllVeyatWqRtcXFxfzxBNP0KtXLzIzMxkwYABPP/00LpeLmTNn8uCDDwJw8803+/tXXR89ke1KeXk5TzzxBD169CArK4urr76aWbNmNUjzW9qojvz8fH//7NChA9dffz0//vij//zMmTPJyMhAVVW++OKLRs/G8Rxbp6lTp9K/f3/at2/P+PHjGzwX8NvHhbvvvpuBAweesB5jx45lzJgx/u/fffcdN998M927dyczM5Phw4fz5ZdfnlYbuVwu3njjDQYPHkxmZiZ9+/blxRdfxOVyNUh3rvpLHTU1NTz77LP07duXzMxMBg8ezPvvv4+iKKdV7+OxWCw8++yzDBgwgMzMTLp3786tt97Kzp07G6TbunUrt99+O507d6ZDhw6MHz+ejRs3NkhT97zk5uYyefJkunTpQufOnXn88cex2+0N0q5Zs4Zx48bRpUsXOnbsyNChQ3n11Vf954+38Ttf4/Hxz3hGRgY2m41Zs2b5y5g8eTLr1q0jIyODJUuWNMpz7ty5ZGRksHnz5ibbuaqqihdeeIGrrrqKjh070qlTJ+644w727NnTIF3du2r+/Pm8++67/gXUiRMnkpub2yjfume8ffv2XHvttfz6669N1uF4TvUbHFuXV199lZ49e5Kdnc2kSZMajfFwen0ETt3Pj39fDxgwwP/bdu/evcFvfaJx0ul08uabbzJ06FCysrLo1asX9913H3l5ef40x+bx5ptv8uKLLwIwcOBA/+9eUFDA+PHjufrqq0/YfkOHDhXaDoJzjliGElwy1A26YWFh/mMej8f/onjsscf8evtPPfUUs2bNYsyYMUyYMIGCggK++OILdu3axVdffeXfCXr99dd599136du3L3379mXnzp3cdtttuN3uU9ZnzZo13H333cTExHDzzTcTFRXFwYMH+fHHH5k4cSJjx46lpKSENWvW+F8KTdGvXz8CAwNZsGAB3bp1a3Bu/vz5pKWlkZ6eDsD+/fsZN24czZo148477/Rf95e//IU333yTwYMHn7AMnU7HoEGDWLJkCc8880yDlc6lS5ficrkYPnw44JvMzZgxgxEjRnDddddhtVr59ttvueOOO5gxYwZt2rQ5ZfucDu+++y6vv/46w4YN49prr6WiooLPP/+cm266idmzZxMSEoLL5eL222/H5XIxfvx4oqKiKC4u5scff6SmpqbRCu7pMG/ePKxWK2PHjkWSJD788EPuv/9+li5d2uQu4eDBgwkODua5555jxIgR9OnTB5PJdFb3vXHjRhYvXsyNN96IyWTis88+44EHHmDFihWEh4cDvsnNtddei9ls5vrrryclJYXi4mIWLVqEw+Gga9euTJgwgc8++4xJkyaRkpICQGpq6gnLdDgcTJgwgby8PG666SYSEhJYuHAhkydPpqamhokTJ/7mNgKfw5YbbrgBu93OhAkTCA8PZ9asWdxzzz1+Qadr1668+OKLPProo/Ts2ZORI0eeVrvNnj0bq9XKjTfeiNPp5LPPPmPixInMnTu3ge3vbxkXhg0bxmOPPca2bdto3769P8/CwkK2bNnCo48+6j/21VdfkZaWxoABA9BqtaxYsYJnnnkGVVW56aabmrwPRVG455572LhxI9dffz2pqans27ePadOmkZOTwzvvvNMg/bnoL3q9Hrvdzvjx4ykuLuaGG24gLi6OzZs38+qrr1JaWsrf//730/odjuXpp59m0aJFjB8/ntTUVKqqqti4cSMHDx6kXbt2AKxdu5Y777yTzMxM7rvvPiRJYubMmUycOJEvv/yyQTsDPPTQQyQkJPDII4+wa9cuZsyYQUREBH/7298A3xh49913k5GRwQMPPIBeryc3N5dNmzY1Wc/zNR4fz4svvsiTTz5J+/btuf766wFITEwkOzubuLg45s6d22iMnjt3LomJiXTs2LHJOuXn57N06VKuuOIKEhISKCsr4+uvv2b8+PH88MMPNGvWrEH6Dz74AEmSuO2227BYLHz44Yf89a9/ZcaMGf40M2bM4KmnnqJjx45MnDiR/Px87rnnHkJDQ4mLiztpG53Jb/Duu+8iSRJ33nkn5eXlTJs2jVtuuYXvv//e/2yebh85nX5+PE888QSzZ89myZIl/POf/yQwMLDJhSav18vdd9/N2rVrufLKK7n55puxWq2sWbOGffv2kZiY2OiawYMHk5OTw7x583j88cf9z2RERAQjR47kySefZN++fQ36zLZt28jJyeGee+45aTsLBGeMKhD8wfjuu+/U9PR09eeff1bLy8vVoqIi9YcfflC7deumtm/fXj169Kiqqqr62GOPqenp6erLL7/c4PoNGzao6enp6pw5cxocX7VqVYPj5eXlart27dS77rpLVRTFn+7VV19V09PT1ccee8x/bN26dWp6erq6bt06VVVV1ePxqAMGDFD79++vVldXNyjn2LyeeeYZNT09/YT3mZ6err7xxhv+74888ojavXt31ePx+I+VlJSorVu3Vt966y3/sYkTJ6ojRoxQnU5ngzLHjh2rDhky5IRl1bF69Wo1PT1dXb58eYPjd955pzpw4ED/d4/H0yB/VVXV6upqtUePHurjjz9+0vt47LHH1P79+zcq+4033mjQFgUFBWqbNm3Ud999t0G6vXv3qm3btvUf37Vrl5qenq4uWLDgpPd2Io6vS35+vpqenq5269ZNraqq8h9funTpCdvleOqu//DDD09aTh3H37Oq+tqrXbt2am5urv/Y7t271fT0dPWzzz7zH3v00UfV1q1bq9u2bWuUb10fW7BgQYN+eSzjx49Xx48f7/8+depUNT09Xf3+++/9x1wulzp27Fg1OztbNZvNDe7xbNvo2WefVdPT09UNGzb4j1ksFv/z4vV6G7TFM888c9L8jq3Tsc+/qqrq1q1b1fT0dPW///2v/9hvHRfMZrOamZmpPv/88w3SffDBB2pGRoZaWFjoP2a32xvV9bbbbmvwLKlq499i9uzZauvWrRu0kaqq6ldffaWmp6erGzdu9B87l/3l7bffVrOzs9XDhw83OP/yyy+rbdq0UY8cOdLo2lPRuXPnk/6GiqKoQ4YMUW+77bYGY6PdblcHDBig3nrrrf5jdc/L8WPMX/7yF7Vbt27+75988omanp6ulpeXN1luXZ/57rvv/MfOx3h8omc8Ozu7wfujjldeeUXNzMxUa2pq/MfKy8vVtm3bNij7RDidzgbPTt09ZmZmNqhP3btq2LBhDcbwadOmqenp6erevXtVVfU9+927d1dHjhzZIN3XX3+tpqenN+ivJ+J0foO6uvTu3ds/vqiqqs6fP19NT09Xp02bpqrqmfWR0+nnx7+vVbX+dzq+vsc/m99++62anp6ufvLJJ03mr6qN+8uHH36opqenq/n5+Q2uqampUbOystSXXnqpwfF///vfanZ2tmq1WhuVIxD8FoSqp+APyy233EL37t3p27cvDz/8MCaTibfeeqvRyua4ceMafF+4cCHBwcH07NmTiooK/6ddu3YEBgb61T9+/vln3G4348ePR5Ik//XH73yciF27dlFQUMDNN9/cyEbp2LzOhGHDhlFeXt5AvWjRokUoiuLfiauqqmLdunUMGzYMi8Xiv7fKykp69epFTk4OxcXFTZZx+eWXEx4ezvz58/3Hqqur+fnnn/1lAGg0Gv/KqaIoVFVV4fF4yMzMZNeuXWd1f8ezZMkSFEVh2LBhDX6nqKgokpKS/L9TUFAQAD/99FMjda+zZfjw4YSGhvq/17n2zs/PPyf5n4oePXo0WDlu3bo1QUFB/vIVRWHp0qX079/fb+d6LGfTx1atWkV0dHQD+1idTseECROw2Wxs2LChQfqzbaOVK1fSvn17f3oAk8nE2LFjKSws5MCBA2dc9zoGDRrU4Plv3749HTp0YOXKlY3Snu24EBQURJ8+fViwYEEDx0Dz588nOzub5s2b+48d6xnQbDZTUVFBt27dyM/PP6ka8sKFC0lNTSUlJaVBXerU2Y9XKT9X/WXhwoV07tyZkJCQBuX26NEDr9fbqA+cDiEhIWzdurXJcWf37t3k5ORw1VVXUVlZ6S/TZrPRvXt3NmzY0EjN9IYbbmjwvUuXLlRVVWGxWPxlAixbtuysVVRPxemMx2fKyJEjcblcLFy40H9s/vz5eDyeJtUB69Dr9ciyb0rn9XqprKwkMDCQ5OTkE47JY8aMabD7dfzzu2PHDsrLy7nhhhsapBs9evRpaVGcyW8watQo/zgOcMUVVxAdHe1/bk+3j5yPcfF4Fi9eTHh4+Amdd51N/sHBwQwcOJAffvjBP554vV4WLFjAwIEDhe2x4JwjVD0Ff1ieeuopkpOT0Wg0REVFkZyc7H/x1aHVaomNjW1wLDc3F7PZTPfu3U+Yb52R95EjRwBo2bJlg/MRERENJrwnou7l2ZS6z9nQp08fgoODmT9/vr/u8+fPp02bNiQnJwM+dVdVVXn99dd5/fXXT5hPeXl5I+G4Dq1Wy5AhQ5g3bx4ulwu9Xs/ixYtxu92NJjOzZs3i448/5vDhww1UX89V2ICcnBxUVWXIkCFN1hWgRYsW3HrrrXzyySfMnTuXLl26MGDAAK6++uqzUvMEGqkx1f3eNTU1Z5Xfby2/rg515VdUVGCxWEhLSztnZRYWFpKUlNToGapTDa17Hpqq4+m20ZEjR+jQoUOj43WqqEeOHDnr5+ZYb3x1tGzZkgULFjQ49lvGBfAJvUuXLmXz5s106tSJvLw8du7cyRNPPNHgmo0bN/Lmm2+yZcuWRosSZrO5yf6Zm5vLwYMHT6sucO76S25uLnv37m2y3DrnRWfCX//6VyZPnky/fv1o164dffv2ZdSoUbRo0QLwPecAjz32WJN5mM3mBmPuscI11AsZ1dXVBAUFMXz4cGbMmMGTTz7JK6+8Qvfu3Rk8eDBXXHFFo/59tpzOeHympKamkpWVxdy5c7nuuusAn5pndnb2Cfv2sSiKwqeffsqXX35JQUEBXq/Xf+5Y84c6mmrDuj5T97wfX65Op/P/difjTH6D48uQJImkpCQKCwuB0+8jbrf7nI+Lx5OXl0dycvI5ddgzatQo5s+fz6+//krXrl35+eefKSsrO20Vd4HgTBCCn+APS/v27U+4qncsx66C1qEoCpGRkbz88ssnvCYiIuKc1fFcotfr/TZ4Tz/9NOXl5WzatIlHHnnEn6ZuZfW2226jd+/eJ8znRDYIx3LllVfy9ddfs2rVKgYNGsTChQtJSUmhdevW/jTff/89kydPZtCgQdx+++1ERkai0WiYMmXKKXd8mloVPXaiUncvkiTxwQcfnNCN+rEroZMnT2b06NEsW7aMNWvW8J///IcpU6bwzTffNJrgnw5NuW1XzzL0w+ne8/kq/3zwR6hjU/zWcaF///4EBASwYMECOnXqxIIFC5BlmSuuuMKfJi8vj1tuuYWUlBQmT55MXFwcOp2OlStXMnXq1JPugiiKQnp6+gkdLQGN+vS5+i0URaFnz57ccccdJzx//CLY6TB8+HC6dOnCkiVLWLNmDR999BEffPABb775Jn379vXX8dFHH23SNvj4XY+mhLe6vIxGI1988QXr16/nxx9/ZPXq1cyfP5+vv/6ajz/++JyEyTmd8fhsGDVqFM8++yxHjx7F5XKxZcsWnnrqqVNe99577/H6669zzTXX8OCDDxIaGoosy/z3v/89YT84VRv+Vs7lb3C6feR452x/FHr16kVUVBRz5syha9euzJkzh+joaHr06HGxqya4BBGCn+BPR2JiImvXrqVTp04nDdJatyKak5PTYIWzoqLilC+YuvT79u076eB9pqohw4YNY9asWaxdu5aDBw+iqirDhg1rVK5Opzvrl0bXrl2Jjo5m/vz5dOrUiXXr1jFp0qQGaRYtWkSLFi146623GtzDG2+8ccr8Q0JCTrgrdPyOUmJiIqqqkpCQcFor6HWe0u699142bdrEuHHj+Oqrr3j44YdPee355nTv+XSJiIggKCjohB5mj+VM+ld8fDx79+5FUZQGk8JDhw4BjXcIzpbmzZtz+PDhRsfPRTkn8kqYk5NDfHz8Ka893XEBfJPMfv36sXDhQh5//HHmz59Ply5dGuykL1++HJfLxbvvvtvgno5X02yqLnv27KF79+7nRD3tdPtLYmIiNpvtnE84Y2JiuOmmm7jpppsoLy9n9OjRvPfee/Tt29c/ZgUFBZ3TcmVZpnv37nTv3p3HH3+c9957j9dee43169c3Wc65Ho/PhuHDh/P8888zb948HA6H36HQqVi0aBGXXXYZ//3vfxscr6mp8TsTORPq+mxubm6DHWC3201BQUGDhcCmON3f4PjnVlVVcnNz/Q5WTrePnG4//y0kJiaydetW3G73GYUDOlnf0mg0jBgxglmzZvHXv/6VpUuXcv3114s4voLzgrDxE/zpGDZsGF6vt5FnPPB5+6uboPfo0QOdTsfnn3/eYBW0LhzDyWjXrh0JCQl8+umnjSb8x+ZVF2j+dFUIe/ToQVhYGPPnz2fBggW0b9++gVAaGRlJt27d+PrrrykpKWl0/emoatXtXKxYsYI5c+bg8XgaqXnWvZCOvZetW7eyZcuWU+afmJiI2Wxu4Ga8pKSkkRvzIUOGoNFoeOuttxqtQquqSmVlJeDzMOrxeBqcT09PR5blRq7vLxane8+niyzLDBo0iBUrVrB9+/ZG5+vaq65/nSqsBfhU10pLSxvYd3o8Hj777DMCAwPp2rXrWdX1ePr27cu2bdsauKa32Wx88803xMfH06pVq7POe+nSpQ1sybZt28bWrVvp06fPKa893XGhjuHDh1NSUsKMGTPYs2dPo8n5iZ4Rs9nMd999d1p1KS4u5ptvvml0zuFwYLPZTpnHsZxufxk2bBibN29m9erVjdLU1NQ0es5OhdfrbdT3IiMjiYmJ8T+bmZmZJCYm8vHHH2O1WhvlcTbqpVVVVY2O1e0UnWxMONfjcVMEBgY2WUZERAS9e/dmzpw5zJ07l169ep2WFopGo2k0Ti5YsOCkNt0nIzMzk4iICKZPn96gzWbNmnVa7XMmv8Hs2bP99pngszUtLS31P7en20dOt5//FoYMGUJlZaU/9Mfp5n+qsXjkyJFUV1fz1FNPYbPZTmnTKRCcLWLHT/Cno1u3bowdO5YpU6awe/duevbsiU6nIycnh4ULF/L3v/+dK664goiICG677TamTJnC3XffTd++fdm1axerVq065QqqLMv885//5J577mHUqFGMGTOG6OhoDh06xIEDB/joo48A/O7M//Of/9CrVy80Gg1XXnllk/nqdDoGDx7MDz/8gN1uP6HNw9NPP82NN97IVVddxfXXX0+LFi0oKytjy5YtHD16lDlz5pyyjYYNG8Znn33GG2+8QXp6eqMQAP369WPx4sX85S9/oV+/fhQUFDB9+nRatWp1yknp8OHDefnll7nvvvuYMGECDoeDr776iuTk5AaxvRITE3nooYd45ZVXKCwsZNCgQZhMJgoKCvwrorfffjvr1q3jX//6F1dccQUtW7bE6/Xy/fffo9FoGDp06Cnv9UJwuvd8JjzyyCOsWbOGCRMm+F3+l5aWsnDhQr788ktCQkJo06YNGo2GDz74ALPZjF6v5/LLLycyMrJRfmPHjuXrr79m8uTJ7Ny5k/j4eBYtWsSmTZt44oknGjhf+C3cdddd/PDDD9x5551MmDCB0NBQZs+eTUFBAW+++eZvssFKTExk3LhxjBs3DpfLxaeffkpYWFiTqovHcrrjQh19+/bFZDLxwgsvnLCv1V0/adIkbrjhBqxWKzNmzCAyMpLS0tKT1mXkyJEsWLCAp59+mvXr19OpUye8Xi+HDh1i4cKFfPjhh6dUcz+e0+kvt99+O8uXL2fSpEmMHj2adu3aYbfb2bdvH4sWLWLZsmV+IWTy5MnMmjWLZcuWNWnXa7Va6du3L0OHDqV169YEBgby888/s337diZPngz4xsr//Oc/3HnnnYwYMYIxY8bQrFkziouLWb9+PUFBQbz33ntndK9vv/02v/76K3379iU+Pp7y8nK+/PJLYmNj6dy5c5PXnY/xuKly1q5dyyeffEJMTAwJCQkN7F5HjRrFAw88AOCPxXkq+vXrx9tvv83jjz9Ox44d2bdvH3Pnzj0tQfRE6HQ6HnroIZ566ikmTpzI8OHDKSgoYObMmaeV55n8BqGhodx4442MGTPGH84hKSnJH+7iTPrI6fTz38KoUaOYPXs2zz33HNu2baNz587Y7XbWrl3LuHHjGDRo0Amvq+tbr732GsOHD0en09G/f3+/GnPbtm1JT0/3O3aqSy8QnGuE4Cf4U/Kvf/2LzMxMpk+fzmuvvYZGoyE+Pp6rr76aTp06+dM99NBD6PV6pk+fzvr162nfvj0ff/wxd9999ynL6N27N9OmTePtt9/m448/RlVVWrRo4X+ZgW/1cMKECfzwww/MmTMHVVVPOtGAeqN5SZJOqALUqlUrvvvuO9566y1mzZpFVVUVERERtG3blr/85S+n1T6dOnUiLi6OoqKiE3qoGzNmjD9O1E8//USrVq146aWXWLhw4QmDGh9LeHg4b731Fs8//zwvvfSSPx5Xbm5uIyHorrvuomXLlkydOpW3334b8Nk39ezZ0x8QPSMjg169erFixQqKi4sJCAggIyODDz74gOzs7NO63/PNmdzz6dKsWTO++eYbXn/9debOnYvFYqFZs2b06dPHr6oYHR3NM888w5QpU/j73/+O1+vl008/PaHgZzQa+eyzz3j55ZeZNWsWFouF5ORknnvuuQZByX8rUVFRTJ8+nZdeeonPP/8cp9NJRkYG7733Hv369ftNeY8aNQpZlpk2bRrl5eW0b9+ef/zjH8TExJzW9ac7LgAYDAYGDBjA3Llz6dGjR6M2TUlJ4Y033uB///sfL7zwAlFRUYwbN46IiIhGTmCOR5Zl3n77baZOncr333/PkiVLCAgIICEhgQkTJpyV85DT6S8BAQF89tlnTJkyhYULFzJ79myCgoJo2bIl999/fwNnNDabDaPReNKJtNFoZNy4caxZs4bFixejqiqJiYn+xak6LrvsMr7++mveeecdPv/8c2w2G9HR0bRv356xY8ee8b0OGDCAwsJCvvvuOyorKwkPD6dbt26N7uF4zsd4fCImT57MU089xf/+9z8cDgejR49uIPj179+f0NBQFEVh4MCBp5XnpEmTsNvtzJ07l/nz59O2bVumTJnCK6+8clrXn4ixY8fi9Xr56KOPePHFF0lPT/fHVj0VZ/IbTJo0ib179/L+++9jtVrp3r07Tz/9tH+XDE6/j5xOP/8t1C2kvfvuu8ybN4/FixcTFhZGp06dmoz9Bz6fBA8++CDTp09n9erVKIrCsmXLGtivjhw5kpdeekk4dRGcVyT1j2CJLxAIBAJBExQUFDBw4EAeffRRbr/99otdnT8FPXr0YOTIkae9yyU4fTweD71796Z///6NbPYuJdavX8/NN9/M66+/3mA3/c/KtGnTeO6551i+fPk5s6kWCI5H2PgJBAKBQCA4bfbv34/D4eDOO++82FW5JFm6dCkVFRWMGjXqYldFcIFQVZVvv/2Wrl27CqFPcF4Rqp4CgUAgEAhOm7S0NDZt2nSxq3HJsXXrVvbu3cs777xD27Zt6dat28WukuA8Y7PZWL58OevXr2ffvn0ndC4lEJxLhOAnEAgEAoFAcJH56quvmDNnDq1bt+b555+/2NURXAAqKir4v//7P0JCQpg0adJp23QKBGeLsPETCAQCgUAgEAgEgkscYeMnEAgEAoFAIBAIBJc4QvATCAQCgUAgEAgEgkscIfgJBAKBQCAQCAQCwSWOEPwEAoFAIBAIBAKB4BJHCH4CgUAgEAgEAoFAcIkjBD+BQCAQCAQCgUAguMQRgp9AIBAIBAKBQCAQXOIIwU8gEAgEAoFAIBAILnGE4CcQCAQCgUAgEAgElzhC8BMIBAKBQCAQCASCSxwh+AkEAoFAIBAIBALBJY4Q/AQCgUAgEAgEAoHgEkcIfgKBQCAQCAQCgUBwiSMEP4FAIBAIBAKBQCC4xBGCn0AgEAgEAoFAIBBc4gjBTyAQCAQCgUAgEAgucYTgJxAIBAKBQCAQCASXOELwEwgEAoFAIBAIBIJLHCH4CQQCgUAgEAgEAsEljhD8BAKBQCAQCAQCgeASRwh+AoFAIBAIBAKBQHCJIwQ/gUAgEAgEAoFAILjEEYKfQCAQCAQCgUAgEFziCMFPIBAIBAKBQCAQCC5xhOAnEAgEAoFAIBAIBJc4QvATCAQCgUAgEAgEgkscIfgJBAKBQCAQCAQCwSWO9mJX4EKjKAoejwdZlpEk6WJXRyAQCAS/EVVVURQFrVaLLIv1zKYQ7z+BQCC4tDjT99+fTvDzeDxs3779YldDIBAIBOeYrKws9Hr9xa7G7xbx/hMIBIJLk9N9//3pBL86aTgrKwuNRnPCNF6vl+3bt580zZ8V0TZNI9rm5Ij2aRrRNk1zOm1Tl0bs9p0c8f77bYi2OTmifZpGtE3TiLZpmvPx/vvTCX516i0ajeaUHex00vxZEW3TNKJtTo5on6YRbdM0p9M2Qn3x5Ij337lBtM3JEe3TNKJtmka0TdOcy/efWB4VCAQCgUAgEAgEgkucP92On0AgEFxsXF4XHsXj/64oXpyKE7vHhqxokCSJAG3ABanLio2rmLVzwUnTRBjC+OfYxy5IfUZ+cROKwQaSArIXUH0ncmVQNaBKZFd34N+3//OC1OdS57lpz/OzaT1IKkheX7sD5EmgaECVkVwGvh71EQGBpvNen/mH5lFsKwagxlVNbk0egdpAWgS3QK/x2a90b96D1hFtzntdABweB4rqa5Pjn1MAraz110sgEAh+71xUwW/Dhg189NFH7Nixg9LSUt5++20GDRp00mvWr1/P888/z/79+4mLi+Oee+5hzJgxF6jGAoHgj8jWo/tYnbvxpGnSI1sypFX3816X/OIC7v3pL0gaT+OThfV/DtBczUNX3X3e6zPv1x/IabYD1WkC7wlUSYxWDisa3B43Oq3uvNdH9soosgdJVlBcBmS9E1WRURUZSfYgaVRCdedfADnf/F7ef+HGYCSty9fGqgTIyLKC4tL7215SA9BeIKc5M/Z9Q7WzGlmScSku//FtZVsJ0AZg99iRJfmCCH4/H1nD87/8t/GJY55TvaznnUFTiAmMOe/12VG2nZyaHP93h8eBRtKg09Q/lxnhrUkLTzvvdREIBH9MLqrgZ7PZyMjI4JprruG+++47Zfr8/HzuvvtubrjhBl5++WXWrl3Lk08+SXR0NL17974ANRYIBKdDpb2aN36ZhtPr9B9TVRWz2Uxw1TIkSUIra5jUeTzNg8//hOnlRW9THXoAVZGBxnrwkuxl8eHQCyL4RRmCkJyBICt03dfcf9zlcqPX69gdbcESd4QUy4WZaN/TfRwP73+aVGsKr93ScJJ7uOAwD254hOSS5Asi9AHE2CMoCqkg/mg6hSFFaBwmPMFVtK1sx+6wvaiSk7EDrrsgdTmf/F7ef+OG3sgPKxaAoqVTdQc2R2xAUx2JarTT6mgmB2J3EGoLvWC//8CkwXyzdzrNAprRLDCW3RW7cCtuBrYYxIr85UhIDE8ecUHq0jKkJRIyIYYQqp1VaCQNXtXr/z9YH4JRYyDcGH5B6vPxjo84ULUfraxFURX/TqQsycjIeFQPl8d154nLnjzvdal2VvPtvm/qhXMVqpxVuGvcrN+2FkmW0Mk6rkm7lnBjxHmvj0AgOD0uquDXt29f+vbte9rpp0+fTkJCApMnTwYgNTWVjRs3MnXqVCH4Cf70bC/dwd7yAydN0zYqg7ZR53+lfPOePWysXITiDsDrDmp40gay1oZGb2XFpgxu6nvlea/PwLJoZoYeoM+uNK42hzQ4d9jg5e2Om0nLiTrv9QAICAujR1k6Pyf+SverxzAouzder5ctW7bQLiuTsTMnYihpxlW3Tbgg9WnVPpuEn1pysNkejpQdJT6mOaqqIkkSryx9F0Jk/jbornNapqqqeLxePIoXl9eD1+3G43ZhwEAZ5RgqTJRTjNHm4Ap3N36s3s3u2D1IOieqCh8v/oynb/vHOa3Theb38v77aO7HSMEqaF1sDtpBaHEsbaWW/GRax4HQA6geDVXBJRyo2E+gzoRRYyAiMNJ/fV1fOVfUOGuQkGgRlMSm0l8Z3/oWVheupNBSiF6jx+F1UOmoIDow+pyV2RTNg+KJDoiixF7C9Wlj+Wb/17Q0tOSI+wiDk4ayMGc+HeJ7o5MvjFA8LHk4b25+HUVR0Gl0/oU1jVS7U6/60lwIyuxlfH9wNmGGMIL1IVTYy7F6rBgkAzHlMVjcFiqdlfRJ6HtBBL+DVQfZU7Hb/11VfSrix/bNFsEtaB/d4bzXRSD4PfOHsvHbsmUL3bs3XJHv1asX//3vCVQxToHX6z3luZOl+bMi2qZpLnbb/Gvl2zi1eajKiT0/SbKXQE8rvhj96nmvS/fAMN4obYYm0MLbM8zIqoSKis1mIyAwgL+NNGLXRXBlVPgFaa8bx9/J9/MO8nNqMQ9e+zwaub6NXvlmMqrbyEPdRv3muqiqilf1oqI2mAxWOMrxKF4cbjdOj4eBg4ezeuMh3t36OaER0UToYzlq9jB31he4kemoT2P6juW4FQ8GjUqUSYPicWOSDFhKE/F6PPRsbuCnip+xuC0Ump2U2d14FQ+KouBVvei8BpKsHfB6VbxehYNBG3DIVhS8KKgYJQ/xGieKqtBScmFf05knfvqW67y7+DHxAGpECJWqgsYaxEO//Bf1FxVVUpE8egJ3D0JRwYuEM+0nlKDSWhsxFVlVCPQ6UCTQe1TkDWPIDYrhiXXTWDG0ih0ZTdsu2kqz0BjCUBQdutAytAFuZnp+4u1Ht3LfK61R3QY0dhMHvUca/FZ/hvHofL3/dttzQA5G1XpBb+PZ13Zw33PFaGVA6/Dtj2u9PLLqId8FKoyLeZPUZkGkxARx94834lbcTZb15dCvCdD7fvNbFk2g2lUNgHTMznvd32/1e5eFB5fhtMWzQf0FgKk7pyGhIskKtXN5/rbqb7zW9zWSQloC8NKvL7KnYhey7Nv5kqW6jwaNpOHhjv9HUmgSAN/u+5Yd5dvQyBp0shaNpEMna9HJOrSylpGpo4k1xQKwsmAlJfYSAObnzKdZQDMyDe054j7ChqL16CQ9u8t24fK4sLqsWN0WdLIerUaDRtKiqS1flmW0kvY3C8iJJt89RBgj0MpaWgQnUumsRELiiKUQj+KheUD8BXkeWga3JCsyi1xzLvnmPP9v6FJd5FvyCdWH0iaiLSnBqRekPt/snc7aop/RylokJLyKbxzWyr5prltxkxySzKt9Xz/vdTkRF3t+8HtGtE3TnE7bnGm7/aEEv7KyMqKiGq7KR0VFYbFYcDgcGI3G087rdILYikC3TSPaBkpdJSysWIa3Vt3GT1H9n0bZwNVRwwnUBJ73+rTYHciBLOj/bSBJeY4G5/a1CmTtqGpa7tSzJXnLea8LwOCdRhb1K+arO0cyOLaz//iqiv04rJ/RbXUCB9voYUt9fVTVJ5Z4VQ9e1YsXL17Vi17SE6gx+QQrPBQ4C/Dixez04FK8uBUPbsWLR/ViIpIIKQGPCi6vk73e9XhVhWBPAKV4uXPWX0kJD/cJR+5QDpcFEVHSnaO9HPxv3n0oqpdyp4JDUVAlBRXfR2dpTkDR5XgV8KoKlnZf+RxhSEqt0FP7P5BWbGRjwa14kfho3+c8fl0N7uNGW00QuKngHytfperANbVH44nKdLIp7Cc25fzUqE2Tcm1sLPsbiqzhwy/+j28ej6MislYlVFP7qcVjD+fHwk7+7xGRh9EGVDTIr6DunNNFsXwVlaYwwmZOx3m7gdyIOjXdSo7t4YrHyBFD/Y5PmMGN3mitPw9YaieBTg94W+Qhh+Qz3RCFPdgA1DS6rzoCoxuPK5LGhSPQiCSBIikokhfVq7LlmH7zZ+B8vf+8HgVkX1+XJbAbfP1JVeFEcooKvL54v/97dAcv0kn8g+/cthOt1tf5ra76fqLWOe055u8du3aAxonXnIAUVAASSFL9pKauPipeNu/cTGVAFQCbizdiV+xN1mHVjpVkmdoDMLtwJlbF0mRatUrl8pAeAEwpfMd/3OI2Y3GbmWefA0C5s5w4XRxFziIWb1jE3IrvKXIXnTBPgF7BfRgY5rPh/KZsOrvtu/zC0rH/S0j0C+lPz1DfLu7q6pWst6xDRsah+sb1MkcZAB6Xlwxja9ZYVgMgIzN55d+I1cWhkTRo0aKRtWglLVq0ZARkEG9IAKDaU0WBswCdrEOHHr2sQyvp0NYKq4FyIHrZ4GuT2necdNwPrbFrqXHVkKhPIs+Vy5XhV/FD5VySDC3JdeaQ6Ehi69atTbbJuSTNk85afqZfcH8OOQ5xyHkQgAg5kk5BnVlQNZ+2mswLMm44FScLKn/AqdabOiiqF1nS8PWKrwDfb90npC+x+rjzXp8/CmJe2TTnsm3+UILfuUQEsD07RNvU8+nGlRxy78bjCMfrDG10XhtQhqyzcn3MnWS3SDrv9QmfOZf77aFsHx7EnZ5hDc7N0q5EsWq4T44gLju70bWqquJRPLgUJy6vu/Z/Fy6vmwhjBOHGcLyKSom1nM0lW7C7Xdg9ThweJwadikbjxa24STFl4TQnYDJoGXbTNSw69DZrlR/YX7QLl9eN023HpthQMZGXlcLX+2Rcbg9W71GKwz+o9yh4HJe5spi/sx+xWi8vxe7j2eilTbaDvSwTc75PnVPS2Iluv8p3ohnogErK2Vg7/8zabMfMY3g8dmLumsSB17N8JwyN87U4Isj11DsVidY6kSS1cUJAqizHUbvjp1u7Dv1V6aCX8UpaPJIOVAlVlX0eE90GAp02NKoXjaKAJRxV40RSJSRVwuS0kVBRjKyoxJS6cFj3ocoycmAA2Xsc2Eweik1RlBvDkFQJufajd+npVroTWQatBCW5MXj14chIyEiEqAptlRpkSUMAOkq8h9lVms/WLhqa5UFERRVeT3MiE7LRamp3T2QJVYbQpMNYtDZkjUw0PbHZvWyo1pETsQivrhK1doLu1UqQtgkTUBQSQeX+G6Dc9xuHt/oOWWdDdQaC7EETYK7vj4qMriyK5LwqsiLb8tRDzcBhRjJYIbiaTnQm+5h+XDcuCU6PY8fvHgfbM0c/x7dmYQvhyUc6cdOaEGw78igMTOFwRDxlIWGYTQG4dBoUTcNntHLftchaG2EmiQeuSMWjethWUM78rflIskKnKzv5AwuH7BuC2VtEgEHCZIBAo4xRD1qNgixDr449mbr0Ezzh+0CRUGUVjyMcWeNA1tl9gp8CRl0APTr09DtUaetoy96qvSiqiqoqqKioqkrdv66tu9E6sjUAsTWxHKr2CQXHCp91tEluS3aLbAD0xXrsrqYFSoPRAG5IbpWMtEWGpjc+CYkMITvLl++0lZ+Avb784+vhCnL5+/fXP32FVbFyIso8pSQFtsRoNyIhYdQaKXeWU+4pP2F6q9HCldk++8gPtr/H/KL5Tda3W7PLeLzb3wGYd2guH+38AAAJGVmSkCUZt+JGQiLflUfH6E7c2vU2ti7ZQq4zB42kYYdtOw69A6PGgF6jRyfr6RZ7Gf1bDACg0lnJj/krMGqNBGoDCdAEYNQa0Wl06GWD/90DoKgKXsXr29E7wYpEB7UDS5YvYmn1EgI0AQRqAzHpTFS7qlhQ9QMB2gAm9rjlgqjlml1mXl3yEiadiZTQVJxeJ7vK9xKtiyY+LIFyRxm55lxGZY4mOzb7vNfn946YVzbNmQRwP13+UIJfVFQUZWVlDY6VlZURFBR0RqudIALY/lZE28CIiFbM2N+MINXLQ4eSAaiqrCIsPAyPpPBKu2KoSKdDRPQ5aSun10mVowqn14HD68DhceD0OnF4HNjcdpJvvpqUDz7mYJcKvs2IodC5B4fHQYm1nEqrhSCLl//1OIp75YN0j7qKIwWJJEaaSE0u558//+OEkyAAZ1FfrCXZeBQVnekI4enfNlnHy4p3MffIUDKUah7yLIPLnKhAqad2h0BbHzz0UKUV6+FSADR6O5ERjYU+2aui9ah4f/0Vb2B/nJXVuD5/ndiHU9F4VY4GxeKUjUiKT0iSvBKBlTpCKwvReT1ocOLMS0BWJGSvisYL8ZXFpJTlo/WohJeCLmA5RrcTjaRh4vRiZFnDwchkLPoQtEhokdAhYXJJRNpWoNPIaLUaan5ph06S0Wm06GUNERqVeC1otHo0egN3GA6j1WmJ/OfTfKhqQdXjlnVIOh0avRatwcD0eV+yLW4bI9tnMaNwDrIjgJe7/wc5wAhaHZJeh6TVgs53HTodklzXgg/Q9iz70omwuW2MnTOWvVIoxqNR2GPL6aQdhDXcQYEljypXOXalElWq90YaTzgv5HTFfuAQb0QMIyxUg04PkqISWu3G6w7GQjQBFgirUOmfsxRbqpvDLZ14iztzoLINKhLagBLCUr/HUBxF+l4bQVIR+Skyh9KD2K87AAEWsko7s02zHVXr5vr+1/7pxp/z9f67dvB1fL9iHqqqoYujLRsj1vFlFztSp0CSyuxcvvULBs6uwOjy7by5NFqKg6PJD4tjX3QKhxPbUBzZgmFp8QxK7gjA/gN7cZRFIwE6Xf1Ee9/eVihqqxPWSZbg51W/oGpuxCkVoyp6DKH7aRUbQrGyAXdVBzAdQqM381zvF4gLrt8pebrnv0773l/rf2JVvzrBQiNrkGt3tu7Nvo/nfnkWgPTwDIosRQwMHsjsilmkh6VzoOoAWklLYmgS/9flb+yv2INTceP0+hbOnF4HLq8Lt+LiipbD/G0+rOVwlucvw10b1sWjevGobjyKF6/ipXOzzv606eHp7K/ah1Ir0B5PgM6Aw+vbCTRqT94PDFqDP1+L+8TCZB3Vrip/2lzzYf9xFQWvCl7VW/vdV6es6PZoNBoMtbuEdef3V+1rkG+ZvZRBLQcDsLV0K5/untpkHdpFZvJc7xd8+VTs49FVfwV8zmzq1Gi1shatrCUzMoujtqMA2L124oMSCNYHU2r3vWPsHjvvb3+PjPAMkkKTaR3R2l/PAnM+xlqh06g1opf1v0ktNywgjKEth7E8fymTOtzLS7++gIJClaeav7d7ik92fYQKXNb8cn9fE4h55ck4l23zhxL8srOzWbVqVYNjP//8c4OVX8GlzfO/PEdeTe5J0wxPHs6I1KvPe12Ccw+Q+bOWPYOLqchbTpdDdpxOBwaDkemXh6FoXfRfmktBzx24PGFY3VbsHjttItoSYYzA6VbYWrKTHwuWYXHZsLlt2D12dDrfzpvDY2dI3EQKC+JIjw0htNkBXvn1pSbrU5M7GIfpKtgNnxQeJiy1fldMowd7BOwz+5y/xOz9kblH+9HRU0ZzZSnqZceoXamAokVVtaiKBqdbxqP4ziueAFw1LUCRkb0yklcivTiXhIpidG6V0EIrWZGJxFcVYdq6iBsPhaL1qPwa3xGXbEDv9qJzK+jdXoKqDxNafcgnoCkuPKu1GJAwImOUNMS7bcRIXjAa8RhDud40E4NeS+jgq3hhvwHJYEAyGpEMBjAc8z3egJSsRzIaQa9HMnZA0uuRDAa8djsPrf4fvyS0JEQbS6GhkNdiB9J88EAkzf9ocQ77R7PTSHN9ZjtmLn2QV3QLIU3ltprB6FtnnMNanJgdZdsptBRSYiumxFbCocpCCs2FICsormAKK4ejFAezGJnw1l+iC6gVOOp28tyBGKw6Wuw5iPmzlQCM6azAXpU+B/NpERyFISUFbatWVKbEsDHNynLnflZ3PuRXh7UrhaiVbUkuy6XHoV/os8VE+oSrGRf6KV6TEUk+iuqVkTQKqiqxLWojqBokSWXKok/4158sjt/5ev+9N+cDpFAFvBK/hq8DRUYKsOD1yuQkVXM4IYF5g1P4PPQ2HO9/CBs20KKqiBZVRfTI2QQb6vM6+mISgddey7B+V6DplYxRVz9RqXO20RSKCmaHBzACPg0Jjy2O3ZZcIlo5cak2NG4DVQdG8c/iw3x2d6r/2jKzk2CjFoPu7CdGsiQjaxpOwjtGdUUr6ZCQ6RkxjqmVz7CgYhEhuki6hV/Lvqr/EmVoTpAuiLTwtNMOozAsZTjDUk7PCcsd7e/ijvY+50rPr/8v64vW0SEmm3xzHonBSZTYSsgIz8CjeDhcfZiecT0ZkjwMj+L2aW0oLtxeN27FTXZMR3++Y9KuwaQLqn3X+BYTfVoeTpxeFyNS6t+h7aOyWZm/Erd64i1NraRldcFKRqaMotRVctL70Wvr1SmqnZUnTVtWK7QBDd77dR5N3bihVhN4c8kmgnRBSJKE2WWm0FJwfHYszVvC0rwlJAS14J1B7wFQbivj/uV/aXxPtXafHaKz/V5SPV4P/17/DIHaQIL0wYToQwjWBRGoMxGoC6RZYKy/D1yTfi0/HJrLXUtuR0UlUBuIzWPjgR99Zf21y6MXTOhblruEmQdmnjRNs8AYnur+zAWpj+DiclEFP6vVSl5env97QUEBu3fvJjQ0lObNm/PKK69QXFzMiy++CMANN9zAF198wYsvvsg111zDunXrWLBgAVOmTLlYtyC4wKw7nINXV4S9LKvROVlnwxi+j6W78xmReoKLfwOltlJyag5jcVmwuGs/UWZMCYUoHgOfDo8nJPPvVBTlok0qYfm295Ak+HGsgx/3/Af21OflLryamrJkvIqKIXwvoS2PU1s8RrPo0L69zN3hoU+Imyujt6ALkjF6ZaqUAFRFV/vRoio6FHcgsqJg9DgwVGogpx06t4rWA3qnyuUHt5JcdgSdS8HjqEIXZaV5dTHND6/l+dkadG6FbbGZaN0qBq8Vg8eF3utG7zmIwfMper0Gg0GH3qhHGxiAFBCIHBiIFBiFFJiIFBiIlBXAqAAHUkBz5CF/Jz4ggFVzZ2EIO0BCcCaH1QOk7o1n4qNPIQcG+AQ1oxEpIMC3m3WSVdbmTZ45M7qvXc7M+LWUkkOrPSnE3zLkHOV85gTGxNCxugWb43aisZgYMXbib8pPURUqHRUctR7lqO0oxdajHLEcRSvLPNT5ERRF5Z8zt7Fd/R9e3XETNNkn10myG8XlU13WeVwYD6US4owiqtxB8xILLYoriasqpJniIKxlPLrrLkeblsZ9rVLRprZCm5SIpNNhdlp4cs0THK5ZDdW1ZUjgtsVgLIqm36YKhmz/J60GXI7ppYfQZ2b62uTD2djRocheVJ0DVXKjqhKS24jGrUdCIsLQWLX6j8bv5f0XGRCKxhyBioqic6FoHYCMpOiQHEY0iga924DhmoGEDB+Oe88eLB9/gm3Gt+ByNcjLm5OL+eVXCHj5FcYkJBBwzRjczUagbd0aRYUXxnUkt9RKTpmVnFILh0stWJ1NOSZQ8Rn5eVBQCIjYj6WoC15nOAeKGgogE979mUqri2CjlpgQI4lRJlpGmYiPCKR5eADx4QFEBRvRyGe2izNt40o8qq//fbTvP6DqcWpt2Gwqnx18DpApthWxp7iYNrGxZ5T32RAfFI8XL1EBUfRs3pM3t7wBwFPd/8ncg3NQUOgS142Oxwh4TZESlso92feeVrn9EvvTL7G/zyRA9eDyujhcdYgn1vg8zI5vM4Gpuz7h3W3vUKPWMCBhIMsLlgEwPPlKTDoTDo8Tp9dBz/he/nw7xHSkZcGP2N22ei0Wpd4urnd8H//fzQJP3r4qKq0jWrOheMNJ0wG4j4kPWee853g8igeP4iH3mLiJlc5KNpdsajLf+KB43h30PgA7S3egHGMdrZE06CSdX3ietX8mfRLqvfquKlhJgDaAIF0QwfpggvTBBOmC/M5pfgsOr5N8cx7d43oQExjDgaoD5Jvz6ZPQF40kszh3Ub1nWMElz0UV/Hbs2MHNN9/s//7cc88BMHr0aJ5//nlKS0spKqo3lm7RogVTpkzhueee49NPPyU2Npb//Oc/IpTDn4hEeTA58idcm9mb1OCGbpnn5E3jsD2PvolDG12nqioOr8PvuQ3gQNV+NpdspsZZTbWzmgp7NVXOaswuM1aPmQHh92D0tqTK5mK/fRWFmjmNK9QGZJxUVco8On0rPZMMmLTb/TsjqiqjevWoXj1K7f9WmwZv7Q6a1xaFq7ALWreE3qlicHgZtGMNqSVF6J0KNUzHENOepIoCWh3eyBu1xW6Py8DgcWN0OzB6HBjdLoye+ei8Hr+vPKdBi8Ooxa6XiJWCMaSnI8W3RDIFIQeZ6BEUhGxKQwq6AslkQjaZaGEKRAoKQg40IZkCfcJcUJBPOJPPbnWyf3YHpqx7DSW6ANWcyJOdbkHfpvVZ5XUuGD9xEt/PPog7xMz/XXbtRatHHe5WRrCCYnRhU52EnMjA8BhcXhfFtqNUO6vJjPItgFTbXDy7/t/sr96Gl8aB4Y0aIw92ehhJgk0Hy3CEx9E+SCKxzEZEXgXFlUYKjGk0L7EQX1JOrPl5YmtKCbXXYA/UENouG316BrqhndCmtUKXlo4cF+sX1FVVJacmhzxzLn11qXz1cw6f/nSY6LZ2ZCQyzEGkryyg0Naegds3kyxtJmjizZhe+y+amIZxHL+84/0G3+tCXWRnZ19SakC/l/ffnddP4k4m+b+fqr11rVsT/uILhEx+DNvnX2CZOhWluPHk2VtQgOX1N7C8/gZyXByBY0Zz2Ygr6dUzq0G/KTM7OVzqEwQPllj4flMOsiSjKL7xpkPLAGocQ6isDMdWGgSo6DQNdxKrrL6JvNnhwezw5XM8GlkiKshAQmQgLaNMDG0fR/vEk8ff69ayOd8fSiDUBJoACzWuKgC0OifhhkiqawzIBBAffv6ddwFsLdsCwOLcRSzOXQT4nIT8a+0//WnWF61jYOKg81K+JEnoJB06WUebqLboNQZkJPonDmRjyUaW5i0mUZ/IhNYTWXv0ZzyKhzuz7m7gRflYUsNSeWPAWw2OKaqCy+vC7rFj0BgapJ3c9QnsXjt2zzGfWk2ZA1UHOFR9mEhjJKGGML/AVqdyeiyXxdZ7xw3WB5/0nkP09eF/zC6z3xHPCU0jag+pqsoXez5rcMrsNjf4frD6AGX2MqICovAqXl7+9cUTlq/XGMiKzOTpHvXqzJ/v+hS9xkCoIZRQfajvf0MYYYYwArQBjRZQBycNYca+rzFqAxibcQN3LL4Nm8dGYkgiicGJfH9wNje0HnfSdhBcOlxUwe+yyy5j7969TZ5//vnnT3jN7Nmzz2OtBL9n7ii18GhIHOstnzJ2Z5J/6K3SecjN3oNckYE5aAbvbAmh0lFBub2SGlclVa5qXF4nN6f8nSNFkbRLCMURsJfPdk1rsqzpG/biqvZNovUhKqa4GFSPAcVrRPUaGBBuIMntQVmymm0BFvYHFBL3Uy493p/OVS6ViAonP7QdgsnlwOS0EeiqxuSyEejahsllJ9Btw+B2IZ/oBaLRIIeEIIWqdPLmICeGImeOQAoNQw4NoWdwMFJwMHJoCHJwCFJIMHLtMdVm44l3X2BvX5+9Q/tlzXjmmZfRRFycILrGrCyu+jKcWREVXL7ZRPC4049ddj7QRkXxrLcnBZsOEf/8xa1LgTmfHZZN2Iq7ERCzkRl7vuf27Pr4fVtLt3Cw6iBF1iMUWYooMBdS4SwHVGRVT2TZo+SX26mxuwlNrsQQ5kFVJRRXMF5XKF5nCAGeYG4zH6Hko9F4d+9lfExb9F4X7Yr2EeSy+cty6Lejj4ulMisJS1ImSkY7Vn25lOk32bky8QYmdRnboO6qqnKw6iBrjvzEyrzVlDqK0GsMXBZ7ObIkUWl10WJTW574ahnBNb5Vbm1rI0F/f5DAUaN8qrh/Yv7o7z9NRATBD9xP0KS7sc+dh+X9D3Dv2FGfQKsFj2/8VIqKsLz9Dpa330GOjSVw1EgCRlyJLjub6BAj0SFGuqVGoqoqy7fkY/ZK3BtYwnJnMPu3xVBFc54ILuJDVU8JEi2D6qcuVTY3Kj4bQb1Wg6IouLyNx1SvolJc46C4xsHGwz7vtnWC38rdxTw/dxfdUiJ55tr2/muiDS0ZFvUIM3/NZ+rdl3Pb+2uxu920iYvg7oGteODTjbx6UydCDCGNyjsf3NTmZnKqD3HUepRdFbsothYj4dtpahvZjsiASNpEnkvL36bZU74bV20cwYkLx/uP57nyuHVp/YLGjvIddDiD2HmyJPtt7Y4lSB9Mj/ieTV738Y4PmX1gFhPb3kqr8DT+seYJACa1v5dQQygvbHiO1hFtuKXdrQ3iCoboQ7km7VqsbhvWWm0eq9vi1+7pEF2/exqgC2jSFh4gOTQFgEJLAUesRxqcM2iMuLzOBtevO/IzI1KvptpZTVO4vE4OH7Pr6FE8fLPv6ybTZ4S35qW+rzRoF6MmgHaR7fgxfzll9lIcHgdRxig+2zmNpJCWtAxJ5vK47k3mKbi0+EPZ+An+nJTZyzhQtZ8yexm5hV8QoouiLKqGv2Rtw2aAK1fEsrZZc8xHehJtLufbmJ8g58R57Tl6lHk/m7mqUzyjeyUzMHEQgZpgvvqpBMVjxEggJkVPsEdLik0mzJFHsKWS4ANlmMoVgqryCXZaCHZYibKWo/f6Jjb9yQEWNyrvmq0LkUJCkCMikKPDkSNaIoeHI4eHoQkPr/07HCksDDk8DDk0FDkszLfL9huMy+8NSuQ+uwNJ0XBPXMZFE/rqGH/jrST+5VFiJl52ToM9ny1t777jnDpGORu8ipfXN0zB6zHQ3VbGJmcYc3K+YWzb0QTpg1i47Qhf53xOubK70bWKV4fbGcKuI2Wois/9vqG0NzFHu5BQZiW28BCxOXuJqymhWU0pOsXj3wfs7dyMtlUrdCOGomvdmoUU8YNxHTWmADxGL2AGrMAhNDdpQNWyMHcmd3W+DlmSyavJY0X+clYXrKbEftRfJ42ko2N0R0oXfk+nj2byZGE17Y/sRqMqGPr3I+jOOzD06fO7+P0F5w5JryfwmjEEjBmNa906LO9/gGPJUr/QR1gYWK3g9gn/ytGjWN6bguW9Kb6dwJFX+4VASZIIri7DbIrC/fPPXKbRMi1rBJG2KjzrltAs+TJKmmXQreoQ4PMMWVxtR6+VcXkUHO7GuzvBRh0mgwZFVbE5PVhqVUtbN69XF165u5hKq4t1Bxo6z5nwzs/Ya/O8+d21OD0KgTotOwur+dfM7bSOC6Z7WsMQG+eTjjEdT0uN80KQFp7O37o8Rqm9hF+KfmFv5R68qhcZmYyI1nSLvYzowGi/E5XzTaXDZy/4zb6vSQpOwqQ14VJcrCz4kSOWQgDcXjdtI9s1uC7cGM7EdreeVhkRhnD+3fO/WFxmzC4zNa4azC4z5tr/64LD2z2NPcE6vQ1DLMnI2Dy+hbc6Wz+9rCdAG4Beo0eWNICKR/GSHp7uv87sarhzeDzH2kV6vB5mH5jV4Pz2sm2+dLUhQXaUb+fa9OuRJZnFOYsI0YcQHRhDTGCM32ZScGkhBD/BSXF6HOyu2O1fo1IULwcdB6FURa5V3wjRh5AadnZGdV7FS6m9hCJrEUWWIxy1HeWo9Sg3th5PtDEBl0dhXfFa3t/mM8Smqx6oQQIstdo1n6dm46xKh1I4ElhEQJmE4jaheALxuk08PLgTXSNCCS4xs2t3GUZTNa037qXZvB2MKyzEU3SU7hYXwXYz2hOohTTCYEATFYWcmun7PzKKyiXLmdkzHFukHbO7BX/NkYh643/IERE+b4wXmMR77+LGW/+CTlGInX7nBS//eAxZmfRfPJOtO3de7KpccKxuKyZdfRiI6Xu+ZFXBKoqsR/CqXjQ62JpyCN9rHj7f+TWTOt7Ot+vzyHFG0bl1NzrGpxBnak5FhZG5P1XSwq0SX11MbN5PNNuzidiCQxi8rkZly7Gx6Dr1Rte2Lbo2rdG1aYM2JaVBnzzw3ZeUevci66x47JEormBQJSSNE62xAknrwFkZg6qAU/Hy1dZlrCn3eXZVFS3O6iTc1WmMUKO56cW38Oa8TyDQUa8ncOx1BN11J7qM8++wRnBxkSQJQ/fuGLp3x33wENYPPsA6YwZUVQH4xsLISLyHDkFtwGGlqMgvBGoSEgi4+ipinGEcMUXxQfYof97lgWG8eHn9LpKSWb8r17p5KMufGEh+hY0DxWYOHLX4/i82U1ztwOxwY3Y0tAkM0GvomFSv5hkfEUCAXkPn5PoFspJqu1/oA3B6fPZaNrfvbVhmcVFmcTH2zZ9IijL5P5e3iiI65NLfzdZr9PRO8NngjUm7FrfXTY2zmgO7DtKlY5cLrpbdpVlXqpxV7Czbwd7KPYToQ9FpdOyt3IOqqrSJaPubd7UMWuNp7V7GBPpcewVoAni213PM2PcNa4t+JkgOYmjKMFYWrKDMUea3W7TUqoG6FBcuV+NxPNTQ1f+3VtISrAsmWB9MgDYQQ62QqKgKTq+DdlGZ/rTVrqZ3EqE+fuTMfd/SNaYbb215o8H5AG0AMYHNiA2MpUNMNiNSrvKf86res7YLzKnOofIYxz4nmldmhGcQqLswKtR/NoTgJzgp8w7NZdquqY1PlDb8Ov3KGSd9SG1uGxpJxlCrvrHuyFqm7ZpKsfUoHrWxTZJqzmDu6r1c3SmeYd0TaBWWRoQxih+32fG6glDcwXhdQQRoggmQJAg6TJsDNjpqHcQFdCS87AjhR3IIyd2P9t3XUW02LEBi7Qfg2PW3cAC9Hk1sPJrYZmhiY5GbNfP93awZmphmyDHRaGJikEJCGq2CGWbPpmzRArZnVTPiCy/h//0nmman49fx/KCJi2PUzdchGQwXfbevjoshADeF1W3F4rLQzHRufiNVValwVJBvzqPAnE++JZ8Ccz4F5gIqnZU82u5dCstVDpVY2GLdjz0g33edosHrDMPjDEOxh6E3lbAodz43Z45jQJto2uT0ZkD+EZJXbMW17Vs8u3bR3eFoXAGtFm2bNj4Br11b9O3aoW3b5rR++2G5u1ibYqXm8GAGrC6g3/61BDstrGvbioV9W6Ik7SPaXMJLP+xi2c5irIqJoOapOKvSaGloy4CqfLrN/ICQojy8gBQW5rPfu2ViI/s9wZ8DXWoKYc8/R/Cjf8M67VOsn0xFKS+HigoIDsbQqRPesjI8xywEeQsKsLzzLv8A3Bodv2b2ZkZqb3IjfL52Q3UwdMcyRsdB0jUvNChPq5FJjg4iOTqIwfXzXqptLg4UWzhw1My+ozXsLzZzqMSCLEk0Dw/wpztUYsXjVbg8LdJ/zOlRuSw1ks05FSdUHa0jr9xGXrmN1Xt9L8X/ju3AgLa+Cf36g2X8uKuYbqlR9G/728eag8VmcspOHoYhPTaYFpGmk6Y5H+g0OsIM4WilizOt7NuiH31b9MPisrA8fxlbS7bgVb20jmjN4KShRAZEnjqTc4RSG/De4XX4bfc0kgYZmfVH1/oFsjrnL/FBCUy/cgYVjgoqHRVUOCuodFRSbi+nwlFO64g2/rwrnZWY3eZGNoN1tDrGs6xBo6dH8x5YXVa2lm1FrjUsMelMqKqC1ePrS6GGUKbv+7JRXnaPndyaHHJrciizl/kFP4/i4YZ51xEVEEV8UALxwfEkBLUgIbgFicGJBOmDmmwbr+rloRX3N3B84+eYeeV16dczoe1vc3YmODFC8BOcFE9NOqoq4SrrhLOiA6igqgqSJIOkEpQyA9nVDEn1qZt5FA8F5gJyag77PtU+hw9l9jJuSX+IIG8mh0osbCvLodDgc7fsm/yG0iYmibYxSTQLbIa5sgVQQqXVRceYTnSM6YiqqnSw78L042K8c78lv5VKcmU1EcVmIircyE24C687KjeLQROfgDYhHk187ad5HJrmzdHExSFHRp61WkPAVVdx5xvvsnJvJFcmB6PPbHfqi84zphuFsXZTPLf+WXJrcvhgyMenjH11LKqqUumsJLcml3aR7dBrfP3+w+3vM/fQCZz/1DL5ux/x2H0TP42xFRpdHB5HKLJioOPBPaRf0Yfw2VPRYcNjPETOG4Pom1MCTp8NzbFTPSkwEF27dugy6z6Z6NLSfGEtzoIVlzXDeySQO6La0vfelqxxR/Gzey85SgmwBwkoDo1h30afulRMSDOGhtxM7wOLiJo+CbVWENUkJhJ0150Ejr0eOVCs1Ap8doAhDz9E8D2TsH03E8t7U/AcOoRz5UrQ6zGOGIEcFYljyVKUwkL/dTqvm+5bl9N963Kc4VGYDYFEmvRIOYdptnIF8ml65wwN1NM5OaLBTp7bo3C02t4gj7xyG26vSmxofb/dW1TDxsMVeBQVSYIok4FKm4u2MVq2HXWjlcFzgrlrdFD9czhjXR4/7Sul1Oz0C352l4f7p/3qE1Rjgkip/UQHG075/nlm1nb2FZ1c1a9nejSv3NTppGkuZYL0QVydOpKrU0detDoE6gK5OnUki3MWUe6oIDU0haTglpRUllDmLsOjeLg89nLa1Ap0kiQRqAskUBdIQnDCSfOOM8XxWr83KLOXUm4vo9ReSqm9lBJbCaW2EmKP8X5a7ijn5yM/+7/XCVsWtxmjxkikwWcTurl0E5tLNnFN2nWU2ksothZTZDlCjbvGf+2xgnNOdQ4uxcUR6xGOWI+wobhhHYckDeW+jg8AdY6/DpMQ3AKdrEMjaeid0IdNJZt4sc/LALyy4SVa0YrRXa5hZeGPfLnnc3rHX1z7+0sZIfgJTkpyeAKOrW0IjtrHzZkT0KhaCgoLSYiP57DjF9bWWDCUX4teq2FT8UaeXf9v3MqJY/28tWIDthLfwCNpAtEGjsLrCMMoh5EUGcR1XdO4vFUUqqpizT/C4F6VGA5uoPLhz3Hv24dn/wE6WeunwG2PG2zQatGlp6NpmYQ2KQltYiKaxBZoWiSijW9+Xp1JSBoNsQ/dx5AHHyL0f7NOfYHgorGjbAfbyrYCMP/wD4xJu+aE6WxuG4erD5FrziWvJtfntbImF4vb5zHwtX6vkxrWis9/Osz8fTakCIk4UxwtghMJkpsxa60NjyMCxRlO89BQUpOCSY4JIjk6i1VbPkSz61tGLLLQwmNFXfMxqr2xXYgUEoIuMxN9+yx0WZnoMjPRJicjnUM1qv2VlUieELY2m8s3lkP+46oq46pJxFmVhrMmkf7tIrk6EtK++wTn/+aBoqACug7tCZo0iYDhw3zB5gWC45CMRkw33UjguBtwLF6M5d0puH79Fce8eSBJGK4YivG+v+DeuhXb3Hk+m8BaDJVlfj+3UlAQjmXLCbj6qrPeTdZp5UY7YtPu7k5BpY2Y4Pp3xIFisz9+qapCqcW3CLPtqJsAnYauKRGsqt3lu2tAKl4v5JZbaZcQ5s/DVhv0PiygXtth/cFydhRUs6OgoRpekFFLSkwQqbWCYGqzYFJjgggN1PvTjMiO57Wje/jkrstpEWHitYV7iDDpmdg7ha15lTzyxSZGdIw/q3YRnDsMGgN3ZN3FyNTRfL77M34qXOWfF2VFtWdc15vIPEYl80zQaXSkhqU2aV5zbLzMAG0g16Rdy4/5Kyh3lKOVtH4NK4fXwWVxl3Nd+lh+OrIagHmH5pAQlEBiSEu6N+9Bs8BmGDRG7B4bsaZ6gdLTRDzHOo51bHPUdpQHV9yPVtbSMqQlKaGpNDc1Z6XrR7aUbEYjazhQvZ9izVEm6CayNG8JPZr3pGVoy7NqH8GpEW9pwUnpmhJBi1UDKeMt9BGbSQpOItf+E1s8Feyq2YXbHs617TqzKaeC+JhY3IqbQG0glppwHNYIPPYoPI4ovI5wAjQmMhPqVziTY4JoGRFAeGkhnu07cH2+mLJdu3Hv2oVS6dP/dh5fIY0GbcuWYDRQfjCP74a2oSooiQe//p641T+iS0w8/ooLhvHK4ZREhBPX7uLv9gma5rOdn+O1R+GyNuObvTMYmnQFFc5yDlcfJisqy+/xbWHOAqbu/LjR9aoqERsYh83tM8x3uL0U5acxLLwfTw/2OV7weBVSdUW0ahZEotaNvGM7rs0rcM3fgmvzZjIrq/z51W0aOIwy+fEB5CYFktMygM59b+XKAbeddRiNk+HwONhXuZf20R1Q3SEoXomqA4eQYlVaW0Po6krknbyutCwqQmpVQ5DmA+7/Ngx1zU/+Z9LQry/B996Lvkd34QBAcFpIskzAFVcQcMUVODdswPL2OziWLMW5YCHOBQvRd+9O+BuvY3n3Xdy/bmx0vWqxUP30P6l+5l8YevUkYPRoAoZdgRx8cpf8p0KWJRKPEwbvHtAKu8vL1+tySY0JIsioZVdhNW6vit3t9Qt9AJ//lENWizB6pEc32Em8sUcSbeJDGNSuftJcbW9swwVgcXjYllfFtryqBsejQwykxgTz9JgsRnZO4NOfDvPNujyuvSyReZsL0WokRndtwVdrc2nVLIi+rYV69e+F6MBoHu78CHe3n0SZrZTDe3Po1bnXebV/PHYsjgmMYWK7WzlQeYByRzktQ1oSqDdRZiulyllFia2ET3Z+hMZvI+jkYPVBDlYfbJBnkC6IW9rdRlqtk5lWoWl8NGQqR6xHyK/JJc+cR25NLrk1Odg8NjrFdPZfu7PM5+nXo3g4UHWAA1UH/OembHsXk9ZEm4i27KnYzXvb3qHEVsyTlz113tpHIAQ/wSkwu82kttpHSbGBz3Y3Dn2gVcJ5Z+l+YkONzHy4N+8N+oBYUyzPzNyBRfWQkRpMelwIac2CiQ01oh4pxLVpM+7FW3Bt2YJ7x05KbbbGBcsy2pQUtBkZ6FpnoEtPR5uRjjYpCUmvR3W5UHv3JVHuTI8NGwgee91FFfrqUAMCTp1IcNHYVLyJ3ZXb8ToyCQ5UsLnNjF8wzh/raWzyfegdbdlXZGZHuQ1vcFDt4kUkHnskXkckHkc4j47rSla0b4I1pH0cHZLCSWsWjOrx4N6zF9fGjfTYtBn3pk1UHjrUqB5ujYbcZlEciovhYPMYDsdFUxQZjnrMSzspoOs5Ffq8ipetpVv4MX8F64rW4lbcTLviMwyWjlQcaIMacIBp119FTJTvORpkdVLz6r/JmzWD5DybT2Valgm4+iqC7rnnd6HOLPjjYujaFcPUT3Dv24fl3fewzZyFa+1aXGvX+hJotWAwoEtJwb1rJ3iP0atUFJyrVuNctZqqxx8nYMgQAsaMwdiv7zmzJZYkiUC9b4J+oriAx2JzeVl/sJwgo46xlycBvp2XlXtKSI8NJjm63uapc8tIHr6iNftrHdAcKrHgOpHOaC2lNU4qzC6CDBp0Wg0390rm1QV7WLG7mKhgPV4FXp2/mw2HynlubPZpq8EKLhyBukDigxIo1ZSdOvF5YEDiALaWbcHithAVGE1iSBKJ+Pqp1W1BURXSw9N5sNMj5JvzyDPn+bVcCi0FWNyWBg7KtpVt5b+/PEtKaDJpYRm0i8xkdNo1NAtoRqm9lIBjzCdOFYDe6rFyT/t7+WD9+/x0ZDWB2kAW5y6kfXQHsqLaNyhXcG4Qgp/AT10QZqvb4g8M7Zm/hF89C5G1vpeJ1xFCsyMytmZVVCnNuXGGjWlZDpqHhuLyqDQPag7AM9e0R3W7ce/YgXPVCly//krJrxtRShoH+pUCAnx2SnU2S23aoEtPRzqJECXp9QQ/cD+DHn0MtFqCP33zPLSI4I9MjauGQ1UHiTXFEmuKA+CDbR8AoA/f4Q9v4FW9oOhw2yOZsuwwruo6YSsauI2QAC1tYkNISwomLda3kNEyyvcyUqqqiNm6mbANG3D+upGiLVtQT7CQoWnZEn2nTug7dUSXnc2Wtdup+uxrkh95lrS4OBRF4dChwyQnJ2P517+RjEYG3Hl2qkDHoqoqh6sPsSJ/OasKVjbwpBZriqPYVszNnmLWSSZsBi8fH/iGEZ5BhC7dgPPd9wnIOUoy4JE1hEy4ieC770KblPSb6yUQ1KFLTyf8tVcJ/utfsbz/PtaPPvbpVno8SMHBuLdvB0ki7H+vUf3E3xs/Xw4n9jlzsc+ZixwRQcDIqwm89hp0HTr85p3oW/qksGRHEU63wqSBaQQbNRw6dJiUlGRyy218sOIg3dMiubV3KruO1DRwGJNfbmPupkIMWplRnVv4jx8sNhMfEcAVHeIIDdTj8Srkldt8zmeKzOyrdURTbatXpwsz6dBpfULoyM4JvLZgD3aXl6FZsSREmHh7yT5iQgy8uXgvS7YXkREXQkbzEDLiQgg31auKCv6c9E8ciNVj4/1t7xEdGMOQpKEE6YPYVOyz7UsPz+A/PZ/FoDWSEJxAd3r4r3V73eSZ82gWWL+TfLj6EC6vkz0Ve9hTscd/PFQfSuuINtzQ+kZCDL5wKf1a9KdDdDb7K/exr3Iveyv3sK9yX4OQF0+v/QcOlwMVFZvHxrxDc5l3aC4yMmnh6XRu1pkusV1JCU31h74QnD1C8PuT41W87Cjfwdoja/jl6HrK7GUkhSRzXfOnWLu/lDW7gjCH9kZxBeG2xKN4TBg1JbhTpmPadzkDCt9jYNlemj/zI0jg2rwZ55qfca5bh+uXDajW4zyQ6XQ+r4PZ2eizs9Fld/C5lz8L1YfA667F8v4HGPr0RtuixakvEFyymF3mWjWS/RysVScpsfmMQCe0nch16dezaO9m9uyLxxRTRrYpnhSHicXmWAqKTXiszQGJyCA9GWkhtG4eQnqcb+IUG2pEkiRUVcWbl4dr9WLMv2zA9esGPHv3NaqLFByMvmO2T9Dr3BlddjaaiHrX8arTSdKdd5Gk0WDa8RPsAEVRiCkqIu5gHJ4AO47Fc5B+vRZ6/Db34yvyl/O/Ta/WH/AGYKtIo5nciSkjr0WSJCp3f8TQ6gjWhoBxxiK8S95BLncTANiNOpa360u33Zto8be/IoeHN1mWQPBb0MY3J/TJv2P98COQZaSgINRalX/JaEQpKyNk8mNUP/U02rQ0JFMg7i1b6zOQZZSKCqyfTMX6yVS0rVoReO01BIwZgza++VnVyaDT8Nr4ztw37Vde+mE3A9rGIDs8bNtYyNoDZWQnhfPMmA4Y9Rpax4c2uDZAr+GOfqnYXF502vrJ6vsrDnCw2LeDmBRlon1iGB0Sw2mfGMbQrDj/WFNS42BvkZm9RTUE6OrfjzqN7HdYlltmpaTGgYovQH1JjZ0jlXaW76o3gG8WaqR1rSDYpnkIbZqHEiaEwT8dI1KuIjogmm/3zeCVjS8BvlBcV6WO5Pr0sX6P68dTZ1N4LKPTruGyuO4cqNpfK9Dt41D1Qapd1aw/uo5xrW/0p91UvJEDVftpH92Bca1vQiNrcHvdPPLjQ+SacwBoGZLsVwmtQ5ZkFFVhb+Ue9lbu4cs9X/B87xcbxWEUnDlC8PuTsqt8F8vzlrKuaC01rnrPTZKq40CBxKOrfgXV97LRH21PO2sRhYmBuKO/wh1YjrO6JZMy2yO9fpSA666j4t77cK75CbWqocG6FBaGoWsX9F27ou/aBX379ufMyYqk1xOzaAGcpTdDwR8Tp8eB3esgzBAG+DyMPbDiLydMG6aPQSf7VL9m712AvaQrauVl/GXe0yhFRaR++QNPVy0kovlu3rnySRLC6ydvqqLg2bMX6+z1uNb/gnP9epTixjvWmuRkDF06o+/cGX2XzmjT00+6kKE6HGA0olZVYXlviu8YYPJ4sGq1SPhinik1J4/B1KhdvE7WF60jSBdEp2adURQV1ZaMrOqxVydiL2+Ny5yESW+gQ/s43F4VvVYCr8Ld67/m5p8UjFXlAFQHmJiX1Z/CwddzT0glwY8t9aneCQTnkzrVZkVBral/L6l2OzX/edb/XXG7ifthHu7du7F+NR3bd981fPfIMp4DB6h5/gVqXngRQ8+eBF53Lcbhw87Y42yLSBPT7u7OrF/zWbS9iPIaO4lROiZf1Y5hHZqj1554ByI6xMgd/Vs1OKYoKu3iQ/F4VXLLrP7P3E0+j6YRQXo6JIaTnRhOdstweqZH0+c4m72Zv+b5/z5QbMZTG2qw3FJvOyhLvhAXLo9CcbWD4moHK/fUj11xYQG0jQ+hS3Iko7uKRdM/C5fFXc5lcZdT5azC7XURbow4pSrmiZAlmYTgBBKCE+jXoj/g2xk8WH2APRV7SDrGMcvKgpWsyF8Guz/DpDWRFd0eDRpyzTlkhLcm1hTLT4Wr8apermw5gh9y5gH1ITHAF29QJ+uIM9Uv4Hy5+3NK7aX0a9GfzKiss44p+GdEvMn/pMw7NIefCn2enDRqIPbKZGyVqbjMCaBqiQ010isjhh7pUbQ9tBXrbc9w+O3PeaYsilZluWSvtdNh6y0A2GfM8OcrhYRg6NEdQ48eGLp3R9s647w4p/CXdx49dQrOHVa3lU93TqWN98xW6xRVodBSwN6KvbVqInvJrclhQIuBPNDpIZxuL5VVJjTo0KjBOC0xWGsicdti8Nhj6NmxFaNatWVH2Q4KPOvQB6TyYJgOd0EB2pAQsr6fRou0flSbVvDL0UXE5GXgXLsO1/r1OH/5pdFCBjoduqws32JGt67ou3RBExV1Rvckh4YS+9OqBse8Xi9btmwhOzv7jAz/VVVlX+VeluUtZXXBKqweK2mhbdi2N5zvNxZQVGUH6XZQdWS1CGPkgAQGtmtGgF6LYjZjnjoN+7x5qBYLRkCOi6P0mvGUDbma61pEkRwTRNm4G1E6Zv9mBxoCwamQNBp07duj1NQQ/MjDvt0vtxvX+vW+kA8VFQAoR49S88qrBN1+G2H/eobQJx7HPn8B1i+/xLV2HSi1k0a9HlwunD/9hPOnn5Ce+DsBV40gcOz16Lt2PW1V0DCTnlv7pnJzr5Zn9ZzWIcsST4z0qXBX21xsy/c5c9maV8nuwmoqLC5W7CpmRe2OncmgpUNiGHcPTCMjLoSiKjuvLdiLQSszrkdLpq0+hKrCPQPTeG/ZfiTJd43Z4WlkN6jXymgkCbvbS1GVnaIqOw630kDwe33hHlpGBzE4M5ZAw8mnh0VVdl7+YXeDclRVxWI2E7R9E5IkodfKPDKsNfERIrzL74m6RdNziU6jo3VEmwYxBwE6xnTE6XWwvXQbZreZdUVr/efMLjP3dLiXVQUraRvQjjuy7qLMUcb6o+u4OmUkSPBL0XqO2o5i0pkIrVUfVVSFBTkLqHZWsSxvKVEBUfRN6M/AxIEkBIuFjFMhBL9LHK/qZePRX5l/+Afu7nAPcaY4PF6FwUlDMWqMJAd05dnpNYBMUpSJfr2a0b9tDBlx9UHKlZT+OFqlkvqv/+N/Dg9h1eVArWcmSULXsSPGAf0x9O6NPruDcOkuaMT3B2azIGc+JaZSetP7lOk9iof/rPsXeyv2+IPMHsvGgsPcsXEde4tqcHtVJPl2VMWnvqSRJVo1C6Zdm1B6pkcDMPfAfCTZS1jrT/kE+OStLCRFpUXBL3TduoL0/RbSDj5Gqd3ToBwpMBB9l87ou3XDcNll6DpmI/8OHPhUOir5MX85S/OWkG/O9x/XqWFs3RfMmiP7AIlgo5bh2YmM7NyClBifgwmlqoqaNz/G8tHHqNW1gq1WixwRQdTXXxGX6lPrUT0eav73Os5Vqwl/950LfYuCPykhf/sr5RNuxrN3LyF//T8kvR7T2Ovx5OVTdu11eI8eBYcD86uvYXn/A0y3TPTFjxwzmsAxo3EfOIjtq6+wfTPDLygiSUhGI6rVim3619imf42mZUtMY68n8Lpr0cTFXfD7DA3U0zsjht4Zvh09p9vL7iM1bM2tZEteJVvzKrE6Pfy8v4y/DPZ5U5yydD9eRaVPRjR9W8cwb3MhYYE6JvRKxubyMG31Ya7rlsgV2c3ZWVDNzoJqdhVWsbfI3EgQlCT8zmsAiqvtfLU2F1mCwZn1XkjX7i9FBTITwgg5JiyFy6OwZl8piZGBpMeFAD7BT3VKhAbqOFBsIbfM6q+74M9Jvxb96deiP17Vy6Gqg6wrWsuMfd8AUOOqZs7B7+kQ1QG31cPk1X/zh5s4UHWA5/u8yO2Zd5JTc5gye5nfvs+rePEqHrSSFiQos5fx3f4ZfLd/Bu2jOjCy1Si6xna7aPf8e0fM0C9RHB4Hi3IWMvfg95TYfSoeU7d8R86eriRFmXhiZEd/UPSyAYfonhZNRlxwgxVQ97592L6biX3WbLy1wXXDAJfegCEiDDweYhYvQtus2YW/QcEfBovLwpyD32OUwths3UiprZTY4FifHYuthF0VO9ldvhtQuTf7PsDnCazYVozVY0WvMZAWloa5Kort+wNx25pR4g4CfEJLuElP+xYxZLYII6tFGK3jQjDqG67Gy9XdqcmV6WkuJfXXLaRYXbQ4XIDR7miQTgoJwdCtG/rul/kEvays876Q4fQ4KLWVYfU2FnCb4n+bXmVzySYA9LIeyZbO0fw03JYEQCKrRRijuyQwoF0sxlr7IG9FJdYPPsDy8SeoFp+NkTYtjeAH7kfbti0VN0+kpN8ADH37IEdE4lyzBuXoUYL/7xECr77qnN+3QHAijAP6E/LUP6j517+xfTMDQ+/eKNXVOFeuRI6IIHreXLy5udS8/gae3buxvPU21o8+xjTxZoIm3Y2uVSqh/3iSkEf/hn3BAqyff4Fr7Tp/nEzJZEJ1ufDm5FDzwovUvPQyhn79MN0wFuPgQUj6evs3VVXx5uai1noUVRQvmsJCPCEhKLLvuZJNgWhiYxvfyBli0GnITgonOymcifhs9vYfNbMtr9LvFfTHWnXNFbtLKKy0075FGBpZ4j+zt1Nh9al6ztlcyF0D00iMNDGsg081zuH2sq+ohu351ewoqGJ7fhVlZifd0+q1FfYXmwkyaokONjTY7fvox4P+mIPJ0Sba19ojdkgMZ0DbGHYfMfPPMVk43Qqf/nSIKxLddOvcjpveWUff1jH+BSfBnxuNpCEtPJ3YwDhm7PuGOFMcAdpAjtqOoqoqZk8NhfZC1FoL1jJHGYerD9EyJJnk0BSSQ1P8eZU5yjBqA3wxdWsNXk06Eza3jW1lW0kIbiEEv5MgBL9LDIvLzLxD85h7aA7mWtu9YF0wg5KG0ELXg+/zcjlYYuGvV7ZFr5WRJIlb+9Yb7io1Ndhmzcb21XSfN7VapOBg0GqQI6OouftOov72GGGvviKEPsEpmXPwexweF6U7ryG6zde8tvkVogKi2FW+k3JHuT+dUWPk7vb3oJE1PPv9DvILevDXKzrSK7ktWlnL7F/z2bhxFynRQbRPDKN9YjhZLcKIDw9oUmXLU1iIc9Vqrpi9iFGbNxBkbai66dAbORyewOHMbnB5D+64e8Q5DY5+MiodFXy55wt+zF+B0+uLjrfI1Z5xrW/0e9UFOGI5wtK8JVyZPILIgEgA2oX0wuq2MihpML3j+/DB0nzmHCrgqq7NGd2lBWmx9WqZ3ooKLFPex/rJVL+zJW2b1oQ8+CDGK4f7VbFjli/FPnMW9oUL8ebnYRw0CNOE8SJsg+CCE3z3XRj79cX62ee4d+5EMhgJfeofBF57DXJoKLTPwnjlcBxLlmD+3+u4t23H8t4UrFOnEThhPMH33oMmJobAUaMIHDUK9/79WD//AtuMb+t3uTUa5LAwlPJynMuX41y+HDkyksDrriVw3A3oWrXCPms2lfc/0KBu0UADp/ySRLM1q8+5t1uNLNG6uc/RlL8oINjom7a5PApHq30LV2a7m/wKG1Lt37N/zadrSqRfxdKo09QKbD7nTKqqcrTa4c8LIK/MhsXhITupoQMns8NDWKCOKpubw6VWDpda+X5jAYD/+DMzt2Myapn9awFD0wKo1h+loMLGs9d3OKdtIvjjE6QPIiU0lQhjOE91fwbwmTqs3riKLZrNrCtai81jo8RWzIMr7icpJIkhSVfQv0V/gvS+91qcKY4Ph3zMttKtLM5dxLoja7G6fe82o8ZIQlCCv7yDVQdZe+Rnrk692u9p9M+OEPwuIdxeN/ctv5cKh0+9JVCKopVxIP8YNBaDxoCqqtSMMNE7I7qRQbpr61as0z7FPmeuf2UUnQ7jgP4EjhmDcdBAnD+toXziLYT97w00SUkEXjPmQt+i4A+EV/Wyr2Ivcw5+j6uiPcHaaNyuAHZX7PKnkSUNEdoWGL2JjO/cCwUFDRqKqx2UlcRSWhaKNtU3TA3OimNAu9gG6kbHo5jNOH/+GefKVThWrcZ7+DAAx1rh6Tt3xjh0CIaePdCkpBDYuy+dYyH83pHnpR1ORKWjgkdX/RWHx8E1adeSEdaaTfs2sdOzgyfXPMH/df4bCgqLcxaxvWwbAAHaAK5Nu44HPt3IhkMqb9/yJJ1b+oLN39o3hTsHtMJ0zEq9t7y8XuCrdYGva9eO4IcfxDh0aCPbWzkoCNPNEzDdPOECtYJA0DS6jAzC/vPvJs9LskzA0KEYhwzBuXwFNa+9hnvzFqwffIj1s88wja8VAJs1Q5eWRtgz/yRk8mPY58zBOu1T3Fu3oZT7Fp7kqChUpxOlvBzLe1OwvDcFfbeuGIcNB52OgBFXYpowHsWrsP/AftJapSFrZKr+/iS4PWgSEpqs57mkfWIYNpeXD+64rMHxmRvyeXPRXuxuL06PwvNzfWNs8/AAuqVE0q1VJF2SI/1jpyRJxIU1VFkf2SmBlJggv4YA+Oz4csvqNREC9Bqiggx4FJXSGgdVtSEnluw46ssXWLzfzsaiA/Rt7TMZEQiORZIkRrYaxWsbX2HW/u+4utUoAII1IYzLuJEDVfupcdbQJrItvxZvILcmlw+2T8HpdXBt+vX+fGRJJjumI9kxHalyVrEsdwnzDs2l3FFOm8h6O8MZ+77m5yNrmHNwNqNajWF02hgCtBffXONiIgS/PziKqvj1nnUaHX3jB7Es5yfK8rIpKUmhxKDD3VfGoPE9cGOOMeRWvV4cixdj+eBDXOt/8R/XpqdjuulGAsaMaeCG3jBwANr27WHbNkyvvCRs+QQNUFSF3JpctpVuZXvZNnaW78DqtiKhxXy0Ix/e0on7vl+LIXI7BncrHJVplJRFclT1TUb+3b+L3wPnbX1TuaVPCu2OcZFuOoGzAVVRcG/fjmPFjzhXrsS1cRN4vfUJNBpf6JCePbB9NR1d585EffRBgzyC7plEzXPPE3z/fRcsLMinu6bh9Dq5vsWT/LjRwXflVmRvMr07tsZs/ISXf33Rr/IiIdExphOtwlohSRIJEYFszpU5UGymc7JP8AsNrFdP81ZU+HY/jhX4srIIfuQhjIMH/+bYZgLB7wlJkjAOHIBhQH+cK1dS88pruDdtwvrhR1g//9wnAP7lXjQxMcgBAZjGjsU0diyuLVuwTp2Gbc5clLLaPTyTCU1UFN78fFy/bMD1ywbQ6bD/MB/TrbciBWgxfTcL7Scfoebl4dm9h/C337xgWgKju7Zg8vQtLNx2hCva13s4HNO1BTV2N+8t28/IzgnkllnZnl/FkUo7szcWMHtjAbIE7RLC6JYaSfdWUbSJD0VzTLB3k1HL5a0aOqrSa2UmDUxjc04F2/KrsLu85FfUx1EMMmgIM+kpqPAtFteFmSizuLitn0+TaHNOBbsKa+iR5nMWJRD0S+hPXk0en+z8mPmHfyArqgP5pXkcKNhPmCGMZ3s/R4vgRCwuC6sKfmRp3lIGJg7yX7+jbAdVzkq6x/VAI2sIM4RxTfp1XN1qFNtKt5IaVu9NV1VVwg3hVDormb73SxbmzOfG1uMZnDQEjfzn9AQqZu5/YA5XH+LNzW9we+YdtIlox/ytR/hmaXMqLdcAEikxQdzZvxWB+oY/s+pyYfv2O8xvv403J9d3UKsl4OqrMN08AX2XLiecHEqSRMi//knhG2/SbPTo83+Dgj8EO8q288OheWwv29YgNEgdtpJs4oOjefzrbZirumA+2sV/zqCVyUoMo3PLCORjJiHHqxsdi7eiAuePK3GsWIHzx5X1Dhxq0SQnY+zbB0Of3hi6d0cOCcH61XSU0lIMHbOxL1naMH2tYwfzm28R/uILZ9UGZ4LNbWN1wSrCXf159tt82iWE0istil35eSyqeANJ9hm3G+Uggl1d2bevJdd1GUS7mDAAbuubwh39U4kMahjGxFtRiWXKlAYqnbr2WQQ/8gjGQQOFwCe4pJEkCWO/fhj69sW5ahXmV17DtXEj1g8/wvb5F5hunkDQvfegifY5fNJnZ6P/XzYhT/0D2/SvsX76Gd78fLx16tCtUlGqq1FKfUJh2dUjkUJCMNbUYH3/Qzy7dqFt1YqAqy6c/Wvf1jFcmd2cZ2ZuZ+XuEvq3bYbHq7B4exHrDpQzsXcK9wxKA8Dq9LA5p4INh8pZf7CcnFKfMLg9v4qPfjzIwHaxp1TFjAwycEufFG7pk4LHq7CnqIZNhyvYlFPB1rwqLE4vFmd9IO5wk44qqxsViA31edxetK2I2RsLKDU7eOiK1kCdmqqdFhGBYlz6EyJJEhPb3cLlcZezMGcBOTWHcatuJra9lUFJgwnS+xYIgvRBDE8ZwfCUEQ2u/3L35+wo3050QDRj0q5lcNIQ9Bo9OllH52b184syexkbjv6CR/Vg1BjRa/RUOat4Z+tb/HB4Hvd3fID08IwLeu+/B4Tg9zvDq3r5cvfnVDubjuHlVXw7GisKlqOoCh9v+5zqg6P8BtgJESbu7J/KoMy4Bit6qsuFbca3mN94E2+BT0dfCgvFNH48QbdMPC3PZvpOnah+6EGx2/cnxeIys610GylhqcSafA4NyuxlrDnyEwAGjYE2Ee2wVzdnb66BkqOxgAYzvsmUrzuqmJptpkd6DH/ve2uTcbDqUBUF944dOJYtx7FsOe4tW0BV/eeloCAMvXpi7NsXQ7++aBMTG+Xh2rgRgJrnnm+yHNevv55+Q/wGSu0luBQX+/M1XD+kjEd6Dq0N52BjobMXaw/lY61MoKQsC/C1zS8Hy2mXEAb44oMdi1JdjeWDD7F88KHfaYsuM5Pg/3vE56xCTKwEfyIkSfKNBX364Fy1ipqXX8W9aROW9z/A+tnnmG67laBJk/zaLJqICILvvYegu+/CsWwZ1o+n4ly9Gs+BgwDICfGoNjtqRYU/tqD1zTcBCHnqHxdst6/u3v4+MpN2CWHMWJ/LU9/6wj60aR7Cv65tz5Cs+ne4yaClV0YMvWq9hh6tsrP+YDnrD5Txy6FyspPC/GmPVtmZ/PUWeqVHc3u/1BOOGVqNTGZCGJkJYdzcOwW3R2HXkWqmLNvP5pxKVKDS6lP91Gskvvw51y+EtksIpUtypD+vrXmV3D/tV2JDjXRNjaRbaiTdUiIbaC4ILn0yIlqTEdG6PpxRyqnDpHhVL1nR7ck351FqL2XKtnf5dt83XJN+HUOShqLX1PehCGMEf+36KF/s/px8cx4Or4MoYxQ2j43cmhw2l2xGLxuYd2jOScsM0gdxU+sJ6DRNm5n8kRCz998Ziqrww6F5qKi0OEE8kkpHJaX2Uv/3KCmLdT93w+uuJlCv4fZ+qVx/WRK6YybTqqrimPcD1f99Dm+eL/irHB1N8L33EDj+pjMOaCv48+BVvRyo3M+mkk1sKt7I/sp9KChMbHcr16RdC0CcoTV9m41hWPrlpIWno0HLlS+v8E8CAoxuOqRqaWkoR2eyUOQxsqksl22WdVS7riJaG9OoXMVmw7l6NY4lS3EsX94ocLqubVsMA/pj7N8PfefOSLqTD8hhzz9HyGOPnjSNHHT+1ZC8qpfdZXsACEmez4+lMKrqcoKkOH7YY2VtYWcqre0B0MgqV2bHc91lSQ2ctdShWCxYP/oY85T3/Q4rdG3bEvx/D/ts+ITAJ/gT00AAXPEjNa+8gnvLVixvv4N12qcE3XE7QXfd6XMWgy+GYMCQIQQMGeJzBvPJVGwzvkUpKKzPVKvFGxyMprISgJp//Rvn8hWYJt6MccjgC7IgKss+k43RXRKwODzIkoTJeOpyY8MCGNk5gZGdE/B4FTxK/eLZ2v1l7DlSg04jNwg6v/FwBa2bh5xQzV6nlUmJDmLfUTNjL09ib1ENm3MriQ2SGdi+BTPW5zL28kSW7TzqdxBTR16ZFZ1G4mi1g7mbCpm7qRBJgtZxIVzeKorL06JoFx+KVnP+YgAL/phoJA3jWt/INWnXsjR3MTP2fUO5o5z3t73HzP3fclfWJC5v3h3w2QH2aN6Ty2IvZ0HOfL7Y9RllDt8OfnJIMsNaDmPD0V9YnLuIZoGxhBoa26QWWgpxe91cn36DEPwE5wedrOOq1KuZdWAWT17+tD/QpqqqzD/8A+9vmwJAsC4MZ9FAduXHAzAkK477h6Q32g1wbd5M9T//5d/NkKOjCf7LvT6B73cQj0zw+6TSUcFHOz5kc/EmzG5zg3Mtglv4jaO35VVy10fbiAhK4eHL2vrVNa/pHsmMfV+iCT6MTm/jMCqHvSqYJZAkNCYVVdVSai8lOtAn+HmLi3EsWYp98RKca34Ch9NfphQYiKFPb4wDB2Ls3++M425JWq1fxetiUO2sZknuIhYeXuAPrwKQHtqeKSv28/P2g7i9volYSKCKN+xnhiQO5bFhmY3yUu12LNM+xfL2O341V216OiH/9wjG4cMaOW0RCP7MSJLkizPbvx+OJUsxv/wK7p07Mf/vdSyfTCV40t2Ybr8N2WTyX6NLSyPsv88S8tij2L7+BvN7U1CKi8HjQa6q8iWSZVBVf3B4OTYW0/ibMN04Ds0F8HYtSRLBJ3F0dTK0GhntMRsr/do2Q6eVCTpGgKy2uXjg01+RJeicHEGv9Bj6tI4hJrR+jjF9XS4Ot5ef9pX47fyOWhRW7C7Bo6h8uvowvTNi2H2kmjbH2GsfKDYTGxZASnQQsiyRW2blUImF3Udq2H2khk9WHSLIqOWy1Ei6p0XTPS2qkWq74M+NXqNneMoIBicNZUnuIr7dP4Myexk2j61RWo2sYUTKVfSK782nO6eyNG8JRdYirB4bfRL68dmuT7F7bAxLHs6oVqP9fjMsLgt3LrmNoS2HEai7dDZIhOD3O8PlUZi1rBnOOJVxn7+Ku6QvAJqgAxha+Laj3Zbm5By+Cq/HQFSwgSdHZTYyylaqqqj+93+wTf8aAMloJOjeewi6Z5LY4fuTsO7IWrSyli6xXU+aTlVVcmpyqHHV0CHaZ/Nh0gWxvmgdTq8Tk9bE/7N31uFRXF0cfmd9Nxt3AiHB3aG4u0vRFqdFSgtUaKGlVKAtXmiRUhyKtcW9uLtDkIQAcU82WZf5/lgI5avhQfZ9Hp4HRu7ce5mdmXPPOb9TyrccbvaiJCYEUVQSQstw56pwyXyeuKtk5PfRoDNa8XJzhln0qFaaXw83I9ihoUeNgui++Rb7rdvYPT3x+WYcmy8kceZmBv7hAtkrZmLcth3rmTP39UtaoACqJo1RNW6Esnp1BOWL+eK/mn6FUQc/xuZw5u5pZFrSkvJhyS7IwYy76mMiYd5SqpazcTj7Z8xZhfBR3f/xKFos6JevIHvGjFwPqDQ8HI8PRqBu2/aZhpy5cPGiIQgC6qZNUDVuhGnrNnSTp2C7dg3dhInkzF+A+9B3cOv5JoLqnmEj8fRE+/ZbGHfvxiaAIykZ4W6YucOBJDAQReVKWI4dx5GYSPbkKWR/Px11q5a49e2LokrlF8Lz7u2moHXFkPu2JWSaCPZSE5tu4GhkGkcj05i8JYIS+TyoWyKAKuE+LDsYjc0uopJL6V+/EAHuSs5fvcW1LAnxNgdrTsaw8YN6fwnhPB6VRlyGkZg050e6Riml5h3jTme0cuZWBjqjlV2Xkth1yRnO2q5yfka1/efSMjsuJHDwaso/7gdnSGz3mmGPMEMunlfkUjktC7WmUcEm7I3ZQ/0CDXL3Xcu4eseT51x08FJ68V6l4TQMbUSGKYNgN+cCcvmACuyJ2c2iSws4HH8IRPiq1jg23diA1W6lU7HX82RsTwuX4fecIZMIyNFgyqyEyvcUrxfrjErijiiGszn9EHqrnozrHQEJjUoHMrJ1qfseqnfDOjPHfI4jxfkQ1HR+HY+PRz60l8TFi4vOnMW001OQClLmNV34l9Uqq8PKxdSLHEs4yonEY6QYUyjgXoCZjeYAztW0roUHEJus4Eq0lm2ndNgdImAi2jeBt+6EA8llEjZ+UP8vBdPjMozkmGxcis3i01/PQ9FWUBQQRQr9vIXq0afpdusMljkJWP50nrxiBdRNm6Jq0hhZiRIvxEfT/2N1WEnSJ5L/Tqh2Ya8ieCg88FH50iq8Ffnklej70918Qgcq7yhCQ2MxySLZpzNSxqs6u89UolKdOzW37HaMa9ehmzI1N1RbGhKC+/vD0bz+uivf1oWLh0CQSFC3aomqeTOM6zegmzIF+81bZH3xJTk/zcX9/RFounTO/V2ZT5zAcuAgPj/NwXToEIYlS5FXq4r15CkcSUmYtmxFUjAUdcMG2KKisJ4+g3H9BozrNyAvWxa3vn3QtGt7n0H5IlAinwe/vlebW6l6DlxN4cDVZC7EZHIlXseVeB1z/3RsZFIOkUk5f2nDYnMQnZxDhTtlZ+6yeFANjt9I4/C1VA5fTyE9x8Lh684QPEGAMvk9KRbkgYjI5Tjn9UK870UoZRkszNl1nTrFA6hR1A9BEDgRlcaOCwmULeD1l7xxURQ5eyuDZJ3JZfi9pCilSpqFNc/9t96q55tj47E6rAwo8xb1CzTI/Z74c51cgAb5G7I/dh8O0cG1jKuAU3l7X+wemoW1wEd1//37ouP6YnjOkEgE+tUvzOdr0sjnfwbR6whvlH2bFEMKv+/IxMNcH42fO73qhNOifL77PoztaWlkjvwY07btAMiKFMFr0gSU1arl1XBc5BHrotYhiiJmh5lNNzbQpXg3AE4kHmdvzB5OJZ28LyRCIVEQpAniQmwqh69msP9KMlHJUsAOOPPHCgdqqV0sgDrF/RFFMffe+3+jD6BokDs7RzXEZneQ2qkzEocNVZUqmJf/gtR8L4QTuRxl7VrOelxNGiMNCnpqc/K0yTBlsP3mVrZGb0EmkTG3yXykEik5RgedQ8bQqmyx3GOLBGqJSsphcJgFVfQ+ElMykFuhTFhzfrhZlaKBcioW9Ma4bRu6CZOwXbsG3AnVHvYebj26v7AeUBcungcEqRRNxw6o27TGsPpXsqd9jz0hgcyPRpI9azYeH32Auk0bsqdOQ1a0KLa4eCynTmP38EAuV+D+8UdkT5wMcjmOW7cx3rqN4OWJumsXMJkxbt+G9cIFMt//AN248c4w0F49X6gFWEEQCPPXEuavpWftcNJyzBy6msK+K8kci0rFZr+XJ+jnrqRRqUCq+uRQtmw5riRmM2zJKex/EuK6i1Ylp2GpIBqWCsLhELmSoOPQNadxeS0hmwsxWVyIcb53Cvq50blaAWoWuxeqfyQylbUnYzl/OzN3+xu1wth4Jo7m5YLpVO1+ga8TN9J4d/FJetUOfxrT5OI5JMuchYfCg5u6aKadnsLe2D28V3E4vmrf+46zO+zMOj8Tu2i/b/uW6E1IBelL5+0Dl+H3XNKwVBA/HzZgttvZdGMjBaWN2RZ5EIVUTdT1okzsVow6xe8XxDAfPkL6u+/iSEwCuRz3d4bg/u7QF26V0cXjozNnsfnGRopp6mHFwNrra2hdqC0auYbD8Yc4ELcfcIY9VA2sRqC8LLGxfhw4msnmbady25FKBCqGeVP3jjJcPu8HzwkVHQ4k589hnjkTxbnTANgunOeuiSgvVw7twLdQNWyIxOPFLvIblRnFhqj1HIjblxvO6aPyJUGfgMLhR+cfDmCzi1QNDc3Nj1k4oCqjP1vKrJv5KWZoQxmtSKTRxC/x+fE2JzCprEBq2+9yw18FL0/chwzBrW8fV6i2CxdPEEEux+2NHmg6dUS/dJlT9To6mowhQ9FNnor9xg1QKtCNG4c0PBx7UBD26GiyDx1CUKsRpVI8Ph+DfskS7DdvYVy1GhQK1G1aI/Hzw7RpM/a4OLJn/ED2rNmoW7VE+9YAFBUr5vXQHxpfrZK2lfPTtnJ+Np+J4+t1F2lYKpCjUamkZptJ0plQBzpzBcsXcEYsJGaZ/rVNiUSgVIgnpUI8eatBEZKyjBy842E8GZ3OrVQ9t1L1dK0RlnuOn1ZJhyr5CfW9l5cZ5KlGJhGYvu0qIqCUSTFabHR+LZR5eyIpFeJBjaJ+f+2Ai5eSfNp8TK3/PWsj17DyynLOJJ9m+J53GV75/ftKPkglUj577XO+PvolSYZEAPxUfqSaUhFFkdjsGJfHz8XT53zqGayBqxBFG6JdwdjfLuJw+JE/tB7FAv2o/aeVL9FmI/v76WR/Px1EEVnRovjM/BF56VJ5OAIXecmqa6uw2q2cSriEzC0OuUSa6/VrWKARnkpPqgfXoJh3cW4k63lz1mEgAQCVXEr1Ir7UKxlIrWL+eDyEeIAoiljPn3eGOW3chD0+PnefoNWibNKYhBIlCDpzFtulS6hbtfpPNc7nmWsZV1l0cSEX0y7kbivuXYJ6+VrQvHB9ZBLn47VUiCcGs50MgyXX8DPOms17q6bT7LvZbHWU4WSaHsHTwgfqLCpP/RLp8hysgKBW4zagP+6DB+WqD7pw4eLJI6hUaN8agKZ7N2d5lDk/OY0+AIsViZ+fU9xFr0dQKpEEBuJITkLi64emYwe0A/pj2r6D7NlzsJ4+jfH3NQAomzTGrWdPTPv2YjlyNDcMVFG5Mm4D+qNu2eKFDNcOvrMQ2KNWGGM7luX4jTQ8lFJsaTcBOBLpTDX5ccc1mpQJ/s+yPXcJ9FTTqVoonaqFojfZOHw9hctxWeT3ubfgtfrYbS7GZvJJm3s5f2dvZ9xRKhWZvDkid/uV+CzO3c5k6huVXsjUARePjkwio3OxLtQIrsGkExOI1kXz5ZGxtC/Sgd6l+yIVnEvRoR6hdC3ejRlnvgfIVf504EAjc/un5l9YXrynzUvOtYyrfHNsHHbRitRYBK0kCJ3HDSSCgtjbBZjU/V6NHUdmJukDB2M+6KyhpuneDc+vvnR5BF5Bciw5HEs4wp6YPZxPPQeAXOus1agVCrAuci0VvZqw64wCqVCLEqWdRUsLB2gpkc+DUF83GpQKpEYRv78N3fw3rNevY1y7DsP6Ddhv3ry3Q6UEkxn3kR/hPvBtHHI5N8+eRduwAWlNmmH47Xfcund7IuPPC0RR5GLaBaSClFr5alNYVZ/dpyVMOpBBrREOvO+8LyZ2q4hWJcv93YpWK/rFS3Dv0Y3G3ZvRGDBH3yTm089Q79uX276yaVO8J3yLNOCv5S5cuHDxdJBotXiMGI5b715kfT4W49p1IIo4UlJQtmhBYpvWlG3dCqlUStY336JfugxBq3WWg2jZAlWL5lhOnCBn9hxMO/7A/MdOzH/sRFH9NTy/+grLBefimOXUKSynTqHLnx+3fn1x697thYp+KB/qTbCXmqUHovmuWwXqFA9w1mNLcz4blx++iQAUD3a/z+j77fhtyod6/22Jmv/HTSWjSdlgmvypPqHN7iAiLov0HAvBXveiUHy1Sr7sVJalB6O5kZzD3WoVW845FzWXH75JSraZ+iUDXPUCXzHyuxdgUr2pLLw4n83Rm0gzpiHh3j3pEB2sj1pLWd9yXMu8itnuTEcREDiTcpoi3kX+qekXEpfh9xwRlxPHV0e+wGw3U8G/IjU9BvLl2tOEV/oVSWY1pMp73j7brVuk9eqDLTISQaPBa9IENO3b5+0AXOQJUZlRfLT//dwwQwC70Zcy3jXwoQzbz6XhXXIRm67vZtURZ02mgY2KopBJEASBhW9Xf+iVUHtiIoZ16zGuXYf14sXc7YJK5VTibNuW7O+nI3HX4v7eu8727c4Yennx4qhbtyZ7+gw0r3d6Ibx+acY0Nt3YiCAI9CrVG3AWn32r7EDEnKKsPZrJb/HO2l5SicDpm+k0Ku3MV/x/yXXbzZs4kpNRt26NPS2N7Ok/oF+yBLX1Tt3D9u0x7duHonQpl9HnwkUeIfXxQV62LMYtW1G3bYPx9zWYt27Fb/t2sg4exPPDD1C3aU3OzFnYLkegqFwJcObFKatVQ1mtGtbISHJmz8Hw+xosR49hOXoMWcmSeH75hfMZunQZ9thYdF99TfbUabj16I7bgP7IQkL+o3d5j1QiMLRpMT5dfY7Rq8/Rp24hwnzVxGTZ+P33i1yIyWJM+9JULXwvvDIpy5jrjSscoKVZuWCalg0myOvB0whkUglrR9Tl7K0MigTeq7267FA0288n4KtV4BAh3N8NN6WMi7HOXMGT0emcjE5n4qbLVC/iR9OyQdQtEYBa4foMfhVQSBUMLD+YSoGVKeVb+r5vniPxh7mlu8V3dSYRmx3DT+dnY3VYCdAEsPba77QKb83t7FsopSrCPV/8PFHXHf+ckG5KZ+zhMegsOgKUYQhJ7Wn4WgiL993CHNWfuHQLk3o4vX3mEydJ79cfR3o60uBgfBcvcoV2viI4RAcXUi+QbdFRO6QOAGEeYbjJtbjLtSQaEvG0VONGZDVifTW4B3uAzUywpDrHM3+jbeVPqV0sCMmf7LwHNfocej2mrdsw/P475oOHwOFw7pDJUNWvj7p9W1RNmyJxc8Ny/jy2S5cAiM9/L9E+CEj8U5vmAwdRNWzA88pt3S3WRq5hX8xebKINhVRJ+yId0Ei1bL+QwLIDPtxKdSptKuUS2lTMT4+aYf+eD3lnvg1r1mDctBkxx6mGZ65YgXzjx6EsV47E8hVzj3PhwkXeIUgkeE+ehPuggWR9OwHzzp0Yl6/AtHYd6g7t7xz0979VeZEieE+ZjMeHH5Dz8zz0y37BFhFB1qjRSMMK4v7+CJBK0C9YhO36dXLm/kzO/AWo27ZBO2ggijJ/reP5PNGodBCOziI/bL9G7zlHcrf7uSv5olNZmpfLd9/xJquDeiUCOHw9hajkHGbtvM6sndepFOZNi/L5aFgq6IGK0cukEqoUul+kQ6uUoVFKSctx6kRHp+hRyiRIBKhWyJdK4T78cTGR64nZHLqWwqFrKVQv4sv3Pav83SVcvKRUDbondiiKInPOzeJU8kkq+FeklG8pSvmWon6BBuyN2UMZv7IM3T2YBRfnsTd2L1q5GxPqTCbQ7enX6XyauAy/54SY7BgyzZn4KgK5drw+Fx1plFg1nE4OG5NLtaNwdiJFB3YjIScHR2IiiCLysmXxXbTghVZCdPFgxGbHsOv2LvbF7iHVmIqvypca+WoiFaRIJVIm1p7OzAO7uHgti/jsUMBBVFIOKdl66lTK5shNGargHIqUvEzd4uUe+Lqiw4HlyFH0q3/FtGULouFPSqBVq6Lu0B51m9ZIfe5PfpYXL473jzMQjfcS+x0OBzExMRQoUACJRIIgl6N47dkrzt7W3eZM8mkcop2i3sUp/X+rf6IocintImuu/8bJpJO520v5lqZVWDu2n0nnl8NnSMx0jk2rktG5WihdqhfE2+3fQ4hEux3LseMgkeTW2JSXKYN21CdEuGspWKYMlkOHcaSloaxR4ymM3oULFw+KsmYNdEYjpp07UTdvjveCeVz65ReCVv+K9cxZDMtXgCBgOX0aedky/xi9IA0OxvPzMbi/9y45Cxehn7/AWULiszFIgoLQvv020gL5MSxajPnQIYxr12Fcuw5lnTpohwxCWacOgiBg2rkL650FtX9C8Vo1lNWrP43p+FualAmmQclATkank5xlJDM5lq6NqqBU/HUuCvq5MaF7RXRGK3suJ7H9fDynb2bk/pm8OYJ6JQNoVSGEKoV8kUoefPHro9alGFC/MB2nH8BdJSNZZ8Zscy5OHo1KI9tso2v1ghQK0HLwajI7LiTQoNS9b6f0HDPLDt2kZYV8FAn87zBUFy8+f9zawdabWwCQCXI+2vcBSYZEbA4bGpmGQ/EH8VB4cCj2IH4qX+L18XxxZAyT6k5Fq9D+R+vPLy7D7zmhvH953i//OeN+j8bi0FA14TLNSjpDJCLEJJp4pCEvFI5pxx+5Rp/fmt9c+XwvMXqrngOx+9l1eydXM67kbneTu1ElqCpGq5GoRCubTsex61IiBosX4AWA3C0Olc9VFF6RnDGbUN1Jkbhbo+a/sMXEYFj9K4bVv2KPjc3dLg0LQ/N6JzQdOyArWPAfzxeUSjQdOty3zW63Yzx7Fk2FCkjzoNh4tiWbaaemcDLpBAqJAqlEitFmpKBHGB9V+ZhQD6dnctONjfx84SfnOBCoka8mLQq241KUG9+tjCYtxzmHPloF3WuE0bFKgQdapTbt3UvWuPHYIu79X2r69sHzyy8QAc6exRYTQ8bHnyAvXRpFjWf38ebChYu/oihbFsVr1cgaMxZZkaJIwsOwli6Nz7oe6CdNJufHmSCKZI39Av2SpXh8OgpV06b/GEUh8fLCY8RwtAPfxrB8Bdmz5+BITET31VdIfHzQvv0W7u+PQL90KcaNmzAfOID5wAHkpUujfWcw2XPnYTt71ik08/+IIo60NFQtWzxTww+cHrjqRfycOX5nk5FJ/13IxUMtp13l/LSrnJ/ETCPbzyew5Vw8t1L17LiQyI4Lifh7KGlZPh+tK4ZQwPfBBDbWn47DZncwb0B1ftp9nUuxWXi7KThzK4NLsVlcis1CKZfQsFQQn7QpTblQr9xz/7iQyPLDNzl9M51FA12Lbq8C9Qs0YF/sXi6knideHwd6cJNrkUtkZJmzSDYmo5W7o5KryTBn4q30Ji4njtnnZvJhlZEvrFiQy/DLY+7WQzOYbczebCA9U0O4wsawP2bhvnUj8hIlGAOYdu4i7S3nS0Zwc8Nv3RokrlINLzVLLy9mS/RmACSChMoBVWgY2ojCbuXZcSGFfnPOcDvtngcu0FNJao6edlWCGNTo/hf/wv1RrD8Vx6BGjf7xeqLJhHHbNgwrVzsFg+7UXxLc3VG3bYOmc2cUVSq/kA87u8POl0fGkqBP4P3KH1IrX21kEhnnU8/z8/k5jDr4MTMa/ICv2o+a+WqxPGIZdfLXo32RDpgNHgxeeJxMgzMHL9BTxZu1wmhTKT8q+X8bsNbLEWSNG4d5n7OMhuDpifu7Q7GcO4dh4SKsp04hr1IFr4gIUk+cRBocjM/PP72Q8+zCxcuGz8wfSe3aneSGjVA2aIC7WkV6XBzW02dQNmqIqm5dsqfPwBYVRXq/AU4Rl8/HoChf/h/blGg0aAf0x63nmxh++53smTOx37qN7rsJCF6eaPv3x3/bFgwrV2NYvhzrpUtkDBmKxM8Z3ugzby7KqlXva9O4Ywfpffuj7dv3qc7HkybIS03vuoXoVSeciHgdW87GseNCAik6M4sPRJOsMzO2Y9n/bEdvsrH88E3aVc5PgKeKz9qXwSE6cxF/3hPJgn1RBHmqScg0svVcPNvOx7N+RD0CPJ3P8GLB7tQvGUD1In73tTl5SwStKuSjUpgPkofwQLp4/lFIFXxZ82t6bX2DHGsOEkHCOxWGUjukDqIosi92L9NOTUElU2K0GdDK3ZAIEg7E7adSYGUahTbO6yE8Ei7DLw9JMaQw/tjXvF1uEIv/MHM9MRtvNwVT+tZAstGf7O+n4zNnNqZdu0l7622wOGPXPb8Z5zL6XjJ0Fh27b++irF85CnsVBqBxwSZcSL1A49DG1C/QALXUk7G/n+fg1SPY70iWqeRSGpUOpHXFEHZdSuS34zEEuXuz87zuvvbdFZ4YjCmsOhrLO02K3bfPeu0a+l+WY/jtd8TMzNztytq10XTrgrp5cwT1gyffP48cSzzKtYyrfFdnEqV8nfmwJpuJm1nRZFtyMFj1bLqxkd6l++Kr9mVhs8Wo5M4x29QOtCoZbkoZvesUokX5fMgfQJrcnpyMbtJkZ0inwwEKBdo+vXF/710k3t6Iooj59dfRL1+O5cBBJFIJ7p99irZrlxdK3c+Fi5cZaXAw/ls3Y/x9Dfo1a1FevYKkaDF85s11evekUjRdOpM9cxY58+ZhOXqMlJatUXfsiMcnHyMLyfePbQtKpbOGYNcuGNetJ3vGD9iiosieMpWcn+ai7d+PgD+2Y1i3Hv2ChThS0wBI7dINjw8/wK1XTyTu7oiiSPaUaShq1EBZ88X0VgnCvXp+7zUrwYGryWw6E0ebSveEbqKSsll7MoZ2lQv8RRX01+O30RmtaFVy1pyIuW+fVilDACoW9OLr18ux6Uwc2SZrbnkdgNM302lZIYSaf6r1t/1CAlvPxbP1XDz5fdS0rZSf1hVD8NEqn84kuHjmXE67RI41h4oBlTiTfJrJJyciIFArpDb1CzTgfMo5TiefwlflR4oxhWBNMAmGBH46N5uSPiXJp33+hZj+H5fhl0fYRTtTT03mRlYUU47N5lJEK+RSCRO6VSCfvwf6994lc+THGNavJ/P9D8FiQeLvj+Du/pcQOhcvJqIociU9gm03t3Iw7gBWh5XGoU14r9JwAIp4FWVS7RlolPdyJVJ0JuwOkbIFvGhTMYRGZYJwUzp/xquO3kIqEfhpd6Sz/TviK4LEaaRIJQLJOmdemmgyYdyyFf2SpVhOnMhtXxocjKZbVzRduyArUOCpz8GzYn/sPop5F0Nuzc8X605wMm0ngtcpBKkRAKVUyZ6YPXQt2ovlh2+yJyKJ+W9VRyGTIJNK+L5nFYI8Vf8ZwgQgGo1k/zSXnJmzcnMi1a1b4zH6k/vCYwVBQNW4EarGje6ESJ0ltEIFJHkQBuvChYt/RuLmhluvnqje6MHZs2fJ/3/h6hIPDzxHfYJbr17oJkzE+PvvGNeswbhlM+5vv4126DtI3P45XFGQydC83gl1h/YYN20me8YMbFeukj19BjnzF+DWtw9+W7dg3rGD7KnTcGRkoPvmW3STp6CoVBFNj+5YL17E79fVz2I6njoKmYRGpYNylZHvsu5ULL8djyE128x33Srety9ZZ0IqEVhy4AaiCOKf9kkE5/M2JdtCmQJelCngdd+5SVlG5u+NwiHCqndrU9DP+X9VPtSLDlUKsONCArHpRmbtvM7cPZHULxlIhyoFqBTm7YrMeMG5mHoBT6UXY6qP5YczM9gTs4uppyZTwqckvmpf6uavx87bfzCq2qdMPTWZBEMCQZogEg2JbL6xibfKDczrITw0LsMvj1hz/XcupV1EKVURfbEeIDCkcTHKhXoDoHm9E7qp08gY8QGYzSiqVMZy8hTeY8cguD4MX2jMNhP7Yvex+cZGonXRudsLeRamjJ8zpEVvtvHN+osci0pjzfC6uYXUR7QoiUYhpfDfJJ//+UVojYgguXFTkEgI3LcXWSGnBLHt1i2yxo3HsHIVjgxn+QGkUlRNGuPWowfK+vVeyvsrx5KDzaJh8PqpaPzPIfF1es8lNi8y4ytRubCG29Y/EARYezKGlGwzuy4l0qK8c7X+z8WD/wlRFDGuX49u/Le5xevlFSviOfZzlFVdynEuXLzsyELy4TPjeyz9+5L11ddYjh4je8YP6FetwuPjkWg6d85diPs7BKkUTbu2qNu0xrRtO7qp07BFRJDzw4/oFy5C278f/jv/IKV5CxzZ2WAyOctEHDuOJDgYWZHCz3C0z54GpQJJzzHTtnL+3G2x6QZ+O3abrtULUia/J+PWXSTYW02TMsHIpQJ7I5KITMphQL1CDGjw9/XYZBIJ3WuGkZRlyjX6AI5FpdGgVCDvNi3K7svJrDsZw8XYLHZeTGTnxUTC/d14vVooLcrnQ6N0fU6/iIiICIBUkPJepWFIBIHXgqrjq3aGVQuC8/dawL0Ab5cbxA9nppNqTKVDkU70Lt0n7zr+GLju1Dwg1ZjKqqsrAXDTNSdG706Fgt50rX7PGyDa7c4XhNmMNCwM3LTIChdG3bZtHvXaxX+hM+s4qNtPaXvpfxQvEUWRD/d/wC3dTQAUUiV1QurSMrwlhTyKIL3jUdIopNxM0ZNjsnE0MpWmdwrYlv2/lcp/7Mu06UhDQxEtZrK+n45b+3bkLFyEec+e3Nw9ab58aN7ogVu3ri+9MqyH3I+zCYfRBDo9fKHuBelcrAsVfavzzYYITiUtpkCwH0q5lPeaOYvbNyz94HNiOX2GzLFfYD19GnDOrceno1C3a+daEXbh4hVDUb48fr/9imnrNrLGj8d+8xaZ73+IfuFiPL/4/D/FVwSJxFkMvnkzTNu3kz31e6yXLzs9gAsWoqxdC9PWbUh8fHBkZoLDgSMhgcQaNXHr0QP3wYOR5gv+12u8iFQK86FS2P0K0mtPxrDy6C1WHr0FQNVCPkx5o3Ju0fj+9Quz+EA0c3Zdp3xBb6r+XxkIAF93Je82LX7ftrRsMzP/uIbdIVLQz41OVQswvWcV4jIMrD0Zy7bz8USn6Jm0OYJZO6/TqkI+Or8WSgFfN4wWG7N3XifHfK+2riiKpKdns+nWJQRBQCIIvFEzjPCAF1cd8mWglG9pVl1dyeW0S5T2K8OwSiPu238o7iDeSm+C3IIJ0ebncPwhTiWd5FLahTzq8ePz33FLLp44yy4vwWI3EyAvzJVrBVDJpXzarnRu4rDocJAxbAT2uDiQSBCUSiz79uE+YthL6Y15WVh1bQW7snayK2Zn7ra74Zx2h7N4uSAI1A6pQ5AmiL6l+7Ow2WK6FhrI9hMiXX44iNFiyz3uw1YlWTq4Rq7R96BYIyIwbd6MduBbKCpVwvT776T17IV5924QRZQN6uOzcAGBRw7hMXzYS2v0pZvSuZruVNAUs8ogkRsJdQ9jVLVPmVh7OrG3w+jyw2H2RiQjIEHMcnpbm5QNpknZ4AeSErcnJJD+7jBS2rTFevo0gkaD+0cfErh/L5r27V1GnwsXryiCIKBu2YLA3bvwGPMpgrs71gsXSO3UmfSBg7HFxPx3GxIJ6hYt8N++FZ+f5yIrWQIxOxvT1m3OA2Qy8HUaQvIyZcBkRr9gIYm1apM5ajS2uLinOcTngppF/ahd3D/33ydupNNlxgGWHowmy2BBEAR61wmnSKCWX4/dfuB2RaBDlQJoFFJupeqZuvUKbabuZcvZeN6sFcbGD+rxfosShPpq0JttrD52my4/HORYZComq4M1J2M4dC2F2HQDsekG4tINpOjtxKUbOH87k01n4ohOzXkKM+LiYSjvX4EC7qHMOjeTNGPaffu239zK9ptbaR7eEplEhiAIDK3wLgXcQ+lavDsSQYLZZuJg3IE86v2j4fL4PWMiM6+zO2YXADeuVAME3mlS9D654pyZszBt3gxyOdq3BpAza7bL2/eck2ZMZcft7agkan6//iuNCjbmVNJJ1kb+zrWMa3xSdTQ1Q2oB0KFIR14v1pmIuGy+W3eDvRFJuWItuy4l0bqiM1m44v+tbD4omeO+QdBq0X3zHaJe79wol+PWpzfaXr1ywz5fVtKMaay5/hvbb27DR+3L7EY/EZvojZemMrezzrLiyA2+iNSTZXDmQMqUWbgrPLkV/fdhQH+HaDKR89Ncsn/4EdHo9CJqunTG4+ORL60h7cKFi4dHUCpxHzQITefOZE+ajP6X5Rg3bcL4xx+4DxrozP/7j7JM93kAN28h44MPEfV6HMnJzgOUSqSlS+Px2adkf/89lqPH0C9Zin7FSjRdu+L+3lBkIS+eCMWDUDncl8rhvvT96TBGq4P0HAuJWSZm/nGN+XujaFE+mC7VC1KvZOBfRF/+DT93JR+2KsngRkXZei6eX4/f5laqnpVHb7Hq2C3qFg+ge80wVrxTixPR6aw6eosr8ToqFPRGKZfSpmIIOy8mMrl7RTw0itw87goVKjBq9XkEAeoWD3iKM+PiQZAIEkZV+5Qxh0Yz8I8B1MhXEz+1P5dSL3IlIwJwpufcxVftxw8NZzqNPruZd3YPIdmQhJfSmzJ+ZfJqGA+Fy+P3jNkfuw8ArbUcBp0/lcK86VQ1NHe/5eJFdJOnAOD1zXg8PvoQVbOmeH71hcvb9xzz27VfUUlVdPPtTqoplQE7+jLhxLdcy7iGXCInyZAEgMMhcvR6Ju8sPMWAn4+x61IidodIlXAfJvWomJtT9rCIooj52DFSunTFsncvYk4Ool6PrGhRVG3agM320ht96aZ0fj4/l4F/DGDjjQ1YHBa8lF5kmjORIGBPaorp+mCOn/cny+BAosjCJ2wv3Vuk0CSkEzLh34uvw508vq1bSarfEN3ESYhGI4oqVfDfvBHvaVNdRp8LFy7+FqmvL17ffUvA9m0oatYEs5ns6TNIrlsfw7p1iKL4n20IEgnSAvkR9Xo0vXrC3YLxZjOmVauwnDmN38oV+P26GkWNGmC1Yli2jKRadcj8ZBS2uPinPMq8Q6WQEe6vZcMH9fi0XWmKBGoxWe2sPRlL9x8Pse1cPA6H+EDz/GfcVDJefy2UFe/U4vuelalexA9RhH1Xkhm04DhvzT+O3mxjUveKrH63Nso7JX7erB1OtslGx+kHuBJ/T2X7WoKO/VeS6Vev8AOJhbl4+uR3z8/0Bj/QtUR3butucTBuP2q5mraF2wOwNnINl9Mu5R4vuZP3p5QqKe/vLNuy4OLPOETHM+/7o+Dy+D1j+pbuTynf0mAO5DdrJsOaFb8X4mkykfHuMLDZULVsgaZ7NwRBwHfB/DzutYt/I82YyrabWynuVYplyStBcJZn0MrdaVWoFa0KtcFN6sHG07EsO3STW6lOL5xMKtCsbDDdaoT9RZr6QRFtNoybt5Dz009Yz53P3a5sUB/tWwNQ1q0LZjOJx4+hmz4Dn+nTnsSQnysyzZn8fu03tkZvxuJwiraU8ClJjxJvUM6vPHsjkrmWmE2G3gJI8HNX0rqqO7VLhVLIqzUqqZruMw9RtdDfFEX+E9Zr18gaM9ZZ4xCQBAXh+dlo1K6QThcuXDwg8lIl8Vu90pn/99XX2GNiyHjnXfSLl+D59Vcoyvy710A39XtkhQvjNe5rPD78AOOWreTM+AF7fDzZEyZhWLkKjw8/xG/1SizHj6ObMg3L4cPoly5Dv2o1bj264/7u0JdukapaIV8WHbiB2WqnzZ2yC6dvZrD66C32X0kmLsMZmdFz9mGm96qC70OWZJBIBKoX8aN6ET+iU3JYdeQWW87Fczkui09XnyOft5rhzUtQt4TTi+dwiChlEvQmG14aGQv33yBMbmfFvhsU8NXQpMzLNf8vOh5KTzoX60LnYl3u255jyWZ3zC6+PzWV7xv8gEZ+zzu/5cYmjsQfRiFVEJkZyb6YvTQIbfiMe/7wuJYbnjGCIFA9uAbVwwoxuUel+0I8dRMmYrt2DYm/P14TvnN9TL4g3PX23cpIxyYYUEu8AOhWvDsdC3dn66lMOk7fz/j1l7iVqsddJaNX7XDWDq/LmA5lH8nocxiN5CxaRFKdemQMecdp9CmcHiv3kR/ht2wpqnr1EAQBQaXCfehQjGvWYLsR/R8tv3jc1t1ifdRaLA4Lxb1L8GXNr5lQZxKW7FD6/3yM0avPkaG3IAD5vNXMG/Aag+pVpox/SSQombT5MrfT9HSvUfBv23fodGR+8SXJjZs6jT6lEvf33iXwwD40HTq4fqcuXLh4KHLz//bswv2jDxHUaizHT5DSohWZo0bfU1z+Pyxnz2LetSs331/q64u255sEHtyPqllTAOy3bpPx7nskN22OmKPHb/VK/H5bjaL6a2CxoF+0mMRatcn68ivsqanPcthPlbaV8yOTSPj013O5uX2Vw334slM56pUMQMBZJkIQBHzc7kV3OBwP5wEECPfX8knb0qwbUZf+9QrjqZETn2G8Ly+8gK8bSwbXRCKBH3ZcY97eG/xyJpuD11LJ76Mhy2B9EsN28ZR5q9xA/NX+JBoSWXBx3n37Uowp5FhzcJM5v+OXXF50X1jo84rL4/eMiM2OwVfth1xQ/q1733z4CDk/O28qr0kTkfo8Wn6Xi2dDpjmTTVEbqF+gAdtvbaNVwc4s3WlGqdTjMJWhbt2TrDi3j5m/uZNldD7g/d2VdKsRRvsq+XNr7z0sjqws9IsWkzNvPo70dAAk3t649euL9eJFTNt3YI+OJuOjkfedJ5rM4HCQ/eOPeE+d8niDz2MMVgNRmZGU9S8HQDn/8rQu1IbKgVWoFFAZUYQPl5/h0LUUwKmQ2r1GGOVCvRjz2zm6/HCQGkWcCp5HI1PRm22MalP6L7WdRIcDw2+/o/vmWxwpzrZUzZvh+fmY++rxuXDhwsWjIKjVeAwfhqZzZ3Tjx2NcvwH9kqUYNmzE85OP0fTofl+KR/b0GSAImA8cxHz4yF/aApBXqogtMgpbRARpvfugqFYVj9Gj8fvtVyyHDqObNBnLyZPkzP0Z/bJf0A7oj3bQQCSens907E8aX62Sid0rMnLFGdpO2Uf1on4opBKORqZisNgZ26ksNYv6k6wz5S7WGcw2es05TLOy+ehZJxyV/OHSaXy0St5qWISetcPZdTnxvuLvq47cQme00rRsMNvPJ+CplhGR6hRvO3I9lY7f76d9lfy8WSscfw/VP13CRR7jJndjeKX3+fTQKHbc2s5rwdWpGlQNgI5FX2dr9BYyzBl4KDxIM6Wx/dZ22hZul8e9/ndcht8zQBRFJp+cRKI+AVlKB8r7V+DthkXw1DhXnRwGAxkj3gdRRNOjO+omjfO4xy7+CZ05i9+v/87m6E1Y7GbOppxFJVWReKsUSmsmgypomHQgCx9rPfTCt9hEC/l9NPSsXYgW5fPlSkw/LPbUVHJ+nod+0WLEHKcSmDQ0FO3At9B07YpErUY3YSL25GSskZF/24a8YgWkL3BRdovdwtbozfx6bTVWh5W5TebjqXR+rLxdblDucYIABXw0yKQCnaoWoHedQvjcCetZ/W4dNp6J41hkKllGK60rhtChSv77PO/gzLXNGv0ZllOnAJAVKoTn11+iql//2QzWhQsXrwyykHz4zJqJ+c03yRwzBtuVq2R+Mgr98uV4jR+PopKzRqusUCHkFcpjvXbtb9uRV6yAukUL3Lp3I3vWbHIWLMBy/ASp7Tugat4Mj1Gf4LduDea9e9FNmoz13HmyZ/xAzpIluA8ZglvfPv8pNPM8Uznch1/fq82G03GcuJGG3SHSrnJ+OlQpQMidWqx3a+ICuYXZd1xMoF/9R6+BqFJIaVXhnniO3mxj/r4odEYrzcoF4RCheLAHx2+kU9BXg7tazsXYLFYdvc3ak7G0r5yf3nUK4ev+cOGnLp4NZf3L0a5we9ZHrWN95Lpcw89d4U6Hop34JWIpAs7FhK3Rm2ldqE1uHuDziMvwewZczbjCjawoZIKcWzEa4hPiebvhPQXBnNlzsMfGIs2fH8+xn+dhT138EzmWbNZFrmPjjfUYbc5cgXCPcCIzr1POtwp/HD9JWEAIy84bqFbGwPpzcRQqEUpqiS3Maz0JtfzRHuj2pCSyZ8/BsHQZoskZQiArURz3oe+gbtMGQXbvJ+zx8Ug8Ph75T029sNgddnbH7GLFlV9INTpDk/K55SPVmIKn0pMMvYUF+6JoWT4fJUOchmDfeoXoUr0g+bzV97Xl5abgjQr+dLbdApsdeZlQpH8y+hxZWegmTUa/eAk4HM7yDCOGox3QH0Hx3+IvLly4cPGoKGvWIGD7NvSLlzgNs/MXSGnTFk33bniM+gTPMZ/lHmtPScF6/gJIBBSVKv3FY+f56Wi0/fqimzoNw8pVmLZtx7TjD2dbH7yP/+ZNmLZvRzdxErar19B98y058+bjPnwYbj26I8jl/9+9FwIfrZI+dQvRp26h/zy2TaX8eKjlyKSS3DBNi83Bz3si6VS1AEFe6v9o4e9Ry6V80qYU288ncDEmk2AvFcdvpKOWwa00AyveqUlKtoX5eyM5dzuT1cdus/50LK9XDeXN2uF4u7neNc8bPUv1xlPpmSv4cpc2hdqyKWoDWZYslFIl+bUFMFj1aBWPptvwLHAZfs+AzTc2AVCvQH1ql6tLUpYx19tnT0wkZ/YcADw/+xSJ1lXM83lCFEXWRq7h12ur0FudoiyFPAvzRsk3sTvsfHN8HGdTj6MNVXL1Uh9Eh5Icn/0o80UTrQOJREKaKZn88ofztNkTE8meOQv9L8vBbAZAXqE87sPeQ9W4MYLk+V1NelKIosjRhCMsi1hCTLZThttP7U+34t1pFNoYqcQZljNr5zU2no4jOjmHH/tUBcBTo8Dz/xauRYsF3YSJ6Jcuu1fmQipF3aIFHuO/xrJnL1njxuO4k/eibtsGzzFjXspCyC5cuHg+EWQytP37oW7bBt34bzD8+huGFSsxbt2G56hPULVqSdbnX2DcuBGszjQCQaVC070bnp99iqC6FzYoDQ7Ge9JEtG+/he7b7zBt34Hhl+UY165DO2gg2kEDCWjSBOO69eimTMF+6zZZoz8lZ+5cPEZ+5FxcfInfNVKJQMPS94usbD4Tx9KD0aw4cpPWFULoXbcQwQ9pAErutGu02tl3JZkpb1TiqzXnsdrsCIh89tt55vZ7jTn9qnHiRjpzd1/nYmwWvxy+ydpTMbxRM4zuNcLQPGJKiIsnj0Kq4PX/E34B0Mg1vF6sC/Mv/oyb3I2Pqn6MQvp8G+4v7y/6OSHDlM6hOKcKYOtCrakc7kPLP4UE/FkSXtW6VV5108U/IAgCN7Ki0Fv1hLoXZFS1T5lWfzoV/KpgyAhnco15ZFweQBv/MQxpXJTuFWUs7vg55RyjEaMHM7/JMvK7P7jRZ09OJvPzL0isWRv9goVgNqOoUgXfX5biv2kj6qZNX+oX8Z9JNaYw6cQEYrJjcJe706/MAOY0nkvj0KaYLPcS8vvVK0zZAl70/pcVXlEUyXh3GDnzF6Dt34+A/fsIOnEcz6++wHTwIEnVa5IxfASO1FRkRYrgu3IFPrNnuYw+Fy5c5AlSf3+8v5+G37o1yEqWRMzMJPPjT0iqVh3jjh14jh5F4PGjBB46gHboO+hXrCBtwFuIdvtf2pIXLYrvgvn4rf0deaVKiAYD2VOnkVS7LoaVq1C3b0fg3j14jv8aiZ8f9pu3yBgylJSWrTHtf7GKUz8uhQO1VA73wWYXWXcqls4zDjBh42WSsowP1Y7N7mDhvijqlQigVjF/ZvWtgrdagghEJeXQfto+Vh65RflQL34e8BpT3qhEsWB3DGY7P++JotP0A/x67BZW24tRIuBVwu6wcyb5TO6/W4S3xE/tR7opnVNJJ/OwZw+GaznhKbP95nZsoo1iXsUp7HV/gWjrpcsYVv8KgOfnY1zqgM8BoihyKukkBdxDCXQLBODNkj2pFFCZegXqI4gSdl5MZM6u68RlGKlZ1A+N1JOe1cuilAmcPWvAX+PL2/Xc6PbDQXZfyKTza/+dNG9PTydn5ixnDt+dkE5Ftaq4v/8+ytq1Xpl7I92Ujo/KKWzkrwmgXZEOSAUpHYp2xE3uxumb6czYfpX8PhrGdXbWzwn2UvPzgNf+tV3LkaMYN23Ce/YsNG3bAM7cWntsHGJ2NtjtIJfj8dGHaN8a4ArrdOHCxXOBsmpVArZtQb9oMVnffItoMIBEgi0mBom7OxIPDzxGDEdRoTxpb/bCtGs36qZN/r6tatXw37AO06bNZH33Hfabt8gc+TE5CxfiOeYztH36oOncmZyf55Ezew7WCxdI694DZb26eIwejaJM6Wc8+mdPuVBvZvapytlbGczbG8nJG+msPRnDpjOxtKtcgL51HywXb/ud/MHxXSoAEOan5ZN6XqRIgxi/4TLZJhvTt19l5dFbvNWgCC3K56NGET92XU7kp12RxKYb+H7bVaoV9qOgn9u/X8zFM8Nqt/LhvhFE66KZUGcSJX1LoZAqGFHpA7xUXhRwDyVRn0hM9u3cXMDnjVfDdZBH2Bw2tt3cCsDFS4WYsiUit3ioKIpkfT0ORBF12zYoKlfKy666AKKzbvD54c/46ugXLLm8KHd7kFswDUMbcfZmFv1/PsqY384Tl2HEW6PgaFQq5Qp4cSwqjb0RyZyNN7M3IpmopByKBLmz5EA0ZutfV2Dv4sjORjd1Gkk1apEz5ydEkwlF5cr4rvgFvzW/o6pT+5Uw+jJM6cw8+wP9t/chKjMqd3vv0n14s1RPMrIFPl55hiELT3AlXseR66mk5ZgfuH39qtXIihRB3aY1AMbt20mu39AZZm23I8mXD2lwMO7vDHEZfS5cuHiuEGQytAP6IytSGElwEDgc6BcsJKl+AwzrNyCKIqoGDZBXKI9h1ap/b0sQULdpTeCe3Xh+MRbByxNbxBXSerxJas9e2OPj8Rg+jMDDB3Hr3w/kcsz79pPSvAUZw0dgj094RqPOWyoU9ObH3lWZ3bcqFcO8sdpFfjt+m07TDzB75zV0xn8ux3DX21fQz434DCN7LiexNyKZ8wkWlHJpbnkJH62CpCwT49ZdpPecwxy/kUaTMsGsHFqLka1L0aduofuMvsTMh/M6unjyyKVyinoXA2DBxfm53/Rl/ctRwD2Uq+lXGPjHAL4/NRWz/cG/UZ4lLo/fU+RaxlUyTRko0JKcEk6spyH3I968ew/mAwdAocBj1Cd53NNXG505i2URS9lxczsOHMgkMvw1/jhEBxJBwu1UPTN2XOXg1XvlAd6sHU6YvxujV53jwNUUDtzZB8DJe4XUZVKBxCzTX1bsRLMZ/dJlZE+fkVuWQV6mDB4jP0LZsMFLY+w5RAdnk8+w6/ZOUgwpYAJTgpHq+WoglUgx2Uysi1zLmuu/YbI7PZ0nk05Q2MupsJZjsrJw3w1WHbuFzS4ilQi0q5yfAfUL5yp1PlA/EhKQly6FPT6erM/GYNrxB4BTUGnc19ijo9FNnPTkJ8CFCxcunhCO1FTcevZEUbkymaM/dZbuGfIOhlWr8PpmPPLSpbFeuPBAbQkKBdq3BqB5vRO676ejX7wE8+49JO/bj1vvXriPGIHXV1+i7d8P3YSJGNdvcOYbbtyI9q23ULdpTdbYLxHNf/64FfHRG0hz0wACglKB14QJyAv/t9DK80rFMB9m963GiRtpzNl1nUuxWSw+EM3vJ2LoVTucLtUL/qUMRLreQrLOjMXmYNSqs/c3+Kfvg3eaFCNTb2HR/htEJuUwfOkpqhX2ZViz4nSsen+KyPXEbPr8dIRm5YIZ3bb035YFc/FseKPkm+yP3cfVjCscjDtAnfx1c/cV8S6Kv9qfZGMyB2L307jg33vf8xKX4fcUKeVbmlmN5vLWkm0gymhXOT/g9PbpJk0GQNu/H7LQ0Lzs5iuLzWFja/QWll9ZlivcUjukDr1K9SHILQid0cqCfdf49dht7A6n0dG+cn76/8no2DnKF/udArAOh4MLFy5QtmxZJHfy8ORSyX0J2qLDgXH9enQTJmGPcQqWyAoXxuOjD1G1avlS5e9Z7VYmnviOY4lHCfMIJ8wjjOv6a0w4+S2lfEpTv0ADVl1dQZopDYBi3sXoV2YApXxLY3eIbDwdy0+7I8nQWwCoXsSXYc1KEB7w8AJIgo835qPHSK7f0BkqJZOhHTQQ9+HDkKjVZIz8BIm//xMdvwsXLlw8SaS+ftgiI/EYMZzAnTvInj2H7B9+xLxvP0mNGiP180dapMh/N/QnJN7eeH35BdrevckaNw7T9h3oFyzEsGYNHu+/j1uvnvjMmonlrQFkfT0Oy7Hj5PzwI4Zlv+DIzERapAjKKpUB57eNLS0Nma8v1rNnsZ45A+LLkaNWtZAvVcJ9OHA1hZ92XScqOYdZO6+z5Vw8vwypdV/x9gAPFds/boDlT/l5//99IBEE3O+UlmhdMYRF+2/w2/HbHI9Ko+fsw7SvUoBBjYrmlp84eac8hclidxl9eYy3yoeORV9n+ZVlLL+yjFohtZEIEnIsOcw+NxOdRQfA5hsbXYbfq8jVGAlpyfnw0SqoXcz5YWk5fty5KqdSoh0yOI97+OqyMWo9Cy8tACDcsxBvlx1Iab8y2B0ia0/EMGf3dbIMznCOWsX8ebdpMcL87zc6tKp7ktd2ux03hQQPtRyp9K+FYM2Hj5D11de5K7KSwAA8PvgATdcu95VleFlYcnkRp5NPMbraZ7wWXB2Hw8HZs2eR5Zcy9ugYLqdfAiBAE0jvUn2oHVIHQRA4czOdaVuvcC0xG4CCfm4Ma16cmkUfzTCznD+P9cIFHElJgDN30uu7b5EXLw6ALS4e49q1aAcNfAKjduHChYung7pTR3QTJmK7EY2sUDgeI4ajadeOzFGjMR88iD02FtFux3ziJMqqVR6qbVmhcHwXzMd88BCZX3yJLSKCrM/Hol/2C55fjkVVty5+v/+GaccOdOO+wXbjBgD26GhUn32KunEj7HY70WfPEl6qFKkNGqFu3Qr5QxqizzOCIFD3jljLjgsJ/LTrOk3KBN1n9N1FrZCh/lPWwL99H3hqFAxrXoLXq4Xy4x/X2HM5iZ0XExj4p7Jf3WuGUTbUC78/RbqkZpuJTsmhaiHfJz9YF/9K28LtWB+5lricOE4nnaJKUFU0cg3XMq5ispuQICEqK4pEfQJBbs+XSNzL97X5nCCKIoIgsP5ULACtK4TkrtLk/DwPAE2n15H6+ORZH191moe3ZF/sPpqHtaBJWFOkgpQLMZlM3hzB1QTnik24vxvDmpegehG//2zPFhWF54SJOGbPRup77//VGnUD3fjxmLbvAEBwd8d9yGDc3hqARP1odYKedwxWA9tvbqNT0depnq/GffvK+JWlZnAtDsYfoHOxrnQt3g2FVEFSlpEZ26+x61IiAO4qGQPqF6FTtQKPtMLp0OudNfnmLwCHA2QykEhQtWyJNDAQ0WzGuH0Hum+/Q+Ljg1vfPk9i6C5cuHDxVHB7oweG5StI6dwFz9GjULdsgcTfD1XLFphPnQKrFUdCAqntO+DWqyceoz5B4uHxUNdQ1q5FwPatGJavcNb4u3aNtO5voGraBM8vxqJu1gxVw4bolyxFN2kyYnY26b37oGrcGO1nowEw/r4Ge2ws7osWPI1pyHOkEoEW5fPRsFQg4p+2n4pOY+nBaN5tWpzCge7OkkSRqaw/FUtchgHBZqaDI44W5UNQKf66OBzio+HbrhU4fTOd9BxLbtkvURS5nphNmfxe9x0/Y/tVdlxIoEmZIN5rVhx/D9Vf2nTxdNDINTQJa8q6yLWsj1pHlaCqSAQJTQo2Y1nEElQyFQabgeOJx2lbuF1ed/c+XP7ip8TkkxMZtf9TTsU7vRpt74R52m7dwrRtOwDaAf3yrH+vGqIo8setHXx15Ascd0JP1DI10+pPp3l4C6SC8yG8+ugtribo0KpkvN+iBEsH13wgow8ge+Jk1IcOo58/H3AWA8/84kuSGzZyGn1SKW59ehN46ADu77370hp9AFfSIzDZTdQv0ACjzciyy0s4lng0d//g8u8AEKINQSFVEJ9hoOsPh9h1KRGJAB2qFGD1e3XoWqPgIxl9pl27SW7YGP3P88DhQN2+HQEH9qFu2xbd1+NIKF2W+EJFyBg8BGlICH6//+pahHHhwsVzjcTdHb9fVyEvUZyM94YRX6QYCSVKkfXZGNSNGxG4fx+abl0B0C9ZSlL9Bhi3bH3o6whSKW493yTwwD7c+vcHqRTTjj9IatDIWYLKZkPbvx9BRw4hLeLMxzbt3Elqk2a4/zyPnBkznN6+EiWe6PifN5Ry6X35fbN2XudoZBprT8Zgszv4/LfzjFh2mrgMI6VDPJFJYOKmCPrMPUKKzvSP7VYK86FxmXv1BQ9cTaHXnCN8teZCrpiIwyHipZEjEeCPi4l0/fEgvx27jcMh/lOzLp4wrcLbIEGC2W7CbHP+fzYu2ASJIMFgMwBwPOFYXnbxb3F5/J4CFruF44nHMNvNiGIJqoT7kN/HWU06Z8FCEEWU9eshL1Ysj3v6ahCfE8fMsz9yIdWZVH04/hC1Q+rk7jdabKgVzp/Cu02L46aU8VbDIvg+hHiI9XIE5q1bsRXIj37+AmTeXmT/MBNHmjN/TdmoEZ5jPkVetOgTHNnzi110KpkeiTvO6qu/YnRk4bB4Irndiw450bStku++4/J5a6gc7kOOycoHLUtSLPjhVqlzr5uWRtbnYzGuWw84xVu8vv0GVcMGAPhMn4Z91MeYDx1GtFlRlC//0n+cuHDh4uVBGhiI3y/LsEZGYTl1CkEiQVGjOrL8zsVl7ymT0XTsSMbHn2CPjib9rbdRtWiO17ivkQYF/Ufr9yPx8sLrqy9we7MHWZ9/gfnAAbKnz8Dw6294jv0cVauW+M6fR3L9hkjDwrBHR+O2cRMOQNatG6LD8VLlrf8XX3Yqx7w9kfSvX4QlB6LZfTmJT9qWolX5fEgEOHvWjGdIEd7/5SxjfjvPnH4PJvcfmZiNIICfuzJX+E0iEXi/ZUlaVQxh4qbLXIrNYvKWCLZfSGBU29IUeoRceBcPR6BbILMazyGf9l5tbh+VD1UDq+UudF/PvIbZbkYpffDvyafNq/OLfIZcSD3vlHG1uWMz+ueKujiyszGsdEotawf0z8suvhLYHXZ+v/Yr7+5+hwup51FIlfQt3Z8awTUBuJ2qZ8jCE3yz/lLuOQGeKj5pW/qhjD4A3bTvkYaGouvVE/R6sr74CkdaGrKiRfFdvgy/JYteGaMPQC5xGtKLI+ZhdGShEH2o4f06YV5KFu6Pps+S5WTdbEqQ8l4Ow1edyjGnX7VHMvpEUcTw2+8k12vgNPokErRvv0XAnl25Rt9dpEFBaDp1xK1rV5fR58KFixcSeZHCuHXtgqbz67lG312UtWoS+Md2tO8OBZkM09ZtJDVohP6X5YiOhxdbkRcrhu+KX/CZ+xPSkBDs8fGkDxxEWo83AAF1h/bYE5xlHsQ7hkn2lKmktG6D5dTpxx7ri0J+Hw1fdCqHVinj1+O3aV85hD2Xkug15winop3q3eH+Wj5sVZKztzKIiMt6oHb71S/Mwrdr0K9e4dxtUUnZXE/UUTzYg5/7v8aHrUqiUTrTVXrNOczPeyJdxd+fAX82+u7SNKwZABqZhoXNljxXRh+4DL+nwvFEp2vXkBGGUialTokA579XrUbMyUFWtCjK+vXzsIcvP7d1txm5/0MWX16E1WGlYkAlfmw4iw5FOyKVOEMz9GYb525ncOBqCklZj14fx3o5AtOWLUgCA/AZ/y3cCcXw+HgkAX9sR1Wv3hMZ04tAtiWbWWdnMvbw54BzKuoENWd52/l80rAdvSt6MKNvYTJ1CswZJdhw1JB7rptK9khlLGxxcaT17EXGsOE4MjKQlSyJ/8b1eI79HIlG88TG5sKFCxcvCoJajecnHxOwdQvyCuURdToyR35Mapdu2G7efPj2BAF1q5YE7NuD+/BhoFRi3n+A5MZNEK1WMJkQtFoQRVSdX0fQarGeO09K23ZkjHgfe2rqkx/kc0p0Sg4ZegtVC/lyJUFHdIqe95aeZuGpbFKyzdQq5o9GKeXkHWPwQSiRzyM3L9DuEBm//iJ9fjrKnF3XsdodvF4tlJXv1KZOcX9sdpH5e6Po9/NRrt3RK3DxdMm2ZBORdhmASgGVcZO7YbAZuJ19K4979ldcoZ5PGFEUOZF4AgCLLpxKYT6o5FJEu52c+c5EZ23/fi9Nnba8ZtGlBRT3LkGNfDVzt4miyPTT07ieeQ03uRsDyr5NwwKNEASBDL0FbzdnwnTJEE8+bV+GSmE+BHo+Wr6d6HCQPnwESASsJ04CoGrXFtO27YhmM4Jc/h8tvFxcy7jKtptbADBnFibAV8+RpJ1w2kCoNoyLaeeJiLtMQMFCxF1pSN2SAY98LdHhcAoMfPMtol4PSiUew4ehHTzolZt3Fy5cuPg75KVK4r9hPfr5C9BNnITlyBGSGzXBfeRHaAf0R/gbBep/Q6JW4/HRh2he70Tm519g3r0b08ZNAIg5OYhKJZhMBB7Yh+67CRhWrcaw+leM27bjMfIj3Hq++VKqWP+Zu2l2fh4qfn2vDj/tus6aEzGcjDPTfeZh3qpfBAFy8/UeFpPFTqCnmstxOhbtv8Gey0mMblea8qHeTOxekV2Xkpi8+TLXE7PpO/cotYr5k5hp/NfvzmAvFd91q/hI/XnVuZ5xndEHP0YtUzO/6SLkUjkdinRELlHgr370b5ynhcvj94SJzrpBqjEFQZRjyc5PjaJOYRDznr3Yb99G8PJC/XqnPO7ly8HltMusuf47c87NcobW3kEQBIZUeIfqwTX4seFsGoU2xmoXmb3zOu2n7SM6OSf32FYVQgj2ejSjz3o5guSmzbFdugQOEVnpUqRN/A6vH2ag7dObnPkLcGRkPPY4n3dyLPfms3JgFdoX6UCPgp+QFd2Kr2tMomN4X/Yc82fRgRvEWmLpXKwLc9t+DqKMzDs1+h4WW3Q0qZ27kPXpZ4h6PYqqVQnYsQ339951GX0uXLhw8ScEqdQZ+r7rD5S1aiGaTOi++pqUdh2wXr36SG3KwsPxXbIIz/Ff37fd7ueHaeMmHBkZeE+dgv+G9cjLlkXU6cj6bAwpLVtjPnnqSQzruSXM3w0PtYw9l5LwUMv5qHUp5g2oRpi3DKPFzowdV9Gb7XhqHu1d5aaS8W3XCnzbtQK+WgW3UvUMWnCc77ddwWxz0LhMEMvfqUXDUoHYHSL7ryRzLTEbT42cUiGef/kTk67nVqr+Cc/Cq0O4Zzhuci2Z5kwOJxwCoEvxbnQo2pF9sXt5d/c7XEy9mMe9vIfL8HvCHE88DoBZVwBEGTXuKEIa1m8AQNOp40ut5vgsWXllOYGaQDLNmcw4/T3rI9fl7ivsVYTRr32Gr9qXawk6+s09wuIDNzBbHey5nPRY13UYjWSN/4bk5i2wRUSAIODxxVh8N23EeidnTDt4EFit5Myb/1jXep7RW/X8dG42A/8YQIbpXshKvzIDCHMvCcCO82ks2KQlPSUEY3IV+voO5fWiXVBJ3AD+tv7RvyHa7eTM/Znkxk2xHD2GoNHg+fVX+K357aWqF+XChQsXTxpZwYL4rlqB16SJCO7uWM+cIbl5S7Jn/IBosz10e4IgYDl1GiEgwFkHVSZDHhcHgkD60PcQrVYUlSvhv3kjnt+MR/DyxHrpEqnt2pPx0Ujs6S/nwqhKLqVtpfy5BdnBGar5QW1PBjcqwl3H24SNl5myJQK96eHnHqBBqUBWDK1N64ohiCKsPHKL3nOOcDE2Ex+tkm+6VmBc5/J4qOXIpQIBHko+blPqvj+tKuTDYLbTr37h/76gi79FJpHRONRZqP1g7IH79t3MiuaW7iYnEp8fdU+X4feEye+en2KeZfAVylDAV0MBXw2iyYRph7OGm7pNmzzu4cvB5bTLnE05Q9fi3fBT+3Egbj+LLi3gtu527jF2h8jCfVH0nXuUyKQcvN0UfNu1wmM94MwHD5HcqDE5s2aD3alIKa9YETEnB/2PM3FbuYqc6TPQL/sFaWgoOfPm48jMfNzhPleIosj+2H0M2TmQzdGbyLZmcyT+8H3HqOVSBAEW7LuBwWyndH5PZvepgpvC+cjZej4eiQCVwx+8hII1MorUDp3I+vIrRJMJZa1aBOz6A22/vq+UcpwLFy5cPCqCIODWozuBe3ahbNQILBZ0EyaS0rot1oiIh2rLGhmJcd16PIa9h+eYz/DbthVL6dIgitguXya5URMsp884PY69eznLTXTtAoBh+QqS69ZDv2rVI4c8Ps+81aAIFcO8eW/JSYYuPsHcPVEsOZPD/H038NMqqVPcH4cIvx67TY9Zhzh8LeWRruOhlvNZ+zJMfaMSfu5KbqXqeXveMWbvvI71T96/3nUKsfVcAnHpBvRmG2nZziipeXujCPd3o2Gph1N8dXE/d5XiTyWfxGB1ahdkmDJQy52OnrtOoeeBlzvQOg+oHVIn9waw2BwIgoBx/37EnBykwcEoKlfK4x6+HNz19v0S8QtpJmfSeOXAKoS4OxWW4jMMfLHmAudvZwJQv2QAI1uXwuch1Trv4sjKImvceAzLVwAgDQ7GrW8f9AsXYY+NRb9kKYgiGpsNg0zG3SU9iZ8fDr0eiZfX4w34OSFBn8Ccc7M4k+xUagvRhjCw3GAqBDhzA4wWG/P2RLHy6K27Gjd0qJKfD1qWREDkbBKcuZnB7J3XaVwm6IFyK0W7nZyf56GbNAlMZgStFs8xn6F5o4crV9aFCxcuHgFpcDC+ixdi/H0NmWPHYr1wgeQWrfAYMRztO0MeKA8ve/oMJAEBuHXvBoCsWFHSvxlHsYgr6EZ/ii0qipS27XDr3QuPTz5G6uuL99QpaLp1JXPUaGxXrpL5/ocYfv0Nr+++famiNpRyKZN7VOKPi4lsOB3LtnPxSEUbfeuG07FqKJ4aBcej0piw8RJxGUbe/+U0zcoFM6Z9mUeqXVuzmD+/DKnJ1K1X2H4+gcUHbnAsKpUvO5WjoJ8bb9YK5/cTMSw6cAOb3VlYvl+9QhyNTOXrzuUeOvrGxf0U9ChIfm1+YnNiOZZ4lAYFGrIhaj1bo7cgIBCXE0tcThwhf6MC+qzJc8Pvl19+Yf78+aSkpFCiRAnGjBlDuXLl/vH4RYsWsWLFChISEvD29qZZs2Z88MEHKJXPl1wqgELm/PEa7yQ+q1q3cnkmngCXUi9yNuUMAgIiIoHqfBT0zM/1jGtY7VZ2XEpi0ubLGMx2NEopH7UqRfNywY9sJJh27SZj5Egcic4QUbfevfAY9QkSd3fc3xmSe5zdbufs2bNUqFAB6UMmzL8I/HZtNSuvrMDisCCXyOlcrCudir6OXOrMUzgWmcqETZeJz3AqpDYoGYjBYmXtyVguxmZRJFDL5VuZ3MpMpUJBbz5uU/o/r2m7EU3GiPexnHQK5yjr1cVr0kRkIXn/8HTh4knwMr8DXTzfCIKA5vVOKOvUJnPUaEzbd6CbOAnjtm14fz8NefHi/3iuLToa47r1yIoUIfOzMQCIDhGP9DSsPr5IC4Vjj4wCUUS/aDHGbdvx+mYc6mbNUFarRsC2reTMm0/2lKlYjhwluXFT3IcMduZpq1TPagqeKjKphBbl89GifL4/fR+E534fVCvsy7IhNZm7O5JVR28hEYRHMvru4qlR8GWnctQrGcB3Gy5xJV5H7zlHGN68OO2rFKBn7XB+3HGVYC81mQYLW88luLx9TwhBEKgdUoeVV1dwKO4ADQo0pHJgFX6//isSQYJdtHMi8TghRTrkdVfzNtRzy5YtfPvtt7zzzjusXbuWEiVK0L9/f9LuFL3+fzZu3MiUKVMYOnQoW7ZsYfz48WzZsoWpU6c+457/PTcyo4jJTCLbaM3dJhqNmLY7wzw1rjDPx0YURb45Pt75d0QsGSVxxPSiX+kBZBgNDP1lN1+uuYDBbKdcqBfLBtekRfl8j2T0ObKyyHj/A9J69caRmIQ0PBy/Nb/h9c14JO7uT3pozz3ppnQsDgvl/cvzQ8OZdCvRHblUTqbewhe/n2fY0lPEZxgJ8lQx5Y1KfNutAtPerML3PSsT6utGbJoBL5WEb7qU48feVXBT/vO6k+hwkDN/AclNmmI5eRJBq8Vr0kR8f1nmMvpcvDS8bO9AFy8m0sBAfObPw/uHGc48vPMXnLl/M2ch3klp+AuCgKJaVQQ3DdaICKwREdiuRCC7eRPblQgk7u4oXquG17SpSMMK4khMJL3fANLeGog9KQlBLsd98CAC7oacWq1kT59BcpNmmI8cebYTkIeoFTKGNS/BzwNeY3jze4Z2eo6ZLMOjiZ81LBXEssG1qBLug8lqJzrFKcDWsUoBPDUKzDY7iHA5Lot+9QsjlQjY7K6af4/L3Wi/s8lnMdlMlPApgUamwS46f0N3yz3kNXnq8Vu4cCFdunShUyenyuWXX37J3r17+f3333n77bf/cvyZM2eoVKkSbe4YUPnz56d169acO3fuoa9t/6eH2Z/2/dsxf8fUU1O4nX0LXVRb2pWsy3vNimHaswdRr0cSEoKkfLmHbvN541Hn5klxJT2CbIsOuUROYaETh28Hcslh4PBlK8bIPlzUS5EI0K9eIXrWDkMmkTxSX837D5D10UgcCQkgCGgG9Mf9ow8RVKp/bC+v5+ZJY7QZ0FsN+KmdAkU9ir9BMa/i1M5XB0EQsNls7LqUxLRtV8k0WJEI8Hq1ArzVoDAahSx3HqqGe1M13Bu73c6FCxcoW9QXAfEf58kWE4Puw4+wHDkKgKJ2bTwnTUAaEoLjEYoPvwi8bPfOk+RB5uZFnbe8egc+jfffq8DLPjfKdm3xe+01dKNGY961C90332Lcvh3PKZORFSp037FCgQL4rF513za73U7MhQuElC17X9SLslVLcr6fjv6nuZi2bCHp4EHcx45B/frrCPny4bVgHuYtW9GN/QLbjRukvt4FdbeuuI8ejcTL85mM/WnzX/dOiWD33P2i6KzTFxGn44uOZR4qF/4uvlo5096syKYz8TQrG4TdbkcuhYalAvj9RCwAWpWMesX9iUrUMXLlWT5uXfKRrvW4vCy/qxC3/LxbYRgV/CsgF+QgQjm/8hxNdC5kRGZGPvQYn8b7L88MP4vFwqVLlxg4cGDuNolEQs2aNTlz5szfnlOxYkU2bNjA+fPnKVeuHDExMezbt4927do99PUvXLjwRI65i9VhISbbKSxiMfhhzUnj7NmzeC5dhhrIrlqF+EcwUJ9XHmZuHhdRFDE6DGikbixLWYwUKeWU1TgQdZuyJROJzxSYstWBKCqRyLNpUiaTih5+XDx//uEvZjbjvmQpbnfCc21BQWQNf4/EUqXgypUHauJZzs3T4rrxGpsyNuIt86a3fx8EwRkc4I4H51Kc97HNITJrbyaZBjv53KW8UUFLmLeRa5f/Xbb4H+dHFFH/sRP3+QuQGI04lEqy+/bB2KI5pKQ4/7zkvAz3ztPiZZubvHwHPun336vGSz837w1FXaYU7j/Px3rqNClNm5PdpxeGli3hAdJV/nZ+mjdDVrwYnj/8iDwyCt0HH5GydBm6IUOwBwVCSD6E76fivmQpmm3bMa5cRc627egGvY25Zs2/tveC8iD3To7FQVRCFjqjncTbNzibdfs/z/knQiUQccn57nSIIlvPpjtrCAJ6k409R06zIUJPXIaFYUtP06akhiZF1EjyIH/+Zfhd+eDL7bQYbhMDgJ/ZHwApMgII4NSZU0iFh08FepJzk2eGX0ZGBna7HV9f3/u2+/r6cuPGjb89p02bNmRkZNCjRw9EUcRms9GtWzcGDRr00Ncv+38rUn8m1zPxL8f8P1fSIxDjRLyV3swa0gy1QoqnxEHyyVOIQIF+fVFUqPDQ/XzeeJS5eRzMdjOzz83ketZ1JtWZgvqEBo1dwznjGdQBDrLUclRqEZXFDhYfAgsdpGTx5lQoVuGhr2W9eJGsDz7Cdv06AJpePdGOHkV+jeaBzn/Wc/M00Jl1LLg0j32pewFQK9UUKBGa6/UTRRERcl8KX/hlcjI6nZ61w5D/R27Cv82PPSUF3chPMO/aBYC8alU8p0wmX1jBJzvA55SX4d55WjzI3Nw95kUiL9+BT/r996rwSs1NxYrYu3Uj68ORWA4dwmPuPPwuReA5ZRLSfPn+9pT/nJ8KFRDbtMFwJ7dPefYcAcNHoP3kYzS9ejo1EGrXxnLsOFmjRkFkFN7fTUTZogUeX3+JNOD5K4b9oDzsvVO1kp1LsVlUCrvngUvLMeP7iAJ1AAv338BgTUMqESgf6kV0cg4n0tRM6l2BKVuvsPlsAhsiDGSJbnzWvjQaxbMxEV7m31V+Ywibdm5AxMHHdUfhrni4NKGn8f7Lc3GXh+HYsWP89NNPjB07lnLlynH79m3Gjx/PzJkzeeeddx6qLalU+p832IMcc5donfNFXcSrKPl9tQAYt25FNBiQ5s+PqlKll0qB8GHm5lFJM6byzbHxXM+8hkSQcCUzgm/qfEdqtpkO0/bxerVQhjUvgSiK9Jt7FKlS4Od2Ax56nkWHg5y5P6P7bgJYrUgCAvCeMhlVwwaP1O9nMTdPg0NxB5lzbhZZliwkSGhTuB1vlnwTpcyZaJ+YaeTbDZeoVtiXN2qFA1Ax3JeK4b7/1uxf+P/5MW7dSubIT3Ckp4NCgcfIj9C+/RbCCziHj8uLeu88C1xz8+TegU/6/feq8arMjTQ0FL+Vy9EvWYLu6/FYDh0itWlzvMaPQ92h/T++a/91fqRSPN4ZgqZFCzI++gjL0WNkfz4W85YteE+ehCw8HHXNGqi2byN7+gyyZ87CvHUrqUcO4/Xll6g7dXyhv6Ue9N7RSKVULeyf+++IuCwGLThO7zqF6F230COpcF6IycJXq2BE8xI0LhvMisM3+fGPa/StV5gxHcpRLtSHSZsvs+9KCrELTzKpe0XyeT/YwveT4GX5XR2OP8TW6M00DG1MgwINCXUvyO3sW0TpIqkcWOWR2nySc5Nn4i7e3t5IpdK/JLGnpaXh5+f3t+dMnz6dtm3b0rlzZ4oXL06TJk0YMWIEc+fOzfPcn8jMSMBZOPwud9U81a1bvdAPqrzgSnoE7+8dzvXMa7jL3fmy5jiqBlUDYPLmy1jtImduZuSWzHirYREuxmZx/MbfiyL8E/aUFNJ69kL39TiwWlG1aE7Arj8e2eh7Ecmx5PDd8W+YcOJbsixZhLoXZELdSfQvOyDX6AM4cSONY1FpLD5wA735wQrOiqKI5dRpMj4eRUaffnhM/wHz4cOIoogjO5uMEe+TPuBtHOnpyEuVImDrZtwHD3oljT4XrxYv2zvQxcuJIJGg7dMH/x3bkVesgKjTkfHue2QMHoIjIwNRFDGfOEHGRyOdz/gffsRy7Ph/1uaTFQrH79fVeI7/GkGjwXL0GMmNm5Izbz6iw4GgUuHx8Uj8t2xGXrYsYmYWGcOGk9a7L/aEhGc0+ueHvRHJmG0O5u6JZOjiEyRnmR7q/IsxmRyLSmNEi5I0LhsMQIcqBdAopYxf70zPaFc5P7P6VMVHqyAqKYe+c49yKvrhvqlcwG3dLc6lnONA7H4ARlR+nyUtfqFSQGUyTBl53Ls8NPwUCgWlS5fmyJ/UmxwOB0eOHKFixYp/e47JZELyf/Hldy3gvC4Aetfw23PGuTIj2myYdu0GnIafiwdnf+w+Pj04igxzBgU9wphSfxrl/csDkJpt5vC1FJQyCQq5BMMdA6RGET9KhXgyb0/UA98Lpn37SG7cFPPefQgqFV4TvsPn57lIfZ59cnNeopQpicuJQypI6Vq8G9MaTKe4TwkAHI57c9m6Yghv1gpj3oDq/6rIeRfRZiNj2AhS2rbDvG8fSCUorkSQ0a0HKe06kNy4KYbVv4JEgnboO/hv3oi8RImnNk4XLp4nXrZ3oIuXG3nhQvivW4v7hx+ATIZx4yaSGjcl9fXOpLbviPnQIecz/uIl0jt3If3tgYhm87+2edeoDNj1B8ratRFNJrLGfkFq5y7Ybt0CQFGmNP6bNuDxycegUGDetYukho3Rr1r9St3zgxsXZWzHsmgUUs7czODN2YfZfyX5gc+/V6g9MHebwWLDbhc5fTODiRsv43CIlAv1ZtHbNSiZz4Msg5X3lpxiw6nYpzGkl5ZaIbUBOJt8BrPNRGGvImSY0umxuSsf7huRx73L43IOffv2ZfXq1axdu5aoqCi++OILjEYjHTt2BGDkyJFMmTIl9/gGDRqwYsUKNm/eTExMDIcOHWL69Ok0aNAgT93DJpuJ2GxnIuelKBWCANZLlxBzchA8PZH/S00mF/ez6/ZOJp+ciNVh5bWg6kysO5kgt+BcA2TZwWgEQeDzjmUY3bY0OWYbsekG4jKMtKyQjwsxmf/p9RPtdnQTJ5H2Rk8cqanISpbAf+tm3N5845XxzOrMWdgdTiUouUTO+5U/YHK9abxRsidyiRxRFNl0Jo6esw+TY3KWJxEEgaFNixPq5/Zg15g8BeO6dXhNnULgoQN4z59H6vTvUbZsgfXUKeyxsc5QojW/4TnqEwSF4qmN14WL55GX5R3o4tVAkMnwGDEc/w3rkBUqhCMxEcvRYygb1Cdg5x/OZ/zsmXjO/BHTrt1kjRv/QO3KQkPxXbkcr2+/ud/7t2gxoigiyGS4vzuUgG1bcr2Ome9/QHqfftiTkp7uoJ8jWpTPx+JBTqNMZ7QycsUZpm+78p+lGC7GZHI0MpWWFUKIzzQSm24gNt1AtslGgzuG4JqTMXy04gx6k40ATxWz+1Wjadkg7A6RbzZcYtYf1+5bCHbxz+TXFsBX5YtNtHE14yoAgZog9DY9KcYUssxZedq/PM3xa9myJenp6cyYMYOUlBRKlizJvHnzcsNcEhIS7lvdHDx4MIIg8P3335OUlISPjw8NGjRgxIi8taAFoG/JoczYcxjB4U6hAHfMG5xS9MpqVV1haw9BpYBK+Kv9qZmvNn3K9EUqSEnOMvHxyjO81bAIOy8lYrY5+HT1Pyt27ryQyGuF/z5Uyp6URPo772K5s8ru1qsnnmM/f2kKxv4Zg9WAIAioZer7th+JP8ysczNpXagNXYt3AyDc855Ud1qOmW83XOLgVacS2K/HbtO3XuGHurbDYEC/aDHagW/j1rULALbr1/H9ZDTmSKd3HEHA95elyP9PJtyFi1eFl+Ud6OLVQlG+PL6rV5L0Wg2w2zHv2UtK23Z4zpgOEgnqNq0Rb91CN2MG7iNGIPXx/s82BUHArVdPlPXrkfH+h1iOHCHr088wbd+O95QpSPMFIy9eHP91a8n5aS66yVMw7dxJUsNGeI37GlXr1ojZ2f96DYmbG4Ly0cVRngcK+Loxt/9rzNp5jRVHbrHiyC0uxGQyrnN5grzUf3vOzouJAMz84xoz/7j2j20fupZC/3lHmdKjEiE+Gr7sVI78PhoW7LvBkoPRxGUYGNOhLCq565v23xAEgTJ+ZdkXu5eLqRcp51+ejTc2oJQqMdvNRGZef+RcvydBnou7vPnmm7z55pt/u2/p0qX3/VsmkzF06FCGDh36LLr2wChlKrzFiugToEigGwqZhOyjd2qQVa+ex717/rE77EglzgeJt8qH7xv8kKt8dCVex0fLT5OSbWba1iv82LsKaTn/Hj5SNMjjb7ebDx8hffAQHKmpCG5ueE2agOYRSoE8z4iiyO7bO9lwYwPRWfcEh9oWbkeVwKr8fOEn9sQ4Q5CPxh/m9aKdc+ceYPflRCZuvEymwYpcKvBWgyK5Qi4Pg+XkScTsbDRduyCKIoYVK8n6fCxyoxHB0xPPsWPIfP9DrGfOugw/F680L8M70MWrh/XCBbDb8ZoyGd2332GLuEJa6zZoevdCLF8eTZfO6CZOwnL48EOlu8hCQ/FbvRL9osXoxn+Def8Bkho1xmvc16g7dnB6/94ZgqpxIzKGj8B6/gIZQ99D8u13OOLi/7VteYXyBGze9LhDz3PkMgnDmpegYpgPX6+9wMXYLHrNOcIXncpSs6j/X45/q2ER6pT46/Y/k2WwMm3bFW6m6On/81Emdq9IuVBv3m5YlPw+Gr7ZcIldl5IoGuRBn7qud/Z/UdqvDPti93Ipzam2eTrpFGa789s1MvPRRV6eBHlu+L0sXEvQAVAsyAPRbsd8/AQAyuqv5WW3nnsyzZl8deQL2hZuR/0CTkGVu0bfgavJjPn1PCarncIBWia/UYlgLzVh/tqHuoYois4Vwm++BbsdWckS+MyZg7zIw3mxnndEUeSn87PZEr2ZakHVaF+4Aw4cHIw7wNRTk1HL1BhtRiRI6FC0Ez1KvJFr9OWYrEzdcoUt55wvziKBWsZ2LEfRoIeTHs7ti9ni/IvNRvrbAzFt2QqAuVxZ8v88F3lgIJnvf4hosTz+wF24cOHCxbPF4kwBUDdriqpRQzLe/xDz7t14zJ1HxvVIvMZ9DYBoffhnvCCRoO3XF2XdumQMH471zFky3huGcfsOvL77FqmPt9P7t2E92T/OJPv76blGn7p7N9RNGt/XnpidQ8aI91FUqvSYg36+qFsigMWDavDZr+e4HKfjg19O81b9IvSpWwjJn1Q/3ZQyKj+A+na5UG8+XH6aK/E6hi4+yZgOZWhSJpiWFUII8lKz5kQMb9YKe4ojenko41sGgKvpV7HarRTyLERE+mUAou5oguQVeZrj97Lwx60dnE0+D4KNYsHuWCOuIGZlIWi1yMuUyevuPbck6hP4eP9HRGZeZ9GlhZht91SqVh+9xcgVZzBZ7bxW2Jef+lcj+B/CGP4Nh15PxuAhTtVOux11p074b9zw0hl9AGdTzrAlejNDKgzls+pjaRDakDohdQnRhgBgtBnxUfnybZ0J9C7dB7lU7jzvljNRfMu5eCQC9KodzoK3azyy0QegKF0aBIGUjq87jT65HPfRo8j46kukwcGYdu50HufKf3XhwoWLFw55mdIAmHbuQurvj++SRbh/9SWiXI5lz15Smrd0Hle27KNfo0jh+wRlTJs3k9y4MaZ9+wAQ5HJnzuHG9cgKO9/pxhUrMe3ei7JOHdTNmqFu1gx7XJzzHTRk8GOO+vkjn7eGOf1eo0OV/IgizN0TySerzj5SPp6fu5LZfatSt0QAFpuDMb+eZ9H+G4iiSKUwH8Z1Lo/sTr1eu0MkIdP4pIfz0hCizU+gJpCSviXJsmTdl04T6TL8XmyMNiM/npnBbeV8JFIzxYI9sBw7BoCiahUEmcup+nfc0t3k4/0fkaCPJ0ATyPja36KUqRBFkZl/XGPq1iuIIrSvnJ8pb1RCq5I/9DVst26R0qats6yGTIbnuK/xnj4NifrhDcgXga3RWwj3LESzgs1ztyUbktgW7fS2aWRulPIpSUnfUgBYbQ5m/XGNwQuPk5hpIp+3mtn9qjGkSTEUskd/NIg2G/ply0AUEbOykBbIj/+GdbgNGggSCfbkZHTffIeialXkpUs93qBduHDhwsUzRxYWhrJhA3STJmOLi3Pm6PXpTdrUyUgLFcrNtzP8svw/1T3/jfsEZQoXxpGUTFqPN8kc8zmi0Wl4KMqVI2D7VhQ1nKk1hmXLSG7aHMvZsziys8meOxe3N3ogDQ5+/IE/hyhkEj5uU5rP2pdBIZNQPNj9Po/fw6BWyPi2awW61ygIwJxd15myJQL7nwxJURSZuiWC3nOOEBGXt0IlzyuCIPBTk3l8Xesb/NR+FPa652xINaaQac7Ms765rJLHJDrrBiIidosbDpsbxYLcMd/J71O+5grz/DsiM68z9vDnZFt0hHmE80XNr/BR+WCzO/hmwyW2nHWGbAxuVJRedcIfSWnTfPAQaQMHIWZmIgkIwGfuHJRVqz7poTxX3MyKpka+WvfNV373AgwqPwRPpSenk05x8U68+a1UPWN/P8+VeGeIcpuKIQxvUeKByjT8G7a4ODLeeRfLCWeos6DVYk9NQ//LCmQlS+B+9Cip+/YjaNT4Lln0WNdy4cKFCxd5h/eECaR07ERyw8ZoXu+EtGhR1IcPY09ORnBzQ9TryZn7M+ajR/GZNRNZ+MPni99FUb48/tu3ohs3Hv2ixegXLMR8+DA+P/6AvGRJBLUav6VLSKhSDcxm7NHRpLTrgLJGdUSD8aX09v0/rSuGULaAFwV87hVdt9kduV66B0UqERjWvATBXmqmbbvCb8djSM+x8EWncihkEkxWOxHxOrJNVmLTDZQM8XzSQ3kpkAj35j3UvSBSQYpdtNMyvFWeliJxefwek+sZ1wGwGQII8VbjppRhOXrH4+cSdvkLl9Mu89nB0WRbdBTzLsb42t/io/LBaLExcsUZtpyNRyoR+Kx9GXrXLfTQRp8oiuQsWkRqjzcQMzOdydxbN7/0Rh846/GlGlP48shYrqRH5G5vXLAJVYOqkW3NRilVcj0xm95zjnAlXoeHWs533Srwafsyj230GbduJblJMywnTiC4u+M960eCjh7GffAgzLt3o/tsDKoDB9F0707Als2P9RHgwoULFy7yFmm+YPw3b0Tbry/Gbdudz/gjR3Hr3YvAwwfxWTgfwcsL6/kLJDdrgWHt2se6nkStxmv8OHyXLUHi74/tylWSW7UhZ/4CZ9kHtRqP90cgms0oGzYAmw3zgYNIvL0QHf9e8uBloaCfW663z2Sx89a8Yyw5cOORDI0u1Qvy9evlkUmd7UnvtKtWyPihdxUmdq9Ik7Ivpxf1SZJhykAiSAh1DwWgQkBFvFX/rXT7tHB5/B6Tu0maVkMgxYI9sF27hiM9HUGlQlHelb/0/5xKOoHBZqC0bxnGVB+LRq4hx2Tlg19Oc+52Jkq5hPGdy1O7eMB/tiWKIukDB6OsWQNtn96INhtZYz5Hv8SphKfu2BHvid8hvKShnf9PAW1BDsTtB+BiQgw5kW8iCAKVwnxoXdmbo/FH6FqiO4UDtJQp4FyhG9uhLP4ej1fKQjSZyPrqa/SLlwAgr1jBubob6nzIeXzwPh4fvI/NZuPcuXOEVKjgqjnmwoULFy8BUl9fPD4eicfHI//yjFc3bYrijx2kv/sulqPHyBj6HuYDB/Ec9zUSjea/G/8HVA0aELBzh1NQZtcusj4fi2nvXrynTcWtR3eyZ87EnpSMtEB+7DGxOJKSSW7SDO+JEx5KYfRFZ+elRCLidcRnGmlVIQS92caqo7c4cDUFs81O0UB3OlYtQINSgf+4yN64TBBBXiqKBrrnGn7gFIyp86fvtBSdiRvJObxW5O9Lab2qfHJgJJfTLjGx7hTCPQuRbEgm2/LvZUeeNi7D7zGJzLzj8TMGOMM8jxwEQFGliqsg9d/wZsle+Kp8aRTaGKVMhcFsY+jik1yJ1+GukjHljUqUC32wlRDzrt2YNm/GvH8/qsaNyPz4E8x794Eg4DF6FNrBg16JguwWu4XFlxZyMN5p9DnsMkivT8cqoThEkT+uXuLY7mV4+KlpWrAZEonAd10roFHIHjkP4C62G9GkDxqM9dIlALRDBuMx8iME+V9zMl+F/wsXLly4eFX5u2e8NF8wfqtXkT19BtnTvsewajWW02fwmTMLeYkSj3wtqZ8fvosXol+8mKyvxmHevcdp3E3/Hrc3e5I9ZQoAigb1ETMzsZ45S/rAQWh6dMfzyy8ey/B8UWhdMQSz1U7hQHeiknP4aMVp3JQympUNxkMt52hkKqNXn6N1xRBGty39j98DZfJ75f7d4RBZsC+K9lUK4OfurImYZbDw7pKTxKUbmNCtIjWL/XvpiFcJD4WzvNil1AsMLD+YYZVGoLPoOJt8hgoBFfOkT65Qz8fAaDMSlxMHgNUQcL+wi6uMQy43MqOw2p3Sz4Ig0LJQa5Qyp5dJrZBSOsQTbzcFM/tUfWCjTxRFdFOnIi9bFtFiIaVla8x79yGo1fjMm4v7kMGvhKERlxPHR/s/YOONDQCY0ouilKow+68iQvIDEZIfyJQdJzumIQkXupCc4fzJa1Xyxzb6DOvWkdy8BdZLl5D4+uL7y1I8Px39t0afCxcuXLh4NRGkUjzeH4Hf6pVIggKxXb9OSqs26FesfKxcJ0EQ0PbpQ8DmjciKFcORnExajzcwbtt69wAwmfBfuwbt0HdAEDAsX0FKy9ZYIyL+vfGXhE7VQika6M7o1WepWNCHT9uWoUPVAvStV5if+r/G2I5l2XQmjk1n4h6ovfn7opi3N4p3Fp3AanOGz7opZRQO0GK1i3y88gxHrqc8zSG9UJT2darfXkq7iFqmxmw303vrm3x++DMyTBl50ieX4fcYJOoTERFx2FSINg1FA7WY7+T3uer3ObmcdolPDozk2+Pjc42/PyMIAh+0LMmigdUpFvz3hdf/DvOu3VjPncetRw8EiQRHWhoSf3/81vyGunnz/27gJSAm+zYj9rxHdNYNPBQeFHH0wV3XkWWtFjOs0gjCPMIp7FWYruUaIiBBjhu/H7/12NcVjUYyRn5MxjvvIur1KGrUIGDHNlT16z/+oFy4cOHCxUuJskYNAnZsR9mgPqLJROaHH5Hx3jAcev1jtSsvWRL/LZtw6/kmiCK2S5eR+Pqi7twZy5GjWM6dx3PUJ/itXIEkMADb9eskt26DfumyPBXZeFZsPReP0WKne82CjPntHAN+Psb5206jo0X5fNQp7s+vx28/UFsty+cjv4+aPnULIb+j/i2TSviyUzkalAq8Y/yd5Vhk6lMbz4tEGT9nOZPLaZexi3ZUMhV+GqdHNEGfkCd9chl+j0GwWzBf1fiOLuGDGNqkGF4p8TiSk0GhQFExb1y4zxPXMq7y5ZGxmOwm7KIdEecDNllnYtrWiNzVIolEINDzwfPw7nr7ZMWLkzVunFPSWRBQt2v7StWFy68tQFm/cpT1K8f0Bj9yOyaIOiUCUMtVVPaty3uVhvNuxWG8Vb0xiwfVoGWFEC7GPp70sjXqBilt22P4ZTkIAu4jhuO3agXSoKAnNCoXLly4cPGyIvX1xXfJYjxGjwKpFOOatU4P3JUrj9WuRK3G67tvUTaoD4KAIy0N0/ZtSPLlI3vaNACUtWvlGp6YzGR+MoqMwUNw6HSPO6znmouxmZQK8aRIoDth/lp0RivvLj7JvogkAOqVDOR6YjYmq/0/2wrx0fDLkFq0KJ/vvu0yqYSvXy9HvTs1AEeuOMOp6PSnMp4XiTDPcDQyDQabgeisG/x8fm6upy/FkJwnfXIZfo+BSqaiQmBZelVuwpu1w7HeDfOsWAFB9XiCGS86t3Q3+fLwWIw2I+X9yzP6tc9QSBXYHSIjlp5i1dHbTN/+aA/6u94+W2Qkol6PslYt3Hr3wrBqNY7MzCc7kOeM2OwYjDZn7SJBEPigykd8VWscvmpfpBIBs9XO7J3XeH3GAWLTDbnnFQv2wGp3PFZ4p2HDRlJatsJ6+TISPz98l/+Cx4cfILiEWly4cOHCxQMiSCS4vzMEv99WIwkKwhYZ6Qz9XLX6sdq1xydgPnQY7cC3kVesiJilwxEfj3nvPkxHnGW2pH5+TsNzzKcgk2HcuInkFq2wXLz0JIb2XCKRCFjtDny1Smb1qUqtYv6YbQ5GrTrLmhMxuYvw0gdMj1HK773zU7PNDF96kvgMAzKphHGdy1O7uLP9j5affuXr/EkFKaXu1E6+mHqRNFMqVocFgGSjy/B74bGcd9ZIU1Spksc9yVsS9QmMPTyGbGs2xb1LMPq1MSilziRgqURgaNNiFPRzo0fNh5fzF0WRjE8+cf7DbkfdoT2+y5bgPuw9sFrJmTf/SQ7luWLP7d2M2DuM2Wdn5oanaOQapILzIVy2gCcbT8ex+EA0OSYb+6/ce6gYLTb2RSRRrZDvQ19XtFjIHPM5GYOHIObkoKj+GgHbt6KqW+fJDMyFCxcuXLxyKKtVI2DHNpT16jpDP9//gIwPPswtzP6wZM+ciaDR4D58GP5rf0c7eFDuvvS+/bDFxAB3DM9Bg/Bf8zvSkBDsN2+S0rbdSxv6Wa2wL1fidUQn56BSSJnQrQLtKufHIcLETZdZtD+KCgW9ckM3H4aJmy5zNDKNIQtPEJ9hQC5zKrNXDvfBYLEzfNkpopNznsKoXhxK+JQEnFUACnneK+Tu8vi9gOyL3cs3e39h3bmL6E02bNeuAjyWUtWLTropnc8PfUa6KZ2CHgX5vMYXqGX3h3HWKOrPL0Nqks/74cosiKJI+tuDcCQkAqAdNBDvGdMRFAqkAQG49epJzrz5L53Xz2K38OOZGUw7PQWz3UyGOR3LnRWjuxyLSmX/lRRsDhGpRODzDmXoUTMMgByTlc9/O4/F7qBj1dCHurYtLo6Ujq+jX7AQAO3Qd/BbtdIV2unChQsXLh4bqa8vvsuW4v7RhyCRYFi5ipR2HbDdvPlQ7djjE9AvX4H7wLeRuLsjyOV4fvYpvosXIWg0iNnZJDduinHHH7nnKCpXci5iNm4M5juhn+8Nw2Ew/MuVXjwalgoiyFPFmN/OkZhpRCaV8EmbUvSvVwiAJJ0ZjUKGw/HwRu/I1qUo6OdGYpaJoYtPkqwzoZRLmdi9IqVCPMgyWHlv6UniMx7NmH8ZKONXjhbhLXktuDqFve4Zfsl5ZPi5yjk8BhsiN3A98yrbTmdRMV8Y8mvXAJAVK5bHPcs74nPiyLJkEaQJ4sua43BXuJNjsvLV2osMbVKMUD83wBkP/jCIdjuZo0Zj2rIFAHmF8jh0OjI//iT3GEdaGmJ2NjkLF+ExYvgTG1NekqhPZMLxb4jKikJAoGvx7nQt0S3Xy+dwiCzc71TZEkUI9lKRmm1m8pYIDl1LRRRFjkSmIorwbZcKD2Vsm/btI+Odd3FkZCB4euI9/XvUTRo/raG6cOHChYtXEEEiwWP4MBSVK5PxzlCsly6R3KIV3tOmPLBYW/acOWCxYL18mYyPRt63T9moIaaNmxBzckjv2w/tO0OcZYdkMiTe3vgsnE/O3LnovvkO45q1WC9dwmfuXORFCv/D1V4sFDIJU9+szLAlJ+k0/QCvFfbFQy3nxI203GMOX0/lizUX+LxDmYf6PvNzVzKzT1UGLThGbLqR95acZHbfani7KZj2ZmUGLThOdIqeYUtP8nP/1/Bye/XKnJXyLZUb7plhupf3mGxIypP+uDx+j8FdN20J/xDy2XMQM7NAInlpHhaPQhm/snxTewJf1RqHj8oHo8XG+7+cZv+VZEatPvtIK0qixULGO0NzBUWkBQqAIGCNiLjvjz05GXnFCkgDA5/CyJ49JxKP8/7eYURlReGu8OCLml/Ro+QbuUZflsHCB8tP8/Mep9HXtlIIK4bW5rdhdej6WkHSc8xkGCz0qBnGr+/VfuDaOqLDgW7a96S90RNHRgbysmUJ2LbFZfS5cOHChYunhqpObQK2b0VRpQqiTkd6/7fI+vY7RJvtP8+VhoQgr1gBW2zsX78NYmORlS+HrLTz4ztn5ixSu/XAnuIsO3A39NPv11VO1c+r10hp1Rrjps1PdbzPkkIBWlYMrcXw5sWx2kUSMo3ULxnIsiE1+er1ckglAjsuJPDxyrMPJPLyZ/zclczoVZUADxU3U/QMX3qKHJMVT42C6b2qEOSlIibNwEcrzjx02y8b3ioftHItALVD8iZdxuXxe0QsdguZFqcyz+Qu9bEfOw+ALCzslRN2EUWRdFM6vmpn/thdV7bF5uCTlWc5fzsTrUrG2A5lH1pcRDSbSR84CNMfO0Eux+fHH1C3bvXEx/C8YbKZ+OHMdHKsORTzLs7HVT/BXxOQuz8iLotRq8+SmGlCKZPwUetStK4YAoDKU83ARkUf6bqOzEzS3xuOedcuADRv9MDrqy9fuXvahQsXLlw8e6TBwfj9tpqsr8ejnz+fnB9nYj17Du9ZPyL1/eccdfeBb+M+8O3/bN+wYSOZH36E5cgRkps1x+enOSirVgVA+dprBGzbSvqQd7AcOUr6wEFoBw3EY9QnCLIX/3NZq5LT+bWCdH6t4H3biwS646aUMXrVWQ5dS+HD5aeZ1L0iasWDjzmft5ofeldh0ILjXE3Q8cEvp5neswoBHiqmvVmZt+cdI9tkRWe0opK/eoJwJpuJmOwYPJWeBLkFE5l5nSJej/ad9ri4PH6PSKrRuVKklP6PvfuOb6p6Hzj+udlNdzoZZe+9N4IbHAyZCoiy3CwBFw5AVL6KskUBGcpUlgNBFNlD9oayR4GupDP75v7+SCnwQ6ClTVvwvF8vXtrk3nPPSZMmT845z6MnUBeE+7h3f5+m8n9vmefCY/MZ+PfrHDNfK4jq8Sh8vOIgO04l46dT81XP+rmq0wfeenHJfft5gz6DnrDZs/4TQR94M8YOb/AWT5V7mk9bjrsh6Ptlz0Ve+u4frqTYKWnyY2b/xtlBX164jhwl4YknvUGfXk/Il18Q+r9xIugTBEEQCoyk1RIy+iNCp01BMhpxbN5M4uNtce7dm+e2je2eJmLVr96C7/EJJHXuSsZ3s7OTuqgjIwlftDA7MUzG9G9Ifq4ncnLy7Zq95zWvFMFXvepj1KnZddrMjztyVtfveqXD/ZnYqz4BBg37z6fw/k/7ccseykYEMOn5BnzbtzGRQf/NzxNf75/GmxsG8/eFdZQNLkv54PKopMIJwUTgd5eubsqM8ItEkiRcWfv7tP+x/X1/nf+TRccXku5M43zatT8UU9fG8sfBK6hVEp91q0PNmJBcteuxWkl+oQ+Ov9cjGQyEzZmD4cEH87n3RcvZ1LPsjt+V/XPNiFoMqPUyWpUWANmjMO6Xw4xdeRin20PLyhHMHtCUitG5C6j/jXXFChKfbod87jzqmBgiVi7Hv1u3PLcrCIIgCHfD2L49Eb/+jKZcOeTLl72JxhYuynO72goViPj1Z/zatwO3m9T3P8AyaAierGyikkZD8Mj3MH0z3Rt4btlCYpsncO7fn+drF2X1ypiY+HwD2tcvmZ0cLrcqFQtifI966DUqNh1P5IvfjqIoClVLBBPkp80+LiHNnk+9vjeUDvLOsp5PO8cbdQfxQdOPMGqNJFoTC7wv9/7cdSG5GvidvqRi/pazPHY8K7HLfT7jdznzMlvSNlFbqc3R5CNM3TcZgK6VuvFYmccBWLTtLPO3ngVgZIcaNK4QnqtreKxWkp9/Aee2bUj+/oTNm4O+SZN8HUdRsyVuMxP2fIlKUjG+1VeUDIy56Ri1SkJRQJJgwIMV6N2yXJ7q8gEobjepH48lc8ZMAPStW2GaMhlVaGie2hUEQRCEvNJWrkzEql+xDB6CffUa7zLNffsJGf0Rkl5/1+2q/P0JnToFXZ06pH48FtvSpbiPHcM081s0pbzZr/2eehJNpYqY+/bHffo0iR07ETruM4xdOufT6IqemjEhN3xR7/EoONxyrpZ91i4VyqjOtXhn8T5W7L5IZLCBPq3KZ7Xn4fW5u9l7zky9MibCAvTeMl2WdEJPH0LKqiXYsUFJ6pYx5evYClOpQO9z6nz6OQC+PfANWy5tpm+NfrSv0LFA+yJm/O5SYlbhRdkZSKBBc23Gr3LlwuyWz8089C1/pq5l3YW/+OSfsbg9bpoVb85zVXsC8NfhK0xc4132+uojFWlbu3iu2ldsNswv9PEGfYGBhC2Yf18HfR7Fw/dH5jJu56c4ZAeVQisTpA++4Zjr6woNfaIq015oyIutyuc56JOTk0nq/lx20BfwxuuEzZsrgj5BEAShyFAFBmKa8S1BI4aDJGH94QcSO3dFvnIlT+1KkkTAgP6EL1qIKjw8O5uofdPm7GO0lSoR8dsvGB71lnywDB5Cyocf5SjhzL1O9iiMXXmIgfN2k+nI3XhbV43izbbe+nXfrjvJ6gOXAFAUOHjBgqLA+aRMktLtJKU7SLV7SEp3cCYxgz8OXubopbR8H09hKpU14xeXHofb4yYya/tOoq3gZ/xE4HeXnirXDkNCT6yJtYlwW1HS00GjQVOuXGF3zWeOm4+xJ2E3BsmPbw9OJ9WRQtmgsgyuNxSVpOLQhRRGLTuIokDnRqXo1SJ3BdoVu53kvv1wbNninen74Xv0Der7aDSFz+qyMnb7GH6MXQJAhwod+ajpaIJ015Zurth1gWEL9uKWPYA3LXN+fAvmPHiQxLZPZs+qmmZ+S/DbbyGp/3ubrgVBEISiTVKpCBw0kLB5c5GCg3Ht2UNC2ydx7Nqd57b1zZoS+fsqtHVqo6SkkNyjJxkzZmZ/6aoKCsL03SwCBw8CIHPmLJJ79EI2W/J87aLsSoqNTccTOBKXysELKbk+v3PjUvRuWZZKxQKpV9r7uUWtVtG3VXlUEnzTtxHTXmzElN71Gdw8mCm961O7VChBfhra1yuZz6MpXBF+Efhp/HArbvbE72HdeW8CvcKo5ScCv7sUpAsiKTEC2R5GeNJFADRlyyLp7t8aJYuOL6RkQAwV/Crg9Dgxaoy81+QDDBoDV1JsjFi0F6fbQ4vKEQxpWyV7yj4nFIeD5P4v4diwEcnPj7Dv597XQd+ljEsM3ziUnfH/oFVpGVL/TfrU6IdadS3wSki189XqY2yJTWTtobx9s3k967LlJHboiBwXh7psWe9eh7Zt8619QRAEQfAFw0MPErnqVzRVKuNJSCCpcxcyFyzMc7vq4sWIWPqTdxmnLJP60Sgsg4ei2L170SSViqDhwzDN+PZawpmnn85e7XU/KmEyMrFXA8Z0qUWTXG7Zuerlhyt6k7oEX0vq0q1paYL8tHy/+QwAHkXBoygkptlZufsCzzYtg7/h/tqJJkkSMVlbeMz2ZFKdqYAI/O4pGXY3Vqe3HknI+ZPA/b3MM9ZynN3xu+haqRtP5In59AABAABJREFUh7YnWBdMqMFEhF8EmQ43wxbswZzhpGJ0IKM7eWvC5JTidmN+/Q0c69Z5E7nMm4u+cWMfjqbwrTn7OxfSL2AyhPFZy895MOahm46JDDbwfoeavPJwRdrUKpar9uWEBGxr1mD744/sbGSKLJM65mMsbwwEuwP9Qw8S+dsv/7mERIIgCMK9S1OmDBE/r8TwRFtwuUgZPoKUd95FcbkA8Fgs2P5Yi231auTLl3PcrmQwEPLVlwSPHgVqNbaffiKxc5cblpT6PdGWiJ9XoI6JQT57jsSn22P/a12+j7GoqFoimIeqRWf/bMl04nJ7cny+JEk3lG/YdDwBp9tDz+Zl+WVvHCevpPP24v2sOm7l+y1n8dOp6fr/yk3cL2ICveNKtiWjxvuYFEYR9/srpC4gsiLz3cHZGMLSMNhqozlxHCf3d2KXRccWEBMYQ7PizTmYeJCh9Yfx4bb32RW/k0pBdQj002IK0PH5s3Ux6nP+tFI8HlJGvIV91e+g02Ga/R36Zk19OJKioVe13siKTMcKnbLrHwKcuJKOS/ZQrYR3n98jNaJv1cS/8qSlkfLe+9h+/hmu7kHQ6fB78gk8Sck4Nm0CIOD11wgaMVws7RQEQRDuOSp/f0zffkPGpMmkff4FmfO+x3U8Fk3pUlh//hnsDu+BajV+bdsS/OlY1KY7b5OQJImAvn3QVq5M8ksv49q7j4QnnyJs1kx0deoAoK1alYjffsE84CWc23eQ3PsFgka+S8BLL+VqpdO95pLFxsB5u6hcLJDRnWvn6gt+gJ92nOeLVUdpUNbEp91q88OWM0xac4x/TpsBUKsu0q91hftutu+qliVaUiqwFLUiarPuwp8k2hLJcGVgd9sxaAquzIWY8bsLFruFvy6tJDBmA5HBRlxZNfzu15mTWMtxdsXvonxwBSS8L/SaYbWoFladhccWEOSnZVKvBkx/sRHRIX45bldRFFJHj8G6eAmo1Zi+norhgZa+Gkahkj0yq878huzxzhJrVBr61RxwQ9C38VgCA2btYPiCPSSk5j7VsWK3k/RcD+x//UXw+yOJ3vUP0Tv/wb9vH2wrVuLYtAnJYCB02lSC33lbBH2CIAjCPUuSJAIHDcT03Swkf3+cO3Zg/fEn/J99lqgd24jeu5vgMaNxbNtGUtdueDIycty2vkVzIn/7xVvv70o8iZ06Y12xIvt+dVgY4QsXYOzxHCgKaWPGkjJ8BIrT6YORFg1xFitXUm38dTiecb8cviHxXE7ULh2KUaemQlQgRr2Wns3Lsuechcdrer/glj3wQOXIO7Ry76oXVZ+OFZ+hfEh5oozXvtQv6OWeIvC7C1d/SR5nANFBfrhjTwD374zfgqM/oFPrWH/xb6bumcGfJ60AtCnZnZMpJ9gVvxOtRkWpcP9ctZs+YWJ2RsnQ8V/g16ZNvve9KLC6rHy8YzTT909jxsFvb7pfURS+33yGtxbtxeaUKRsZgF6b+5emdfkKXPv2E75wPgH9+qIuVgxX7HGs8xd4U2kBAYMGYmzfLs9jEgRBEISiwO+xRwl89x3vD4qCdfESXIcOoY6MJKD384T/tAT3yVNYc1kD0LukdAWGRx4BuwPLa2+Q9sV4FI93qaOk0xEy7jPv0lCVCuvCRST16IXHcn8mfWlYLozRnWuhkuDnPXFMWZu7/Y0VowNZ8FpzBretglol0alRDAF6DbFXrmXwHLPyEA6XnN9dL3IijBEANI5uQvD/y+TuayLwuwuJ1mulHCLVMorVCjodmjJlCrdjPhBrOc6ehD04ZSc6lY4Dp+G3uINM2riWD+cn4rr8GPOPLMz1Nz+ZP8wn/YvxAASPHnXf1sVJtCbw1qZh7I7fhU6tp2Z4zRvud7k9fLziEFPXxqIo0KlhDBN61ifYmPskQdYlS9A/+CC62rVRFIWMmbNI7tUbJS0NXYMGaOvXx7ltW34NTRAEQRCKBOeWrWiqVkXfogWK1Yq5b3/SJ09BURS0lSrh17YNmYuX5LpdVWAgpu9mEvDKywCkfzUBy6uvoVwt9p61NDRszmzvrOPWrSS264D79Jl8HV9R8VC1aN5pVx2A+VvOsiCrZnNOXb8qTKtW0bhCOGcSrUhAkJ+GY5fSmLD6eD72uGi5kH6ejRc34K8NACDML7zAA7/7cyGtjyVcV8MvXE4BQFO+HJJWW4i98o2rKWcBnB4nSYbfCCkHq07VwuFqjSfDn4sZ57G5bRi1xhy1aftjLSnvvAtA4OBBBPTt45O+F5Q0Ryqrzqxi/YW/sdjMRKdG82iZxykXVI5xOz/F4rAQqg9lZJMPqBh6bVY4JdPJ24v3se+cBZUEQ9pWoUseNjXLV+Lxa9cIxekkZeT73pk+wNi1CyGffUrq2E9wXFefSBAEQRDuB574eHQ1axDyv3GkfjSKzDlzSftsHK7YWEI//x/aqlXv+v1PUqsJHvkemooVSHnrHWy//Ir7wgXCvpuFOioKAMPDDxGxcjnJvV/Effo08a1ag8GApLn6MVshUpaJV6sBCVQSpokTMTzycL6MvyA9Xa8kqVYXU9bGMmnNccID9TxWM3cJ6CyZTt5dso9DF7zZLRWgR7MyfP3XSZbvukDjCmG0rhrlg94Xrsl7J3HMfJQnyj5J+eDymAwFX6ReBH53ITF7qWcQYTZvxqj7cX9fqiOVbZe2AvBwzMOcOdaQOIuVx8tpmHU5nZ4ti9GuXn0ig3rmeGOqc/ceLK+8Ch4Pxu7dCBz2pi+H4HNXMq/w3ua3SXOm0aJ4S0gDq9HKjAPfAKCgUDqoDB80+Sh7ah+8hUuHzt/DRbMVf72GsV1r33W65KvUERG4Dh8m6bme3pk9SSJo5HsEvDQASZJwx55AHXn/rp8XBEEQ/ptUkRG4TpxA0moJGfsxmkqVSH3/A2zLluM+cxZ1sWhUkRF3bug2/Lt1Q1OqFMn9BuDat5/Ep9oRNm8O2qreQuXaqlWJ+PVnknu/gOvAQbDZMHTsgLZ6dRRFIS4ujhIlSuDcth3HX3+hCg+7wxWLrh7Ny5CYbmfx9vOMXn4Qk7+OBuVyPh6NSiLObMUleygX6Y/LbmfbiSR6NCvD/K1n+WTlIaoWDyIqOOd5I+4FpYNKc8x8lABtAGOaf8L59HMcST5CtbBqBdYHsdTzLiRct9TTdOE0AJr7LPBTFIWJe77E4rAQE1iKVhE92R5r5cXm1akTGUzN4tHsOW0lJjQsx0Gf69Rpknu/gGK3o3/oIUI++/Sez4D15e4vUKs0THv4G16vM5AWQQ/waq3X0av1KCiEGcIY1/LzG4K+fecs9Ju5g4tmK8VC/JjZr3Gegz4AfetWOP5ef60o++zvCHzZm2XMuW8fjk2b7tsltYIgCMJ/l7FzJ1x79+HY4v2yOqD384QvmI8UEoxr717sq35H36pVnq+jb9qUyF9/RlOuHPKlSyR2eAb7+vXZ96sjIwlfthRN5cqgKNiWLQdZxti/H9aOHTD27YN87hz6hx/OzhJ6L5IkiUGPV+Hh6lG4ZYURi/Zy4rq9encS6KclIkiPJMHphEwiA9TsO59Co/ImqhYPIs3m5qNlB5E9udtGVNSVyirpcD79PPsS9/L2phHMPTy7QPsgAr+7kB34uQIxnTwMgLbK/VXD73TqafYl7EOr0jK8wVt8v+ki0cEGVuyOw2zz0KdVOY7EpbLtZFKO2pPNZpJ7eTc9a+vUxvTN1/f80thTKSc5Zj5K3xr9bgjsAnQBDG/4FhVDKpHmSENWrm1UXn3gEm/M3UmazUW1EsHM7N+YspEBee6LY8tWMmbO8v6gUhEwoD/6xo3wpKSQMXceST16oq1TG7+nn8rztQRBEAShKDE88gi6Zs1I7tOXjJmzkM1mtHVqE/DKK5CVwdo6f0G+1NzTlC1LxM8r0DVpjJKRQfLzL5D5w/zs+1V+fkT8vAL8vLNVaZ98StrI90GWsf/6K+6TJwkaOjjP/ShsKpXEBx1rUrd0KFaHzND5e0hMy1lG8n3nLBy+mEaXRqUA2HPJSUmTH3M2nmFUp1oYdWr2nrUwd9NpXw6hwJUK8o73XNo5Ivy8nxtFVs97wIdNRvFK1Q/4oM3DBBzdD4C20v0V+JUPKc/nrcYzsO5grBmhbIlNxO6SOXAhhd9jrTQoa6JWqRBm/n3qjoldFIcDc99+yOfOo46JIWzuHFTGnO0HLMqOmY+hltQ0iG6Iy+MiLiMu+76G0Y0YUv9NXIqLM6mnURSFORtP89HSg7hkhQerRTHthYaEBejz3I/MxYtJeq4HSmoq2lq10LduRfqEiVyuWp3L1WuSOvJ9DC1ber/91Of9eoIgCIJQlEgaDWFzvsPQpg2pYz7mSs3aXK5clfRPP0PXrBm6BvVRMjNJfuFFMmbPyfP1VKGhhC+Yj1+nTiDLpLz1Nqmffpad8VMVEEDwWyNAkkCSsH3/AyGfjSP9qwn3/Gzf9fRaNeOerUvpcH8S0xwMX7gXu/POWTlnrj9JhagABrepwlN1i6MAqVYXe89ZSEy3M+xJ7/LZWetPcehiim8HUYBKBXoDvyuZl5mybzIAZnsybo+7wPogAr+7EBUQRdvKjXkwVI/KZgOtFnXpUoXdrXxXPqQCrWJaM/Pvk/jp1KRYXRQP9aNTdX8kSaJf6wp3nPVTFAXL8Ldw/rMTKTCQsHlzUIfnfVljUaCSVCgopDpSGbX1Q97d8jZmtzn7fpfHBYBaUqMocDTOu4m5R7MyjO1SG4Mub3X0FI+H1M/GkTJ0GLjd+LVvR8Synwj/fh5R27YQOnkSoVMmEbV9G6bpX6MKLtjMUYIgCIJQUFT+/pgmfkX0P9sJnTaF0EkTidq8kYhFCwj/cQnG7t3A4yF15PukfPARipy3sgGSXk/oxK8IHDoEgIwpU7EMGpxdy8+/Zw9UERHomjYFvQ7Djn/wnD5DQL97O6Hd/xfkp2V8j3qEGLUcu5TG13/dvszDvnMWdp0207d1BVQqiSFtKlMsUE263Y1Rr2bGupO0qVWMx2pGI3sUJq+5f7J8huhD8df6o6DgdDsAby6IJFvOVs/lBxH45YF8yZvYRV2s2H1TDHvN2dWcTjmV/fORuFS2nkjC5pS9dVcaluRkspstsYk43DIRQfrbzvplTJqMbelSb4H2b76+r5Lg1I6og0fxMGz9EA4k7ccpO0l1p2Tfv/7C3/hr/akQ4v3jNqpTLcZ0rsUbj1dGpcrb3kbFZsPy2utkTJ4CeLOjhk6dgpS1tEQTE4PxmY4YO3ZEU6J4nq4lCIIgCPcKdVQUxvbtMXZ6Bk3ZskBWzb0vPicoq95f5qxZmPv2w5OZmadrSZJE0JtDCfnyC9BosC1b7q3ll5qK5OdH4Kuv4Nyxg+DPP0fJymmQOvID3Bcv5m2QRUxJk5Fxz9alUfkw+rQqf9tjZ64/SbBRi1olsfl4ArvPmGlZxoBWLWF1yOw7n8LecxaGPVmN9vVL8mm3OgUziAIgSRLhWUs8A3SB2bcnFuByT5HVM5dOWGJZemQdkj2aRxK0RAPq6Psj5eyplJNM3z8NgIkPTqFUUCk2HInPvl/2KEz+w1usnn/2Z9+eZnNhdcr46298Otl+/520/30OQPCY0RjyYWN10aKgV+tJsidh1ARQRzuA7cc1pLlOE13yAsuPraEsXdGpvcsrDTo1j+Yy5fG/kc1mzC/2xblrF2i1hPxvHP5du+S5XUEQBEG4X0mSROBrr6IpVQrzoMHY1/5J0jOdCZs7G3V0dJ7a9u/WDXV0NOb+L3lr+XXqTPj38/Dv2YP0qdNI+/AjJEVBFR6O+9QpEtt3JHzBD2gr3z/bhGqXCmVir/q3TdonexSOXEzF6pQZsXDvLY/769AV6pcNy64ZeD/pWbUXiqKw/fI2TqR4Z0evlokrCCLwy6UjyUfYmvgLdksFDEnN6Qx5/oNRFLhkFxP2fImsyDQr3pyYwBhcbk/2Ms56ZUIZ3bkWisfDoUOHqVGjOqqsWU6DVn1T0Oc6fhzLIO/yB/8+LxLQ+/mCHZCPnUw5waitH+KQHUiKBqs7g81pi9BoQzh6JR6V2ULaiT7ssBuZE3GaF+/wDVhOuc+cIann88hnzyIFBxM241v0zZvlS9uCIAiCcL/ze/opIooXJ/nFPrgOHSLx6faE/TAvz0GYoVUrwpctJbnX87iPHiOxfUfC5n+P/oGW2JYuQw4LI+LXn7H06o37xAkSO3YibO5s9A0b5tPICt/1Qd8vey5SISqQqiWubTNRqyR+HdYam+vaMluPLHPo0GGqV6/GuN+OsSU2id1nLdid8g1bYjYeS6BhORN+uns7dGlcrAkAFzIuZN9WkDN+YqlnLiVmReWlgotRyeqdDVMXy/ssTmFbdHwB59LOEawL5pXaryFJEjPXnyT2SjpBflpGdapFeKABU4CeIIMKU4CesKx//z/o86SkkNynL0pmJrpmzQj+4P1CGpVvnLCc4L3N75DqTMWf4piPPs+Dpv40KlOSEmHptChTjSYBL+Gw+xHsp+Wh6vnzxYBj124Sn26PfPYs6pgYIlYuF0GfIAiCIOSSrn49In5ZeUNZBsfmLXlvt0Z1In5e4W03Ls7b7rbtoNWgMptRnC7Cly1FW68eSmoqSd2fxf7nX/kwoqJl5e6LjF15mLcW7SPV6rzhPqNek/35MSxAn/25MizQwAcdaxIeqOdcUiZT1l7bKzhh9TFGLNzL1LUnCnooPnM1q2dx/+LZwWBBEIFfLl3dgNmhdjUaXzkK3PszfmdSz7D0xE8AvFLnNYL1wew7Z+H7zWcAeLtdNSKCclarT5FlzK+9jnz2HOqSJe+Lsg3/X8nAksQElqJKaA0uHmpH/5Z1GfJAB95rPJIXIvsxouFw3nvsKZ6oXQK9VkWJ0LwXILWt+p2kbt285TBq1STi5xVoK1bMh9EIgiAIwn+PpnRpwleuQNeoIUpaGkk9e2H9aWne242JIXzlcrR166KkpOC5dImAoUPwhISQOWUKalMo4YsXon/oIbA7SO7bD+vKlfkwoqLj4epRlInwp0ODkgQacv4ZMNioY2SHGgBsP5lEpsOb7bJpxXA0agl/veaOmeSLOovdzOa4TdllHBSgbHC5Aru+CPxyKd2ZDkCQPhj5yhUAVPdw4CcrMlP3TcKjeGharBnNijcn0+Fm9PKDeBR4ok5xHqqW8/GljfsfjvUbkAwGTLNmojaZfNj7wuGn8eOjpqNoGvAybreO9vVLAvD30Xg+25CCJdP77VbHhjEkpDk4djnnRU3/TcbsOZgHvAR2B4ZHHiF86U+oIyPzPA5BEARB+C9Tm0IJX7jAW+PW5cIyaDDpk6fkObhQm0yELZyPlFW6KuOLL3HWqolt6TLcZ8+iMhoJ+24mfh07gNuN5bU3yJz3fT6MqGgIMGiZ81JT+rQqn+tkdk0qhDOmcy3mvdw0e0VZ4/LhLBv0AK88UvG2ewjvBadTT/O/nZ+x4cLfVAipQIWQCgV6fRH45VKGMwMAg8oP+cq9v9Rz88VNxFpi8dP4MaDWSwB8/Wcslyw2okMMDG1bJcdt2dasIWOqNzlMyJfj0dW4fzbl/nr6F5YcX5z9c4AuEJdLhUYlEeSnZcWuC3zw00Hi0mR+3HEeAJO/DgBbDmra/BvF4yF17CekjnwfFAVjz56YZs24L2ogCoIgCEJRIBkMhE6bSsDL3s9AaZ+NI/W9kXku9+D46y8UqxX9gw+CLOO3YSOSwUB6VjZuSasldNJE/Hs/D4pCyjvvkj5lap7HU1QYtNf259ldMgfOW3J87qM1i2H8f9uIIoNztvKsqAszeEuapThTGdviMx4r04a9CXsK7Poi8MulNKc39e/7S45nz/ipi927M34tSrZkQM2X6FujP2F+4ew7Z+Gnf7wbTt9rX4OAHE7Ru8+dwzJ4KAD+/fthbN/OZ30uaD/FLuHbA9P54eg8Dicdyr69XGQALlnhf78e4bNfjuBRoHlpPX1bexO57DydjEqC0mH+ub6m4nRiGTiIjGlfAxD01ghCPvsESXNvb2oWBEEQhKJGUqkIfn8kwaM+Akkic+48zANeQrHZ7qo9RZZJ/2oi+oceImzeHIz9+npvz8zEungJrrNnr1137McEDnwDgLRPPyP1s3H3/HLG65kzHPSfuYOB83ZzOiEjV+d6PAo/7TjP9uvqRZ+4ksYrs//hQnLeSnEUljC/MADSnWnEpV/k/S3vMn7X5wV2fRH45ZLV5X3ShuiMkFWk815edqeW1DxVvh2PlXkcgIpRgXRsUJIO9UvSsFxYjtpQ7HbMA15GSUtD16ABwe+968suFxhFUfjhyDzmHZkLQLfK3akWdm0Ws27pUAINGpbv8tbjeb5FGZ6tFYBaJZGc7mDupjM0rxSR62+pPBkZJD//ArblK0CjIeSrLwkc+MY9v7xBEARBEIqygH59MX09DfR67KvXkPRcDzwpKblux/bLL7hPniRo6GAklYrA90eS3qun905Fwdz7RRSPB8iqBfjWCILefw+AjMlTSP1w1H0T/AUbdYT667C7ZN5ZvC97315O/PTPeb5YdZRPVh7OPm/q2hPsPWvhf78evScfowBtADqVd0WYy+ONI6wua4GNRQR+ufRUxFuYj3cjUgoBQBURgaTTFW6n7sLF9As4ZedNt/sbNLz1dHVGPFUtx22lfPARrkOHUJlMmL6edl8kc1EUhVmHZrAk1ru8s3f1F+lRtVd28CV7FL5YdZR0u/cPUbBRS4hRx+EEF99tOE2v6Vtxyx6GtK2aq+vKiYkkdemKY9MmJKORsDnfiRp9giAIglBA/J5+ivAFPyAFBeH8ZyeJz3RCvnQ5x+dfne3TVKiAJy0N+4YNODdtwlWhPMYXXwDAffIk5n4DUNzXgqDAl18meOzHgLfAfMqIt/K83LQoUKskRnWqRUSQN1vnZz8fznGQ065eSSpGB9KrRRn8spaOvvlEFfQaFTtPJ/PHwZz/XooKSZIwZc36LTvhTSbkVtw4ZUeBXF+sG8sluzUYtzWK6CDvi/FezOjplJ2M3vYRCgrvNf6AMsFlMGc4CPXXZQc2Od2Ma122HOv8+SBJhE6djLr4vbvf8SqP4mH6/q9ZfXYVAANqvcxT5Z7Ovt8texi9/BB/HLyMJMGLD5TnXFIGU/88gexR8NNm8nitYvRpVT5Xs33us2dJ6tET+ew5VCYTYd/PRVenTn4PTxAEQRCE29A3aULEsp9I6tkL9/FYEtt3IGz+92grVbrjufKVeNxnzoAsk/xcz+zbTYD1uuPsa9ZgHvASpmlTkQzezwoBL/RG8vMjZdhwrAsWotgdhH41/p7f5hHqr2Nsl9q8Mnsnaw9doW4ZE880jLnjeQadmjkvNUV93WfSmDB/XnigHN+sO8mUP2JpWTnypv2ARV24IZwrmZdxe64F9pluK3qN7/cx3luPVBEQn2YHICIryYs6Oqowu3NXVp5awRXrFUyGMKL8o3DLHt6YtwuTv573O9YgMoelG9xnz5Ly9jsABA4ZjOGBB3zZ7QJzMOkAq8+uQkLi9boDebT0Y9n3Od0eRv64n43HElCrJD56piaP1vQGuxk2Jzv27KNZg7r46XM36+k8dJjknr3wJCaijokhbP4PaMsXXHpfQRAEQRCu0VatSsTKFSQ/1xP3qVMkduxE+Ly56OrXu+15mhLFid6354b9gR5Z5vCRI1SvVg2VWo1j0xZS3n0X+5o/SH6xD6bvZqHy85Z+8u/WFclgwPLGQGzLloHsJnTSxHs++KtVKpTXH63ExDXHmbj6GLVLhVA+KvCO510f9DlcMpIk8VyzMvy6N444i425m87wyiP3Vnmrq/v81KprCXAyXRmYDL7PhC+WeuaC2W4m1vkbfuEHCM30Zie61zJ6JtuS+PH41eWLL+Cn8ePYpTQuJFuJvZKGTn37p4T9r3WY3nkPT2oq5tde9xZpb9KYwMGDCqL7BaJ2RB361ujH4PpDbwj67E6ZEQv3sPFYAjqNinHd62QHfQB+OjUhBjU6Te5eVo7t20nq3AVPYiKaqlWJWLlcBH2CIAiCUMg0JUsSvmIZ2rp1UFJSSOrWHfv69Xc8T20yoSlRIvufukQJPBERqLN+9u/elfB5c5GMRhwbN3m/+M24lvjE2L4dpulfg0aDbeXPmF99HcXl8uFIC0b3pqVpVjEch9vDkB9289LMHTzx+QZGrjUzYfVx4szWW56763QyPaZtYd6m0+i1aga18WadX7D1DBdvc15R9ETZJ3m30UjqRdbPvi3TVTBjEIFfLsRnXiFFtxG/yL34pXgzDN1rSz3nHJ6NXbZTxVSF1iUfBKBGTAgLXmvO6E61CPG/9X5FRZZJH/MxusOHSXnpZVz79iOFBBM6aRKSWn3L8+4FsiJjve5F175CRx6MeSj750yHm6Hzd7P9ZDIGrZrxPerRonLek/rY/lhLUo+eKOnp6Bo3ImLpj6ij7r1ZZEEQBEG4H6lNJsIXL0Lf6gEUm43kF/pgXflzntvVt2hO2IIfkAIDcW7fQVL3525IJOP3RFtMM74FnQ77b79hfvkVFOfNuRnuJZIk8W776ug0KhLSHFxKsdGtSSnqFNOx9tAVek3fyr5z/172IdXm4qLZxrzNZ7iQnEnLyhE0Lh+GS1aYuPpYAY8kb6qGVaNJ8aYUDyiefZvVVTBZSkXglwuZWb8URdbhl5wA3FvF248kH2HDxfVISAyo9fINWSJLmow0rhB+2/NtK39GPn0aV0wMzq3bAAj94nM0JYrf9ryiTlZkJuz+kve3vJddp/H/c7hkkjOcGPVqJvSqn+OMp7dj/fEnzP36ewuzP/oI4fN/QBUcnOd2BUEQBEHIPyp/f8LmzMav3dPeQu+vvU7G3Hl5blffsCHhixcihYTg2ruXpK7dkc3XAh+/xx4lbNbM7Cyj5ldevedn/v46HI/L7c1ompjuoEyEP51rBPDjwOZULR7M24v2YnfdnNTmoWpRNC4fhtPtYfyqowAMblsFtUpi0/HEG0o+3Cv8tf7Z/y0ZeOc9j/lBBH65kOm+GvjpMSR4MwndK0s9PYqHmQe/AeDR0o9RIaQi+85ZclxQ05ulagK6Bx5AlZoKgK5BA/zatvVZnwuCrMhM2jOBDRfXczr1FCdSTvzrcaYAPZN7N2Bq74bUKR2a5+tmfDcby+AhIMsYu3TGNHMGUtb6fkEQBEEQihZJpyN0yuTsguup775H+uQpeU7Dr6tdm4iflqAKD8d1+DBJXbsiJydn32946EHCvrs/gj9FUfjpn/M8WjOans3LAPDpz0dIsckYdRreaVedFKuLPw9duelcSZIY9mRVdBoV208ms+5IPGUjAujauBQAX/1+DLfsKcjh3DWry8qmixvZHb8L8H5GjzQWTGk4EfjlwtUZP4+sx3AlDrh3irdbXZmE6EMxaoz0rPY8dpfMmOUHGTDrH9YeunM6XNvKn3GfPg1uN+q0NKSgIFxnz+K5y+KmRYE36JvI3xfWoZJUDG/4FnUj62bfn2p1svFYQvbPkUEGqpbI24ycoiikfTWB1Pc/AMC/X19Cvrz3M3YJgiAIwv1OUqu9BdcHDQQg7bNxpI39JM/Bn7ZqVcJ/WoIqMhL30WMkdemKnJiYfb+hdWvCZs3wLvv8ffU9u+cvzebiQrKVVlWjeOmhilQtHkS63c38/RkoikJJk5GK0YEcupDyr+fHhPnTq0VZACb8foxMh5u+rcsT6q/jXFImP++JK8DR3D2r28rnu8ax6NhCqpqqUiOspqjjVxRlOLzLABVZhzFrqee9sscvQBfIB00/YurDXxOiD2HB1rPEWWxEBOlpVjHitudene3T1qiOc+tWFLWa4C/Ho1gsWL//oYBGkL88iocpeyfz94W/UEkqRjR4m2bFm2ffn+lw88a8Xby1aC9r86lOjKIopI4aTfoX4wEIHPYmwR99iKQSL0NBEARBuBdIkkTQiOEEffA+ABlfT8+XmnvaihUJ/3EJqugo3MdjSercFTk+Pvt+w4MPepd96nTYV63C8vrAG+oA3gtUWVuMnG4PWo2KD56piU6jIt3hIc3myr5PfZuSYs+3KEtJkx+J6Q6+23CKAIOWPq28CfFmrj+JNRcF4gtLqD4UFSo8eOhf8yXaV+jAhfQLBXJt8YkzF1Ls6YB3qafRaUMKCEAVeOdUtEVJmF84iWl25m06A8DAxyrjf4f6J1dn+9xnzwKQ0a0rhscexdilM+nTvr7nZv0URWH6/mn8dX4tKknFsAYjaFai+Q3HGHVqqpcIIcSoo1xkQN6vKcukjHiLzBkzAQgePYqgIYNv2GcpCIIgCMK9IfClAYSM/xxUKqwLFmJ5Y2CeZ+G0FcoT8dOPqIsVw33ypHfPX8K1lUeGhx4kbKZ35s/2669Yhgy9p4q8B/ppqVo8iNX7LwFQNiKAyb3qMaxlCMFGHccupXIuKZOG5W+dR0GvVTOkbVUAlmw/x0WzlQ71Yyhp8sOS6WTXGXOBjCUv1Co1IQbvtqHfz6xi5JZ3WXXm1wK5tgj8ciE1a8ZP5dGhUeR7YrYv05XJzIPfYrZfeyF8/dcJ7C6ZmjEhPFLj9mNQZJm0L79CZTKhZGSirVObzC6dAQgc+AYes/mem/Uz283suLwdCYkh9d6kRYmWNx0jSRLDn6zK3Jea5qjOzO0oLheWNwZiXbAQVCpCvhxPQN8+eWpTEARBEITC5d+9O6avp10ruzDgJRS7PU9tasqWJXzpj6iLF78W/F2/7PPhhzBNz7rmsuWkvPU2iufe2NsG8FyzMuw4lczsDadwyx5qxISgUUnEWax8uPQgMWFGWlS6/Uq0ZhXDszN6TvnjOFqNivfa1+CHV5rxQJWC2SuXV2EGb3Drwfu7yxRZPYueXtV78Hq1MQwzetcX3wuB37ITP/HzqZV8vH00AEfjUlm1z/tNy+A2le8442T79VfkM2fwmM2gVqMqXoKgr6eTOuJt0qdMRRUaSvq0r1EcDp+PJb+E+YXxSctxDG0wjFYxrbNvT7O5+PrPE9mbg1UqicjgnBWzvxXFbsc84CVsK38GrRbT19Pw79Y1T20KgiAIglA0+D31JGHfzQKDHvsfa0nu/SIea95qsmlKlyb8x8Xemb8TJ7zBX9K1rJV+jz9O6ORJ3tnGhYtIHfl+ge0Ry6tHaxajb+vyfLPuJB0nbGTMikNM2ZZKt8lbSUq307pKJJo71JSWJIlBbaqgkmD90QR2nzFTt4wpz1/UF6SrRdx3XvkHgCuZNye08QUR+OVCdEAEj1WqR9PUNKDoJ3ZJtiWx8tRKALpW7oaiKHyVVeukTa1iVC8Zcsc2FKcLsvagqaKj8VyKQ3P2LO5jR3EdPYo6piTaWrXgHviDk2i99o1ZiYAStCrZOvvndJuLQfN2MXfTaT7/7ehdtS9fvozm9Gk8Wdm4PDYbyS/2wf7HWjDoCZs1E7+nnszTGARBEARBKFoMDz9E+Lx53oLsmzeT/FxPPOne7UGy2YLr8GFU1y3ZzAlNmTKE/7gYVXQ07thYkrp2uyHbp7Hd04R+9SVIEplz55H28dh7Jvjr/2AF5r7clBaVIrhk8c6QPl23OJkOmcU7zpOQeudZ03KRAXRo4C2BMHH1MWTPtbGfS8rkSkrR3oZ0dcZP9hTsjJ9IJXgX5CveqLyo1/BbfHwxTtlBFVNVGkc3Yd2ReA6cT0GvVfHqI5XueL6iKNhWrgSPB13DhoQv+wmPonBh3z5K1amD+h4q2v7zqZXMOzKXdxq9S/2oBjfcl+lwM+SH3Ry9lEaIUUuXrNTAOeXYsYO0z7/AuW074UCCSoX+oQfxJCbi2n8AyWgkbM5s9M2b5eOIBEEQBEEoKvTNmxG+aCFJvZ7HuXMnic90QhMTg/2vdeB2Ewkk169H0LA3MTzwQI7a1JQtS8SPS0js0gX38ViSn+1B+OKFqEK9+8OMnTuhOBykjHiLjOnfoAoKys44WtRVLhbEW09XR5Zl9u3bR+3aVXF5oHmlCCKC9Dlqo/+DFfjj4GVir6Szal8cT9crydJ/zvPl78d4uHo0ozvX8vEo7t7VGb+rK+9s7oIJVMWMXy7M3LOY9/6YwZ9W7+bdorzUM9GawJ/n/gDg+WovZK2DjgWgV/OyOVrCaFu6DMff60GvJ+SLz+/Z7JN/nlvLzIPf4pQdnLDcWKfP5nTz5vw9HLqYSpCfhsm9G1AhF0sF7H//TVK3Z1FsNoInTSRp/OcEvvs2jk2bvUGfv5GwBfNF0CcIgiAI9zld/XreguzBwbiPHMW+7m8Chw7B9PMKUkYMA5Wa5B69sP22KsdtasqVJXzxYlQREd46fz164klLy77fv8dzBH/oLRGV9r/PyZj1Xb6PqyBIksSHz9TkkRrROU58F+qvo0+r8vjp1Dhc3pmzGjEhyB6FTIe7SNf1a1KsGe82GkkJ/+IA2GUR+BU5ay+u5KB1Bev9vIGBunjRLd7+Y+yPuBU3tcJrUyO8Bst3XeByio2IQD09sopm3o6cmEjKhx8BEDRkMNoK5X3bYR/ZEreZKXsnAdC+fEe6Ve6efZ/dJTN8wV72nbPgr9cw6fkGVIwOynHbiiyT8tY76Js3I2LFcvw6tEeOjsa28hdwOEClQlOxEvqGDe7cmCAIgiAI9zxdzZpoa9X0bpNxubCtXIm6RAnsLVpgWrIIQ5s2pLz9Tq5yI2grlPfO9JlMuPYfILnn83gyMrLvDxjQn8A3hwKQ+sGHZC5eku/jKmgpmU4S0+685LNLo1L8OLAlnbNWa1UuFsSSN1owvke9O+4VLEwlA0vSpHhTwo3eRDZO2Vkg1y26j0gR5Mb7BKxy4RxQdGf8rp/t617lOTIdbuZsPA1A39bl8dPdeYVv6sgPUFJS0FavTsDLL/m0v76yN2Ev43d9jgcPj5V+nD41+mZ/i+Rye3h38T52nTFj1KmZ0Ks+VYrnrji7Y8NG5Lg4gt4agaTV4rFYMI38APfBg6hMJgKHD8O1bx/u8+d9MTxBEARBEIoYOSkJ59ZtBAx8Pbsmn7lbd1RmM5JaTdBbI/CYzdhWr8lVu9rKlQlbuAApJBjn7t0kv/AiynXltAKHDMa/fz8AUoYNx7Ymd+0XJf+cSubZqVsYu/LwHfctajUqwgNvXBpaKtzfl93LV8H6EACqh9UokOsVeuA3f/58HnroIWrWrEmXLl04cODAbY9PS0tj1KhRtGjRgho1avD444+zYcMGn/fT7XHj8ni/nXn0nz+Bohv46dV6niz3NA2jGlEjvAaLt53DkumkpMnIU3VL3PF82x9rsf36K6jVhIz/HEmrLYBe569Yy3E+3fExbsVN8+IteKXOa9lBn1v28OHSA2w9kYReq2J8j3rUjAnJ9TXcZ86AXo+uVi3k5GTM3Z9Fe+YMqvBwwn9agrFDe+9x50TgJwjCv7tX3gMFQcgZ+cIFkGWMTzxJxNKfUBcvjnzyFKb3RiJfuYK2QnlUYWHIWbWRc0NXozrh839ACgjAuW07yQNeRnF6Z4okSSL4ww8wdu8GHg/mV17DsW1bPo+uYEQFG8h0uNl+Mok/Dl7O8Xk7TyezbOe1QuhJ6Q5+z6oZWNQoisKmixu5nOntX5R/VIFct1ADv1WrVvHpp5/y2muvsXz5cqpUqULfvn1Jvi5r0fWcTicvvvgicXFxTJw4kdWrVzNmzBiionz/YFnd11Lz+lndoNGgCg/3+XXvRpA+mL41+zGyiXfNd8sqkTSvFMFLD1e447S3x2ol9X3veQED+qOrWdPn/fWFNWdXY5ft1Imoy9D6w1BL3kQ0Ho/Cpz8fZt2ReLRqif91r0vdMqa7uoYqKAgcDpzHjpHUpSvuo8eQQ0MxLV6EtnJl5Li4rOPunfTCgiAUnHvpPVAQhJyRgryrh9xxF72ZOZf+iKpkCTRxlzB37Y4rNhZPejpSUM63llxPV6cOYfPmIBkMONatw/LGoOwi7pIkETLuMwxtHgeHg+QX+uA8dCjfxlZQSof788ID5QCYuOY46TbXHc85cN7CG3N3MXH1MRLS7CSnO+g0cSNjlh/kbGLGHc8vaJIkMW3/FPYm7KFccHmijP+BwG/27Nl07dqVTp06UaFCBUaNGoXBYGDp0qX/evzSpUtJTU1l6tSp1K9fn5IlS9KoUSOqVKni875eTbOql3SoPKCOiiryyU6uznBVjA5kfI96PFL9zjOU6RMnIV+8iLp4cQKHDPZxD33n1Tqv83y13rzT+D20au+M5dVyFr/tu4RaJTGmS20aV7j74N3w6COg15PcpRvu47GooqIwj/0YTcUKKIpCxnezUZcpg/YeDZ4FQfCte+k9UBCEnNGUK4u2enUyv5uDoihoSpXCtHgR7qgo5LNnSezYCWQZv7Zt7voa+saNMc2aAVottl9/JWX4iOwi7pJGg2nqFHRNm6BkZJDco5d3hdI9pmfzspQO98ec4eSbdSfveHzNmBAalDXRrn5JdGoVYYF6GpcPx6PA7KztTkVNmMH7GbRNmbZUCq1MhtP3AWqhlXNwOp0cPnyYl166tn9MpVLRrFkz9u7d+6/nrFu3jjp16jB69Gj++usvTCYTTz31FP379891aQE569uR2913/THpdm89FqtDy8YKTXgk2HnbNgpDki2J6Qem0bliV6qYqqAoSo4zIwG4T5wk45tvAQgc9SGKwXDTGP/tsSksskfGbDejUWkI0YfgkB3o1frsMXcs38l7XFZfZ288zY87vMsu321XjZaVwvM0DtluR/L3x2M2IwUEEDTjGy4Bzrg4bFOnYV/1O8ETJ+BRFCgCj1dhK0rPnaJGPDa3lpPH5l583ArzPTC373+Cl3hsbk88Ptf4DxlMSr/+mAcOJnDYUKTixbG8/z6RI0eipKQgBQYiu1x5+mygbdmSkCmTSXnlVayLl0BAAIEfvO/9DKTVEjLjW8zduuM+fITErt0JmTYFlenfVzipQkJQhYTcdV/y4lbPG7UEb7atzMDv97Bs53na1oqmSvHbz5J+1bMuqqzPgLIs82LLMmw8lsDag5fp3aIMpYvY3j+TwcT59HMsPDYfi8PCmKafUCP82l4/X7z/FVrgZ7FYkGWZsLCwG24PCwvj9Ol/j8wvXLjA9u3befrpp/n22285f/48o0aNwu128/rrr+fq+gcPHszVMWfs3j4psh6j00KawZ8L+/bl6pq+9kfKanan7yIpNYkXIvuw5GAGsgeeqGwk2HCH2UlFIXTk++hdLuwNG3AsMhJuM76cPH6+4lZcbE7bxO6MXWR4vN+ORGmiceMmRh/DU6Htspd2Xi/Q5cJPI9GuqpFoTzz79sXfdR9UlhRCR76P1mzGYzAgWa1YOnUhIjiIZLMFRacj/ZWXuVK2zG0fx/+iwnzuFHXisbm1++2xKcz3wNy+/wk3Eo/N7YnHB4iMwDBkEEHfzMC2fDkek4nw9HQ8LheK0YgqPZ3LHZ7BPHYMnoiIu79OsWgMA98gZMJErLO+I97hILNrl+y7VSNGEP7qq3DpEuYOz9yyGY+/kYSFC+6+H/ng3543aqBBCT274hyM+mkPw1sGZwd2OVUzSsfBeCdTf9vDc7WL2NYba1aQ6vYGb4dOHMR90X3TYfn5mrqnCrgrikJYWBhjxoxBrVZTo0YN4uPjmTVrVq4Dv5o1a97yG1JZljl48OANx1R2V2LhbA/mVDtG51zCqtSnbJ06eR1Svsl0ZTBurfdb4l61exPjX5Utv27G7VF4tnV16pQOve35tqXLSD14CAwGSn71FWVKxfzrcf/22BQkl+xizD+jOJ5xjIdLPUKDqIZkujL57vBMUhwppHlS6d/oJYoHFL/p3DrAw02chPrr8tQHOSkJy5vDcV+4gCo6mvAli5CMRmy//MqVY8eIrlsX49NPUTywiP2BKWSF/dwpysRjc2s5eWyuHnO/y6/3wNy+/wle4rG5PfH4/D916uB56SUcv63Cde4cVzIzKdO3D2qVCnPX7nD+PMVGf4xpySLUxfJQHqxOHTKDg0kfNZrAH+ZTomoVjL16Zd9tHfURacNGAKCpXYuAEcORNFkf/11uUl55Fb+WLalTSJ9p7/S8+aCCg2enbuV8ipuz7nCeafjvn0+vdyQulTmbzvDaIxV5xeTi1Tm7+Oeik7c6VSUsIGfF4QvCkWOH2XdiD+myd1VhVMko6sTUyb7fF+9/hRb4hYaGolarb9rEnpycTPgtkqZERESg0WhuGHy5cuVITEzE6XSi0+X8A71arb7jH6brjwlQB2JLj8RtdeLvtKEpXqxI/WH749Qa7LKN0kGlaVisIZIkMal3A7YcT6R+udvvY/Okp5P+yacABA0aiL5smTteLyePny+sOvsbR5IPM6a5dzpcURS+OTCdFEcKKkmFy+NCpVZl923riUQiAvXZ9fnCg/zydH3ZbMbyXA/cJ06gio4m4sclaMqVBUDdtw8Z+/YRUKdOkXpuFDWF9dy5F4jH5tbut8emMN8Dc/v+J9xIPDa3Jx6fa9SBgWi7d0OWZU7v24euZEnUajXhPy0hqUtX5HPnMHd7loilP+YpU3zQgP6QkkL6xEmkjfwAdWgoxvbezOIB3btjnfkd7thY3PsP4Fi+ktAJXyJJEpmLFqGkpxM8dHCh/85u9byJDDby8sMVGb/qGN/+fYpHaxYn5A5f4M/dfJYtsUkE++l4v2MNasaEcPBCCkt3XuSVRyr5agi5FpFVw0/BW7LCJtv+9THIz9dUoWUn0el0VK9enW3XpZr1eDxs27aNunXr/us59erV4/z583iyNrACnD17loiIiFwFfXcr0+6dfjU6rajDik5GT5fs4pdTPwPwTIXO2Xvc6pUx8cbjle94fvrkKXgSE1GXKUPASwN82te8Wn32d5oWb5a9Bnr5yWWsOvMrEhKD6w0lUBfEH2dXA3D4YgrvLNrHK7N3ciYh7xtmPRYLyd2exX3sOKqoyBuCPkEQhNy4F98DBUHIH5oSJQj/cQnqmBjks2dJ6todOSEhT20GDh+Gf+/nQVGwDBqCfeNGIKvMwwcjweMBlQrbTz+R/sV4FJeL9ImTMTz5JNqqVfNjWD7zTMNSVIwOJN3u5tu/75zopU+r8gCsOXiZOIuNns3LALBs5wUyHTcvpSwswfob60enO9N9fs1CTUv54osvsmTJEpYvX86pU6f46KOPsNlsPPOMdx3yiBEjGD9+fPbxzz77LCkpKYwdO5YzZ86wfv16vvnmG3r06OHzvu65sg+VaRda/0v4O21IRShF/98X1mFxWAj3i6BlyQdwuj13PimL+8wZMmbMBCD4ow+R9EVnCvz/UxSFuPSL1Aj3ZsncHLeJOYe/A6BPjb60jnmQqqYqXEy/CEBMmD9VigdRu1QoMWHGPF3bk5JC0rM9cB05gioigvAli0XQJwhCntxL74GCIOQvb/C3GHXx4rhPnSKp27PISUl33Z4kSQR/PAa/p58ClwtzvwE4s+qC6h94AF39+qhLeGs5p0+YiOWtt5HPnydoyKB8GY8vqVUSQ9p6sxev2HWBE1duHyBVKxFMkwrhyB6FuZtO07JyJKXCjKTb3fy8+2JBdDlHqpiq8F7j97N/TnWk+PyahRr4PfHEE7z11ltMmjSJ9u3bc/ToUWbOnJm9zOXy5cskJiZmH1+sWDFmzZrFwYMHadeuHR9//DHPP/88Awb4fpZqa9w2AktsRhd0BoPLjirw7uqv5DeP4mH5yWUAtC/fnlSrTPsvNzDlj+O4chAApo75GJxO9K1bYXjkYV93N08kScKgMZBit5DmTGPy3okAPFXuadqV7wCA2W7BoDEAEOSnZeLzDRjbpfYd6xfejic9naSevXAdPIgqLIzwxQvRVqiQ5/EIgvDfdi+9BwqCkP80MTGE/7gYVXQ07thYkro/i2y23HV7kkpF6MQJ6Js3R8nMJLlXb9xnzyJJEoFvDkG+cAG/dk8DYFu8BG3jxkV+tu+qemVMPFQtCo8CE1YfQ1GU2x7ft7V31m/VvkvEp9l5rlkZABZuO4dbzvkEiS+FGkw0LtYEjeTdeZfmTPP5NQs9uUvPnj3p2bPnv973/fff33Rb3bp1WbJkia+7dZPUrNoaGpcataIUmRk/RVFoX74Da8/9waOlH2fW32exZDrZe86CRn37zEf2jRuxr/kD1GrvbF8uMyUVhmbFm/Pn+T/pVKkLbzd6l7/Pr6Nvzf5IksQJSyyxSecprXTIPt6gzduaaI/VSvLzvXHt3YcUEkL4ooVoK995+awgCEJO3CvvgYIg+IamTBnClywmqUsX3EePkdyjB+GLFqIKDr7zyf9C0usxzZpBUqcuuA4fJum5HkSsXJE96+c6fwFt3bq49u7FffAgrqNH75ng7/XHKnP0Uhpta9+cwO//qxkTQsNyYew8ncy8TWcY3KYy3/59koQ0O2sPXclRGwXFT2sk3Zl2QykHXynaFciLkAyHt4C71uH9WVVEMjaqVWralG3L+NZf4XJpWLbzAuBd33y7QE5xu0n9aBQA/i/0RluxYoH0N686VHiGdGcaH28fTaQxiqENhqFCxd6EvXy87RMc5zuzcL2DeZvyXqxTsdkwv9AH5z87kYKCCF+0AG21e+OPoyAIgiAI9wZt+XLeYM9kwnXgIMm9euPJzLzr9lSBgYT9MA91qVLI586T3PsFFJuNwDeH4N63D1dsLJLJhGK1kvz8C3neX1hQiof68dOgljxVt0SOJiv6tCoHwK97L5Jqc9GtcWkA5m85c8cZw4Lg9rj56/yf2SXIYgJL+fyaIvDLoUyXd8ZPb/c+UaQistTzekt3XsDmlKlULJBmFW+ffCZz/gLcx2NRhYYSNHRIAfUwb1weFytOLuPlWq9xwnyKV/4cwNOLe9JuaXc+2DKShFOtSE8Nw1+voWnFPNTFARSnk+QBL+PYsgXJ35/wH75HV7NmPo1EEARBEAThGm2lSoQvWogUHIxz926Se7+Ix2a76/bUkZGEz//BG0zuP4D55VfRNWuGukwZyMzE9O03aMqVQ750ieQ+fVHycK2CpFZdC/juFLzVLWOiTulQXLLCku3n6NgwBr1WhdPtwZzp9HVX70hBYeKer0hxWKgUWgmtSuvza4rAL4esbisAepv3SaYKDCjM7gDwY+wS/ji7BofbjsMl8+OO8wD0bF72tt+EeDIzSf9qAgCBbw5FFRJSAL3NG0VR+HrfVP48v5bpe2dzds9zBKa1p3xQLcoaGpIR2xdLUnHUKonPutehYvTdz8gqbjfm197AsW4dksFA2NzZ6OrXy8fRCIIgCIIg3EhbvRrh879HCgjAuW0b5n79URyOu25PU64sYXNmg0GP46+/SH37HWSLdw+hJ/4KYXPnIIWE4Nq7D8uQoSieorH37U48HoVV++J4fvo2Uq23D+CuZvRcvusiaklizoCmLHq9RZGo56dVadGpvBmZu1V6FpXk+7BMBH45ZJO9U+5+NhnJzw9J6/uo/HbSneksPr6IKfsmcSr1FKsPXMaS6SQ62MBD1aJue27GN99ml2/w73lvZINbfnIZf55fi4RE/KmWDG9bh/nPD2BC2xG0jOiCzeoPgCRB+ci7D8oVj4eUYcOxr1oFOh2m72aib9o0v4YhCIIgCIJwS7q6dQn7fi6Snx+O9Rswvz4QxX33JQh09ethmjIZJAnrosWQno62bh3Sv5qIunQpwmZ+C1ottl9+Jf2L8XdusAhQgAVbz3LiSjpLtp+/7bHNKkZQOtyfTIeblXsuUjYyAJWq6OS0MGq9WefH7BjFx9tH+/x6IvDLIYfsnQL3t7qLRGKXP8+txSk7KBtcjsohVVmw9SwA3ZqUvm0GSzkxkYyvpwMQ/PZbhR7A5sSOy9uZe3g2AIGZj1MzrB6dGnnXQW88lsCXvx8D4IUHyqKWJH7dG3dX11EUhdT3P8D640+gVmP6eiqGVq3yZxCCIAiCIAg5oG/UCNN3M0Gnw75qFSnDhudpNs6vbVuC3h/p/cHjwfDIw7hPnsT2yy/omzYlZNynAKRPnIR1+fL8GIJPqVUSAx+vwquPVKRXy9uX1lKppOyMnou3X8voaXfJxF72fRbNO/HX+mf/f6Y70+d7D0Xgl0PD639AN6krHf/ZWOilHGRF5vczvwHwZNmn2HYyiXNJmQQYNLSrX/K256Z/NQHFakVbpzaGp54siO7mydnUs3y5+wsUFNqWeYIzJyvxQJVIAI5dSuODnw6gKNC+fkleeqgidcuYOHgh5a6ulfbZODLnzAVJIvSrL/Fr0yYfRyIIgiAIgpAzhgcewDRtCqjVWH/8idT3P8hbUKB4vMuigPSJk9HWq0f6VxNRZBn/bt0IePUVACzDhuPcty8fRuBbjcqH8XzLcjnK3t6mVjFC/XXEp9r56/AVTsan0/7LDQz5YXeOSp/5klFzLfBze9w4Pb7deygCvxxqXLIGz+ijqBR/ASmocAO/PfG7uWK9QoA2gFYlWzE/a7avQ/2S+OtvXaHDffoMmfMXABD83ntFvnxDmiOVsTtGY3PbqBlei341B6BWqXC5PcSn2hi2YA92l0yj8mEMf7IqkiThkj03bPzNqfRpX5MxZSoAIZ+MxdjpmfwejiAIgiAIQo75tW1L6FdfApA5Zy7pn39xV+14rFYypk3Hr3s3DG0eB6cT98kT2bN+AEFvv4XhkUfA7iC5bz/kK1fybRy+JnuU2+7102vVdGtSmgeqRFIqzJ/SYf5o1Sq0ahUXLdYC7OnNri71vMrquvtsrjlR6HX87iWetHQAVIW81PO3078C8GjpxzgV72DvWQtqlUTXJqVve17qZ+PA7Ub/0EPomxX9fWseFEINJiQk3mr0Dlq1loblwvh9/yVWH7hEUrqDcpEBfNLVW6D9SoqNvWfNvPlE7kouZM5fQNrYTwAIeu9d/J/v5YvhCIIgCIIg5Iqx0zN4MjJIffc90idOQhUSQsCA/rlqI3PePDypqQQNGogqLIykzl1w7T+AZDSS9sWX+D39NJJaTeiUSSS264A7Npbkfv2J+OlHJIPBRyPLH8cupTJmxSEiAvVM6NXglsf1bnlj4sNpLzSkhMl4V5MF+en6pZ4Ama5MQg0mn11PzPjlgMVu4Ystc5mUeoLLQZGFWsPvUkYcexJ2IyHRtuwT2Xv7Hq9ZjMigW784nQcPYv/tN5Akgt99u4B6mzch+hDGNv+Uj1t8SpDOO8vavUkpTiVkcDI+A5O/ji+eq0eAQUtyuoP3ftxPsFFHm1wU5bT98ispb3kfj4DXXiUwa6mDIAiCIAhCURDQ+3mCRgwHIHXUaDIXL8nxuVdn+4zduqKJiUFlNBI2+zvUxYujWK3IZ85k7+tTBQYSNnsWUkiwN9PniLeLRL272wkwaDmXlMn2k8nsPWu+5XH/f5VbqXD/Qg/6ADpWeIYOFTpm/5zp4xk/EfjlwJXMy2xMXMLmoIOcDC9TqEs9HbKD+lENaBjdELUcyt9H4gHo3vT2s33pX3iXCvh17IC2atEuQh6fGZ/9/1q1lkhjZPbP12dicskevll3guEL9tD+qw3Ema182aPebZe7Xs++YQPmNwaComDs8RxB79wbAbEgCIIgCP8tAQPfyJ7pSxk2HNvq1Tk6z/rDfDzJyciXr2AZPgLL8BGkfTEebZ3aoPF+Xkp9/8PsAE9Tpgxh33wDajW2pUvJnDnLNwPKJyVNRp6u681v8e3fJ+8YqMaZrUxec5wLyd4Ayy17OHEl3ef9vJXKpirUDK+V/bMI/IqAq78EP1lDVHpSoc74lQ0ux4dNR/FO45EE+ml5++lqdGxQkkrFbh2MOvfuxf7nn6BSETh4cMF19i4cNx/jlb8G8N2hmciKfNP99cuG8b9n6zK4TWWeqFOcKyk2bE6ZVx+pxOI3WlC1RHCOruPcuxdzvwHgcuH31FOEfPpJkd/zKAiCIAjCf5MkSQR98D7Gbl3B48H86us4tm2743mqyAi0devgsZhxHT2a/U++fBl1qRgAlLS0GwI8fYvmBH/wPgCpYz7GsWWrbwaVT154oCxatcTesxZ2n7n1rB/A+FVHmb/1LMt2XiDObKXdlxt4ZfY/2F03f+YsKEaNd59foDaQaP9iPr2W2OOXA5lub+BXzmWnUuJppEIM/K5SS2rUWni6Xkmernf7TJ5pWXVZjJ07oS1friC6d1csdjOf/vMJbo+bK5lXkPj3QOxqVs+75Tp5kuRevVGsVvQPtCR08kQk9Z2zQgmCIAiCIBQWSZII+d84PKmp2FevIfnFvoT/9CO6GtVveY6xQweMHTrc8v70b74lbfQYUkePQVOuHIaHHwLAv28fnAcPYfvpJ8wvv0LE77+hKXn7z5uFJSrYjw4NYvhxx3m+WXeS+mVNt/wyv3OjUngUaFIhnGIhfhi0aswZTv4+Ek/bXGwVyi+XMy9zMOkgACqVmuIBvu2DmPHLAavLm/HHaPNOH6sKaannxosbSLQm5uocx86dONZvALWawMGDfNSzvHN5XHz2z6eY7cnEBMYwuN5QVJL36RlntvLanJ1cTrHl+TrypcskP9cTj8WCtk5tTDO+RdLp8tyuIAiCIAiCr0kaDaYpk9E1aYySnk5yz164z5276/YCBvTH+NyzWbOIr+E6ftx7HUki9LNP0NasicdsxtxvAIot75/DfOX5FmXRa1QcvJDCjlPJtzyuWaUIJvSqT+MK4ahUEk/VKQFw1zWg8+pw0iEWHPsBg9pAqcBSPr+eCPxyIMOZAYDB5gYolKWeZruZL3d/Qf8/+pBoTWTsykMs2X4Oq8N92/PSP8+a7evWFU3p2+8DLEzfHZzJUfMR/DX+vNv4/RvS2376y2F2nzHzxW9H83QNj8VCUo+eyHFxaMqVI2zeXFQBAXntuiAIgiAIQoGR/PwI+24WmqpV8SQmkvRcD+TE3E0MZLclSYSM/Rhd0yYoGRkk9+mLx2LJvo5p1gxUJhOugwexvP1ukU32EhFkoGND79LVb9edyHE/n6hTHEmC3WfMXDQXfGmHq593SwaWpE+NflzJ9G0ZDRH45UC6wxv4rTNWxabRIxVwOYe4jDj+PLcWj+KhkqkyaekGftkTx8Q1x8mw3zrwc2zdhmPLFtBqCRw0sAB7nDvrL/zNb2e8JSqGNhhGiYASN9z/focaNK8UwVtPV7vrayg2G8kv9sUdG4sqOoqwhfNRh4Xlqd+CIAiCIAiFQRUcTPj871GXKoV89hzJvXrjyci4q7YknQ7Tt9+gjolBPnsO8yuvobi9ny81JUpgmv41qFTYfvoJ6w/z83MY+apXi7IYtGqOxKWxOfb2gXBCqp0pfxznz8NXqBDl/Vw/dW0sfx+Jv+Hf7jNmnwa7V8s5JFgTGLJ+ICtOLvfZtUDs8cuRFIc324/Ho8fgdqAKLLilnlcyL/Pany/jp/UD4JFSjxId4sewJ6ty2WIjMvjWJRzSJ0wEwL97tyK7LttitzB132QAulbqTsPoRjcdExXsx/ge9e76GoosY379DZw7dyIFBRH+w/dF9vEQBEEQBEHICXVUFOHzfyCxfQdcBw9iHvASYXNm39UWFrXJRNh3s0hs1x7Hpk2kfjyWkI8+BEDfvBlB77xN2thPSPngQ7Q1a6CrUyefR5N3YQF6OjeK4YctZ5m94RQtKkXccq/fN+tO8Nu+SzfcdjXY+/9+H/Egof6+2RZ0NfBze7yBdqbr7oL3nBIzfjnQIupJUk62h4QySFCgM34/xi7Bg4dMVyZ6tZ4WJVrir9fQuVEp3ni88i3Pc+7e453t02gIeP21AutvboUaQhlUbwhNizXj2arPZd++4Wg864/e/OLLLUVRSB35PvbVa0CnI+y7mUW+nIUgCIIgCEJOaMqVJWzeHCQ/PxwbNmIZNuKuZ6i01aoSOnECAJkzZpK55Mfs+wJeeRlDm8fB6cQ84GVk8+2zZxaW55qVQa9RcSQujZ2nb93HTo2u7adrV68EQX5aAD7uXIs1bz3I7yMepHioH80rRfgs6AMwaryBn83t3T+ZaLu7Jbs5JQK/HDBK4TjTS2NM8/7iC2qP35XMy6w7/xdlg7yZOCONkTfsfbud9ClTADA+07HIz261KNGSdxq/h1ryZtY8nZDBR8sO8vaifWw/mZSntjMmTyFz3vcgSZgmT0LftGl+dFkQhP8YWS68VN+CIAi3o6tbF9O312rvpX362V235ffkEwQOGQxAytvv4Ny/H8hK9vLVl6jLlkWOi8Py+hsoRfDvoilAT7v63s+9czedvuVx1UoEU62EdwXf6gOXebh6FAB/HYkn2Khj5+lkLlls9G1d3qf9vTrjp+AN1q/mFfGVXAV+/9U3voysBCpGh7esg1RASz1/jF1CgDaAS5neqehLGZf4YOkuVuy6gM156719rqNHsf+xFiSJgNeK5mzf1rgtmO03fxOTbnPx1qK92JwyDcqaaFDWdNfXsP60lLRx/wMgePQo/J568q7bEgThv+2BBx7giy++4MyZM4XdFUEQhJsYHnqQkM+9n3kypk4jY+68u24rcOgQDI89Cg4H5n4DkJO8X8KrgoIIm/ENksGAY8NG0idNzpe+57cezcqgVknsP2/hkuXWCVs61Pcmg3G5PWTFXWw6noAl08ms9adoXimCajmsD323/v+Ejs3t2wQzuQr8/qtvfP8krMdgOoyBFABUgb7PBHl1tq9liZYoKEQao5CcxfjjQDJfrDqK3eW55bnpU6cB4Pfkk2gr+Pabirtx3HyMz3eNY9Dfb9xQnsLjUfho2UEuJFuJDjbwcZfaaNR3Nylt37QZy5vDAO/yhIA+L+ZL3wVB+G967rnnWLNmDU888QTPPfccy5Ytw1aEU5sLgvDf49+tK4HD3gQgdeT72P74467akVQqQidOQFOuHPKlS5hffjU72Yu2alWCP/0EgPTxX+LYvCV/Op+PokP8+PCZmiwd1JLiobdeKfdwjWgMWjUKsPrgZcpFBuCWFb7+M5ZzSZk+n+0D0Kq0vNlgODEB3iD06pJPX8nVp+r/6hvf1uTlBJX+C506FcnPD0mr9fk1f4xdQqAukN7VX+T7tvN5r/H7RLmeAKBxheBbrjd2nz2LbeXPAAS8UfRm+9Kd6fxv52fIikyNsBqE+4Vn3zdrwym2xCai16j4rHtdQu5yTbXr6FHM/QeA241f+3YEvftOfnVfEIT/qNdee421a9cyZ84cYmJiGDNmDC1atGDkyJHsz1oKJQiCUNgCBw/KrstneeU1nHv33lU7qqAgTLNmIPn749y2jbSxn2Tf59+1C8ZuXUFRML/+BnJCQn51P988VrMYUcF+tz3GX6/JXuLpcMmEBXg/d645eLlAZvuualWyNdH+xbz9kB0+vVauAr//6huf0+MNbv2trgJJ7HJ1tq9Txc7oNQb8NH6U9C/NqfPemUZj2LFbnps+bTp4POgfehBdjRo+72tuKIrCxD1fkmhLJNq/GK/XHZidbWnz8QRmrT8FwFtPV6NK8btbTitfvkxSz+dR0tPRNWlM6FdfIqnEVlZBEPJH48aNGTduHJs3b+btt9/m1KlTdOvWjSeffJLZs2cXdvcEQfiPkySJkE/Gon+wNYrdTnLvF3GfPXtXbWkrVSJ0wlcAZHw7A+uKFdn3BY/9GE2VyngSEzG/VjT3+10Vn3rrSaqn63n3A6okiUMXUwBwuDx0bFCw+TFCDCEAVDX5NgHhXX0i/i+98ckeGbfijb4DrK4CKeVwdbavVcnW2bdtik0gzebG38/DYfsKkm03Jz2R4+Ox/ujNwBT4xus+72durTi5nH+u/INWpeWthu9kb2iNM1v5aNlBADo3iuGJOiVu18wteTIySH7+BTxXrqCpWJGwWTOR9Pp8678gCMJV/v7+dOnShYULFzJ9+nSSkpL43//+V9jdEgRBQNJqMU3/Gm2NGniSk701/rKKsueW3xNts7PDpwwbgev4cQBUfn6YvpmOZDTi3LqV9K8m5Ff3843L7WHYgj08M2HTLYuz1y4VQkyYEbdHweX2bvQrE+FPrVKhBdbPQ0mHSLGnAFA6qIxPr5WnqZD/whuf9bpNlgEZTiQfZ/R0yk7Wnf+LFEcKz6/uSbsVT9Ju+ZN89PtKAJSgPbgVJ+surLvp3IzZc8DpRNewIfpGN9fDK0wnLLHMOzIHgL41+1M+xLtu2u6SeWfxPjLsbmrGhDDo8Sp3bEtRFGx/rCWpR08u16zN5foNML85jORez+M6cgRVRARh389FFRLiwxEJgvBfZrPZWLZsGT179uSVV14hJCSEIUOGFHa3BEEQAFAFBBA2bw7q4sVxnz5NUo9eWN56mysNGnG5Ri2SunbH9utvOSr9EDRiOPoWLVBsNsz9X8ouFK+tUIGQ/3kziKZPmIhj6zafjim3tBoVskfBoyjsOp38r8dIksTTdb0TDv56b3nz4U9Wyy7vUBAWH1/Izvh/CDOEEajz7QRTngq422w2fv/9d5YtW8bu3bspVaoUffv2za++FQlXCykqsoYAhx2VybeBn1alZUTDt4lLj2Pe0TkApF1ogTOtNAB9m9cjLKgeDaMb3nCex2ol8/sfAAh4qb9P+3g3Fh6bj6zINCvenLZlnsi+ffxvR4m9kk6ov46xXWqj1dz+uwhFUUj98CMyZ32Htm5d/Pv2wZORQeacuWCzeWv1zfkOTUyMr4ckCMJ/0J49e1i6dCmrV69GlmUef/xxBg0aRMOGDe98siAIQgFSR0URNm8OiU+3x7V/P65jx/B/vhfq0FDs69djfulljN26EvLF57fdFiOp1YROm0Li421xnzpFypvDCZ0+DUmSMHbsiGPzFqyLFmN+4w0i1/6B2nT3Gdnz28DHKvPmE1Upabp1kpe2tYsz/a8TpNpcABy6kEL9PGSVz62rK+DalHmChtENsblt+Gluvz/xbt1V4PdfeuPLdHlLOHhkPf5OK6pA3270lCSJpsWbsfzEMgAUWwmC3c2wYycmzEiP2i3/9Tzrjz+hpKSgLlMaw2OP+bSPd2N4w7dZdGwBXSp1y97X9/Pui/yyNw6VBKM71yIy2HDHduy//kbmrO8I/mQsAb2fByB9+jfeoA9AUVAX8bqFgiDce2bMmMGyZcs4c+YMNWvWZMSIETz55JMEBPg+y7MgCMLdUpcsiSJJIAEOB6rAQAIHDSRw0ECsS5dhGTgIXcOG+D/b/fbthIVh+mY6iZ06Y/v1V3Qz6xPQvx8AwWNG49y1G/fJk6QMeRPTnO+yP+sVtrKRd/4bHRFkoGJ0IMcvpxMZpOeHLWcIMGgw6jW0rV3c5300arxB6S+nVzL/2Pd80uIzaoTX9Mm1crXUc8aMGbRt25bnnnuO2NhYRowYwebNmxk3btx9GfTBtcBPkXUYnbYCSe4CsCluAwAZSRVRZb120m0u3PLNZRwUj4eMGTMBCOjXD0mtLpA+5oafxo8Xa/QlQOd9Acan2vhi1VEAXnqoIg3LheWonYzvvkPXrFl20GdbvZq0j8cCEDhiOKhVWBct9sEIBEH4L5s1axYtW7bk559/5scff6Rbt24i6BMEocizLl0KDgdB774LQPqXX2FdthwAY6dnMDz2KJnf5Sw/h65+PYI//ACA1I/H4ti5CwCV0Yhp2lTQ67H/+SeZs77zwUjy7pLF6q3Z9/94PAopmd7ZvlB/PVaHm89/O8p3G07laClsXl2d8VNL3s/vGS7fFXHPVeD3X3zjKxNUht4Vh9MxrjJV4k+h8vEeP4CL6Rc5mXISRVFRM7Qxl1Ps6DQqUqwuVh+4fNPx9j//RD5zBik4GGPXLj7vX05dTL/IypPL8Sg3v8iigv14++lqPFIjml4tyuaoPUVRcO7Zi1+bxwFwHjqE5fWBoCj4P9+LwIFvoG/aFOfu3fk6DkEQhE2bNvHOO++g0+k4ceIE7qyaVoIgCEWZc/dedHXrEvjqKwS8+goAljeH4di5EwBDmza4jhxByWF5Nv8XeuPXvh243VhefQ3Z7E0ao61ejeD3RwKQOvYTnIcO+WA0d+/zX4/QeeIm/jpy5ab71h+NJz7NzvAnqzJ7QBOeqlsClSTxaI1o3LLvAz9jVuCX5kwDfFvSIVeB33/xjS9IH0yn6q3pnJBBmNXi8+QuAJviNgLgSo8h3OjNKtS6aiStq0Yye8Opm2b9Mr6dAYB/zx6o/P193r+ccHlcfLn7c2YdmsnCY/P/9Zgn6pTg4y61UalysRxArUZxOpEvXya594soNhv6Vg8QPGY0kiShOJygydPWVUEQhJvEx8fTrl072rZtS7t27Xj00Uc5ePBgYXdLEAThtiS1CsXpDSSC3nkbQ5vHwenE3Lc/7vPnwen0HpjD1WKSJBHyv3Goy5ZFvnQJy+AhKB7v51L/F3pjePwxcDqxvD4QTxGq9R0WqMejwMKt526YxfN4FGatP0Wj8mF0alQKlUqiT+vyqFWg16jvmHsiP1xd6ikr3pIYssd3pTFyNZr/8hufkuaNwlVBvi/nsDVuCwAVAxqy45S3bMNjNYvRt3V54iy2G2b9nAcO4Ny2HTQaAl54wed9y6kFR+dzMuUkgdpA2pRpm3375uMJWDKdd9WmJEkYWrbE+tNSkl/sk122wfT1NCSNBndcHM7t29G3aJFfwxAEQQDgf//7H263m88//5xJkyYRFRXFhx9+WNjdEgRBuC39Aw/gOnAQV2wskkpF6ORJaGvW9JZ56P0CmUuWoGvaBEmny3GbqoAAwr6ZDgY9jr/+ImP6N0BWUPjF56giI3GfOEHamI99Naxce6ZBDHqtiuOX09h77lppi/VH4zmVkEHf1uWzbwsL0PNU3RLM33qWTIfvJ7mM2hsTz7g9vrtmrgK//+Ib38W0i/xvwyIWmLS4VGqfz/gpikJZzePYzZXpUKU1dpeHID8tjcuHUzE66KZZv6t7+/zaPY26eDGf9i2nDiYeYNmJnwB4ve5AwvzCATh2KY13Fu/j+elbb1tM83b8+/XFfewYroOHUJlCCZs7G1VwMHJCAuaXXkFlMmHs9Ey+jUUQBAFg9+7djBkzhqeeeopHH32USZMmcfToUazWf68NJQiCUBT4PfkE6hIlML/6Ou64OFRGI2GzZ6GKisIdewLXnr3430VGfm31aoSMHg1A2mfjcPzzDwBqk4nQCV8CkDl3Hra1f+bfYPIgxF/HE7W9ZRsWbj0L3DjbVzurbt/Mv0/y5BfrqVwsCKvDxbifD9+yBmB+qRFek9frDMz+2S77bqY0V2vidu/ezcSJE2nQoAEAtWvXplWrVlitVozGW6dJvZftTzjEZsv3OCqX5glJhcrHyV1kj8Lfu4JQuZ9ix4lMWleNJMPu4vPfjgCQ4XATZ7Hxx8HLPF5Ch+2XXwEI6Fc0ymhkONP5as94FBQeLf0YTYs3y75Po5YoHmokJsxIZNCdM3j+G+eOHdn/r7hl0r4Yj5KRgf3v9agCAwn7YR6q+3zfqSAIBS85OZkyZcpk/xwZGYnBYCA5Ofm+ff8TBOHeJ+n1hH0/l6TnehDftDn6Vq1QhYSgOK+tvnLu2IGxbZtct2187lkc27djW7Ycy6uvE7l2DarQUAytWuHfry+ZM2eR8uYwdH+tRR0RkZ/Duivdm5Zm+a4LbI5N5JLFRuyVNE4lZBDop+WTld49iYcvppJqdTF/y1lUKhV/HLpCsRA/Xnm0ks/6Vcy/GNHGaKbsmwSA1eW7QDNXM363e+O7X7mypluDnA50sgtVoO+XelYuFkTxUCMn4zM4k5hJYrqTk/EZnIzPwOqQqVYimGCjDuvCReByoa1bF13t2j7vV058vX8aSbYkivkXp1/NATfcVyEqkDkvNeHDjjXvKs2vdeXPpH81AYDAt9/C2KUL8sWLKJlWgt55m6iN64vM4yAIwv1FkiSsVisZGRnZ/yRJIjMz84bbBEEQihpt5cpE/b2O4FEfgcuFfPECxnZPE/SBNxlL5oyZZC5clOt2JUki5LNPvfv9Ll/G8uaw7P1zwe+8jaZqFTzJyViGDiuQ7Jh3Ujrcn4blwlAUWLHrAgF6DdVLBuN0e7I/Z0sSlAozEmDQEB6oB2Dj8QSf902SJAxq76RIlNF3K/hyNeN3/Rvf9bddfeO76n7K9KnNeoSqJ51FAp+Wc7DYzfx+ZhWvPdmMSEMpjDr1LQMkRZaJv1qwPau0QWG7kH6erZe2oJJUvNlgWHbxyQy7iwCDFgA/3d0lXnHu349l6FAAAl5+iaA3Xs+fTguCIOSAoig8/vjjN93WsWPH7P+XJImjR48WRvcEQRBuSxUURMCLLxDw4gs33K5YbaR/MZ6Ud95FU7YM+iZNcteuvz+mr6eS2K4D9jV/kDl3LgEvvIBkMGCaMpmEJ57CsW4d1vkL8O/ZIx9HdHc6NYph5+lkft5zkX4PVmBW/1uPN9Xq5InP13MmMZMLyZnEhPkmgaJDdrAvYS96jR67bKdYQLRPrgO5DPz+i298VzdYquze+h6+LOew/fJ2Fh1fyJ6E3eiu9OZEfDrDnqhK4wrhNx1r//NP5EuXUIWG4vf0Uz7rU27EBJbi81bjOWk5SaXQygCcT8qk38zt9G5ZjmeblsldBs8scnw8yX36gt2B/uGHCXr3nfzuuiAIwm3NmzevsLsgCIKQ7wIHD8J9/Di2X37F3P8lIn77BU2pUrlqQ1ezJsHvvUvqhx+ROvpj9A0boa1eDW2VKgS9NYK00WNIHTUafYvmaK5bOVgYWlSKIDLIQEKanb8OX7ltgfYgPy11y4Sy67SZDUcT6JnD8mO5ZXPbGLtjDAAxgTE+ucZVuQr8/otvfFdTq6qd3gBQ8mFWz+2XtwHQMKoJs7aZSbO5CPH/9yxLmXO9vwvjs92RDHe3X84XKoRUpEJIRQCcbg8jf9pPms3N1hNJdG9aJtftKXY7yX3747kSj6ZSJUxTJxfJAvWCINzfGjVqVNhdEARByHeSJBHy1Ze4z53DdeAgyX36EbFyea7Lg/n37YNj02bsf/6J+ZVXiVi9CpXRSED/ftjXrsW5bTuWwUMJX/pjoX6O06hVdGhQkm/XnWTZzgv/GvjJHoWpa2NZd+QKzzSI8QZ+x3wX+Plrrj3WQ+sPJ8Lv5gmf/JKrwK9+/frMmjWLdevW4XK5aNq0Ka+//jqGIhR45LeTCSkA7C9WHbjgsxm/DGcGBxL3A9CiZAueGhLFjlNJVIq++Xru02dwbNgIkoR/r54+6U9ubI7bRImAEpQNLnfD7V//GUvs5XRCjFo+eqYm6lzO9imKQso77+LauxcpJNibhaoA6igKgiD8f1WqVLnj3mRJkjhy5EgB9UgQBCF/qPz8CJs1i4QnnsR99CiWwUMxfTs9V/kYvAHkeBIefQz3qVOkfjSK0P+N85aQ+OpLEh55DOfOnWR88y2BWYXkC0v7eiX5bsMpDl5I4fjlNCoXu3FSR62S2HfOzJUUO+6sGoUHL6SQmGYn4i6TE96OVq1Fq9Li8rgYsn4gnSp2oXf1F/L9OpDL5C7Tp0/nq6++wt/fn6ioKObNm8eoUaN80rGiwiV7Z/oURY1kMCBptT65zq74nciKTExgKUoElMBfr+GhatH/+qLLyJp51T/0UK6n4/PbpYw4Ju75ijfXD+GE5UT27TtOJbFw2zkA3utQ465eKJmzvsO65EdQqTB9/XWhLw8QBOG/a8qUKUyePPlf//Xt2xedTodarEYQBOEepS5eDNOMb0Grxb5qFekTJ+W+DZMJ06RJIElY5y/A9vvvAGhiYgge/REAaZ9/getI4W4JCwvU82DVKACW/nP+X495tIY3wcrO02aqlwwGYOMx3yV5MWqvzfrJShGp47dy5Uo+/PBDZs2axbRp05g+fTq//PILnqxo+H5U3r8BqWfa4n++WIEs82xSrOltj/PYbN5giMJP6iIrMhP3TMAhO6gaVo3yId7ilymZTsYs96bF7dQwhpaVI3Pdtn3jJlJHe9c7B3/wPoYHWuZfxwVBEHLpkUceuelfuXLlWL58Od999x1t2rRh9erVhd1NQRCEu6Zv2ICQTz8BIP3zL7CtWZP7Npo3IyBrRs8ybATy5csAGLt2xfD4Y+B0YhkyFMXlyr+O34VOjbwTJ2sOXibddnNfWlfzBob7z1loVC4MgA0+DPz8NdfKAp1P+/dgND/kKvC7dOkSrVq1yv65WbNmSJJEQoLv05wWlkB1NI6UivhZ/H22zNAhO9gdvwsAtbUyz0/fyopdF/71WNvPv6CkpqIuVQr9g6190p/bkT0yTo8DRVH49dTPHDUfwU/jx6B6Q1BJKhRF4ZOfD5OU7qBMhD9vPFY519dwnz+P+ZVXQZYxdumMfxGpUSgIggAQHx/PyJEjadeuHbIss2LFCsaNG0eJEiUKu2uCIAh54v9sd/yzMn9a3hiEKzY2120EDXsTba2aKCkpWAYPRfF4sks/SCEhuA4dIu2L8XhSU/GkpiJlZGT/vyc1tUBKP9QuFUL3JqUZ/1w9Agw373wrFuJH5WJBeBTQabzh0u4z3vwbvnD9jJ/NXUQKuMuyjF6vv7EBjQZXIUftvuSWvU8+jcfts1IOF9MvoJbUhPtFcPiMntjL8cRZ/v2Xbs2qs+L/3LNIqlzF7XlyMuUES2N/YvvlbciKTEhiCOmudABerN6XSKN3Vm/l7otsPJaAVi0xulMtDLrcLX3y2GyY+/ZHSUlBW6e294/EXdT8EwRByG/p6elMnz6dH374gapVqzJnzhwaNGhQ2N0SBEHIV8EffoDr2HGc27Zh7tufiN9+QZWLVW+STkfo5MkktmmLY/NmMr79lsCXX0YVFobicACQMWUqGVOmAhAFXD+FFPTO2wS+/lo+juhf+ihJDG5b5bbHtK4ayfHLaRy8kELZCH/OJGay41RS9jLQ/OSvvTbj58ulnrku5/D222+j013LNOl0Ovnoo4/w8/PLvm3KlCn518NCdtl2Gn1ILHJSOiqHbwK/8iEV+OGJhVxMu0yfqccBaFX15uWRrpMnce7cCSoVxi6dfdKXf7M7fhdjd4whyhhNr6rPk3o5jb+tfyErMn4aIy1LPADA+eRMJqz29v+VRypRqVjulsYqikLKsOG4jhxBFR5O2IwZRSpjqSAI/10zZsxg5syZhIeHM378eB555JHC7pIgCIJPSFotpunTSGz7JO7Tp7EMHITpu1m5mnDQVihP8KiPSBnxFmnjPsfwQCu01aqirV0L1+494HKhjokh4K0RnL1wgbJlyuD65x8yZ89BW6umD0eXc62rRfHNupPsPJ1MhwYxnEnMZFusbwK/DhWe4XLmFRKs8cgeOd/bvypXgd/Ven3Xa9euXb51piiKzdxCcNnNWK0lkVy+2+OnUWmISzBgdcpEBOmpVjz4pmOsixYDYHjoIdTRvivueD2H7ODL3eOpE1GXdxq/h0pRMe/KXFIcKejVejyKzJLYRfSq+iKjlh3E7pJpUNZE9yalc32tjG9nYFuxEjQaTN98jbp4/r+wBEEQ7sb48eMxGAyUKlWKFStWsGLFin897n764lMQhP8udXg4ppnfktixE/a1f5I+YSJBQ4fkqg3jc89i/+sv7Gv+wDxwIJG//Urwm2+S1KUrkr8/8oULyKdP42jdCn3t2mR+OwNdgwboWxZcXodLFis/7jiPXqvm5Ycr3nBf2YgASof7cy4pE3+9N2TadjIJj0e5q7rUt1M/qgGh+lASrPG4lSIS+H366ae+6keR5fZ4l7Fq3EquprlzSvbIqCQVkiSx/kg8AK2qRN30hFJcLqw/LQXA+Gy3fO/HrWyJ20y6M43+tV5Cq9IiyzI1jDUJiQ4hUB/I+fRz/HluLe7Elhy+mEqAQcPIDjVy/YJwbN5C2sdjAQj+6EP0TZr4YjiCIAh3pUOHDmLZuSAI/ym62rUJ+fQTUoa+Sfr4L9HWqIHfY4/m+HxJkgj53zgSdu3GffQYaZ9/QfDI99A1bYJ84SJyZiYZkyajKV0aZ0oKrr17CVs4v0D/1sZZbCzcdg5/vYYXWpa7aYtS66qRzN10hnOJGTxcPYoGZcOQfRD4AYToQwCIMuY+KWJO5Srw+y+6WsBd5cEnyV1WnfmNn0+t4OlyHdh4PACAB6vd/Au3r1uHJzERVUQEhocfzvd+3MqZ1DMU9y9OMf9rs28qSUW78u1Rq9XsS9jL0qNrmLf7LABvPlGV6BC/W7T279xxlzC/+hp4PPh17oz/C73zcwiCIAh59tlnnxV2FwRBEAqcf7euuA4cIHPOXCyDBqNd9SuasjkvZK4ODyfk83GY+/QjY/o3GB55mKChQ0nq0hVtvbq49uwlaMoU0v39C3y2D6B+GRPt6pWgZZVINOqbg7nWVaOYu+kM208l8/uIBzFofVO2Jz4zHgVvXpGYwNyvmsupgssOco+6Gvhp3B6flHPYFb+TeGs855JTSbW6CDZqqV0qNPt+xW4nsXNX0idOBsDYuZPPagn+G71aR6YrE1mROW4+hkN23HB/hisDtdbKJ89WonvT0rSplbvlmYrDgfmll/EkJ6OtXp3Qzz4R36oLgiAIgiAUEcEffoCuQQOUtDSS+w/AY8td1km/xx/H2L0bKAqWQUPQ1qyBrmkTlEwrUlAguhMnce/bT+CbQwr8M6BKJdHvwQocPJ9C18mbeeyzdfSdsZ1f9lzELXuoUjyIqGADNqfMP6eSfdaP7Ze38s+VHejUevw0vstvIQK/O7i6wVIlK/k+4+dw2zmUdBAAS2JJAFpWjkSjvvZryVy0COe2bbj27wfwvnAKUONiTUh1prLu3J98uPV9hmwYRKo7BfAmY1l77g8qhFSkZcUyDG5TJdcv2NSPRuHauxcpJBjTjG+Q/HI3WygIgiAIgiD4jqTTYfrma1QREbiPHiNlxNu5LrkQ/NGHqGNikC9eJHXUaIKGDsV9/DiGDh2yLiKhjonJ/87fwYkraTz/9VaW7bpAkwrh9GhWhmA/LZ/8fJhhC/bgkhVaVfGuxNtwNJ44s5Ufd5zL97IOV8s5VA2tQpsybfO17euJwO8OrqZU1cgKUj4HfgeTDuLyuIjwi2CnNxkmra/L5qnY7aRPnoo6qzaUukwZtBUq5Gsf7qRiaCVqhdfi6/3TsLqtBGj9CVQHYXVZGbdxHjvPn6ZzpS531Xbmkh/JnPc9SBKmyd413oIgCIIgCELRoo6OxvT1VFCrsS1bRubcubk6XxUYSOiEL0GSsC5chGK3o2vaBNsvv3oPUBRS33qnQGr4XSV7FN5ZvJ/IYANfv9iQID8tOo2KL3vWZ9LzDdhz1sLsDaeyi7lfMFsZvnAv41cdY8eppHzti7/GG/jtT9rPZ//4LqeKCPzu4Grgp5YVVPlcx+9q0fZyAbVITHPip1PTsFxY9v2ZixbhiY+HrFk0T3oaSiHUTGwd8xDurMfhdHI8Y0/OpMevffhlsx9psb1Q23JfpN11+Agp77wDQODQIRgeejBf+ywIgiAIgiDkH33TpgS99y4AqR+OwrFrd+7Ob9IE/759ALAMH45//35gseAqVgwMBhxbtmRnsC8I208mcdFs5a2nqnEh2cqcjadZsPUsskehYbkwOtQvyYrdF6lWPJiFrzXn276NaVk5grplQjHq8jdNivG6On5uH9bxE4HfHXSq1JnG2yNptfsUqsD83eO3OyHrBWP1bpJtVD4Mfdam0auzffrWrZEvXgS9HiXZjHXZsnztw51kODOYc3gOAHZzZYxyJYxSIKQ2Qnb5o1NrqFY8d4+LJy2N5AEvgd2B/qEHCRw8yAc9FwRBEARBEPJTwID++D31FLjdWF5+BdlsztX5QW+/hbpsWTxX4smcMct7o8dDQFapiNQxHyMnJuZ3t//VoQspRATqqVYimBaVIwny05KY7mD3Ge+YWleLwpLp5HKqjbKR3gSMLz9cka9fbETzShH52hf/rKWe4E304isi8LuDdlWb02ftIeqfPIOUjzN+lzLiuJJ5GY2k4dQ5EwDNKl57EmUuWoQnIQFVaAgAfk8+geGJtqRPnFSgs37zjswlzZkCLhNfP/0B8zp9wJsVnmVp7yG82bYGVqfMn4dy/gRVFAXLm8OQz55FXaIEoRMn5qogqCAIgiAIglA4JEki5Iv/oSlXDvnyZSyvv4Ei57zunMrPj9AJX4FKhXPbNlSRkWjj41FFRaGtUQMlNZXU0WN8OILr+qKScMkeFAV0GhUPV/fWyF594BIATrcHAPV1pRtkj2+WohqvC/ycHsdtjswb8Yk7B5T0dCB/yzmoJBVPlH2SFsVbcdnsfWI1rRjuvV7WbJ+hfXsc6zcAYOzYkaDBg5HPnS+wWb9j5qOsPvs7AL2rvEz5iJDstdcqSaJL49I8UiOahdvO5nhNduaMmdhX/Q5arbdIuyn0zicJgiAIgiAIRYIqMBDTt9ORDAYcGzaSPmlyrs7XN6iP4dFHAG92d0etWlinTCX4009ApcK2bDn2jRt90fUbNCofRorVxfas/Xptansz068/Eo/dKbN6/yWKh/pRItSIx6Pw7uJ9PDZuHZdTbFgynZxOyMi3vhg115Z6ehRPvrX7/4nA7w5+ObKFZQ3LcSYyPF/LOUT7F+Pl2q8ytOFQfh3WmnkvNyUyyJu+9epsn75JEzxmM6qwMPQPtERbvVqBzvqZDGGEq6ugpNXgmRrNAJiwJpYF+zPIsHvXHz9Wsxjnk63Ep9rv2J5j5y5Sx34CQPBHH6CrW9d3nRcEQRAEQRB8Qlu1KiGfeZOQpI//MleBmuLx4D53HsnPDyU1FUWrwX3iBPKFC/i/+AIAKe+8i5LLshG5VSsmhBolg/ns5yOcjE+nVkwIxUL8sDplxq86yuoDl+nepDRqlYRKJZGc4cDqkJm78TRPfP43n/1yON/6EqALoHZEHUAEfoVq3tGZ/NFFYlPtyj4p4A7eKeRKxbxBpeJ2kz55KqqQEDKmTQNAFRZGyjvvYhk+AiUtHfnceWwrVvqkL9eLNEZSR9sPjflxJEli3zkLP/1zgS3n7By/nAaANqvYpecOM36y2YzllVfB7cavfTv8e4si7YIgCIIgCPcqY5fOGHs8563P9/pA5CtXcnSefc0a3MeOEfTBSJAkDLv3oKlZg/QJEwkcOgRVdDTy2XO5nknMLUmS+KRbHfz1anpO28rrc3dh1HlzbfyyN45ODWPo0rhU9vGvPFKJ2QOa0KN5GRQFDl9MxerIn0QsWpWWKqaqAD7NbCoCvztQq7xRd6DLgaTT5UubCdYEjiQfwSk7b/7lKgq6mjVQlSyBfP689yYUXEeP4jp6FE9mBtq6dVCF+m6J5NXahQC1Sody2eLi0AULY1ceAqBZKT31y3r3Ja4/mkBEkD57tvLfKB4PlkFDkC9fRlOuHCH/GyeKtAuCIAiCINzjQkaPQlutGp7kZMyvv4Hivn0gpHg8pH85AX3z5gQ8/zzGrCyfnkuXccfG4tiwkZCPRwOQPu1rXLGxPu1/ZJCB2S815f2ONdBpVKizJjRUkrew+/WfV+uUDqVqiWBKmoxEhxiQPQoHLqTkW1+CdN5JoCB9cL61+f+JwO8OAnXewK9O6qV8a/PvC+t4e9NwRm0eR7svNzBpzfHs+yStlrA5swns0wcUBXXZskSt+4vIX3+54Z/hkYfzrT//36f/fMzEPRNIdaTSolIE0SEG3lq0jwvJVsID9TxT3bsBdUtsIr/ti6NTw1I3FJ3//zKmf4Nj3Tow6DF9Mx1VQIDP+i4IgiAIgiAUDMlgwPTNdCR/f5zbtpP+5Ve3Pd6+Zg2uI0cIHDoYgMDhw3BHR+NJTkZVvDjpEyaif/RR7x5At5uUd0f6vLafQavmyTol+Kpnfea93IwqxYPwKAp/Hfr3GUxJkqhfxjsBsut0cr71wyk7AQjV+25yRwR+d+CWvd9caA3GOxyZcwcS9wOg2EqSmOYgIe3m/XHW5csBMHZ6pkBnx3Zc3s4/V/5h/YV1pDlT0ahVDHiwIskZ3idj+Uh/1p+xM+j7Pbw5fw/NKkbQs3mZW7bn+Ocf0j4bB0DImDFoq1UtiGEIgiAIgiAIBUBTriwhn3s/66VPmox9w4Z/PU5RFNK/nIAqNBTnnr2kT/uazDlzcdauBYDn0iXcsbHYf1tF8JjRSAYDzm3bsK1YUVBDAaBNLW+SlzUHL99039G4VD5ecYjMrCWee87mrpzF7fxxbjUg9vgVKlnxLnvU6P3ypT2n7OSY+SgA/Ro/xIRe9Xm2aekbrxkfj2PTZgCMHdrny3VzwuG2M+PANwB0qNCRmMBSuGUP87eeAaBshD8XzTY2nLbhkj181Kkmn3arc8vZPtlsxvzKayDL+D3TEeOz3QtsLIIgCIIgCELBMLZvj3+vnrff76coKLLbGwBOnUb61Glkfj0dw9ZtcHU7lUqFx2JBExND4MA3AEgd/TGetLQCG8ujNYqhkuDghRQumq033JeQZufXvXEcy8p1cexSGhn2/Em4GGYIA6Bt2Sfypb1/IwK/O0hzewO/k4El86W9Y+ajuDwuQvWhlA0pRZMK4VQvGXLDMbaffwGPB229emjKls2X6+bEj7FLSLAlEO4XQbfKzwIwf8tZTsVnEGzUMu3FRix5ozmftQlj2gsNaFOr+A21Ta6nKAopQ97Ec+UKmvLlCfnsU7GvTxAEQRAE4T4V/NGHaKtXx2M2Y35j0E31/SSViqh1f1H88MHsf1EH9pEw/3si9+5GFR0NHg/yZe9MW8DLL6EpVw5PQgJpX4wvsHGEBeppWM4bhK05cONWrwblwtCoJa6k2CkWYsCjwN5zlny57tUFrdP2T8mX9v5NkQj85s+fz0MPPUTNmjXp0qULBw4cyNF5v/32G5UrV+bVV1/1Wd88eKdbPer8SexyMMk7tloRtW8ZCFl//gUAY8cO+XLNnIjLiGPZyaUA9KvZH4PGwPnkTGZtOAXA4DZV/o+9+w6PqvgaOP6925NNb/QaIJQAoStFEJBqQRFRxIqKiog/wQqIIFIUlGJ7FSsWVJCmFMUCKCCChF6khF7S6/a97x+bLMRkQxI2gHA+z+MjuXfundnZhbsnM3OGcHPp+yB3zodYV60Co5GId99BYzaf/yIhhLjKXM7PPyGEKAvFZCL83XdQAgOxr1tXpqycmuBgwl71bNye897/4di1G8VoJDT/WO7Hn2Df4b/tE86nR/50z+1HMwsdNxt1JNTyrMGLCvYkNtx80D/TPQ0aPeCZ6llR6xoveeC3bNkyJk+ezLBhw1i4cCENGzZkyJAhpKaWvFjy2LFjTJ06ldatW1do+4ynO5B9tDMhTr1f7rc9ZTsAZ07HMGvl3iJDyM7jJ3D8/TcoCgF9evulzvNRVZX3t72H0+2kZUwrrq3SHlVVmbp0F3anm7axkd75zqVh37bt7H59L41F36RxRTVdCCH+sy73558QQpSVPrYuYZM93wGz33gT259/lvragF69MPXpDU4n6c8+i+pyYbruOgJuvBHcbjJHV3yilwJdGlbio0eu4c3BLYuca18/GgCL3bPOb7Of1vk53GczolbUOr9LHvh9/PHH3HHHHfTv35969eoxfvx4TCYTCxYs8HmNy+Vi1KhRDB8+nBo1alRo+5T0xlhSmmPmwgM/q9PKvjRPBs/EPUF8uS6JjFx74TLLlgFgaNMabeXKF1xnaaRYUjiQsR+dRscjzR5FURR+SDzB5kNpGPUanruxcamnabqzs0l77HFwODD17oX5vnsruPVCCPHfdLk//4QQojwCb+9PwO23g9tN+rDhuNJKPxUy7JUJKMHBOLYkkvvJpwCEvvySZxRx0yYs3y2sqGYXYjbpaFwttNjvv9fUiwLgSGouAP+cyi7yfb48tIrW+2en6p/9Af9NVyF3LSW73c7OnTsZOnSo95hGo6F9+/Zs2bLF53Vvv/02kZGRDBgwgM2bN5erbte/5h0Xd87lcuFwe36zoNVqSrymNDRoeLXDZNYe3sZHW8wEGrTUr2wudN+8pd8DYOzT54LrK60IYwRvX/8ee9J3UymgEilZFmau2APAkM51qRxqLNQn5/7/3zJeeBFX0mE01aoRMnUqbnfFZSa63Jyvb6520j++Sd/4Vpq++S/223/h+ScKk74pmfSPb1dj3wS/Mh775s24Dh0i/emnCZvzQbFBVJG+iY4m+PnnyBo9hqwpUzH0uAFt1aqYhz9BztTXyJz4Kvru3S7q1mBOtxud5uxYWc0IExFmA2m5dqqEmTiZYWXTwRSub1zpgurRa84OMtkcNpT8PBr+fP5d0sAvPT0dl8tFZGRkoeORkZEcPHiw2Gs2bdrE/PnzWXSBqV23b99+3jJbt23FbjqMHiO5R3JITEy8oDoLpO2vBuRRN1zDjnPWc2hSUojJf5AfqFUTt5/qKy0dehJPJpKa56KyGUINWhqa0klMzChStrj+M/36G2ELF6FqNCQPf4ITSYcuQqsvP6X5bF3NpH98k77x7Urrm8v9+Xel9bc/Sd+UTPrHt6utb3QjhhM56llsP61i3+TJWPr4zlZZqG+aNCaiUSMMu3dz9Kn/kfHiC9C2DVGVK6M7dYqDY18i5yLMKFNVlXnbcvn7hI1RncKoFHR2RK5umEJaLhjwZPT8cdM/hNuLbv9QFlXsVb1/3rotkUCtJz+GPz83lzTwK6ucnByeffZZXnnlFSIiIi7oXk2bNkWr1RZ7zuVysX37dho0boD22MuEA2GnE0hISLigOgt8tnMLkEfX5nVISKjpPZ770cdkA/pWrWjWreI2aC+QYklhb/oe2lfpUOS3MF2vVcnIcxRJ6FLQN//uP2fSYVLf/wAVCP7fU1QZdFeFt/9y46tvhIf0j2/SN76Vpm8KylzJLvbzTz6LRUnflEz6x7ertm8SEshNSyd7wiuEfvwpdfv3Rx8XV6iIr75xzJpBau++mDb8ScMzyZh63ID11YlkDHmIoCVLqf3k8IuS+f7zXVvIc1hJUSLpmVDbe7y7epxNx3ejao2EBjioWjmGhIQGF1RXlbzKLP15MQANmzQiVB/q9+ffJQ38wsPD0Wq1RRayp6amEhUVVaT80aNHOX78OI899pj3WMFUwsaNG7NixQpq1qxZ5LriaLXa8//lOycWMuj0F/SXNdeRy8c7PqRxRFO2HvHM221bL6rQPW356/sCb7rxovzDMHfPp6w5tppbYm9lSNOHipyPCvH98Ti3/1SHg8wRI1BzczG0a0vIiCdRrqZ/2P6lVJ+tq5j0j2/SN75daX1zuT//rrT+9ifpm5JJ//h2NfZN8CMPY//9d2y//Erm8CeJ+X4pSkDRvbH/3Tfaxo0JGvoIOW+/Q/a4lwnofB2BPXtgub4Ltl9/I3vCRKI++6TC2/9gl1ju6VSXhFrhhbYwaxsbDezmWFoeK5/vSrDpwnOBGHRGABQUjHqjtz/8+bm5pMldDAYDTZo0Yf369d5jbreb9evX06JFiyLl69aty9KlS1m0aJH3v65du9KuXTsWLVpEZT8nQzl3YaVRd2Ex8q7Unfx4eCWf7ZyL1eEm3GwgNubs/GTXqVPY/9oEQEDfvhdUV2nsTNnBmmOrUVDoUuN6AD5be5A3lu0m11q2BaVZ09/AsSURJTSU8NmzruqgTwghSuNyf/4JIYQ/KIpC+BvT0URF4dyz15v1vTSCnxqBtnp1XMePk/3mDBRFIfTll0Gnw/bzz1h//qXiGp6vWc1wWtWJKLJvddXwAKqFB+BWYduRDL/UlWn13EdFJVgf7Jd7/tslz+r5wAMP8M0337Bw4UIOHDjAyy+/jMVi4bbbbgPg2WefZfp0z6aNRqORBg0aFPovJCQEs9lMgwYNMBj8s9deAWd+WlVV1WC4wMBvd9puAMxqbQBa14koNL3SsnwFqCqGVq3QVi391gnl4VbdfLjjAwB61O5JbFgsaTk2PvztAN/8eYR1+5NLfS/b+vXkvPU2AOGvTUVXrVqFtFkIIa40l/PzTwgh/EUbHU34jDcAz358lp9Wleo6TWAgoRPz9/Z7/wMcu3ejrxdL0JAHAcgcPwHV4aiYRpdCqzqeafebDqaiqio51gtry9rjawFPdk+XWjGJgC554NenTx+ee+45Zs2axS233MLu3buZM2eOd6rLyZMnSU4ufSDiT66CET+3Bq3hAgO/1F0AZKXHAGc/LAUs33uyeQbcWPGjfb8e/YX9GfsJ1AVyd6N7AIgIMvLaoBbc0qo63ZuU7jfH7owM0p98ClSVwLvuvChtF0KIK8Xl/PwTQgh/Ml1/PeaHPcuKMkaOwlXKf9sCbuiOqXcvcDrJeGE0qqoS/NQINBEROA8cIHfu5xXZbACSs6xMX7abkV/8Xeh4m7qe5Fxr9yZz8/TVPP7JXxdUT6A+EIDO1bugUSomRLsskrsMHjyYwYMHF3tu7ty5JV47ZcqUimgSAHbnOSN++vLP3XW6nfyTvg+ApGNhwNkPC4DrzBnsf24EwNTXd8Yjf7A6rczd9RkAA+IGEmYM855rFxtFu9iia0vAk9nIvmkzed9/T8iRI+S0bo3z779xnTiBtnZtQse/XKHtFkKIK9Hl+vwTQgh/C33+OWy//45z9x7Sn3wK4/VdcOzdR3BuDrbBdxPQoWiyQYDQ8eOxrV6D/a+/sMxfQOCA2wkeNZLMF0eTNf0NAm+7FU1YWIW1W6/V8N1fR3G5VY6l5VE9whOgtY2NZPQtTagTE8RDH/xJlsWB1eHCpC/fkqeC7Rx+OfozN8beRJ3gun57DQUu+Yjf5czmzB+yVTXo9OWPkQ9mHsDutmPSmnFYwqgSFkC1/A8NgHXVz6Cq6Js3q/Cpkt/9M580ayqVAitxc91bsNpdJGdZS7zGnZVF6qC7Sel3K9YflqE7lETOa69hXbESNBoiZs9CYzZXaLuFEEIIIcR/l2IyETF7lmeN3po1ZL0yEceuXZj+/JP0gXeRclt/XGlpRa7TVatK8FMjAMh8dRLurCzMdw9CF9cANSODrBkzK7TdYWYDLWqFA7B2zxnv8dBAAze1rE589TDeH9KWlc91LXfQB6DXnI01nO4rdKrn5Sw8IJz4Qw1o8qcRo7H8b+TuVM/6viC1FqDQum7haZ7WH38EwNSjR7nrKK0mUfHUCqnF/U0eRK/V8+nagwyc/Tvfbznu85q0YcOxJ24l4qM5RK//g8xnR6GY8jMyud24UlIqvN1CCCGEEOK/zZ2WDgWbjhsMhM14g+QP3id87qc4DxwkbchDqKpa5Lqghx9CFxuLOzmZrGlvoOh0hL40FoDcTz7FebBi947uFOdZqrV275lizzerGY7JcGHJDXXnbOCeZcu8oHv5IoFfCSIDwhi1z8aTX61FbzSW+z4ncj1BVU6G50Nz7jRPt8WCda1nMWdAz4oP/JpHJzCjy2zaV+3A0dRcPv/jEHl2F2Zj8SOa9u3bsf3yC+GvTSWgZ09QVULfnImak4O+dSv0115L9uy3KrzdQgghhBDivy37rbfQNY3H0KkjWK1kPPkUOJ0YO3cmfOab2Df+hX3DhiLXKQYDoRMnAJD7ySc4du/G1KULxq7Xg8NB5sSJFdruTg2jAdh6JIPMPLv3eK7Vybz1SUxavOOC6zh3xC/Pabng+xVHAr/zUO2eN1e5gDV+jzUfxqe95vJ8l7sY3qMBrc9J7GJbuxasNrQ1aqBr2PCC21saWo3nNxJvLt+Dw6XSLjaSLo1iii1rXb4CTUSEZ2EtkPv+Bxh27UIxm4mYNZOgwYNw/P03rjPF/wZECCGEEEIId24utjVrCbr7biJmvIkSFoZzxw6Cvv4GAGOXLmirV8eyfGWx15uuuw5T377gcpExegyqqnpG/bRarCt/xHbO9jj+VjU8kNhKQbjcKuv3F57pNvvHfSz5+zivLNzOYx9vxO0uOmJZGueO+Dnc9hJKlp8EfiVIs2TxU4SePxvVBsOFbcwYboqgZc3q3N2hDhFBZ0cPrSsLpnneUOyCVn9QVZVJf05k/r5vsLlsAPy+L5l1/6Sg0yqM7NPIZ92qxYImLAxFp8Oxazc50z3peINfHoeuVi00kVHeckIIIYQQQhRHtXpySmgiI9BWrkz4lMkAmOcvwP733yiKgiYyAtXq+ztl6LiXUAICsP+5EcvCRejr18d89yAAMie+Wuw0UX/xTvc8Z52f2aRjQNuaPN6tPj/vPM2WpHQOJeeU6/51w+qi4Pk+bs//vu5vEviV4O+Tu/iywxE+fKA2it7/eySpLhfW/L1MTDfc4Pf7F/j7zGY2nFzPl3u+IMOagd3pZuaKPQAMurY2NaN8J2bRxTXAeegQjgMHSHtyBNjtWNu2IeCOAYBnxFIJCUFbqVKFtV8IIYQQQvy3acLC0MTEYFv7OwABN92Iqd8tKG43mf8biePIERy7dqNv0MDnPXTVqhI84kkAMl99FXduLsFP/w8lMBBH4lYsS7+vsPZ3ivNM91y/PwW70+09/lTvhtx7XV3iq4cCsP1oRrnuXyO4JlrFMyvP7qqY/Qkl8CuBO3/zRJ3LjVLOzXHn7vqUcevGMnnV9/yQeLzQ5o72LYm4U1NRQkIwXtPOL23+N5fq4pOdHwFwU92bqWSuxLz1SRxLsxAVbOT+60pOFRtw880oISGk3v8Azt270URGkjVsGIqi4Nizh9y5nxN4xwAUk6lC2i+EEEIIIf77FK0W86C7yPv6G+yJiQCETJiAKzIS16FDpN59D4pWS2D/20q8T9DDD6GtVRP3qdNkz34LbXQ0QY8/BkDWlCneZVr+1qhqKFHBRvJsLrYkFc0+2rRGGADbyhn4ARi0nnijYE8/f5PArwShZk/UXTvleLmnem4+vZktZ/7mxx1JvLJwBzlWp/ec9aefADBd3+WC1hCW5Ncjv3A46zBB+iAGNLiDlGwbn6w5CMCwGxoQ6COpSwFNYCBBjz2KKz9bkqHHDej37iHr5fEk39wPXfXqhDz9vwppuxBCCCGEuHIEDXscXePGpPQfQMYLL2LfsB5r+2sBcB08iPnBB9CEh5d4D8VkInTcSwDkvP8BzsOHCXrkYTQxMbgOHyH3s5L3QC0vjUahYwPPqN+/s3uezrTgcHlGAbcdySjX/S1OC4F6zyy8GsE1yt/QEkjgVwJX/h4aWrdarsDM4rSQlOkJmPo2bEPnhjFUDgvwnrf+mB/4VVA2T5vTyhe7PR/+AQ0GEmQI5p2f9pFndxFfPZSeTauc9x7uvDzy5s0DQFOlCtZ5XxM+aQqWRYsxP3A/UQu+RRMaWiHtF0IIIYQQVw5NYCBRX39F0GOPYlmxkoxHHsW89Hs0VT3fSfO+W4g78/xbGZh69MDYqRPYbGS+MhGN2UzIyKcByJ4xs1T3KI9ODQu2dUgutJ7wf5//zed/JAFwLC2PtJyyr9FLyjxEiiUZOBuD+JsEfiVwqZ7ROa1LRTGUfTuHfen7cOMmOiCaUb3aMfWuFt5zzkOHcO7bBzodpi5d/NXkQpYeXEKqNZWYgBj61r2RHccyWLb1BAD/690Qjeb8yWSyXp2EK+kw2qpVqfTLKirt2cXpuZ8Ss/kvQl94Hk1ISIW0XQghhBBCXHk0gYGEjBpJ5U0biUn8m9Nff0X0r7+grVMH96lTZLz08nnvoSgKoePHeTJ6Ll+Bde3vBN45EF29erjT08l+590KaXurOhGY9FpOZ1rZdyrbe7x5zTAAQgM8A0U7jpU98CzI6hlliqJpdLMLb2wxJPArwZE0zxt6NLRGuaZ67k7dBUDDiEZFzlnyR/uM11xTISNmdpedRfsXAnB343vQKXreXO5J6NI3oSpNqoed9x7Wtb+T+8mnAIRNfx1NSAhKQABqaCiK9sI2qRRCCCGEEFcvRatFExGBGhCAEhBA+JtvgEaDZf58LD/+eN7r9XFxmO+7F4DMceMACHnxeQBy53yI6/Rpv7fZpNfSLtazH/e56/ya1fRMT9XkR1Zbj6SX+d66/H38UqwpfH9w6QW2tHgS+JUgL39xqFVrKtdUzz1puwEwuWuSe87aPgDrqp89527ofoGtLJ5Ba2BKp9e5JfZWrqvemR93nGTnsUwCDVoe6+47W1IBd3Y2GSNHAWC+ZzCm666rkHYKIYQQQghhbNOaoEeHApDx7PO40s4fPIWMfBpNeDjOvfvI+/IrTD16YGjVCtVqJXvmrApp5yNd6/HN8I7ceW1t77Hm+YFfZp4niWN5Mnueu4G70+0soWT5SeBXgmhDLXJOXIPhZLUyb+egqip70z0jbF//6uTWGWu8Gzq6c3Kw//UXAKZuXf3b6HNUD67OkKYPoVW0hJj0VA0P4N5OdYkKPv+01cwJr+A6fhxtzZqEjB1TYW0UQgghhBACPIGcrkED3MnJZI4efd7ymrAwgvPX9mVNm46anU3I888BkPvFlzgPH/Z7G2MrBRfZCq1KmInoECMFe7fvOZGF0+Uu5mrfzt3A/UTO8QtuZ3Ek8CtBpKEGeafbYjpRGYxlC/xyHbnUDY3FpAnGaY2kSfVQ75o627p14HCgrV0LXZ06fm93hi2jyLH2DaKZ90RHBrWvfd7rrb/9Rt6XXwEQ/sY0NGbf+/wJIYQQQgjhD4rJRPjMN0GrxbJkKZbvfzjvNebBd6OLjcWdmkr2W29jbH8txi6dwekka9r0i9Bqz5rDZjU8o34GnQa7083BM2XbyP3cEb8se5Zf21dAAr8SOF2esF3ndpZ5qmeQIYhXO06mnvV5ULXeIWAA26+/AVRIUpeTuScZsvJ+Zmx+A4e78OaPBp0Gg67kt9ydnU3GqGcBMA95EOO11/q9jUIIIYQQQhTH0KwZwU8MAyDjxdG40orumXcuRa/3zk7L+WAOziNHvKN+loWLcOze7fc27jyWwfPztjDth13eYwUJXkx6Tx6M3SfKFrydO+LnkA3cL74MWzq6gGTQ55V5qid4pntuz9/Lo+DDoKoq1t9WA2CsgMDvy92f43A7yLBloNfoefunfSzYeKTUw82Zr7yK6+RJtLVqev/SCCGEEEIIcbEEj3gSXVwD3KmpZI596bzlTd27YezYEex2siZPwdC0KQE33giqStbU1/zePpvTzW+7z/DzztPepVzNa3kGeSx2z/q8PWUM/Ew6E+b8ffycqqzxu+h2ZK0houFX5NU/UOasnjanlZMZFpKzbei0Co2qeTJ3ug4l4TpyBPR6jO39O5qWlJnEmmOeoPKexvdx4HQ2n/9xiNd/2M3ek+f/8FnX/k7eF18AED5tGprAQL+2TwghhBBCiPNRjEZPlk+tFsuixVhWriy5vKIQ+tJYUBQsS5Zi27SZ4GdGebZ7+GkVtk2b/dq+ptXDeKRrPaYNaoGSvztabEwQgUYtDpfKvZ3q0L9t2TZhN2qNhBnDAHBJcpeLz5k/zKp1qyiG0o/4qarK/Svv5dk/Hkejz6JhlRDvsK/1t98AMLZt6/e1c1/t+QIVlfZVOxAbFkutKDMjezfitjY1zrt9gzsnh4xRzwBgvu9evwelQgghhBBClJaheXOCHnsUgIznX8SdXnKWT32TxgTeORCAzPET0MXWJfCOAQBkT/fvWj+9TsODnWNpUj0MJT/y02k1NM3/vh0TYqJepeAy39es88QGQYayX1saEviVwOn0bOegcVGmNX4nc0+S68gl25mO22EutL7Pmr++z3h9Fz+2FA5kHGD9yXUoKAxqeDfg+QDe3q4mz97Y+LzXZ02eguvYMbTVqxMy+kW/tk0IIYQQQoiyCvnfU+jq18d95gwZ48afv/yokSgmE46//8a6fAXBI54EvR7bmrXY/vyzwttb8J1/Wzn28QOIDIgCoG5orN/adC4J/EpQsIeGxgWUYcRvf8Y/ACj2aEDrnfOrWq3Y160DwNSls1/b+tWezwG4rnpnqgfVxOEsfQpZ259/nt2o/fXXJIunEEIIIYS45BSTifDp0zxTOBcswPrrryWW11auTNDQRwDInDQZbeXKmPNHAbNe9++on6qq/LzzFK8u2kGO1TNLsHmtMAA2HUpj6d/HSDxctgDwz1MbAMiWrJ4Xn8s71RMUrbbU1x3I2A9AbpYnao+v7lnfZ9v4F6rViqZyJXQNG/qtnZm2THal7kKDhjsbDmLl9pPc9fYfrNlz5rzXqlarN4tn4F13Yrquk9/aJYQQQgghxIUwtGqJ+aEhAGQ89wLunJK3SQh67FE0kZG4Dh0i98uvCBo+HAwG7OvXY/v9D7+1S1EU/u/nf1i65Th/HfRkHm1cLZQakYGEmPS8ungnK7aeKNM9TVoTAD1q9/JbO88lgV8JCkb8tGXbf9E74ufIjaFymImIIM+G6bb89X2mzp2984H9IdQYygc9PuL5ti8SZazM//38D8fS8khKPv/+IVlvzsB58CCaSjGEykbtQgghhBDiMhPy7DNoa9bEdfw4WVOmllhWExxM8NNPAZD9xptoQkMw3z0IyN/kXVX91q5r6nkGef7cnwJAgEHHt0924okeDWhVJ4K6MUFlup8bT9vm7vrUb208lwR+JSjIqKNRSx+kuVU3BzIOAOC0xNAkP5snnJPYpQK2cTDrzVxT9VrmbzzKqUwr0SFG7rimVonX2HfsJOfd9wAIe3UimtDQEssLIYQQQghxsWkCAwmbOgWA3E8+xfbXXyWWN999N9ratXGnpJDzf+979gU0GbH/9Re21av91q5r6nsCvw37UwoFlB3jYnj7/jbn/S7+b1rFE5pZnBa/tfFcEviVoJW5IdW2hZFwMLPU15zMPUmeMw9F1eG0RNCoqieYch4/gXPvPtBoMHXq6Lc27knb4/2gZVkcfLrWE3QO7Vrfm0m0OKrT6cni6XJh6tuXgN69/dYmIYQQQggh/Ml0XScCB94BqkrGqGdRrVafZRW9ntAXngfwDHJoNJjvuQfw76hfy1oRGHQaTmVaSUrJ9R53u1XOZPluny9ut2eaYXJesl/a928S+JXg7krNGPN/a7h1e1Kpr1FQ6FGrJxE0I8hkpHHB+r7f1wKgT0hAEx5e0i1KbXfqLp5dM5Ln1j6Dy+3i898PkWVxEhsTRO/mVUu8NueDOTi2b0cJCyVs4gS/tEcIIYQQQoiKEvrSWDQxMTj37yd71uwSy5r69kHfogWqxUL2zFkED3vck/FzSyK2NWv80h6TQUtCfhLHjftTATiamkuPqb9w99t/kJlnJ7kMAaCaP9Uz15l7npLlI4FfCVS7zfOHMmzeXjWoKk+0eJKPb32FH5/rSkJ+Wlfb7/nZPDt28Fv7vt47D4CawTVJz3Xy9Z+HARjarT5aje/pqc7Dh8me5slsFPrSWLQxMX5rkxBCCCGEEBVBExZG2CueAYvsd97FsXevz7KKonhH/XK/+BLVYiFwsGfLs+w3Zvht1K91nQgANid5ErxUCQvA7nSTZ3fRc+qvzPntQKnvpcmf6ul2u/zStiL3r5C7XiEOZCWzq3Zl0oPLt4miRqOg0SioqoptnSeLkLGDfwK/fel7+fvMZjSKhtsbDODj1QewOdw0rRFGp7hon9epqkrGCy+iWq0Y2rcn8I47/NIeIYQQQgghKpqpbx9MPW4Ah4OMZ59HdfvOwmjs0B7jdZ3A4SBr2hsEP/YoGI3YN23C/sc6v7Sndd1IAP5OSsPlVtFpNXz+WHvG928KwO4TpV8yVsVcxfMH/+WALEQCvxJMSf2B2c/E8FnbuqUq71bd7M/4hzybrdBx58FDuE+dBoMBQ6uWfmnb13s8o31dql+PyxbKos3HAHise/0SM4ZaFi7CtnoNGI2ET53i1+yiQgghhBBCVCRFUQidOBHFbMa+aRN5n39RYvmQ558DwPLdd7gzMjAPuguArBkz/NKeBpWDMRt15Fid/HPKs/9ezSgzTaqHAXDwTA42R+lG8OqGemIOpYIiPwn8SuR5k0q7dfuJnOM8/dtTDFo2iFtnrGZDfmpX+x+e0T5Dq1YoAQEX3KoDGfv56/RGNGgYEDeQ93/dj8utck29SFrWjvB5nSstncxxLwMQMuJJdHXrXHBbhBBCCCGEuJh01aoS8pxnH+rMSZNxnTrls6yheXNMffuCqpI19TWCH388f1+/DdjWr7/wtmg1tKjtWdq1KX8/P4DKoSZCA/U4XSoHzpx/izWAQL1n+4eC/fz8TQK/ElQ1egK/a7KOl6r8/vyN253WcE6mWwkN8KwNtK3zDCUbO7T3S7sK1vZ1qn4dltwQftx+EoBHuzUo8bqsV17BnZaGLq4BQY896pe2CCGEEEIIcbGZ778PfUJz1OxsMsaOK7FsyLOjQKPB+uNPOE+cwDzQs9Qpe8Ysv7SlVf7Ay6ZDnsAv1+bk1cU7cbg801D3nMgq1X2iAjzbQ1QPru6Xdv2bBH4lcKqewE+r0ZWqfMH+fT0btGD2fa2pVykY1e3Gts7z2wR/BH42p5WTuSdQULgjbiD/9/M/qCp0a1KJhlVDfF+3bj1533wLikLY1KkohtKOYwohhBBCCHF5UbRawl97DbRarMuWYflplc+y+nr1CLxjAABZU6YS9MQw0Omw/f47tr82XXBbWtf1BH5bj6TjdLkJ0Gv5dddp8myeWGLvydIFfr8e/RmAZEvKBbepOBL4lcCVH/jpShn4Hc5KAqBBZCxt6kai12lw7t2LOzUVJSAAQ0LCBbfJqDMx8/q3mHrdNAKoxKZDaWgUeKRrfZ/XqDYbGS+8CIB58N0Y27S+4HYIIYQQQghxKembNCbokYcByBwzFndens+ywU//L3+K53pcSYcJHHA7ANmz37rgdsTGBBMaqMdid7HreCYajUKjamcHZA6czi7VfaIDPZn2u9e84YLbVBwJ/EpwxulJ85pkiipV+YLAr1ZIbe+xgtE+Q7u2fhtl0ygaGkY0JCrYyPwRnXi5fzNqRZl9ls957/9w7t+PJiqKkPy0tkIIIYQQQvzXBT/9P7TVquE6dozsGTN9ltNVq4b57kEAZL0+jaDHHgONBtvPP+PYueuC2qDRKNzfqS7P39SY6hGBADSuGuo9f/BMDm73+bePcLgcACw9uOSC2uOznRVy1yuETfXMy7VoA89bNsuWSbotHYDlG22cSLd47pGf2MXY/sKneW5L3orNVThjaGSQkR5Nq/i8xpmURNYsz/zl0JdfQhMa6rOsEEIIIYQQ/yWawEBCJ74CQM7/vY9jzx6fZYOHPwEmz3YOriOHCejbB4Dst9++4Hbc1b42/VrXICLICEDj6p7v3AqQZ3dxKtNy3nsULC/Lc1TMBu6lm8N4lTJm1CdLYyPUef5uSsof7XPbQ/h6yyn6tYxFdbmwrd/guVc51vepqsqBzP0czT6K0+Xk3W1vY9aZmdn1LVLSdTSo4ntNX8H1GaPHgNWGsVMnAvr1K3MbhBBCCCGEuJwF9LgBU6+eWFesJOP5F4n6bj6Kpuj4lrZSJYLuvZec9z8gc/JUTD16AGBZspSsxo3RRhee5acJC8N0ww3F3ut8Ckb8Csb59p/OoWp4yYNJzvwRP7vLXub6SkMCvxIYzySQ4wwgwvH3ecvGBFaib827mLfuKIFGLTWjzDh2bEfNykIJDkYfH1+mug9mHOCtxFneTKEF9FoDB064Gf7pejo0iOb1u1qg0RS/14dl6ffYflsNRiNhk16VPfuEEEIIIcQVKXTCBGxr1mL/6y/yvv4G8113FlsuaNjj5H7+Bc6dO8nZudNzUFXJnjyl2PKVt29DGxFeqjYcScll44FUmtcKp16lICKDDKTmeIK4A6ezua5hTInXu/HMNnSqzlLVV1Yy1bMETk/fo9OdPz6ubK5MFbULluSWNKoailajYPsjfxuHa9qhlOIeBY5mH2H07y/gVlXGXjOOj3p+ilHrGTZOsSTzReJPaDUKVcJMPoM+d04OmePHAxA87HHZs08IIYQQQlyxdNWqEjxqJABZr07ClZZebDltVBTmBx/w/KAomG65xfNng4FKG/+k6pEkqh74B23Nmpj69C510Acw57cDTFu2m193nUJRFBpXO7vEav/p8+/lp9foS11XeUjgVwK7LheNLpdSJvX0pmptmD8F07u+r0OHMtU7b89XBBuCmdRxCm0qt+Wnwz9ic9moE1KH+xo/wCHNF7z7UEMe6Bzr8x7Zb7yJ+9RptLVrETzs8TLVL4QQQgghxH9N0IMPoGsYhzs9nawpU32XGzoUJSgIVBXrihXoWySA3U7uhx+iaLXkLV6M68gRQp56qkz1X1s/ijZ1I6mZn3Sx0TkJXo6n+844WuDcBJEVQQK/Eljj5hPV9EPyAkueZ+tW3fxx/Hd2Jx8CVBpUCUZ1OrFv/AsAw7XXlrpOi9PCuhN/0KfujQTqA7E6rXx/cCkAtze4g751byRAF8DunHVE5i8e/TfHnj3kzPkQgLBXXkExmUpdvxBCCCGEEP9Fil5P2KRXAcj78kvsW7YUW04bEU7QQ0M8P9jtaKpWAyB37ue4UlLInjkLU5/e6Js0LlP9vZtXZfZ9renVrCoA9asEA1ArKpCPHr7mvNc3jWpWpvrKSgK/kiieuZ56rbbEYmfyTjP1r8kkh/4foFK/cgiO3btRc3NRQkLQN2pY6ipz7Nm4VBc1g2sC8PORVWTbs6gcWJkoTTOOpjiICaxEurX44WtvQheXC1PvXpi6Xl/quoUQQgghhPgvM7ZrR8Dtt4OqkvHCaFSXq9hyQQ8N8Y762X76CV39+qh5eWS8OBrX4bKP9hWnfiVP4HcszYKzFNs5BOoCAM/Wbe783QX8SQK/EqgazwfFqCt5/72CjJ5OazgGnY6akYFnR/tat0I5T+B4rmBDCDqNznvPo9lHAbg5th8zlu/lnnfXsf9wKBGmiGKvtyz4DvuGP1FMJkLHv1zqeoUQQgghhLgShI55ESUkBMf27eTO/bzYMprwcMwP3O/5weFAU7MGANYVKzD27FHm0b5zpeXYOJKSS6VQE8EmHS63SlLy+df4GXWeWXomrQmN4v8wTQI/H1RVRVE8kblRW/JCy8NZhwFwWqOoEx2ETqvxBn7GNm3KVK9JZ6JD1Y78cHApi7b8w5ZNLbEfup+3vzOw9UgGGo2K1nyA62t0LXKtOyuLzIme4e3gp0agq1atTHULIYQQQgjxX6eNjibk2WcAyHrtdVwpKcWWC3rkERSzGVQV++o1oNWCy42hSdmy8Z/r+y3H6fP6b7yxfA+KolC/smfUb/LSnXy5LqnEazec9CSGtLqs5a6/JBL4+VCQThXAcJ7ALynzEAAuSyT1Kwejqiq2vzZ6rm1btsAPYED9u0jLy+H9PRNwmPZwW4uG3q0YjBHb6FyjC9GB0UWuy5r+Bu7kZHSxsQQNfaTM9QohhBBCCHElMN97D/r4eNTMTJ+JXrQR54z6OZ2QPy3UsnQpqrt8Uy0LAr0dxzJwuVXuuKYWvZtXZffxLDYeSC3x2hCjJxlM86iEctV9PhL4+eBWz84HNhlLnup5uGCqZ37g5zp6FPfpM6DXY2jevMx1r9nuIP3gDVQLCyHF/A3fHZ1NWrYKiovoYBOr/4jD4Sz8YXTs2UPux58AEPrKeBRDyW0WQgghhBDiSqVotYROfAWAvK/m+Uz0EvTIw/Cv783Of/7B9suv5ao3NiaIQKOWHKuTg2dy6NKoEg9cV5fhPRpwX6eSt1czaT1TPXem7SDTllmu+ksigZ8PrnNG/Epa42d32TmRewLwTPWsXznYO81T37QpSkBA2ep1q8zfeISasf+QbD/C3Q3vISpvAAA3t6zB1D4Pkpxt57fdp73XqKpKxthxnoQuvXpi6ty5THUKIYQQQghxpTG2ae1J9AJkjBlb7CieJjwcJciz/YK2bl3QeMKj7PfeK1edOq2G+OphAGw94knGWDPKzN0d6tCidvE5OrzX5u8hZ3fZcbhL3lWgPCTw80GDhqgT1Qk7GEmQ0fdUz6PZR3GrbtxOI26HmXqVgrEVrO8rxzTP1BwbybbjZLAbVVWJ0Saw/4QbrUbhgevqUScmiFpRZrYfzfBeY/3+B+zr1oHJSOi4l8pcpxBCCCGEEFei0NEvoAQF4UjcSt433xQ5b122HDUtHQwGXAcPYuzQHgD7+g3YExPLVWfzmmEAbMsP/LYfzWD+n0dIzy05mNOoZ0Mzi9P/6/wk8PPBoDEw9bdMJk//lbAA3yN+lQIrMaL5s7QNu53b29YiJECP/a/8jJ7lCPy0ikJgdCIA7apcw/cbPZs99mlelSphAaiqit3pCQQB3Hl5ZI6fAEDw44+jq1mzzHUKIYQQQghxJdLGxBD89P8AyJo0BXfm2SmUqttN1ptvYryuE+Z77gHAnZvnHfXL+b/3y1Vn85rhAGw9kgHA5CU7mbZsN1/8cYgd5wze/Jv+nLwiVqelXHWXRAK/EqgOBwCKofiN0gGCDEF0q9OZl7oPYlTfRrjT03Hu2weAoXXrMtep1VsIiNwDQKvwHvyxLxmNAvd09MwJ3nY0g5MZFtrERgKQM/stXCdPoq1eneDHHytzfUIIIYQQQlzJgh58AF39+rhTU8ma/ob3uHXZcpx79hL89P8IfnQo6PU4/v4bw7WezdYtPyzDefxEmetrUj0UrUbhdKaVUxkW2sZGUj0igM//SOKHxOM+rzNozw42WV22Mtd7PhL4+eB0OzmlVckwm1B1ulJfZ9u0GQBdbCzayMgy17vy8ApQXDhyY5j7syfw7NqkMjWjzBxJyeWVhTuIjQnimtgonEeOkJ3/m4jQcS+VeT2hEEIIIYQQVzpFryd0wngAcj/5FMe+fYVG+4xt2qCtWoXAAbefc5ECLhe5n3xS5voCDDriqniye247msFTvRrySNf6AOw/7Xs/v6iAs1n77S5Z43fRHLekMGawjecmNQOD7zV+Sw4s5vMtq/jndBout3pB0zwdbgfLDn4PQKOgruw/5flgWO0unvxsEwPf+h1VVXntrhZoNAqZr7wKNhvGjh0x9e5VjlcphBBCCCHElc90XSdMvXqCy0XmuJexrFiBc89eVJuN9GeeJf2ZZ3FnZ4OiYP9jHeQnfMn9/AvceXllrq9Zjfzpnoc96/xiY4IAOHgmB1VVi72mZsjZJVsOt4z4XTQONT/rj6pB62OqZ7Y9mznb3+ebw29y73t/cDLD4s3oaSjjxu0ASZlJWJwWIkyRhKtNAagUYiLL6kCjwHM3Nubzx9tTLSIQ2x/rsC5bBhoNoePHeff5E0IIIYQQQhQVOnYMGAzY1qzF+c9+9C1aoNrtOHbvxrF7N65jx1DCPHvpodFCgAk1K4u8b+eXua5mtcKAczJ7Rgai0yjk2pycyvSduEWjFIRn/v9uX/o5jFeZAL0n8IvIziyyt0eBY9lHAdC4QggPDKJKgMKprVuB8mX0rB9en496fsqx7GO8t8wz2jfxjuY0rRFWqJzqcpEx7mUgf3PKhg3LXJcQQgghhBBXE13t2gQ98jA5b71N3jffUumXVSjGwgM8jl27OXNDD8jKImj4cHJmzSJ3zoeY7xmMoin9mFnz/BG/A2dyyLY4eOzjjTjdnpG+wym5VAkrukTLrboJ0geRZc+iirkq6aRfwKstSkb8fHDn7+Onc7lRfEz1PJ7jWZzZtHJdfhjVBef27WC3o4mORlu7drnqDTIE0TCyITPuac3nj7cvEvQB5H35Fc7du1HCQgkeObJc9QghhBBCCHG1CR7+BJqYGFxJSeR8/HGR8/rGjTDd0B1UFdexoyjBwTgPHsT2629lqicy2Ej1iEBUFbYfyyAq+GyAeTglt9hrTuaeJMueBYBLdZapvtKQwM8Hl+oCQOtSUfTFj/gdzzkGQLWg6iiKgv2vTQAY2rQu89TLY9lHi8z3rVcpuEg5d2YmWa+9DkDIyJFoI8LLVI8QQgghhBBXK01QECEvPA9A9pszcZ05U6RM0BNPAGBZ+j0Bt9wMQM4Hc8pcV7OaYYSbDWTmOQp9rz/iI/DTKZ7JmHqNnupBNcpc3/lI4OdDhtUTZWcZQ30mdykY8aseVA0A+5YtABhatSxTXadzT/PEz48zavXTbDhwirQc34s5s2fMxJ2Whq5BA8z3DC5TPUIIIYQQQlztAm/vjz6hOWpODlnTphc5b2zdCkO7tuBwgKqCRoNt7Voce/eWqZ5nb2zMsme60Lt5VRpUCfEe9zXip9N4Aj+H28HutF1lqqs0JPDzIdfpCfzydGYUH2v8Ckb8Pv0lg2Npedi3JAJgaNGiTHUtT/oBN25MugBenr+LW99cw+7jmUXKOQ8eIufjTwAIHTcWRe8726gQQgghhBCiKEWjIfTlcQDkfTUPx67dRcoEPebZH9uyeAmmbl0Bz1YQZWHSa72zAOufM+LnK/DTa86mXymY8ulPEvj5YFSDsKbFoaRVLjbAcrldnMg5CcCJMwGE5aTjPnUKNBr0TZuWuh6by8ZPST8C0KFST6qGBxARZKR+5WBUVcX211/kfvkVeYsXkzF+PDgcGLtej6lLF7+8TiGEEEIIIa42xjZtCLjpRnC7yXjpJXIXLyH3iy+xrVuP6nZj6tYVXYMGqDk5aKJjAMibvwB3VtkDMlVVqRYRgEHrCQKTs23k2Yqu4dNpzsYcZ3JPl/OV+SZZPX0IJYaswz0JzjhZfFZPBYbUG8frP/5BJXMM2p3bANDFxaEJDCx1PWuOrSbbkU1MQAw963Wkdz0NaTl23Nu2kjpyFM69+/5Vr0LIiy9eyEsTQgghhBDiqhf8/HNYli3Hvn4D9vUbvMd1desS9vpUgh57lIz/PY3lp5/Q1a+H85/95H07n6AhD5a6jndX/cMPicd5vHt9akcHse9UNgBHUvNoWDWkUFn9OYFfsjWFWOpf4CssTEb8fHA6PclddC5nsVM9tYoWa24UtowG1IkOxp7o2cbB0LL00zxVVeX7g0sB6F23L1rFMxwccvwQKQPvQgk0E/X1PKocPoTunC0b8ubOvZCXJoQQQgghxFUv76t54MpP6FirFlUO7idq4QI0lWJIuXswutq10Fapgpqc7J3Rl/vJp6hud6nrsDtdpGTb2Hksk9rRZu/xI6lFp3tqNdqz17lkA/eLxulwgOJE63b6XEuXlOx5w2pHm3EUrO9LSCh1HXvSdnMo8yAGjQFnejw5VgcAWW/MQBMTQ9Q38zB27IDlu4U49+xBCQ4meNRIcj+bizMp6UJenhBCCCGEEFct1+nT5Lz3fwQNfwJNZCSuw4fJ+/IrjG3bEvX5XHR16pI9cxbmhx8CwL4l8ezWDmvXlrqefq1r8H9D2jK8Rxy1o4MAMBt1RbL5g2fz9oLMni63yw+v8l/39/sdy+GLL76ga9euNG3alAEDBrBt2zafZb/55hsGDRpEmzZtaNOmDffff3+J5cvroGsbMQnvYEv4E4oJ/H47+ivbsn5Ca0yndmQg9vyN28sS+K0+thqAxqHtePOHwwyc/Tu2zCysK1YQdP99aAIDcVssZE2dCkDwiCcJGvoISnAweQsXXfBrFEIIcWldjs8/IYS4GliWLAWdluDHHiVklGdf7Kxp03FnZqKYTAQ9PATbb6sx9eyBEhqK69AhT6ZPIDc/2WJp1Ioy07xmOCaD1jviVyvKTM9mVYstH2woup2bv1zywG/ZsmVMnjyZYcOGsXDhQho2bMiQIUNITU0ttvyff/5J3759+eyzz5g3bx5VqlThwQcf5PRp/y6AdLs9Cy4Vt4Ki1RY5vzJpBRkBK9EFnqaGLR01JwclIABdg9LPxX242SOMbjeWtOMJAHRpVAltTja4XOhi6wKQ83/v4z51Gm2NGgQ9cD+agAC01arhTkm58BcphBDikrlcn39CCHE1cKWkoI2KRhMaSuCguzyJXDIyyH7rbQB0sfU8Ba1WzIPvBsCdnOw5tOpnnIcPl7nOOvkjfkkpOcWO+MHZdX4ajf/DtEse+H388cfccccd9O/fn3r16jF+/HhMJhMLFiwotvz06dO5++67adSoEbGxsUycOBG328369ev92i6XyxP4aXxM4T2W7dnKwWUNp0rSHgD0zZuh6EqfL0eraKmki2fTXgVFgYHX1EITEQFGI46du3AlJ5PzzrsAhDz/LIrJhDs7G9fhw2irVLmAVyeEEOJSu1yff0IIcTXQVqmC6/RpXCkpKDodIS++AEDOhx/hPHYMx44doNGgiYkh6P77QafDsXUb+pYtQFXJ/az0OTc2H0pl2g+7+edUNlqNQp7NxZlMa7HBX92wWAAahMf55XWe65Jm9bTb7ezcuZOhQ4d6j2k0Gtq3b8+W/M3Qz8diseB0OgkNDS1T3S6X73mzLpcLp+o5r1GVImVzHTlk2jMACNdXQr/tN5yArnnzEu/rvb/qQlVVdBodX61PAqBD/SiqhZtQAdNNN5Lzyac49h9Azc1F16wZhr59cblcZL/7HqrNhvHWfqWqy98K6rwUdV/upG9KJv3jm/SNb6Xpm/9iv13Oz7/zlblaSd+UTPrHN+kb3y5l3xhv7AsTXiFr9luEvDQW/fVdMFx7Dfb1G8h45VWcO3Zg7HEDhIZCKJhuugnrwoWg9yR9zJ33Nean/4diMp23rr8PpTF/4xGyLHaqhZs4kmph4Fu/8+Xj7akUWvj6LWf+BuBkzkmqUNWvz79LGvilp6fjcrmIjIwsdDwyMpKDBw+W6h7Tpk0jJiaG9u3bl6nu7du3l3j+7FRPSExMLHTumO0oAC6HmWijnqz169EDx0NDOfivssXZY9nND2nf0yrwWpZt8WTrbB3t8Naj7dGDiBUrcX37LQqQ3Ls3pxYuJHD5CgJ//ImcOwdy6tQpOHWqLC/Zr87Xf1cz6ZuSSf/4Jn3j25XWN5fz86+0Za5W0jclk/7xTfrGt0vVN4GD7oI5H5K6fz95N/ZF6dmDiPUbsH3/PW6TiVOjRnI4//u57rqORC1ciH3jRtwREWjT0tj77ntYr+9y3nqMNjsAiQfP8FCbEN7faCMlz82vG7fRMLrw7gEmTNiwEZQdBAH+7Zv/9D5+77//PsuWLeOzzz7DaDSW6dqmTZuiLWbtHuSP+O1aDIBW1ZDwr4Qt6UfT4Ay4rGHE14xCn+SZ49vg1n5oq1U7b91LNiwix53NcbsThxviqgRze9fWKIriLZP2yafY160DIDw/uYsmOhrzuJeo9OADhcpeTC6Xi+3bt5fYf1cr6ZuSSf/4Jn3jW2n6pqDM1aQin3/yWSye9E3JpH98k77x7ZL3TUICeXFxaGbOIuC31YVOGeLiiL/pxrPfuRMSSPvmW+zrN2CKjcWRlkb02t+J/N9T562mrsXBOxtWcybXTac2zalZJxezUUf1iEAMusIr75QzCrgg3ZwO7tL9m11alzTwCw8PR6vVFlnInpqaSlRUVInXfvjhh7z//vt8/PHHNDxnj7vS0mq1JX7A3AVTPd1KkXIn804A4LKFU8ueBU4nmuho9DVqnDcgO5V7isRkzzSe3Xs9CVwGta+N7py1gbYNGzxBn1ZL5KcfozpdaMxmDG1a+9xa4mI7X/9dzaRvSib945v0jW9XWt9czs+/0pa5WknflEz6xzfpG98uZd8E3zOYoLvuxL55M+6sbBSTidR778O5dSvO31Zj6t7NWzZo6FDS1m/AsXs3aLU4Nm3C/c8/6M/zb3F4kJbqEYEcS8tj76kcrqnn+9/5glV/6bZU0Pu3by5pcheDwUCTJk0KLUwvWKjeooXvjdA/+OAD3nnnHebMmUPT/M0U/a2y00zgiQhqpBTN7lKQ2MVpDafaqUMAGBKal2oU7sfDK1FRqWZqTHpGIDEhJro1qew9r6oqmRMnARB4112Yrr+egBu6Y2x/7WUT9AkhhLgwl/PzTwghrjaKToexXTsCbuiOqVNHgh58AIDMyZNRz1lHZ+rWFV1sLOTkoItrAEDu51+Uqo7G1TzrsbccSuOdn/bx0vzit+Nx5+/fl2ZNL/fr8eWST/V84IEHeO6554iPj6dZs2Z8+umnWCwWbrvtNgCeffZZKlWqxMiRnv013n//fWbNmsX06dOpVq0ayflpVQMDAzGbzX5r183uGO5/9V30jRsXOfdky6doe7g3mbWM1PhoDgD6Uuzf53A7+OnwjwCknmgEwIB2NdFpz8bf1uUrcGzZghIQQMjI//nhlYjzcblcOBwOv9wHwGq1ym/0iiH945v0jW9XcjKEy/X5J4QQV7vg4U+Q+9U8nHv2krfgO8x3DABA0WgIevghMp5/AXeKZ8ZG3vwFhLz4AprAwBLv2aRaKD9uP8neU9ls2O/Zli3IpOPZGwvHGk7Vk2ckw5YBft7S75IHfn369CEtLY1Zs2aRnJxMo0aNmDNnjneqy8mTJwvtYzFv3jwcDgdPPvlkofs88cQTDB8+3G/tUpyeTsdQdJTNrDfTrV5LAE79vQkXYGjp+ze0Bf48uYFMWwbBunAOHK6MSa/lllbVvedVp5OsKZ71fEGPPIw2JubCX4jwSVVVTp06RUZGht/up9PpOHz48CVbg3k5k/7xTfrGN1VV0Wg0nDp1iqpVq15R/XO5Pv+EEOJqpwkLI/iJYWS9OonsadMJvPkmb/bOgNv7kzllCu4zZ9DExOA+cwbL4iWY77qzxHs2qe4Z8dt7Mos729Vk3p9H+O6vozzZIw6T4ewvfTX5EzJdqv9/8XnJAz+AwYMHM3jw4GLPzZ1beI+MX3755WI0CbfdMwKkGAy+y6Sn40pKAsDQrNl577n80DIAjJYEQEvv5lUJCTgbWOZ9/Q3OAwfQhIcT9Nij5W67KJ2CoC8mJobAwMAL/kKpqioWi4WAgIAr6supv0j/+CZ945vb7SYjI4PMzEw0Gg1VrrA9TC/H558QQggIeuB+cj78CNfx4+R8+hnBQx8BQBMQgHnQIHLeeRclf5Qvd+7c8wZ+9SsHo9MqpOfaGXBNLZZtO0GWxcnRtFzqVw45W68hiFxnLgr+/z5wWQR+l6M3gv8h9a3m1N1flZnnHP8nfR+fb/2eAHctbrZFEwpoa9dCExZ23nsOiX+I7w8sY9Xa2gDc0a6m95zbYiFr+nQAgp8agSbYz2O7ohCXy+UN+v6dTr28VFXF7XZjMpnky3sxpH98k77xTVVVVFXFYDCQnJxMTEyMTIcVQghR4ZSAAEKeGUnGyGfInjUb8113ognxBGjm++4l573/8wwA6fU4tm7Dvm1biQNBRr2WutFB7DuVzT+ns6kVFcT2oxkcTskrFPhVD6rB6bzT6DT+f9Zd0uQulzM3bhRFRVEKd9Gu1F1syfiZX46s5q9dniQv+ibxpbpn3bBYnmw1nAVP9GXWva2pExPkPZf74Ue4T59BW6MG5nuK/+2v8J+CNX2B55mPLYS4PBT8XfXHelwhhBCiNAJvvx1d/fqoGRlkv/Ou97iuenVMvXoBeLdyy/vyq/Per0EVT4C363gGofmz/o6k5BYqY9B6ZhsqFRCmSeDnQ3UlB4AEa+FU28dzjnvOB1Un9ugeAAzxTcp0b71OQ9vYs6NM7vR0st9+B4CQZ0ahlHFPJlF+MroixH+D/F0VQghxsSk6HSEvPAdA7gdzcJ065T0XNMST+dN13BMb5C1ajDsvr8T7NajsmdGXmJTB7/s8CboOpxYO/BpFepK9xIXH+eEVFCaBnw8KngWVgf/6snEy1/Pm3t22JfUTfwdAH1/yiN9fpzYy8+8ZrD+yHZdbLXI++933ULOy0DVqRMCt/fzQeiGEEEIIIcSFMvXogaF1a1SrleyZs7zHDe3aebL/Oxwo4eGo2dlYvv+hxHsVjPidyLB4jx1OLhz4rT+xDoCkrEP+egleEvj54MoP/HSawssgT+eeBiBGF47zwAEA9OcZ8Vt26Ad+PvITr/+2mNtnrmXPiayz9Zw+Te6HHwEQ8tyzKBp5S4QQQgghhLgcKIpCyPPPApD75Vc4Dx/2Hjc/9KCnUP7WQ3lflTzds37lYPokVOWeDnUIC/RM9TyeXniUsFKgZ3/vJpGlW0pWFhJl+JCM5804pTubZMXldnHGcgaAyKNZ4HajiYkpcduF5Lxktpz+G4Dc5EZk5tmpEXF2XVn2zFmoViuGVq0wde9WES9FXIHS0tIYN24cXbp0IT4+ng4dOjBkyBA2b95cIfXFxcUV+9+cOXO8ZTIyMhg5ciQtW7akdevWvPjii+Tmnv0t1rFjxxgyZAgtWrTg7rvv5tixY4XqGDp0KCtXrqyQ9lcEt9vNgQMH2Ldv30Vbd3ax3/fnn3++2Pe9b9++hcp98cUXdO3alaZNmzJgwAC2bSu8Ke3kyZNp27YtnTt3ZsmSJYXOLV++nEcflSzGQgghLl/Ga6/F2Pk6cDrJmv6m93jgLbegiYhAzcoCRcG+8S8c+w/4vI/ZqOOlW5sy8Npa1I7x7L+abXWSa3N6yzjcdgD2pu/1++uQwM+HLMWTSSddczYBS7IlGbfqRnVr+WBtOnD+0b6fj6zCjZumUU1Z/GQ/Zt3bGrPJM4roPHyY3C++BCDkhedkDYsoteHDh7N7926mTJnCypUreffdd2nbtq3f9iT8t99//73Qf5MmTUJRFHr27OktM2rUKPbv38/HH3/Me++9x6ZNm3jppZe856dOnUpMTAwLFy4kOjqa1157zXtu2bJlRe53uVJVldmzZ1OvXj3q1atHXFwcNWrUYPz48djt9gqt+2K/76NHjy70vq9evZqwsDB65S9oB897N3nyZIYNG8bChQtp2LAhQ4YMITXVsz76l19+4fvvv+fDDz/kmWeeYcyYMaSlpQGQnZ3NjBkzCn1OhBBCiMtRyPOetX6W777DsceT50MxmQgcdBcAmvBwAPLmzSvV/epXOpvJ80T62amfBfv3pf0rz4g/SODngz43AntWDcyuAO+xM3meaZ4uezBV0k56yjVu7PMebtXNqiM/AdC9Vg9Mei3xNcK857PemAFOJ8bO12G89lr/vwhRZqqq4s7LK/d/anmuUYuu+yxJVlYWmzZtYtSoUVxzzTVUq1aNZs2aMXToULp16+YtM3r0aK655hpatmzJvffey578f6TKIzo6utB/P//8M+3ataNGjRoAHDhwgLVr1zJx4kSaN29O69atGTNmDD/88AOnT3v+3hw8eJAbb7yR2rVrc+utt3Igf6p0VlYWM2bMYNy4ceVu38WiqirDhg3jySefpH379ixbtoxVq1bRv39/Xn31Vfr374/T6Tz/jcqhNO97XFwcX375JQ899BDNmjWjW7durFixotx1BgcHF3rfd+zYQWZmJrfddpu3zMcff8wdd9xB//79qVevHuPHj8dkMrFgwQLA89lo27YtTZs25cYbbyQoKMg72vv6669z1113UbVq1QvoGSGEEKLiGZo1w9SnD6gqWa9P8x433zMYNBrc+b/UzPt2PmoJM4GcLjf7T2ej1Zwd8Dl5zpo/l8vzPcLqsvr7Jcg+fr6YjzbnoCGG6pqD3mNNo5oRfuZp9qckUznpDwAMJSR22Za8lTN5pwnQBnJtlfaFzjn27sWS/8Uo5LlnK+AViLJSVZWUfrdh37Tpgu6TWcbyhjZtiFq4oNQjvoGBgQQGBrJq1SoSEhIwGAxFyowYMQKj0cgHH3xAcHAwX3/9Nffddx8rV64kLCyMTZs28fDDD5dYz/jx47n55puLHE9JSWH16tVMmTLFe2zLli2EhITQtGlT77H27duj0WjYtm0bN9xwA3FxcWzcuJFu3brxxx9/EBfnyVb12muvMWjQoP/Exty///477777Lu+99x5Dhw71Hu/WrRs33XQTvXv3Zt68eT435L4QpXnfAWbOnMmoUaMYPXo0ixcv5umnn6Z+/frExsYC0LdvX06cOOGznlatWhWawnuu+fPn0759e6rlp6622+3s3LmzUF9oNBrat2/Pli1bAGjYsCHffPMNmZmZHD16FKvVSq1atdi0aRM7d+78TwT8QgghBEDIs6OwrliBdcVK7H9vwdCyhWdrh+7dsP74E0pAAO6UFKyrVhHQu3ex99h0KI2n5m4mJuRsFv/jaWfX+VlcniDQ5rL5vf0S+PngUj1fwnXawoOix1PBZQsnenciUPJUz58O/whATmoD7nt3E9Pvbkn1/PV9Wa9PA1XF1KcPhubNK+AViHL5D0y31el0TJkyhbFjxzJv3jwaN25M27Zt6dOnDw0bNmTTpk1s27aN9evXe4OD5557jlWrVrFy5UoGDhxIfHw8ixYtKrEeXxvbL1y4ELPZTI8ePbzHUlJSiIiIKNLO0NBQkpOTvW0YPXo03bp1Iy4ujgkTJvDXX3+xe/duRo0axYgRI9ixYwcdOnRgzJgxPgObS+n999+nQYMGxQbNvXr1onv37rz//vsVEvid730/tx0DBgwA4KmnnmLdunXMnTuXl19+2fsaShqVNJlMxR4/ffo0a9asYdq0s7/lTE9Px+VyFfmsREZGcvCg55dmnTp14uabb+b222/HZDIxdepUAgICGD9+PJMnT+arr75i7ty5hIeH88orr1C/fv1y9Y8QQghR0fT16xN4e3/yvvmWrKmvEfW1J5mL+b57sf74E2p+kpfcL7/yGfg1qBxMoFFLdIiJM1me4O7cBC96Tf73n7JNCCsVCfx8cJIf+OnPdlFmnoMcq+cLU6XU4yhBQWhr1fJ5jzqhddh6ehdJpxqi0TmpHOr5QmXfvh3r8hWgKIQ8M7ICX4UoC0VRiFq4ANViOX/hYqiqiiUvj4DAwDKt11QCAsq8vrNnz5506dKFTZs2kZiYyNq1a5kzZw4TJ07EYrGQl5dHu3btCl1jtVo5cuQI4PlyX6uEz25JFixYwE033YSxjPtNVqpUiVmzZhGY3z92u50hQ4YwZcoU3n33XcxmMytWrOChhx7i66+/5p577ilX+yrSvn376NixIxof2Xevu+463n777Qqrv6T3vWD6ZYsWLQpdk5CQwO7du70/F4zWldWiRYsIDg6me/fuZb52+PDhDB8+3PvzW2+9xbXXXotOp+Pdd99l6dKl/Prrrzz33HN899135WqfEEIIcTEEP/0/8hYuwvb779jWr/ckfrnuOrS1a+NKSgLA9ttqXKdOoa1cucj1EUFGVj3vWaJx3Ss/4XSrhJvP/rI73BRWYW2XwM+HrPgVRAXkkHzq7BTND7bNIajacQLSm2J0OdA3aVHi9gu3N7iDH9fWxGnJ5JYu1b2jh1mvTwcg4NZ+6Bs0qNgXIspEURSUwMDzFyyGqqoogKaMgV95GY1GOnToQIcOHRg2bBijR49m9uzZ3HXXXURHRzN37twi1wQHe7LUlneq56ZNmzh06BAzZswodDwqKsqbsKOA0+kkMzOT6OjoYu//3nvv0aFDB+Lj4xk7dixPPfUUer2eHj16sGHDhssy8AsNDeV4/katxTl27BghISE+z/uDr/f93HV3JSnPVE9VVVmwYAG33HJLoZHY8PBwtFqtN5FLgdTUVKKiooq9/4EDB1iyZAkLFy5kwYIFtG7dmoiICHr37s2LL75ITk4OQUFBxV4rhBBCXGq6GjUw3zmQ3Lmfk/X6NKIWzEfRaDDfew9ZE16BgACwWMj7biHBjz9W7D00+ev7akQGcig5t1AOkLjwhvxy9JcK+S4pgZ8PqtaBRmtHe85Uz7+S1xAYk01kWnXg/Bu3/3Mqm21HMtFqFG5p5bnGvvlvbD//DFotIf/7X8W9AHHVqVevHqtWraJJkyakpKSg1WqpXr16sWXLO9Vz/vz5NGnSpNDUQvCMMmVlZbFjxw7i8/9ebNiwAbfbTbNmzYrc58CBA3z//ffeNrhcLu+WCA6HA1f+VInLzYABAxg6dCh79uwp0gcpKSl89dVXPPnkkxe1TQXve4HExET69evn/Xnr1q00atTI+3N5pnpu3LiRw4cPc/vttxc6bjAYaNKkCevXr/eOBLrdbtavX1/sdFdVVRk3bhzPP/88ZrMZt9vtbUvB/91udyletRBCCHHpBD/5JLnffIv9z43Y1q7FdN11mAfeQfZrr3tnjuV98y1Bjz1aYgBXLdwT+B1LzaOdZyk+Bl3ZZlSVhQR+PqiK58uHUevZz8/itGB1ZwNQ7ZRnbzJ9k+LX953KPcnBzIOs3uT5rXWXRjFEh3i+TGXlr48JvL0/urp1Ku4FiCtWeno6I0aMoH///sTFxWE2m9mxYwdz5syhW7dutG/fnoSEBIYNG8YzzzxD7dq1OXPmDKtXr6Z79+40bdq0XFM9c3JyWLFiBc8991yRc7GxsXTq1ImxY8cyfvx4HA4Hr7zyCn379qVSpUqFyqqqytixY3nhhRcIzB9dbdmyJd9++y116tRh8eLFRfaJu1wMGjSI119/nd69e/PBBx94s2n+9ddfPProo5hMJoYNG1YhdZ/vfS+wYsUK4uPjadWqFUuXLmXbtm28+uqr3vPlmeo5f/58mjdvToNiZig88MADPPfcc8THx9OsWTM+/fRTLBZLsSOQ3377LREREXTt2hXwvO+zZ88mMTGRNWvWUK9evQofMRVCCCEulLZqFcyDB5P74YdkvTYNY6dOaMLCCOh3C3nzvgatFuc//+DYuhVDQkKR63ccy+DlBdvJy9+/7+CZHJwuNzqthupBnl/aR5iKz7VwISTw80XjCfwMOk/gdzrXk5Le7TRRJX/+rq+MniuTVrDgn/k4MuKAntzWpiYAtg0bsK1ZCzodwU+NqNj2iyuW2WymefPmfPrppxw5cgSn00nlypUZMGAAjz7q+c3S+++/z4wZM3jhhRdIT08nKiqK1q1b+5x+Vxo//PADqqpy4403Fnt+2rRpvPLKK9x3331oNBp69OjBmDFjipT7+uuviYqK4vrrr/ceGz58OCNHjmTAgAF06tSJu+++u9ztrEhms5lVq1Zx6623csMNN1CpUiX0ej3Hjh0jNjaWVatWVVh20vO97wWGDx/OsmXLGD9+PNHR0UyfPp169eqVu97s7Gx+/PFHRo8eXez5Pn36kJaWxqxZs0hOTqZRo0bMmTOnyGctJSWF9957j6+++sp7rFmzZjzwwAMMHTqUiIgIpk6dWu52CiGEEBdT8BOPk/fFFzi2bMH28y+YunfDfN+9nsAvf/ZK3jffFhv4hQcaOJaWR8GODgv+OkrPZlVoVjOcXam7AMiwpfu9zRL4+aAqnvVa+vwRv1N5nn37XPYQKicfBYMBXYOi2edcqotfj/4KQF5aLLWizLSsHY56zp4fgXfeia5mzYvzQsQVx2AwMHLkSEaO9J0YKCgoiDFjxhQbeJXXwIEDGThwoM/zYWFhTJ8+/bz3ufPOO7nrrrsKHYuMjOSTTz650CZeFDVr1mTTpk2sWbOGVatW4XK5aN++Pb1790ar1VZYvaV538GTROejjz7yW73BwcFs3bq1xDKDBw8+bybTqKgofvnllyLHn3jiCZ544okLaqMQQghxsWljYjA/cD85775H1rTpGLt1xdCsGfrmzXBs3QZA3uLFhI57CeVfCfGqhgcQZNKRY3XSqGoIu09kcTrTs29fWH5ylyqB/t/jVgI/X/Knepr0hUf8XLYQKmftQR8Xh5J/7lxbzySSZk1FcQdgy6pDvx7VURQF69rfsW/4EwwGgp8cXuQ6IcR/h6IodO7cmc6dO1/qpgghhBDiEgl6/DFyP5uLY/t2rCtWENC7N+bBg8nY+ixotagZmVh/WkXAjYWXsCiKQv3KwWxJSueGplV46742mE2esEyreH6JnGJN9nt7faekvNrlB34GvSdCP5rlyYLnsodSOeuMz/37fj7iSbKQm1ofg1ZPn4SqqKpK9htvAGC+exC6av6P4IUQQgghhBAXjzYigqAhDwKQ/eZMVFUl4JabUYKCoGBPv2++LfbauMqeNe2nMizeoA9Akx/45TnzUFX/buYngZ8PpoxQtOlhhBo8SVlOZJ/xHLeYMDntxSZ2ybHn8OfJDQBYUxtzfeNKhAYasP3+B/aNf4HRSPCwxy/eixBCXFX27t1brn32hBBCCFE+5ocfRgkKwrFzJ9aVK9GYzQTe2s973vbbb7jOnClyXYMqni22ft11mvv/bz2Jhz1r+jSczQLqxr9ZziXw8+H1jw/x1pg1xIWGAzCx00u83eUTXlixHgB9o4ZFrvn9xFrsbjsuayROSzS3tq5RZLRPW0GJH4QQQgghhBAXlzYinKAHHwAg+40ZqKpKYMG6d0UBl4u87xYWuS62kifwS8uxsedEFrNX7vVcck4Zp9v39kvlIYGfD0r+nlKK3rNZsUajoZougDrbEwHQNYgrcs3+9H8AsKQ2pHZ0EM1rhmH/Y93Z0T4fmzgKIYQQQggh/psKjfr9+COG+CboWyRA/lRNSzGBX60oMxoFXPmzOXcdz8TudBOgC/CWceDwazsl8PPFkR9hGwzeQ859nsBOUykGbUR4kUueaPEk49vM4NYGvRncwbNHX5aM9gkhhBBCCHHFKjTqN/1NVFXFfM7WVI6dO3Hs3VvoGpNeS/UIz37GBp0GFc96v1Bj2Nnr3BL4Vbhsey5PPF+TR99oR7qqcjDjAEOWPsfIrYs4GRKDPq7oaF+BFtXqM/yGFtzYoppntO/PjTLaJ4QQQgghxBXM/PDDKGazd9TPm+QlX3HTPevGeM4H5yd3OZFhoUbI2S3fHMhUzwpnc9hR9FYUowWjwcjh7MMku3bwj+4kFr0J3b8CP1VVyXPkFTkmo31CCCGEEEJc+bQR4ZjPGfVTAgIIvO1W73nLwkWo+Ru7F4iN8azzc+bP9zyWmufdzgFkxO+iUDT5k23dKoGBAZzOPQVAjWy3ZyuHhoUDv4OZB7ln+d3cu2AMq3efxu1WsW/Y4BntMxhktE8IIYQQQogrXNAjj5wd9Vv1M4GD7vKecx0/jn3jxkLl61byjPhlWjwB3oEz2SiKghZP8BesDcKfJPArhlv1pE7VuVS0JiOn8zybt7fbs49Ah7XIVM/Vx37F4bZzKiub2T/uQ1Ege8YsAMx3DpTRPiGEEEIIIa5w2ohwzPfdC0D2zJno4+MLbQGX992iQuULpnoWSErOJceejSt/GweHKiN+Fc6peubTal0qil7P6VxP4BeZv7+GrkEDb1mX6mLNsdUAtK10HXdeWwv75r+x/f476HQEyb59ogKkpaUxbtw4unTpQnx8PB06dGDIkCFs3ry5QupLSUnh+eefp2PHjjRv3pwhQ4aQlJRUqIzNZmP8+PG0a9eOFi1aMHz4cFJSUrznMzIyGDFiBC1btqRfv37s2rWr0PXjx4/no48+qpD2VxSr1UpmZuZFq+9iv+8AX3zxBb1796ZZs2b07NmTRYsWFSmzfPlyevXqRdOmTbnppptYvXp1ofMffvgh1157Lddee22R93jr1q3cdtttOJ3+XccghBBCXApBQx9BMZlwbEnEtmYNgXfd6T1n+X4pqs3m/blGRCCT7mhO7SgzACczLN4N3AFMytkMn/4ggV8xMnM96/Vc6MBg4Fj2CQACszRoa9ZEYzZ7y25P3kaaNY1gfTDjet3M7W1rkj1zpqf8gNvRVa9+8V+AuOINHz6c3bt3M2XKFFauXMm7775L27ZtycjI8HtdqqoybNgwjh49yjvvvMPChQupVq0aDzzwAHl5Z9e2Tpo0iV9//ZUZM2Ywd+5czpw5wxNPPOE9/95775GXl8eCBQto27YtY8aM8Z5LTExk69at3HfffX5vf0Xq168f7du3x+Xy7warvlzM9x3gyy+/ZPr06QwfPpwffviBJ598kvHjx/PLL794y/z999+MHDmS22+/nUWLFtGtWzeGDRvGvn37ANizZw+zZs3ijTfe4I033mDGjBnszc9s5nQ6GTduHC+//DI6na5CXoMQQghxMWmjoggc7MnomT1jJgH9bvHuEqBmZmE95xmq02ro2qQy9SsX7OlnR6/Re89nujP82jYJ/IqRmZ0LgF1rxKmFDHsaAIlR7dDHNShUdvWx3wDoUK0jeo0e+7Zt2H75FTQagmW07z/JYneW+T+n6+xiXafLjcXuxOpwleq+ZZWVlcWmTZsYNWoU11xzDdWqVaNZs2YMHTqUbt26ecuMHj2aa665hpYtW3LvvfeyZ8+ecvVHUlISiYmJvPzyyzRr1oy6devy8ssvY7Va+eGHHwDIzs5mwYIFPP/881x77bXEx8czadIktmzZQmJiIgAHDx6kZ8+e1KlTh4EDB3Lw4EEAHA4H48aNY/z48Wi1Wl/NuOysXbuWlStXsmvXLubNm1fh9ZXmfY+Li+PLL7/koYceolmzZnTr1o0VK1aUu84lS5YwcOBA+vTpQ40aNejbty8DBw7kgw8+8Jb57LPP6NSpEw899BCxsbE89dRTNG7cmM8//xzwvO9xcXHeEb+4uDjve//hhx/SunVrmjVrdgE9I4QQQlxegh8dCgYD9o1/4dyzh4A+vb3n/j3dE6BBFU/gZ3e5ybOp3uM5zmy/tkt+xVoMt1PFkReDxq4jQ81FUXW43So1T6Wg69PWW87msrHuxB8AxGha4narZM/0rO0L6NcPXZ06l6T94sJc/+rPZb7m1Tua07VxJQBW7znDmG+30aJ2OO8+cPbzcuuba8jIKzpXe8P4nmWqKzAwkMDAQFatWkVCQgKGc/aaLDBixAiMRiMffPABwcHBfP3119x3332sXLmSsLAwNm3axMMPP1xiPePHj+fmm2/GbrcDYDQavec0Gg0Gg4HNmzczYMAAduzYgcPhoH379t4ysbGxVK1alcTERBISEoiLi+Ovv/5i0KBBrF27lrj8tbJz5syhbdu2NG3atEz9cKmNHz+eZs2aUb16dSZMmMCdd95ZoYFrad53gJkzZzJq1ChGjx7N4sWLefrpp6lfvz6xsbEA9O3blxMnTvisp1WrVsyZMwcAu91e6H0Hz+dg+/btOBwO9Ho9iYmJ3H///YXKdOzYkVWrVgGeYDQpKYkTJ06gqipJSUk0aNCAI0eO8N1337FgwYLydokQQghxWdJWqYL5zoHkfjaX7BmzCBr2OJZFiwGw/vQT7sxMNKGhABxJzeXQmRzvtSczrN4/57hy8CcJ/IoRSQTpe+8kLC+DmHur4TowgtS8LKpmTSuU0XPzqU1YnBZc9mA+XGGlr3Y31hUrQVEIfvKJEmoQovx0Oh1Tpkxh7NixzJs3j8aNG9O2bVv69OlDw4YN2bRpE9u2bWP9+vXe4OC5555j1apVrFy5koEDBxIfH1/sWq1zRUZGAlC3bl2qVq3K9OnTmTBhAgEBAXzyySecOnWK5ORkwLMGUK/XExISUuQeBWUeeeQRxo4dS48ePahWrRqvvvoqSUlJLFq0iHnz5vHSSy/xxx9/EB8fz8SJEwkODvZzz/nP2rVr+fnnn1mwYAE1a9akTZs2zJs3j7vP2azV3873vhfo1asXAwYMAOCpp55i3bp1zJ07l5dffhmA999/v8T1dCaTyfvnjh07Mn/+fLp3706TJk3YsWMH8+fPx+FwkJ6eTkxMDCkpKURFRRW6R2RkpHd9Z2xsLP/73/944AFPiuunn36a2NhY7r//fp555hl+//133nrrLXQ6HaNHj6ZNmzZ+6S8hhBDiUgoa9ji5X36F7fffCRr5NNoaNXAdPQoOB5YVKzEPvAOAwym5LNt60nvd8bRc75/TXRl+bZMEfsWw2zyjMjq3C6vTTUq2HTB5tnKIO/sFKy6iIdH2nhw8beO25tWwvJ0/2te3L/r69S9F04Uf/Dq6W5mv0WvPzpru3DCGX0d3Q1GUQmUW/u+6C25bgZ49e9KlSxc2bdpEYmIia9euZc6cOUycOBGLxUJeXh7t2rUrdI3VauXIkSOA58t9rVq1SlWXXq9n9uzZjB49mrZt26LVarn22mu57rrrUFX1/DfIFxwczKRJkwgMDPT2zb333sszzzzD0qVLOXbsGCtWrGDs2LG8/fbbPP/886W+98VWMNrXr18/NBoNN95440UZ9Svpfb/tttsAaNGiRaFrEhIS2L17t/fnatWqlbq+xx9/nOTkZAYOHIiqqkRGRtKvXz/mzJmDRlP6lQJ33XUXd911NqX1woULMZvNJCQk0KtXL+bPn8+pU6f43//+xy+//OJzNFMIIYT4r9BVr07g7f3Jm/c1OW+9TeDAO8ieNh0Ay5Il3sCvQeVgujWuxM+7PMkkD6WcDfwcqt2/bfLr3a4Qzvx1VzrVzbE0CwBB1hyCXDZ0sXXPFnQFsWd3Q1xulT4dwbL0e0/Z4TLa918WYCjfX4uCIEin1aDXKUXOl/e+vhiNRjp06ECHDh0YNmwYo0ePZvbs2dx1111ER0czd+7cItcUjKKVZaonQHx8PIsXLyY7OxuHw0FERAQDBgwgPj4egKioKBwOB1lZWYVG/VJTU4mOji72/gsWLCAkJITu3bvzxBNP0K1bN/R6Pb169WLWrFnl6pOL4dzRvoLgZ9y4cRdl1A98v+8Fgd/5lGWqp8lkYvLkyUyYMMH7Xn799deYzWYiIiIAz3t/bvZW8Lzv/x4FLJCWlsZbb73FF198wdatW6ldu7b3P6fTyaFDh7zTgIUQQoj/suBhw8j75ltsP/9M0AP3e4/b1v6OKzUVbWQklUIDeHVgAn9N+ZksixOzUYeCgoqKS3X7vnk5SOBXjP25e4hs/A1qdhDf7bcSWmcr4Qei0dWpg3LOepeV207icqvEVw8l4quPyHO7MXbtiiG+SQl3F6Ji1KtXj1WrVtGkSRNSUlLQarVU95FVtixTPc9VEDgmJSWxY8cORowY4b2fXq9n/fr19OzpWbN48OBBTpw4QUJCQpH7pKWl8fbbb/PVV18B4HK5vNMPnU7nRcuSWR7njvYVaN269UUb9fu3gve9QGJiYqG2bd26lUaNGnl/LstUzwJ6vZ7KlSsDsGzZMq6//npv0JuQkMCGDRsKrfNbt25dse87wOTJk7n//vupXLky27dvL9QWl8uF2+3fh5wQQghxqejq1iHgxr5Yliwl79tvMV7XCduateByYf1hGeZ77/GWbVA5hE2H0ggN0GPSmbA4LRg0/p0BI4FfMSyOPLTGLBSblgNZezCGHcSsKujO+S30vD1fsmhvFoqmGr3qBJE3aT4AwcOHXapmi6tEeno6I0aMoH///sTFxWE2m9mxYwdz5syhW7dutG/fnoSEBIYNG8YzzzxD7dq1OXPmDKtXr6Z79+40bdq0TFM9wbNPW0REBFWrVmXv3r1MmjSJ7t2707FjR8ATEPbv358pU6YQGhpKUFAQEydOpEWLFsUGAK+++ioPPvgglSp5EuK0bNmSxYsX07FjR77++mtatmzpl77yt+JG+wpU9Kjf+d73AitWrCA+Pp5WrVqxdOlStm3bxquvvuo9X5apnocOHWLbtm00b96crKwsPv74Y/755x+mTJniLXPvvfdyzz338NFHH9G5c2eWLVvGjh07mDBhQpH7/fHHHyQlJTF16lQAmjZtysGDB1m9ejWnTp1Co9FQR5JiCSGEuIIEDRuGZclSLEu/J2TMi57AD8hbssQb+LndKiEBnm0cTmVY0Sie7xgu1b973ErgVwy7wzOfVlE1ZDs8WzlEpVnRN/T81jzHns3Xe+fhCndhTL6Ha35fDHY7hnZtMbZt6/O+QviD2WymefPmfPrppxw5cgSn00nlypUZMGAAjz76KIqi8P777zNjxgxeeOEF0tPTiYqKonXr1j6n351PcnIyU6ZM8U73u+WWW3j88cLblbz44otoNBqefPJJ7HY7HTt2ZNy4cUXutXbtWo4cOcLrr7/uPTZ48GB27NjBgAEDaNasWaH9/y4ns2fPBmDYsGEMHz68yHlFUZg1a1aFBH7ne98LDB8+nGXLljF+/Hiio6OZPn069erVK1edbrebjz/+mEOHDqHT6WjXrh1fffVVoZHkli1bMm3aNGbMmMEbb7xB7dq1efvtt2nQoPDWN1arlQkTJjBjxgxv0Fy5cmXGjh3Liy++iMFgYOrUqcWOOAohhBD/VYb4Jhi7dsX2yy849u6DwEDIy8O+4U9cp06hrVyZb/48zC/5a/z+OZ1Fraq12ZW6k2oG/+4HLoFfMRxOT3IXxa1gcWeAApWTc9H39Yz4rT+5HpfqwmmJpH3VWDTjx6ECwbK2T1wEBoOBkSNHMnLkSJ9lgoKCGDNmTKFN0i/Evffey7333ltiGaPRyLhx44oN9s7VqVMnrruucKKbgIAAZs6cecHtrGjDhg3zrmv0pXnz5hVSd2ned4BKlSrx0Ucf+aXO2NjY804JBujduze9e/cusYzJZGLlypVFjg8YMMCbhVQIIYS4EgU/+QS2X37B8t1CAnr3wrJkKagqlu9/IOihIdSJCfKW/W3XGeoFHwPgtOO0X9shgV8xHC47aEEB3IoNgOqnM7xTPdceWwOANb0BXbO2oObloY+Px9ilyyVqsRDiYujcuTOdO3e+1M0QQgghxH+IsU0bDO3aYv9zI5yTET1v4SKCHhpC3eizgZ/ZqCNQH0ymPZNwXbhf21H6fNxXEYerYD6tJ8mA22mkak42utq1yLBlsDV5KwABtkbEff4WAMFPDCuSvl8IIYQQQgghCmYGWn5ahaZKFQAciYk4jx4lKthISIBnPO6dB9pQEINkOjP82gYJ/IrhDfw0nojc7Qiiakwoik7HuhN/oOLGkRtDV6cbTXo62jp1MPUpeZqTEEJUtL1799K9e/dL3QwhhBBC/IuxSxf08fFgtaKrU9t73LL0exRFoU7+qN/B5BysTs92cunOdL+2QQK/YphVHeQGo3dqUd06sAYQWrcmAKuP5E/zzGhAh+WfARD82KMoFzF9uxBCCCGEEOK/Q1EUgh73JGNz7NzlPZ634DsAaucHflOW7MSev61VnjvPr22QwK8YQ4w1effZP5i90sYn6+rz2uTV6GJjcbld5FidqKpClbw61NibiCY6msD+pds4WQghhBBCCHF1CujbF22NGqiZmWhq1ADAuWcPziNHqBlpBsDqcGNxWAHIdGX6tX4J/Iqh5m/ngEGPe/9BwnNz0cXWRavR8nbP6bzZ8UMe/30pAEFDHkSR9ONCCCGEEEKIEig6HUFDHwFAzcv1Hrf8sIxaUYHnlgTArbr9Wr8EfsWx52/noNfjPHAAAF1srPd09e27qLNpDYrZ7N14UQghhBBCCCFKEnjnQDTh4aipaZC/r23e/PnUjDJ7y6juillCJoFfMaY7DvL41I483N3KU481Z02ThjhqViUlz7PAMvuddwAwD74bTWjopWyqEEIIIYQQ4j9CExCA+cEHPD+YPcGec89eYvLS0eZHZm5HCAAmjX9nFUrgV4x08lCDsnAGZGOpmkpedCX+SN/EgyvvYdDnL3Jkx37Q6wl66KFL3VQhhBBCCCHEf4j5/vs8S8Wys73HHMuWERPqCfSc+RsMuJGpnhWuptaTQUfReDq7pdbAqqTVoKikZBoJtWQTeGs/tFWrXMpmCiGEEEIIIf5jtBERBA66y/NDwXTPr7+mWmgAAPacagBUM1Tza70S+BXDhN3754A8JzG1ovkncwcAdy7fTIDT5l2YKcSlkJaWxrhx4+jSpQvx8fF06NCBIUOGsHnz5gqpLyUlheeff56OHTvSvHlzhgwZQlJSUqEyR44cYdiwYVxzzTW0bNmSESNGkJKS4j1vt9sZM2YMrVq1omfPnqxbt67Q9XPmzOGVV16pkPb7y/Hjx1m+fHmJ/+3fv7/C6r/Y7zvAF198Qe/evWnWrBk9e/Zk0aJFhc47HA7eeustunfvTtOmTbn55ptZs2ZNoTJLliyhc+fOtGnThsmTJxc6d+zYMXr27ElOTk6FvQYhhBDichP08EOeoM/tGWhy7t1HvVDP2j5dgOf70ynHKb/WqfPr3a4QTrfL++eIdAdb40y4VBfV80z03LIR4/Vd0DdseOkaKK56w4cPx+FwMGXKFGrUqEFqairr168nIyPD73WpqsqwYcPQ6XS88847BAUF8cknn/DAAw/www8/EBgYSF5eHg8++CANGzbk008/BWDmzJk8+uijfPPNN2g0Gr7++mt2797NvHnzWLt2LSNHjmTdunUoisLRo0f59ttvWbBggd/b70+PPfYYS5cuLbFM06ZN2bZtW4XUfzHfd4Avv/yS6dOnM3HiRO/rGjNmDCEhIXTt2hWAGTNmsGTJEiZOnEjdunVZu3YtTzzxBPPmzaNx48akpaUxZswYpkyZQvXq1Rk6dCjXXHMN119/PQDjx49n5MiRBAUFVchrEEIIIS5Hupo1CejTB8v333uPDTiTyLeaGrgdnrV/IVr/5hKRwK8Yp9WzA6GGXB1/1UoHJySsPQ5A0NChl6pp4iKwOq0+z2kUDQatodiyqqpidVnRODUoioKiKBi1xvPe16Qr28LdrKwsNm3axNy5c2nbti0A1apVo1mzZoXKTJ06lZ9//hm73U58fDwvvvgiDcvxC4ukpCQSExP5/vvvqV+/PgAvv/wyHTp04IcffmDAgAH8/fffHD9+nEWLFnm/wE+dOpU2bdqwYcMG2rdvz8GDB+ncuTP169enZs2avPbaa6SnpxMREcHLL7/MqFGjLvsv/4MHD2bp0qXMnz+fa665ptC5w4cP07FjRwYPHlwhdZfmfY+Li2PcuHH88ssvbNy4kejoaJ555hl69epVrjqXLFnCwIED6dOnDwA1atRg+/btfPDBB97Ab/HixTz22GN07twZgEGDBrF+/Xo++ugjpk2bxrFjxwgODvbeo127dhw4cIDrr7+e77//Hp1OR48ePcrdL0IIIcR/VdDQRwoFfrp5X2DuOdq7si/PlVv8heUkgV8xjqt6759PmWqS5EgCBaL36dE3boyxY4dL1zhR4e74vr/Pc60rteala8d7f75n+SBsLluxZeMjmzKp0xTvzw/9+ABZ9qwi5Zb0+6FM7QsMDCQwMJBVq1aRkJCAwWAoUmbEiBEYjUY++OADgoOD+frrr7nvvvtYuXIlYWFhbNq0iYcffrjEesaPH8/NN9+M3e6Z+mw0ng1iNRoNBoOBzZs3M2DAAOx2O4qiFGqL0WhEo9GwefNm2rdvT1xcHIsWLcJqtfLHH38QHR1NeHg4S5YswWg0csMNN5SpHy6F22+/ncaNGzNnzhz69y/8OXnllVeIjIzk8ccfr5C6S/O+g2ekddSoUYwePZrFixfz9NNPU79+fWLzt6Tp27cvJ06c8FlPq1atmDNnDuCZnnvu+w6e93X79u04HA70ej0Oh6NIW4xGI3///TcAtWrVwmKxsGvXLqpWrcr27dvp378/mZmZzJw5k88++6zcfSKEEEL8lxlatsDQtg32jX8B4PznH0Jv1pKpK9jAPcOv9UngVwyNU4/bZUBRnOgUK6riwmkNJyw1m6CxQ1EU5VI3UVzFdDodU6ZMYezYsd7pdG3btqVPnz40bNiQTZs2sW3bNtavX+/9Qv7cc8+xatUqVq5cycCBA4mPjy+yVuvfIiMjAahbty5Vq1Zl+vTpTJgwgYCAAD755BNOnTpFcnIyAAkJCQQEBPD666/z9NNPo6oq06dPx+Vyecv079+fnTt30rdvX8LDw5kxYwaZmZnMmjWLuXPn8uabb7Js2TJq1qzJpEmTqFSpUsV1YjlpNBrGjRvHwIED2bBhg3fU7/Dhw3z00UdMnDixwkYtz/e+F+jVqxcDBgwA4KmnnmLdunXMnTuXl19+GYD3338fZ0G6sGKYTGdHoDt27Mj8+fPp3r07TZo0YceOHcyfPx+Hw0F6ejoxMTF07NiRTz75hDZt2lCzZk3Wr1/PTz/9hMvlmTIfGhrK1KlTee6557BarfTr149OnTrx4osvcvfdd3Ps2DEee+wxnE4nTzzxRLlHJ4UQQoj/oqBHh5KWH/gB2LJzIcIz5udQHX6tSwK/YkQfSWD3yd6ASp2sbRxXtYTm5hCn3UvAzTdd6uaJCvbNjb7XmWmUwvmQ5vb+0vtnVVXJs+QRGBDonep5rjk9PvZbG3v27EmXLl3YtGkTiYmJrF27ljlz5jBx4kQsFgt5eXm0a9eu0DVWq5UjR44Ani/3tWrVKlVder2e2bNnM3r0aNq2bYtWq+Xaa6/luuuuQ1VVACIiIpg5cyYvv/wyc+fORaPR0LdvX5o0aeLtB71ezwsvvEBgYKD32AsvvMA999zDrl27+Pnnn1m8eLH3dcyePdtf3eVXBaN+48ePZ/ny5QBMnjyZ0NDQChvtK1DS+37bbbcB0KJFi0LXJCQksHv3bu/P1aqVPkPY448/TnJyMgMHDkRVVSIjI+nXrx9z5sxBk5+FbPTo0YwZM4bevXujKAo1atTgtttuK7Re84Ybbig0ortx40b27t3L2LFjueGGG3jjjTeIiopiwIABtGnTxvtLByGEEOJKZ7rhBrR16uA6dAgAm8WGJn/Ez+YuflZZeUngVwynd8sMhRRTLaypYdz09xKCHxqCoteXdKm4ApRlzd25ZVVVxa11Y9KZih0VLutavvMxGo106NCBDh06MGzYMEaPHs3s2bO56667iI6OZu7cuUWuCQ4OBijTVE+A+Ph4Fi9eTHZ2Ng6Hg4iICAYMGEB8fLy3fMeOHVm1ahVpaWnodDpCQkLo0KGDd23Xv23YsIF//vmHiRMn8tprr3HdddcRGBhI7969+eKLL8rbLRXu36N+VapUqfDRvnP5et8LAr/zKctUT5PJxOTJk5kwYQKpqalER0fz9ddfYzabiYiIADxB/zvvvIPNZiMjI4OYmBimTZtGjRo1ir2/3W5n/PjxvPbaaxw+fBiXy+Vds1i7dm22bt3qXT8ohBBCXOkUjYbgRx4m44UXAUg4vJWtTTzZPVVUv9YlgV8xnOf08WF9CAAdT+7APGjSJWqREOdXr149Vq1aRZMmTUhJSUGr1VK9evViy5Zlque5CgLHpKQkduzYwYgRI4qUKQgI1q9fT2pqarFf4m02GxMmTGDatGlotVpcLpd39NDpdHqnCV6uzh31q1Wr1kUZ7fOl4H0vkJiYSL9+/bw/b926lUaNGnl/LstUzwJ6vZ7KlSsDsGzZMq6//nrviF8Bo9FIpUqVcDgc/Pjjj/Tu3bvY+7/zzjt06tSJJk2asGvXrkLvtdPpxO3272a1QgghxOUuYMDtZE6ZipqZSdd9v5PYq2J2D5DArxhn6m4iKuoobmcAluQEog8GEdfnejSh/k2pKkR5pKenM2LECPr3709cXBxms5kdO3YwZ84cunXrRvv27UlISGDYsGE888wz1K5dmzNnzrB69WrvXmtlmeoJsHz5ciIiIqhatSp79+5l0qRJdO/enY4dO3rLLFiwgNjYWCIiItiyZQuTJk3i/vvvp27dukXu984779C5c2caN24MQMuWLXn99de57bbb+Pzzz2nZsuWFd1QFOnfUT6vVMmnSpAof7Tvf+15gxYoVxMfH06pVK5YuXcq2bdt49dVXvefLMtXz0KFDbNu2jebNm5OVlcXHH3/MP//8w5QpZ5MWbd26ldOnT9OoUSNOnz7N7NmzcbvdPPTQQ0Xut3//fpYvX87ChQsBz/pRRVH49ttviY6O5uDBgzRt2rQ83SOEEEL8Z2kCAgi6/z6yZ86idtoxHJYOGEOT0Cr+DdUk8CuGLTATjdaJoskmuPpaGm+NImjEhEvdLCEAMJvNNG/enE8//ZQjR47gdDqpXLkyAwYM4NFHH0VRFN5//31mzJjBCy+8QHp6OlFRUbRu3ZqoqKhy1ZmcnMyUKVO80/1uueWWIiNchw4d4o033iAzM5Nq1arx6KOPcv/99xe51759+1i+fHmhEcdevXqxceNG7r77burUqcP06dPL1c6LqWDU78yZMxdltO9873uB4cOHs2zZMsaPH090dDTTp0+nXr165arT7Xbz8ccfc+jQIXQ6He3ateOrr74qNJJss9mYMWMGR48eJTAwkM6dO/Paa68REhJS6F6qqjJ27Fief/55AgMDAc/o4pQpU5gwYQJ2u52XXnrpskzqI4QQQlQ08333kj1rNiaHFW3+ZJiC2VD+oqj+vuNlzuVykZiYSEJCAlqtttgyt3x5F2qgJ+2+22lg4k81SPi/WRezmZet0vTff4HVauXQoUPUqVOn2Klt5aGqKnl5eYWSl4izrsT+OXToEFlZWTRv3vyC7uOvvomLi+Ptt9+me/fuF9Sey0lB32g0GpKSkor9O3ul/LtU0UrTT9KXvknflEz6xzfpG9+kbwpLeXgouctXcs9TzxJW7wcC1Ei+vPljv/2bLSN+wLMfvMju8N2gqKC4QBNAwVcv45koPq2zi/Gf3cPCe4smyxBCXL3q1KlzqZsghBBCiCvA7R8/QEzj44xe5kKnywYgT82k3+J+oGpBVaidFsvsR6aVuw7N+YtUvC+++IKuXbvStGlTBgwYwLZt20osv3z5cnr16kXTpk256aabWL169QXVH6wNQNHZQeNEdWtAczbZQJ2DVvY3MKJ1y28hhBBC+Nelfv4JIYS4POjcWo7WNpAWqiMox5OETXVrUd060DhQdHbMmgubpXbJA79ly5YxefJkhg0bxsKFC2nYsCFDhgwhNTW12PJ///03I0eO5Pbbb2fRokV069aNYcOGsW/fvnK3YWD7W1FVwB5AvbQ4b+CnuiHc6UDRQFV7+dZGCSHExbJ3794raprnle5yeP4JIYS4PNRTq6IoKj91bkiDU549/TSqkxqptVGsQagq9Gva84LquOSB38cff8wdd9xB//79qVevHuPHj8dkMhXa/Pdcn332GZ06deKhhx4iNjaWp556isaNG/P555+Xvw2/fw2qAoY8DkTsOxv4WYPY3NqJ6jBy1HS63PcXQggh/u1yeP4JIYS4POzRHkV1GPjtukBCHBmegzoXx6IOoJpyQdUwb+vSC6rjkq7xs9vt7Ny5k6FDh3qPaTQa2rdvz5YtW4q9JjExsUimwIKNo8vi3L2jDnMafVYkjqBM0DpBVVBVMGUEYK+aTNXT9ThZaT95ljyMBmOZ6rnSFPTb5b7P2vkU7Bvndrv9ljGp4D5XWb6kUpP+8U36xreCPin4u+pyuYr8+/Nf/Pfocnn++Tr3X+zTiiZ9UzLpH9+kb3yTvjnLFpJOpZQanKl0kFyT2TMbUdV4cpC4NQRkRHFcn1yor8rab5c08EtPT8flchXZKDoyMpKDBw8We01KSkqRlPSRkZGkpKSUqe7t27d7/6y6VVyKC1VRUVCZ+eIBMhSY+bAOO5DntqKqCju2bUerk3w4ULj//qs0Gg0ZGRl+/7JtsVj8er8rjfSPb9I3vmVmZmKz2dizZ8+lbopfXC7Pvwspc7WSvimZ9I9v0je+Sd8AqoLFbQPgRGwes0fsBIOe4a83ADQ4FRdat5bExMRyV3HVRjFNmzb1pj1tur0u60N+R1EVsAfw0qjraOKsSXrldSjZYWTEnMSYEUWrm1tf4lZfei6Xi+3btxfqv/+qU6dOkZmZicFg8MsWA6qqYrVaMZlMV8x2Bf4k/eOb9I1vbrebzMxMMjIyiImJoXLlykXKFPy7JEqnpH+/r6R/4/1N+qZk0j++Sd/4Jn1zlnlLFFkxp1ByQ8ismcU3Ex5jpyUJnKdB48QRnkKj1FYkJCR4rynr8++SBn7h4eFotdoiC9lTU1N9bjQdFRVV5LebJZX3RavVej9gt7W/mfU7fwenkYZZ9dkTtY11tnQMGdGYHAaygzOo7oi56j+Q5zq3//6rqlatikajITk52S/3U1UVh8OBXq+XL+/FkP7xTfrGN1VVsdlsxMTEULVq1Sumfy6X59+FlLlaSd+UTPrHN+kb36RvoB5V2aY9gdEWgMYayNqgTRBqJfZMQw6EJYEhj5ub3nBB/XRJAz+DwUCTJk1Yv369NxOd2+1m/fr1DB48uNhrEhIS2LBhQ6F1DuvWrSsU/ZbVR6u/QIkGVWdnT9Q2QEEx5WI3WHBo3KhuDUmBJ8p9f3F5UhSFKlWqEBMTg8PhuOD7uVwu9uzZQ7169a76f7yKI/3jm/SNbwV9U7ly5Ssm6IPL5/knhBDi8rBbn4SqKljDT4OqQdG4UVU4ELPL87MCc7cuol27TuWu45JP9XzggQd47rnniI+Pp1mzZnz66adYLBZuu+02AJ599lkqVarEyJEjAbj33nu55557+Oijj+jcuTPLli1jx44dTJgwodxtiDKGoc2OQEXFpbej6q2ehZROA4rDs4dfkDXIL69XXH789VumggW2JpNJvrwXQ/rHN+kb367kBf+Xw/NPCCHE5SHMFkJajhu34sZtsOHW2UBVUJxGtA4jiqoQpQu9oDoueeDXp08f0tLSmDVrFsnJyTRq1Ig5c+Z4p66cPHkSjebsrhMtW7Zk2rRpzJgxgzfeeIPatWvz9ttv06BBg3K34dl7ny30s8vlIjExkYSEBPkSJoQQokJcDs8/IYQQl4cPH5ld6OeKiEcueeAHMHjwYJ9TW+bOnVvkWO/evendu3dFN0sIIYSoUPL8E0IIcbFc8g3chRBCCCGEEEJUrMtixO9iKtizTTawLR/pG9+kb0om/eOb9I1vpembgnP+3pPzSiPPvwsjfVMy6R/fpG98k77xrSKef4p6lT0p7Xa77PckhBBXoKZNm2IwGC51My5b8vwTQogrU2mff1dd4Od2u3E6nWg0misqNbgQQlytVFXF7Xaj0+kKJUMRhcnzTwghrixlff5ddYGfEEIIIYQQQlxt5FejQgghhBBCCHGFk8BPCCGEEEIIIa5wEvgJIYQQQgghxBVOAj8hhBBCCCGEuMJJ4CeEEEIIIYQQVzgJ/IQQQgghhBDiCieBnxBCCCGEEEJc4STwE0IIIYQQQogr3FUb+H3xxRd07dqVpk2bMmDAALZt21Zi+eXLl9OrVy+aNm3KTTfdxOrVqy9SSy++svTNN998w6BBg2jTpg1t2rTh/vvvP29f/peV9XNT4IcffiAuLo7HH3+8glt46ZS1b7Kyshg/fjwdO3YkPj6enj17yt+rc3zyySf07NmTZs2a0blzZyZNmoTNZrtIrb04/vrrLx599FE6duxIXFwcq1atOu81f/75J7feeivx8fHccMMNfPfddxehpVcWef75Js8/3+T5VzJ5Bvomz7+iLtnzT70K/fDDD2qTJk3U+fPnq//88486ZswYtXXr1mpKSkqx5Tdv3qw2atRI/eCDD9T9+/erb775ptqkSRN17969F7nlFa+sffP000+rn3/+ubpr1y51//796vPPP6+2atVKPXXq1EVuecUra98UOHr0qNqpUyd10KBB6mOPPXaRWntxlbVvbDabetttt6kPP/ywumnTJvXo0aPqn3/+qe7evfsit/ziKGv/LFmyRI2Pj1eXLFmiHj16VF27dq3aoUMHddKkSRe55RXrt99+U9944w31xx9/VBs0aKD+9NNPJZY/cuSI2rx5c3Xy5Mnq/v371blz56qNGjVS16xZc5Fa/N8nzz/f5Pnnmzz/SibPQN/k+Ve8S/X8uyoDv9tvv10dP36892eXy6V27NhR/b//+79iy48YMUJ95JFHCh0bMGCAOnbs2Apt56VQ1r75N6fTqbZo0UJduHBhBbXw0ilP3/x/e/cfE3X9xwH8CQh6Rob81FlQtmF4SHeMhdxgWbJp6un8QzRX5xZWXEFUm2C2LE/qgF1KTBBQohEZa0osSKk2k0Eiy9BRMGtkxEnILylDguPHuz+cn+/3lCNh9wOO52Nj8z6fz30+r89r3OfJ+/P53MeRkRGxdetW8dlnn4nU1FSnDb7J9ubYsWNi9erVwmQy2atEh5psf/bt2yc0Go3ZNL1eL7Zt22bTOh3pboIvMzNTrF+/3mzaq6++Kp577jlbluZUmH+WMf8sY/5NjBloGfPvv9kz/2bdrZ4mkwlNTU1QqVTSNFdXV6hUKly4cGHc91y8eBFRUVFm06Kjo3Hx4kVblmp3U+nN7f755x+MjIzgvvvus1WZDjHV3uTk5MDHxwdbtmyxR5kOMZXenD59GgqFAjqdDiqVChs2bEBeXh5GR0ftVbbdTKU/SqUSTU1N0u0wRqMR1dXVePzxx+1S83Q1W47FtsL8s4z5Zxnzb2LMQMuYf9ZjrWPxHCvWNCP09fVhdHQUPj4+ZtN9fHxw+fLlcd/T09MDX1/fO5bv6emxWZ2OMJXe3M5gMMDf39/sQ+4MptKb8+fP4/jx4ygvL7dDhY4zld4YjUacO3cOarUaBQUFaGtrw759+zAyMoLExER7lG03U+mPWq1GX18ftm/fDiEERkZGsG3bNiQkJNij5GlrvGOxr68v+vv7MTg4iHnz5jmospmB+WcZ888y5t/EmIGWMf+sx1r5N+uu+JHtFBQU4OTJkzh06BDmzp3r6HIcqr+/HykpKdi/fz+8vb0dXc60I4SAj48P9u/fj9DQUKxbtw4JCQkoLS11dGnTQn19PfLz8/H222+jrKwMhw4dQnV1NXJychxdGhGNg/n3P8y//8YMtIz5Z1uz7orfwoUL4ebmht7eXrPpvb29d4ykb/H19b3j7OZEy89UU+nNLYWFhSgoKEBRUREeeeQRW5bpEJPtjdFoRHt7O7RarTRtbGwMALB8+XJUVVUhMDDQtkXbyVR+b/z8/DBnzhy4ublJ05YuXYru7m6YTCZ4eHjYtGZ7mkp/PvjgA2zcuFG6RWrZsmUYGBjA3r17odVq4eo6O8/ZjXcs7unpgaenJ6/23QXmn2XMP8uYfxNjBlrG/LMea+XfrOueh4cH5HI56urqpGljY2Ooq6uDUqkc9z0KhQLnzp0zm3b27FkoFApblmp3U+kNABw5cgS5ubk4evQoVqxYYY9S7W6yvVm6dCkqKipQXl4u/Tz55JOIjIxEeXk5Fi1aZM/ybWoqvzfh4eFoa2uT/hgAgNbWVvj5+TlN4N0ylf4MDg7eEW63/kAQQtiu2GluthyLbYX5ZxnzzzLm38SYgZYx/6zHasfiST0Kxkl8+eWXIjQ0VJSVlYmWlhbx1ltviYiICNHd3S2EEGLXrl3CYDBIy//www9i+fLlorCwULS0tIjs7Gynfpz1ZHqTn58v5HK5qKqqEl1dXdJPf3+/o3bBZibbm9s581PNJtubP/74QyiVSqHT6cTly5fFt99+K6KiokRubq6jdsGmJtuf7OxsoVQqRWVlpWhraxO1tbUiNjZWJCcnO2gPbKO/v180NzeL5uZmERwcLIqKikRzc7Nob28XQghhMBjErl27pOVvPc46IyNDtLS0iJKSEv53DpPE/LOM+WcZ829izEDLmH/jc1T+zbpbPQFg3bp1uHbtGrKzs9Hd3Y2QkBAcPXpUuuzc0dFhdrYhPDwcBoMBWVlZOHDgAB588EHk5OQgODjYUbtgM5PtTWlpKYaHh/HKK6+YrScxMRFJSUl2rd3WJtub2WSyvVm8eDEKCwuh1+uxceNGBAQEQKPR4Pnnn3fULtjUZPuj1Wrh4uKCrKwsdHZ2wtvbG0888QRee+01R+2CTfz000/QaDTSa71eDwDYvHkz0tPT0d3djY6ODmn+Aw88gPz8fOj1ehQXF2PRokVIS0tDTEyM3WufqZh/ljH/LGP+TYwZaBnzb3yOyj8XIWbxdVMiIiIiIqJZYPaeniEiIiIiIpolOPAjIiIiIiJychz4EREREREROTkO/IiIiIiIiJwcB35EREREREROjgM/IiIiIiIiJ8eBHxERERERkZPjwI+IiIiIiMjJceBH5OSeffZZvPvuu44ug4iIyK6Yf0Tm5ji6ACJnsXv3bnz++ecAAHd3dyxevBibNm1CQkIC5szhR42IiJwT849oZuCnkciKYmJioNfrYTKZUF1dDZ1OB3d3d7z44otmy5lMJnh4eDioSiIiIuti/hFNf7zVk8iKPDw84OfnhyVLlmD79u1QqVQ4ffo0du/ejZdeegmHDx9GdHQ01q5dCwDo6OhAcnIyIiIi8Nhjj0Gr1eLKlSsAgNraWqxYsQLXr18328nys64AAAWwSURBVEZaWho0Gg0AoK+vD6+//jpiYmLw6KOPQq1Wo7KycsIaTSYTMjIyEBMTA4VCgS1btqC+vl6aX1ZWhoiICNTU1OCpp56CUqlEfHw8urq6zNZz/PhxrF+/HqGhoYiOjoZOp5PmXb9+HW+++SZWrlyJ8PBwaDQaXLp0aeqNJSKiaY35dxPzj6YzDvyIbGju3LkYHh4GANTV1eG3335DUVER8vPzMTw8jPj4eNxzzz345JNP8Omnn2L+/PnYuXMnTCYToqKisGDBAnz11VfS+kZHR3Hq1Cmo1WoAN0NMLpejoKAAlZWViIuLQ0pKChobGy3WpNPpcOHCBRw8eBBffPEF1q5di507d6K1tVVaZnBwEB9++CEyMzNRUlKCjo4OZGRkSPOPHTsGnU6HuLg4VFRUIDc3F4GBgdL85ORk9Pb24siRIygrK4NcLseOHTvw559/WqmzREQ0nTH/mH80DQkisorU1FSh1WqFEEKMjY2J7777ToSGhor09HSRmpoqVCqVGBoakpYvLy8Xa9asEWNjY9K0oaEhERYWJmpqaoQQQqSlpQmNRiPNr6mpEaGhoeKvv/6yWMcLL7wg0tPTpdfPPPOMSEtLE0II0d7eLkJCQsTVq1fN3rNjxw7x/vvvCyGEOHHihAgODha///67NL+kpESoVCrpdXR0tDhw4MC42//+++9FeHi42b4KIURsbKwoLS21WDcREc1MzL+bmH803fE7fkRWdObMGSiVSgwPD0MIgQ0bNiApKQk6nQ7BwcFm32u4dOkS2traEB4ebraOoaEhtLW1AQDUajW2bt2Kzs5OBAQEoKKiAqtWrcKCBQsA3DwDmpeXh6qqKnR2dmJ4eBgmkwnz5s0bt75ffvkFo6Oj0q02t5hMJnh5eUmvZTKZ2RlMf39/9Pb2AgB6e3vR1dWFqKiocbfx888/Y2BgAJGRkWbTBwcHpf0iIiLnwvxj/tH0x4EfkRVFRkbinXfegbu7O/z9/c2eZiaTycyWHRgYgFwuh8FguGM93t7eAICwsDAEBgbi5MmTePrpp/HNN98gPT1dWq6wsBDFxcXYs2cPli1bBplMhvfee0+6veZ2AwMDcHNzw4kTJ+Dm5mY2b/78+dK/b38Km4uLC4QQAG7evjORGzduwM/PDx9//PEd8+69994J30tERDMT84/5R9MfB35EViSTyRAUFHRXy8rlcpw6dQo+Pj7w9PS0uJxarUZFRQUCAgLg6uqKVatWSfMaGhqwevVqbNq0CQAwNjaG1tZWPPzww+OuKyQkBKOjo7h27RoiIiLufsf+j6enJ5YsWYK6ujqsXLly3P3q6emBm5sb7r///iltg4iIZhbmH/OPpj8+3IXIQdRqNRYuXAitVovz58/DaDSivr4eaWlpuHr1qtlyTU1NyMvLw5o1a8xulwkKCsLZs2fR0NCAX3/9FXv37kVPT4/FbT700ENQq9VISUnB119/DaPRiMbGRuTn5+PMmTN3XXtSUhKKiopQXFyM1tZWNDU1SWc4VSoVFAoFXn75ZdTW1uLKlStoaGjAwYMH8eOPP06+UURE5FSYf0SOwSt+RA4ik8lQUlICg8GAxMRE3LhxAwEBAYiKijI7AxoUFISwsDA0NjZiz549ZuvQarUwGo2Ij4+HTCZDXFwcYmNj8ffff1vcrl6vx+HDh5Geno6uri54eXlBoVCYnUn9L5s3b8bQ0BA++ugjZGZmwsvLS/rehIuLCwoKCpCVlYU33ngDfX198PX1RUREBHx9fSfXJCIicjrMPyLHcBG3blwmIiIiIiIip8RbPYmIiIiIiJwcB35EREREREROjgM/IiIiIiIiJ8eBHxERERERkZPjwI+IiIiIiMjJceBHRERERETk5DjwIyIiIiIicnIc+BERERERETk5DvyIiIiIiIicHAd+RERERERETo4DPyIiIiIiIif3LyBcuntcfgTZAAAAAElFTkSuQmCC\n"
},
"metadata": {}
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "w5ux1XnuN9hX"
},
"source": [
"As you can see, the PPV of the test dramatically decreases as the specificity decreases. In contrast, the NPV dramatically decreases as the sensitivity increases."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "87FY1F2GRhO8"
},
"source": [
"### Addendum\n",
"\n",
"13 July 2020: I am happy to inform that I am negative to the serologic test for COVID-19 taken on 9 July. The test says:\n",
"\n",
"> Absence of SARS-CoV-2 antibodies (index 0.1).\n",
"To be remotely controlled to follow the kinetics of antibodies.\n",
">\n",
"> According to the specifications of the National Authority for Health of 16 April 2020: specificity >98%; sensitivity >90%.\n",
"\n",
"We can easily match this test on the right curves above to deduce the probability of being uninfected given a negative test. The curve shows a very high probability of at least 99 % if 10 % of the French people had COVID-19 (severe scenario). In that case, I should rather fairly consider that I never had COVID-19 in the previous months. If I have bad luck, I will be one of the 1 % who are infected despite a negative test.\n",
"\n",
"**Be careful about the lexicon! A wrongly negative test in the context of screening is not called a \"false negative\" but a \"false silence\". We use the terms \"false negative\" when we already know the status of the patient when we evaluate the test performance.**"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "q62KYqwOGyUG"
},
"source": [
"## Part 2: Estimating the disease's prevalence\n",
"\n",
"### A case study with PCR testing\n",
"\n",
"As we have seen before, estimating prevalence is an important matter. It is the crux of the epidemic. If you can estimate prevalence, you can estimate the dynamic (evolution) of the epidemic.\n",
"\n",
"As said in part 1, it is best practice to estimate prevalence from a very reliable diagnosis testing method rather than screening tests. Unfortunately, depending on where you work at and what are the available data and studies you can make, robust tests may not be available. If the properties of your screening tests are stable, you may then use its statistics to infer prevalence. Let us study the case of nasopharyngeal PCR testing, which is currently the first-line worldwide testing method for COVID-19. The literature review of [Kokkinakis et al. (2020, *Revue Médicale Suisse)*](https://www.revmed.ch/RMS/2020/RMS-N-689/Performance-du-frottis-nasopharynge-PCR-pour-le-diagnostic-du-Covid-19.-Recommandations-pratiques-sur-la-base-des-premieres-donnees-scientifiques) reports a specificity of 99 % and a sensitivity of roughly 67 % for PCR tests at the beginning of the epidemic.\n",
"\n",
"From intermediary results of part 1, we can determine prevalence from the positive rate, sensibility and specificity:\n",
"\n",
"\\begin{align*}\n",
" \\Pr(P) &= \\Pr(P\\,|\\,F) \\Pr(F) + (1 - \\Pr(N\\,|\\,G)) (1 - \\Pr(F)) \\\\\n",
" &= \\Pr(P\\,|\\,F) \\Pr(F) + (1 - \\Pr(N\\,|\\,G)) + (\\Pr(N\\,|\\,G) - 1) \\Pr(F) \\\\\n",
" &= (\\Pr(P\\,|\\,F) + \\Pr(N\\,|\\,G) - 1) \\Pr(F) + 1 - \\Pr(N\\,|\\,G) \\\\\n",
" \\iff \\Pr(P) + \\Pr(N\\,|\\,G) - 1 &= (\\Pr(P\\,|\\,F) + \\Pr(N\\,|\\,G) - 1) \\Pr(F) \\\\\n",
" \\iff \\Pr(F) &= \\frac{\\Pr(P) + \\Pr(N\\,|\\,G) - 1}{\\Pr(P\\,|\\,F) + \\Pr(N\\,|\\,G) - 1}\n",
"\\end{align*}\n",
"\n",
"In other words:\n",
"\\begin{equation*}\n",
"\\boxed{\n",
" \\text{P} = \\frac{\\text{PR} + \\text{Sp} - 1}{\\text{Se} + \\text{Sp} - 1}\n",
"}\n",
"\\end{equation*}\n",
"\n",
"where $\\text{PR}$ is the positive rate. $\\text{Se} + \\text{Sp} - 1$ is also known as the $J$ statistic or Younden's index.\n",
"\n",
"Hence, there is a linear relationship between the positive rate and prevalence that depends on sensitivity and specificity. At fixed specificity, the higher the sensitivity, the more the positive rate will underestimate prevalence. At fixed sensitivity, the higher the specificity, the more the positive rate will underestimate prevalence.\n",
"\n",
"The next code cells show the value of prevalence in function of the positive rate and the test's properties. If specificity equals to 99 % and sentitivity equals to 67 %, a positive rate of 10 % would correspond to a prevalence of 13.6 %. Then, at the beginning of the epidemic, the disease prevalence would have been 1.36 times greater than the positive rate of PCR tests. In other words, it would be underestimated by the positive rate.\n",
"\n",
"With a sensitivity of 85 % however, prevalence decreases to 10.7 %. In contrast, if the positive rate drops to 5 %, the prevalence drops to 4.7 %, that is, the risk of contamination would be overestimated.\n",
"\n",
"### When does the positive rate over or underestimate prevalence?\n",
"\n",
"Given the examples above, we become interested with the threshold at which prevalence is over or underestimated by the positive rate. We can easily demonstrate that prevalence is $k$ times greater than the positive rate when:\n",
"\n",
"\\begin{equation}\n",
"\\boxed{\n",
" \\text{PR} = \\frac{\\text{Sp} - 1}{k \\times (\\text{Se} + \\text{Sp} - 1) - 1}\n",
"}\n",
"\\end{equation}\n",
"\n",
"When $k > 1$, the positive rate underestimates prevalence. When $k < 1$, it overestimates prevalence. When $k = 1$, they are equal.\n",
"\n",
"_Proof._\n",
"\n",
"\\begin{align*}\n",
" \\Pr(F) &= k \\Pr(P) \\\\\n",
" \\iff \\frac{\\Pr(P) + \\Pr(N\\,|\\,G) - 1}{\\Pr(P\\,|\\,F) + \\Pr(N\\,|\\,G) - 1} &= k \\Pr(P) \\\\\n",
" \\iff \\Pr(P) + \\Pr(N\\,|\\,G) - 1 &= k \\Pr(P) (\\Pr(P\\,|\\,F) + \\Pr(N\\,|\\,G) - 1) \\\\\n",
" \\iff \\Pr(N\\,|\\,G) - 1 &= k (\\Pr(P\\,|\\,F) + \\Pr(N\\,|\\,G) - 1) \\Pr(P) - \\Pr(P) \\\\\n",
" \\iff \\Pr(N\\,|\\,G) - 1 &= (k (\\Pr(P\\,|\\,F) + \\Pr(N\\,|\\,G) - 1) - 1) \\Pr(P) \\\\\n",
" \\iff \\Pr(P) &= \\frac{\\Pr(N\\,|\\,G) - 1}{k (\\Pr(P\\,|\\,F) + \\Pr(N\\,|\\,G) - 1) - 1} \\\\\n",
"\\end{align*}\n",
"\n"
]
},
{
"cell_type": "code",
"metadata": {
"id": "0C37JKSWP3Z-",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "c0b11ded-443c-4565-8d9b-c715c886d332"
},
"source": [
"# Functions to infer prevalence\n",
"def preval_fn(posrate, sensi, specif):\n",
" tmp = specif - 1\n",
" return np.clip((posrate + tmp) / (sensi + tmp), 0, 1)\n",
"\n",
"def preval_fn_support(sensi, specif):\n",
" return (1 - specif, sensi)\n",
"\n",
"def posrate_eq_preval(sensi, specif, k=1):\n",
" \"\"\"Returns the posrate at which it equals to :math:`k` times the prevalence.\"\"\"\n",
" tmp = specif - 1\n",
" return tmp / (k * (sensi + tmp) - 1)\n",
"\n",
"# Example of prevalence\n",
"posrate = 0.05\n",
"sensi = 0.85\n",
"specif = .99\n",
"print(\"Positive rate:\", posrate)\n",
"print(\"Sensitivity:\", sensi)\n",
"print(\"Specificity:\", specif)\n",
"print(\"Prevalence:\", preval_fn(posrate, sensi, specif))"
],
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Positive rate: 0.05\n",
"Sensitivity: 0.85\n",
"Specificity: 0.99\n",
"Prevalence: 0.047619047619047616\n"
]
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "JvCriH0G-6em",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 510
},
"outputId": "5648bf78-8c77-4d82-9413-aa4802b6f525"
},
"source": [
"# Prevalence in function of positive rate, sensitivity and specificity\n",
"fig, ax = plt.subplots(figsize=(5.2, 4.8))\n",
"ax.set_title(\"Prevalence in function of\\npositive rate, sensitivity and specificity\")\n",
"ax.set_xlabel(\"Positive rate\")\n",
"ax.set_ylabel(\"Prevalence\")\n",
"axlims = (-0.025, 1.025)\n",
"ax.set_xlim(*axlims)\n",
"ax.set_ylim(*axlims)\n",
"cmap = plt.get_cmap(\"Set1\")\n",
"sensis = [0.67, 0.95]\n",
"specifs = [0.8, 0.99]\n",
"for i, sensi in enumerate(sensis):\n",
" color = cmap(i)\n",
" linestyle = [\"-\", \"-.\", \"--\", \":\"][i]\n",
" for j, specif in enumerate(specifs):\n",
" posrate = np.linspace(*preval_fn_support(sensi, specif), 11)\n",
" posrate_line = np.linspace(*preval_fn_support(sensi, specif), 100)\n",
"\n",
" marker = \"o^v<>d*\"[j]\n",
" plot_kw = dict(c=color, ls=linestyle)\n",
" if j == 0:\n",
" ax.plot([-1], [-1], label=f\"Se={sensi:.0%}\", **plot_kw)\n",
" ax.plot(posrate_line, preval_fn(posrate_line, sensi, specif), **plot_kw)\n",
"\n",
" scat_kw = dict(marker=marker, facecolors=\"none\", edgecolors=color)\n",
" ax.scatter(posrate, preval_fn(posrate, sensi, specif), **scat_kw)\n",
" if i == len(sensis) - 1:\n",
" scat_kw.update(edgecolors=\"k\")\n",
" ax.scatter([-1], [-1], label=f\"Sp={specif:.0%}\", **scat_kw)\n",
"\n",
" k = 1\n",
" posrate_eq = posrate_eq_preval(sensi, specif, k=k)\n",
" preval_eq = posrate_eq / k\n",
" eq_kw = dict(s=(2 * plt.rcParams['lines.markersize']) ** 2, marker=\"*\", color=\"g\", zorder=3)\n",
" ax.scatter(posrate_eq, preval_eq, **eq_kw)\n",
" if i == len(sensis) - 1 and j == len(specifs) - 1:\n",
" ax.scatter(-1, -1, label=\"P=PR\", **eq_kw)\n",
"\n",
"ax.legend(loc=\"lower right\")"
],
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"<matplotlib.legend.Legend at 0x7f2da820aa40>"
]
},
"metadata": {},
"execution_count": 10
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<Figure size 520x480 with 1 Axes>"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAdsAAAHcCAYAAACefwCMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADhCklEQVR4nOzdd3gUxRvA8e+V9F4gQEKHhBJCQpMmTZAfTQWkg6JY6F2aiIAovYOKgIB0FFA6iCAgvST03gIJhPR6ubq/P2JOQgIk4ZK7hPk8j4/c3uzOe3t3eW9mZ2dkkiRJCIIgCIKQZ+TmDkAQBEEQCjuRbAVBEAQhj4lkKwiCIAh5TCRbQRAEQchjItkKgiAIQh4TyVYQBEEQ8phItoIgCIKQx0SyFQRBEIQ8JpKtIAiCIOQxkWwF4RX06tWLXr16mTuMV5YXr+PChQt07dqVwMBA/Pz8uHr1qkmPbyrNmjVjzJgx5g7jhe7du8fHH39MzZo18fPzY//+/eYOScghpbkDEIQtW7YwduxY42Nra2tKlChBgwYN6N+/P56enmaMTsgNrVbL0KFDsba2ZuzYsdja2lKiRAmzxXPu3DmOHj3Khx9+iLOzs9niyK0xY8bw8OFDhg0bhpOTE/7+/uYOScghkWwFizF48GB8fHzQaDScPXuW9evXc+jQIXbs2IGdnZ25wyvUli9fbtLjhYaGEhYWxpQpU+jUqZNJj50bwcHBLFq0iPbt22dKtnv27EEmk5kpspdLTU0lODiYvn370rNnT3OHI+SSSLaCxWjUqBHVqlUDoFOnTri6urJixQr++usv2rZtm+U+KSkp2Nvb52eYhZK1tbVJjxcTEwOAk5OTSY+bF0z92k0t/VwWxBa58B9xzVawWHXr1gXg4cOHQFpXWlBQEKGhoXz66acEBQUxcuRIAAwGAytXrqRNmzZUq1aN+vXrM2HCBOLj443H+/zzz3nrrbeyrKtLly506NDB+Hjz5s188MEH1KtXD39/f1q3bs26deuyFbdGo2HBggW0aNECf39/GjduzIwZM9BoNBnK+fn5MXnyZPbv30/btm3x9/enTZs2HD58ONMxIyIiGDduHA0bNsTf359mzZrx9ddfZzhmQkIC3377LY0bN8bf358WLVrw008/YTAYXhrzs9dsT548iZ+fH7t27eKHH34w/hD68MMPuX///guPNWbMGGMLbMiQIfj5+RmP/bxrw2PGjKFZs2bGxw8fPsTPz4/ly5ezceNGmjdvjr+/Px07duTChQuZ9r99+zZDhgyhbt26BAQE0LJlS+bOnQvAwoULmTFjBgBvvfUWfn5++Pn5GT9XWV2zffDgAYMHD6ZOnTpUr16dzp078/fff2co8yrnKN2VK1f45JNPqFGjBkFBQXz44YeEhIQYn1+4cCFNmzYFYMaMGfj5+WU4T0LBIVq2gsUKDQ0FwNXV1bhNp9PRp08fatasyejRo7G1tQVgwoQJbN26lQ4dOtCrVy8ePnzI2rVruXLlCuvXr8fKyopWrVoxevRoLly4QEBAgPGYYWFhhISEMGrUKOO29evXU7FiRZo1a4ZSqeTgwYNMmjQJSZLo0aPHc2M2GAz069ePs2fP0rlzZ8qXL8+NGzdYtWoV9+7d4/vvv89Q/uzZs+zbt4/u3bvj4ODA6tWrGTx4MAcPHsTNzQ1IS7Tvv/8+iYmJdO7cmXLlyhEREcHevXtJTU3F2toalUpFz549iYiIoGvXrhQvXpzg4GDmzJlDZGQkX375Za7eg6VLlyKTyfj4449JSkpi2bJljBw5kl9//fW5+3Tp0gUvLy9+/PFHevXqRbVq1XJ93X3Hjh0kJyfTpUsXZDIZy5YtY9CgQezfvx8rKysArl27Ro8ePVAqlXTp0gVvb29CQ0M5cOAAw4YNo0WLFty7d48dO3YwduxY43l1d3fPss6oqCi6du2KSqWiV69euLm5sXXrVvr162f8EfWq5wjg5s2b9OjRAwcHBz755BOUSiUbN26kV69erFmzhurVq9OiRQucnJyYOnUqbdu2pVGjRjg4OOTqXApmJgmCmW3evFny9fWVjh07JkVHR0uPHj2Sdu7cKdWpU0cKCAiQHj9+LEmSJI0ePVry9fWVZs2alWH/06dPS76+vtK2bdsybD98+HCG7YmJiZK/v780bdq0DOWWLl0q+fn5SWFhYcZtKpUqU5wff/yx9NZbb2XY1rNnT6lnz57Gx7///rtUqVIl6fTp0xnKrV+/XvL19ZXOnj1r3Obr6ytVrVpVun//vnHb1atXJV9fX2n16tXGbaNGjZIqVaokXbhwIVNMBoNBkiRJWrx4sRQYGCjdvXs3w/OzZs2SKleuLIWHh2fa90Wv48SJE5Kvr6/UqlUrSa1WG7evWrVK8vX1la5fv/7C46Xvv3v37hfWk2706NFS06ZNjY8fPHgg+fr6SnXq1JHi4uKM2/fv3y/5+vpKBw4cMG7r0aOHFBQUlOH9k6T/zo0kSdKyZcskX19f6cGDB5nqbtq0qTR69Gjj42+//Vby9fXN8B4mJSVJzZo1k5o2bSrp9foMrzG356h///5S1apVpdDQUOO2iIgIKSgoSOrRo0emc7Fs2bIXHk+wbKIbWbAYvXv3pl69ejRu3Jhhw4bh4ODAokWL8PLyylCuW7duGR7v2bMHJycnGjRoQExMjPG/qlWrYm9vz8mTJwFwdHSkUaNG7N69G0mSjPvv2rWLwMDADKNl01vMAImJicTExFCnTh0ePHhAYmLic1/Dnj17KF++POXKlcsQS3qXeHos6erXr0+pUqWMjytVqoSjoyMPHjwA0lrK+/fvp2nTpsbr2U9LH9izZ88eatasibOzc4Z669evj16v5/Tp08+N+UU6dOiQ4ZpmrVq1AIzx5bXWrVvj4uLy3PpjYmI4ffo0HTt2zDTaObeDng4dOkRAQICxLgAHBwe6dOlCWFgYt27dylA+N+dIr9dz9OhRmjdvTsmSJY3bixYtStu2bTl79ixJSUm5il+wTKIbWbAYEyZMoGzZsigUCjw9PSlbtixyecbfg0qlkmLFimXYdv/+fRITE6lXr16Wx42Ojjb+u3Xr1uzfv5/g4GBq1KhBaGgoly9fZty4cRn2OXv2LAsXLiQkJASVSpXhucTExOcO/Ll//z63b9/OViwAxYsXz1TGxcWFhIQEIC2ZJCUlUbFixSyP93S9169ff2696YNscurZBJY+SCc9vrz27PlJT7zp9acnNF9fX5PVGR4eTvXq1TNtL1eunPH5p+vLzTmKiYlBpVJRtmzZTM+VL18eg8HAo0ePXvq+CwWHSLaCxQgICMiy9fY0a2vrTAnYYDDg4eHBrFmzstzn6WtzTZs2xc7Ojt27d1OjRg12796NXC7nf//7n7FMaGgovXv3ply5cowZM4bixYtjZWXFoUOHWLly5QsHHBkMBnx9fTPcN/y0Z38oKBSKLMs93fLODoPBQIMGDfjkk0+yfL5MmTI5Ol66Z891upzG9zJ6vT7L7aY6P3kpv86RULCJZCsUeKVKleL48ePUqFEjQ/dvVuzt7WnSpAl79uxh7Nix7Nq1i1q1amXoqj5w4AAajYYffvghQ6vl2S7g58Vy7do16tWrZ5J7N93d3XF0dOTmzZsvrTclJYX69eu/cp15ycXFJcvu1fDw8FwdL70L9saNGy8sl5P3okSJEty9ezfT9jt37hiff1Xu7u7Y2dk9tx65XJ5lr4dQcIlrtkKB16pVK/R6faaRvpA2evnZ7rzWrVvz5MkTfv31V65du0arVq0yPJ/emnq6ZZKYmMjmzZuzFUtERASbNm3K9FxqaiopKSnZek3p5HI5zZs35+DBg1y8eDHT8+kxtmrViuDgYI4cOZKpTEJCAjqdLkf15pWSJUty586dDN3a165d49y5c7k6nru7O7Vr12bz5s2ZEvbT71/6pCgvut6ernHjxly4cIHg4GDjtpSUFDZt2oS3tzcVKlTIVaxPUygUNGjQgL/++st4CxKkjYTesWMHNWvWxNHR8ZXrESyHaNkKBV6dOnXo0qULS5Ys4erVqzRo0AArKyvu3bvHnj17+PLLLzN0Ezdu3BgHBwemT5+OQqGgZcuWGY6Xvn/fvn3p2rUrycnJ/Prrr3h4eBAZGfnCWN599112797N119/zcmTJ6lRowZ6vZ47d+6wZ88eli1b9tKu8mcNHz6co0eP0qtXL+PtRJGRkezZs4d169bh7OxMnz59OHDgAH379qV9+/ZUrVoVlUrFjRs32Lt3L3/99ddzb3XJT++//z4rV66kT58+vP/++0RHR7NhwwYqVKhAcnJyro45fvx4unXrRvv27enSpQs+Pj6EhYXx999/88cffwBQtWpVAObOnUvr1q2xsrKiadOmWU6I8tlnn7Fz504+/fRTevXqhYuLC7///jsPHz5k4cKFz+02zqmhQ4dy7NgxunfvTvfu3VEoFGzcuBGNRsMXX3xhkjoEyyGSrVAoTJ48GX9/fzZs2MDcuXNRKBR4e3vzzjvvUKNGjQxlbWxsaNasGdu3b6d+/fp4eHhkeL5cuXIsWLCAefPmMX36dDw9PenWrRvu7u6ZBlI9Sy6Xs3jxYlauXMkff/zBn3/+iZ2dHT4+PvTq1SvLATEv4+XlxaZNm5g/fz7bt28nKSkJLy8vGjVqZOw2t7OzY/Xq1SxZsoQ9e/bw+++/4+joSJkyZRg0aJDFzORUvnx5pk+fzoIFC5g6dSoVKlRgxowZ7Nixg1OnTuXqmJUqVTKen/Xr16NWqylRokSGHouAgACGDBnChg0bOHLkCAaDgb/++ivLZOvp6cmGDRuYOXMma9asQa1W4+fnx48//kiTJk1y+9IzqVixImvXrmX27NksWbIESZIICAhg5syZWQ7QEgo2mSSu4guCIAhCnhLXbAVBEAQhj4lkKwiCIAh5TCRbQRAEQchjItkKgiAIQh4TyVYQBEEQ8phItoIgCIKQx0SyFYz8/PxYuHBhtspmteC2UHCkL3yenSko0xdy37JlS47reXZR+MKgoH/2t2zZgp+fX4aZqwCWLVvGW2+9ReXKlXn33XeB3L3WV/m8FGYi2QrPde7cORYuXJhvK7zklx9//JH9+/ebOwyLs337dlauXJmndahUKhYuXJitJC/kn3/++YeZM2dSo0YNpk6dyvDhw016/EOHDmX7h3yhZaZ1dAULlJqaKmm1WuPjFy24rVarJY1Gk5/hmUxgYGCGxcJfR3q9XkpNTTUuhC5JkvTZZ59lWMA9ncFgkFJTUyWdTpfjejQaTYaF1aOjoyVfX19pwYIFuQvcAjy72HxBo9PppNTUVMlgMBi3zZw5U6pUqVKG90qScvc9z+rzMmnSJMnX1/fVAi/gxHSNgpGNjU22yz69WLY5GQwGtFptjmIX0qaVzO45k8lkuT6/VlZWudpPyDsKhSLT0oXR0dHY2tpm+l7n5nv+Kp+Xwkx0I1ughQsX4ufnx+3btxkyZAg1atTgjTfeYMqUKajV6gxldTodixcvpnnz5vj7+9OsWTPmzJmDRqPJUO7ixYv06dOHN954g4CAAJo1a5ZpzdWnr9kuXLiQGTNmAPDWW2/h5+eX4TrP09dyLl68iJ+fH1u3bs30Wo4cOYKfnx8HDx40bouIiGDs2LHUr18ff39/2rRpw2+//Zatc+Pn58fkyZPZtm0bbdq0oVq1asaVbpYvX07Xrl2Nr7FDhw7s2bMn0/4pKSls3brV+Jqevib1KrFlJTIykrFjx9KoUSP8/f1p2LAh/fr1y3S97NChQ3Tv3p3AwECCgoL47LPPMi2rN2bMGIKCgoiIiKB///4EBQVRt25dpk+fnmk92J07d9KhQweCgoKoUaMG7dq1Y9WqVcbnn71m26tXL/7++2/CwsKM5yX9Wuuz1+CWL1+On58fYWFhmV7v7Nmz8ff3Jz4+3hjz08dJX9x+0aJFxnoWLlzI5s2b8fPz48qVK5mO+eOPP1K5cmUiIiKee57DwsKYOHEiLVu2JCAggDfeeIPBgwdnOs/p1yvPnj3L1KlTqVu3LoGBgQwYMCDDSkSQtmrQ999/T6NGjahevTq9evV66VKHT3vZe5Aey+nTp5kwYQJvvPEGNWrUYNSoUcbz97TsfEYA49+NunXrEhAQQMuWLZk7d26metPPTfp7m5KSYnxP0t/rrK7ZJiQk8N1339GsWTP8/f1p1KgRo0aNMp6/Zz8vY8aMYe3atca60v+TJIlmzZrRr1+/TK9BrVZTs2ZNJkyYkO3zbelEy9aCDR06FG9vb0aMGEFISAirV68mISHBmAQhbcWTrVu30rJlSz766CMuXLjAkiVLuH37NosXLwbSfrX26dMHNzc3PvvsM5ydnXn48CF//vnnc+tu0aIF9+7dY8eOHYwdOxY3NzeALFeOqVatGiVLlmT37t20b98+w3O7du3CxcWFhg0bAmlLiHXu3BmZTEaPHj1wd3fn8OHDfPnllyQlJdG7d++XnpcTJ06we/duevTogZubG97e3gD88ssvNGvWjHbt2qHVatm5cydDhgxhyZIlxgnkZ8yYwfjx4wkICKBz585A2lqwportWYMGDeLWrVv07NkTb29vYmJiOHr0KI8ePcLHxweA33//nTFjxtCwYUNGjhyJSqVi/fr1dO/ena1btxrLQdoi63369CEgIIBRo0Zx/Phxfv75Z0qWLEn37t0BOHr0KMOHD6devXqMHDkSSFsj9dy5c3z44YdZxtm3b18SExN5/Pix8UeYg4NDlmVbtWrFzJkz2b17d6bF6nfv3k2DBg1wcXHJtJ+7uzsTJ05k4sSJtGjRghYtWgBpf4B9fHyYPHky27dvp0qVKhn22759O3Xq1Mmw5vCzLl68SHBwMG3atKFYsWKEhYWxfv16PvjgA3bu3GlcYi/dlClTcHZ2ZuDAgYSFhbFq1SomT57MvHnzjGXmz5/PDz/8QOPGjWncuDGXL1/m448/RqvVPjeOdDl5DyZPnmyM5e7du6xfv57w8HBWr15tXIc3u5+Ra9eu0aNHD5RKJV26dMHb25vQ0FAOHDjAsGHDsox1xowZbNq0iQsXLjBlyhSATIt3pEtOTqZHjx7cvn2bjh07UqVKFWJjYzlw4AARERFZ/n3o0qULT5484ejRoxn+dslkMtq1a8fy5cuJi4vD1dXV+NyBAwdISkrinXfeeem5LjDM3Y8tZLZgwQLJ19dX6tu3b4btEydOlHx9faWrV69KkiRJV69elXx9faUvv/wyQ7lp06ZJvr6+0vHjxyVJkqQ///xT8vX1lS5cuPDCep+9lvaia7bPXreaPXu2VLVqVSkuLs64Ta1WS7Vq1ZLGjh1r3DZu3DipQYMGUkxMTIbjDRs2TKpZs6akUqleGmOlSpWkmzdvZnru2X01Go3Utm1b6YMPPsiw/XnXbF81tmfFx8dLvr6+0rJly55bJikpSapVq5Y0fvz4DNsjIyOlmjVrZtg+evRoydfXV1q0aFGGsu+9957Uvn174+MpU6ZINWrUeOE11hMnTki+vr7SiRMnjNued832wYMHkq+vr7R582bjti5dumSoU5Ik6fz585Kvr6+0devWDDE/fcwXXbMdPny41LBhwwzXkS9fvpyp7qxk9d4EBwdnimfz5s2Sr6+v1Lt37wzXLL/77jupcuXKUkJCgjHOqlWrSp999lmGcnPmzJF8fX1fes02O+9Beizt27fPcF106dKlkq+vr7R//35JknL2GenRo4cUFBQkhYWFZSj79GtIr/fp7/Xo0aOlwMDATDE++z2fP3++5OvrK+3bty9T2fQ6svq8PO+a7Z07dyRfX19p3bp1Gbb37dtXatq0aYa4CzrRjWzBevTokeFxz549ATh8+DCQ1q0E8NFHH2Uo9/HHH2d4Pn15tb///jtbv8pzo3Xr1mi1Wvbt22fcdvToURISEmjdujWQ1i23b98+mjVrhiRJxMTEGP9r2LAhiYmJXL58+aV11a5dO8sFvNOXmwOIj48nMTGRmjVrZtk1+SxTxfZsPFZWVpw6dSrLbkGAY8eOkZCQQJs2bTLUKZfLqV69epajdrt165bhcc2aNTN0lzo7O6NSqTh69GiO4s2JVq1acfnyZUJDQ43bdu/ejbW1Nc2bN8/VMd99912ePHmS4TVv374dW1tb3n777Rfu+/R7r9VqiY2NpVSpUjg7O2f5/qf3YKSrVasWer3e2DV+7NgxtFotPXv2zFDueT0Dz8rJe9ClS5cM17a7deuGUqk0fn+z+xmJiYnh9OnTdOzYkRIlSmSo4+nX8Cr27dtHpUqVjL0Sr1pH2bJlqV69Otu3bzdui4uL48iRI7Rr185kcVsC0Y1swUqXLp3hcalSpZDL5cY/rGFhYcjlcmM3aLoiRYrg7Oxs/MNRp04dWrZsyaJFi1i5ciV16tShefPmtGvXzmQDnSpVqkS5cuXYvXs3nTp1AtK6kN3c3Khbty6Q9scgISGBjRs3snHjxiyP8+x1s6w83a36tIMHD/LDDz9w9erVDNess/OFNVVsT7O2tmbkyJFMnz6dBg0aUL16dZo0acJ7771HkSJFALh37x7w/D/ijo6OGR7b2Nhk6qpzcXHJkMy7d+/O7t27+fTTT/Hy8qJBgwa0atWKRo0a5Sj+F/nf//7HtGnT2LVrF3379kWSJPbs2UOjRo0yxZxdDRo0oEiRImzbto169ephMBjYsWMHb7311kuPmZqaypIlS9iyZQsRERFIT60cmpiYmKn8s8nI2dkZwHibW3h4OABlypTJUM7d3T3LLvJn5eQ9ePZ77uDgQJEiRYzf3+x+Rh48eACAr6/vS+PLrdDQ0Jf+8Mmpd999l2+++YawsDC8vb3Zs2cPWq3WeK9vYSGSbQHyvKTxsmQik8lYsGABISEhHDx4kCNHjjBu3DhWrFjBxo0bn3ttLqdat27Njz/+SExMDI6Ojhw4cIA2bdqgVKZ9zAwGAwDvvPNOpmu76fz8/F5az9OtmHRnzpyhX79+1K5dm6+//poiRYpgZWXF5s2b2bFjx0uPaarYntW7d2+aNWvG/v37+eeff5g/fz4//fQTq1atokqVKsakMGPGDGMCftqzo0affZwVDw8Pfv/9d/755x8OHz7M4cOH2bJlC++99x7Tp0/P8WvIipeXF7Vq1WL37t307duXkJAQwsPDjdcnc0OhUNCuXTs2bdrExIkTOXfuHE+ePMnWdbtvvvmGLVu28OGHHxIYGIiTkxMymYxhw4ZlSLzp5PKsO/WyKpsbpnwPcvoZKWjatGnD1KlT2b59O3379mXbtm34+/tTrlw5c4dmUiLZWrD79+9TsmTJDI8NBoOxZeft7Y3BYOD+/fuUL1/eWC4qKoqEhATjwKF0gYGBBAYGMmzYMLZv387IkSPZtWuXsSX6rJx24bRu3ZpFixaxb98+PD09SUpKok2bNsbn3d3dcXBwwGAwUL9+/Rwd+2X27t2LjY0Ny5cvz9Ba37x5c7b2z8vYSpUqxccff8zHH3/MvXv3eO+99/j555+ZNWuW8f318PAwab3W1tY0a9aMZs2aYTAYmDhxIhs3bqR///6ZWlLpcvp+t2rVikmTJnHnzh127dqFnZ0dTZs2feE+L6vj3Xff5eeff+bAgQMcPnwYd3d34+C6F9m7dy/vvfdehpGzarU6y1ZtdqS3fO/du5fhOxgTE/PcSwLPyu57cP/+fWPvD6QNQoqMjDS2grP7GUkvd+PGjWy+ypwrVapUjkZkp3vR++7q6kqTJk3Yvn077dq149y5c4wbN+5VwrRI4pqtBUsfLp9uzZo1AMYvYePGjQEy3E4AsGLFigzPx8fHZ/rFXrlyZYBMtwg9LX0EZ3b/YJUvXx5fX1927drFrl27KFKkCLVr1zY+r1AoaNmyJXv37s3yD0JOu2mfplAokMlkGW6BefjwIX/99Vemsvb29plmxcqL2FQqVaZbtUqVKoWDg4PxvL/55ps4OjqyZMmSLK+n56be2NjYDI/lcrmxVf6y9zsnyally5YoFAp27tzJnj17aNKkCfb29i/cJ/0z9bxZySpVqoSfnx+//fYb+/bty9Az8iJZte5Wr16d6Zao7Kpfvz5WVlasWbMmw3fn2e/a8+TkPdi4cWOG9379+vXodDrj9zy7nxF3d3dq167N5s2bjd3g6UzVYn/77be5du1alncyvKiOl73v7777Lrdu3WLGjBkoFIoMP9ILC9GytWAPHz6kb9++vPnmm4SEhLBt2zbatm1LpUqVgLQ/TO3bt2fjxo0kJCRQu3ZtLl68yNatW2nevLnx1/LWrVtZv349zZs3p1SpUiQnJ7Np0yYcHR1feB2vatWqAMydO5fWrVtjZWVF06ZNX/gHtXXr1ixYsAAbGxvef//9TN11I0aM4OTJk3Tu3JlOnTpRoUIF4uPjuXz5MsePH+fUqVO5OleNGzdmxYoVfPLJJ7Rt25bo6GjWrVtHqVKluH79eqbXdfz4cVasWEHRokXx8fGhevXqOYqtV69enDp1KtOxn3bv3j169+7N//73PypUqIBCoWD//v1ERUUZ/5g4OjoyceJERo0aRYcOHWjdujXu7u6Eh4dz6NAhatSokeN7DcePH098fDx169bFy8uL8PBw1qxZQ+XKlTP0gDyratWq7Nq1i6lTp1KtWjXs7e1fOK+xh4cHb7zxBitWrCA5Odk4EO5FbG1tqVChArt376ZMmTK4urpSsWLFDNcZn+5qze6tH02aNOGPP/7A0dGRChUqEBISwrFjxzLcTpIT7u7ufPzxxyxZsoTPP/+cxo0bc+XKFQ4fPmy8De5FcvIeaLVaevfuTatWrbh79y7r1q2jZs2avPXWW0DOPiPjx4+nW7dutG/fni5duuDj40NYWBh///03f/zxR67OxdP69OnD3r17GTJkCB07dqRq1arEx8dz4MABJk2aZPzb9Kz0vyVTpkyhYcOGmRJq48aNcXV1NV739/DweOVYLY1IthZs3rx5zJ8/n9mzZ6NUKunZsyejRo3KUGbKlCn4+PiwdetW9u/fj6enJ59//jkDBw40lqlTpw4XL15k165dREVF4eTkREBAQIZuzKwEBAQwZMgQNmzYwJEjRzAYDPz1118vTbbz5s1DpVLRqlWrTM97enry66+/snjxYv7880/Wr1+Pq6srFSpUeKXrffXq1ePbb79l6dKlfPfdd/j4+DBy5EjCwsIyJcQxY8YwYcIE5s2bR2pqKu3bt6d69eo5ii05OTnL62dPK1asGG3atOH48eNs27YNhUJBuXLlmDdvHi1btjSWa9euHUWLFuWnn35i+fLlaDQa4zXRDh065PhcvPPOO2zatIl169aRkJBAkSJFaNWqFYMGDXrutUpIG9Rz9epVtmzZwsqVK/H29n7pIgKtW7fm2LFjODg4GHtSXmbKlCl88803TJ06Fa1Wy8CBAzMk23bt2hk/mwEBAdk65pdffolcLmf79u2o1Wpq1Khh/PGVW0OHDsXa2poNGzZw8uRJAgIC+Pnnn/n8889fum9O3oMJEyawfft2FixYgFarpU2bNowfPz5D12t2PyOVKlVi06ZNzJ8/n/Xr16NWqylRokSW38XccHBwYO3atSxcuJA///yTrVu34uHhQb169V54H/Tbb79Nr1692LlzJ9u2bUOSpAzJ1tramtatW7Nu3bpCNzDKyAy3GwkvkX6fbXR0tLlDEbKQmJgoValSRVqzZo25QymUoqOjpSpVqmS6n7iwSb/f9WX3v78uvv32WykoKEhKSUkxdyh5QlyzFYQcOnPmDF5eXs8dWCa8mq1bt6LX6wtvC0fIRK1Ws23bNlq2bJlptq/CQnQjC0IONWnSxDj9o2A6x48f5/bt2/z44480b978ufdTC4VHdHQ0x44dY+/evcTFxfHBBx+YO6Q8I5KtIAgW4fvvvyc4OJigoCC++uorc4cj5INbt24xcuRIPDw8GD9+vPEuicJIJkkmGhMuCIIgCEKWxDVbQRAEQchjItkKgiAIQh577a7ZGgwGdDodcrm8UK0oIQiCIOQfSZIwGAwolcoX3r+e7rVLtjqdjosXL5o7DEEQBKEQqFatWrZWT3vtkm36L5Bq1aq9cLUMvV7PxYsXX1pO+I84ZzkjzlfOiXOWc+Kc5Vx2zll6mey0auE1TLbpXccKhSJbH7zslhP+I85ZzojzlXPinOWcOGc5l51zlt3LkWKAlCAIgiDkMbMm29OnT9O3b18aNmyIn58f+/fvf+k+J0+epH379vj7+9OiRQu2bNmSD5EKgvC60Jw9R0z/AYRV9COsfEWiP/0c9YkT5g5LyEJSqpbV/9yl47zD1J+4j07zj7D26F2SU3XmDi0TsybblJQU/Pz8+Prrr7NV/sGDB3z++ee88cYb/PHHH3z44YeMHz+eI0eO5HGkgiC8DpJW/ULku++hPnsOVCpITUV7+TJRHTuR+OOP5g5PeEp0opo+S0+y9OAt9AYJgyShMxj48a+bfLLsBDFJ6pcfJB+ZNdk2btyYYcOG0aJFi2yV37BhAz4+PowZM4by5cvTs2dPWrZsycqVK/M2UEEQCj3t1avEfzkeh496Y1O3LvKiRVCULoVV1So4DhxAwjffojl7ztxhCv/6bttlktU6vutcnYiEVKqXciUiPpVpXQOJV2mZvuOKuUPMoEBdsw0JCaFevXoZtjVs2JCQkBDzBCQIQqGRvOoX5F5FcfigF6qtW3H45BMc+vcjdddu7N5ph6JMaZJWrjJ3mAIQFpPCsZuR9H2rIrvPP8LLxZY5PWvi4WTDvouP+axpBY5ce8LjOJW5QzUqUKORo6Ki8PT0zLDN09OTpKQkUlNTsbW1zfax9Hp9tp5/WTnhP+Kc5Yw4XzmXl+dMffYsNs2akbBoMbi6kjhjJkgSMh8fEubOx+btt1Hv2Vvg3q/C+Dm79CAWSQIfN1v+uvyYskUcOHcnmg8alGHunuu8V8Mbg5RWrojTy++BfVZ2zllOz2eBSramlN2JLcQEGDknzlnOiPOVc3lxzjzUapLu3MHm5CkMrq4otFokhYL4Du1xWbCQlDcbYq3XFdietML0OQsNT7seu3jXBeyUcDcymVEbQhjX2BVnGzk/7rmQVu7+PUI0j3JdjynPWYFKtp6enkRFRWXYFhUVhaOjY45atSAmtcgL4pzljDhfOZeX5yyxZUuSly4FBwcUsbEAOA7oT7Ehg4na+jv2J09h360rPoGBJq03rxXGz1npihpWnj3MxQgNSrkMkHijvAetGweRav+AObuvYyWX8W7jIFztc9eyze6kFtlVoJJtYGAghw8fzrDt2LFjBObiwy8mtcg74pzljDhfOZcX58y2WVOSv/8BtEkAyNxccRk+DEmjQe7ujv7BA2wbNyqw71Vh+py5Otjgam9NdLIGnUGibgVPZveogVwGXq52SEAxVzs8nOxeqR5TnjOzJtvk5GRCQ0ONjx8+fMjVq1dxcXGhRIkSzJ49m4iICGbMmAFA165dWbt2LTNmzKBjx46cOHGC3bt3s2TJEnO9BEEQComUjZsyPJaQEdGoMfrwR2AwAKDa+jt2LVuaIzzhXzq9gZHrzhGdrDFuuxIWR9eF/5Cg0hKv0mJnrSAsNoUH0cmU9HAwY7T/MWuyvXTpEh988IHx8dSpUwFo374906ZNIzIykkeP/utvL1myJEuWLGHq1Kn88ssvFCtWjClTpvDmm2/me+yCIBQuujt3/3sgl4NGjSFag9zDA7mnBzJraxSlS5svQAGtzsBXv53nxK1oAGSAl6styak6opLUWMlllPKwx9FWiY1SYVEru5k12b7xxhtcv379uc9PmzYty31+//33PIxKEITXTerBg2jPnjU+dlu8CPt32pkxIuFZGp2BcZtC+Od6pHHb7J41qF+xiBmjyr4Cdc1WEATB1PSRkcQOHW58rKxcGbu2bcwYkfCsVK2eMRtCOHHrvwGyA1v4FphECyLZCoLwGpMkidjhIzBERYFMBpKE88jhyLK5bJqQ91I1ekauP8eZOzHGbf8LKE6PBmXMF1QuiE+UIAivreSfV6A+cBAUCpAkrAKqYSsGQFmMFLWOYWvPcuZODOmXXyuXcGbMO1Ut6npsdohkKwjCa0l7+QrxU75Ne/DvH27nL74ocH/EC6vkVB1D15wl+F4stlZyZICHozXTuwVha1XwbmES3ciCILx2DCoVMQMGgkaDomRJ9A8eYF2zJjZNm5g7NAFIVGkZsvosV8LicbJVMq9XTVI0euysFBR1ztkERpZCJFtBEF47CZMmo7t5E7mnJ/rHjwFw+mKkaNVagESVloGrznD9UQLOdlYs+KAWlUo4mzusVya6kQVBeK2o9uwhefUakMmwql4dtFqs69XDpmEDc4cmAHbWCoq72uJkq8TNwRo764LXZZwVkWwFQXht6MMfETviCwDse3RHfegQAM6jRKvWUigVciZ3DMDH3Z77Ucn8dOCmuUMyCZFsBUF4LUh6PTFDhiLFxWEVUA0pNRV0OmwaN8KmTh1zh/dae5KQyrKDtzAYJACsrRTM6lGD1tVLMLpdVTNHZxrimq0gCK+FpB9+RHPsGDJ7e5xGjyamV9pUsc4jR5o5stebVmdg0Koz3I9KRgI+bVoBAA9HGyZ0qGbe4ExItGwFQSj0NMHBJMycBYDLlG9Q/fYbGAzYNm+OdY0gM0f3erNSyundqBw+7nZYKWTsCgkzd0h5QrRsBUEo1AxJScQMHAQ6HXbvtMMqsDpxI9Jas05fjDBzdAJAq+olcLO3YsS6YPQGCS8XW2qW9TB3WCYlWraCIBRqcV9+hf7efRTe3rhOm0ri7LkgSdi2boW1v7+5w3st3Y9KZsDK00QlqgEIj03h6y0X0Rsk3q5WnBpl3M0coemJZCsIQqGVsnVrWpexXI7bogXoHjwkdedOkMlwHilateZw90kS/Vac4uzdGObsukqyWscX64KJT9FSuYQz494teFMxZofoRhYEoVDShYYSN/ZLAJyGDsGmTh2iP/oYALt338HKz8+c4b2Wbj5OZPAvZ4hN1lCxmBMjWldm8taL3H6SlDYVY9eCORVjdoiWrSAIhY6k0xE7cDBSYiLWtWvjNGQwmuBgUvf9CXI5TsOGmTvE18618AQGrDxNbLKGSiWcWfRhLbacfsChq0+wUsiY3jWIoi4FcyrG7BDJVhCEQidx7jw0Z88ic3bGbeF8ZEolCbNmA2DfsQNWFcqbOcLXy+WHcQxadZoElZaqPi4s/KAWZ+/FsPzQbQBGt6uKf0lX8waZx0Q3siAIhYr65EkSFywEwHXadyhLlkR9+jTqvw+BUonTsKHmDfA1cyE0lqFrzpKi1hNQypW5PWoSHpfC5C2XAOharzRtg7zNHGXeEy1bQRAKDUNcHLEDB4PBgH3nTti/+y4ACTPS7rG179IZZenS5gzxtXLuXgxDVqcl2hpl3JjXsyYavYEv1geTqtVTp7wHA1v4mjvMfCFatoIgFAqSJBE7agz68HAUZcrgMuUbANT/HEVz7BhYW+M0ZLCZo3x9nL4Tzch151BrDdQu58HMbkEo5DJGrD3H47hUfNztmdKpOkrF69Hmez1epSAIhV7Kho1pt/Uolbh/vwi5gwOSJBlnjnLo3g2ld+HvrrQEx29GMnJtWqKtV9GTmd2DsLVWcPJ2FMH3Y7G3UTCzexDOdlbmDjXfiJatIAgFnvbWbeK/mgCA8+hRWFevDoD677/RnDkDtjY4DR5kzhBfGwaDxI9/3UKtM9DQrwjfdQ7EWpnWrmvoV5TvOlfHxkpB2SKOZo40f4lkKwhCgSap1cQOGIikUmHToAGOfT9P2/5Uq9bxgw9QeHmZM8zXhlwuY06PGqw5epf+zX2xUmbsQG1WtZiZIjMv0Y0sCEKBljB9BtpLl5C7ueE2fy4yedqftdQ//0R7/gIyOzscB/Q3c5SFX3isyvhvDycbhvyvElZKOeGxKQxdfZYn8almjM78RMtWEISCRa8nYdJkHLt1Rf/kCUlLfgLAeeIEUjZvQX3yJJIEuiuXAXDo8zEKT09zRlzoPIpTseafuwxo4Yu9jZLd58OZ8vslPmlSnphkDaFRydjbKGlWxYutZx5y7l4M03dcYXaPGuYO3WxEshUEoUCxPfIPKct/RnvhIvr79wGweasZ8WO/RDLosWnQEMOTCAwRTwCwCgw0Y7SF05K/brLnwiOKudrRq2FZrobFozdILDlwCw9HawJKuRGVqOar3y5QytOeoNJujG5bxdxhm5VItoIgFBiSXo/jxo3ISpRAe/o0AIqyZVD/cxSbhg1xmzcXuYszT95qkfZc6VLEDRmKdcABlN4lzBl6oXE/Kpl9Fx9RzMWWtUfv0rF2SXyLOwHwebMK9GpY1ng7z7XwBL5Yfw6NrYEizjbmDNvsxDVbQRAKjNRt21GGhWPXrm3aBpkM65o1kdnZ4b7kBxTubqj+2Ibu5k1kri54bk5b8SdlzRrzBl6IrDh0Gw8nGz54syyJqVo2nwpl3bH7NKpUlI8al0epkHPoagT/XH9CpRLOjH/Xn8sP4zkfGmfu0M1KJFtBEAoESa8naf4C1FWrkLJy5b8bJTQnTmLXti1yOzsknY6EOXMBcPr8c5TFi2P3v5akHjhovsALkfRWbZUSLszYcZWiznb88s9d7jxJonVgWs/BzccJfL35Il+sD+b0nWhql/PAw9Ga4zcjzRy9eYlkKwhCgaD6Yxv6O3dQREeDWoPNW81QVqmCPioKub0dACmbN6O/exe5uzsOfdKW05M5OCBpNeYMvdBYceg2dtYKDl1Lux7e0NeTFLUOADsrBbHJGuNUjLXKehBU2g25XIadtQKtXjJn6GYnkq0gCBZP0utJnDsPubc3yscRyIt44jZnNs4jh0NqKinbtmNITSVxzjwAHAf0T5tBSq8ndf9fWItBUq/sXmQSey88IlmtB+DTpuUZ0aYK7Wr4IAP+uvSYcRtD/p2K0Y4pnQJQKuTceZLEwxgVlb2dzfsCzEwkW0EQLJ7qj23o7tzBEBYGgMvcOSg8PbF9+20UZctiePyYmM/7oX/4EHnRojh8+AGSJJE4azb6hw9x+PADM7+Cgk2SJMZtOk9627R/84r0aVIBgN6NyiGTwfbgsP+mYuxWAxd7a1LUOmbuuEIRJxuaVHq9JxURo5EFQbBokl6fNhOUXA4GA+rq1dHfDyX5l9UAWAdUQ3X3Lur9+9MeB1Yn+ecVqLZtR3vpEs7jvzRO3yjknCRJfLftMneeJAHQtIoXjrZWbDn9wFjG3dGGqEQ1AGWLOHLqTjS7zoezKyQMlVbP3J41M80k9boRyVYQBItmSEpC/+gRGAwAWF+4QMKlSxkL/ZuIsbEh9cg/qI8ew6ZePZy/HIdtozfNEHXhIEkS8/ZcY/u5tB4FmQwOX3vC4X+v2aaXMfzb5K1Vzp34FC3f/3nDOKlF13qlKenhYI7wLYpItoIgWLSUtetAq0VmZ4fHrh1cSkwkMDAQhUIBgEGlIqJeAwyRkbhOmohDr55mjrhwMBgkZu68ytYzaS3YMe2q8F6tkhnKhMeq+Pin48SlaGnuX4xv3g9AJpOZI1yL93q36wVBsGia8+dJmD4DAJdvJqMsXz5TmeRVqzBERqIoVQr7Lp3zO8RCSW+QmLr9MlvPPEAmg/Hv+WdKtClqHaPWnyMuRYtf8bT7aUWifT7RshUEwSIZkpOJ6T8QdDps27TBvmsXDP92JRvLJCWRtPgHAJyGDkFmbW2OUAudubvTuo7lMviqfTVaVc84+5bBIPHN75e4FZGEu6M1M7oFYmutMFO0BYNo2QqCYJHiv5qA/t49FMWL4zZjWpatpuTlP2OIiUFZrhz2HTuYIcrCqVX14jjbWTHp/YBMiRbgxK0oDl6JQKmQMbVLIF4udmaIsmARLVtBECxOyh/bSNm4CWQy3BYtQO7qmqmMIT6exH9X/HEaPhSZUvw5M5WqPq5sGfomjrZWWT5f37cIo9tWwUopp3opt3yOrmASLVtBECyK7sED4saMBcBp8CBs6tbNslzST0uR4uNR+vpi9847+RlioaPRGZi4+QJXwuKN256XaNO1r12StkHeeR1aoSGSrSAIFkPS6YgdNAQpIQHrmjVxGj4sy3KG2FiSli0HwHnEcGQKcb3wVfx86DZ7Ljxi9L9TLWYlLlnDN1svEp8ipr7MDdHvIgiCxUicvwDN6dPIHB1xWzj/uV3DyT8uQUpKwqpKFWxbt8rnKAufDxqW5UpYPL0alsXWKusfLt/8fomjNyKJSlQz/4Na+RxhwSeSrSAIFkF96hSJ8+YD4DrtO5SlS2dZTh4bR8rKVQA4fTESmVx00OWGVmcwzupkb6Nkfq+aL7x1p1/zikTEqxjyv0r5FWKhIj6lgiCYnSE+ntiBg8FgwO7997Fv3/65ZR02b0ZSqbAKCsS2RfN8jLLwSE7VMWDVaX4+dNu47WX3yFbwcuKXvvUpV9Qxr8MrlESyFQTBrCRJIm70GPRhYShKl8L122+eW1b/+DH2u/cA4DxyhJhEIRcSVVoGrz7DhdA41h+7R/S/cxpnJeR+LOdDY42P5XJxvnNLJFtBEMwqZdMmVNt3gFKJ++JFyB2f33JKXrQYmVaLVa1a2DRunI9RFg7xKRoG/XKGyw/jcbazYuGHtfFwssmy7KM4FWM2BDNg5WlO34nO50gLH3HNVhAEs9HevkP8+AlAWkvVOijouWV1Dx+Ssn4DAI5fiFZtTsUmaxi2NpibjxNxc7BmwQe1qFjMKcuyKo2OUeuDjVMxVvNxzd9gCyGRbAVBMAtJoyF24ECklBSs69fHsX+/F5ZPnL8AtFrUAdWwqVcvn6IsHBJSDQz65Sx3I5Nxd7Rm0Ye1n3vt1WCQmLz1kjEpi6kYTUMkW0EQzCJhxky0Fy4ic3XFff68F94rq7t3L21GKSCpR4/8CrFQiExUM+9YPBFJeoo42bCod21Kez5/ybsVh28bp2Kc1lVMxWgqItkKgpDvUg8fIemHHwFwmzUDRYniLyyfMHc+6PVYN2mMtrK49SS7IuJVDFx1hogkPV7OaYn2RWvL/n01gqUH00Yoj2pTRUzFaEIi2QqCkK/00dHEDh0KgH3Pnti1evGkFNpbt1Bt2QKA04jhIEl5HWKhEB6rYsDK0zyKU+FhL2dx71r4vCDR3opIZNKWiwB0eqMU79T0ya9QXwtiNLIgCPlGkiTiRozEEPEEZcWKuEyc8NJ9EmfPAYMB27dbYFW9ej5EWfA9jEmh34pTPIpT4e1mx7AGLhR3fX53cFyyhi/WBaPS6KlV1p0hLf3yMdrXg0i2giDkm+RVv5D6536wtk67zcfuxdcDtVevotq2HQDnkSPzI8RC4fLDOCLiUynt6cDiD2viZveC6+F6A+M2hRgT87edq6NUiNRgaqIbWRCEfKG9do34b9ImrHD5chxWVau8dJ+E2XMAsGvbFquqVdDrs54kX8ioZUAJ5DIZNcq442qvJOwFZeftuca5e7HYWyuY2b0GLvbW+Rbn60T8fBEEIc9JKhUxAwZCqhqbZk1x6PPxS/fRXLhA6u49IJPhNCLr1X+E/9yOSCQ66b/ZoFpUK/7cCSvSnbwdxW+nHiCTwcSOAWIqxjwkWraCIOS5+G+/Q3ftOvIiRXCbMztbE1IkzJwNgF3797Dy9c3rEAu0648SGLTqDJ5ONizuXRs3h/9apxq9hk33NlGlWhXsFBm77euU8+DzZhWQyWQ0qlQ0v8N+rYhkKwhCnlL9uZ/kFSsBcJs7G0WRIi/dR33mLOoDB0ChwPk5a9oK/7G3VmCjlGNnrUD5zPzFv1/7nRmXZhDkG0TXal0zPCeTyfiocfn8DPW1JbqRBUHIM/qICOKGjwDA4dNPsG3aNFv7Jc6cBYB9p/dRli2bZ/EVFiU9HPj+o9os6FULJzurDM/9dvW3tP9fSfu/SqPj+z9voNLo8j3O15lItoIg5AnJYCB26DAMMTFYVa2Ky9gx2dpPffw46n/+ASsrnIYOyeMoC67gezEcuxFpfFzSwwEH24ydlSnaFHbe3AnAzls7UWlVTNt+hV/+ucuYDSH5Ge5rT3QjC4JgMobYWFT7/sS+cyeSfvoJ9eEjyGxtcft+ETKbrAfrSAYD6kOH0Jw+gySTkbpvHwAOXbugLFkyP8O3WHHJGo7djKRV9RLIZDJO34lm5LpzSBJ837s2/iVdM+2jN0jMO7wJtT5t0FSqLpU9t/bQoXYTgu/Fiu7jfGb2ZLt27VqWL19OZGQklSpV4quvviIgIOC55VeuXMn69et59OgRbm5utGzZkhEjRmDznC+yIAj5J2HGTJJ/WY0hLpaEaTMAcJk8CasKFbIsr712jZhPP0d35w5yr6JIqlSkhASQybDr3Dk/Q7doi/+8wfbgMFwdrJEBYzaEoNYZqFvBkwpZrNxz41EC4zaF8HfsL8hkCiT0ICn4YvsSjvVtxW9D3sRaKTo285NZk+2uXbuYOnUqkyZNonr16qxatYo+ffqwZ88ePDw8MpXfvn07s2fP5rvvviMoKIh79+4xZswYZDIZY8eONcMrEAQhnS4snOT1G8DGJi3RarXYtm6FffduWZbXP3lCVJduKIoWpci2P1AGBRL1zntog4OROTgQO3gIRfftQW5vn8+vxLKExaSw63w4NlZy5u66xuN4FVq9REO/InzXORBkOtque5fI5LQuZa3ewO0niVgpFSQobiEZ/r03WabnjuovKi+oQbmijsifGhFexKEIW7pswVoh7rHNK2ZNtitWrKBz58507NgRgEmTJvH333+zefNmPvvss0zlg4ODqVGjBu3atQPAx8eHtm3bcv78+XyNWxCEzJIWpS38blWtGurDh5G7ueE2Y/pzb/NJ/mU1kkqFx/q1KDw9Sd3/V1qitbXF/ZdVRL/fCdXW33Ho0T2fX4llWXn4Dq72VrQJ9OaXf+4C0KRyUb55vzpWSjl6gwKtQcup8FMZd9RmPpaEjhj9VWIeZdz+dvm3UcjEMnp5yWzJVqPRcPnyZT7//HPjNrlcTv369QkODs5yn6CgILZt28aFCxcICAjgwYMHHDp0iHfffTfH9b9sJpr058WMNdknzlnOFKbzpQ9Pa9XatG6F+o9tAMhcnDE4OSE95/WlbN+Obbt24OaGTqcjPn0E8ocfYlWrJtaN3iTlj23Ydu3yXz2F6JxlR1hsCrtCwmlRrRhrj94DwNlOycQOVZHLJON52NF1B3NOzOHLA19ikCQkDC89dnpy/a7ZdwyrOwyk1+e8vkx2Pmc5PVdmS7axsbHo9fpM3cUeHh7cuXMny33atWtHbGws3bt3R5IkdDodXbt2pW/fvjmu/+LFiyYtJ/xHnLOcKQzny/mHH7G1tkb1537kQEqTxtj/fYhrS35CXfeNLPcpEhNDnAzuhoRgc/wEbpcuYbCz5c6bDZBCQnC2tsbqYRihISGZ9i0M5yw71oQkYq2Q2HvhERLg52nF9Sgtm/afpapXxi7f5nbNKd6gOJ//8wVqol6YcGXIKWpblGk1p1HVrioXzl/I41dSMJnyc2b2AVI5cfLkSZYsWcLXX39NQEAAoaGhfPvttyxevJgBAwbk6FjVqlVD8YLFqvV6PRcvXnxpOeE/4pzlTGE5X/rwcCL/3I+8WDEMDx9iFRRI2eXLiO31AUX++AOPzz/Lsis5umJF7B48pEJAANFfjEYHOH3yCSUaNUKSJKLu3MHK35+SgYH/1VVIzll2hMWmcGLbMdIXFGwbWIIv2lRi4Kqz/P1Aovvb1TOd10AC2XezBMcSJ3M35chzj+3r9CYn+v6Ok03mwVVC9j5n6WWyy2zJ1s3NDYVCQXR0dIbt0dHReHp6ZrnP/Pnzeeedd+jUqRMAfn5+pKSkMGHCBPr164dcnv3RdQqFIltf1uyWE/4jzlnOFPTzlfj9D8iUSgwPHyJzdMR98SKUtrY4Dx9G1Pud0f71F3YtW2baz7FnT2IHDSZ55ix0168jc3bGue/nyBUKkjdsQH/rNm5Tp2Z5bgr6OcuOKb9fMSba9rVK8kWbysjlMj5pVoEhv5zl1N1Y6lfMPBtXlzqV+HOb83+jkJ8hkxRU9y6Pq71r3r6AQsCUnzOzjf22tramatWqHD9+3LjNYDBw/PhxgoKCstwnNTU1U0JNPxGSWFBaEPKdLiyc5LXrkNSpADh+/hmG2Fg0ISHI7OxQVqxI4uy5WX4/7d5ph02zZiQt/j7t8f/+h+b8eWKHDiNu5Cjsu3XFul7dfH09lmLvhXAuPIgDoLl/MdoGleDaowSuhMXjaKPEx92OZQdvZ3leA0o5EyM7kiHRyvivBSzJ9BwI3YbeIK7P5iezdiN/9NFHjB49Gn9/fwICAli1ahUqlYoOHToAMGrUKLy8vBgxIm26t6ZNm7JixQqqVKli7EaeP38+TZs2LfS/cgXBEqXu3QtPDRRJnD0nbbH3Z+jDw1F6e2fYJlMqsWv9v7Q5kGUyUjZtImXTJhQ+Prh8PQGHPh9na8GCwihB9d9Q4v2XHrP/0uNMZWQyFTFJmgwr+6Rq9Hy2bg06EtJLARJOUhAJsnPIkCEhEZUSxbEHx3iz9Jt5/EqEdGZNtq1btyYmJoYFCxYQGRlJ5cqVWbZsmbEb+dGjRxlasv369UMmkzFv3jwiIiJwd3enadOmDBsmJioXhPwmSRKa02cAkBcrhvsP3yN3cMhUTubkmCnRAkhaLYkLFwHgNOoL7Fq3QiZXoChdCtlr+uPZYJCQy2V0rF2K6qXdQJKe+4PDwcYqQ6KVJIlvfr/E+Zh9IEsbbexq68qsZj/hleyDoVgUH/zRi/jUePSSns1XN4tkm4/MPkCqZ8+e9OzZM8vnVq9eneGxUqlk4MCBDBw4MD9CEwThBVS/bUa1bRsoFHj8tATrmjVytH/Kpl/R3w9F7umJ4yd9XuvJKyRJ4udDt7kVkcQ37wegVMjxLeaco2OsPHyH/ZfDiZEfBqBZ2Wasbr8aTztPQkJCCKzQkiv9r9Bza0/239nPpsubmNty7mvbe5DfxHxdgiDkmO7uXeK+HA+A88gROU60klpN4vwFADgN6P9aJ1qABzEprDx8h4NXIjh2MyrH+4fcj2XJgVtIGCjh5MWsFrPY03MPXo5eGcp5OXqxt+deZraYiae9JzqDWPknv5i9ZSsIQsEiaTTEDBiIlJyMdb26OA7on+NjJK9fjz4sDLlXURx6Zd2z9Top5eHA1C6BhEan5GoRd38fF7rWK41Ob2Bkm6svLCuXyRlZfyQj64/MbbhCLohkKwhCjiTMnoP2/AVkri64zZ+f4+urkkpF4oKFADgNHozMzi4vwrR4kiRlGODU0C/nSTadUiFn6P8qYTCIuzIslehGFgQh29T/HDXequM2cyZK7xI5Pkby6jUYIp6g8PbGoVtXU4dYIBgMEjN3XqX3T8d5GJOSq2Po9AY2Hr+PVvffTFFyubj+aqlEshUEIVv0MTHEDBkCkoR9jx7YtW6V42MYUlJI/DdZOw0d8tw1bgszvUFi6rbLbDn9gKhENVfC4nN1nIX7rjN3zzXGbAwR8wwUACLZCoLwUpIkETfyCwyPI1BWqIDLxAm5Ok7yipUYoqJQlCmNfaf3TRyl5dMbJKb8fontwWHIZTChfTXerlY8V8eqU94TR1sl7Wp4ixHFBYC4ZisIwkulrF5D6t59YG2N2+KFuRo9bEhMJPH7HwBwHjYMmZWVqcO0aDq9gUlbLvLnpcco5DImdqxGC//cJVqABr5F2DK0Ec52r9d5LKhEshUE4YW0N24QN2kSAC5jx2Dt75+r4yQtW44UF4eyQgXs2r9nwggtn1ZnYMLmCxy8EoFSIWNKp+o0qez18h2fERGvQm+QKOGW9mNHJNqCQ3QjC4LwXFJqKjH9B0CqGpsmjXH4pE+ujmOIiyPpp6UAOA0f9lrNEKXRGRi3KYSDVyKwUsiY2iUwV4k2VaPni/XBfPTTCS7+O2+yUHCIZCsIwnPFfzcV3dVryD08cJs7B1kOVtZ6WtKSn5ASElBWroRdu7YmjtJyqbV6Rm8I5sj1SGyUcmZ0C+LNXNziI0kSU/64xI1HichlMjydXr+BZQWd6EYWBCFLqX8dIHn5zwC4zZ2Domju7gPVx8SQ9O9xnEeOyHXCLmhSNXpGbQjm1O1obKzkzOpeg9rlPHJ1rF+O3GX/v9d6p3YJpLjr63lvckEmkq0gCJnonzwhdthwABz69MH2rWa5PlbS9z8gJSdjFVAN2yzWtS2MUtQ6Rq47x7l7sdhZK5jdowY1yrjn6lhHrj/hxwM3AfiiTWUCS7uZMlQhn4hkKwhCBpLBQOzQYRiio7GqUgWXcWNyfSz9kyckr1gJgPPIka/NLSoSaddq7W0UzO1Zk+qlcpcg7z5J4uvNF5Ak6Fi7JO/VKmnaQIV8I5KtIAgZJC1dhvrQYWS2trgtXojM1jbXx0pctBgpNRWrGjWwadbUhFFaNgcbJXN71iQ8ToVf8Zyt3pMuPkXDF+vPkaLWU7OsO8NaVTJxlEJ+ej0ungiCkC2aS5dImDoNAJeJX2Pl65vrY+nDH5G8eg0Azl8U/lZtfIqGHcFhxsdOdla5TrQ6vYHxv17gYYyK4q52fNupOkqF+HNdkImWrSAIQNpUirH9B4JWi+3/WmLfs8crHS9h/gLQaLCu+wY2bzY0UZSWKVWrZ+CqM9x8nEiqRs/7b5R6peMt3Hed03eisbNWMLN7EK4O1iaKVDAX8VNJEAQA4idOQnf7NvJiXrjOnPlKLVFdaCgpGzYA4Dzqi0LfqrW1UtC4UlHcHa2pUTZ3A6HSbT/3kI0nQgH4ukM1Kng5mSJEwcxEy1YQBFQ7d5Gydh3IZLgvWIDC/dVGvCbOmw86HTaN3sTmjTdMFKVl69OkPB3rlMLtFVqh18Ljmb7jCgCfNCmfq8kvBMskWraC8JrThYUTO2oUAI4D+mPToP6rHe/OXVJ+2wyA8xdfvHJ8lioiXsXkLRdJUesAkMlkr5RoAcoUcaR51WI0reLFx43LmyJMwUKIlq0gvMYkvZ7YwYOR4uKxCqyO88gRr3zMhLlzQa/H5q23sK4RZIIoLU94rIqBq04THquCf1fvMQVbKwVfd6iGVi+JtWkLGdGyFYTXWNKixWhOnETm4ID7ooWvvBKP9vp1VFt/B8D5i1dP3JboYUwK/VecIjxWhY+7HZ83q/BKx5MkiT8vPcJgSFuTViaTYa0Uf5oLG/GOCsJrSn3mLAmz5wDg+u0UlGXLvvIxE2bPBUnCtnUrrKuZprVnSUKjkun38ykex6dS2tOBHz6qg5fLq02duPqfu3z16wXG/3peLAJfiIluZEF4DRkSEogdOAj0euzeexe79zu+8jE1ly6TunMnyGQ4jxhugigty90nSQxcdZroJA3lijqy8MNaeDi++oIARZxtsVbKqV3Oo9CP2n6diWQrCK8JfVQUaLUoihcn7svx6B88QFGyJK5Tv8v1H3ldWDjaixdAoSR51SoA7N5ph1Wlgj3bkUZnICw2hbJFHAG4+TiRwb+cITZZQ8ViTiz4oFaOB0MlpWo5HxqHVm/Ar7izcTGBVtVLUL2UGyXcxOIChZlItoLwGpAMBqK79cCQnITT0KGotmwFhQK3RQuRO+d8liN9VBRxY8eRumcvGAz/PSGT4TRooAkjN4+5u6+y7VwYvw5uSIJKx+BfzpCg0lKphDPze9XExT77iVanN/D9/ptsPfMAlUZv3F6nvAdfvedPEWdbkWhfA+KarSC8BlL37EV75Qr6+6HEjRkLgNOwodjUqpnjYxkSE4nq1AXN6TO4fvctxYLPYl23btqTMhkJ02YgPZ2AC5hHcSq2B4ehN0jM3X2NQatOk6DSUtXHhYUf1MpRopUkia83X2TTyft0r1eGzUPeZPuIRpQt4sCZO9H0WXqC+BRNHr4awVKIZCsIhZxkMJAwZy7W9esjc3UBtRrrOrVxGjwoV8dLXr0G3f37eP72Kw69eqK7fx/NiROgVOIy9TtS9+9HfeSIiV9F/vnlyB0cbZS0C/LmyPVIElN1BJRyZUGvWjjZ5Wy09vnQOP66/JgJ7avxabMKeLvbs/bofe5GJmOtlBOfomXTydA8eiWCJRHJVhAKudQ9e9FdvYqieDGkuHgAbFu+jUyhyNXxUjb9il3btlhVSJt0IWHGLADsu3TGoUd3lJUrkbJxk2mCz2fprdpu9coQfD8GAA9Ha+b1rImDbc6vuu0MCcPH3Z7mVYsBsCM4jA0n7gPwdYcAWgeWYOdTixcIhZdItoJQiKW3aq38/dOu0wJWQYEk/7IaSavN1TH1jx9jVSVtAJT6n6Nojh0Da2uchgxGJpNhVbky+sePTfYa8lN6q7bTG6WY2b0GvsWciE3WEJfLrt7IBDXlvRyRy2VcCI1l+vbLQNpUjE2reFHey4nIRLUpX4JgoUSyFYRCLL1Vqw8PB0nCvltX3KZPR38/lJQtW3J1TEWRIuhu3ESSJBJmprVqHbp3Q+ntjSRJ6G7cRFG0qClfRr54FKdi27mH9GhQFnsbJWWLOLKkTx1c7K1ZefhOro7p4WjNvchkHsepGLMxBK1eyjAV473IJJPcPiRYPpFsBaGQkgwG4mfPQe7hgSEmBmW5crhMnoRV1SrYtm5F4vwFuWrd2nd6H9Uf20jZ9CuaM2fA1sY4All9+DDaS5ew79TJ1C8nz03ffhm9Acp6Ohi32Vkr6dmgLDtDwgmPTcnxMVsHenM/KpkBK08Tk6ShgpcjX73nj1wu40l8KrvPP6J1YAlTvgzBQolkKwiFVOqeveivXcMQHQ1WVrguXojMzg5JknAaMiTXrVuHD3oh8/IibvSYtMfduoGVFUk/LSXmk8+wefNNbJo0NvXLyVOP4lScvBUNwP7Lj5Ekyfhf+1o+ONtZ5ap1G1TalSJONoTFqrC1kjP2narIZPDnxUf0XXEKJ1slnV9x7VuhYBD32QpCIZW4dOl/D7Raolq1yVQmec06HLp0ydFx5a6uOA8eRNyIkWnHWLGS5BUrwcoK+w7tcZnyTa4HX5nL7pBw0idK3HPhEXsuPMpUZmdIOF+0qYJVDuYtXnP0HpGJamQy0OoN9Fl60vhcrbLujHvXH3fRjfxaEMlWEAohKTUVKSqtpab0rYjDp58gk2dOErmZ6UkyGEhe/jMA9j16YPNGHVAqsKlXr8Bdq738MI4q3i68U9OHIs4vTnrujjYoFdmfaeuf60/44a+bAIxsXZlmVYtx5m40Or1EpRLOxtmphNeDSLaCUAjFT52G7s4d5O7ueG5Yj8LLdIuQp+7ajfbKFWSOjjiPGf3KC82by47gML794xKd3yjF0P9Vol0NH5Md+15kEhM2X0CSoH2tknSsk9ZV3MK/uMnqEAoWkWwFoZBJPXCQ5GXLAXCdM9ukiVbS60mYNRsAx08/KbCJ9vczD5i2/QoAGp2EJIEp1wDwdLIhsJQbKo2e4a0K9jzRgmmIZCsIhYg+MpLYYWkr7jh8/BF2LZqb9PiqP7ahu3kTmYsLjp9+YtJj55dfT95n9q5rAHR+oxTDWlUy+Wo7jrZWzOxeA5VGl6NrvELhJT4FglBISAYDscOGY4iKQlnJD5dxY017fJ2OhDlzAXD6/DPkLi4mPX5+WH/snjHR9qhfxuSJNvhejHFNWoVchqNtzqZ3FAovkWwFoZBI/nkF6oN/g60N7osXIbMz7UoyKZs3o797F7m7Ow6f9DHpsfPDL0fuMH/vdQA+fLMcA9/2NWmi3REcRr8Vp/nuj8tiEXghE9GNLAiFgPbyFeK//Q4Al6++Mvl6spJGQ+Lc+QA4DuiP3MHhJXtYlp//vs1PB28BaVMl9mlS3uRdxylqHXIZFHW2FYvAC5mIZCsIBZxBpSKm/wDQaLBt0RyHDz8weR0pGzehf/AAedGieXL8vCJJEj8duMWKfyek6PtWRXo3KpcndXWuW5qAUq74Fsv5+sBC4SeSrSAUcPETJ6O7dQu5V1Fc58w2eatKSk0lYV5aq9Zp0EDkJu6eziuSJLH4zxusOXoPgEFv+9GjQRmT1pGq1aPXS8YVgSqVKHjXsYX8Ia7ZCkIBptq9m5Q1a0Amw23+fBTu7iavI3ntOgyPH6MoXhyH7t1Mfvy8suipRDu8VSWTJ1pJkpi67TJ9lp0gNDrZpMcWCh+RbAWhgNKHPyJ25CgAHPv1xfbNhiavw6BSkbhwEUDaEnq2tiavI69UL+WGlULG6LZV6Fy3tMmPv+boPfZeeMSD6BQiE1JNfnyhcBHdyIJQAEl6PTGDhyDFxWEVUA3nL0bmST3JK1dhiIxEUbIk9l0650kdeaVRpaL8OvhNirmavtv76I1Ivt9/A4Bh/6tEzbIeJq9DKFxEy1YQCqCk739Ac/w4Mnt73BcvRmZtbfI6DElJJC3+HgCnYUPypA5T0hskFu67nmEpvLxItHcjk5jwW9pUjO/V9KFjnZImr0MofESyFYQCRhMcbJwy0WXKNyjLlc2TepKX/4whNhZF2bLYd+yYJ3WY0pK/brL26D0G/3IWrc6QJ3UkqLSMWh9MslpHYGk3RrSuLG7zEbJFJFtBKEAMSUnEDBgIOh127dpi3zlvFmk3xMeTuOQnAJyHD0OmtPwrTp3eKEWZIg4MaOGbJ1Mk6vQGJvx2ngfRKRRzseW7ztXFVIxCtln+N0gQBKO4cePR3w9F4e2N6/RpedaqSlq6DCk+HqWvL3bvvpMndZiCJEnGc1DE2ZY1/eqjVORNAlz85w1O3IrG1krBjG5BYh1aIUfEzzJBKCBStmxFtXkzyOW4LVqQZ3MT62NiSVq6DADnEcMtdiF4tVbPyHXB7LkQbtyWV4l2V0gY64/fB2BCe398i4uJK4ScES1bQSgAdKGhxI0dB4DT0CHY1KmTZ3Ul/fgjUlISVlWqYNu6VZ7V8ypStXrGbrrAqdvRBN+PoW55T1wd8mYA16UHcUzddhmAjxuXo1nVYnlSj1C4iWQrCBZO0umIGTAIKSkJ61q1cBoyOM/q0kdGkvzzCgCcvhiBTG55nV+pOomR60IIvh+LnbWCWd1r5FmifZKQyugNwWj1Eo0rFeWTJhXypB6h8BPJVhAsXOLceWjPnUPm7Izb4oV5OlgpcfH3SCoVVoHVsW3RIs/qya1ktY7FJ+K5E6PD3kbB3J41qV4q7xawV8hllHCzx9XemgkdqiGXi5HHQu6IZCsIFkx94gSJCxYC4DrtO5Q+PnlWl/7xY5JXrwbA+YuRFndLS6JKy9A157gTo8PRRsm8D2ri7+Oap3V6ONqwuHdt4lM0ONiIP5dC7lleH5EgCAAY4uKIHTQEDAbsO3fC/t1387S+xIWLIFWNde3a2DRunKd15VR8ioZBv5zhSlgCDlYyFnxQI08T7b3IJOO/rZVyijgXnGkqBcskkq0gWCBJkogdNQZ9eDiKMmVwmfJNntanCwsjed16wPJatbHJGgauOsO18ARc7a0YXN8FvzwcDXzsRiTdFx9l4d7rGAxiEXjBNESyFQQLlLJhI6k7d4JSifv3i/J8sfbE+QtAo8G6fn1sGtTP07pyIjpJzYCVp7n5OBF3R2sWflATH5e87c698TgRg5R2fdiCfnMIBZy4CCEIFkZ76zbxX00AwHn0KKyrV8/T+nT375OycVNafaPyZkGD3IhMSGXgqjPcj0qmiJMNi3rXxsfNlpDwl+/7Kno3KkelEs7ULONuUS18oWATyVYQLICkUiGzs0NSq4kdMBBJpcKmYUMc+36eN/XpdOgjIpBZWZEwdx7odNg0bYJN7dp5Ut9L45EkNDoDNlb/TaBx4HIE96OS8XKxZdGHtSjp4YBerzdZnQkqLUmpOtwdrbFSyNHp/6u/bgVPk9UjCGAByXbt2rUsX76cyMhIKlWqxFdffUVAQMBzyyckJDB37lz+/PNP4uLi8Pb2Zty4cTS2sAEdgpBd+idPiGj+Ns5fjEAf+gDtpUvI3dxwmz/X5Pe5Smo1iYu/J3nNGgwRTzI85zxyhEnryolFf97g7ysRrBvQwJjwOtcthVZvoFlVL0q42Zusrguhsfx86DYnbkUDYGetwNvNDrlMxuweNcRgKCFPmDXZ7tq1i6lTpzJp0iSqV6/OqlWr6NOnD3v27MHDI/P6kBqNho8++ggPDw/mz5+Pl5cX4eHhODuLqdOEgit5yU9IcXEkTJ+JlJAAgOucWSiKmXamIkmjIbr3R6hPnsKhS2dsW7Qgcf4CNGfOAJB68G+sAwNNWmd2PElI5deToWh0Blb/c5eeDcpia61AJpPRs6FpVzQ6eiOS0RuCKVfEkbHvVKWYqy2bTz3g8LW0Hx7Hb0bxTs28u71KeH2ZdYDUihUr6Ny5Mx07dqRChQpMmjQJW1tbNm/enGX5zZs3Ex8fz+LFi6lZsyY+Pj7UqVOHSpUq5XPkgmAa8thYUlavwa5dW2OidfjwA+zeftvkdSWvW4/66DE8V/+C69TvUBQvhubsWQDse/UkcdZstLdumbzel1n9z11sreTUKefOz4duM2LtOVK1pusuTqfRGZjy+yXeKO/Jz5/V5d2aPjjYKDlxKwoAOys5wfdjTV6vIIAZk61Go+Hy5cvUr//fyEe5XE79+vUJDg7Ocp8DBw4QGBjI5MmTqV+/Pm3btuXHH3806XUcQchPDlu2glKJ4d9Ei0KB0xd5M0gpec1abFu2NI42Tpg9ByQJ2zZtcJ00EbmHB8lr1uZJ3c/zJCGVP84+pGu9Mrxb0weDBPeikkhR60xe1+FrT4hN1jDobV+UCjmRCamM2RCCRmegUaWifNy4PH9dfkyCSmvyugXBbN3IsbGx6PX6TN3FHh4e3LlzJ8t9Hjx4wIkTJ2jXrh0//fQToaGhTJo0CZ1Ox8CBA3NU/8sSdPrzIpFnnzhnOaN9/Bj73XuwqlcX9aHDYG0Nej3JGzfh8OknJq9Pd+sWdt26otfr0V68ROruPSCT4ThsKAalEqtaNdHevJmv798vR+5go5TTsZYPjrZK6lbw4PqjBGytZFnG8SqfsbtPEvFwtKakux0pqRpGrQ8mKlFN2SIOjH+3CqHRKWh0BsKik3AoRKv6iO9lzmXnnOX0fOY62SYkJLB3715CQ0Pp06cPrq6uXL58GU9PT7y8vHJ72BeSJAkPDw+++eYbFAoF/v7+REREsHz58hwn24sXL5q0nPAfcc6yx2n5z9jJ5WiOHUcGJPT+AOW9++gXLORmQDWwMe16qUVtbXl06RJJISG4Tp6CLaBq1IhLKckQEoL73Xvoi3gSGhJi0nqfJ06lZ+vpWOqXtuXWtUsAtCxl4NRtLT9sO0WTcnbP3Tc3n7GYyBQSVBpOnj7H+ovJXA1X42Alo3eANTevXuLiYzUA927fJCXCMpcVfBXie5lzpjxnuUq2165d46OPPsLJyYmwsDA6d+6Mq6sr+/bt49GjR8yYMeOlx3Bzc0OhUBAdHZ1he3R0NJ6eWQ+7L1KkCEqlEsVT62uWK1eOyMhINBoN1tbZX/mjWrVqGY7zLL1ez8WLF19aTviPOGfZp3/yhMg9e9Hb2CBPSMCmWTMqfvkl+gcPiWrSlIoXLpq8dRvfti3Kgwcp2bEDsWfOgEJByckTKVu2LNqLl4i+cQOXIYMpm0+DpL767QJ6CUIe6/i8VQXKFnEE4FT0ZQ7cjqbfO3WwUWb8HL3KZ6xI6RR+v3KMP+4qOP1QjUImY2rXIGqWdUeSJFZfCaGClyMtGtQoVPfXiu9lzmXnnKWXya5cJdtp06bRvn17Ro0aRVBQkHF748aNGTkye9ebrK2tqVq1KsePH6d58+YAGAwGjh8/Ts+ePbPcp0aNGuzYsQODwYD831si7t27R5EiRXKUaAEUCkW2PnjZLSf8R5yzl0v6aSkYDCgSEpAXKYLbvDkolEqUZctg37kTyT/8iOOHHyC3e37rLqec+n5G6h9/EPd5PwDs3++IdfnyqP85Styw4Sgr+eHQulW+LBZ/6GoEB66kjQAuU8SR4q4Oxs/Mx43Ls+/iY3YEP6Jz3dJZ7p+bz1gpTydqlnXn0LVIAAa19KVOhSLEJKlZ9nfarUDfda6OMg9XVTIn8b3MOVOes1x9qi5evMjkyZMzbffy8iIyMjLbx/noo48YPXo0/v7+BAQEsGrVKlQqFR06dABg1KhReHl5MWJE2v1/3bp1Y82aNXz77bf07NmT+/fvs2TJEnr16pWblyEIZmFISSFpxUrQ/jsQx96e6O7//cA0JCRgiIpC9dtmHHpl/cMzN6wqVMB5zCjiJ0wEQH38BBG130D/6BFWgdXxWLYUWQ5/tOZGyP1Yvvz1PAA2SjkqjY5+K09lKKOQy1h77N5zk21u3I9K5lp4gvHx8r9vs+1cGA+ik5HLZHzRprJYGF7IM7lKttbW1iQlJWXafu/ePdzd3bN9nNatWxMTE8OCBQuIjIykcuXKLFu2zNiN/OjRI2MLFqB48eIsX76cqVOn8s477+Dl5cUHH3zAp59+mpuXIQhmYYiOBoUCtFq0Zcvi8mbDzN2WMhnWtWqatF5JklDt2g2AdYMGWFWqhMzaCttmzbCuVzdfuk7P3Ilm5LpgdHqJIs421K/giVKR+aaIaj6ulHAzXas+UaXli3XnSFLrCCjlyhetK/P31Sckpmp5t6YP/wsojot93v/QEF5fuUq2zZo1Y/HixcybN8+4LTw8nFmzZvF2Du8P7Nmz53O7jVf/u7bm04KCgti0aVOO6hAESyEZDMSN+AJSU1H6+/N40teUrF07X7r31Ef+QXPiJNjY4D5vLooSxfO8zqedvBXFqPXBqHUG6lbwZFrXQGyt8qdbM1mtw0ohx8vFlqldAvFwtKFiIRpxLFi+XN1nO2bMGFJSUqhfvz5qtZpevXrx9ttv4+DgwLBhw0wdoyAUGkk/LkF99CgyOztcF84HK6t8qVeSJBJmzgLAoWePfE+0R29EMnLdOdQ6Aw39ijCjW1C+JVqAYq52/PTJGyz4oBYejqYd5S0I2ZGrlq2TkxMrVqzg7NmzXLt2jZSUFKpWrZphggpBEDLSnD9PwvS0kfouUyajLF8e8uk2G/WBg2jPnUNma4vTwAH5Ume6w9eeMG5TCDq9RJPKRfnm/epYKfNnPp3oRDUeTmnJ1cFGiYNN4Rz8JFi+V/rk1axZk5o1TXtdSRAKI0NSEjH9B4JOh13btth36YLBYMiXujO0aj/qjaJo0XypF+Cvy4+Z8NsF9AaJ5v7FmNihWpbXaPPC5YdxDFh5hj5NytOzQZlCdTuPUPDk6lM/ZcoUfvnll0zb00cKC4KQUfxXE9Dfu4fC2xvX6VPz9Q9/6p49aC9eRObggGP/fvlW75k70Xz163n0BolW1Uvka6IFOHwtklStnvOhsUhSvlUrCFnK1Sd/79691KhRI9P2oKAg9u7d+8pBCUJhkvLHH6Rs+hXkctwWzkfu6ppvdUsGAwmzZgPg2OdjFDm4W+BVVSvpSp3yHrQL8mb8e/75mmgB+r5Vga87VGNShwDkctGqFcwrV93IcXFxODk5Zdru6OhIbKxYNUMQ0ukePCBuzDgAnIYMxuaNN/K1ftX2HeiuXUfm7Izj55/la902Vgqmdw3CSiHPt2QnSRIGKe0+XZlMRqvqJfKlXkF4mVz91CxdujRHjhzJtP3w4cOULFnylYMShMJA0umIHTgYKSEB61q1cBo6JN/rT5w9BwDHzz7Nlxb1bydDWbD3OtK//bY2Vop8bVWuO3af4WvOipV7BIuTq5Zt7969+eabb4iJiaFu3boAHD9+nBUrVjBu3DiTBigIBVX6wuwyJyfcFi1Als/TAKq2/o7u9m1krq44ftInz+u7HZHI7N1XkSSoVc6d+hWL5HmdTztxK4rFf17HIKWNgG4b5J2v9QvCi+Tq2//++++j0Wj48ccf+f777wHw9vZm4sSJvPfee6aMTxAKJPWpUyTOmw+A6/SpKPO5x0fSakmYOxcAp/79kGdx2cfUyns5MaJVZSITU6lXIevFRPJKaFQy4389j0GCdjW8aRMouo8Fy5Lrn9rdu3ene/fuxMTEYGNjg4ODgynjEoQCyxAXR+zAwWAwYPf++9i/+26+x5Dy62/o74ci9/TE4aPeeVpXqkaPrXXaBBXvv1EqT+vKSlKqli/WB5OUqqNaSVe+aFNF3OYjWJxXHh7o7u4uEq0g/EuSJOLGjEUfFoaiTGlcv/0m/2NQq42taqcB/ZHb2+dNPZLEkr9u8unyk8SnaPKkjpfRGyS++u0C96OSKepsy7QugVjn04QZgpATuWrZRkVFMX36dI4fP05MTIxxMES6q1evmiQ4QShoUjZuRLV9ByiVuC9aiNzRMd9jSF6/Hn1YGPJiXiZdNehpkiSx+M8brDl6D0ibjrF1YP5fI/1+/w2O34zCxkrOjG5BxtmiBMHS5CrZjhkzhkePHtG/f3+K5uNsNIJgybS37xA/fgIAzl+MxPqptZ7zi6RSkbhwEQBOgwYiM+F6uMY6JIn5e66z4cR9AIa1qmSWRLv7fDhr/03249/zp1IJsbCAYLlylWzPnj3LunXrqFy5sqnjEYQCSdJoiB0wEEmlwrp+/XydqelpyavXYHgcgcLbG4du3Ux+fINBYtauq2w5/QCAUW2r0KF2/t/udyUsnqnbLgPw4ZvlaOGfvwsrCEJO5SrZFi9ePFPXsSC8zhJmzEybEtHVFfcF85DJ8/+6oSElhcTFaXcHOA0dgszGtF2qBoPEtO2X2XYuDJkMxr1TlXY1fExaR3bEpeqZu+kCmn9XEPq8WYV8j0EQcipXfxHGjRvH7NmzefjwoanjEYQCJ/XwEZJ++BEAt9kzURQ3TysrecVKDFFRKEqXwr7T+yY9tt4gMeX3S2w7F4ZcBhPaVzNLolXr9Cw9nUhUopqyRRzEVIxCgZGrlu2wYcNQqVS0aNECW1tbrJ5Zk/PUqVMmCU4QLJ0+OprYoUMBcOjVE7v//c8scRgSE0n8/gcAnIcNQ2bCdXJ1egOTt15k38XHKOQyJnasZrZu26hENQmpBpxslczsXgMHW7FknlAw5OqTKmaJEoR/b/MZMRJDxBOUFSvi/PUEs8WStGw5UlwcygoVsOvQ3mTH1ekNTPjtAgeuRKCQy5jSqTpNq3iZ7Pg55e1mz6hGrrh5l8fHPW9uaRKEvJCrZNu+vem+zIJQUCWvWkXqn/vB2hr3xYuQ58HI3+wwxMWR9NNSAJyGD0OmUJjkuBqdgfG/nufwtSdYKWR81yWQN/3Mc/eBSqPDzjrtz5WTjRx/HxezxCEIuZXrURyhoaHMnTuX4cOHEx0dDcChQ4e4efOmyYITBEulvXaN+MlTAHAZ/yVWVauYLZakJT8hJSSgrFwJu3ZtTXbcRJWWO08SsVam3cNqrkQbGpVMx/lH2H5OjBERCq5cJdtTp07Rrl07Lly4wL59+0hJSQHg+vXrLFy40KQBCoKlkVQqYgYMBLUam2ZNcfj4I7PFoo+JIWn5zwA4jxhu0lHQHk42LPqwNnN71qBePi8q8LQ/zj4kJknDtnNh6AwGs8UhCK8iV9/M2bNnM3ToUFasWJFhcFTdunUJCQkxVWyCYJHip3yL7tp15EWK4DZntlnn4U36/gek5GSsqlXD1gSDs1QaHSdvRxkfF3O1o2ZZj1c+7qsY0MKXQW/7Ma1rIEoz3FIlCKaQq0/ujRs3aN68eabt7u7uYvF4oVBT7fuT5JWrAHCbNwdFEfO1+PRPnpC8YiUAziNHvHLSV2l0DF19luFrznHwSoQJInw16ffyy+UyejQog4ejmIpRKLhylWydnJyIjIzMtP3q1at4eZlvpKIg5CX948fEDR8BpC3GbtukiVnjSVy0GCk1FaugIGzeavbKx7NRKvB2t8fOWkERZ/Mmtj0Xwpnw2wVSNXqzxiEIppKr0cht2rRh1qxZzJ8/H5lMhsFg4OzZs0yfPl2sZysUKuqTJ0n4dipuPy8nbuhwDLGxWFWtivOY0fkahyRJpO7dS/LKX9BevoykUCD9OzDRedTIHLdq1x69y62IJL7uUM24TS6X8eW7/vRulEIpj/xZyStVo+ePcw/ZERxGRHwqbg7W1Cjjxs6QcDQ6A/4lXelSt3S+xCIIeSlXLdthw4ZRrlw5mjRpQkpKCm3atKFnz54EBQXRr5955oQVBFOTJIn4b75Fc/Yscf0HoD5yBJmtLW7fLzL5VIgviyNuzDhi+nyKpFLh0OfjtO5rgwFkMiSNNkfHi05U89PBW+w+H86hqxEs+esmekNal61CLsu3RJuo0vL5z6dYsPc6pTzs6VG/DBW8HNl65iEanYFaZd15v07+r48rCHkhVy1ba2trpkyZQv/+/bl58ybJyclUqVKFMmXKmDg8QTAf9d9/ow0ORlm1CuqjRwFwmTwJqwr5OxevastWUtaswXX2TBy6dkUXGkri3HkAWNesSWz/AdicPI7czS1bx1tz9C5KuZxinrZ8vfkCqVoDKo2eoa0q5eGryGzunms8ikthxWd18S3ujFqrZ8DK0wAo5TI0egMKMRWjUEi80tC+EiVK0LhxY1q3bi0SrVCoSJJEwuy5WAUFISUmAaAsXx777qZfSedlklaswKZpExy6dgVIWxhep8PmzTdxX74USaMh5dffsnWs6EQ1W848oF2QNyqNnlStARc7K96rlb/zHMcma/jz4iM+fLM8vsWdkSSJGTuucOlhPM52Soa09ONCaBw3Hyfma1yCkFey3bKdOnVqtg86duzYXAUjCJYivVVr07gx2uBgZA4O6B4/xhAbh8I9ey1IU5D0erTBIbhOS/v+6e7cJeW3zUDamrkKT0+sa9dGfeYsjp99+tLjrTl6F7lMxuHrT3iSoEYpl1HC3Y4yRfJ3kfsbjxLQ6iUaV06bKGPD8fvsDAlHLoNvOlWnZhl35uy5xuWHcVQs5pSvsQlCXsh2sr1y5Uq2ypnznkNBMIX0Vq2iXDnUhw6BTIbbgnnEDhxM8tKlOI8elX/ByGQglyNpNAAkzJ0Lej02zZphXbNGWhmNBpny5VM0Rieq2Xw6FBulgvBYFcVcben9Zjmmbb/C2bsx1CzrnpevJIP0lXq0OgMnb0WxcN91AAa39OON8p6oNDokCdGNLBQa2U62q1evzss4BMFipLdqZfZpE907DRqI3f/+h6b3hyT9vAKHTz/Nt9atTC7H5s2GpGzdinXDBqi2/g6A8xdptyDp7t1Dc/Ysrt26vPRYP/x1A61OQqPT4eNux6IPa+PlYsuWMw9Y9vctapatk5cvJYOq3i7Y2yjYdPI++y89xiBB2yBv48jjvRceIZNh9gk1BMFUxHQsgvAUSZKInzUHmaMjUkoKVkFBOA0fBoBj389Bryd56dJ8jcnxs0/RBocQ++lnIEnY/q8l1gEB6B89IqZff+ReRbF7990XHuPC/Vh2BIcjAaU87Pn+ozoUc7VDJpPxSZMKBN+L5ezdmPx5QYC9jZI2gd5sPfOQxFQd/j4ujGpbBZlMRsj9WBb/eYNmVbwo4WaexR0EwdRyvRjkxYsX2b17N48ePUKrzXjrwaJFi145MEEwB/WRI+jSpxxVKlGU9CFu3JfG5+Xu7iQt/xnHfn2ROzvnS0y2TZrg+PlnJC35CQBJqyP6w49I/ftv5G5ueKxZ/cIVh+5GJjF49VkAHGwUVCrhzLKDt4zPS6R11644dDvfupL1BomHMSnGx4mpWqZtv0xoVDKXHsZTraQrY9+pmi+xCEJ+yFWy3blzJ6NHj6Zhw4b8888/NGzYkLt37xIdHU2LFi1MHaMg5Bvd/VDjvxXeJdA/eMDTcxjJixZBWb5c2j2u+RnXvXtpMZUti5SYADa2uHw1HvtO7yN3ef5yc7ciEhm06gypWj02SjnebvY8jFFlKudX3JnSnvlzfy3AozgV18ITsFbKGfS2LxdC43gQnYK7ow3fdalOI7+iKBWi400oPHKVbH/88UfGjh1Ljx49CAoK4ssvv8THx4cJEyZQxIxzxQrCqzDEx5O0aDEAdh064L5wvpkjSqM5f57UvftALsdj5c/Zvs9XqzMwct05YpM1+BZ3YuEHtXCxt87jaLPHx92eFZ/V5faTJBr4FqHTG2KWKKFwy9VPxwcPHtC4cWMgbYKLlJQUZDIZvXv3ZtOmTSYNUBDyQ9osTWPRP3yIonQpXL+bYu6QjBJmzgLSfgDkZEINK6Wcr96rRo0ybiz6sLZFJNr0maogbUWhBr7ix7nweshVsnV2diY5ORmAokWLGheMT0hIQKXK3EUlCJYu5dffUG3bDgoF7osWIXeyjHs71afPoD74NygUOA8bkq19dPr/urhrlnVnce/aONtZvWCP/BGVqKb74qMcvvbE3KEIQr7LVbKtXbs2x44dA+B///sf3377LePHj2fEiBHUq1fPpAEKQl7T3b1L/PivgLSl6qxrBJk5ov8k/tuqte/SGWU2ZmkLuR9L54X/cDviv5mXLOXe97VH73I/Kpkf9t/I8INAEF4Hubpm+9VXX6FWqwHo168fVlZWnDt3jrffflssRCAUKJJGQ8yAgUjJyVjXq4vjgP7mDslIffRY2pzMVlY4DRn80vKSJPHTgZuEx6pYefgO33Sqng9RZt+AFr4o5DLeqekjBj8Jr51cJVtXV1fjv+VyOZ999pmp4hGEfJUwazba8xeQubrgvmABMsXLZ2LKD5IkGa/VOvTojtLn5XMXy2QypnYJ5OdDt+nX3DevQ8wxpULOwLf9zB2GIJhFrn5e9u7dmy1btpCUlGTqeAQh36j/OUrS9z8A4DZzJooSxc0c0X/Uhw6hOX0abG1wGjTwhWXDY/8bJ+Fib82wVpWxtbKMHw0nb0cxe9dV0W0svPZylWwrVKjAnDlzaNCgAYMHD2b//v2ZJrYQBEumj4khZsgQkCTse3THrnUrc4dklKFV26sXimLFnlv20NUIOi88wq8n7+dXeNkWGp3MV7+e59eToWw8YXnxCUJ+ylWyHT9+PIcPH2bx4sXY29szevRoGjRowFdffcWpU6dMHaMgmJQkScSNGInhcQTKChVwmfi1uUPKIPXP/WhDziOzs8Np4IDnlvvr8mPGbTqPTi9xPjQOSZKeWza/JafqGLU+mARV2lSMYhF44XWX61EKcrmchg0bMm3aNI4dO8akSZO4cOECH374oSnjEwSTS/5lNan7/gRra9wWL0T+74IDlkAyGIwjkB0+/giFp2eW5fZeCOerX8+jN0j8L6A4EztUs5hRx3qDxITNF7gXmUwRZxumdQ3CxkK6tQXBXHI9N3K6yMhIdu7cybZt27h+/ToBAQGmiEsQ8oT2+nXiJ08GwGXsGKz9/c0cUUapu3ajvXIFmaMjjn37ZllmZ0gY3/5+ybhSzth3qlrUUnRL/rrJ0RuR2CjlzOgahKeTjblDEgSzy1WyTUpKYu/evezYsYNTp07h4+NDu3btmDdvHqVKie4iwTJJqanEDBgIqWpsmjTG4ZM+5g4pA0mvJ2H2HAAcP+mT5TJ+v595wPQdV5AkeK+mD6PaVjGuDWsJ9l18xC//3AVg3LtVqez9/HmbBeF1kqtkW79+fZydnWndujXDhw+nWrVqpo5LEEwu/rup6K5eQ+7pidu8ucjklnWvp2rbNnQ3biBzccHxs08zPf/byVBm7boKQKc3SjG8VSWL6ToGuBYez7e/XwKgZ4MytAwoYeaIBMFy5CrZ/vDDD9SrVw+5hf2xEoTnSf3rAMnLfwbAbc5sFBa2YIak05Ewey4ATp9/lmklnw3H7zFvz3UAutcvw6C3fS0q0UYnqhm1PgS1zkAD3yIWeZ+vIJhTrrJlgwYNMBgMHDt2jA0bNhjvt42IiDDOmSwIlkIfEUHssOEAOPTpg+1bzcwcUWYpm7egv3sXubs7Dn0+zvDc6n/uGhPth2+WtbhEq9EZGLMxhCcJqZT2dGBSx2oWdQ1ZECxBrlq2YWFhfPLJJzx69AiNRkODBg1wdHRk6dKlaDQaJv87AEUQzE0yGIgdNhxDdDRWVargMm6MuUPKRNJoSJyXtpyf44B+yB0djc/9fOg2Px1IW+i9T+PyfNK0vEUlWkmSmLnjChcfxOFoq2RmtyAcbc2/6IEgWJpctWy//fZb/P39OXXqFDY2/400bNGiBSdOnDBZcILwqpKWLkN96DAyW1vcFi9EZmtr7pAyUW36FX1oKPKiRXF45tY5B5u038N936rIp80qWFSihbRF4P+68hi5DKZ0qk6pfFyAXhAKkly1bM+ePcv69euxts64Pqa3tzcREREmCUwQXpXm0iUSpk4DwGXi11j5WuB1RI2GpIWLAHAaOAC5nV2Gp7vULU1ASVeLHdVbws2e5Z/U5XJYPHUrZH1PsCAIuWzZGgwGDIbMc50+fvwYBwfxy1YwP0NKCrH9B4JWi+3/WmLfs4e5Q8qS/b59GB49Ql6sGA49uiNJEuuO3SM+RWMsY4mJ9unZqsoWdaRtkLcZoxEEy5frAVKrVq3KsC05OZmFCxfSuHFjkwQmCK8i/uuJ6G7fRl6sGK4zZ1pc9yuApFLh8OtmAJyHDkFma8uSA7dYsPc6w9acs9jJ+5NTdfRfeZpz92LMHYogFBi5SrajR4/m3LlztG7dGo1Gw8iRI2nWrBkRERGMHDnS1DEKQo6oduwkZd16kMlwXzA/y8khLEHKL6tRxMaiKOmDfZfOALTwL4abgzXta1numq8/H75N8L1YJm+9iFZnmT8IBMHS5OqabfHixfnjjz/YtWsX165dIyUlhffff5927dpha4EDUITXhy4snNhRowFwHNAfmwb1zRxR1gzJyST98CMADkMGI/t3/EN5Lyd+HdzQokf0ftqkArHJGjrWLomV0jJ/EAiCpclxstVqtbRq1YolS5bwzjvv8M477+RFXIKQY5JeT+zgwUjx8VgFVsd55Ahzh/Rcyct/RoqJQe3tw3ybKrS+F0ONMu4AFp1oAWytFUxoL2aNE4ScyPHPUisrK9RqdV7EIgivJHHhIjQnTiJzcMB90UJkVpaZtAzx8ST+uASdTMGcdsPYcf4xYzYEk5RquWtCXwtP4Oe/b2MwWM4yfoJQkOSqD6hHjx4sXboUnU5n6ngEIVfUZ86SOCdtukPXb6egLFvWzBE9X9LSZWgSk5nz7gjO6FywUsgY/141i23RRiepGb0hmJ8O3mLN0bvmDkcQCqRcXbO9ePEix48f559//sHPzw+7Z+4NXLRokUmCE4QXSfn9d6SkZOzeaUfswEGg12P33rvYvd/R3KFloLtzl+2rd5PyKIKWSXdIPHGamc37c87TF6UcpnauTsNKRc0dJgCh0cn8fuYhtyMSsbVSUN/Xk+3nwoiIT6WUhz3ta5U0d4iCUCDlKtk6OzvTsmVLkwWxdu1ali9fTmRkJJUqVeKrr77K1rq4O3fuZPjw4bz11lt8//33JotHsHz6mFjiRo9FUqtJPXAQ/YMHKEqWxHXqdxZ1m0/S0mU8mDaH+V2noS9ahhrn/2Ze488471MVG4WMz+o4Ua+iZUwGse7YPRbuu46znRVBpd2IS9YwddsVAOytFczsXgMnO8tsfQuCpctRsjUYDCxbtoy7d++i1WqpW7cugwYNeqURyLt27WLq1KlMmjSJ6tWrs2rVKvr06cOePXvw8PB47n4PHz5k+vTp1KpVK9d1CwVX8tKloNeDlRWpe/eCQoHbooXInZ3NHZpR6l8HiJ84iT2fTkamtMNTk8Ssah25XNwPW52a8Wc34dZykLnDBODI9Scs2Hudng3K8GnTCthYKdh44j4hoXEAONoq8Xaze/FBBEF4rhxds/3hhx+YO3cuDg4OeHl5sXr1aiZNmvRKAaxYsYLOnTvTsWNHKlSowKRJk7C1tWXz5s3P3Uev1zNy5EgGDRpEyZKiW+t1o4+JJennFdi1fw/+HTfg8EkfbGrVNG9gz0j8cQmqum+yTVmS92qWxFaj5nJxP+z0GmY196Zy8CFsTp02d5gArD16j6DSbgxo4YuNlYLTd6JZsDdtpaEudUvxJEHNsZtRZo5SEAquHLVs//jjD77++mu6du0KwLFjx/jss8/49ttvc7W2rUaj4fLly3z++efGbXK5nPr16xMcHPzc/RYvXoyHhwedOnXi7NmzOa4X0hJ2dp5/WTnhP/l1zhJ/+glJp0Nz4QJoNKBUYkhOtqj3SkpNJenEUcYMbIVereHcrQju2rhhr06hjbOKoEaBRPr5YXP2rNnjVmn0hNyPZUy7yhgMBh7GpDBuYwh6g8T/AoozqEVFTt6O5uiNJzSo+Pzepvwgvpc5J85ZzmXnnOX0fOYo2YaHh2eYjrF+/frIZDKePHlCsWLFclQxQGxsLHq9PlN3sYeHB3fu3MlynzNnzvDbb7/x+++/57i+p128eNGk5YT/5OU5kyUkUGTZcnSlSsGlyxgcHEhp2RJpw0buN22CwUIWhZepVPxdUWJz6jKqKYpyPaoRjqnJDDz/G7PqfkDg8bOUk4FMpzP7ZyxFmzYLVET4Q47rIpj1TzyJqXrKuCn5X0kN58+fR9KqiXgSRUhIiFljTWfuc1YQiXOWc6Y8ZzlKtnq9PsOSegBKpRKtNn/uD0xKSmLUqFF88803uLu7v9KxqlWrhkKheO7zer2eixcvvrSc8J/8OGeJM2eRrNdjffMmAO6zZlKscSMiDx6kzKHDOE/5Jk/qzSlJkuhdywUIJ0x3mJqpQXy9azaV509l8Uk958LlVLp1m4RGjcz+GZMkCZ+Tx3iQas/N23oeJ+rxcLRmXu83KOJkw5OEVB5s/4dO9SsQGOhjtjhBfC9zQ5yznMvOOUsvk105SraSJDFmzJgMS+tpNBomTpyY4faf7N764+bmhkKhIDo6OsP26OhoPD0zj9B88OABYWFh9OvXz7gtffWhKlWqsGfPHkqVKpWtuhUKRbY+eNktJ/wnr86ZPiaW5J9XILOyQtJosO/WFYd32gHg1PdzEmbPwWngQJTeJUxed06Fx8VxyT5t0fcETjBudyq+lcrh3qwJ3bnBz3/f4n9uXmibNrGIz1inOqWZt+caEmCtlDOjWxDFXO1Ra/XM2nUdO2slrQK9zR5nOks4ZwWNOGc5Z8pzlqNk2759+0zbXmW6Rmtra6pWrcrx48dp3rw5kJY8jx8/Ts+ePTOVL1euHNu3b8+wbd68eSQnJ/Pll1/mqitbKDiSfvoJkpORALmnJ1aVKpH8y+q0JxWKtLVhFy3Cdep3Zo0zLlnD17vXIMnSenx0Mh23He+SXLoD8d8uR3XxKlq/FuzsO4kWFrIkZUO/Iszbew0kKOVhz6UH8fxzPZLd58OJTdYwrWugcSF7QRByLkffnqlTp5o8gI8++ojRo0fj7+9PQEAAq1atQqVS0aFDBwBGjRqFl5cXI0aMwMbGBt9nFgB3/vdWj2e3C4WP5thx478NMTHET36my1ihQP/oUT5HldGT+FQGrDrNiaQ/QFKATI/SAGv8rVHbVYdUwLcEChnEOBcBLGP6Q293e5Z8XId1x+7xJCGV7/+6gY1SQePKRelWrwzlijqaO0RBKNDM/lO1devWxMTEsGDBAiIjI6lcuTLLli0zdiM/evQoVyOdhcJFe/Mm2suXAXD+ajxOfT9/yR55T6PX0GFjByKTI43bElO1PIhNIZnbIEsbraiTwzGfKAKLZ7xN7u9kieOnbNhXbR92CvPfwxpQyo2AUpa5HKEgFHRmT7YAPXv2zLLbGGD16tUv3HfatGl5EZJgQaTUVGL7D0RKTcWm0Zs4fvapuUMCQCFToDVoORV+6qVlNVLW5eoWqYtCZp7raFqdgclbL9KzYVn8ilvOZCCCUBiJJqNg8eKnTkN75QpyDw/c5s9DZiE9HQq5gt09djO2/hQUMkW2k2Z62elvTWdBnQUo5OZJtj8fus2flx4zcu051FpxD6Yg5CXL+KslCM+ReuAgycuWA+A2ZzaKopYxYX+6+1EpXDjfgEYOiynu6P3ShKuQKfBx9uF4n+OMqDcCucx8X8Hu9ctQv6InY9+tio2VGKUqCHlJJFvBYukjI4kdNhwAh496Y9v8LTNHlNGtiET6rzhNVKKa4nb+HPnwDK0rtn7hPq0rtuZiv4vU9q6dT1E+n5OdFbN71KB+RcuYCEQQCjORbAWLJBkMxA4bjiEqCmUlP1zGf2nukDK4/iiBAStPE5uswbeYE4s/rE0ZjyJ4O3mjlLJedUgpV+Lj7IOTjVM+R/ufsJgUtpx+gCSljYK2pBWSBKEwE8lWsEjJy39GffBvsLXBffEiZK+wspSpXQmLZ+DK08SnaKni7cyi3rVxdbBGb9Cz6cJ6dLL/bud5uptYZ9Dx65Vf0RvMc300Wa3ji/XBzNhxhTVH75klBkF4XYlkK1gczaXLxH+Xdk+3y1dfYVWpkpkj+s/FB3EMWnWGxFQd1Uq6suCDWjj/u8br0QdHidHGAyD/t3X7Vtm0ru/0pBuVEsWxB8fyPW6DQWLSlovceZKEp5MNLQOK53sMgvA6E8lWsCgGlYrYAQNBo8H27RY4fPiBuUMyCrkfy5BfzpCs1hFY2o15vWriaPvfYuqbDi4GQGEAN1tX9vTYw75e+9jTYw+utq7GwVObrz5/+ci8svTgLQ5fe4K1Us60roEUdbacngJBeB2IZCtYlPiJk9HduoXcqyius2dZzDXFM3eiGbr6LCkaPbXKujO3Z40M0xfqDXp+vfUHAG9KZbg88CotK7QEoGWFllzpf4WmZZsCsOnyJuM10/yw/9JjVhxOW0VrTLsq+Pu45lvdgiCkEclWsBiq3btJWbMGZDLc5s9H8YorO5nKyVtRjFh7jlStnroVPJjVowZ21hnng0k5cgT3BD1fnfZg3+f/4OXoleF5L0cv9vbcy8wWM/G090Rn0OVL7NcfJfDN72krk3SvX4bWgd75Uq8gCBlZxAxSgqAPf0TsyFEAOPbri+2bDc0cUZqzd6MZue4cWr1EA98ifNe5eqZ7UiVJInX2PPafLYZDn4+x8s46ocllckbWH8nI+iOBvF/MOyZJzaj1wai1BupW8GRACzF/uCCYi0i2gtlJej0xg4cgxcVhVT0A5y9GmjskowpeTpT2dMDb3Z4p71fHSpm5M0h94CCas2eR2driNHCAGaLMTKszMHZjCBHxqZTysOeb9wNQyC2jS14QXkci2Qpml/T9D2iOH0dmb4/7okXInlov2dxc7K1Z3Ls2/2/vvsOjKPoAjn+v5NJ7IRB6kFASSKgCQZCAdEQwIopIEQHpHaUjvYbmK72JFOkdQQQpAQkQepESQieVlLvk2r5/BE4iLQm5FJjP8+TR7M3uzA6X/e3Mzs7YWipRKp4PtJIkkTBtGgC2Hb7OEzNcSZLEtJ2XOBMZj62lkqlfVMLe2uL1OwqCYDbima2Qq7SnT5MwbToAjuN+RFmyRC6XCH4/d5/1f0eafne0Ub0w0AKk7NmD7uw5ZDY22H3XPaeK+Eob/r7NlpN3kMngx+AKFHPLG2vmCsK7TLRshVxjTEwktkdP0OuxbtEcm8+Cc7tIXL6XwOgNZzFKUMLdjsolXj5ISzIaTTcKtp07oXB1zalivlRUQgqzf78CQI/6pcVUjIKQR4hgK+Sa+GEjMNyKRFG4ME6TJuaJ13x8Ctrz2fvFSNEaCCj26rVdNdt3oL90GZmDQ55YXxfA3cGKKW0DOHT5EV/WKp7bxREE4QkRbIVcod64Cc2GDSCX4zx3NnJHx1wtj9EoIZfLkMlk9GnoA7x63mDJYCBx+gwA7L7tgtzJKSeKmSHvl3Lj/VJuuV0MQRCeIZ7ZCjlOf+sW8d//AIB9v75YVs3dFXDWhEbQ/5k1XWUy2Wtb2ZpNm9Ffu4bMyQm7bzrnRDFfymiUmL3nCrdjknO1HIIgvJwItkKOknQ6Ynv2RkpKQlW1Kva9e+VqeVYevknI7iscuxbNHxceZGgfSacjYeZMAOy7d0Nun3ur+ACsOhrBr0cj6Lbkb1K0YhF4QciLRDeykKMSZ4agO3UKmYMDznNnI1Pm3ldwycHrLNh/DYDOdbxpXLFQhvZTr9+AIeIWcjc3bDt1NGcRM6RRhYIcuPSQVlWLYKUSi8ALQl4kgq2QY1KPHSNx9hwAnCZNRFm4cK6UQ5IkFv55jSUH0+YL7lqvFB3reGdsX62WxJBZANj3+A65jY3ZyplR7g5WzO9U7aWvJwmCkPvEX6eQI4zx8cT17A2ShM1nwdh83CJXyiFJEj/t+8cUaHs2KJ3hQAuQvHoNhjt3kBfwwParduYq5mvFJqWy/+K/3d4i0ApC3ib+QgWzkySJuEFDMNy/j6JECRzH/Zhr5Zi15worD98EoF+jMrQLzPgkGpJGQ+Ls2QDY9+6FzNraLOV8HZ3eyA/rzvDD2jOsCY3IlTIIgpA5ohtZMDv16jWk7NwJSiUu8+Ygt835GY2MRokZuy6x/u/bAAxqWpbW1Ypm6hjJv6zC+OAhikKFsG3b1hzFfC1Jkpi+8xLht+KwtVRSXbziIwj5ggi2glmoN27CMrAWxoQEHo8cBYDDkMGoKlbMkfxP3ozB1tKCMoUcMBolJm+/aJrC8Pvm5WlR+fXPi6WUFDQ7d6G7cgWZUkny8hUA2Pftg8zS0tyngNEoEXYzltMRschkUKm4CxFRSWx+OhXjpxUo4W5n9nIIgvDmRLAVsp322DHievXGqllTDBG3kDQaLAMDscuhWZYSNDoGrw7H3lrJmh6BTNlxkZ3h95DLYHhL3wyt6arZu4/4/gMwxsaiKFwYQ1QUpKYis7HGqmkTs59DZHQy368N5/qjJFztVEhges4M0D3oPWqWFlMxCkJ+IZ7ZCtkuKWQWMisrUrbvQHf+PHJnZ5xnzUQmz5mv29rQW+gMRh4+TmHNsQgOX4lCIZcxpnWFDAVa7clTxHb5FlXlShQ49Bce+343jTqW9Abi+/Qza/kfq7X0XB6G3ijxc6dqbB9Yl4Wdq2FrmXZvbGUhp2UGWuaCIOQdomUrZCuL8+fRHg3Fvnevf1/zmTENhadnjuSfoNGx5tgtPq1WlIePU9h88g4zvqxEdFIqdcsWyNAxEmfPQVmqFC4LFyCzsCBhZgjGuDiU3t7Y9e9HfI+eaM+cMVuX+NZTd4lXa1n0TW08HK1Qp+oZvCac5FQ9pQrYcTMqiR3h92hbs7hZ8hfMy2AwoNPpcjQ/gJSUFBQK8R52RjytM6PRmG11JoKtkK3sVq9F4VOa5NVrTNuUxYvnWP5prVoDNd9zw9lWRbv/HeXaw0RaVimSof2Nycmk/PEHjuPHIbOwwBgfT9KChQDYD+iHdbNmJIwdi2bbdrMF2z8uPKBOGQ88HK0wGiXGbDrH9Ydp3ckzvqzMzN2X2XfhgQi2+YwkSTx48ID4+Pgcz1epVHLr1q08sdhHfiBJEgqFguvXr1OyZElU2bDGtgi2QrbRHjuG5blzyPx8MURFoSz9HsakZBJDZuHy0zyz55+g0bE6NAI3eysGrz7NrPZVqFfOk2WHbtDU3wsL5eu7saXkZJAkFAULApC0YCFSQgLKMj5YN2+OTC5HUaAAxoREs51HUooeD0crABYfvM7BS4+wUMiY/HkAHo5WFHCw4mZUktnyF8zjaaD18PDAxsYmxwKfJEloNBqsra1FsM0gSZJQq9XExsZy//59ihYt+sZ1J4KtkG2SQmZhcHGBc+fB0hKXn+ahPXmK+KHfo+vbB4vSpc2a/9rQW+iNRtztLYlJTEWt1dOpTkna/e8oO8LvZqh1K3d2RubkiPbECVRVKpO0aDEADgMHIJPLMcTGobt6FeuPPzbbeRRxteHMrTj2X3jA4gPXARjSvDy+RZyQJInTt+Io4pL7M1cJGWcwGEyB1jWH1z2WJAmj0YiVlZUIthn0tM48PDy4d+8eer0eCwuLNzqmGCAlZIvU0FC0R0ORP34MgOOI4ViULYvNZ8EoChUyTXFoLv8+qy1GyFeV+aljVap7u+FdwN7UutXpja89jszCAtvPPiN51a8kTJiElJyMhZ8fVo0aIUkSidOng1HCJvhTs51Ly8qFOX/nMaM3ngPg8/eL0SwgbWDXvgsPuHI/gY/FAKl85ekzWps8ML2nkHFPA+zTZ7hvQgRbIVs8njodlEpkBgMWVati4V8RbXg4uosXsWrUEM3WbeiuXjVL3smpesZsPEdyqp5KxZ25GZWMTCbj4t3HXLz7mBrvufEgPoUd4XczdDz73r2QOzujXr0aAOuPm5OyazcxX7YjedlyHEeNRGHG1kltHw+CynuiMxjxdLTi/ffc+Pt6DBO2nGfU+rN85OdJzffEaz/5kWhZ5i/Z+e8lupGFN2ZMTER3/Ljpd92JE0Q3e37u45T9+7O9KzkpRUe/X05x7nY8AAN/Pf3StIevRmW4K9kysBbqiAiQy0kYNwEAC19fXBYuwLpJ4+wo+svzl8sY09qP0p72rP87kr4rTwLg4WBFt6D3+LJWCeRycdEWhPxEBFvhjaUePWr6/8fdu1Hy4xYo5P8ZLi+TofTJ3kCboNHRd2UYF+8mYGelZHCzsq+cUamQU8a68Az37qP+bT0ALosXoixeHJmNDQovL7O3TH49GsFHfgVxs7fk6w9K8mWt4tyN0wDg5WwtFhwQckVsbCyzZs3i4MGDREdH4+joSJkyZfjuu++oXLmyWfK8fv06U6dO5cSJExgMBry9vZkzZw6FChXizp07BAUFvXC/kJAQGjduTHx8PEOHDuX48eMUK1aMCRMmUK5cOVO6MWPGUKRIETp16mSW8v+XCLbCGzHcv09c/4EA2HT9lgeNG2FRrpzZ3+eLT9bSe0UYVx8k4mRjwZyvq/Cep0O2HDtx9mxITUVVvRpWDRrkWNff5rDbzN5zhbXHbrG6Ry1sLJUoFXKKueX8XNKC8KxevXqh0+mYNGkSRYoUISYmhtDQULO9xhQZGckXX3xB69at6d27N3Z2dvzzzz9YPpkmtWDBghw+fDjdPmvXrmXx4sV88MEHAPz8888kJyezceNGVq9ezfDhw9m4cSMA4eHhnDlzhuHDh5ul/C8igq2QZZLBQFyffkjx8Vj4+WE/aCBcvGj2fGOTUum1IozrD5NwtlUx9+sqeBewz5Zj62/fJnnNWgAcBg/K0WdslUu4UNzdliYVC2FjKf40hbwhISGBsLAwVq5cSbVq1QDw8vKiQoUK6dJMnjyZP/74A61Wi6+vLz/88ANlypTJUp4zZ87kgw8+YPDgwaZtRYv+u3CIQqHA3T39uIV9+/bRuHFjbJ8sdHL9+nWaNGlCiRIlaNOmDevWrQPSBquNGjWKcePG5egkH6JPSsiypJ/nk3rkCDJra5znzUWWDS9+v050YirfLTvB9YdJuNlb8r+OVbMt0AJpo6Z1Oixr18by/fez7bgZUcTVlqXfvs9XmVj2TxDMzcbGBhsbG/bt24dWq31hmj59+hATE8PChQvZuHEj5cuX5+uvvza1fMPCwggICHjlz9atW4G0WZsOHDhA8eLF6dy5MzVq1CA4OJh9+/a9tIznz5/n0qVLfPrpv28JlClThmPHjqHX6zl06BA+Pj4ALFq0iGrVquHn55dNNZQx4vZZyBJteDgJU6YC4DhuLBbeJbNlePyrPHqcQo/lJ7gdo8bDwYq5HapQ1DX7ulj1N26antU6DBqYbcd9lRS9xKmIWKp6p92lW6vEn+S7RJIkJI3G/Hmo1RhJG10ry+TkFkqlkkmTJjFixAjWrFlDuXLlqFatGk2aNKFMmTKEhYVx9uxZQkNDTTMtDRkyhH379rFnzx7atGmDr68vmzdvfmU+T98/jomJQa1Ws3DhQvr27cvAgQM5dOgQPXv2ZMWKFabW9bPWr1+Pt7c3lSpVMm379ttvGT16NA0aNMDLy4vx48cTERHB5s2bWbNmDSNHjuTIkSP4+voybtw47O2z76b9RcRftpBpxqQkYnv0Ar0e62bNsGnTxux53o/X0HPZCe7GafB0suKnDlUp5Jy97ywmzJwJBgOW9eqhqlzp9Tu8IaMkseJUIucenmJQ03J8UjVjU0oKbwdJkohu2QptWFiO5Pf4yX9VVavitmlDpgJuw4YNqVu3LmFhYYSHh3Po0CEWLVrEuHHj0Gg0qNVqqlevnm6flJQUIiMjAbCysqJYsWIZystoTHsfPigoiA4dOgBQtmxZTp06xZo1a54LtikpKWzfvp3vvvsu3XZ7e3umT5+eblv79u0ZNGgQ27Zt486dO+zevZsRI0Ywb948hg4dmuH6yAoRbIVMezxiJIaICBReXjhNnmj255p3Y9X0WH6CB/EpeDlbM69DVTydrLM1D93Vq2g2bQbAYdCAbD32yyw9eIMzD7RYKGSU8jTvXbWQR+Wj924tLS2pVasWtWrVokePHgwbNow5c+bQtm1b3N3dWbly5XP7PG0thoWF0aVLl1cef8yYMbRo0QJnZ2eUSiXe3t7pPvf29ubkyZPP7bd7925SUlJo2bLlK4+/YcMGHBwcqF+/Pj179iQoKAgLCwsaNWrE7NmzX3P2b04EWyFT1Fu2oF73G8jlOM+ZhdzJyaz5peoM9FwexoP4FIq62jC3Q1U8HKyyPZ/E6TNBkrBq3AjVMwM/zGX/xQcs+esmAIOalsWviJPZ8xTyFplMhtumDTnSjaxRq7F+Mh9zZruRX6ZUqVLs27eP8uXLEx0djUKhoHDhF89slpluZJVKhZ+fHzdv3kz3eUREBF5ezy+RuWHDBurVq4eLi8tLjx0bG8u8efNY/WSiGoPBgF6vB0Cv15v9ERiIYCtkgv72beKHfA+AfZ/eWP6n28gcLC0UdA0qxcpDN5nVvgpu9pbZnofuwkU027cD4DCgf7Yf/7/+eZDA2I3nAfiwpBVN/QuZPU8hb5LJZMjMPIWjJEnIAHkWFz+Ii4ujT58+tG7dGh8fH2xtbTl//jyLFi0iKCiImjVr4u/vT48ePRg0aBDFixfn0aNHHDx4kPr16+Pn55epbmSAzp07069fP6pWrUr16tU5dOgQf/75JytWrEiX7tatW5w4cYIFCxa88njjx4+nU6dOFCiQtsxmpUqV2LJlC4GBgaxduzbds15zEcFWyBBJryeuZ2+kxERUVapg37ePefOTJNOFoVGFQtQv72m2CR0SnjzXsW7RHIuyZc2Sx1NxyVoGrT5Nis5AlRIufFIu/3QjCu8mW1tbKlasyPLly4mMjESv1+Pp6UlwcDDdunVDJpOxYMECQkJC+P7774mLi8PNzY0qVarg5uaWpTwbNGjA6NGjWbBgAePGjaNEiRLMnj2bKlWqpEu3YcMGPD09CQwMfOmxDh06RGRkJFOnTjVta9euHefPnyc4OJgKFSrQs2fPLJUzM2SSJElmzyUPMRgMhIeH4+/v/8p3rDKa7l2RMG06iTNDkNnb47F3D8oizw/mya46u3o/gak7LjHhs4q4m6HL+FnaM2eIatIM5HI8/vwDi1KlzJaXTm+k94owTt+Ko7CLNQs7V+PGlQviO5YJ+fXvMiUlhZs3b1KiRAmsrMz7nf6vp8vF5eSyfvnd0zqTy+VERES88N8ts99F8Z6t8Fqpx4+TOCttAIHT5IkvDLTZRZIkxm+5wLnb8czda56FC56VMO1Jq/aTT8waaAFm7LrM6Vtx2FgqmNq2Eg7Wb7ZklyAI+YcItsIrGePjievZG4xGbII/xcaM67hC2jOsiW0qElS+AIOamrdLN/VEGKn7/wSFAod+5u0W33jiNpvCbiOTwdjWFSjh8fI5nAVBePuIYCu8lCRJxA0eiuHePRTFi+M47kez5ZWo0Zn+v5CzDeM/88fOyrwtv8Sp0wCwafMZyhLmm7XpVEQs03deAqBbvfcI9PEwW16CIORNItgKL6Veu5aUHTtAqcRl3hzkduZpjZ28GUOrkL/46/Ijsxz/RVKPhpJ65AhYWGDfp7fZ8olP1vLD2nAMRokGvp60ry2mYhSEd5EItsIL6a5d5/HwkUDahPwqf3+z5HP8WjT9fzlFYoqerafukBPj9SRJIuHJyETbL9qifMm7gdnB0caCznW9KV/YkWEf+4oBKoLwjhKv/gjPkVJTievZC0mjQVWzJnbdupoln6NXoxi6Nhyt3kjN99wYH1wxR4JR6l9/of37BFhaYt/LvEP+ZTIZwdWL0apqURRiwXdBeGeJlq3wnIQpU9GdO4fMyQmX2SHIzPCKxV+XHzF4zWm0eiN1yngw+fMALC3M/yqHJEmmBRRsv2qHomBBs+Tz+7n76Z5Di0ArCO82EWyFdFL++oukn+cD4DxjmlmC0f4LD/h+bTh6g0RQ+QKM/6wiFsqc+Sqm7N2HLvwMMmtr7Hv2MEseBy49ZOT6s3ReeIzkFL1Z8hAEIX8R3ciCiSEmhrg+/YC0Vp91w4bZnsees/cYu+k8BqPER34FGfmJr9lmhvovyWgk8cl7tbYdO6D4z+LT2aWgkzUFHK14v5QbtlbiT0wQBBFshSckSSKu3wCMjx6hLF0ah1Ejsz2PHeF3Gb/5PEYJmvoX4oePfXO0ezVl1250Fy4gs7PDrnt3s+XjU9CB5V1rYCcCrSAIT4huZAGA5GXLSf3jD7C0xGXeXOTW2buE3ZaTdxj3JNC2rFyYYTkcaCWDwTRblN03nVG4OGfr8fUGI/88SDT97mSryrEWuyCYW2xsLKNGjaJu3br4+vpSq1YtOnfu/MIl77JDdHQ0Q4cOJTAwkIoVK9K5c2ciIiLSpfnqq6/w8fFJ9zNy5L+NhPj4eLp160ZAQAAtW7bk4sWL6fYfM2YMS5YsMUv5X0TcegvoLl3i8Y/jAHAc9gMW5bJ35qb1f0cybUfapA6fVivKgCZlcvwVGM3WreivXkXm6Ijdt69eVzMrZu66zNZTdxjW0pdGFcQqPsLbpVevXuh0OiZNmkSRIkWIiYkhNDSU+Pj4bM9LkiR69OiBUqnkp59+ws7OjmXLltGxY0d27NiBzTOrJH322Wf07v3ve/LWzzQSfv75Z5KTk9m4cSOrV69m+PDhbNy4EYDw8HDOnDnD8OHDs738LyOC7TtO0miI7dETUlOxrFcP204dsz2POzFqAD6vUYw+DX1yPNBKej0J02cCYPdtF+SOjtl6/M1ht9lwIm0qRhuV+JMS3i4JCQmEhYWxcuVKqlWrBoCXlxcVnln3OSEhgcmTJ/PHH3+g1Wrx9fXlhx9+oEyZMpnOLyIigvDwcLZv3857770HwOjRo6lVqxY7duwgODjYlNbKygr3l4y9uH79Ok2aNKFEiRK0adOGdevWAaDT6Rg1ahTjxo3L0cUsRD/XO+7xuPHor1xF7u6O88zpZgmEfRr5MKVtQK4EWgD1ho0Ybt5E7uyM3Teds/XYpyNimfqk1d613nt8UEZMxSi8XWxsbLCxsWHfvn1otdoXpunTpw8xMTEsXLiQjRs3Ur58eb7++mtTyzcsLIyAgIBX/mzduhXAlIel5b9rV8vlclQq1XPd1tu2baN69eo0a9aM6dOno9FoTJ+VKVOGY8eOodfrOXToED4+PgAsWrSIatWq4efnl211lBHiNvwdIxkM6K9cxaJcWTS/7yV52XIAnENmoMji2pMAd2PV2Fv9e5e499x96pQtgEopRyaT5XgQ0l25gv76DbCyJHFmCAB2Pb57oyknNVo9p2/Fkaoz4l3ADguFnO+fTMVY39eTr8VUjEIWaLSZfz3MQiE3jQnQG4zoDEZkMhlWz7yr/vS4kiSh0RqQKfXIZDKsM9n7olQqmTRpEiNGjGDNmjWUK1eOatWq0aRJE8qUKUNYWBhnz54lNDQUlUoFwJAhQ9i3bx979uyhTZs2+Pr6snnz5lfm4+rqCkDJkiUpVKgQ06dPZ+zYsVhbW7Ns2TIePHhAVFSUKX2zZs0oVKgQHh4eXLlyhWnTpnHz5k3mzp0LwLfffsvo0aNp0KABXl5ejB8/noiICDZv3syaNWsYOXIkR44cwdfXl3HjxmFvb5+pesmsPBFsV61axeLFi4mKiqJMmTKMGDEiXRfFs9atW8fmzZv5559/AChfvjz9+/d/aXohvaR5P5EweQrOS5bweMAAIK1r1apu3awfM0VHxwWhlCvkyFflZSw/dJMFf16nto87kz8PQJ6DA6F0ly4R//0wtCdOpNsus7XF5uv2WTqmwSix5MB11h6/RdIz781aqxRotAZ8CjowXEzFKGTRh+P/yPQ+4z+rSFB5TwAOXn7EsHVnCCjuzP86VjOl+WTmX8Srdc/te2xM5l/pa9iwIXXr1iUsLIzw8HAOHTrEokWLGDduHBqNBrVaTfXq1dPtk5KSQmRkJJDW3VusWLEM5WVhYcGcOXMYNmwY1apVQ6FQUKNGDT744IN007m2adPG9P8+Pj64u7vToUMHIiMjKVq0KPb29kyfPj3dsdu3b8+gQYPYtm0bd+7cYffu3YwYMYJ58+YxdOjQTNdLZuR6sN25cycTJ05kzJgxVKxYkeXLl9O5c2d2795tutN51vHjx2natCmVKlVCpVKxaNEiOnXqxI4dOyhQoEAunEH+YUxMJHH+AgDiB/RHiovHwtcXh6FD3ui4645HkqDRc+x6DIEFHSlX3AFLpZwKRZ1zNtBeu05U62AUhQrismA+FpUrE9W4McZHUUjJySTP+wmHQQMzfdxpOy6x5eRt2tYoTovKhbG3UjLw11NcvJuATAaDm5XFSpV/FjIXhKywtLSkVq1a1KpVix49ejBs2DDmzJlD27ZtcXd3Z+XKlc/t87S1GBYWRpcurx6YOGbMGFq0aAGAr68vW7ZsITExEZ1Oh4uLC8HBwfj6+r50/4oVKwJw69YtihYt+tznGzZswMHBgfr169OzZ0+CgoKwsLCgUaNGzJ49O8P1kFW5HmyXLl3KZ599RuvWrYG0Cj9w4AAbNmzg22+/fS79f+9Uxo0bx549ewgNDaVly5Y5UeR8K3npMiS1Gqv69UnZtw9UKpznzUH2zLORzEpK0bEmNILWVYtwMiKWnVfVLKznyppegRR0yt7Xh14ncfp05I6OuG/cgNzBgaSlyzA+ikJRsCDWwZ+SOHde2hSNnp4ZPuaNR0lsCrvNgCZlCK6edme++MA1Lt5NQCmXYa1SsPvsfcoXdjLTWQlvuz+HBWV6H4tnXiurU8aDP4cFPdezsqnfB0BaN7JarcHGxjpbe19KlSrFvn37KF++PNHR0SgUCgq/ZFGPzHQjP+tpsI6IiOD8+fP06fPydacvXUobO/GiAVOxsbHMmzeP1atXA2AwGNDr03qp9Ho9BoPhlWXLDrkabLVaLRcuXKBr138nupfL5dSsWZPTp09n6BgajQa9Xo9jNo8wfds8bdVafdSAlN17AFAWL45FqVJvdNx1xyPRaA0o5DKa+Rdk7t5rnL/zmIrFXLKj2BlmTExEs3MXjsOHIXdwwKjRkDhnDgD2vXth3fJjkhcuQr1pM/bdu2X4uDvC7+Jsq6Jl5SIAHLz0kIV/XgdgcLNy3I1Ts/7v2/RrVCZHW/HC2yOzz1D/S/nM89sXHVeSJCS9AmuVMkvBNi4ujj59+tC6dWt8fHywtbXl/PnzLFq0iKCgIGrWrIm/vz89evRg0KBBFC9enEePHnHw4EHq16+Pn59fprqRAXbt2oWLiwuFChXiypUrTJgwgfr16xMYGAhAZGQk27Zto06dOjg5OXHlyhUmTpxI1apVXzgCevz48XTq1MnU+1mpUiW2bNlCYGAga9eupVKlSpmul8zK1WAbFxeHwWB47o7G1dWVGzduZOgY06ZNw8PDg5o1a2Yq79fdyTz9PCfueHJC0pKlSMnJ6M6cBb0eiwB/dKfD0fz9N6rKlbN2zBQ9vx65SWEXG9Ydj8TNXoWHnZwlB64zo13O3vzoH0WBXo/cxweDwUDysuUYHz5CUaQwlsGfIqlUyL280N+7l6l/06iEFIq52iCXSVy995jRG84B8Gm1IjT1L8i+8w9ITtWTlKLF1jJzf05v23csJ+TXOjMYDGlB78lPTnqaX1bztbGxoUKFCixbtozbt2+j1+vx9PQkODjY1FCaP38+ISEhfP/998TFxeHm5kaVKlVwdXXNUr6PHj1i0qRJxMTE4O7uzscff0z37t1Nx1IqlRw9epTly5ej0WgoWLAgH330Ubo0Tx06dIjIyEimTJli+uzLL7/k/PnzBAcHU6FCBXr06JFuv2frTJIkDAbDc9+5zH4HZVJO/8s/4+HDh3zwwQesWbOGgIAA0/YpU6Zw4sQJfvvtt1fuv2DBAhYtWsSKFSsy/D6XwWAgPDz8TYqd78jUaty7dMXg6IjFnTsY3FyJnjkDl2EjMLq6EjdmVJaOu/NKMjuvaJAAGfBVgB1KuYwlJxMZGOhICReLbD2PV5ElJ+Px5VckftMZTVA93Lt0RZ6QwONePdE0qI9MrcG9Q0eS23xGcutWGT7uxgvJnLiTwg91nZh66DExaiM+bhb0eN8BhVzG9svJ/HFdw/QmrsjFACnhFZRKJUWKFEn3SouQt6WmpppuMF7G398/Q+/r5mrL1tnZGYVCQUxMTLrtMTExuL3mNZTFixezYMECli5dmqUXp/38/F5ZQQaDgXPnzr02XX6QNHceSWo18sREkMlw/2keXu+/T8rQIcR/14NyBkOmW7eP1Vr2bD+EBChkMkZ8Up56Zd05c/YsxW/ZcPi+kk/q+ZvlfF4mrmFDlHv3UdDWluSEBBTFi1O6X19kSiVJ834iSaej5HfdM7WSka1nIn8sOE6ssgAfV3Hi9/MPmNmhKo42KuLVWv7ef4wm/l5UCsj8rFtv03csp+TXOktJSeHWrVtYW1tjZWWVo3lLkoRGo8HaOnuf2b7NntaZlZUVFhYWlCpV6rl/t6ffxYzK1WCrUqkoX748oaGh1K9fHwCj0UhoaCjt2rV76X4LFy7k559/ZvHixVl+MVmhUGTojzWj6fIqY2Ji2pJ5cjkYDNj16onVky53m2ZNSZo1i+RZs7Fe9Uu6/bQGLQtPLqRL5S6oFKp0n+kNRnquOIXeKKGQyxjb2o965T0xGAzIgI4flGTUxvNcupeIbxGnHDpTcBzYn0fNPyZ59tNntT3h4UOSli0nacFC7Lp+i+olAzhepoyXE039CzF91xU6fFCSGV9WxsZKxeGr0fz8xz8YJWhf2/uNviP5/TuWG/JbnSkUCmQymeknN+Rm3vnV0zrLju9bro9G7tixI0OGDMHX15cKFSqY+uBbtUrr6hs8eDAFChRgwJN3QhcsWMDs2bOZPn06Xl5eppecbWxssLW1zbXzyKvU23dAQoLp96TZc0h6Eoye0l+5iv7uXZReXqZtmy5toueunrjbuvNZ+c9M23V6I8N/O8ONR0lA2juow347C7+dfeaIaT0VW07eydFga1GmDDYtP0b9a9qIw/j+aa/5yOztsR/QH/s+vV+1+wuduBFD/8ZlcLRR8cuRmyw+cN30mV8RJya08aeQc86OuhYEIf/J9WDbpEkTYmNjmT17NlFRUZQtW5ZFixaZupHv37+PXP7vSLs1a9ag0+nSTT4N0LNnT3r16pWjZc8PDDdvpv2PpSX2A/qheMHwerm9A4r/vKP828W05+W/XfjNFGxTdQZ+WHeGI1ejUCpktK5ahFIF/p11xWg0Enn7NkWLFEEul1OxWPaurPM6xrg4NNu2A+AwdDAKz4LI7Gyx/OAD5Fm4EQu/FUfflSd5z9OeOe2r0PGDkpy4EUOq3oi3hx2lCzpk9ykIgvCWyvVgC9CuXbuXdhv/90Xp/fv350SR3gqpJ06Q9L+fAXCeNhWbVp9kaD+1Ts2Of3YAsP2f7Wh0GmSoGLrmNMeuxWCplDPliwCqe6d/rm4wGAiXReHv75UrXXyJP89HSkxEWbYsdj16IJO/+dTf9lZKvJxtsLNKe22iXvmMv6MrCILwVJ4ItkL2Mz5+TFzP3mA0Yt26dYYDLcCea3tI0acAkKJPYeuVnRwKK0rYzVisLBRM/zKAyiWebyHnJkN0NMmL09amdBg0IFsCrX8xZ5Z2rYGTjYV41iUIwhsRq/68hSRJIn7o9xju3EFRrChO43/M1P4bLm1AKU+7D1PKlUw7sJywm7HYqBSEfFU5zwVaSJvzWdJosKhYAauPPsrycSRJ4kH8vyuHFHSyfuNJBwRBEMRV5C2kXvcbmq3bQKnEZe5c5C9YzUJr0NJqbSuikqOe+yz8YTh645OpzIx6zsbvwcX6Bm72lnT9/d+vjLutOxvbbHxutHJOMzx4QNKKFQA4DBr4Rq3QpX/d4JcjNxnbugKBPmK5PEEQsocItm8Z/Y2bPB4+AgCHgQNQVQp4YTqFTIHOqOPve3+/9phag5YHhgs8SE2//SPvj1DIcv/1i8S58yAlFVWVKli+wepFBy89ZMH+awBEJ6a+JrUgCELGiW7kt4ik1RLbsyeSWo2qRg3svuv+0rQKuYJdX+5iSv0pKGSKDAfNp2mnNpjKri93oZDnbrDV371L8qpfgTdr1V5/mMiYjU+nYixKyypFsq2MgiAIIti+RRKmTUd35iwyJ0dcZs9C9poRwXKZnEG1BhHaOZTCDoVfG3AVMgWFHQoT2jmUgTUHIpfl/tcncdYc0GpR1aiBZWCtLB3jsVrLoNWnUWsNVC7hQt9GPtlcSkHI32JjYxk1ahR169bF19eXWrVq0blzZ06ePGm2PLdu3UqLFi2oWLEigYGBpnmXn7Vr1y4aNWqEn58fzZs35+DBg+k+X7x4MTVq1KBGjRosWbIk3WdnzpyhVatWr5yKMTvl/tVSyBaph4+Q9NP/AHCeOhVFoYxPSVjVqypnu5+lyXtNXpmuyXtNONf9HFW9qr5RWbOL/tYt1GvXAuAwOPPr1ELabFjD1p3hXpyGQs7WTPis4gtXUBGEvCIhIYFLly5x//79HMuzV69eXLp0iUmTJrFnzx7+97//Ua1aNeLj482S38mTJxkyZAiffvop27dvJyQkhHPnzjFixAhTmlOnTjFgwAA+/fRTNm/eTFBQED169ODq1asAXL58mdmzZzNjxgxmzJhBSEgIV65cAdKW1Rs1ahSjR49GqcyZp6niqvIWMMTGEtu7N0gSNl9+iXWTxpk+RkqqCg+bgqZRyP+llCsp7FAYe8vnB1vllsSZIaDXY1nnAyyrVcvSMWbtuWIaaT21bQCONrk72EsQXubOnTt8/fXXeHh4UK5cOQoVKkSdOnX4888/zZpvQkICYWFhDBw4kPfffx8vLy8qVKhA165dCQpKW4vXx8eHX3/9lW+++YYKFSoQFBTE7t27s5xneHg4Xl5etG/fniJFilClShXatGnD2bP/zlS3YsUKateuzTfffIO3tzd9+/alXLly/PJL2tSzN27cwMfHx9Sy9fHxMa0mt3jxYqpUqUKFChXeoGYyRwTbfE6SJOIHDMT48BHKUqVwzMIKPvfjNXRbHMovZ9eaRiED6bqJ9UY9v138DYMxbyxtprt2HfWGjUDas9qs2HLyDr8djwRgdOsKeBfIOzcSgvCs27dvU6NGDfbu3cuYMWP466+/+OWXX9BqtTRo0IBNmzaZLW8bGxtsbGzYt28fWq32pelmzZpFw4YN2bJlC82bN6d///5cv/7v9KZNmzYlICDgpT/ffPONKa2/vz8PHjzg4MGDSJJEdHQ0e/bsoU6dOqY04eHh1KhRI10ZAgMDTau6+fj4EBERwb1797h79y4RERGULl2ayMhINm7cSN++fbOngjJIjEbO55JXrCTl972gUuE8bw5y68zN03svTs13y05wNf4kqfLHQFqQNUpGgkoEsffGXtPv0epojt4+Su1itc1xKpmSOHMmGI1YNaiPKuDFI65fJfxWHFN3XATg23ql+KCMeM1HyLuGDBmCJEmEhYVRqFAh0/bPP/+czz77jC5dutC4cWOzrCikVCqZNGkSI0aMYM2aNZQrV45q1arRpEmTdCuuNWrUiODgYAD69u3L0aNHWblyJaNHjwbS5rV/1fPRZ8teuXJlpk6dSt++fdFqtej1ej788ENGjhxpShMdHf3c6nCurq5ER0cD4O3tTb9+/ejYsSMA/fv3x9vbmw4dOjBo0CAOHz7M3LlzUSqVDBs2jKpVzft4TATbfEx3+TKPx44FwPH7oah8fTO1f2RMMj2XhfEoIQWd9TFITRsE5WTlxKpWq2hYqiF7ru3hi41f8DjlMQbJwIZLG3I92OouX0azZSsA9gMz36p9EK/h+7Xh6A0SQeUL0PGDktldREHINrGxsaxfv57JkyenC7SQtprQxIkT8fHxYdOmTbRt29YsZWjYsCF169YlLCyM8PBwDh06xKJFixg3bpxp0ZiA/9z0+vv7c+nSJdPvXs8sdPI6165dY/z48fTo0YPAwECioqKYMmUKo0aNYsKECRk+Ttu2bdPVyaZNm7C1tcXf359GjRqxfv16Hjx4QL9+/di/fz8qlfkeI4lgm09JKSnE9uwFKalYflgX2286Z2r/iKgkei4PIzoxlWJu1txMOQxAvRL1WPnJSgrYpS1M0LBUQy5+d5F2m9qx78Y+1l1Yx8yGM3N1+sKE6TNAkrBq0gSVb/lM7ZuiNTB4zWnikrWU9rRneEtfMRWjkKdFRESg0+moXfvFN7mlS5emYMGCpoFB5mJpaUmtWrWoVasWPXr0YNiwYcyZM8cUbF+nadOm3Lt376WfV65cmUWLFgEwf/58KlWqZOpaLlOmDNbW1nz55Zf07dsXDw8P3NzcTK3Yp161FnpsbCxz585l1apVnDlzhuLFi5t+9Ho9N2/exMfHfG8iiGCbTz0ePwH9pcvI3dxwnjkjU3MBX3+YSM/lYcQla/EuYMeMLyvS4FcPBtcaRL8a/Z57paeAXQH2tNvDjNAZrDizAr1Rj4XCIrtPKUO058+TsnMXyGQ4DOyf6f2VChkVijgTlZDKlLYBYipGIc9zdHQE4O7du1SpUuW5z5OSkoiLi8PBIWdXoSpVqhT79u0z/R4eHk7Lli1Nv585c4ayZcuafs9MN3JKSspzi5k8/V2SJCCt5Xzs2DE6dOhgSnP06FH8/f1fePyJEyfSoUMHPD09OXfuXLqyGAwGjEbjy082G4grTT6Usu8PkpcsBcB5xnQU7u4Z3vfq/QR6rwgjXq2jtKc9s9tXwclWxdnuZ1+5n1wmZ2DNgQysmbXBSNklcep0AKxbfoxFFu5ClQo5A5uWpeMHJXG1t8zu4glCtitZsiQBAQHMnTuXFi1aPNcTs2TJErRabYZbmJkVFxdHnz59aN26NT4+Ptja2nL+/HkWLVpkGo0MsHv3bnx9falcuTLbtm3j7NmzjB8/3vR5ZrqRP/zwQ0aMGMGvv/5K7dq1efToERMmTKBChQoUeLIcaPv27fnqq69YsmQJderUYefOnZw/f56xTx6tPevIkSNEREQwefJkAPz8/Lhx4wYHDx7kwYMHyOVySpQokdUqyhARbPMZw8OHxPUfAIDtN52xCqqX4X0v3X1Mn5VhJGj0lC3kwKz2VXCwzp0WalZoT50mZd8+kMux79cvU/v+8yCBEu52pndoRaAV8guZTMbo0aP5+OOP6dSpEz/++COFCxdGrVazdOlSBg0aROfOnSlWrJhZ8re1taVixYosX76cyMhI9Ho9np6eBAcH061bN1O6Xr16sXPnTsaMGYO7uzvTp0+nVKlSWcqzVatWJCcns2rVKiZPnoy9vT3vv/8+gwYNMqWpVKkS06ZNIyQkhBkzZlC8eHHmzZtH6dKl0x0rJSWFsWPHEhISYlob3dPTkxEjRvDDDz+gUqmYPHmyWQaXpSO9Y/R6vRQWFibp9fpsSZeTjAaDFPV5W+lOocLSw/ofScaUlAzvey4yTqo3fp9UfeRu6ZuFx6REjTbby2fuOotq+4V0p1BhKbZvv0ztd+1BgvThuL1Sj6V/m+W8syovfsfyuvxaZxqNRrp48aKk0WiyfIylS5dKdnZ2kkKhkEqWLCnZ2dlJMplM6tSpk5SamvrS/YxGo5SUlCQZjcYs5/06pUuXlvbu3Wu24+e0p3WmVqtf+u+W2e+iaNnmI0kLFpL61yFkVlY4z5uDzDJjrbOzkXH0XXkStdaAfzFnpn9ZCVvL/PVPn3r8OKkH/wKlEvt+fTO176OEtLV5JcDKIvcXThCErOjQoQOtWrVi7dq1XL9+HScnJ4KDg/H29s7togkZkL+uuO8w7blzJExKe97gOHoUFv/pKnkVFztLbK2UlPVyZNoX+W9QkCRJJEydBoBNmzYoixbN1P413nNn4TfVcbWzFFMxCvmag4MDXbp0ye1iCFmQv6667yhjcjJx3/UEnQ6rRg2xafdlpvYv7GLD/E7VcLG1xEqV/1p2qYePoA09BioV9n16Z3i/BI3O9ExazA4lCObzdM5h4eXEbX4+8HjUaPQ3biD39MRp6tQMvRd69GoUh688Mv1eyNkmXwZaSZJIfNKqtW33JUqvQq/ZI83Wk3doM+cw4bfiXp9YEATBzESwzeM027ajXr0GZDJcZs9C4eL82n0u3Iln8JrTfL82nIt3H+dAKc0n9c8DaE+eRGZlhX3PHhna50xkHFN2XCQuWcupiFgzl1AQBOH1RDdyHqa/e5e4IUMBsOvxHZa1amZoP5+CDtT28UAug9Ke+bf7NO1Z7VQAbDt8jeLJ+3Wv8iBew9A1aVMx1isnpmIUBCFvEME2j5IMBuJ69UZ6/BgL/4o4DByQ4X2VCjljW1dAJiNfDwhK2bMH3dlzyGxssPuu++vTPzMV43ue9oz4REzFKAhC3pB/r8RvIclgQHqyhFXi7Dloj/+NzNYWl7lzkFmkn3wiRWcwTVsGsOvMPSZvu4jRmLbNQinPl4FWSklBf/s2hpgYEqalzRZl27kTClfX59Impei4F6dBo9UjSRLjtpzn6v1EnG1VYipGQRDyFHE1ykNiu3XHGBODw/dD0xZGB5zGj0P5n2nE1Kl62s47QjN/L7rUK8XWk3eYuO0CkgQBxZ35yK9gLpT+zRiio0mcPgP1ho1Iycmm7TIba+y7fpsu7eV7CSw+cI0jV6MwSmCplFPM3Zar9xNRyGVMbONPQafMLTUoCIJgTiLY5hHa06fTJtgHYr/5FgwGrD9pifWnrZ9Lu+HEbR4+TmHV0QisVArm7U1b7ePTakWoX94zR8udHQxRUUS1/ATpcQJ2Xb7BomoV4vsNwPjoEVJKKqnHj2PdqBGQtg5tn5VhFHSypn+TshRxtWF3+D12nb0PQOe63vgXe/0gMkEQhJyU//oZ31IJM0JQeHsjd3HBGB2NokgRnCaMf+6ZozpVz6ojNwkq74nBaDQF2s/fL8aAJmWRy/PfM8qEyVOQEpNw37kdh0EDkaJjMD56hMzJCct69YgbMAhJo8FolBi3+RzlCjmyrGsNPq1WFHd7Kw5eTnvFydZSwYU7+Xv0tSDkRbGxsYwaNYq6devi6+tLrVq16Ny5MydPnjRbnqtWraJx48ZUqFCBhg0bsnnz5nSf63Q65s6dS/369fHz86NFixb89ddf6dJs3bqVOnXqULVqVSZOnJjuszt37tCwYUOSkpLMdg7PEi3bPEB7+jSp+/dj0/4r1CtWAmDboQPyFyyZteHEbZJS9Xi5WKMzpD2fDa5elD6NfPLlYCBjUhKaTZux79MbZdGiSDodCTNnAmDfvRvWTZvwMPADNDt3cd6/DndiNYz8xA8rCwWP1VoGrz6FWmugUnFnGvgWZMqOizyI1+ApupGFt9ijR49wd3fPsb/5Xr16odPpmDRpEkWKFCEmJobQ0FDi4+PNkt+vv/7K9OnTGTduHH5+fpw9e5bhw4fj4OBAvXppi6+EhISwdetWxo0bR8mSJTl06BA9e/ZkzZo1lCtXjtjYWIYPH86kSZMoXLgwXbt25f333+fDDz8EYMyYMQwYMAA7OzuznMN/iZZtHpAwIwRFsWJoNmwEQOHlhWbb1nQDoODfVm3pAvasOHQTSFufVaWQ5ctAC2C4cwcpJQVVjRoAqNdvwBBxC7mrK7YdO6AsUQKFlxe6f/7hVnQSFgoZfkWc0BuMDP/tLHdiNRR0smbCZ/5U83ZFkiAyRp3LZyUI5nP58mUKFy7M7NmzcyS/hIQEwsLCGDhwIO+//z5eXl5UqFCBrl27mpbY8/Hx4ddff+Wbb76hQoUKBAUFsXv37iznuXXrVtq0aUOTJk0oUqQITZs2pU2bNixcuNCUZsuWLXTr1o06depQpEgRvvjiC+rUqcOSJUuAtJarvb09TZo0oUKFClSvXp3r168DsH37dpRKJR999NEb1EzmiGCby562agGk5GRU1avhOHUKuvAzpO7/M13a9X9H8lij4+K9BAC+/bAU7WqVYMOJO8Qla3O87NlB9uSu0hgVhZSaahoYZtfjO+S2tkgpKRgfP0ZuZ4e1SonOIPFYrUNvlHC0scBapWBK2wCcbFVEJ6UCYJMPZ8oShIz68ccf0el0TJgwAbXa/DeWNjY22NjYsG/fPrTal19nZs2aRcOGDdmyZQvNmzenf//+puAG0LRpUwICAl76880335jSarVaLP+z0IqlpSXnzp1Dp9MBad3IKpXquTSnTp0CoFixYmg0Gi5evEh8fDznzp3Dx8eHx48fM2vWLEaOHPnGdZMZohs5lyXMCEHm7Izh1i1kjo44z5mNolAhVNWqkjBjBpb1PkQmk5GcomPxges8bez2aFCarwJL8FitZd3xW6w6cpOeH2V+MfXcpvDywqKCH8krVmJ49AjD3bvIC3hg1/4rANSbNiMlJWHVuDG1PN2xUMjYFHabjnW8+fHTCtyKTqa4e1rA3njiNp6OVpT1cszNUxIEs7l8+TKrV69m0KBBzJw5k59//pn+/fubNU+lUsmkSZMYMWKEqYu2WrVqNGnShDJlypjSNWrUiODgYAD69u3L0aNHWblyJaNHjwZgwYIF6PX6l+bz7HqygYGBrF+/nvr161O+fHnOnz/P+vXr0el0xMXF4eHhQWBgIMuWLaNq1aoULVqU0NBQ9u7di8FgAMDR0ZHJkyczZMgQUlJSaNmyJbVr1+aHH37gyy+/5M6dO3Tv3h29Xk/Pnj1p9GQQprmIYJuLTK3aJ13AzlMmo/TyAsC+f39iPm9L6v4/saz3If1XnSZVbwSgbyMfPq9RHABHGxWfVS/GmtBbfFmrBM62qhfmlVfJZDLs+/YhttM3aMPCALDv1QsUCtS/refxiJFYt/wYC++SOAONKhZi4Z/XsLVU0qJyYYq725Gg0bHy8E32nL3P0OblUOTDQWKCkBE//vgjXl5e/Pjjj8TGxjJ58mS6deuGjY2NWfNt2LAhdevWJSwsjPDwcA4dOsSiRYsYN24crVq1AiAgICDdPv7+/ly6dMn0u9eTa1tGfPfdd0RFRdGmTRskScLV1ZWWLVuyaNEi0wLww4YNY/jw4TRu3BiZTEaRIkVo1aoVGzZsMB2nQYMGNGjQwPT733//zZUrVxgxYgQNGjRgxowZuLm5ERwcTNWqVXF9wfv82UUE21yUOGdu2v9IEjJnZxLnzE23DSDxfz9z368aZyLTJtT3cLBk55l77Dxzz3ScFK2BFJ2BjSci6Vy3VI6eQ3awbtgQqxbNSdm6DYCk5ctJnD4DY1wc1s2a4TwtbcrGh481HLkShaejNTN2XWbBn9fwcLDibqwagyTxXf33aFmlSG6eiiCYzdNW7bx587C0tOSHH35g+fLlOdK6hbQu2lq1alGrVi169OjBsGHDmDNnjinYvk7Tpk25d+/eSz+vXLkyixYtAtJauRMnTmTs2LHExMTg7u7O2rVrsbW1xcXFBQAXFxd++uknUlNTiY+Px8PDg2nTplGkyIuvAVqtljFjxjBlyhRu3bqFwWCgWrVqABQvXpwzZ86YBl+Zgwi2uUSSJAyP0l5ZkTk4YN240XOzRKmqVMbC3x93DzuaVCzEg8caSri/eORc1ZKuVPN2M3u5zcGoVqM9GgqA9ccfI3dzRW5vj3XzZlg80011+V4CCSk6XOxUrOhWg8NXoohTa2nq70WjigVxtbN8WRaCkO89bdV26tQJgJIlS/L111/nWOv2v0qVKsW+fftMv4eHh9OyZUvT72fOnKFs2bKm3zPTjfyUhYUFnp5pcwfs3LmTDz/80NSyfcrS0pICBQqg0+n4/fffady48QuP/9NPP1G7dm3Kly/PxYsXTd3NAHq9HqPR+OoTfkMi2OYS9apf0Z0OBwsL3NatQeXnl+5zg1EiJjEVJ8e0L+DIVn4vOMrbIXnpsrR3i4sVxXnWzOduOp6qU7YAP3Woipu9FYWcrSld8PlXowThbfTfVu1TOdG6jYuLo0+fPrRu3RofHx9sbW05f/48ixYtMo1GBti9eze+vr5UrlyZbdu2cfbsWcaPH2/6PDPdyDdv3uTs2bNUrFiRhIQEli5dyj///MOkSZNMac6cOcPDhw8pW7YsDx8+ZM6cORiNxnQDrZ66du0au3btYtOmTUDajYpMJuO3337D3d2dGzdu4Odn3musCLa5QHf1Ko9HjQbAYeiQ5wKt3mDkx83nOXUzlp86VqWIq20ulDJnGJOSSPrfzwDY9+37wkCr1RtRKdPuZisUFbNDCe+e/7Zqn8qJ1q2trS0VK1Zk+fLlREZGotfr8fT0JDg4mG7dupnS9erVi507dzJmzBjc3d2ZPn06pUpl7bGW0Whk6dKl3Lx5E6VSSfXq1Vm9ejWFCxc2pUlNTSUkJITbt29jY2NDnTp1mDJlCg7/mZ9AkiRGjBjB0KFDTfVjZWXFpEmTGDt2LFqtlpEjR1IgA6uKvQkRbHOYlJJCXI9eSCkpWNb5ALtvuzyXRq018M+DRGKTtdyMSn6rg23SosUY4+JQliyJTatPnvv88JVHzNx1mUmfB/BePl4uUBCy6tGjR6xevRpLS0tKlnx+yUiNRkNcXBzr1q2jQ4cO2Z6/SqViwIABDBjw6pXHChQoYHrH9U15e3s/N2PUf1WrVo2dO3e+9lgymYzVq1c/t/3DDz80TXCRE0SwzWGPJ05Cd/EicldXnENmIpM//6qzg7UFc76uwtX7CdR4zz0XSpkzjPHxJM1fAID9wP7IlOm/jjcfJTFyw1nUqQa2n75Dv8ZlX3QYQXirOTk5ERIS8srZmuRyuVkH9whvTgTbHJSy/0+SFy0GwHnGdBQeHqbPUnUGTkbEUvNJcHW1s3yrAy1A0oKFSAkJKMv4YN28ebrPEjQ6Bq0+jTo1bSrGXvnwHWJByA4qlYrevXvndjGENySCbQ4xREUR1y9tAINt505Y1f93YEGKzsCQ1af5+0YMw1v60tQ/4wMJ8itDbCxJT248HAYMSNfCT5uK8Qx3YtWmqRjz49q8gvCuuHLlSm4XIc8TwTYHSEYjcf36Y4yORlm2DI4/fG/6TKPVM+jX04TdjMXKQoGn4/PD399GSf/7GSk5GQtfX6wap5+5Ze7vV/n7eky6qRgFQRDyMxFsc0Dy4iWk/nkArCxx+WkesifvkyWn6hmw6hTht+KwUSmY0a7yO7EWqyEqiuSlywBwGDQw3SIK20/fZc2xWwCM/MRPDIoSBOGtIIKtmWnPX+DxhLR1FB1HjsSidGkAklJ09PvlFOdux2NrqSTkq8r4FXHKxZLmnMS585A0GiwCArAM+ndQx7nb8UzedgFIWwT+w3LmHYovCIKQU0SwNSOjWk1cj56g1WLV8CNsn0yun6DR0XdlGBfvJmBvpWR2+yrvzOT5hvv3SV75CwAOg/9t1T56nMKQNafRGSTqlvWgcx3v3CymIAhCthLB1owejx6L/to15J4FcJo2FZlMRnyylt4rwrj6IBFHGwvmtK/yTs2ElDhnLqSmoqpeDcvatYG0AWKD15wmNklLqQJ2jPzED7lYTEAQhLeIGOKZDbQGLfP+nofW8O9aj5qdu1CvWgUyGc4hIShcXIhNSqXH8hNcfZCIs62KnzpUfacCrf7OHZJ/TXu5/OmzWkmSmLDlPJfvJeBoY8GUtgHYWIp7QEF4lRddc4S8TQTbbLDp0iZ67urJ5subATDcu0/coEEA2HXvhlXtQKITU/lu2QmuP0zC1U7FTx2r4l3g3Rr8kxgyC3Q6LAMDsaxRA4BUnZHHah0KuYwJn/lTyDlnJ1MXhPzov9ccIe8TwTYb/Hbxt7T/XvgNyWAgtndvpPjHWFSsgMOggahT9Xy39G8iopJxd7Dkfx2rvXT1nreV/uZN1OvS6sl+0EDTdiuVgulfVuKnjlWpXMIlt4onCPnKs9cccxs6dCg+Pj74+Pjg6+tLgwYNmDt37itX8MnqsY4fP2763MfHh/fff58uXbq8Fe/ximD7htQ6NTv+2QHA9n+2EzU3BG3oMWQ2NrjMnYtMpcLGUkmjioXwdLLi547VKOr29s51/DIJM0LAYMCy3odYVqlMgkaH9GTNXqVCTkWxwIAgZMh/rzkancbsedauXZvDhw+zZ88eOnbsyNy5c1m8eLHZjrV7924OHz7M4sWL0Wq1dO3aFa02f3eZi2D7hvZc20OKPgWAFH0K29ZPBsBx3I8oS5YwpetUx5uV3Wri5fLudZPq/vkHzZOlrRwGDiBBo6PTgmNM3nYRnd68a0gKwtvmv9ecPdf3mD1PlUqFu7s7Xl5efPHFF9SsWZP9+/eb7Viurq64u7tTvnx5vv76a+7fv8+NGzey41RyjRiJ8oY2XNqAUq5Eb9SjNMrYWSyJT3w/JSaoCRN/O8MPLcqbBvzYW794nda3XeL0GSBJWDX8CFXFihy68IC7cWr0RiPJqXqclGKGKEHIqHTXHLmSDRc30LJMyxwtg6WlJfHx8dy7d4+mTZu+Mm3Xrl3TLcX3smO9SGJiIjt2pLXiLV6yznV+IYJtBmgNWlqtbUVUctRzn4U/DEdvTHveoJdLbPNOoVHB41yfX41UnZHlERYUcrLB3dadjW02olK8W4FFd/ESmm3bAXAYmPasNqi8J9YWCtwdLMVUjILwAhm+5hj1rLu4jqsxV59L9/SaYyHPviAlSRKhoaEcPnyYdu3a4eHh8dql8BwdXzyHwH+P9aw6deoAoFarAahXrx7e3vn73XsRbDNAIVOgM+r4+97fr02rk0uceHgq7RcZJKvhjho+8v4IhUxh5pLmPQnTpwNg3aI5yrJlTNtrln67VzQShDeRmWuO1qB9YbrsvOYcOHCAgIAAdLq0sRbNmjWjV69eKJVKihUrli3HetaqVauwsrLizJkz/Pzzz4wZMyZbziM3iWCbAQq5gl1f7mL60el8/0faIgIGyfD6/Z580SfVn0T/Gv2Ry96tR+Tas2dJ2b0H5HJutf+O/guOMT644jv53FoQMiM7rzlPByK+ierVqzN69GgsLCzw8PBA+WTt6ax0I7/sWM8qXLgwDg4OlCxZkpiYGPr168eqVave+Dxykwi2GSSXyRlUaxB1i9cl+Ldg7iTceeWXXyFTUNihML8F/0ZVr6o5WNK8I2HqNACSW33O8MNRxCRpWfrXDYa39M3lkglC3peXrjnW1tYvbMFmpRv5Zcd6mS+//JIFCxawd+9eGjRokOH98hoRbDOpqldVznY/S7uN7dh2ddtL0zV5rwmrWq3C3vLdmrjiqdSwk6Tu/5NUlRUTvBsTE5OKdwE7+jcu8/qdBUEwycvXnKx0I2eWtbU1wcHBzJ49m/r166dbJSw/ebf6NbOJg6UDnmolype8taKUKynsUPidDbQAiVOnIQELvhjG5ZhUHG0smCqmYhSELHGwdMDL3gul/MV/P2/7Naddu3bcuHGDXbt25XZRskxc+bJAFxPN+hvb0KcbSCsD0p6N6I16frv4G3Maz0Ehf/cGRaWGhpJ6+DBb/JtwQFlQTMUoCG/IYDTw28XfTKOQIa2b2Sil3fGb85ozadKkHDtW9erVXzhbVMGCBblw4UK2lSM3iJZtJkmSxO6RHYlTPfnSS2ldGkHFgwBMg6Ci1dEcvX00V8qYqySJpGkzOFnYj18qfwJAv8ZlxFSMgvAGjtw+QowmBvj3GhNUQlxz8pM8EWxXrVpFvXr18PPzIzg4mLNnz74y/a5du2jUqBF+fn40b96cgwcPmrV86oQkOg9cxv61e1GvXsPC5HNpH0hyrBQObPt8B/u+3svuL3fjZOVkGhG44dIGs5YrL0hN1rB23nraDVxBw2Fb+G3mdm7+c4eQet8iyWS0rFyY1lWL5HYxBSFf23Ax7VqikClwtnJm95e7+f2r39/Ja05+levBdufOnUycOJEePXqwadMmypQpQ+fOnYmJiXlh+lOnTjFgwAA+/fRTNm/eTFBQED169ODq1edf6s4u6xZt54JtQX774wJ75q9jd/HHABSzrcrVXpdo5tMEgIalGnLxu4t8WOLDtP0urMuWYfd5lTohiR6j1jLrgS2uMj3Bjsk0vbSfSQ16oFZZ4+OiYkCTsvl2QIMg5AVGyci6i+sAqFeiHhe+u0DDUg2Bd++ak5/lerBdunQpn332Ga1bt6ZUqVKMGTMGKysrNmx48R3aihUrqF27Nt988w3e3t707duXcuXK8csvv5ilfJqEJNY8VOKbcBvfyHNM/aADSpz40L0fV/sdpohTwXTpC9gVYE+7PUxtMBU3G7d0z1jeNnOmr+cfSxdmBzoya2on2gZ48EvAx9x39MTCoCP59j0Uuf4NE4T8zWA04G7jzrQG09jdbjcF7Aqk+/xduubkZ7l6KdRqtVy4cIGaNWuatsnlcmrWrMnp06dfuE94eDg1nqyF+lRgYCDh4eFmKeNvS3aSoLKhvjyWVVVbI8mt6F/yV37vOg3VC17GhrRnKANrDuRs97NYKPL3fJ4vkxyfyB6tE59YxVGlYU0ko5F5G8I4U9gXSwz08bPjjq0bJ3Ydye2iCkK+ZqGw4Gz3swyoOeClE+O8C9ec/C5XRyPHxcVhMBhwdXVNt93V1fWlKzxER0fj5ub2XPro6OhM5W0wvHo2FoPBgFadwtpHFrROOMuxZAPGEgpck2KplKJBhvTaY7zNrp2+jFplTd2aBTEYDCT+dYSLyrRBUN9/VJKgat78L3w74eeiqNKo5muO9m56+v15l79HmZVf68xgMCBJEkajMce7eZ/mJ7qXM+5pXT399zIYDM995zL7HXxnX/05d+7ca9Mc33uOBFVRKlUuzMcLf6KUlz0XjJasvGKk8IkwFBbvbPVx/3YkYMf16zcxOClRPI5lZNhyjrVoj7uVG6dPnsIgk5OclGi2Xoe3RUa+i0J6+bHO5HI58fHxuRb0NBrzr3v7tklKSkKr1XL58uU3PlauRgtnZ2cUCsVzg6FiYmKea70+5ebm9lwr9lXpX8bPzw+F4uXvoyXFPeaH1BsEye/zQccO0LEt3YHzf52i64FY7p27T/NOzTOV59ukfJmyzBu7g/O31LTs7A/+/hiaNCHh3Dn8/Pz4Y81eUiysaBBUjXL+/rld3DzJYDBw7kl9veq7KPwrP9fZgwcPePz4MSqVChsbmxwbOChJEikpKVhZWYnBihkkSRIajYaEhAScnJwoXLjwc3X39LuYUbkabFUqFeXLlyc0NJT69esDac320NDQ55Zcesrf359jx47RoUMH07ajR4/in8kLukKheOUf68ble0hUOdLp0wrp0lX8sCrVdi5hxRUrmhoMWKjezSXiFLY2tHLVsjSxIL6LtvJJl49N9XT56FlmX1BTwZCE3wcNc7mked/rvovC8/JjnRUqVAi5XE5U1PPL5pmTJEnodDosLCxEsM0gSZLQarVYWVlRrFixFy6WkFm53g/asWNHhgwZgq+vLxUqVGD58uVoNBpatWoFwODBgylQoAADBgwAoH379nz11VcsWbKEOnXqsHPnTs6fP8/YsWOzrUxaTdqzWnvULFt7BNm69IN8UiQZ92xd2f3Lnne6dduxXxsiR61g6j0vVg1eQ1mlhrupcNmhMCUMKUzo3Si3iygIeYZMJqNgwYJ4eHig0+lyLF+DwcDly5cpVapUvrtByS1P68zb2zvbFq3P9WDbpEkTYmNjmT17NlFRUZQtW5ZFixaZuoXv37+PXP7vCLxKlSoxbdo0QkJCmDFjBsWLF2fevHmULl0628okGSXeMyQQa5BxU65Im4nxP0onPcDBoXC25ZkfKS2UjBnXgWa7jrDl0F3u6RRYS6l8XySFRm0/xdLWOreLKAh5Tk63yp8O5LGyshLBNoOe1tmzsedNyaR3bIiawWAgPDwcf3//V37xMppO+Jeos8wR9ZV5os4yT9RZ5mWkzjJbr2LKAUEQBEEwMxFsBUEQBMHMcv2ZbU572muekUktMpJO+Jeos8wR9ZV5os4yT9RZ5mWkzp5+ltEnse/cM1utVpsvX4gXBEEQ8h4/Pz9UGXgF9J0LtkajEb1ej1wuF++cCYIgCFnydPpNpVKZoVHL71ywFQRBEIScJgZICYIgCIKZiWArCIIgCGYmgq0gCIIgmJkItoIgCIJgZiLYCoIgCIKZiWArCIIgCGYmgq0gCIIgmNk7HWxXrVpFvXr18PPzIzg4mLNnz74y/a5du2jUqBF+fn40b96cgwcP5lBJ847M1Nm6dev44osvqFq1KlWrVqVDhw6vreO3TWa/Y0/t2LEDHx8fvvvuOzOXMO/JbJ0lJCQwZswYAgMD8fX1pWHDhu/c32Zm62zZsmU0bNiQChUqUKdOHSZMmEBqamoOlTZ3nThxgm7duhEYGIiPjw/79u177T7Hjx/nk08+wdfXlwYNGrBx48bMZyy9o3bs2CGVL19eWr9+vfTPP/9Iw4cPl6pUqSJFR0e/MP3JkyelsmXLSgsXLpSuXbsmzZw5Uypfvrx05cqVHC557slsnfXv31/65ZdfpIsXL0rXrl2Thg4dKlWuXFl68OBBDpc8d2S2vp66ffu2VLt2bemLL76QunfvnkOlzRsyW2epqalSq1atpC5dukhhYWHS7du3pePHj0uXLl3K4ZLnnszW2datWyVfX19p69at0u3bt6VDhw5JtWrVkiZMmJDDJc8dBw4ckGbMmCH9/vvvUunSpaW9e/e+Mn1kZKRUsWJFaeLEidK1a9eklStXSmXLlpX++uuvTOX7zgbbTz/9VBozZozpd4PBIAUGBkrz589/Yfo+ffpI3377bbptwcHB0ogRI8xazrwks3X2X3q9XgoICJA2bdpkphLmLVmpL71eL7Vp00Zat26dNGTIkHcu2Ga2zn799VcpKChI0mq1OVXEPCezdTZmzBipffv26bZNnDhR+vzzz81azrwoI8F2ypQpUtOmTdNt69u3r9SpU6dM5fVOdiNrtVouXLhAzZo1Tdvkcjk1a9bk9OnTL9wnPDycGjVqpNsWGBhIeHi4OYuaZ2Slzv5Lo9Gg1+txdHQ0VzHzjKzW17x583B1dSU4ODgnipmnZKXO9u/fj7+/P2PHjqVmzZo0a9aMn3/++Z1Z4SYrdRYQEMCFCxdMXc23b9/m4MGD1KlTJ0fKnN9k17X/nVtiDyAuLg6DwYCrq2u67a6urty4ceOF+0RHR+Pm5vZc+ujoaLOVMy/JSp3917Rp0/Dw8Eh3YXhbZaW+wsLCWL9+PZs3b86BEuY9Wamz27dvc+zYMZo3b86CBQuIjIxkzJgx6PV6evbsmRPFzlVZqbPmzZsTFxfHF198gSRJ6PV6Pv/8c7p165YTRc53XnTtd3NzIykpiZSUFKysrDJ0nHeyZSvkvAULFrBz507mzp2LpaVlbhcnz0lKSmLw4MH8+OOPuLi45HZx8g1JknB1deXHH3/E19eXJk2a0K1bN9asWZPbRcuzjh8/zvz58xk1ahQbN25k7ty5HDx4kHnz5uV20d5q72TL1tnZGYVCQUxMTLrtMTExz93BPOXm5vZcK/ZV6d82WamzpxYvXsyCBQtYunQpZcqUMWcx84zM1tft27e5e/cu3bt3N20zGo0AlCtXjt27d1O0aFHzFjqXZeU75u7ujlKpRKFQmLaVLFmSqKgotFpthtYZzc+yUmezZs2iRYsWpkcVPj4+qNVqRo4cSffu3TO0XNy75EXX/ujoaOzs7DLcqoV3tGWrUqkoX748oaGhpm1Go5HQ0FACAgJeuI+/vz/Hjh1Lt+3o0aP4+/ubs6h5RlbqDGDhwoX89NNPLFq0CD8/v5woap6Q2foqWbIk27ZtY/PmzaafevXqUb16dTZv3oynp2dOFj9XZOU7VqlSJSIjI003JgARERG4u7u/9YEWslZnKSkpzwXUpzcrklhx9TnZdu3P3Nitt8eOHTskX19faePGjdK1a9ekESNGSFWqVJGioqIkSZKkQYMGSdOmTTOlP3nypFSuXDlp8eLF0rVr16TZs2e/k6/+ZKbO5s+fL5UvX17avXu39OjRI9NPUlJSbp1Cjspsff3XuzgaObN1du/ePSkgIEAaO3asdOPGDenPP/+UatSoIf3000+5dQo5LrN1Nnv2bCkgIEDavn27FBkZKR0+fFiqX7++1KdPn1w6g5yVlJQkXbx4Ubp48aJUunRpaenSpdLFixelu3fvSpIkSdOmTZMGDRpkSv/01Z/JkydL165dk3755ZcsvfrzTnYjAzRp0oTY2Fhmz55NVFQUZcuWZdGiRaaul/v376e7+6tUqRLTpk0jJCSEGTNmULx4cebNm0fp0qVz6xRyXGbrbM2aNeh0Onr37p3uOD179qRXr145WvbckNn6EjJfZwULFmTx4sVMnDiRFi1aUKBAAdq3b0+XLl1y6xRyXGbrrHv37shkMkJCQnj48CEuLi58+OGH9OvXL7dOIUedP3+e9u3bm36fOHEiAJ988gmTJk0iKiqK+/fvmz4vUqQI8+fPZ+LEiaxYsQJPT0/GjRtH7dq1M5WvTJJEv4EgCIIgmJO4rRYEQRAEMxPBVhAEQRDMTARbQRAEQTAzEWwFQRAEwcxEsBUEQRAEMxPBVhAEQRDMTARbQRAEQTAzEWwFQRAEwcxEsBWEt8jx48fx8fEhISHhlenq1avHsmXLcqZQgiCIGaQEIacNHTqUTZs2AWBhYUHBggX5+OOP6datG0rlm82gqtVqefz4MW5ubshkMjZu3MiECRMICwtLly42NhZra2usra3fKD9zmDNnDvv27WPLli25XRRByDbv7NzIgpCbateuzcSJE9FqtRw8eJCxY8diYWFB165d3+i4KpUKd3f316bLjTVz34Ul7wThZUQ3siDkgqdB0cvLiy+++IKaNWuyf/9+AB4/fszgwYOpWrUqFStW5JtvviEiIsK07927d+nWrRtVq1bF39+fpk2bcvDgQSB9N/Lx48f5/vvvSUxMxMfHBx8fH+bMmQOk70YeMGAAffv2TVc+nU5nWt4P0pZtmz9/PvXq1aNChQq0aNGC3bt3v/Ic69Wrx7x58xg8eDCVKlVi5MiRAEydOpWGDRtSsWJFgoKCCAkJQafTAZgWM798+bKpzBs3bgQgISGBYcOG8f7771OpUiXat2/P5cuXs/xvIAg5SbRsBSEPsLS0JD4+HkjrZr516xb/+9//sLOzY+rUqXz77bfs2LEDCwsLxo4di06n45dffsHGxoZr165hY2Pz3DEDAgL44YcfmD17tikwvihd8+bN6dOnD8nJydja2gJw+PBhUlJSqF+/PgDz589n69atjBkzhuLFi3PixAkGDRqEi4sL1apVe+l5LVmyhB49etCzZ0/TNltbWyZOnIiHhwdXr15lxIgR2Nra0qVLF5o0acI///zDoUOHWLp0KQD29vYA9OnTB0tLSxYuXIi9vT1r167l66+/Zs+ePTg5OWW+0gUhB4lgKwi5SJIkQkNDOXz4MO3atSMiIoL9+/ezevVqKlWqBMC0adOoW7cu+/bto3Hjxty7d4+GDRvi4+MDpC0B9iIqlQp7e3tkMtkru5YDAwOxtrZm7969tGzZEoDt27dTr1497Ozs0Gq1zJ8/n6VLl5oWJC9SpAgnT55k7dq1rwy277//Pp06dUq37bvvvjP9f+HChbl58yY7duygS5cuWFlZYWNjg0KhSFfmsLAwzp49S2hoqKkresiQIezbt489e/bQpk2bl5ZBEPICEWwFIRccOHCAgIAAdDodkiTRrFkzevXqRWhoKEqlkooVK5rSOjs7U6JECa5fvw5A+/btGT16NIcPH6ZmzZp89NFHlClTJstlUSqVNG7cmG3bttGyZUvUajV//PEHM2bMAODWrVtoNJrngqZOp6Ns2bKvPLavr+9z23bu3MmKFSu4ffs2arUavV6PnZ3dK49z5coV1Go11atXT7c9JSWFyMjIjJymIOQqEWwFIRdUr16d0aNHY2FhgYeHR6ZGIQcHBxMYGMiBAwc4cuQICxYsYMiQIXz11VdZLk/z5s356quviImJ4ciRI1haWpoWx1ar1UBaV3KBAgXS7fe6AU//He18+vRpBg4cSK9evQgMDMTe3p4dO3aYuoxfJjk5GXd3d1auXPncZ0+7mQUhLxPBVhBygbW1NcWKFXtuu7e3N3q9njNnzpi6kePi4rh58yalSpUypStYsCBt27albdu2TJ8+nXXr1r0w2FpYWGAwGF5bnkqVKuHp6cnOnTv566+/aNSoERYWFqYyqVQq7t2798ou44w4ffo0hQoVonv37qZt9+7de67MRqMx3bby5csTHR2NQqGgcOHCb1QGQcgNItgKQh5SvHhxgoKCGDFiBGPGjMHOzo5p06ZRoEABgoKCABg/fjwffPABxYsXN4069vb2fuHxvLy8UKvVhIaG4uPj88p3a5s1a8aaNWuIiIhg+fLlpu12dnZ06tSJiRMnIkkSlStXJjExkVOnTmFnZ8cnn3yS4fMrVqwY9+/fZ8eOHfj5+XHgwAH27dv3XJnv3LnDpUuXKFCgAHZ2dtSsWRN/f3969OjBoEGDKF68OI8ePeLgwYPUr18fPz+/DJdBEHKDCLaCkMdMnDiR8ePH061bN3Q6HVWqVGHBggWmlqbRaGTs2LE8ePAAOzs7ateuzffff//CY1WqVInPP/+cvn37Eh8fT8+ePenVq9cL07Zo0YKff/4ZLy8vKleunO6zvn374uLiwvz587lz5w729vaUK1eObt26ZercgoKC+Prrrxk7dixarZa6devSvXt35s6da0rTsGFD9u7dS/v27UlISGDixIm0atWKBQsWEBISwvfff09cXBxubm5UqVIFNze3TJVBEHKDmEFKEARBEMxMTGohCIIgCGYmgq0gCIIgmJkItoIgCIJgZiLYCoIgCIKZiWArCIIgCGYmgq0gCIIgmJkItoIgCIJgZiLYCoIgCIKZiWArCIIgCGYmgq0gCIIgmJkItoIgCIJgZiLYCoIgCIKZ/R+LN5RciHeskAAAAABJRU5ErkJggg==\n"
},
"metadata": {}
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Vf9Gr7zP9h0T"
},
"source": [
"As you can see, prevalence is underestimated by the positive rate when the latter is on the left of their intersection point (the green star), whereas it overestimates it when it is on the right.\n",
"\n",
"Prevalence is not defined for all positive rates. Indeed, some positive rate values will never exist because of the inherent test errors. If sensitivity is greater than 1 − specificity, which should always happen, the positive rate ranges from 1 − specificity to sensitivity, whereas prevalence ranges from 0 to 1.\n",
"\n",
"\n",
"*Proof.*\n",
"Intuitively, we remark that the positive rate can never be smaller than the number of false positives when nobody is infected, that is, 1 − specificity. On the other hand, the positive rate can never be greater than sensitivity, which equals to the rate of detected infections when everybody is infected.\n",
"\n",
"Mathematically, $\\Pr(P)$ reaches its minimum when $\\Pr(F) = 0$\n",
"\\begin{align*}\n",
"\\iff \\frac{\\Pr(P)+ \\Pr(N\\,|\\,G) - 1}{\\Pr(P\\,|\\,F)+ \\Pr(N\\,|\\,G) - 1} &= 0 \\\\\n",
"\\iff \\Pr(P) &= 1 - \\Pr(N\\,|\\,G)\n",
"\\end{align*}\n",
"\n",
"And, it reaches its maximum when $\\Pr(F) = 1$.\n",
"\\begin{align*} \\displaystyle\n",
"\\iff \\frac{\\Pr(P)+ \\Pr(N\\,|\\,G) - 1}{\\Pr(P\\,|\\,F)+ \\Pr(N\\,|\\,G) - 1} &= 1 \\\\\n",
"\\iff \\Pr(P)+ \\Pr(N\\,|\\,G) - 1 &= \\Pr(P\\,|\\,F)+ \\Pr(N\\,|\\,G) - 1 \\\\\n",
"\\iff \\Pr(P) &= \\Pr(P\\,|\\,F)\n",
"\\end{align*}\n",
"\n",
"This holds if sensitivity is greater than 1 − specificity. Otherwise, the positive rate decreases as prevalence increases so the minimum and maximum are switched. If sensitivity equals to specificity, the positive rate is constant, equal to sensitivity.\n"
]
}
]
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment