Skip to content

Instantly share code, notes, and snippets.

View anuj2110's full-sized avatar
🎯
Focusing

ANUJ TREHAN anuj2110

🎯
Focusing
  • India
View GitHub Profile
@anuj2110
anuj2110 / README-Template.md
Created May 31, 2020 17:31 — forked from PurpleBooth/README-Template.md
A template to make good README.md

Project Title

One Paragraph of project description goes here

Getting Started

These instructions will get you a copy of the project up and running on your local machine for development and testing purposes. See deployment for notes on how to deploy the project on a live system.

Prerequisites

# we make our imports
from flask import Flask,render_template,redirect,request,send_from_directory
from tensorflow.keras.models import load_model
import os
from PIL import Image
import numpy as np
# we load the model before starting the app
model_file = "model.h5"
model = load_model(model_file)
# we make our imports
from flask import Flask,render_template,redirect,request,send_from_directory
from tensorflow.keras.models import load_model
import os
from PIL import Image
import numpy as np
# we load the model before starting the app
model_file = "model.h5"
model = load_model(model_file)
{% extends 'base.html' %}
{% block content%}
<center><img src="{{ url_for('static', filename= filename) }}" alt="" style="width: 300px; height:300px;"></center>
<br>
<br>
{% if show==True %}
<center>
{% if message=="healthy" %}
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Pneumonia Detection Project</title>
<link rel="stylesheet" href="https://stackpath.bootstrapcdn.com/bootstrap/4.4.1/css/bootstrap.min.css" integrity="sha384-Vkoo8x4CGsO3+Hhxv8T/Q5PaXtkKtu6ug5TOeNV6gBiFeWPGFN9MuhOf23Q9Ifjh" crossorigin="anonymous">
</head>
<body>
<nav class="navbar navbar-dark bg-dark">
# we make our imports
from flask import Flask,render_template,redirect,request,send_from_directory
from tensorflow.keras.models import load_model
import os
from PIL import Image
import numpy as np
# we load the model before starting the app
model_file = "model.h5"
model = load_model(model_file)
# making the imports
import numpy as np
import matplotlib.pyplot as plt
from tensorflow.keras.layers import Input,Conv2D,MaxPooling2D,Dropout,Flatten,Dense,Activation,BatchNormalization,add
from tensorflow.keras.models import Model,Sequential
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.utils import plot_model
from tensorflow.keras.applications.vgg16 import VGG16,preprocess_input
import os
# Making the imports
import matplotlib.pyplot as plt
import numpy as np
import cv2
import os
from imutils import build_montages
def plot_distribution(paths:list,portion:str):
"""
This function is used to plot the distribution of train and test images among NORMAL and PNEUMONIA labels
import cv2
from tensorflow.keras.models import load_model
import matplotlib.pyplot as plt
import numpy as np
import os
from imutils import build_montages
haar_cascade = "haarcascade_frontalface_default.xml"
imgs = os.listdir(path_to_images_dir)
model_name = path_to_model
import cv2
from tensorflow.keras.models import load_model
import numpy as np
cascade_file = "haarcascade_frontalface_default.xml"
model_file = "fermodel.h5"
emotions = ["angry","disgust","scared", "happy", "sad", "surprised","neutral"]
face_detection = cv2.CascadeClassifier(cascade_file)
emotion_classifier = load_model(model_file, compile=False)