Skip to content

Instantly share code, notes, and snippets.

View bilative's full-sized avatar
🙂

Bilal Latif Ozdemir bilative

🙂
View GitHub Profile
import pandas as pd
SATICI = soup.find_all("a", href=True, attrs={'class':'satici-url'})
URUN = soup.find_all("a", href=True, attrs={'class':'urun-adi'})
FIYAT = soup.find_all("div", attrs={'class':'urun-fiyat'})
ESKI_FIYAT = soup.find_all("div", attrs={'class':'urun-eski-fiyat'})
INDIRIM = soup.find_all("div", attrs={'class':'urun-discount-rate'})
satici, satici_url, urun, urun_url, fiyat, eski_fiyat, indirim = [],[],[],[],[],[],[]
for k in soup.find_all("a", href=True, attrs={'class':'satici-url'}):
print("\n",k.text)
print(k['href'])
for k in soup.find_all("td", attrs={'class':'col9'}):
print(k.text)
for i in soup.find_all("tr", attrs={'class':'I-harfi'}):
print(i.text)
import requests #!pip install requests
from bs4 import BeautifulSoup #!pip install beautifulsoup4
def get_soup(TARGET_URL):
page = requests.get(TARGET_URL)
soup = BeautifulSoup(page.text, 'html.parser')
return soup
URL = 'https://bilative.github.io/sisterslab/web_scraping'
for day in range(x):
codeMore()
andMore()
model = KMeans(n_clusters= 4, random_state=9800) # 3 grup istiyorum
cluster_df = df.iloc[:,2:8] # kumeler icin bu degiskenler secilsin olrak belirtiyorum
scaler = StandardScaler()
scaler.fit(cluster_df)
scaled_df = scaler.transform(cluster_df) # standardizasyon
scaled_df = pd.DataFrame(scaled_df, columns = cluster_df.columns)
import seaborn as sns
from sklearn.cluster import KMeans
hata = []
kume_sayisi = range(1,10)
for k in kume_sayisi:
kmeanModel = KMeans(n_clusters = k)
kmeanModel.fit(scaled_df)
hata.append(kmeanModel.inertia_)
def min_max_range(a):
return max(a) - min(a)
bmi_range = df.groupby('Age').agg({
'bmi': min_max_range,
'Age': 'max'
})
px.bar(bmi_range, x= 'Age', y= 'bmi', barmode='group')
fig = go.Figure()
for i in ['Weight', 'Chest', 'Abdomen', 'Hip', 'bmi']:
fig.add_trace( go.Box(
y = df[i],
name = i,
boxpoints = 'all',
jitter = 0.4,
whiskerwidth = 0.4,
marker_size = 4)
df['dummy_count'] = 1
fig = px.pie(df,
values = 'dummy_count',
names = 'bmi_sonuc',
title = 'BMI Gruplarina Gore Yuzdesel Dagilim')
fig.update_traces( textinfo = 'percent+label')
fig.show()