Created
April 22, 2021 14:03
-
-
Save jcommelin/c54d4dda4b22db228c3e91ce5d9ae804 to your computer and use it in GitHub Desktop.
This file has been truncated, but you can view the full file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
0.047845 1 eq | |
0.000094 2 false | |
0.000025 3 not | |
0.000015 4 decidable | |
0.000015 5 decidable_rel | |
0.000014 6 decidable_eq | |
0.000014 7 has_mul | |
0.000014 8 has_mul.mul | |
0.000014 9 has_one | |
0.000014 10 has_one.one | |
0.000015 11 nat | |
0.000013 12 list | |
0.000015 13 or | |
0.000013 14 has_lt | |
0.000014 15 has_lt.lt | |
0.000014 16 nat.less_than_or_equal | |
0.000015 17 nat.lt | |
0.000014 18 nat.has_lt | |
0.000017 19 has_add | |
0.000015 20 has_add.add | |
0.000016 21 bit0 | |
0.000017 22 punit | |
0.000015 23 pprod | |
0.000016 24 nat.below | |
0.000015 25 pprod.fst | |
0.000016 26 nat.brec_on | |
0.000017 27 nat.cases_on | |
0.000017 28 id_rhs | |
0.000016 29 nat.add._main | |
0.000016 30 nat.add | |
0.000017 31 nat.has_add | |
0.000015 32 bit1 | |
0.000016 33 nat.has_one | |
0.000019 34 and | |
0.000015 35 is_valid_char | |
0.000017 36 char | |
0.000015 37 string_imp | |
0.000016 38 string | |
0.000015 39 subtype | |
0.000016 40 fin | |
0.000015 41 unsigned_sz | |
0.000016 42 unsigned | |
0.000015 43 name | |
0.000014 44 auto_param | |
0.000016 45 has_zero | |
0.000015 46 has_zero.zero | |
0.000015 47 nat.has_zero | |
0.000016 48 mul_one_class | |
0.000015 49 mul_one_class.one | |
0.000014 50 mul_one_class.to_has_one | |
0.000016 51 string_imp.cases_on | |
0.000015 52 has_append | |
0.000016 53 has_append.append | |
0.000015 54 list.below | |
0.000014 55 list.brec_on | |
0.000017 56 list.cases_on | |
0.000015 57 list.append._main | |
0.000014 58 list.append | |
0.000016 59 list.has_append | |
0.000016 60 string.push._main | |
0.000014 61 string.push | |
0.000016 62 string.str | |
0.000015 63 string.empty | |
0.000014 64 decidable.rec_on | |
0.000016 65 dite | |
0.000015 66 or.decidable | |
0.000015 67 has_le | |
0.000015 68 has_le.le | |
0.000016 69 nat.has_le | |
0.000015 70 nat.le_refl | |
0.000016 71 nat.zero_le | |
0.000014 72 nat.less_than_or_equal.dcases_on | |
0.000016 73 heq | |
0.000016 74 nat.no_confusion_type | |
0.000014 75 nat.no_confusion | |
0.000016 76 nat.not_succ_le_zero | |
0.000015 77 decidable.cases_on | |
0.000014 78 nat.pred._main | |
0.000016 79 nat.pred | |
0.000016 80 nat.less_than_or_equal.rec_on | |
0.000014 81 nat.pred_le_pred | |
0.000016 82 nat.le_of_succ_le_succ | |
0.000015 83 nat.succ_le_succ | |
0.000015 84 nat.decidable_le._match_1 | |
0.000016 85 nat.decidable_le._main | |
0.000015 86 nat.decidable_le | |
0.000016 87 nat.decidable_lt | |
0.000016 88 and.right | |
0.000014 89 and.decidable._proof_1 | |
0.000016 90 and.left | |
0.000015 91 and.decidable._proof_2 | |
0.000015 92 and.decidable | |
0.000016 93 ne | |
0.000015 94 absurd | |
0.000014 95 rfl | |
0.000017 96 eq.subst | |
0.000015 97 trans_rel_left | |
0.000014 98 nat.zero_lt_succ | |
0.000016 99 eq.symm | |
0.000015 100 congr | |
0.000016 101 congr_arg | |
0.000015 102 nat.succ_add | |
0.000016 103 nat.bit0_succ_eq | |
0.000015 104 nat.zero_lt_bit0 | |
0.000016 105 nat.bit0_ne_zero | |
0.000015 106 nat.bit1_ne_zero | |
0.000016 107 char.zero_lt_d800 | |
0.000015 108 char.of_nat._proof_1 | |
0.000016 109 char.of_nat | |
0.000015 110 mul_one_class.mul | |
0.000015 111 mul_one_class.to_has_mul | |
0.000016 112 semigroup | |
0.000015 113 semigroup.mul | |
0.000016 114 semigroup.to_has_mul | |
0.000016 115 has_div | |
0.000014 116 has_div.div | |
0.000016 117 monoid | |
0.000015 118 monoid.one | |
0.000017 119 monoid.mul | |
0.000015 120 monoid.one_mul | |
0.000014 121 monoid.mul_one | |
0.000016 122 monoid.to_mul_one_class | |
0.000015 123 has_inv | |
0.000015 124 has_inv.inv | |
0.000016 125 Exists | |
0.000015 126 div_inv_monoid | |
0.000027 127 div_inv_monoid.inv | |
0.000018 128 div_inv_monoid.to_has_inv | |
0.000017 129 mul_zero_class | |
0.000018 130 mul_zero_class.zero | |
0.000015 131 mul_zero_class.to_has_zero | |
0.000016 132 monoid_with_zero | |
0.000018 133 monoid_with_zero.mul | |
0.000016 134 monoid_with_zero.zero | |
0.000015 135 monoid_with_zero.zero_mul | |
0.000016 136 monoid_with_zero.mul_zero | |
0.000017 137 monoid_with_zero.to_mul_zero_class | |
0.000017 138 mul_zero_class.mul | |
0.000017 139 mul_zero_class.to_has_mul | |
0.000017 140 monoid_with_zero.mul_assoc | |
0.000017 141 monoid_with_zero.one | |
0.000017 142 monoid_with_zero.one_mul | |
0.000017 143 monoid_with_zero.mul_one | |
0.000017 144 monoid_with_zero.npow | |
0.000017 145 monoid_with_zero.npow_zero' | |
0.000017 146 monoid_with_zero.npow_succ' | |
0.000017 147 monoid_with_zero.to_monoid | |
0.000017 148 comm_group_with_zero | |
0.000017 149 group_with_zero | |
0.000016 150 group_with_zero.mul | |
0.000017 151 group_with_zero.mul_assoc | |
0.000017 152 group_with_zero.one | |
0.000017 153 group_with_zero.one_mul | |
0.000017 154 group_with_zero.mul_one | |
0.000017 155 group_with_zero.npow | |
0.000017 156 group_with_zero.npow_zero' | |
0.000017 157 group_with_zero.npow_succ' | |
0.000017 158 group_with_zero.zero | |
0.000017 159 group_with_zero.zero_mul | |
0.000017 160 group_with_zero.mul_zero | |
0.000016 161 group_with_zero.to_monoid_with_zero | |
0.000017 162 comm_group_with_zero.mul | |
0.000017 163 comm_group_with_zero.mul_assoc | |
0.000017 164 comm_group_with_zero.one | |
0.000017 165 comm_group_with_zero.one_mul | |
0.000017 166 comm_group_with_zero.mul_one | |
0.000017 167 comm_group_with_zero.npow | |
0.102028 168 comm_group_with_zero.npow_zero' | |
0.000051 169 comm_group_with_zero.npow_succ' | |
0.000027 170 comm_group_with_zero.zero | |
0.000014 171 comm_group_with_zero.zero_mul | |
0.000014 172 comm_group_with_zero.mul_zero | |
0.000015 173 comm_group_with_zero.inv | |
0.000014 174 comm_group_with_zero.div | |
0.000014 175 comm_group_with_zero.div_eq_mul_inv | |
0.000018 176 comm_group_with_zero.exists_pair_ne | |
0.000017 177 comm_group_with_zero.inv_zero | |
0.000017 178 comm_group_with_zero.mul_inv_cancel | |
0.000017 179 comm_group_with_zero.to_group_with_zero | |
0.000016 180 has_lift_t | |
0.000015 181 has_lift_t.lift | |
0.000018 182 lift_t | |
0.000018 183 coe | |
0.000017 184 units | |
0.000014 185 comm_monoid_with_zero | |
0.000015 186 comm_monoid_with_zero.mul | |
0.000014 187 comm_monoid_with_zero.mul_assoc | |
0.000017 188 comm_monoid_with_zero.one | |
0.000017 189 comm_monoid_with_zero.one_mul | |
0.000016 190 comm_monoid_with_zero.mul_one | |
0.000016 191 comm_monoid_with_zero.npow | |
0.000014 192 comm_monoid_with_zero.npow_zero' | |
0.000017 193 comm_monoid_with_zero.npow_succ' | |
0.000018 194 comm_monoid_with_zero.zero | |
0.000017 195 comm_monoid_with_zero.zero_mul | |
0.000017 196 comm_monoid_with_zero.mul_zero | |
0.000017 197 comm_monoid_with_zero.to_monoid_with_zero | |
0.000016 198 comm_cancel_monoid_with_zero | |
0.000017 199 comm_cancel_monoid_with_zero.mul | |
0.000017 200 comm_cancel_monoid_with_zero.mul_assoc | |
0.000017 201 comm_cancel_monoid_with_zero.one | |
0.000017 202 comm_cancel_monoid_with_zero.one_mul | |
0.000017 203 comm_cancel_monoid_with_zero.mul_one | |
0.000017 204 comm_cancel_monoid_with_zero.npow | |
0.000017 205 comm_cancel_monoid_with_zero.npow_zero' | |
0.000016 206 comm_cancel_monoid_with_zero.npow_succ' | |
0.000018 207 comm_cancel_monoid_with_zero.mul_comm | |
0.000017 208 comm_cancel_monoid_with_zero.zero | |
0.000017 209 comm_cancel_monoid_with_zero.zero_mul | |
0.000017 210 comm_cancel_monoid_with_zero.mul_zero | |
0.000017 211 comm_cancel_monoid_with_zero.to_comm_monoid_with_zero | |
0.000016 212 cancel_monoid_with_zero | |
0.000017 213 cancel_monoid_with_zero.mul | |
0.000017 214 eq.rec_on | |
0.000017 215 eq.mpr._proof_1 | |
0.000016 216 eq.mpr | |
0.000017 217 group_with_zero.inv | |
0.000017 218 group_with_zero.div | |
0.000017 219 group_with_zero.div_eq_mul_inv | |
0.000017 220 group_with_zero.to_div_inv_monoid | |
0.000017 221 id | |
0.000017 222 eq.trans | |
0.000017 223 monoid.mul_assoc | |
0.000017 224 monoid.to_semigroup | |
0.000017 225 semigroup.mul_assoc | |
0.000015 226 mul_assoc | |
0.000017 227 true | |
0.000016 228 group_with_zero.mul_inv_cancel | |
0.000017 229 mul_inv_cancel | |
0.000017 230 iff | |
0.000017 231 iff.mpr | |
0.000017 232 iff.refl | |
0.000017 233 ne.def | |
0.000017 234 propext | |
0.000017 235 iff_false_intro | |
0.000017 236 trivial | |
0.000017 237 iff_true_intro | |
0.000016 238 not_false | |
0.000017 239 not_false_iff | |
0.000017 240 mul_one_class.mul_one | |
0.000017 241 mul_one | |
0.000017 242 eq_self_iff_true | |
0.000025 243 mul_inv_cancel_right' | |
0.000016 244 eq.mp | |
0.000014 245 mul_zero_class.mul_zero | |
0.000014 246 mul_zero | |
0.000018 247 nontrivial | |
0.000018 248 Exists.dcases_on | |
0.000016 249 nontrivial.exists_pair_ne | |
0.000017 250 exists_pair_ne | |
0.000018 251 mul_one_class.one_mul | |
0.000017 252 one_mul | |
0.000017 253 mul_zero_class.zero_mul | |
0.000016 254 zero_mul | |
0.000017 255 zero_ne_one | |
0.000017 256 group_with_zero.exists_pair_ne | |
0.000017 257 group_with_zero.to_nontrivial | |
0.000017 258 inv_ne_zero | |
0.000017 259 inv_mul_cancel | |
0.000017 260 inv_mul_cancel_left' | |
0.000017 261 group_with_zero.cancel_monoid_with_zero._proof_1 | |
0.000016 262 group_with_zero.cancel_monoid_with_zero._proof_2 | |
0.000018 263 group_with_zero.cancel_monoid_with_zero | |
0.000016 264 cancel_monoid_with_zero.mul_assoc | |
0.000017 265 comm_group_with_zero.comm_cancel_monoid_with_zero._proof_1 | |
0.000017 266 cancel_monoid_with_zero.one | |
0.000017 267 cancel_monoid_with_zero.one_mul | |
0.000018 268 comm_group_with_zero.comm_cancel_monoid_with_zero._proof_2 | |
0.000017 269 cancel_monoid_with_zero.mul_one | |
0.000017 270 comm_group_with_zero.comm_cancel_monoid_with_zero._proof_3 | |
0.000017 271 cancel_monoid_with_zero.npow | |
0.000017 272 cancel_monoid_with_zero.npow_zero' | |
0.000017 273 comm_group_with_zero.comm_cancel_monoid_with_zero._proof_4 | |
0.000017 274 cancel_monoid_with_zero.npow_succ' | |
0.000017 275 comm_group_with_zero.comm_cancel_monoid_with_zero._proof_5 | |
0.000017 276 comm_group_with_zero.mul_comm | |
0.000017 277 comm_group_with_zero.to_comm_monoid_with_zero | |
0.000017 278 comm_monoid_with_zero.mul_comm | |
0.000017 279 comm_group_with_zero.comm_cancel_monoid_with_zero._proof_6 | |
0.000017 280 cancel_monoid_with_zero.zero | |
0.000017 281 cancel_monoid_with_zero.zero_mul | |
0.000017 282 comm_group_with_zero.comm_cancel_monoid_with_zero._proof_7 | |
0.254307 283 cancel_monoid_with_zero.mul_zero | |
0.000060 284 comm_group_with_zero.comm_cancel_monoid_with_zero._proof_8 | |
0.000032 285 cancel_monoid_with_zero.mul_left_cancel_of_ne_zero | |
0.000026 286 comm_group_with_zero.comm_cancel_monoid_with_zero._proof_9 | |
0.000025 287 cancel_monoid_with_zero.mul_right_cancel_of_ne_zero | |
0.000019 288 comm_group_with_zero.comm_cancel_monoid_with_zero._proof_10 | |
0.000015 289 comm_group_with_zero.comm_cancel_monoid_with_zero | |
0.000013 290 has_coe_t | |
0.000015 291 has_coe_t.coe | |
0.000014 292 coe_t | |
0.000014 293 coe_to_lift | |
0.000014 294 has_coe | |
0.000019 295 has_coe.coe | |
0.000017 296 coe_b | |
0.000015 297 coe_base | |
0.000016 298 units.val | |
0.000018 299 units.has_coe | |
0.000015 300 div_inv_monoid.mul | |
0.000016 301 div_inv_monoid.mul_assoc | |
0.000018 302 div_inv_monoid.one | |
0.000017 303 div_inv_monoid.one_mul | |
0.000017 304 div_inv_monoid.mul_one | |
0.000017 305 div_inv_monoid.npow | |
0.000017 306 div_inv_monoid.npow_zero' | |
0.000017 307 div_inv_monoid.npow_succ' | |
0.000015 308 div_inv_monoid.to_monoid | |
0.000016 309 group | |
0.000015 310 group.mul | |
0.000015 311 group.mul_assoc | |
0.000016 312 group.one | |
0.000015 313 group.one_mul | |
0.000014 314 group.mul_one | |
0.000016 315 group.npow | |
0.000015 316 group.npow_zero' | |
0.000017 317 group.npow_succ' | |
0.000015 318 group.inv | |
0.000014 319 group.div | |
0.000016 320 group.div_eq_mul_inv | |
0.000015 321 group.to_div_inv_monoid | |
0.000017 322 units.inv | |
0.000015 323 units.val_inv | |
0.000014 324 units.group._proof_1 | |
0.000014 325 units.inv_val | |
0.000017 326 units.group._proof_2 | |
0.000015 327 function.injective | |
0.000016 328 units.cases_on | |
0.000017 329 eq.drec | |
0.000014 330 units.ext | |
0.000016 331 units.group._proof_3 | |
0.000015 332 units.group._proof_4 | |
0.000017 333 units.group._proof_5 | |
0.000015 334 units.group._proof_6 | |
0.000016 335 units.group._proof_7 | |
0.000015 336 npow_rec._main | |
0.000014 337 npow_rec | |
0.000016 338 monoid.npow._default | |
0.000015 339 div_inv_monoid.npow._default | |
0.000017 340 units.group._proof_8 | |
0.000015 341 units.group._proof_9 | |
0.000014 342 units.group._proof_10 | |
0.000025 343 units.group._proof_11 | |
0.000017 344 div_inv_monoid.div._default | |
0.000014 345 units.group._proof_12 | |
0.000014 346 units.group._proof_13 | |
0.000017 347 units.group._proof_14 | |
0.000017 348 units.group._proof_15 | |
0.000016 349 units.group._proof_16 | |
0.000018 350 units.group._proof_17 | |
0.000017 351 units.group._proof_18 | |
0.000017 352 units.group | |
0.000017 353 normalization_monoid | |
0.000017 354 normalization_monoid.norm_unit | |
0.000017 355 comm_group_with_zero.normalization_monoid._proof_1 | |
0.000017 356 comm_group_with_zero.normalization_monoid._proof_2 | |
0.000017 357 units.mk0 | |
0.000017 358 dif_pos | |
0.000017 359 comm_group_with_zero.normalization_monoid._proof_3 | |
0.000018 360 iff.mp | |
0.000017 361 function.injective.eq_iff | |
0.000015 362 units.eq_iff | |
0.000016 363 cancel_monoid_with_zero.to_monoid_with_zero | |
0.000017 364 comm_cancel_monoid_with_zero.mul_left_cancel_of_ne_zero | |
0.000017 365 comm_cancel_monoid_with_zero.mul_right_cancel_of_ne_zero | |
0.000017 366 comm_cancel_monoid_with_zero.to_cancel_monoid_with_zero | |
0.000017 367 iff.elim_right | |
0.000017 368 iff.elim_left | |
0.000017 369 not_iff_not_of_iff | |
0.000016 370 iff.trans | |
0.000018 371 no_zero_divisors | |
0.000017 372 no_zero_divisors.eq_zero_or_eq_zero_of_mul_eq_zero | |
0.000017 373 or.elim | |
0.000017 374 mul_eq_zero_of_left | |
0.000017 375 mul_eq_zero_of_right | |
0.000017 376 mul_eq_zero | |
0.000016 377 decidable.by_contradiction | |
0.000017 378 nonempty | |
0.000017 379 classical.choice | |
0.000017 380 subtype.val | |
0.000016 381 classical.indefinite_description._match_1 | |
0.000018 382 classical.indefinite_description | |
0.000017 383 classical.some | |
0.000016 384 _private.811303905.U | |
0.000015 385 _private.29268479.exU | |
0.000014 386 _private.2710871855.u | |
0.000017 387 _private.3867973571.V | |
0.000015 388 _private.760126093.exV | |
0.000016 389 _private.2053038997.v | |
0.000015 390 subtype.property | |
0.000017 391 classical.some_spec | |
0.000015 392 _private.1247348485.u_def | |
0.000016 393 _private.2871420677.v_def | |
0.000015 394 ne_false_of_self | |
0.000015 395 true_ne_false | |
0.000016 396 _private.1339425711.not_uv_or_p | |
0.000015 397 mt | |
0.000014 398 reflexive | |
0.000016 399 symmetric | |
0.000015 400 transitive | |
0.000016 401 equivalence | |
0.000015 402 setoid | |
0.000015 403 setoid.r | |
0.000016 404 quotient | |
0.000015 405 function.equiv | |
0.000016 406 mk_equivalence | |
0.000015 407 function.equiv.refl | |
0.000015 408 function.equiv.symm | |
0.000016 409 function.equiv.trans | |
0.000015 410 function.equiv.is_equivalence | |
0.000015 411 _private.1627920919.fun_setoid | |
0.000016 412 _private.531824637.extfun | |
0.000015 413 quot.lift_on | |
0.000014 414 _private.1158032381.extfun_app._proof_1 | |
0.000017 415 _private.1158032381.extfun_app | |
0.133474 416 quotient.mk | |
0.000053 417 has_equiv | |
0.000027 418 has_equiv.equiv | |
0.000014 419 setoid_has_equiv | |
0.000014 420 quot.sound | |
0.000015 421 quotient.sound | |
0.000014 422 funext | |
0.000014 423 _private.2277208427.p_implies_uv | |
0.000013 424 classical.em | |
0.000015 425 classical.prop_decidable._proof_1 | |
0.000014 426 classical.prop_decidable | |
0.000018 427 classical.by_contradiction | |
0.000015 428 imp_of_not_imp_not | |
0.000015 429 imp_congr | |
0.000014 430 iff.rfl | |
0.000014 431 eq.to_iff | |
0.000016 432 imp_congr_eq | |
0.000014 433 and.dcases_on | |
0.000017 434 not_or_distrib | |
0.000017 435 push_neg.not_or_eq | |
0.000017 436 push_neg.not_eq | |
0.000015 437 left_ne_zero_of_mul | |
0.000016 438 trans_rel_right | |
0.000017 439 ne.symm | |
0.000018 440 one_ne_zero | |
0.000016 441 ne_zero_of_eq_one | |
0.000017 442 left_ne_zero_of_mul_eq_one | |
0.000015 443 units.mul_inv | |
0.000016 444 units.ne_zero | |
0.000017 445 group_with_zero.no_zero_divisors | |
0.000015 446 or.imp | |
0.000016 447 or_congr | |
0.000015 448 or_self | |
0.000014 449 decidable.false | |
0.000017 450 dif_ctx_congr | |
0.000016 451 dif_neg | |
0.000017 452 right_ne_zero_of_mul | |
0.000015 453 right_ne_zero_of_mul_eq_one | |
0.000015 454 eq_inv_of_mul_left_eq_one | |
0.000016 455 units.inv_mul | |
0.000015 456 units.coe_inv' | |
0.000016 457 units.coe_mk0 | |
0.000015 458 group_with_zero.inv_zero | |
0.000014 459 inv_zero | |
0.000016 460 mul_inv_rev' | |
0.000015 461 comm_semigroup | |
0.000016 462 comm_semigroup.mul | |
0.000015 463 comm_semigroup.mul_assoc | |
0.000014 464 comm_semigroup.to_semigroup | |
0.000016 465 comm_monoid | |
0.000015 466 comm_monoid.mul | |
0.000016 467 comm_monoid.mul_assoc | |
0.000016 468 comm_monoid.mul_comm | |
0.000014 469 comm_monoid.to_comm_semigroup | |
0.000016 470 comm_monoid_with_zero.to_comm_monoid | |
0.000015 471 comm_semigroup.mul_comm | |
0.000014 472 mul_comm | |
0.000016 473 mul_inv' | |
0.000015 474 units.coe_mul | |
0.000016 475 or_true | |
0.000015 476 iff_self | |
0.000016 477 mul_left_cancel' | |
0.000014 478 mul_right_inj' | |
0.000017 479 false.elim | |
0.000015 480 or_false | |
0.000014 481 mul_eq_mul_left_iff | |
0.000016 482 function.involutive | |
0.000015 483 function.left_inverse | |
0.000017 484 function.left_inverse.injective | |
0.000015 485 function.involutive.left_inverse | |
0.000014 486 function.involutive.injective | |
0.000017 487 mul_inv_cancel_left' | |
0.000015 488 inv_inv' | |
0.000016 489 inv_involutive' | |
0.000015 490 inv_injective' | |
0.000014 491 inv_inj' | |
0.000016 492 eq_comm | |
0.000015 493 inv_eq_iff | |
0.000016 494 inv_eq_zero | |
0.000015 495 comm_group_with_zero.normalization_monoid._proof_4 | |
0.000016 496 units.mk0_coe | |
0.000015 497 comm_group_with_zero.normalization_monoid._proof_5 | |
0.000016 498 comm_group_with_zero.normalization_monoid | |
0.000014 499 comm_group_with_zero.coe_norm_unit | |
0.000016 500 add_zero_class | |
0.000036 501 add_zero_class.zero | |
0.000016 502 add_zero_class.to_has_zero | |
0.000015 503 add_zero_class.add | |
0.000014 504 add_zero_class.to_has_add | |
0.000017 505 has_sub | |
0.000015 506 has_sub.sub | |
0.000016 507 add_monoid | |
0.000015 508 add_monoid.zero | |
0.000016 509 add_monoid.add | |
0.000015 510 add_monoid.zero_add | |
0.000014 511 add_monoid.add_zero | |
0.000016 512 add_monoid.to_add_zero_class | |
0.000016 513 has_neg | |
0.000014 514 has_neg.neg | |
0.000016 515 sub_neg_monoid | |
0.000015 516 sub_neg_monoid.add | |
0.000015 517 sub_neg_monoid.add_assoc | |
0.000016 518 sub_neg_monoid.zero | |
0.000015 519 sub_neg_monoid.zero_add | |
0.000016 520 sub_neg_monoid.add_zero | |
0.000015 521 sub_neg_monoid.nsmul | |
0.000014 522 sub_neg_monoid.nsmul_zero' | |
0.000017 523 sub_neg_monoid.nsmul_succ' | |
0.000015 524 sub_neg_monoid.to_add_monoid | |
0.000014 525 sub_neg_monoid.neg | |
0.000016 526 sub_neg_monoid.to_has_neg | |
0.000015 527 add_semigroup | |
0.000016 528 add_semigroup.add | |
0.000015 529 add_semigroup.to_has_add | |
0.000016 530 preorder | |
0.000015 531 preorder.le | |
0.000016 532 preorder.to_has_le | |
0.000015 533 partial_order | |
0.000014 534 partial_order.le | |
0.000017 535 partial_order.lt | |
0.000014 536 partial_order.le_refl | |
0.000016 537 partial_order.le_trans | |
0.000015 538 partial_order.lt_iff_le_not_le | |
0.000016 539 partial_order.to_preorder | |
0.000015 540 add_group | |
0.000015 541 add_group.add | |
0.000014 542 add_group.add_assoc | |
0.000016 543 add_group.zero | |
0.000015 544 add_group.zero_add | |
0.000016 545 add_group.add_zero | |
0.000017 546 add_group.nsmul | |
0.000015 547 add_group.nsmul_zero' | |
0.000016 548 add_group.nsmul_succ' | |
0.000015 549 add_group.neg | |
0.000016 550 add_group.sub | |
0.000015 551 add_group.sub_eq_add_neg | |
0.000016 552 add_group.to_sub_neg_monoid | |
0.000015 553 add_comm_group | |
0.000017 554 add_comm_group.add | |
0.000015 555 add_comm_group.add_assoc | |
0.000016 556 add_comm_group.zero | |
0.000015 557 add_comm_group.zero_add | |
0.000016 558 add_comm_group.add_zero | |
0.000016 559 add_comm_group.nsmul | |
0.000014 560 add_comm_group.nsmul_zero' | |
0.000016 561 add_comm_group.nsmul_succ' | |
0.000015 562 add_comm_group.neg | |
0.179502 563 add_comm_group.sub | |
0.000054 564 add_comm_group.sub_eq_add_neg | |
0.000027 565 add_comm_group.add_left_neg | |
0.000014 566 add_comm_group.to_add_group | |
0.000014 567 ordered_add_comm_group | |
0.000014 568 ordered_add_comm_group.le | |
0.000015 569 ordered_add_comm_group.lt | |
0.000014 570 ordered_add_comm_group.le_refl | |
0.000014 571 ordered_add_comm_group.le_trans | |
0.000015 572 ordered_add_comm_group.lt_iff_le_not_le | |
0.000014 573 ordered_add_comm_group.le_antisymm | |
0.000014 574 ordered_add_comm_group.to_partial_order | |
0.000014 575 semiring | |
0.000014 576 semiring.mul | |
0.000020 577 semiring.mul_assoc | |
0.000017 578 semiring.one | |
0.000018 579 semiring.one_mul | |
0.000016 580 semiring.mul_one | |
0.000018 581 semiring.npow | |
0.000017 582 semiring.npow_zero' | |
0.000017 583 semiring.npow_succ' | |
0.000017 584 semiring.zero | |
0.000018 585 semiring.zero_mul | |
0.000017 586 semiring.mul_zero | |
0.000015 587 semiring.to_monoid_with_zero | |
0.000016 588 ring | |
0.000017 589 ring.add | |
0.000015 590 ring.add_assoc | |
0.000014 591 ring.zero | |
0.000016 592 ring.zero_add | |
0.000015 593 ring.add_zero | |
0.000016 594 ring.nsmul | |
0.000015 595 ring.nsmul_zero' | |
0.000017 596 ring.nsmul_succ' | |
0.000015 597 ring.add_comm | |
0.000014 598 ring.mul | |
0.000016 599 ring.mul_assoc | |
0.000015 600 ring.one | |
0.000016 601 ring.one_mul | |
0.000015 602 ring.mul_one | |
0.000014 603 ring.npow | |
0.000017 604 ring.npow_zero' | |
0.000014 605 ring.npow_succ' | |
0.000016 606 add_left_cancel_semigroup | |
0.000016 607 add_left_cancel_semigroup.add | |
0.000014 608 add_left_cancel_semigroup.add_assoc | |
0.000016 609 add_left_cancel_semigroup.to_add_semigroup | |
0.000015 610 add_left_cancel_semigroup.add_left_cancel | |
0.000015 611 add_left_cancel | |
0.000016 612 add_left_cancel_monoid | |
0.000015 613 add_left_cancel_monoid.add | |
0.000014 614 add_left_cancel_monoid.add_assoc | |
0.000017 615 add_left_cancel_monoid.add_left_cancel | |
0.000015 616 add_left_cancel_monoid.to_add_left_cancel_semigroup | |
0.000014 617 add_cancel_comm_monoid | |
0.000016 618 add_cancel_comm_monoid.add | |
0.000015 619 add_cancel_comm_monoid.add_assoc | |
0.000015 620 add_cancel_comm_monoid.add_left_cancel | |
0.000016 621 add_cancel_comm_monoid.zero | |
0.000015 622 add_cancel_comm_monoid.zero_add | |
0.000014 623 add_cancel_comm_monoid.add_zero | |
0.000016 624 add_cancel_comm_monoid.nsmul | |
0.000015 625 add_cancel_comm_monoid.nsmul_zero' | |
0.000017 626 add_cancel_comm_monoid.nsmul_succ' | |
0.000015 627 add_cancel_comm_monoid.to_add_left_cancel_monoid | |
0.000014 628 add_cancel_monoid | |
0.000016 629 add_cancel_monoid.add | |
0.000015 630 add_monoid.add_assoc | |
0.000016 631 add_monoid.to_add_semigroup | |
0.000015 632 add_semigroup.add_assoc | |
0.000015 633 add_assoc | |
0.000016 634 add_group.add_left_neg | |
0.000015 635 add_left_neg | |
0.000016 636 add_zero_class.zero_add | |
0.000016 637 zero_add | |
0.000016 638 neg_add_cancel_left | |
0.000015 639 add_group.to_cancel_add_monoid._proof_1 | |
0.000014 640 add_zero_class.add_zero | |
0.000014 641 add_zero | |
0.000014 642 left_neg_eq_right_neg | |
0.000014 643 neg_add_self | |
0.000016 644 neg_eq_of_add_eq_zero | |
0.000015 645 neg_neg | |
0.000017 646 add_right_neg | |
0.000014 647 add_neg_cancel_right | |
0.000016 648 add_group.to_cancel_add_monoid._proof_2 | |
0.000015 649 add_group.to_cancel_add_monoid | |
0.000016 650 add_cancel_monoid.add_assoc | |
0.000015 651 add_cancel_monoid.add_left_cancel | |
0.000017 652 add_comm_group.to_cancel_add_comm_monoid._proof_1 | |
0.000015 653 add_comm_group.add_comm | |
0.000016 654 add_comm_group.to_cancel_add_comm_monoid | |
0.000014 655 ring.neg | |
0.000016 656 ring.sub | |
0.000015 657 ring.sub_eq_add_neg | |
0.000016 658 ring.add_left_neg | |
0.000015 659 ring.to_add_comm_group | |
0.000016 660 distrib | |
0.000016 661 distrib.mul | |
0.000014 662 distrib.to_has_mul | |
0.000016 663 ring.left_distrib | |
0.000015 664 ring.right_distrib | |
0.000016 665 ring.to_distrib | |
0.000014 666 distrib.add | |
0.000017 667 distrib.to_has_add | |
0.000014 668 distrib.right_distrib | |
0.000016 669 right_distrib | |
0.000015 670 add_mul | |
0.000018 671 ring.to_semiring._proof_1 | |
0.000017 672 distrib.left_distrib | |
0.000015 673 left_distrib | |
0.000016 674 mul_add | |
0.000017 675 ring.to_semiring._proof_2 | |
0.000015 676 ring.to_semiring | |
0.000016 677 ring.to_monoid | |
0.000015 678 preorder.lt | |
0.000016 679 preorder.to_has_lt | |
0.000015 680 comm_ring | |
0.000016 681 comm_ring.add | |
0.000015 682 comm_ring.add_assoc | |
0.000016 683 comm_ring.zero | |
0.000015 684 comm_ring.zero_add | |
0.000014 685 comm_ring.add_zero | |
0.000017 686 comm_ring.nsmul | |
0.000015 687 comm_ring.nsmul_zero' | |
0.000014 688 comm_ring.nsmul_succ' | |
0.000016 689 comm_ring.neg | |
0.000015 690 comm_ring.sub | |
0.000016 691 comm_ring.sub_eq_add_neg | |
0.000015 692 comm_ring.add_left_neg | |
0.000014 693 comm_ring.add_comm | |
0.000017 694 comm_ring.mul | |
0.000015 695 comm_ring.mul_assoc | |
0.000014 696 comm_ring.one | |
0.000016 697 comm_ring.one_mul | |
0.653286 698 comm_ring.mul_one | |
0.000072 699 comm_ring.npow | |
0.000024 700 comm_ring.npow_zero' | |
0.000015 701 comm_ring.npow_succ' | |
0.000049 702 comm_ring.left_distrib | |
0.000017 703 comm_ring.right_distrib | |
0.000014 704 comm_ring.to_ring | |
0.000014 705 linear_ordered_field | |
0.000014 706 directed_order | |
0.000014 707 directed_order.to_preorder | |
0.000014 708 linear_order | |
0.000017 709 has_inf | |
0.000018 710 has_inf.inf | |
0.000014 711 semilattice_inf | |
0.000018 712 semilattice_inf.le | |
0.000017 713 semilattice_inf.lt | |
0.000017 714 semilattice_inf.le_refl | |
0.000014 715 semilattice_inf.le_trans | |
0.000017 716 semilattice_inf.lt_iff_le_not_le | |
0.000017 717 semilattice_inf.le_antisymm | |
0.000017 718 semilattice_inf.to_partial_order | |
0.000017 719 has_sup | |
0.000014 720 has_sup.sup | |
0.000016 721 lattice | |
0.000018 722 lattice.inf | |
0.000016 723 lattice.le | |
0.000017 724 lattice.lt | |
0.000015 725 lattice.le_refl | |
0.000016 726 lattice.le_trans | |
0.000017 727 lattice.lt_iff_le_not_le | |
0.000016 728 lattice.le_antisymm | |
0.000017 729 lattice.inf_le_left | |
0.000015 730 lattice.inf_le_right | |
0.000014 731 lattice.le_inf | |
0.000016 732 lattice.to_semilattice_inf | |
0.000015 733 ite | |
0.000016 734 linear_order.le | |
0.000015 735 linear_order.lt | |
0.000016 736 linear_order.le_refl | |
0.000015 737 linear_order.le_trans | |
0.000015 738 linear_order.lt_iff_le_not_le | |
0.000017 739 linear_order.le_antisymm | |
0.000015 740 linear_order.to_partial_order | |
0.000016 741 linear_order.decidable_le | |
0.000015 742 has_le.le.decidable | |
0.000016 743 max | |
0.000015 744 max.equations._eqn_1 | |
0.000015 745 decidable.true | |
0.000015 746 if_ctx_congr | |
0.000016 747 if_congr | |
0.000017 748 if_pos | |
0.000015 749 preorder.le_refl | |
0.000016 750 le_refl | |
0.000014 751 if_neg | |
0.000017 752 or.resolve_left | |
0.000014 753 linear_order.le_total | |
0.000014 754 le_total | |
0.000014 755 le_of_not_le | |
0.000017 756 le_max_left | |
0.000015 757 le_max_right | |
0.000016 758 max_le | |
0.000015 759 lattice_of_linear_order._proof_1 | |
0.000016 760 min | |
0.000015 761 min.equations._eqn_1 | |
0.000016 762 min_le_left | |
0.000015 763 min_le_right | |
0.000016 764 le_min | |
0.000015 765 lattice_of_linear_order._proof_2 | |
0.000016 766 lattice_of_linear_order | |
0.000015 767 or.cases_on | |
0.000016 768 linear_order.to_directed_order._proof_1 | |
0.000014 769 linear_order.to_directed_order | |
0.000016 770 linear_ordered_ring | |
0.000017 771 linear_ordered_ring.le | |
0.000015 772 linear_ordered_ring.lt | |
0.000016 773 linear_ordered_ring.le_refl | |
0.000015 774 linear_ordered_ring.le_trans | |
0.000016 775 linear_ordered_ring.lt_iff_le_not_le | |
0.000015 776 linear_ordered_ring.le_antisymm | |
0.000018 777 linear_ordered_ring.le_total | |
0.000015 778 linear_ordered_ring.decidable_le | |
0.000014 779 linear_ordered_ring.decidable_eq | |
0.000017 780 linear_ordered_ring.decidable_lt | |
0.000015 781 linear_ordered_ring.to_linear_order | |
0.000014 782 linear_ordered_comm_ring | |
0.000016 783 linear_ordered_comm_ring.add | |
0.000015 784 linear_ordered_comm_ring.add_assoc | |
0.000016 785 linear_ordered_comm_ring.zero | |
0.000015 786 linear_ordered_comm_ring.zero_add | |
0.000017 787 linear_ordered_comm_ring.add_zero | |
0.000015 788 linear_ordered_comm_ring.nsmul | |
0.000014 789 linear_ordered_comm_ring.nsmul_zero' | |
0.000016 790 linear_ordered_comm_ring.nsmul_succ' | |
0.000015 791 linear_ordered_comm_ring.neg | |
0.000016 792 linear_ordered_comm_ring.sub | |
0.000015 793 linear_ordered_comm_ring.sub_eq_add_neg | |
0.000015 794 linear_ordered_comm_ring.add_left_neg | |
0.000016 795 linear_ordered_comm_ring.add_comm | |
0.000015 796 linear_ordered_comm_ring.mul | |
0.000015 797 linear_ordered_comm_ring.mul_assoc | |
0.000015 798 linear_ordered_comm_ring.one | |
0.000015 799 linear_ordered_comm_ring.one_mul | |
0.000016 800 linear_ordered_comm_ring.mul_one | |
0.000016 801 linear_ordered_comm_ring.npow | |
0.000014 802 linear_ordered_comm_ring.npow_zero' | |
0.000016 803 linear_ordered_comm_ring.npow_succ' | |
0.000015 804 linear_ordered_comm_ring.left_distrib | |
0.000016 805 linear_ordered_comm_ring.right_distrib | |
0.000015 806 linear_ordered_comm_ring.le | |
0.000014 807 linear_ordered_comm_ring.lt | |
0.000017 808 linear_ordered_comm_ring.le_refl | |
0.000014 809 linear_ordered_comm_ring.le_trans | |
0.000017 810 linear_ordered_comm_ring.lt_iff_le_not_le | |
0.000015 811 linear_ordered_comm_ring.le_antisymm | |
0.000014 812 linear_ordered_comm_ring.add_le_add_left | |
0.000016 813 linear_ordered_comm_ring.zero_le_one | |
0.000016 814 linear_ordered_comm_ring.mul_pos | |
0.000014 815 linear_ordered_comm_ring.le_total | |
0.000016 816 linear_ordered_comm_ring.decidable_le | |
0.000015 817 linear_ordered_comm_ring.decidable_eq | |
0.000016 818 linear_ordered_comm_ring.decidable_lt | |
0.000015 819 linear_ordered_comm_ring.exists_pair_ne | |
0.000016 820 linear_ordered_comm_ring.to_linear_ordered_ring | |
0.947718 821 linear_ordered_field.add | |
0.000064 822 linear_ordered_field.add_assoc | |
0.000024 823 linear_ordered_field.zero | |
0.000015 824 linear_ordered_field.zero_add | |
0.000014 825 linear_ordered_field.add_zero | |
0.000014 826 linear_ordered_field.nsmul | |
0.000016 827 linear_ordered_field.nsmul_zero' | |
0.000014 828 linear_ordered_field.nsmul_succ' | |
0.000014 829 linear_ordered_field.neg | |
0.000014 830 linear_ordered_field.sub | |
0.000014 831 linear_ordered_field.sub_eq_add_neg | |
0.000014 832 linear_ordered_field.add_left_neg | |
0.000018 833 linear_ordered_field.add_comm | |
0.000017 834 linear_ordered_field.mul | |
0.000018 835 linear_ordered_field.mul_assoc | |
0.000015 836 linear_ordered_field.one | |
0.000017 837 linear_ordered_field.one_mul | |
0.000017 838 linear_ordered_field.mul_one | |
0.000015 839 linear_ordered_field.npow | |
0.000014 840 linear_ordered_field.npow_zero' | |
0.000014 841 linear_ordered_field.npow_succ' | |
0.000018 842 linear_ordered_field.left_distrib | |
0.000017 843 linear_ordered_field.right_distrib | |
0.000017 844 linear_ordered_field.le | |
0.000017 845 linear_ordered_field.lt | |
0.000017 846 linear_ordered_field.le_refl | |
0.000015 847 linear_ordered_field.le_trans | |
0.000016 848 linear_ordered_field.lt_iff_le_not_le | |
0.000017 849 linear_ordered_field.le_antisymm | |
0.000017 850 linear_ordered_field.add_le_add_left | |
0.000017 851 linear_ordered_field.zero_le_one | |
0.000015 852 linear_ordered_field.mul_pos | |
0.000017 853 linear_ordered_field.le_total | |
0.000017 854 linear_ordered_field.decidable_le | |
0.000016 855 linear_ordered_field.decidable_eq | |
0.000017 856 linear_ordered_field.decidable_lt | |
0.000017 857 linear_ordered_field.exists_pair_ne | |
0.000017 858 linear_ordered_field.mul_comm | |
0.000017 859 linear_ordered_field.to_linear_ordered_comm_ring | |
0.000015 860 division_ring | |
0.000016 861 division_ring.add | |
0.000016 862 division_ring.add_assoc | |
0.000016 863 division_ring.zero | |
0.000015 864 division_ring.zero_add | |
0.000016 865 division_ring.add_zero | |
0.000015 866 division_ring.nsmul | |
0.000016 867 division_ring.nsmul_zero' | |
0.000017 868 division_ring.nsmul_succ' | |
0.000015 869 division_ring.neg | |
0.000016 870 division_ring.sub | |
0.000017 871 division_ring.sub_eq_add_neg | |
0.000015 872 division_ring.add_left_neg | |
0.000016 873 division_ring.add_comm | |
0.000016 874 division_ring.mul | |
0.000014 875 division_ring.mul_assoc | |
0.000016 876 division_ring.one | |
0.000015 877 division_ring.one_mul | |
0.000016 878 division_ring.mul_one | |
0.000015 879 division_ring.npow | |
0.000015 880 division_ring.npow_zero' | |
0.000016 881 division_ring.npow_succ' | |
0.000015 882 division_ring.left_distrib | |
0.000015 883 division_ring.right_distrib | |
0.000016 884 division_ring.to_ring | |
0.000015 885 field | |
0.000014 886 field.add | |
0.000016 887 field.add_assoc | |
0.000015 888 field.to_division_ring._proof_1 | |
0.000016 889 field.zero | |
0.000015 890 field.zero_add | |
0.000016 891 field.to_division_ring._proof_2 | |
0.000015 892 field.add_zero | |
0.000017 893 field.to_division_ring._proof_3 | |
0.000015 894 field.nsmul | |
0.000014 895 field.nsmul_zero' | |
0.000016 896 field.to_division_ring._proof_4 | |
0.000015 897 field.nsmul_succ' | |
0.000015 898 field.to_division_ring._proof_5 | |
0.000016 899 field.neg | |
0.000015 900 field.sub | |
0.000016 901 field.sub_eq_add_neg | |
0.000016 902 field.to_division_ring._proof_6 | |
0.000014 903 field.add_left_neg | |
0.000016 904 field.to_division_ring._proof_7 | |
0.000015 905 field.add_comm | |
0.000015 906 field.to_division_ring._proof_8 | |
0.000016 907 field.mul | |
0.000015 908 field.mul_assoc | |
0.000015 909 field.to_division_ring._proof_9 | |
0.000016 910 field.one | |
0.000015 911 field.one_mul | |
0.000016 912 field.to_division_ring._proof_10 | |
0.000015 913 field.mul_one | |
0.000016 914 field.to_division_ring._proof_11 | |
0.000015 915 field.npow | |
0.000017 916 field.npow_zero' | |
0.000015 917 field.to_division_ring._proof_12 | |
0.000016 918 field.npow_succ' | |
0.000015 919 field.to_division_ring._proof_13 | |
0.000016 920 field.left_distrib | |
0.000017 921 field.to_division_ring._proof_14 | |
0.000016 922 field.right_distrib | |
0.000014 923 field.to_division_ring._proof_15 | |
0.000017 924 field.inv | |
0.000015 925 field.div | |
0.000015 926 field.div_eq_mul_inv | |
0.000016 927 field.to_division_ring._proof_16 | |
0.000015 928 field.exists_pair_ne | |
0.000016 929 field.to_division_ring._proof_17 | |
0.000015 930 field.mul_comm | |
0.000015 931 field.mul_inv_cancel | |
0.000016 932 field.to_division_ring._proof_18 | |
0.000015 933 field.inv_zero | |
0.000016 934 field.to_division_ring._proof_19 | |
0.000015 935 field.to_division_ring | |
0.000014 936 linear_ordered_field.inv | |
0.000015 937 linear_ordered_field.div | |
0.000016 938 linear_ordered_field.div_eq_mul_inv | |
0.000015 939 linear_ordered_field.mul_inv_cancel | |
0.000017 940 linear_ordered_field.inv_zero | |
0.177392 941 linear_ordered_field.to_field | |
0.000067 942 is_absolute_value | |
0.000023 943 gt | |
0.000015 944 ge | |
0.000014 945 sub_neg_monoid.sub | |
0.000014 946 sub_neg_monoid.to_has_sub | |
0.000014 947 is_cau_seq | |
0.000014 948 cau_seq | |
0.000014 949 has_coe_to_fun | |
0.000014 950 has_coe_to_fun.F | |
0.000014 951 has_coe_to_fun.coe | |
0.000014 952 coe_fn | |
0.000014 953 cau_seq.has_coe_to_fun | |
0.000014 954 nat.le_trans | |
0.000014 955 nat.le_succ | |
0.000014 956 nat.le_of_succ_le | |
0.000018 957 nat.le_of_lt | |
0.000017 958 nat.not_succ_le_self | |
0.000017 959 nat.lt_irrefl | |
0.000017 960 nat.lt_of_le_of_lt | |
0.000017 961 or.resolve_right | |
0.000017 962 or.swap | |
0.000017 963 nat.less_than_or_equal.cases_on | |
0.000017 964 nat.eq_or_lt_of_le | |
0.000017 965 nat.lt_of_le_and_ne | |
0.000017 966 nat.lt_iff_le_not_le | |
0.000015 967 nat.le_antisymm | |
0.000014 968 or.imp_left | |
0.000016 969 or.dcases_on | |
0.000015 970 nat.le_succ_of_le | |
0.000017 971 nat.lt.base | |
0.000015 972 nat.lt_succ_self | |
0.000014 973 nat.lt_or_ge | |
0.000016 974 nat.le_total | |
0.000016 975 nat.decidable_eq._match_1 | |
0.000014 976 nat.decidable_eq._main | |
0.000016 977 nat.decidable_eq | |
0.000015 978 nat.linear_order | |
0.000014 979 cau_seq.has_add._match_1 | |
0.000016 980 cau_seq.has_add._match_2 | |
0.000015 981 le_rfl | |
0.000015 982 exists_ge_of_linear | |
0.000016 983 preorder.le_trans | |
0.000014 984 le_trans | |
0.000017 985 exists_forall_ge_and | |
0.000015 986 exists.elim | |
0.000014 987 exists_imp_exists | |
0.000016 988 Exists.imp | |
0.000015 989 div_inv_monoid.div | |
0.000017 990 div_inv_monoid.to_has_div | |
0.000015 991 field.to_div_inv_monoid | |
0.000016 992 division_ring.inv | |
0.000015 993 division_ring.div | |
0.000016 994 division_ring.div_eq_mul_inv | |
0.000015 995 division_ring.to_div_inv_monoid | |
0.000017 996 div_inv_monoid.div_eq_mul_inv | |
0.000014 997 div_eq_mul_inv | |
0.000016 998 div_add_div_same | |
0.000015 999 semiring.add | |
0.000017 1000 semiring.left_distrib | |
0.000015 1001 semiring.right_distrib | |
0.000016 1002 semiring.to_distrib | |
0.000019 1003 two_mul | |
0.000015 1004 infer_instance | |
0.000017 1005 division_ring.to_group_with_zero._proof_1 | |
0.000019 1006 division_ring.to_group_with_zero._proof_2 | |
0.000015 1007 division_ring.exists_pair_ne | |
0.000016 1008 division_ring.inv_zero | |
0.000015 1009 division_ring.mul_inv_cancel | |
0.000016 1010 division_ring.to_group_with_zero | |
0.000016 1011 field.to_comm_group_with_zero._proof_1 | |
0.000014 1012 field.to_comm_group_with_zero._proof_2 | |
0.000016 1013 field.to_comm_group_with_zero._proof_3 | |
0.000015 1014 field.to_comm_group_with_zero._proof_4 | |
0.000017 1015 field.to_comm_group_with_zero._proof_5 | |
0.000015 1016 field.to_comm_group_with_zero._proof_6 | |
0.000014 1017 field.to_comm_group_with_zero._proof_7 | |
0.000016 1018 field.to_comm_group_with_zero._proof_8 | |
0.000015 1019 field.to_comm_group_with_zero._proof_9 | |
0.000016 1020 field.to_comm_group_with_zero._proof_10 | |
0.000015 1021 field.to_comm_group_with_zero._proof_11 | |
0.000016 1022 field.to_comm_group_with_zero | |
0.000015 1023 add_right_cancel_monoid | |
0.000016 1024 add_right_cancel_monoid.add | |
0.000015 1025 add_right_cancel_monoid.add_assoc | |
0.000016 1026 add_right_cancel_monoid.zero | |
0.000015 1027 add_right_cancel_monoid.zero_add | |
0.000016 1028 add_right_cancel_monoid.add_zero | |
0.000015 1029 add_right_cancel_monoid.nsmul | |
0.000017 1030 add_right_cancel_monoid.nsmul_zero' | |
0.000014 1031 add_right_cancel_monoid.nsmul_succ' | |
0.000016 1032 add_right_cancel_monoid.to_add_monoid | |
0.000017 1033 add_cancel_monoid.add_right_cancel | |
0.000015 1034 add_cancel_monoid.zero | |
0.000016 1035 add_cancel_monoid.zero_add | |
0.000015 1036 add_cancel_monoid.add_zero | |
0.000015 1037 add_cancel_monoid.nsmul | |
0.000017 1038 add_cancel_monoid.nsmul_zero' | |
0.000015 1039 add_cancel_monoid.nsmul_succ' | |
0.000016 1040 add_cancel_monoid.to_add_right_cancel_monoid | |
0.000015 1041 add_comm_semigroup | |
0.000016 1042 add_comm_semigroup.add | |
0.000015 1043 add_comm_semigroup.add_assoc | |
0.000016 1044 add_comm_semigroup.to_add_semigroup | |
0.000015 1045 add_comm_monoid | |
0.000016 1046 add_comm_monoid.add | |
0.000015 1047 add_comm_monoid.add_assoc | |
0.000017 1048 add_comm_monoid.add_comm | |
0.000014 1049 add_comm_monoid.to_add_comm_semigroup | |
0.000015 1050 add_cancel_comm_monoid.add_comm | |
0.000016 1051 add_cancel_comm_monoid.to_add_comm_monoid | |
0.000015 1052 add_comm_semigroup.add_comm | |
0.000016 1053 add_comm | |
0.000014 1054 add_cancel_comm_monoid.to_cancel_add_monoid._proof_1 | |
0.000017 1055 add_cancel_comm_monoid.to_cancel_add_monoid | |
0.000014 1056 ordered_cancel_add_comm_monoid | |
0.000017 1057 ordered_cancel_add_comm_monoid.le | |
0.000015 1058 ordered_cancel_add_comm_monoid.lt | |
0.000016 1059 ordered_cancel_add_comm_monoid.le_refl | |
0.000017 1060 ordered_cancel_add_comm_monoid.le_trans | |
0.000015 1061 ordered_cancel_add_comm_monoid.lt_iff_le_not_le | |
0.454092 1062 ordered_cancel_add_comm_monoid.le_antisymm | |
0.000060 1063 ordered_cancel_add_comm_monoid.to_partial_order | |
0.000024 1064 ordered_semiring | |
0.000014 1065 ordered_semiring.add | |
0.000015 1066 ordered_semiring.add_assoc | |
0.000014 1067 ordered_semiring.zero | |
0.000014 1068 ordered_semiring.zero_add | |
0.000014 1069 ordered_semiring.add_zero | |
0.000014 1070 ordered_semiring.nsmul | |
0.000015 1071 ordered_semiring.nsmul_zero' | |
0.000014 1072 ordered_semiring.nsmul_succ' | |
0.000014 1073 ordered_semiring.add_comm | |
0.000014 1074 ordered_semiring.mul | |
0.000014 1075 ordered_semiring.mul_assoc | |
0.000019 1076 ordered_semiring.one | |
0.000017 1077 ordered_semiring.one_mul | |
0.000017 1078 ordered_semiring.mul_one | |
0.000016 1079 ordered_semiring.npow | |
0.000015 1080 ordered_semiring.npow_zero' | |
0.000016 1081 ordered_semiring.npow_succ' | |
0.000017 1082 ordered_semiring.zero_mul | |
0.000015 1083 ordered_semiring.mul_zero | |
0.000017 1084 ordered_semiring.left_distrib | |
0.000018 1085 ordered_semiring.right_distrib | |
0.000017 1086 ordered_semiring.to_semiring | |
0.000017 1087 ordered_ring | |
0.000019 1088 ordered_ring.add | |
0.000014 1089 ordered_ring.add_assoc | |
0.000016 1090 ordered_ring.zero | |
0.000016 1091 ordered_ring.zero_add | |
0.000015 1092 ordered_ring.add_zero | |
0.000015 1093 ordered_ring.nsmul | |
0.000016 1094 ordered_ring.nsmul_zero' | |
0.000015 1095 ordered_ring.nsmul_succ' | |
0.000016 1096 ordered_ring.add_comm | |
0.000015 1097 ordered_ring.mul | |
0.000014 1098 ordered_ring.mul_assoc | |
0.000018 1099 ordered_ring.one | |
0.000014 1100 ordered_ring.one_mul | |
0.000016 1101 ordered_ring.mul_one | |
0.000015 1102 ordered_ring.npow | |
0.000016 1103 ordered_ring.npow_zero' | |
0.000015 1104 ordered_ring.npow_succ' | |
0.000016 1105 ordered_ring.neg | |
0.000015 1106 ordered_ring.sub | |
0.000015 1107 ordered_ring.sub_eq_add_neg | |
0.000016 1108 ordered_ring.add_left_neg | |
0.000015 1109 ordered_ring.left_distrib | |
0.000014 1110 ordered_ring.right_distrib | |
0.000016 1111 ordered_ring.to_ring | |
0.000016 1112 ordered_ring.to_ordered_semiring._proof_1 | |
0.000014 1113 ordered_ring.to_ordered_semiring._proof_2 | |
0.000016 1114 ordered_cancel_add_comm_monoid.add | |
0.000015 1115 ordered_cancel_add_comm_monoid.add_assoc | |
0.000015 1116 ordered_cancel_add_comm_monoid.add_left_cancel | |
0.000016 1117 ordered_cancel_add_comm_monoid.zero | |
0.000015 1118 ordered_cancel_add_comm_monoid.zero_add | |
0.000016 1119 ordered_cancel_add_comm_monoid.add_zero | |
0.000015 1120 ordered_cancel_add_comm_monoid.nsmul | |
0.000016 1121 ordered_cancel_add_comm_monoid.nsmul_zero' | |
0.000015 1122 ordered_cancel_add_comm_monoid.nsmul_succ' | |
0.000016 1123 ordered_cancel_add_comm_monoid.add_comm | |
0.000015 1124 ordered_cancel_add_comm_monoid.to_add_cancel_comm_monoid | |
0.000014 1125 ordered_add_comm_group.add | |
0.000016 1126 ordered_add_comm_group.add_assoc | |
0.000017 1127 ordered_add_comm_group.zero | |
0.000015 1128 ordered_add_comm_group.zero_add | |
0.000016 1129 ordered_add_comm_group.add_zero | |
0.000015 1130 ordered_add_comm_group.nsmul | |
0.000016 1131 ordered_add_comm_group.nsmul_zero' | |
0.000015 1132 ordered_add_comm_group.nsmul_succ' | |
0.000016 1133 ordered_add_comm_group.neg | |
0.000015 1134 ordered_add_comm_group.sub | |
0.000016 1135 ordered_add_comm_group.sub_eq_add_neg | |
0.000015 1136 ordered_add_comm_group.add_left_neg | |
0.000015 1137 ordered_add_comm_group.add_comm | |
0.000016 1138 ordered_add_comm_group.to_add_comm_group | |
0.000015 1139 ordered_add_comm_group.to_ordered_cancel_add_comm_monoid._proof_1 | |
0.000016 1140 ordered_add_comm_group.add_le_add_left | |
0.000015 1141 ordered_add_comm_group.le_of_add_le_add_left | |
0.000015 1142 ordered_add_comm_group.to_ordered_cancel_add_comm_monoid | |
0.000016 1143 ordered_ring.le | |
0.000015 1144 ordered_ring.lt | |
0.000014 1145 ordered_ring.le_refl | |
0.000017 1146 ordered_ring.le_trans | |
0.000014 1147 ordered_ring.lt_iff_le_not_le | |
0.000017 1148 ordered_ring.le_antisymm | |
0.000014 1149 ordered_ring.add_le_add_left | |
0.000016 1150 ordered_ring.to_ordered_add_comm_group | |
0.000016 1151 ordered_ring.to_ordered_semiring._proof_3 | |
0.000016 1152 ordered_cancel_add_comm_monoid.le_of_add_le_add_left | |
0.000015 1153 le_of_add_le_add_left | |
0.000016 1154 ordered_ring.to_ordered_semiring._proof_4 | |
0.000015 1155 ordered_ring.zero_le_one | |
0.000016 1156 sub_neg_monoid.sub_eq_add_neg | |
0.000015 1157 sub_eq_add_neg | |
0.000014 1158 sub_self | |
0.000016 1159 add_comm_monoid.zero | |
0.000015 1160 add_comm_monoid.zero_add | |
0.000017 1161 add_comm_monoid.add_zero | |
0.000015 1162 add_comm_monoid.nsmul | |
0.000014 1163 add_comm_monoid.nsmul_zero' | |
0.000016 1164 add_comm_monoid.nsmul_succ' | |
0.000016 1165 add_comm_monoid.to_add_monoid | |
0.000014 1166 ordered_add_comm_monoid | |
0.000016 1167 ordered_add_comm_monoid.le | |
0.000015 1168 ordered_add_comm_monoid.lt | |
0.998253 1169 ordered_add_comm_monoid.le_refl | |
0.000061 1170 ordered_add_comm_monoid.le_trans | |
0.000025 1171 ordered_add_comm_monoid.lt_iff_le_not_le | |
0.000014 1172 ordered_add_comm_monoid.le_antisymm | |
0.000014 1173 ordered_add_comm_monoid.to_partial_order | |
0.000014 1174 ordered_add_comm_monoid.add | |
0.000014 1175 ordered_add_comm_monoid.add_assoc | |
0.000014 1176 ordered_add_comm_monoid.zero | |
0.000015 1177 ordered_add_comm_monoid.zero_add | |
0.000014 1178 ordered_add_comm_monoid.add_zero | |
0.000014 1179 ordered_add_comm_monoid.nsmul | |
0.000014 1180 ordered_add_comm_monoid.nsmul_zero' | |
0.000013 1181 ordered_add_comm_monoid.nsmul_succ' | |
0.000015 1182 ordered_add_comm_monoid.add_comm | |
0.000014 1183 ordered_add_comm_monoid.to_add_comm_monoid | |
0.000017 1184 ordered_add_comm_monoid.lt_of_add_lt_add_left | |
0.000017 1185 lt_of_add_lt_add_left | |
0.000018 1186 ordered_cancel_add_comm_monoid.add_le_add_left | |
0.000015 1187 preorder.lt_iff_le_not_le | |
0.000017 1188 lt_iff_le_not_le | |
0.000017 1189 lt_of_le_not_le | |
0.000017 1190 le_not_le_of_lt | |
0.000017 1191 le_of_lt | |
0.000017 1192 has_lt.lt.le | |
0.000015 1193 not_le_of_gt | |
0.000015 1194 ordered_cancel_add_comm_monoid.to_ordered_add_comm_monoid._proof_1 | |
0.000015 1195 ordered_cancel_add_comm_monoid.to_ordered_add_comm_monoid | |
0.000018 1196 ordered_add_comm_monoid.add_le_add_left | |
0.000017 1197 add_le_add_left | |
0.000018 1198 add_lt_add_left | |
0.000018 1199 add_lt_add_iff_left | |
0.000015 1200 neg_lt_neg_iff | |
0.000017 1201 sub_lt_sub_iff_left | |
0.000017 1202 sub_pos | |
0.000016 1203 neg_mul_eq_mul_neg | |
0.000015 1204 mul_sub_left_distrib | |
0.000017 1205 mul_sub | |
0.000017 1206 ordered_ring.mul_pos | |
0.000015 1207 ordered_ring.mul_lt_mul_of_pos_left | |
0.000015 1208 neg_mul_eq_neg_mul | |
0.000016 1209 mul_sub_right_distrib | |
0.000015 1210 sub_mul | |
0.000014 1211 ordered_ring.mul_lt_mul_of_pos_right | |
0.000014 1212 ordered_ring.to_ordered_semiring | |
0.000016 1213 linear_ordered_ring.add | |
0.000015 1214 linear_ordered_ring.add_assoc | |
0.000016 1215 linear_ordered_ring.zero | |
0.000015 1216 linear_ordered_ring.zero_add | |
0.000016 1217 linear_ordered_ring.add_zero | |
0.000015 1218 linear_ordered_ring.nsmul | |
0.000014 1219 linear_ordered_ring.nsmul_zero' | |
0.000016 1220 linear_ordered_ring.nsmul_succ' | |
0.000015 1221 linear_ordered_ring.neg | |
0.000015 1222 linear_ordered_ring.sub | |
0.000016 1223 linear_ordered_ring.sub_eq_add_neg | |
0.000015 1224 linear_ordered_ring.add_left_neg | |
0.000014 1225 linear_ordered_ring.add_comm | |
0.000016 1226 linear_ordered_ring.mul | |
0.000015 1227 linear_ordered_ring.mul_assoc | |
0.000016 1228 linear_ordered_ring.one | |
0.000015 1229 linear_ordered_ring.one_mul | |
0.000015 1230 linear_ordered_ring.mul_one | |
0.000016 1231 linear_ordered_ring.npow | |
0.000015 1232 linear_ordered_ring.npow_zero' | |
0.000014 1233 linear_ordered_ring.npow_succ' | |
0.000016 1234 linear_ordered_ring.left_distrib | |
0.000016 1235 linear_ordered_ring.right_distrib | |
0.000014 1236 linear_ordered_ring.add_le_add_left | |
0.000016 1237 linear_ordered_ring.zero_le_one | |
0.000015 1238 linear_ordered_ring.mul_pos | |
0.000016 1239 linear_ordered_ring.to_ordered_ring | |
0.000015 1240 decidable.by_cases | |
0.000016 1241 classical.by_cases | |
0.000015 1242 div_zero | |
0.000016 1243 mul_div_cancel | |
0.000016 1244 mul_div_cancel_of_imp | |
0.000014 1245 mul_div_cancel_left_of_imp | |
0.000016 1246 mul_div_cancel_left | |
0.000015 1247 lt_irrefl | |
0.000016 1248 ne_of_lt | |
0.000015 1249 ordered_semiring.add_left_cancel | |
0.000016 1250 ordered_semiring.le | |
0.000015 1251 ordered_semiring.lt | |
0.000017 1252 ordered_semiring.le_refl | |
0.000015 1253 ordered_semiring.le_trans | |
0.000014 1254 ordered_semiring.lt_iff_le_not_le | |
0.000016 1255 ordered_semiring.le_antisymm | |
0.000016 1256 ordered_semiring.add_le_add_left | |
0.000014 1257 ordered_semiring.le_of_add_le_add_left | |
0.000016 1258 ordered_semiring.to_ordered_cancel_add_comm_monoid | |
0.000016 1259 lt_of_lt_of_le | |
0.000014 1260 le_add_of_nonneg_right | |
0.000016 1261 add_pos_of_pos_of_nonneg | |
0.000015 1262 add_pos | |
0.000014 1263 partial_order.le_antisymm | |
0.000016 1264 le_antisymm | |
0.000016 1265 lt_of_le_of_ne | |
0.000014 1266 ordered_semiring.zero_le_one | |
0.000016 1267 zero_le_one | |
0.000016 1268 zero_lt_one | |
0.000016 1269 zero_lt_two | |
0.000015 1270 two_ne_zero | |
0.000016 1271 field.to_nontrivial | |
0.000014 1272 add_halves | |
0.000017 1273 lt_of_le_of_lt | |
0.000015 1274 is_absolute_value.abv_add | |
0.000015 1275 is_absolute_value.abv_sub_le | |
0.000015 1276 lt_trans | |
0.000015 1277 add_lt_add_right | |
0.000017 1278 add_lt_add | |
0.000014 1279 neg_sub | |
0.000016 1280 domain | |
0.000016 1281 domain.add | |
0.000014 1282 domain.add_assoc | |
0.000016 1283 domain.zero | |
0.000016 1284 domain.zero_add | |
0.000015 1285 domain.add_zero | |
0.000016 1286 domain.nsmul | |
0.000014 1287 domain.nsmul_zero' | |
0.000016 1288 domain.nsmul_succ' | |
0.000015 1289 domain.neg | |
0.000016 1290 domain.sub | |
0.000015 1291 domain.sub_eq_add_neg | |
0.888419 1292 domain.add_left_neg | |
0.000074 1293 domain.add_comm | |
0.000023 1294 domain.mul | |
0.000015 1295 domain.mul_assoc | |
0.000015 1296 domain.one | |
0.000014 1297 domain.one_mul | |
0.000014 1298 domain.mul_one | |
0.000014 1299 domain.npow | |
0.000014 1300 domain.npow_zero' | |
0.000014 1301 domain.npow_succ' | |
0.000014 1302 domain.left_distrib | |
0.000014 1303 domain.right_distrib | |
0.000014 1304 domain.to_ring | |
0.000014 1305 integral_domain | |
0.000014 1306 integral_domain.add | |
0.000015 1307 integral_domain.add_assoc | |
0.000014 1308 integral_domain.zero | |
0.000019 1309 integral_domain.zero_add | |
0.000017 1310 integral_domain.add_zero | |
0.000017 1311 integral_domain.nsmul | |
0.000017 1312 integral_domain.nsmul_zero' | |
0.000015 1313 integral_domain.nsmul_succ' | |
0.000014 1314 integral_domain.neg | |
0.000014 1315 integral_domain.sub | |
0.000017 1316 integral_domain.sub_eq_add_neg | |
0.000016 1317 integral_domain.add_left_neg | |
0.000018 1318 integral_domain.add_comm | |
0.000015 1319 integral_domain.mul | |
0.000017 1320 integral_domain.mul_assoc | |
0.000017 1321 integral_domain.one | |
0.000015 1322 integral_domain.one_mul | |
0.000016 1323 integral_domain.mul_one | |
0.000017 1324 integral_domain.npow | |
0.000015 1325 integral_domain.npow_zero' | |
0.000017 1326 integral_domain.npow_succ' | |
0.000015 1327 integral_domain.left_distrib | |
0.000016 1328 integral_domain.right_distrib | |
0.000015 1329 integral_domain.exists_pair_ne | |
0.000014 1330 integral_domain.eq_zero_or_eq_zero_of_mul_eq_zero | |
0.000017 1331 integral_domain.to_domain | |
0.000015 1332 division_ring.to_domain._proof_1 | |
0.000014 1333 division_ring.to_domain | |
0.000016 1334 domain.eq_zero_or_eq_zero_of_mul_eq_zero | |
0.000015 1335 field.to_integral_domain._proof_1 | |
0.000016 1336 field.to_integral_domain | |
0.000015 1337 neg_add_cancel_right | |
0.000016 1338 sub_add_cancel | |
0.000023 1339 eq_of_sub_eq_zero | |
0.000017 1340 sub_eq_zero | |
0.000014 1341 integral_domain.mul_comm | |
0.000014 1342 integral_domain.to_comm_ring | |
0.000014 1343 comm_ring.mul_comm | |
0.000014 1344 comm_ring.to_comm_monoid | |
0.000017 1345 add_sub_assoc | |
0.000029 1346 sub_add_sub_cancel | |
0.000022 1347 mul_self_sub_mul_self | |
0.000016 1348 domain.to_no_zero_divisors | |
0.000014 1349 or.comm | |
0.000015 1350 or_comm | |
0.000016 1351 eq_neg_of_add_eq_zero | |
0.000016 1352 add_eq_zero_iff_eq_neg | |
0.000014 1353 mul_self_eq_mul_self_iff | |
0.000016 1354 or_iff_left_of_imp | |
0.000016 1355 neg_zero | |
0.000014 1356 add_le_add_iff_left | |
0.000016 1357 neg_le_neg_iff | |
0.000016 1358 neg_nonneg | |
0.000014 1359 linear_ordered_add_comm_group | |
0.000016 1360 linear_ordered_add_comm_group.add | |
0.000016 1361 linear_ordered_add_comm_group.add_assoc | |
0.000014 1362 linear_ordered_add_comm_group.zero | |
0.000016 1363 linear_ordered_add_comm_group.zero_add | |
0.000016 1364 linear_ordered_add_comm_group.add_zero | |
0.000014 1365 linear_ordered_add_comm_group.nsmul | |
0.000016 1366 linear_ordered_add_comm_group.nsmul_zero' | |
0.000015 1367 linear_ordered_add_comm_group.nsmul_succ' | |
0.000016 1368 linear_ordered_add_comm_group.neg | |
0.000015 1369 linear_ordered_add_comm_group.sub | |
0.000017 1370 linear_ordered_add_comm_group.sub_eq_add_neg | |
0.000015 1371 linear_ordered_add_comm_group.add_left_neg | |
0.000016 1372 linear_ordered_add_comm_group.add_comm | |
0.000015 1373 linear_ordered_add_comm_group.to_add_comm_group | |
0.000015 1374 linear_ordered_ring.to_linear_ordered_add_comm_group | |
0.000016 1375 mul_self_inj_of_nonneg | |
0.000015 1376 is_absolute_value.abv_nonneg | |
0.000015 1377 is_absolute_value.abv_mul | |
0.000016 1378 mul_neg_eq_neg_mul_symm | |
0.000015 1379 neg_mul_eq_neg_mul_symm | |
0.000016 1380 is_absolute_value.abv_neg | |
0.000015 1381 is_absolute_value.abv_sub | |
0.000016 1382 division_def | |
0.000015 1383 linear_ordered_semiring | |
0.000014 1384 linear_ordered_semiring.add | |
0.000017 1385 linear_ordered_semiring.add_assoc | |
0.000015 1386 linear_ordered_semiring.zero | |
0.000016 1387 linear_ordered_semiring.zero_add | |
0.000015 1388 linear_ordered_semiring.add_zero | |
0.000014 1389 linear_ordered_semiring.nsmul | |
0.000017 1390 linear_ordered_semiring.nsmul_zero' | |
0.000014 1391 linear_ordered_semiring.nsmul_succ' | |
0.000016 1392 linear_ordered_semiring.add_comm | |
0.000016 1393 linear_ordered_semiring.mul | |
0.000014 1394 linear_ordered_semiring.mul_assoc | |
0.000017 1395 linear_ordered_semiring.one | |
0.000015 1396 linear_ordered_semiring.one_mul | |
0.000016 1397 linear_ordered_semiring.mul_one | |
0.000015 1398 linear_ordered_semiring.npow | |
0.000014 1399 linear_ordered_semiring.npow_zero' | |
0.000016 1400 linear_ordered_semiring.npow_succ' | |
0.000015 1401 linear_ordered_semiring.zero_mul | |
0.000015 1402 linear_ordered_semiring.mul_zero | |
0.000014 1403 linear_ordered_semiring.left_distrib | |
0.000016 1404 linear_ordered_semiring.right_distrib | |
0.000016 1405 linear_ordered_semiring.add_left_cancel | |
0.000016 1406 linear_ordered_semiring.le | |
1.508294 1407 linear_ordered_semiring.lt | |
0.000074 1408 linear_ordered_semiring.le_refl | |
0.000026 1409 linear_ordered_semiring.le_trans | |
0.000014 1410 linear_ordered_semiring.lt_iff_le_not_le | |
0.000015 1411 linear_ordered_semiring.le_antisymm | |
0.000014 1412 linear_ordered_semiring.add_le_add_left | |
0.000014 1413 linear_ordered_semiring.le_of_add_le_add_left | |
0.000014 1414 linear_ordered_semiring.zero_le_one | |
0.000014 1415 linear_ordered_semiring.mul_lt_mul_of_pos_left | |
0.000014 1416 linear_ordered_semiring.mul_lt_mul_of_pos_right | |
0.000015 1417 linear_ordered_semiring.to_ordered_semiring | |
0.000014 1418 linear_ordered_semiring.le_total | |
0.000014 1419 linear_ordered_semiring.decidable_le | |
0.000015 1420 linear_ordered_semiring.decidable_eq | |
0.000014 1421 linear_ordered_semiring.decidable_lt | |
0.000014 1422 linear_ordered_semiring.to_linear_order | |
0.000014 1423 lt_or_eq_of_le | |
0.000015 1424 lt_trichotomy | |
0.000014 1425 le_of_not_gt | |
0.000014 1426 not_lt_of_ge | |
0.000018 1427 not_lt | |
0.000015 1428 push_neg.not_lt_eq | |
0.000017 1429 has_le.le.antisymm | |
0.000016 1430 ordered_semiring.mul_lt_mul_of_pos_left | |
0.000017 1431 mul_lt_mul_of_pos_left | |
0.000015 1432 has_le.le.lt_of_not_le | |
0.000017 1433 mul_le_mul_of_nonneg_left | |
0.000015 1434 mul_nonpos_of_nonneg_of_nonpos | |
0.000017 1435 has_lt.lt.false | |
0.000015 1436 ordered_semiring.mul_lt_mul_of_pos_right | |
0.000014 1437 mul_lt_mul_of_pos_right | |
0.000016 1438 mul_le_mul_of_nonneg_right | |
0.000018 1439 mul_nonpos_of_nonpos_of_nonneg | |
0.000015 1440 pos_and_pos_or_neg_and_neg_of_mul_pos | |
0.000014 1441 linear_ordered_ring.to_linear_ordered_semiring._proof_1 | |
0.000014 1442 linear_ordered_ring.to_linear_ordered_semiring._proof_2 | |
0.000017 1443 linear_ordered_ring.to_linear_ordered_semiring._proof_3 | |
0.000015 1444 linear_ordered_ring.to_linear_ordered_semiring._proof_4 | |
0.000016 1445 linear_ordered_ring.to_linear_ordered_semiring._proof_5 | |
0.000015 1446 linear_ordered_ring.to_linear_ordered_semiring._proof_6 | |
0.000016 1447 linear_ordered_ring.exists_pair_ne | |
0.000015 1448 linear_ordered_ring.to_linear_ordered_semiring | |
0.000015 1449 and_imp | |
0.000013 1450 mul_pos | |
0.000015 1451 neg_lt_neg | |
0.000014 1452 lt_of_neg_lt_neg | |
0.000016 1453 neg_pos_of_neg | |
0.000015 1454 mul_lt_mul_of_neg_right | |
0.000016 1455 mul_pos_of_neg_of_neg | |
0.000015 1456 mul_pos_iff | |
0.000015 1457 flip | |
0.000015 1458 linear_ordered_comm_ring.to_linear_ordered_semiring | |
0.000018 1459 lt_of_not_ge | |
0.000015 1460 not_le_of_lt | |
0.000014 1461 has_lt.lt.not_le | |
0.000014 1462 not_lt_of_le | |
0.000016 1463 has_le.le.not_lt | |
0.000015 1464 lt_of_mul_lt_mul_left | |
0.000016 1465 ne_of_gt | |
0.000015 1466 inv_pos | |
0.000016 1467 iff.symm | |
0.000015 1468 lt_iff_not_ge | |
0.000014 1469 not_le | |
0.000013 1470 le_of_lt_or_eq | |
0.000015 1471 le_iff_lt_or_eq | |
0.000013 1472 le_iff_eq_or_lt | |
0.000017 1473 zero_eq_inv | |
0.000014 1474 inv_nonneg | |
0.000017 1475 inv_lt_zero | |
0.000015 1476 div_pos_iff | |
0.000016 1477 div_pos | |
0.000015 1478 half_pos | |
0.000017 1479 is_cau_seq.cauchy₂ | |
0.000015 1480 is_cau_seq.cauchy₃ | |
0.000017 1481 cau_seq.cauchy₃ | |
0.000015 1482 cau_seq.has_add._match_3 | |
0.000017 1483 add_comm_group.to_add_comm_monoid | |
0.000015 1484 add_neg_cancel_left | |
0.000017 1485 neg_add_rev | |
0.000015 1486 commutative | |
0.000016 1487 associative | |
0.000015 1488 left_commutative | |
0.000016 1489 left_comm | |
0.000015 1490 add_left_comm | |
0.000016 1491 rat_add_continuous_lemma | |
0.000015 1492 cau_seq.has_add._proof_1 | |
0.000018 1493 option | |
0.000017 1494 with_top | |
0.000015 1495 cau_seq.lim_zero | |
0.000014 1496 cau_seq.cauchy | |
0.000014 1497 cau_seq.of_eq._proof_1 | |
0.000014 1498 cau_seq.of_eq | |
0.000015 1499 cau_seq.has_add | |
0.000014 1500 cau_seq.has_mul._match_1 | |
0.000014 1501 cau_seq.has_mul._match_2 | |
0.000015 1502 cau_seq.has_mul._match_3 | |
0.000016 1503 list.perm | |
0.000015 1504 list.perm.refl | |
0.000016 1505 list.perm.rec_on | |
0.000015 1506 list.perm.symm | |
0.000016 1507 list.perm.eqv | |
0.000015 1508 list.is_setoid | |
0.000016 1509 multiset | |
0.000014 1510 out_param | |
0.000016 1511 has_mem | |
0.000015 1512 has_mem.mem | |
0.000016 1513 list.mem._main | |
0.000015 1514 list.mem | |
0.000017 1515 list.has_mem | |
0.000017 1516 list.pairwise | |
0.000014 1517 list.nodup | |
0.000017 1518 list.pairwise.drec | |
0.000014 1519 list.length._main | |
0.000017 1520 list.length | |
0.000015 1521 list.eq_nil_of_length_eq_zero | |
0.000014 1522 id_delta | |
0.000017 1523 list.length._main.equations._eqn_2 | |
0.000015 1524 list.length.equations._eqn_2 | |
0.000014 1525 add_right_cancel_semigroup | |
0.000016 1526 add_right_cancel_semigroup.add | |
0.000015 1527 add_right_cancel_semigroup.add_assoc | |
0.000016 1528 add_right_cancel_semigroup.to_add_semigroup | |
0.000015 1529 add_right_cancel_monoid.add_right_cancel | |
0.000015 1530 add_right_cancel_monoid.to_add_right_cancel_semigroup | |
0.000016 1531 comm_semiring | |
0.000015 1532 comm_semiring.add | |
0.000015 1533 nat.add_succ | |
0.000016 1534 nat.add_assoc | |
0.125048 1535 nat.zero_add | |
0.000058 1536 nat.add_zero | |
0.000025 1537 nat.mul._main | |
0.000015 1538 nat.mul | |
0.000014 1539 nat.has_mul | |
0.000014 1540 nat.mul_succ | |
0.000014 1541 nat.zero_mul | |
0.000014 1542 nat.succ_eq_add_one | |
0.000014 1543 nat.add_comm | |
0.000014 1544 nat.succ_eq_one_add | |
0.000014 1545 nat.add_left_comm | |
0.000014 1546 nat.right_distrib | |
0.000019 1547 nat.mul_zero | |
0.000017 1548 nat.succ.inj | |
0.000017 1549 nat.succ.inj_eq | |
0.000017 1550 nat.succ_mul | |
0.000017 1551 nat.mul_comm | |
0.000017 1552 nat.mul_one | |
0.000017 1553 nat.one_mul | |
0.000017 1554 nat.comm_semiring._proof_1 | |
0.000016 1555 nat.left_distrib | |
0.000016 1556 nat.mul_assoc | |
0.000014 1557 monoid_with_zero.npow._default | |
0.000017 1558 semiring.npow._default | |
0.000015 1559 nat.comm_semiring._proof_2 | |
0.000015 1560 nat.comm_semiring._proof_3 | |
0.000016 1561 nat.comm_semiring | |
0.000015 1562 comm_semiring.add_assoc | |
0.000017 1563 comm_semiring.zero | |
0.000015 1564 comm_semiring.zero_add | |
0.000015 1565 comm_semiring.add_zero | |
0.000016 1566 comm_semiring.nsmul | |
0.000015 1567 comm_semiring.nsmul_zero' | |
0.000016 1568 comm_semiring.nsmul_succ' | |
0.000015 1569 comm_semiring.add_comm | |
0.000016 1570 comm_semiring.mul | |
0.000015 1571 comm_semiring.mul_assoc | |
0.000016 1572 comm_semiring.one | |
0.000015 1573 comm_semiring.one_mul | |
0.000016 1574 comm_semiring.mul_one | |
0.000015 1575 comm_semiring.npow | |
0.000016 1576 comm_semiring.npow_zero' | |
0.000015 1577 comm_semiring.npow_succ' | |
0.000015 1578 comm_semiring.zero_mul | |
0.000016 1579 comm_semiring.mul_zero | |
0.000015 1580 comm_semiring.left_distrib | |
0.000015 1581 comm_semiring.right_distrib | |
0.000016 1582 imp_congr_ctx | |
0.000015 1583 imp_congr_ctx_eq | |
0.000016 1584 implies_true_iff | |
0.000016 1585 nat.add_left_cancel | |
0.000014 1586 nat.le_add_right | |
0.000016 1587 nat.le.intro | |
0.000015 1588 nat.le.dest | |
0.000016 1589 nat.add_le_add_left | |
0.000015 1590 nat.le_of_add_le_add_left | |
0.000017 1591 nat.linear_ordered_semiring._proof_1 | |
0.000015 1592 nat.lt_of_lt_of_le | |
0.000014 1593 nat.lt_of_succ_le | |
0.000017 1594 nat.succ_le_of_lt | |
0.000015 1595 nat.add_lt_add_left | |
0.000016 1596 nat.lt_add_of_pos_right | |
0.000016 1597 nat.mul_le_mul_left | |
0.000014 1598 nat.mul_lt_mul_of_pos_left | |
0.000016 1599 nat.mul_lt_mul_of_pos_right | |
0.000015 1600 linear_order.decidable_lt | |
0.000015 1601 has_bot | |
0.000016 1602 has_bot.bot | |
0.000015 1603 order_bot | |
0.000014 1604 order_bot.le | |
0.000017 1605 order_bot.lt | |
0.000015 1606 order_bot.le_refl | |
0.000014 1607 order_bot.le_trans | |
0.000016 1608 order_bot.lt_iff_le_not_le | |
0.000015 1609 order_bot.le_antisymm | |
0.000016 1610 order_bot.to_partial_order | |
0.000017 1611 semilattice_sup_bot | |
0.000015 1612 semilattice_sup_bot.bot | |
0.000016 1613 semilattice_sup_bot.le | |
0.000015 1614 semilattice_sup_bot.lt | |
0.000016 1615 semilattice_sup_bot.le_refl | |
0.000015 1616 semilattice_sup_bot.le_trans | |
0.000016 1617 semilattice_sup_bot.lt_iff_le_not_le | |
0.000015 1618 semilattice_sup_bot.le_antisymm | |
0.000017 1619 semilattice_sup_bot.bot_le | |
0.000015 1620 semilattice_sup_bot.to_order_bot | |
0.000014 1621 semilattice_inf.inf | |
0.000016 1622 semilattice_inf.to_has_inf | |
0.000016 1623 semilattice_sup | |
0.000014 1624 semilattice_sup.sup | |
0.000016 1625 semilattice_sup.to_has_sup | |
0.000015 1626 lattice.sup | |
0.000016 1627 lattice.le_sup_left | |
0.000016 1628 lattice.le_sup_right | |
0.000014 1629 lattice.sup_le | |
0.000016 1630 lattice.to_semilattice_sup | |
0.000015 1631 distrib_lattice | |
0.000016 1632 distrib_lattice.le | |
0.000015 1633 distrib_lattice_of_linear_order._proof_1 | |
0.000016 1634 distrib_lattice_of_linear_order._proof_2 | |
0.000016 1635 distrib_lattice_of_linear_order._proof_3 | |
0.000014 1636 distrib_lattice_of_linear_order._proof_4 | |
0.000016 1637 distrib_lattice_of_linear_order._proof_5 | |
0.000015 1638 distrib_lattice_of_linear_order._proof_6 | |
0.000016 1639 distrib_lattice_of_linear_order._proof_7 | |
0.000016 1640 distrib_lattice_of_linear_order._proof_8 | |
0.000014 1641 distrib_lattice_of_linear_order._proof_9 | |
0.000016 1642 distrib_lattice_of_linear_order._proof_10 | |
0.000015 1643 semilattice_inf.inf_le_left | |
0.000016 1644 inf_le_left | |
0.000015 1645 inf_le_left_of_le | |
0.000016 1646 semilattice_sup.le | |
0.000016 1647 semilattice_sup.lt | |
0.000014 1648 semilattice_sup.le_refl | |
0.000016 1649 semilattice_sup.le_trans | |
0.000015 1650 semilattice_sup.lt_iff_le_not_le | |
0.000016 1651 semilattice_sup.le_antisymm | |
0.000016 1652 semilattice_sup.to_partial_order | |
0.000014 1653 semilattice_sup.sup_le | |
0.000016 1654 sup_le | |
0.000015 1655 semilattice_sup.le_sup_left | |
0.000016 1656 le_sup_left | |
0.000015 1657 le_sup_left_of_le | |
0.000016 1658 semilattice_sup.le_sup_right | |
0.000014 1659 le_sup_right | |
0.000017 1660 le_sup_right_of_le | |
0.000015 1661 sup_le_sup | |
0.000016 1662 sup_le_sup_left | |
0.000014 1663 semilattice_inf.le_inf | |
0.000016 1664 le_inf | |
0.000015 1665 semilattice_inf.inf_le_right | |
0.000016 1666 inf_le_right | |
0.000015 1667 inf_le_right_of_le | |
0.133675 1668 distrib_lattice_of_linear_order._match_1 | |
0.000068 1669 distrib_lattice_of_linear_order._proof_11 | |
0.000026 1670 distrib_lattice_of_linear_order | |
0.000020 1671 nat.distrib_lattice | |
0.000014 1672 distrib_lattice.lt | |
0.000014 1673 distrib_lattice.le_refl | |
0.000014 1674 distrib_lattice.le_trans | |
0.000014 1675 distrib_lattice.lt_iff_le_not_le | |
0.000014 1676 distrib_lattice.le_antisymm | |
0.000014 1677 distrib_lattice.sup | |
0.000014 1678 distrib_lattice.le_sup_left | |
0.000014 1679 distrib_lattice.le_sup_right | |
0.000014 1680 distrib_lattice.sup_le | |
0.000019 1681 nat.semilattice_sup_bot | |
0.000017 1682 nat.zero_lt_one | |
0.000017 1683 nat.linear_ordered_semiring._proof_2 | |
0.000018 1684 nat.linear_ordered_semiring | |
0.000015 1685 nat.ordered_semiring | |
0.000016 1686 add_right_cancel_semigroup.add_right_cancel | |
0.000017 1687 add_right_cancel | |
0.000014 1688 add_left_injective | |
0.000017 1689 add_left_inj | |
0.000017 1690 list.perm.length_eq | |
0.000017 1691 list.perm.eq_nil | |
0.000018 1692 list.perm.nil_eq | |
0.000014 1693 false.dcases_on | |
0.000016 1694 list.mem_split | |
0.000017 1695 has_subset | |
0.000015 1696 has_subset.subset | |
0.000016 1697 list.subset | |
0.000015 1698 list.has_subset | |
0.000014 1699 list.mem_cons_iff | |
0.000016 1700 true_or | |
0.000015 1701 list.perm.subset | |
0.000016 1702 list.mem_cons_self | |
0.000015 1703 list.nil_append | |
0.000014 1704 list.cons_append | |
0.000014 1705 list.no_confusion_type | |
0.000017 1706 list.no_confusion | |
0.000017 1707 list.cons.inj | |
0.000014 1708 list.cons.inj_eq | |
0.000017 1709 and_self | |
0.000015 1710 list.append_assoc | |
0.000016 1711 forall_congr | |
0.000015 1712 forall_congr_eq | |
0.000016 1713 not.elim | |
0.000015 1714 forall_prop_of_false | |
0.000015 1715 list.not_mem_nil | |
0.000016 1716 forall_true_iff | |
0.000015 1717 and_iff_left | |
0.000016 1718 and_true | |
0.000015 1719 and_iff_right | |
0.000014 1720 true_and | |
0.000017 1721 list.pairwise.dcases_on | |
0.000015 1722 list.pairwise_cons | |
0.000016 1723 false_or | |
0.000015 1724 or.imp_right | |
0.000014 1725 or.assoc | |
0.000017 1726 or_assoc | |
0.000015 1727 list.mem_append | |
0.000016 1728 or_imp_distrib | |
0.000015 1729 forall_and_distrib | |
0.000016 1730 list.forall_mem_append | |
0.000015 1731 and.assoc | |
0.000015 1732 and.imp | |
0.000016 1733 and_congr | |
0.000015 1734 and.swap | |
0.000014 1735 and.comm | |
0.000016 1736 and.left_comm | |
0.000015 1737 and_assoc | |
0.000016 1738 list.mem_cons_of_mem | |
0.000015 1739 list.ball_cons | |
0.000016 1740 list.forall_mem_cons | |
0.000015 1741 list.pairwise_append | |
0.000017 1742 list.pairwise_append_comm | |
0.000015 1743 list.pairwise_middle | |
0.000016 1744 list.rec_on | |
0.000015 1745 list.perm_induction_on | |
0.000016 1746 and.elim_left | |
0.000015 1747 and.elim_right | |
0.000016 1748 list.cons.inj_arrow | |
0.000015 1749 list.perm_middle | |
0.000016 1750 list.perm.swap' | |
0.000015 1751 list.perm_inv_core | |
0.000016 1752 list.perm.cons_inv | |
0.000015 1753 list.perm.pairwise_iff | |
0.000016 1754 list.perm.nodup_iff | |
0.000015 1755 multiset.nodup._proof_1 | |
0.000014 1756 multiset.nodup | |
0.000017 1757 finset | |
0.000015 1758 list.perm.mem_iff | |
0.000014 1759 multiset.mem._proof_1 | |
0.000016 1760 multiset.mem | |
0.000015 1761 multiset.has_mem | |
0.000017 1762 finset.val | |
0.000015 1763 finset.has_mem | |
0.000014 1764 fintype | |
0.000016 1765 infinite | |
0.000015 1766 has_emptyc | |
0.000016 1767 has_emptyc.emptyc | |
0.000015 1768 multiset.has_coe | |
0.000016 1769 multiset.zero | |
0.000015 1770 multiset.has_zero | |
0.000016 1771 multiset.nodup_zero | |
0.000015 1772 finset.empty | |
0.000016 1773 finset.has_emptyc | |
0.000015 1774 has_singleton | |
0.000016 1775 has_singleton.singleton | |
0.000015 1776 multiset.cons._proof_1 | |
0.000016 1777 multiset.cons | |
0.000015 1778 multiset.has_singleton | |
0.000014 1779 congr_fun | |
0.000016 1780 list.nodup.equations._eqn_1 | |
0.000015 1781 list.forall_mem_ne | |
0.000015 1782 list.nodup_cons | |
0.000016 1783 list.nodup_cons_of_nodup | |
0.000015 1784 list.nodup_nil | |
0.000016 1785 list.nodup_singleton | |
0.000015 1786 multiset.nodup_singleton | |
0.000016 1787 finset.has_singleton | |
0.000015 1788 quot.induction_on | |
0.000016 1789 multiset.mem_cons | |
0.000015 1790 multiset.not_mem_zero | |
0.000015 1791 multiset.mem_singleton | |
0.000016 1792 finset.mem_singleton | |
0.000015 1793 infinite.nontrivial._match_1 | |
0.000016 1794 function.comp | |
0.000015 1795 decidable.not_imp_symm | |
0.000015 1796 not.decidable_imp_symm | |
0.000016 1797 not_forall_of_exists_not | |
0.000015 1798 decidable.not_forall | |
0.000015 1799 not_forall | |
0.000016 1800 infinite.not_fintype | |
0.000015 1801 infinite.exists_not_mem_finset | |
0.000016 1802 infinite.nontrivial._match_2 | |
0.000015 1803 infinite.nontrivial | |
0.000014 1804 nat.cast._main | |
0.000016 1805 nat.cast | |
0.000016 1806 nat.cast_coe | |
0.000014 1807 char_zero | |
0.000016 1808 classical.dec | |
0.000015 1809 inhabited | |
0.000016 1810 classical.inhabited_of_nonempty | |
0.000015 1811 function.surjective | |
0.000015 1812 decidable_pred | |
0.000016 1813 list.not_bex_nil | |
0.000015 1814 list.eq_or_mem_of_mem_cons | |
0.000015 1815 list.decidable_bex._match_1 | |
0.000016 1816 list.decidable_bex._main | |
0.111596 1817 list.decidable_bex | |
0.000064 1818 not.decidable | |
0.000023 1819 list.decidable_ball._match_1 | |
0.000015 1820 list.decidable_ball._proof_1 | |
0.000014 1821 list.decidable_ball | |
0.000014 1822 list.pw_filter._main | |
0.000014 1823 list.pw_filter | |
0.000014 1824 implies.decidable._proof_1 | |
0.000015 1825 implies.decidable._proof_2 | |
0.000014 1826 implies.decidable._proof_3 | |
0.000014 1827 implies.decidable | |
0.000014 1828 ne.decidable | |
0.000015 1829 list.erase_dup | |
0.000015 1830 list.countp._main | |
0.000014 1831 list.countp | |
0.000014 1832 list.count | |
0.000018 1833 list.filter._main | |
0.000017 1834 list.filter | |
0.000017 1835 list.countp._main.equations._eqn_2 | |
0.000017 1836 list.countp.equations._eqn_2 | |
0.000017 1837 list.filter_cons_of_pos | |
0.000017 1838 list.countp_cons_of_neg | |
0.000017 1839 list.filter_cons_of_neg | |
0.000018 1840 list.countp_eq_length_filter | |
0.000015 1841 option.cases_on | |
0.000016 1842 list.filter_map._match_1 | |
0.000015 1843 list.filter_map._main | |
0.000014 1844 list.filter_map | |
0.000016 1845 option.guard | |
0.000015 1846 list.filter_map._main.equations._eqn_2 | |
0.000016 1847 list.filter_map.equations._eqn_2 | |
0.000015 1848 option.guard.equations._eqn_1 | |
0.000015 1849 list.filter_map._match_1.equations._eqn_2 | |
0.000016 1850 list.filter_map._match_1.equations._eqn_1 | |
0.000015 1851 list.filter_map_eq_filter | |
0.000016 1852 list.perm.drec | |
0.000015 1853 list.filter_map_nil | |
0.000016 1854 list.perm.filter_map | |
0.000016 1855 list.perm.filter | |
0.000014 1856 list.perm.countp_eq | |
0.000016 1857 list.perm.count_eq | |
0.000015 1858 list.count_nil | |
0.000016 1859 list.count_cons_self | |
0.000015 1860 list.erase._main | |
0.000016 1861 list.erase | |
0.000015 1862 list.erase_nil | |
0.000016 1863 nat.pred_zero | |
0.000015 1864 list.erase_cons | |
0.000016 1865 list.count_cons | |
0.000015 1866 list.count_cons' | |
0.000016 1867 nat.pred_succ | |
0.000015 1868 nat.add_monoid | |
0.000016 1869 list.count_erase_self | |
0.000015 1870 list.erasep._main | |
0.000016 1871 list.erasep | |
0.000015 1872 list.forall_mem_nil | |
0.000016 1873 list.erasep_cons | |
0.000015 1874 if_true | |
0.000016 1875 list.erasep_cons_of_pos | |
0.000015 1876 if_false | |
0.000016 1877 list.erasep_cons_of_neg | |
0.000015 1878 not_congr | |
0.000016 1879 list.exists_of_erasep | |
0.000015 1880 list.erase_cons_head | |
0.000014 1881 list.erase_cons_tail | |
0.000016 1882 list.erase_eq_erasep | |
0.000015 1883 list.exists_erase_eq | |
0.000016 1884 list.perm_cons_erase | |
0.000015 1885 list.count.equations._eqn_1 | |
0.000016 1886 list.exists_mem_of_length_pos | |
0.000015 1887 list.length_pos_of_mem | |
0.000017 1888 list.length_pos_iff_exists_mem | |
0.000016 1889 list.sublist | |
0.000014 1890 list.sublist.dcases_on | |
0.000016 1891 list.sublist.subset | |
0.000015 1892 list.filter_sublist | |
0.000016 1893 list.filter_subset | |
0.000016 1894 list.mem_of_mem_filter | |
0.000014 1895 list.of_mem_filter | |
0.000016 1896 eq.dcases_on | |
0.000015 1897 list.mem_filter_of_mem | |
0.000016 1898 list.mem_filter | |
0.000015 1899 exists_prop | |
0.000016 1900 list.countp_pos | |
0.000015 1901 exists_congr | |
0.000016 1902 exists_eq_left | |
0.000015 1903 exists_eq_right | |
0.000016 1904 exists_eq_right' | |
0.000017 1905 list.count_pos | |
0.000016 1906 nat.succ_pos | |
0.000014 1907 nat.succ_pos' | |
0.000016 1908 list.count_erase_of_ne | |
0.000015 1909 list.count_cons_of_ne | |
0.000016 1910 list.perm_iff_count | |
0.000015 1911 not_or | |
0.000016 1912 list.decidable_mem._match_1 | |
0.000015 1913 list.decidable_mem._main | |
0.000015 1914 list.decidable_mem | |
0.000016 1915 function.swap | |
0.000015 1916 imp.swap | |
0.000015 1917 imp_not_comm | |
0.000016 1918 list.not_mem_of_nodup_cons | |
0.000015 1919 list.not_nodup_cons_of_mem | |
0.000014 1920 list.mem_singleton_self | |
0.000016 1921 list.not_nodup_pair | |
0.000015 1922 ball.imp_left | |
0.000017 1923 list.pairwise_of_sublist | |
0.000015 1924 list.nodup_of_sublist | |
0.000014 1925 list.cons_sublist_cons | |
0.000016 1926 list.sublist.rec_on | |
0.000015 1927 list.sublist.cases_on | |
0.000014 1928 list.nil_sublist | |
0.000016 1929 list.sublist.trans | |
0.000015 1930 list.sublist.refl | |
0.000016 1931 list.sublist_append_right | |
0.000017 1932 list.singleton_sublist | |
0.000014 1933 list.sublist_cons_of_sublist | |
0.000017 1934 list.nodup_iff_sublist | |
0.000015 1935 list.repeat._main | |
0.000025 1936 list.repeat | |
0.000014 1937 nat.nat_zero_eq_zero | |
0.000014 1938 list.repeat._main.equations._eqn_1 | |
0.000015 1939 list.repeat.equations._eqn_1 | |
0.000016 1940 list.length._main.equations._eqn_1 | |
0.000015 1941 list.length.equations._eqn_1 | |
0.000016 1942 list.repeat._main.equations._eqn_2 | |
0.000015 1943 list.repeat.equations._eqn_2 | |
0.000016 1944 list.length_repeat | |
0.000015 1945 list.length_le_of_sublist | |
0.000016 1946 nat.less_than_or_equal.drec | |
0.000015 1947 list.repeat_succ | |
0.000015 1948 list.repeat_sublist_repeat | |
0.000016 1949 not_not_intro | |
0.000014 1950 not_true | |
0.000016 1951 false_and | |
0.000015 1952 nat.succ_ne_zero | |
0.000015 1953 or_iff_left_iff_imp | |
0.000015 1954 imp_self | |
0.000016 1955 list.mem_repeat | |
0.093448 1956 list.eq_of_mem_repeat | |
0.000063 1957 list.eq_repeat_of_mem | |
0.000023 1958 list.eq_repeat | |
0.000014 1959 iff_of_true | |
0.000015 1960 list.tail_eq_of_cons_eq | |
0.000014 1961 list.cons_injective | |
0.000014 1962 list.cons_inj | |
0.000014 1963 iff_of_false | |
0.000014 1964 list.filter_eq_self | |
0.000014 1965 list.count_repeat | |
0.000014 1966 list.sublist.drec | |
0.000014 1967 list.filter_map._main.equations._eqn_1 | |
0.000018 1968 list.filter_map.equations._eqn_1 | |
0.000017 1969 list.sublist.filter_map | |
0.000017 1970 list.filter_sublist_filter | |
0.000017 1971 list.countp_le_of_sublist | |
0.000017 1972 list.count_le_of_sublist | |
0.000017 1973 list.le_count_iff_repeat_sublist | |
0.000017 1974 list.nodup_iff_count_le_one | |
0.000016 1975 list.count_eq_one_of_mem | |
0.000017 1976 list.pw_filter_cons_of_pos | |
0.000017 1977 list.pw_filter_cons_of_neg | |
0.000016 1978 list.pairwise_pw_filter | |
0.000015 1979 list.nodup_erase_dup | |
0.000014 1980 list.erase_dup.equations._eqn_1 | |
0.000017 1981 decidable.not_not | |
0.000015 1982 not_not | |
0.000014 1983 list.find._main | |
0.000016 1984 list.find | |
0.000015 1985 ball.imp_right | |
0.000017 1986 list.find_cons_of_pos | |
0.000014 1987 eq_false_intro | |
0.000017 1988 option.no_confusion_type | |
0.000014 1989 option.no_confusion | |
0.000017 1990 list.find_cons_of_neg | |
0.000017 1991 list.find_eq_none | |
0.000014 1992 list.find_mem | |
0.000016 1993 list.find_some | |
0.000015 1994 list.pw_filter_sublist | |
0.000016 1995 list.pw_filter_subset | |
0.000015 1996 list.forall_mem_pw_filter | |
0.000016 1997 not_and_of_not_or_not | |
0.000015 1998 decidable.not_and_distrib | |
0.000016 1999 not_and_distrib | |
0.000015 2000 list.mem_erase_dup | |
0.000015 2001 nat.eq_zero_or_pos | |
0.000016 2002 nat.pos_of_ne_zero | |
0.000015 2003 list.count_eq_zero_of_not_mem | |
0.000014 2004 list.perm.erase_dup | |
0.000014 2005 multiset.erase_dup._proof_1 | |
0.000016 2006 multiset.erase_dup | |
0.000015 2007 multiset.nodup_erase_dup | |
0.000016 2008 multiset.to_finset._proof_1 | |
0.000015 2009 multiset.to_finset | |
0.000016 2010 list.map._main | |
0.000015 2011 list.map | |
0.000016 2012 list.filter_map_cons_some | |
0.000015 2013 list.map_cons | |
0.000014 2014 list.filter_map_eq_map | |
0.000016 2015 list.perm.map | |
0.000015 2016 multiset.map._proof_1 | |
0.000016 2017 multiset.map | |
0.000015 2018 finset.image | |
0.000016 2019 fintype.elems | |
0.000015 2020 finset.univ | |
0.000016 2021 finset.mem_def | |
0.000016 2022 finset.image_val | |
0.000015 2023 multiset.mem_erase_dup | |
0.000016 2024 list.exists_of_mem_map | |
0.000015 2025 list.mem_map_of_mem | |
0.000016 2026 list.mem_map | |
0.000015 2027 multiset.mem_map | |
0.000016 2028 finset.mem_image | |
0.000015 2029 finset.mem_image_of_mem | |
0.000016 2030 fintype.complete | |
0.000015 2031 finset.mem_univ | |
0.000016 2032 fintype.of_surjective._match_1 | |
0.000015 2033 fintype.of_surjective._proof_1 | |
0.000015 2034 fintype.of_surjective | |
0.000015 2035 set | |
0.000016 2036 set.mem | |
0.000015 2037 set.has_mem | |
0.000016 2038 function.inv_fun_on | |
0.000015 2039 set.univ | |
0.000016 2040 function.inv_fun | |
0.000015 2041 function.right_inverse | |
0.000017 2042 function.right_inverse.surjective | |
0.000015 2043 function.left_inverse.right_inverse | |
0.000014 2044 function.left_inverse.surjective | |
0.000016 2045 function.inv_fun_on.equations._eqn_1 | |
0.000015 2046 bex_def | |
0.000016 2047 function.inv_fun_on_pos | |
0.000015 2048 function.inv_fun_on_eq | |
0.000016 2049 function.inv_fun_eq | |
0.000015 2050 function.left_inverse_inv_fun | |
0.000017 2051 function.inv_fun_surjective | |
0.000014 2052 fintype.of_injective._proof_1 | |
0.000017 2053 fintype.of_injective | |
0.000014 2054 infinite.of_injective | |
0.000016 2055 fintype.cases_on | |
0.000015 2056 list.range_core._main | |
0.000016 2057 list.range_core | |
0.000015 2058 list.range | |
0.000017 2059 multiset.range | |
0.000015 2060 list.range'._main | |
0.000016 2061 list.range' | |
0.000015 2062 right_commutative | |
0.000016 2063 right_comm | |
0.000015 2064 add_right_comm | |
0.000016 2065 nat.add_comm_monoid | |
0.000015 2066 nat.add_comm_semigroup | |
0.000016 2067 list.range_core_range' | |
0.000015 2068 list.range_eq_range' | |
0.000016 2069 list.pairwise.imp_of_mem | |
0.000015 2070 list.pairwise.imp | |
0.000015 2071 list.chain | |
0.000016 2072 list.chain.drec | |
0.000015 2073 list.pairwise_singleton | |
0.000016 2074 forall_eq | |
0.000015 2075 forall_eq_or_imp | |
0.000016 2076 list.rel_of_pairwise_cons | |
0.000015 2077 list.chain.dcases_on | |
0.000015 2078 list.chain_cons | |
0.000016 2079 list.chain_of_pairwise | |
0.000014 2080 list.chain_iff_pairwise | |
0.000017 2081 list.chain.imp' | |
0.000014 2082 list.chain.imp | |
0.000017 2083 list.chain_succ_range' | |
0.000014 2084 list.chain_lt_range' | |
0.000017 2085 list.pairwise_lt_range' | |
0.000015 2086 list.nodup_range' | |
0.000016 2087 list.nodup_range | |
0.000015 2088 multiset.nodup_range | |
0.000016 2089 finset.range | |
0.000015 2090 iff.comm | |
0.000016 2091 iff_false | |
0.000015 2092 false_iff | |
0.000014 2093 imp_intro | |
0.000016 2094 or_and_distrib_left | |
0.000016 2095 or_iff_right_of_imp | |
0.000016 2096 nat.lt_succ_of_le | |
0.000015 2097 list.mem_range' | |
0.267240 2098 list.mem_range | |
0.000081 2099 list.not_mem_range_self | |
0.000027 2100 multiset.not_mem_range_self | |
0.000019 2101 finset.not_mem_range_self | |
0.000015 2102 is_commutative | |
0.000014 2103 is_associative | |
0.000014 2104 list.foldr._main | |
0.000014 2105 list.foldr | |
0.000014 2106 list.foldr_cons | |
0.000014 2107 list.perm.foldr_eq | |
0.000014 2108 multiset.foldr._proof_1 | |
0.000014 2109 multiset.foldr | |
0.000018 2110 is_commutative.comm | |
0.000019 2111 is_associative.assoc | |
0.000015 2112 multiset.fold._proof_1 | |
0.000016 2113 multiset.fold | |
0.000018 2114 finset.fold | |
0.000015 2115 semilattice_sup_bot.sup | |
0.000016 2116 semilattice_sup_bot.le_sup_left | |
0.000015 2117 semilattice_sup_bot.le_sup_right | |
0.000016 2118 semilattice_sup_bot.sup_le | |
0.000017 2119 semilattice_sup_bot.to_semilattice_sup | |
0.000017 2120 sup_le_iff | |
0.000017 2121 sup_comm | |
0.000018 2122 sup_is_commutative | |
0.000015 2123 finset.sup._proof_1 | |
0.000017 2124 sup_assoc | |
0.000017 2125 sup_is_associative | |
0.000015 2126 finset.sup._proof_2 | |
0.000016 2127 order_bot.bot | |
0.000017 2128 order_bot.to_has_bot | |
0.000015 2129 finset.sup | |
0.000014 2130 finset.has_subset | |
0.000016 2131 multiset.mem_range | |
0.000015 2132 finset.mem_range | |
0.000017 2133 multiset.sup._proof_1 | |
0.000015 2134 multiset.sup._proof_2 | |
0.000016 2135 multiset.sup | |
0.000017 2136 multiset.induction | |
0.000015 2137 multiset.induction_on | |
0.000016 2138 multiset.fold_zero | |
0.000017 2139 multiset.sup_zero | |
0.000018 2140 order_bot.bot_le | |
0.000025 2141 bot_le | |
0.000019 2142 forall_false_left | |
0.000014 2143 multiset.foldr_cons | |
0.000015 2144 multiset.fold_cons_left | |
0.000014 2145 multiset.sup_cons | |
0.000014 2146 and_congr_right | |
0.000013 2147 and.congr_right_iff | |
0.000018 2148 and.congr_left_iff | |
0.000017 2149 of_iff_true | |
0.000017 2150 forall_true_iff' | |
0.000015 2151 forall_2_true_iff | |
0.000016 2152 multiset.sup_le | |
0.000017 2153 exists_imp_distrib | |
0.000015 2154 finset.sup_le_iff | |
0.000016 2155 finset.le_sup | |
0.000015 2156 finset.subset_range_sup_succ | |
0.000016 2157 nat.infinite._match_1 | |
0.000016 2158 nat.infinite | |
0.000014 2159 char_zero.cast_injective | |
0.000016 2160 nat.cast_injective | |
0.000015 2161 char_zero.infinite | |
0.000014 2162 strict_mono | |
0.000016 2163 ordering | |
0.000016 2164 ordering.cases_on | |
0.000014 2165 ordering.compares._main | |
0.000016 2166 ordering.compares | |
0.000015 2167 strict_mono_incr_on | |
0.000015 2168 strict_mono_incr_on.le_iff_le | |
0.000016 2169 strict_mono_incr_on.lt_iff_lt | |
0.000015 2170 le_of_eq | |
0.000014 2171 eq.le | |
0.000016 2172 strict_mono_incr_on.compares | |
0.000015 2173 strict_mono.strict_mono_incr_on | |
0.000016 2174 strict_mono.compares | |
0.000015 2175 strict_mono.injective | |
0.000014 2176 nat.le_induction | |
0.000016 2177 lt_add_of_pos_right | |
0.000015 2178 lt_add_of_lt_of_pos | |
0.000017 2179 nat.strict_mono_cast | |
0.000014 2180 ordered_semiring.to_char_zero | |
0.000016 2181 linear_ordered_semiring.exists_pair_ne | |
0.000015 2182 linear_ordered_semiring.to_nontrivial | |
0.000016 2183 linear_ordered_semiring.to_char_zero | |
0.000017 2184 linear_ordered_comm_ring.mul_comm | |
0.000015 2185 linear_ordered_comm_ring.to_comm_monoid | |
0.000016 2186 inv_mul_cancel_right' | |
0.000015 2187 div_mul_cancel | |
0.000016 2188 mul_lt_mul' | |
0.000015 2189 rat_mul_continuous_lemma | |
0.000014 2190 cau_seq.has_mul._match_4 | |
0.000016 2191 add_le_add_right | |
0.000015 2192 add_lt_add_of_le_of_lt | |
0.000016 2193 lt_add_of_le_of_pos | |
0.000016 2194 lt_add_one | |
0.000014 2195 multiset.sum._proof_1 | |
0.000016 2196 multiset.sum | |
0.000015 2197 finset.sum | |
0.000014 2198 lt_or_ge | |
0.000016 2199 lt_or_le | |
0.000015 2200 finset.fold_singleton | |
0.000016 2201 add_comm_semigroup.to_is_commutative | |
0.000015 2202 add_semigroup.to_is_associative | |
0.000016 2203 finset.sum_singleton | |
0.000014 2204 has_union | |
0.000017 2205 has_union.union | |
0.000014 2206 quotient.lift | |
0.000017 2207 setoid.iseqv | |
0.000015 2208 setoid.refl | |
0.000014 2209 quotient.lift₂._proof_1 | |
0.000016 2210 quotient.ind | |
0.000016 2211 quotient.lift₂._proof_2 | |
0.000014 2212 quotient.lift₂ | |
0.000016 2213 quotient.lift_on₂ | |
0.000016 2214 has_insert | |
0.000014 2215 has_insert.insert | |
0.000016 2216 list.insert | |
0.000015 2217 list.has_insert | |
0.000016 2218 list.union | |
0.000015 2219 list.has_union | |
0.000016 2220 list.nil_union | |
0.000015 2221 list.cons_union | |
0.000017 2222 list.insert.def | |
0.000014 2223 list.insert_of_mem | |
0.000017 2224 list.insert_of_not_mem | |
0.000015 2225 list.perm_cons | |
0.000014 2226 list.perm.insert | |
0.000016 2227 not.intro | |
0.000015 2228 list.not_mem_cons_of_ne_of_not_mem | |
0.000014 2229 list.perm_insert_swap | |
0.000016 2230 list.perm.union_right | |
0.000015 2231 list.perm.union_left | |
0.000016 2232 list.perm.union | |
0.000015 2233 multiset.ndunion._proof_1 | |
0.000016 2234 multiset.ndunion | |
0.000015 2235 quotient.induction_on₂ | |
0.000016 2236 list.nodup_insert | |
0.000017 2237 list.nodup_union | |
0.000014 2238 multiset.nodup_ndunion | |
0.000017 2239 finset.nodup | |
0.000015 2240 finset.has_union._proof_1 | |
0.000014 2241 finset.has_union | |
0.102044 2242 has_sdiff | |
0.000061 2243 has_sdiff.sdiff | |
0.000025 2244 list.diff._main | |
0.000014 2245 list.diff | |
0.000014 2246 list.diff_nil | |
0.000014 2247 list.diff._main.equations._eqn_2 | |
0.000014 2248 list.diff.equations._eqn_2 | |
0.000014 2249 list.forall_mem_of_forall_mem_cons | |
0.000014 2250 list.erasep_of_forall_not | |
0.000014 2251 list.erase_of_not_mem | |
0.000014 2252 list.diff_cons | |
0.000014 2253 list.mem_of_ne_of_mem | |
0.000014 2254 list.erasep_append_left | |
0.000014 2255 list.erase_append_left | |
0.000014 2256 list.erasep_append_right | |
0.000018 2257 list.erase_append_right | |
0.000018 2258 decidable_of_decidable_of_iff._proof_1 | |
0.000017 2259 decidable_of_decidable_of_iff | |
0.000015 2260 decidable_of_iff | |
0.000016 2261 has_coe_to_sort | |
0.000017 2262 has_coe_to_sort.S | |
0.000017 2263 has_coe_to_sort.coe | |
0.000019 2264 coe_sort | |
0.000023 2265 bool | |
0.000018 2266 coe_sort_bool | |
0.000014 2267 bool.cases_on | |
0.000017 2268 bor._main | |
0.000028 2269 bor | |
0.000015 2270 list.any | |
0.000019 2271 decidable.to_bool | |
0.000015 2272 bool.no_confusion_type | |
0.000016 2273 bool.no_confusion | |
0.000017 2274 coe_sort_ff | |
0.000015 2275 bool.not_ff | |
0.000015 2276 list.not_exists_mem_nil | |
0.000016 2277 list.any_cons | |
0.000017 2278 as_true | |
0.000015 2279 of_as_true | |
0.000016 2280 iff.decidable._proof_1 | |
0.000015 2281 iff.decidable._proof_2 | |
0.000016 2282 iff.decidable._proof_3 | |
0.000017 2283 iff.decidable._proof_4 | |
0.000015 2284 iff.decidable | |
0.000018 2285 bool.ff_ne_tt | |
0.000015 2286 bool.decidable_eq._main | |
0.000016 2287 bool.decidable_eq | |
0.000015 2288 bor_coe_iff | |
0.000016 2289 bex.elim | |
0.000015 2290 bex.intro | |
0.000016 2291 list.or_exists_of_exists_mem_cons | |
0.000015 2292 list.exists_mem_cons_of | |
0.000017 2293 list.exists_mem_cons_of_exists | |
0.000015 2294 list.exists_mem_cons_iff | |
0.000016 2295 list.any_iff_exists | |
0.000015 2296 exists_prop_congr | |
0.000014 2297 exists_prop_congr' | |
0.000014 2298 to_bool_iff | |
0.000016 2299 of_to_bool_true | |
0.000015 2300 to_bool_true | |
0.000016 2301 bool.of_to_bool_iff | |
0.000015 2302 list.any_iff_exists_prop | |
0.000017 2303 list.decidable_exists_mem._proof_1 | |
0.000016 2304 list.decidable_exists_mem | |
0.000017 2305 not_exists | |
0.000016 2306 not_and | |
0.000015 2307 list.exists_or_eq_self_of_erasep | |
0.000015 2308 list.sublist_cons | |
0.000017 2309 list.sublist_of_cons_sublist | |
0.000015 2310 list.sublist_of_cons_sublist_cons | |
0.000014 2311 list.cons_sublist_cons_iff | |
0.000017 2312 list.append_sublist_append_left | |
0.000015 2313 list.erasep_sublist | |
0.000014 2314 list.erase_sublist | |
0.000016 2315 list.erase_subset | |
0.000016 2316 list.mem_of_mem_erase | |
0.000014 2317 list.erase_comm | |
0.000016 2318 list.perm.diff_left | |
0.000015 2319 list.perm.erase | |
0.000014 2320 list.perm.diff_right | |
0.000016 2321 list.perm.diff | |
0.000015 2322 multiset.sub._proof_1 | |
0.000016 2323 multiset.sub | |
0.000015 2324 multiset.has_sub | |
0.000017 2325 list.subperm | |
0.000015 2326 list.eq_nil_of_subset_nil | |
0.000016 2327 list.eq_nil_of_sublist_nil | |
0.000015 2328 list.exists_perm_sublist | |
0.000016 2329 list.perm.subperm_left | |
0.000015 2330 list.perm.subperm_right | |
0.000016 2331 multiset.le._proof_1 | |
0.000015 2332 multiset.le | |
0.000015 2333 preorder.lt._default | |
0.000016 2334 list.perm.subperm | |
0.000015 2335 list.subperm.refl | |
0.000016 2336 multiset.partial_order._proof_1 | |
0.000015 2337 list.subperm.trans | |
0.000014 2338 multiset.partial_order._proof_2 | |
0.000017 2339 multiset.partial_order._proof_3 | |
0.000014 2340 nat.succ.inj_arrow | |
0.000016 2341 list.eq_of_sublist_of_length_eq | |
0.000015 2342 list.eq_of_sublist_of_length_le | |
0.000016 2343 list.subperm.perm_of_length_le | |
0.000015 2344 list.subperm.length_le | |
0.000017 2345 list.subperm.antisymm | |
0.000017 2346 multiset.partial_order._proof_4 | |
0.000015 2347 multiset.partial_order | |
0.000017 2348 multiset.le_induction_on | |
0.000015 2349 multiset.nodup_of_le | |
0.000017 2350 list.perm.append_right | |
0.000015 2351 list.perm.append_left | |
0.000015 2352 list.perm.append | |
0.000016 2353 multiset.add._proof_1 | |
0.000017 2354 multiset.add | |
0.000015 2355 multiset.has_add | |
0.000016 2356 multiset.sub_zero | |
0.000015 2357 quotient.induction_on₃ | |
0.000014 2358 multiset.ordered_cancel_add_comm_monoid._proof_1 | |
0.000016 2359 list.sublist.subperm | |
0.000015 2360 list.subperm_cons | |
0.000016 2361 list.subperm_append_left | |
0.000015 2362 multiset.add_le_add_left | |
0.000015 2363 multiset.add_left_cancel | |
0.000016 2364 multiset.zero_add | |
0.000015 2365 list.append_nil | |
0.000014 2366 list.perm_append_comm | |
0.000016 2367 multiset.add_comm | |
0.000015 2368 multiset.ordered_cancel_add_comm_monoid._proof_2 | |
0.000016 2369 nsmul_rec._main | |
0.000015 2370 nsmul_rec | |
0.000016 2371 add_monoid.nsmul._default | |
0.000016 2372 add_left_cancel_monoid.nsmul._default | |
0.000014 2373 add_cancel_comm_monoid.nsmul._default | |
0.000016 2374 multiset.ordered_cancel_add_comm_monoid._proof_3 | |
0.000015 2375 multiset.ordered_cancel_add_comm_monoid._proof_4 | |
0.096332 2376 multiset.ordered_cancel_add_comm_monoid._proof_5 | |
0.000058 2377 multiset.ordered_cancel_add_comm_monoid._proof_6 | |
0.000025 2378 multiset.ordered_cancel_add_comm_monoid._proof_7 | |
0.000014 2379 multiset.ordered_cancel_add_comm_monoid._proof_8 | |
0.000015 2380 multiset.ordered_cancel_add_comm_monoid._proof_9 | |
0.000014 2381 multiset.ordered_cancel_add_comm_monoid._proof_10 | |
0.000014 2382 multiset.ordered_cancel_add_comm_monoid._proof_11 | |
0.000014 2383 multiset.ordered_cancel_add_comm_monoid | |
0.000014 2384 nonempty.elim | |
0.000015 2385 forall_const | |
0.000014 2386 inhabited.default | |
0.000014 2387 nonempty_of_inhabited | |
0.000014 2388 multiset.inhabited_multiset | |
0.000014 2389 multiset.erase._proof_1 | |
0.000017 2390 multiset.erase | |
0.000018 2391 multiset.sub_cons | |
0.000015 2392 subsingleton | |
0.000017 2393 psigma | |
0.000017 2394 psigma.fst | |
0.000018 2395 quot.indep | |
0.000016 2396 psigma.snd | |
0.000017 2397 psigma.cases_on | |
0.000015 2398 psigma.eq | |
0.000015 2399 quot.indep_coherent | |
0.000016 2400 quot.lift_indep_pr1 | |
0.000014 2401 quot.rec | |
0.000017 2402 subsingleton.elim | |
0.000015 2403 quot.rec_on_subsingleton._proof_1 | |
0.000014 2404 quot.rec_on_subsingleton | |
0.000017 2405 proof_irrel | |
0.000015 2406 decidable.subsingleton._match_3 | |
0.000014 2407 decidable.subsingleton._match_2 | |
0.000016 2408 decidable.subsingleton._match_1 | |
0.000016 2409 decidable.subsingleton | |
0.000014 2410 multiset.decidable_mem._proof_1 | |
0.000016 2411 multiset.decidable_mem | |
0.000015 2412 multiset.cons_erase | |
0.000016 2413 multiset.erase_of_not_mem | |
0.000015 2414 multiset.quot_mk_to_coe'' | |
0.000017 2415 multiset.cons_coe | |
0.000014 2416 has_le.le.lt_of_ne | |
0.000017 2417 lt_iff_le_and_ne | |
0.000015 2418 multiset.coe_le | |
0.000016 2419 setoid.trans | |
0.000015 2420 setoid.symm | |
0.000016 2421 _private.100293989.rel._proof_1 | |
0.000015 2422 _private.100293989.rel | |
0.000016 2423 _private.3833919617.rel.refl | |
0.000015 2424 _private.3059602155.eq_imp_rel | |
0.000015 2425 quotient.exact | |
0.000016 2426 quotient.eq | |
0.000015 2427 multiset.coe_eq_coe | |
0.000014 2428 multiset.lt_cons_self | |
0.000017 2429 multiset.le_cons_self | |
0.000015 2430 multiset.le_cons_erase | |
0.000016 2431 multiset.cons_le_cons_iff | |
0.000014 2432 multiset.cons_le_cons | |
0.000017 2433 multiset.erase_le | |
0.000015 2434 list.sublist_or_mem_of_sublist | |
0.000015 2435 multiset.mem_cons_self | |
0.000016 2436 multiset.le_cons_of_not_mem | |
0.000015 2437 multiset.erase_le_iff_le_cons | |
0.000014 2438 multiset.singleton_add | |
0.000017 2439 multiset.cons_add | |
0.000015 2440 multiset.add_cons | |
0.000016 2441 multiset.sub_le_iff_le_add | |
0.000015 2442 le_add_iff_nonneg_right | |
0.000016 2443 multiset.zero_le | |
0.000015 2444 multiset.le_add_right | |
0.000016 2445 multiset.sub_le_self | |
0.000017 2446 finset.has_sdiff._proof_1 | |
0.000015 2447 finset.has_sdiff | |
0.000016 2448 le_add_of_nonneg_left | |
0.000015 2449 comm_monoid.one | |
0.000016 2450 comm_monoid.one_mul | |
0.000015 2451 comm_monoid.mul_one | |
0.000016 2452 comm_monoid.npow | |
0.000015 2453 comm_monoid.npow_zero' | |
0.000016 2454 comm_monoid.npow_succ' | |
0.000014 2455 comm_monoid.to_monoid | |
0.000015 2456 mul_left_comm | |
0.000014 2457 multiset.prod._proof_1 | |
0.000014 2458 multiset.prod | |
0.000014 2459 finset.prod | |
0.000015 2460 has_pow | |
0.000014 2461 has_pow.pow | |
0.000016 2462 monoid.npow | |
0.000015 2463 monoid.has_pow | |
0.000016 2464 add_monoid_hom | |
0.000015 2465 add_monoid_hom.to_fun | |
0.000014 2466 add_monoid_hom.has_coe_to_fun | |
0.000016 2467 multiset.card._proof_1 | |
0.000015 2468 multiset.card._proof_2 | |
0.000016 2469 list.length_append | |
0.000015 2470 multiset.card._proof_3 | |
0.000017 2471 multiset.card | |
0.000014 2472 multiset.repeat | |
0.000017 2473 finset.prod.equations._eqn_1 | |
0.000014 2474 function.const | |
0.000016 2475 list.map._main.equations._eqn_2 | |
0.000016 2476 list.map.equations._eqn_2 | |
0.000014 2477 list.map_const | |
0.000016 2478 multiset.map_const | |
0.000015 2479 list.foldl._main | |
0.000016 2480 list.foldl | |
0.000015 2481 list.prod | |
0.000016 2482 multiset.repeat.equations._eqn_1 | |
0.000014 2483 list.foldl._main.equations._eqn_2 | |
0.000016 2484 list.foldl.equations._eqn_2 | |
0.000015 2485 list.perm.foldl_eq' | |
0.000016 2486 list.perm.foldl_eq | |
0.000015 2487 multiset.foldl._proof_1 | |
0.000016 2488 multiset.foldl | |
0.000015 2489 mul_right_comm | |
0.000016 2490 list.reverse_core._main | |
0.000015 2491 list.reverse_core | |
0.000016 2492 list.reverse | |
0.000015 2493 list.reverse_core._main.equations._eqn_2 | |
0.000014 2494 list.reverse_core.equations._eqn_2 | |
0.000017 2495 list.reverse_cons | |
0.000014 2496 list.perm_append_singleton | |
0.000017 2497 list.reverse_perm | |
0.000015 2498 multiset.coe_reverse | |
0.000022 2499 list.foldl_cons | |
0.000016 2500 list.foldl_append | |
0.000015 2501 list.foldl_nil | |
0.000013 2502 list.foldr._main.equations._eqn_2 | |
0.000014 2503 list.foldr.equations._eqn_2 | |
0.000015 2504 list.foldl_reverse | |
0.000016 2505 list.reverse_nil | |
0.000015 2506 list.reverse_append | |
0.107309 2507 list.reverse_reverse | |
0.000063 2508 list.foldr_reverse | |
0.000025 2509 multiset.coe_foldr_swap | |
0.000015 2510 multiset.foldr_swap | |
0.000014 2511 multiset.prod_eq_foldl | |
0.000014 2512 multiset.coe_prod | |
0.000014 2513 monoid.npow_zero' | |
0.000014 2514 pow_zero | |
0.000014 2515 list.prod.equations._eqn_1 | |
0.000015 2516 list.foldl_assoc | |
0.000014 2517 semigroup.to_is_associative | |
0.000014 2518 list.prod_cons | |
0.000014 2519 npow_eq_pow | |
0.000017 2520 monoid.npow_succ' | |
0.000017 2521 npow_add | |
0.000017 2522 npow_one | |
0.000017 2523 pow_succ | |
0.000015 2524 list.prod_repeat | |
0.000016 2525 multiset.prod_repeat | |
0.000018 2526 one_pow | |
0.000016 2527 finset.prod_const_one | |
0.000015 2528 multiplicative | |
0.000014 2529 equiv | |
0.000016 2530 equiv.to_fun | |
0.000017 2531 equiv.has_coe_to_fun | |
0.000017 2532 multiplicative.of_add._proof_1 | |
0.000017 2533 multiplicative.of_add._proof_2 | |
0.000015 2534 multiplicative.of_add | |
0.000017 2535 equiv.inv_fun | |
0.000015 2536 equiv.right_inv | |
0.000016 2537 equiv.left_inv | |
0.000018 2538 equiv.symm | |
0.000017 2539 multiplicative.to_add | |
0.000017 2540 multiplicative.has_mul | |
0.000025 2541 multiplicative.semigroup | |
0.000015 2542 multiplicative.monoid._proof_1 | |
0.000014 2543 multiplicative.has_one | |
0.000014 2544 multiplicative.mul_one_class._proof_1 | |
0.000018 2545 multiplicative.mul_one_class._proof_2 | |
0.000017 2546 multiplicative.mul_one_class | |
0.000015 2547 multiplicative.monoid._proof_2 | |
0.000017 2548 multiplicative.monoid._proof_3 | |
0.000017 2549 add_monoid.nsmul | |
0.000017 2550 add_monoid.nsmul_zero' | |
0.000014 2551 multiplicative.monoid._proof_4 | |
0.000015 2552 add_monoid.nsmul_succ' | |
0.000016 2553 multiplicative.monoid._proof_5 | |
0.000015 2554 multiplicative.monoid | |
0.000016 2555 multiplicative.comm_monoid._proof_1 | |
0.000016 2556 multiplicative.comm_monoid._proof_2 | |
0.000014 2557 multiplicative.comm_monoid._proof_3 | |
0.000016 2558 multiplicative.comm_monoid._proof_4 | |
0.000015 2559 multiplicative.comm_monoid._proof_5 | |
0.000014 2560 multiplicative.comm_semigroup._proof_1 | |
0.000014 2561 multiplicative.comm_semigroup._proof_2 | |
0.000018 2562 multiplicative.comm_semigroup | |
0.000015 2563 multiplicative.comm_monoid._proof_6 | |
0.000016 2564 multiplicative.comm_monoid | |
0.000014 2565 finset.sum_const_zero | |
0.000017 2566 multiset.ndinsert._proof_1 | |
0.000015 2567 multiset.ndinsert | |
0.000017 2568 multiset.nodup_ndinsert | |
0.000017 2569 finset.has_insert._proof_1 | |
0.000016 2570 finset.has_insert | |
0.000014 2571 multiset.nodup_cons | |
0.000016 2572 finset.cons._proof_1 | |
0.000015 2573 finset.cons | |
0.000016 2574 finset.cases_on | |
0.000015 2575 finset.eq_of_veq | |
0.000016 2576 finset.cons_val | |
0.000015 2577 finset.cons_induction | |
0.000016 2578 finset.val_inj | |
0.000015 2579 list.cons_subperm_of_mem | |
0.000016 2580 list.subperm_of_subset_nodup | |
0.000015 2581 list.perm_ext | |
0.000016 2582 multiset.nodup_ext | |
0.000017 2583 finset.ext_iff | |
0.000015 2584 finset.ext | |
0.000016 2585 finset.mem_cons | |
0.000016 2586 list.mem_insert_iff | |
0.000016 2587 multiset.mem_ndinsert | |
0.000017 2588 finset.mem_insert | |
0.000015 2589 finset.cons_eq_insert | |
0.000016 2590 finset.induction | |
0.000016 2591 finset.induction_on | |
0.000014 2592 finset.fold.equations._eqn_1 | |
0.000016 2593 finset.insert_val | |
0.000015 2594 multiset.ndinsert_of_not_mem | |
0.000016 2595 multiset.map_cons | |
0.000015 2596 finset.fold_insert | |
0.000015 2597 finset.sum_insert | |
0.000016 2598 has_le.le.trans | |
0.000015 2599 add_le_add | |
0.000014 2600 multiset.mem_ndinsert_self | |
0.000017 2601 finset.mem_insert_self | |
0.000015 2602 multiset.mem_ndinsert_of_mem | |
0.000016 2603 finset.mem_insert_of_mem | |
0.000014 2604 finset.sum_le_sum | |
0.000017 2605 finset.sum_nonneg | |
0.000014 2606 multiset.subset | |
0.000016 2607 multiset.has_subset | |
0.000015 2608 multiset.mem_of_subset | |
0.000016 2609 list.subset.trans | |
0.000016 2610 list.subperm.subset | |
0.000014 2611 multiset.subset_of_le | |
0.000016 2612 multiset.mem_of_le | |
0.000015 2613 multiset.countp._proof_1 | |
0.000016 2614 multiset.countp | |
0.000015 2615 multiset.count | |
0.000014 2616 iff_iff_implies_and_implies | |
0.000017 2617 iff_def | |
0.000014 2618 decidable.not_imp_comm | |
0.000017 2619 decidable.iff_not_comm | |
0.000015 2620 iff_not_comm | |
0.000016 2621 multiset.count.equations._eqn_1 | |
0.000015 2622 multiset.filter._proof_1 | |
0.000016 2623 multiset.filter | |
0.000015 2624 multiset.countp_eq_card_filter | |
0.000016 2625 multiset.card_pos_iff_exists_mem | |
0.000015 2626 multiset.mem_filter | |
0.000014 2627 multiset.countp_pos | |
0.000017 2628 multiset.count_pos | |
0.000015 2629 canonically_ordered_add_monoid | |
0.000016 2630 canonically_ordered_add_monoid.add | |
0.000015 2631 canonically_ordered_add_monoid.add_assoc | |
0.000016 2632 canonically_ordered_add_monoid.zero | |
0.000015 2633 canonically_ordered_add_monoid.zero_add | |
0.000016 2634 canonically_ordered_add_monoid.add_zero | |
0.000015 2635 canonically_ordered_add_monoid.nsmul | |
0.200717 2636 canonically_ordered_add_monoid.nsmul_zero' | |
0.000060 2637 canonically_ordered_add_monoid.nsmul_succ' | |
0.000024 2638 canonically_ordered_add_monoid.add_comm | |
0.000015 2639 canonically_ordered_add_monoid.le | |
0.000014 2640 canonically_ordered_add_monoid.lt | |
0.000014 2641 canonically_ordered_add_monoid.le_refl | |
0.000014 2642 canonically_ordered_add_monoid.le_trans | |
0.000015 2643 canonically_ordered_add_monoid.lt_iff_le_not_le | |
0.000014 2644 canonically_ordered_add_monoid.le_antisymm | |
0.000014 2645 canonically_ordered_add_monoid.add_le_add_left | |
0.000014 2646 canonically_ordered_add_monoid.lt_of_add_lt_add_left | |
0.000015 2647 canonically_ordered_add_monoid.to_ordered_add_comm_monoid | |
0.000018 2648 canonically_ordered_add_monoid.le_iff_exists_add | |
0.000018 2649 le_iff_exists_add | |
0.000015 2650 zero_le | |
0.000016 2651 pos_iff_ne_zero | |
0.000018 2652 comm_semiring.to_semiring | |
0.000015 2653 canonically_ordered_comm_semiring | |
0.000014 2654 canonically_ordered_comm_semiring.add | |
0.000014 2655 canonically_ordered_comm_semiring.add_assoc | |
0.000016 2656 canonically_ordered_comm_semiring.zero | |
0.000015 2657 canonically_ordered_comm_semiring.zero_add | |
0.000016 2658 canonically_ordered_comm_semiring.add_zero | |
0.000017 2659 canonically_ordered_comm_semiring.nsmul | |
0.000017 2660 canonically_ordered_comm_semiring.nsmul_zero' | |
0.000015 2661 canonically_ordered_comm_semiring.nsmul_succ' | |
0.000014 2662 canonically_ordered_comm_semiring.add_comm | |
0.000017 2663 canonically_ordered_comm_semiring.le | |
0.000017 2664 canonically_ordered_comm_semiring.lt | |
0.000017 2665 canonically_ordered_comm_semiring.le_refl | |
0.000017 2666 canonically_ordered_comm_semiring.le_trans | |
0.000017 2667 canonically_ordered_comm_semiring.lt_iff_le_not_le | |
0.000017 2668 canonically_ordered_comm_semiring.le_antisymm | |
0.000015 2669 canonically_ordered_comm_semiring.add_le_add_left | |
0.000017 2670 canonically_ordered_comm_semiring.lt_of_add_lt_add_left | |
0.000017 2671 canonically_ordered_comm_semiring.bot | |
0.000015 2672 canonically_ordered_comm_semiring.bot_le | |
0.000016 2673 canonically_ordered_comm_semiring.le_iff_exists_add | |
0.000017 2674 canonically_ordered_comm_semiring.to_canonically_ordered_add_monoid | |
0.000016 2675 nat.canonically_ordered_comm_semiring._proof_1 | |
0.000014 2676 nat.canonically_ordered_comm_semiring._proof_2 | |
0.000016 2677 nat.canonically_ordered_comm_semiring._proof_3 | |
0.000015 2678 nat.canonically_ordered_comm_semiring._proof_4 | |
0.000016 2679 nat.canonically_ordered_comm_semiring._proof_5 | |
0.000015 2680 nat.canonically_ordered_comm_semiring._proof_6 | |
0.000016 2681 nat.canonically_ordered_comm_semiring._proof_7 | |
0.000016 2682 nat.canonically_ordered_comm_semiring._proof_8 | |
0.000016 2683 nat.canonically_ordered_comm_semiring._proof_9 | |
0.000015 2684 nat.canonically_ordered_comm_semiring._proof_10 | |
0.000016 2685 nat.canonically_ordered_comm_semiring._proof_11 | |
0.000015 2686 nat.canonically_ordered_comm_semiring._proof_12 | |
0.000017 2687 nat.canonically_ordered_comm_semiring._match_1 | |
0.000015 2688 nat.canonically_ordered_comm_semiring._match_2 | |
0.000016 2689 nat.canonically_ordered_comm_semiring._proof_13 | |
0.000016 2690 nat.canonically_ordered_comm_semiring._proof_14 | |
0.000016 2691 nat.canonically_ordered_comm_semiring._proof_15 | |
0.000017 2692 nat.canonically_ordered_comm_semiring._proof_16 | |
0.000015 2693 nat.canonically_ordered_comm_semiring._proof_17 | |
0.000016 2694 nat.canonically_ordered_comm_semiring._proof_18 | |
0.000015 2695 nat.canonically_ordered_comm_semiring._proof_19 | |
0.000016 2696 nat.canonically_ordered_comm_semiring._proof_20 | |
0.000017 2697 nat.canonically_ordered_comm_semiring._proof_21 | |
0.000015 2698 nat.canonically_ordered_comm_semiring._proof_22 | |
0.000016 2699 comm_semiring.mul_comm | |
0.000015 2700 nat.canonically_ordered_comm_semiring._proof_23 | |
0.000016 2701 nat.add_one | |
0.000015 2702 nat.eq_zero_of_add_eq_zero_right | |
0.000017 2703 nat.eq_zero_of_add_eq_zero_left | |
0.000014 2704 nat.eq_zero_of_mul_eq_zero | |
0.000017 2705 nat.canonically_ordered_comm_semiring._proof_24 | |
0.000015 2706 nat.canonically_ordered_comm_semiring | |
0.000017 2707 multiset.count_eq_zero | |
0.000015 2708 nat.sub._main | |
0.000014 2709 nat.sub | |
0.000016 2710 nat.has_sub | |
0.000015 2711 multiset.count_zero | |
0.000016 2712 nat.sub_zero | |
0.000015 2713 list.countp_cons_of_pos | |
0.000016 2714 multiset.countp_cons_of_pos | |
0.000014 2715 multiset.count_cons_self | |
0.000017 2716 multiset.count_erase_self | |
0.000015 2717 nat.sub_succ | |
0.000014 2718 nat.sub_one | |
0.000016 2719 nat.sub_sub | |
0.000015 2720 nat.one_add | |
0.000016 2721 nat.pred_sub | |
0.000015 2722 multiset.countp_cons_of_neg | |
0.000016 2723 multiset.count_cons_of_ne | |
0.103252 2724 multiset.count_erase_of_ne | |
0.000058 2725 multiset.count_sub | |
0.000025 2726 nat.add_le_add_right | |
0.000014 2727 nat.rec_on | |
0.000014 2728 nat.succ_sub_succ_eq_sub | |
0.000014 2729 nat.succ_sub_succ | |
0.000015 2730 nat.add_sub_add_right | |
0.000014 2731 nat.le_of_sub_eq_zero | |
0.000014 2732 nat.add_sub_add_left | |
0.000014 2733 nat.zero_sub | |
0.000014 2734 nat.sub_self_add | |
0.000014 2735 nat.sub_eq_zero_of_le | |
0.000014 2736 nat.sub_eq_zero_iff_le | |
0.000014 2737 multiset.nodup_iff_count_le_one | |
0.000014 2738 multiset.mem_add | |
0.000018 2739 multiset.le_sub_add | |
0.000018 2740 multiset.mem_sub_of_nodup | |
0.000017 2741 finset.mem_sdiff | |
0.000016 2742 semilattice_inf_bot | |
0.000015 2743 semilattice_inf_bot.bot | |
0.000017 2744 semilattice_inf_bot.le | |
0.000017 2745 semilattice_inf_bot.lt | |
0.000017 2746 semilattice_inf_bot.le_refl | |
0.000017 2747 semilattice_inf_bot.le_trans | |
0.000015 2748 semilattice_inf_bot.lt_iff_le_not_le | |
0.000016 2749 semilattice_inf_bot.le_antisymm | |
0.000017 2750 semilattice_inf_bot.bot_le | |
0.000016 2751 semilattice_inf_bot.to_order_bot | |
0.000014 2752 semilattice_inf_bot.inf | |
0.000017 2753 semilattice_inf_bot.inf_le_left | |
0.000017 2754 semilattice_inf_bot.inf_le_right | |
0.000017 2755 semilattice_inf_bot.le_inf | |
0.000018 2756 semilattice_inf_bot.to_semilattice_inf | |
0.000016 2757 disjoint | |
0.000018 2758 has_ssubset | |
0.000015 2759 has_ssubset.ssubset | |
0.000016 2760 finset.has_ssubset | |
0.000015 2761 multiset.subset.refl | |
0.000018 2762 finset.subset.refl | |
0.000015 2763 multiset.subset.trans | |
0.000017 2764 finset.subset.trans | |
0.000015 2765 finset.partial_order._proof_1 | |
0.000016 2766 finset.subset.antisymm | |
0.000015 2767 finset.partial_order | |
0.000016 2768 finset.lattice._proof_1 | |
0.000015 2769 finset.lattice._proof_2 | |
0.000016 2770 finset.lattice._proof_3 | |
0.000015 2771 finset.lattice._proof_4 | |
0.000016 2772 list.mem_union | |
0.000015 2773 multiset.mem_ndunion | |
0.000016 2774 finset.mem_union | |
0.000017 2775 finset.mem_union_left | |
0.000015 2776 finset.subset_union_left | |
0.000017 2777 finset.lattice._proof_5 | |
0.000014 2778 finset.mem_union_right | |
0.000017 2779 finset.subset_union_right | |
0.000015 2780 finset.lattice._proof_6 | |
0.000014 2781 multiset.le_iff_subset | |
0.000016 2782 finset.val_le_iff | |
0.000015 2783 multiset.zero_ndunion | |
0.000017 2784 multiset.zero_subset | |
0.000014 2785 multiset.cons_ndunion | |
0.000016 2786 list.is_suffix | |
0.000015 2787 list.is_infix | |
0.000016 2788 list.sublist_append_left | |
0.000015 2789 list.sublist_of_infix | |
0.000016 2790 list.infix_of_suffix | |
0.000014 2791 list.sublist_of_suffix | |
0.000017 2792 list.suffix_refl | |
0.000014 2793 list.suffix_append | |
0.000026 2794 list.suffix_cons | |
0.000015 2795 list.suffix_insert | |
0.000014 2796 multiset.le_ndinsert_self | |
0.000018 2797 multiset.ndinsert_of_mem | |
0.000015 2798 multiset.ndinsert_le | |
0.000017 2799 and_comm | |
0.000015 2800 multiset.subset_iff | |
0.000017 2801 multiset.cons_subset | |
0.000017 2802 multiset.ndunion_le | |
0.000015 2803 finset.union_subset | |
0.000017 2804 finset.lattice._proof_7 | |
0.000015 2805 has_inter | |
0.000016 2806 has_inter.inter | |
0.000015 2807 multiset.ndinter | |
0.000016 2808 list.pairwise_filter_of_pairwise | |
0.000015 2809 list.nodup_filter | |
0.000016 2810 multiset.nodup_filter | |
0.000015 2811 multiset.nodup_ndinter | |
0.000016 2812 finset.has_inter._proof_1 | |
0.000015 2813 finset.has_inter | |
0.000017 2814 multiset.mem_ndinter | |
0.000015 2815 finset.mem_inter | |
0.000016 2816 finset.mem_of_mem_inter_left | |
0.000015 2817 finset.inter_subset_left | |
0.000014 2818 finset.lattice._proof_8 | |
0.000016 2819 finset.mem_of_mem_inter_right | |
0.000015 2820 finset.inter_subset_right | |
0.000017 2821 finset.lattice._proof_9 | |
0.000015 2822 finset.subset_iff | |
0.000015 2823 finset.subset_inter | |
0.000016 2824 finset.lattice._proof_10 | |
0.000015 2825 finset.lattice | |
0.000015 2826 finset.semilattice_inf_bot._proof_1 | |
0.000016 2827 finset.semilattice_inf_bot._proof_2 | |
0.000015 2828 finset.semilattice_inf_bot._proof_3 | |
0.000015 2829 finset.semilattice_inf_bot._proof_4 | |
0.000014 2830 finset.empty_subset | |
0.000018 2831 finset.semilattice_inf_bot._proof_5 | |
0.000016 2832 finset.semilattice_inf_bot._proof_6 | |
0.000014 2833 finset.semilattice_inf_bot._proof_7 | |
0.000016 2834 finset.semilattice_inf_bot | |
0.000015 2835 multiset.coe_fold_l | |
0.000017 2836 multiset.fold_eq_foldl | |
0.000015 2837 multiset.foldl_cons | |
0.000016 2838 multiset.fold_cons'_right | |
0.000015 2839 multiset.fold_cons_right | |
0.000015 2840 of_eq_true | |
0.000016 2841 eq_true_intro | |
0.000016 2842 multiset.fold_add | |
0.000014 2843 list.map._main.equations._eqn_1 | |
0.000016 2844 list.map.equations._eqn_1 | |
0.000016 2845 list.map_append | |
0.000014 2846 multiset.map_add | |
0.000016 2847 multiset.union | |
0.000015 2848 multiset.has_union | |
0.000016 2849 multiset.le_union_left | |
0.000015 2850 le_add_iff_nonneg_left | |
0.000017 2851 multiset.le_add_left | |
0.000015 2852 multiset.le_union_right | |
0.155284 2853 multiset.ndunion_le_union | |
0.000059 2854 multiset.canonically_ordered_add_monoid._proof_1 | |
0.000024 2855 multiset.canonically_ordered_add_monoid._proof_2 | |
0.000015 2856 multiset.canonically_ordered_add_monoid._proof_3 | |
0.000015 2857 multiset.canonically_ordered_add_monoid._proof_4 | |
0.000014 2858 multiset.canonically_ordered_add_monoid._proof_5 | |
0.000014 2859 multiset.canonically_ordered_add_monoid._proof_6 | |
0.000014 2860 multiset.canonically_ordered_add_monoid._proof_7 | |
0.000014 2861 multiset.canonically_ordered_add_monoid._proof_8 | |
0.000015 2862 multiset.canonically_ordered_add_monoid._proof_9 | |
0.000014 2863 multiset.canonically_ordered_add_monoid._proof_10 | |
0.000014 2864 multiset.canonically_ordered_add_monoid._proof_11 | |
0.000019 2865 multiset.canonically_ordered_add_monoid._proof_12 | |
0.000017 2866 list.sublist.exists_perm_append | |
0.000018 2867 multiset.le_iff_exists_add | |
0.000015 2868 multiset.canonically_ordered_add_monoid | |
0.000017 2869 forall_prop_of_true | |
0.000017 2870 forall_true_left | |
0.000016 2871 multiset.add_sub_of_le | |
0.000014 2872 multiset.sub_add_cancel | |
0.000017 2873 multiset.eq_union_left | |
0.000017 2874 list.sublist.erasep | |
0.000017 2875 list.sublist.erase | |
0.000017 2876 multiset.erase_le_erase | |
0.000016 2877 multiset.sub_le_sub_right | |
0.000018 2878 multiset.union_le_union_right | |
0.000015 2879 multiset.union_le | |
0.000016 2880 multiset.subset_ndunion_left | |
0.000017 2881 multiset.le_ndunion_left | |
0.000017 2882 list.sublist_suffix_of_union | |
0.000017 2883 list.suffix_union_right | |
0.000015 2884 multiset.le_ndunion_right | |
0.000015 2885 multiset.ndunion_eq_union | |
0.000016 2886 finset.union_val | |
0.000015 2887 list.bag_inter._main | |
0.000016 2888 list.bag_inter | |
0.000015 2889 list.nil_bag_inter | |
0.000016 2890 list.cons_bag_inter_of_pos | |
0.000016 2891 list.bag_inter_nil | |
0.000014 2892 list.bag_inter._main.equations._eqn_4 | |
0.000017 2893 list.bag_inter.equations._eqn_4 | |
0.000015 2894 list.cons_bag_inter_of_neg | |
0.000014 2895 list.perm.bag_inter_left | |
0.000017 2896 list.erasep_subset | |
0.000015 2897 list.mem_of_mem_erasep | |
0.000016 2898 list.mem_erasep_of_neg | |
0.000015 2899 list.mem_erase_of_ne | |
0.000015 2900 list.perm.bag_inter_right | |
0.000016 2901 list.perm.bag_inter | |
0.000015 2902 multiset.inter._proof_1 | |
0.000015 2903 multiset.inter | |
0.000016 2904 multiset.has_inter | |
0.000015 2905 multiset.zero_inter | |
0.000015 2906 multiset.cons_inter_of_pos | |
0.000016 2907 multiset.cons_inter_of_neg | |
0.000015 2908 multiset.le_inter | |
0.000015 2909 multiset.ndinter.equations._eqn_1 | |
0.000016 2910 multiset.filter_le | |
0.000015 2911 multiset.of_mem_filter | |
0.000015 2912 multiset.filter_eq_self | |
0.000016 2913 multiset.filter_le_filter | |
0.000015 2914 multiset.le_filter | |
0.000016 2915 multiset.le_ndinter | |
0.000015 2916 multiset.ndinter_le_left | |
0.000016 2917 multiset.ndinter_subset_right | |
0.000015 2918 multiset.ndinter_le_right | |
0.000014 2919 list.bag_inter_sublist_left | |
0.000014 2920 multiset.inter_le_left | |
0.000017 2921 multiset.inter_le_right | |
0.000015 2922 multiset.inter_le_ndinter | |
0.000015 2923 multiset.ndinter_eq_inter | |
0.000016 2924 finset.inter_val | |
0.000015 2925 multiset.union.equations._eqn_1 | |
0.000016 2926 list.diff_eq_foldl | |
0.000016 2927 list.diff_append | |
0.000014 2928 multiset.sub_add' | |
0.000016 2929 multiset.erase_cons_head | |
0.000015 2930 multiset.add_sub_cancel_left | |
0.000015 2931 multiset.add_sub_cancel | |
0.000015 2932 multiset.union_add_distrib | |
0.000016 2933 quotient.rec_on_subsingleton | |
0.000014 2934 quotient.rec_on_subsingleton₂._proof_1 | |
0.000017 2935 quotient.rec_on_subsingleton₂._proof_2 | |
0.000015 2936 quotient.rec_on_subsingleton₂ | |
0.000014 2937 decidable_of_iff' | |
0.000017 2938 list.cons_perm_iff_perm_erase | |
0.000015 2939 list.decidable_perm._main | |
0.000016 2940 list.decidable_perm | |
0.000015 2941 multiset.has_decidable_eq._main | |
0.000016 2942 multiset.has_decidable_eq | |
0.000015 2943 nat.le_of_lt_succ | |
0.000016 2944 nat.lt_of_succ_lt_succ | |
0.000015 2945 list.subperm.exists_of_length_lt | |
0.000016 2946 multiset.eq_of_le_of_card_le | |
0.000015 2947 multiset.card_lt_of_lt | |
0.000015 2948 multiset.lt_iff_cons_le | |
0.000016 2949 le_of_add_le_add_right | |
0.000015 2950 multiset.inter_add_distrib | |
0.000016 2951 multiset.add_inter_distrib | |
0.000015 2952 multiset.union_add_inter | |
0.000016 2953 finset.fold_union_inter | |
0.000015 2954 finset.sum_union_inter | |
0.000016 2955 bot_unique | |
0.000015 2956 eq_bot_iff | |
0.000016 2957 disjoint_iff | |
0.000015 2958 finset.disjoint_iff_inter_eq_empty | |
0.000016 2959 finset.sum_union | |
0.000015 2960 disjoint.equations._eqn_1 | |
0.000016 2961 finset.inf_eq_inter | |
0.000015 2962 finset.le_iff_subset | |
0.000016 2963 finset.disjoint_left | |
0.000015 2964 finset.sdiff_disjoint | |
0.000016 2965 finset.union_comm | |
0.000015 2966 generalized_boolean_algebra | |
0.300261 2967 generalized_boolean_algebra.bot | |
0.000071 2968 generalized_boolean_algebra.le | |
0.000023 2969 generalized_boolean_algebra.lt | |
0.000015 2970 generalized_boolean_algebra.le_refl | |
0.000014 2971 generalized_boolean_algebra.le_trans | |
0.000015 2972 generalized_boolean_algebra.lt_iff_le_not_le | |
0.000015 2973 generalized_boolean_algebra.le_antisymm | |
0.000014 2974 generalized_boolean_algebra.bot_le | |
0.000014 2975 generalized_boolean_algebra.inf | |
0.000014 2976 generalized_boolean_algebra.inf_le_left | |
0.000014 2977 generalized_boolean_algebra.inf_le_right | |
0.000014 2978 generalized_boolean_algebra.le_inf | |
0.000014 2979 generalized_boolean_algebra.to_semilattice_inf_bot | |
0.000014 2980 generalized_boolean_algebra.sup | |
0.000019 2981 generalized_boolean_algebra.le_sup_left | |
0.000018 2982 generalized_boolean_algebra.le_sup_right | |
0.000018 2983 generalized_boolean_algebra.sup_le | |
0.000015 2984 generalized_boolean_algebra.to_semilattice_sup_bot | |
0.000017 2985 generalized_boolean_algebra.sdiff | |
0.000017 2986 generalized_boolean_algebra.to_has_sdiff | |
0.000015 2987 generalized_boolean_algebra.sup_inf_sdiff | |
0.000016 2988 sup_inf_sdiff | |
0.000017 2989 le_antisymm_iff | |
0.000017 2990 order_dual | |
0.000019 2991 order_dual.has_sup | |
0.000017 2992 order_dual.has_le | |
0.000016 2993 order_dual.has_lt | |
0.000017 2994 order_dual.preorder._proof_1 | |
0.000017 2995 order_dual.preorder._proof_2 | |
0.000017 2996 order_dual.preorder._proof_3 | |
0.000017 2997 order_dual.preorder | |
0.000017 2998 order_dual.partial_order._proof_1 | |
0.000017 2999 order_dual.partial_order._proof_2 | |
0.000017 3000 order_dual.partial_order._proof_3 | |
0.000015 3001 order_dual.partial_order._proof_4 | |
0.000015 3002 order_dual.partial_order | |
0.000016 3003 order_dual.semilattice_sup._proof_1 | |
0.000015 3004 order_dual.semilattice_sup._proof_2 | |
0.000015 3005 order_dual.semilattice_sup._proof_3 | |
0.000014 3006 order_dual.semilattice_sup._proof_4 | |
0.000017 3007 order_dual.semilattice_sup._proof_5 | |
0.000015 3008 order_dual.semilattice_sup._proof_6 | |
0.000015 3009 order_dual.semilattice_sup._proof_7 | |
0.000014 3010 order_dual.semilattice_sup | |
0.000014 3011 le_inf_iff | |
0.000015 3012 inf_eq_right | |
0.000016 3013 sup_sdiff_of_le | |
0.000016 3014 finset.distrib_lattice._proof_1 | |
0.000014 3015 finset.distrib_lattice._proof_2 | |
0.000016 3016 finset.distrib_lattice._proof_3 | |
0.000016 3017 finset.distrib_lattice._proof_4 | |
0.000014 3018 finset.distrib_lattice._proof_5 | |
0.000016 3019 finset.distrib_lattice._proof_6 | |
0.000016 3020 finset.distrib_lattice._proof_7 | |
0.000014 3021 finset.distrib_lattice._proof_8 | |
0.000016 3022 finset.distrib_lattice._proof_9 | |
0.000016 3023 finset.distrib_lattice._proof_10 | |
0.000014 3024 imp_true_iff | |
0.000017 3025 finset.distrib_lattice._proof_11 | |
0.000015 3026 finset.distrib_lattice | |
0.000015 3027 finset.generalized_boolean_algebra._proof_1 | |
0.000016 3028 finset.generalized_boolean_algebra._proof_2 | |
0.000015 3029 finset.generalized_boolean_algebra._proof_3 | |
0.000014 3030 finset.generalized_boolean_algebra._proof_4 | |
0.000017 3031 finset.generalized_boolean_algebra._proof_5 | |
0.000015 3032 finset.generalized_boolean_algebra._proof_6 | |
0.000017 3033 finset.generalized_boolean_algebra._proof_7 | |
0.000015 3034 finset.generalized_boolean_algebra._proof_8 | |
0.000014 3035 distrib_lattice.inf | |
0.000016 3036 distrib_lattice.inf_le_left | |
0.000015 3037 finset.generalized_boolean_algebra._proof_9 | |
0.000016 3038 distrib_lattice.inf_le_right | |
0.000016 3039 finset.generalized_boolean_algebra._proof_10 | |
0.000014 3040 distrib_lattice.le_inf | |
0.000016 3041 finset.generalized_boolean_algebra._proof_11 | |
0.000016 3042 distrib_lattice.le_sup_inf | |
0.000014 3043 finset.generalized_boolean_algebra._proof_12 | |
0.000017 3044 finset.sup_eq_union | |
0.000015 3045 decidable.or_iff_not_imp_left | |
0.000015 3046 or_iff_not_imp_left | |
0.000016 3047 decidable.not_and_distrib' | |
0.000015 3048 finset.decidable_mem | |
0.000015 3049 finset.generalized_boolean_algebra._proof_13 | |
0.000016 3050 finset.inter_assoc | |
0.000015 3051 list.subset.refl | |
0.000016 3052 list.eq_nil_iff_forall_not_mem | |
0.000015 3053 multiset.eq_zero_of_forall_not_mem | |
0.000016 3054 finset.eq_empty_of_forall_not_mem | |
0.000015 3055 finset.inter_sdiff_self | |
0.000016 3056 and_false | |
0.000015 3057 finset.inter_empty | |
0.000015 3058 finset.not_mem_empty | |
0.000016 3059 finset.generalized_boolean_algebra._proof_14 | |
0.000015 3060 finset.generalized_boolean_algebra | |
0.000016 3061 finset.union_sdiff_of_subset | |
0.000016 3062 finset.sdiff_union_of_subset | |
0.000015 3063 finset.sum_le_sum_of_subset_of_nonneg | |
0.000016 3064 finset.single_le_sum | |
0.000015 3065 nat.succ_le_succ_iff | |
0.000015 3066 nat.lt_succ_iff | |
0.000016 3067 add_sub_cancel | |
0.000016 3068 add_sub | |
0.000014 3069 cau_seq.bounded | |
0.413273 3070 cau_seq.bounded' | |
0.000072 3071 cau_seq.has_mul._match_5 | |
0.000024 3072 cau_seq.has_mul._proof_1 | |
0.000015 3073 cau_seq.has_mul | |
0.000014 3074 is_absolute_value.abv_eq_zero | |
0.000014 3075 is_absolute_value.abv_zero | |
0.000014 3076 gt_iff_lt | |
0.000014 3077 cau_seq.const._proof_1 | |
0.000015 3078 cau_seq.const | |
0.000014 3079 cau_seq.mul_apply | |
0.000014 3080 cau_seq.const_apply | |
0.000014 3081 neg_involutive | |
0.000014 3082 neg_injective | |
0.000014 3083 neg_inj | |
0.000014 3084 cau_seq.has_neg._proof_1 | |
0.000015 3085 cau_seq.has_neg | |
0.000014 3086 cau_seq.add_apply | |
0.000016 3087 cau_seq.neg_apply | |
0.000017 3088 cau_seq.has_sub._proof_1 | |
0.000017 3089 cau_seq.has_sub | |
0.000019 3090 subtype.cases_on | |
0.000017 3091 subtype.eq | |
0.000016 3092 cau_seq.ext | |
0.000017 3093 nontrivial.to_nonempty._match_1 | |
0.000017 3094 nontrivial.to_nonempty | |
0.000015 3095 nat.zero_ne_one | |
0.000016 3096 nat.nontrivial | |
0.000018 3097 cau_seq.ring._proof_1 | |
0.000016 3098 cau_seq.has_zero | |
0.000019 3099 cau_seq.zero_apply | |
0.000017 3100 cau_seq.ring._proof_2 | |
0.000015 3101 cau_seq.ring._proof_3 | |
0.000014 3102 cau_seq.ring._proof_4 | |
0.000019 3103 cau_seq.ring._proof_5 | |
0.000017 3104 cau_seq.sub_apply | |
0.000015 3105 cau_seq.ring._proof_6 | |
0.000016 3106 cau_seq.ring._proof_7 | |
0.000017 3107 cau_seq.ring._proof_8 | |
0.000015 3108 cau_seq.ring._proof_9 | |
0.000016 3109 cau_seq.has_one | |
0.000017 3110 cau_seq.one_apply | |
0.000018 3111 cau_seq.ring._proof_10 | |
0.000015 3112 cau_seq.ring._proof_11 | |
0.000014 3113 cau_seq.ring._proof_12 | |
0.000016 3114 cau_seq.ring._proof_13 | |
0.000015 3115 cau_seq.ring._proof_14 | |
0.000017 3116 cau_seq.ring._proof_15 | |
0.000015 3117 cau_seq.ring | |
0.000016 3118 cau_seq.zero_lim_zero | |
0.000015 3119 neg_one_mul | |
0.000016 3120 cau_seq.mul_lim_zero_right | |
0.000015 3121 cau_seq.neg_lim_zero | |
0.000017 3122 cau_seq.add_lim_zero | |
0.000015 3123 cau_seq.equiv._proof_1 | |
0.000016 3124 cau_seq.equiv | |
0.000015 3125 cau_seq.completion.Cauchy | |
0.000017 3126 int | |
0.000015 3127 acc | |
0.000016 3128 well_founded | |
0.000015 3129 acc.rec_on | |
0.000016 3130 well_founded.fix_F | |
0.000015 3131 well_founded.apply | |
0.000016 3132 well_founded.fix._proof_1 | |
0.000015 3133 well_founded.fix | |
0.000016 3134 has_well_founded | |
0.000015 3135 has_well_founded.r | |
0.000016 3136 psigma.lex | |
0.000015 3137 psigma.lex.rec_on | |
0.000017 3138 heq.rec_on | |
0.000015 3139 eq_of_heq | |
0.000014 3140 psigma.lex_accessible | |
0.000016 3141 psigma.lex_wf | |
0.000015 3142 has_well_founded.wf | |
0.000016 3143 psigma.has_well_founded._proof_1 | |
0.000015 3144 psigma.has_well_founded | |
0.000017 3145 has_sizeof | |
0.000014 3146 inv_image | |
0.000017 3147 measure | |
0.000015 3148 has_sizeof.sizeof | |
0.000016 3149 sizeof | |
0.000015 3150 sizeof_measure | |
0.000016 3151 _private.4014471427.acc_aux | |
0.000015 3152 inv_image.accessible | |
0.000016 3153 inv_image.wf | |
0.000015 3154 nat.not_lt_zero | |
0.000016 3155 eq.substr | |
0.000015 3156 acc.inv | |
0.000016 3157 nat.lt_wf | |
0.000015 3158 measure_wf | |
0.000016 3159 sizeof_measure_wf | |
0.000015 3160 has_well_founded_of_has_sizeof | |
0.000016 3161 nat.sizeof._main | |
0.000015 3162 nat.sizeof | |
0.000014 3163 nat.has_sizeof | |
0.000016 3164 has_mod | |
0.000015 3165 has_mod.mod | |
0.000016 3166 nat.pred_le | |
0.000015 3167 nat.sub_le | |
0.000016 3168 nat.sub_lt | |
0.000015 3169 _private.757066717.div_rec_lemma | |
0.000016 3170 _private.1846598367.mod.F | |
0.000015 3171 nat.mod | |
0.000015 3172 nat.has_mod | |
0.000016 3173 nat.sizeof._main.equations._eqn_1 | |
0.000015 3174 nat.sizeof.equations._eqn_1 | |
0.000016 3175 gcd._main._pack._wf_rec_mk_dec_tactic._aux_1 | |
0.000015 3176 or.by_cases | |
0.000015 3177 decidable.lt_or_eq_of_le | |
0.000016 3178 nat.strong_rec_on._proof_1 | |
0.000015 3179 nat.strong_rec_on | |
0.000017 3180 nat.strong_induction_on | |
0.000015 3181 nat.case_strong_induction_on | |
0.000014 3182 dif_eq_if | |
0.000017 3183 acc.drec | |
0.000015 3184 well_founded.fix_F_eq | |
0.000016 3185 well_founded.fix_eq | |
0.000015 3186 nat.mod_def_aux | |
0.000014 3187 nat.mod_def | |
0.000017 3188 nat.zero_mod | |
0.000015 3189 nat.mod_eq_of_lt | |
0.000014 3190 nat.mod_eq_sub_mod | |
0.000016 3191 decidable.le_of_not_lt | |
0.000015 3192 decidable.not_lt | |
0.000016 3193 nat.mod_lt | |
0.000015 3194 nat.gcd._main._pack | |
0.000015 3195 nat.gcd._main | |
0.000016 3196 nat.gcd | |
0.000015 3197 nat.coprime | |
0.000014 3198 int.cases_on | |
0.000017 3199 int.nat_abs._main | |
0.000015 3200 int.nat_abs | |
0.000016 3201 rat | |
0.000015 3202 rat.cases_on | |
0.000016 3203 pnat | |
0.000015 3204 _private.2993550761.div.F | |
0.000016 3205 nat.div | |
0.000016 3206 nat.has_div | |
0.000016 3207 int.zero | |
0.000015 3208 int.has_zero | |
0.000016 3209 int.neg_of_nat._main | |
0.000015 3210 int.neg_of_nat | |
0.000017 3211 int.has_coe | |
0.000015 3212 int.neg._main | |
0.000016 3213 int.neg | |
0.000015 3214 int.has_neg | |
0.000016 3215 int.div._main | |
0.000015 3216 int.div | |
0.000014 3217 int.has_div | |
0.000016 3218 decidable.lt_or_le | |
0.000016 3219 nat.div_def_aux | |
0.000014 3220 nat.div_def | |
0.000016 3221 nat.div_eq_of_lt | |
0.000015 3222 nat.div_eq_sub_div | |
0.000016 3223 nat.le_of_add_le_add_right | |
0.000016 3224 nat.add_le_add_iff_le_right | |
0.073578 3225 nat.sub_lt_of_pos_le | |
0.000057 3226 nat.add_sub_cancel | |
0.000028 3227 nat.le_of_le_of_sub_le_sub_right | |
0.000015 3228 nat.sub_le_sub_right | |
0.000014 3229 nat.sub_le_sub_right_iff | |
0.000014 3230 nat.add_le_to_le_sub | |
0.000014 3231 nat.le_div_iff_mul_le | |
0.000015 3232 has_dvd | |
0.000014 3233 has_dvd.dvd | |
0.000014 3234 nat.has_dvd | |
0.000014 3235 nat.eq_zero_of_zero_dvd | |
0.000014 3236 nat.pos_of_dvd_of_pos | |
0.000014 3237 well_founded.recursion | |
0.000014 3238 well_founded.induction | |
0.000015 3239 nat.gcd.induction | |
0.000014 3240 nat.gcd._main._pack.equations._eqn_1 | |
0.000014 3241 nat.gcd._main.equations._eqn_1 | |
0.000014 3242 nat.gcd.equations._eqn_1 | |
0.000014 3243 nat.gcd_zero_left | |
0.000015 3244 monoid_has_dvd | |
0.000014 3245 exists.intro | |
0.000019 3246 dvd.intro | |
0.000017 3247 dvd_zero | |
0.000015 3248 nat.semiring | |
0.000016 3249 dvd_refl | |
0.000018 3250 nat.monoid | |
0.000017 3251 nat.mod_zero | |
0.000017 3252 nat.gcd._main._pack.equations._eqn_2 | |
0.000017 3253 nat.gcd._main.equations._eqn_2 | |
0.000017 3254 nat.gcd.equations._eqn_2 | |
0.000015 3255 nat.gcd_zero_right | |
0.000016 3256 nat.gcd_rec | |
0.000017 3257 nat.dvd_add | |
0.000015 3258 nat.mul_pred_left | |
0.000016 3259 nat.mul_sub_right_distrib | |
0.000018 3260 nat.mul_sub_left_distrib | |
0.000017 3261 nat.add_sub_cancel_left | |
0.000015 3262 nat.dvd_add_iff_right | |
0.000018 3263 nat.dvd_add_iff_left | |
0.000017 3264 nat.dvd_trans | |
0.000015 3265 nat.dvd_mul_right | |
0.000016 3266 decidable.em | |
0.000014 3267 nat.add_sub_assoc | |
0.000017 3268 nat.mod_add_div | |
0.000014 3269 nat.dvd_mod_iff | |
0.000017 3270 nat.gcd_dvd | |
0.000015 3271 nat.gcd_dvd_right | |
0.000016 3272 nat.gcd_pos_of_pos_right | |
0.000015 3273 nat.le_of_dvd | |
0.000016 3274 int.nat_abs_eq | |
0.000015 3275 int.sub_nat_nat._match_1 | |
0.000017 3276 int.sub_nat_nat | |
0.000015 3277 int.add._main | |
0.000016 3278 int.add | |
0.000015 3279 int.has_add | |
0.000016 3280 int.of_nat_add_of_nat | |
0.000015 3281 int.no_confusion_type | |
0.000016 3282 int.no_confusion | |
0.000015 3283 int.of_nat.inj | |
0.000016 3284 int.of_nat.inj_eq | |
0.000015 3285 int.of_nat_add_neg_succ_of_nat | |
0.000016 3286 decidable.le_or_lt | |
0.000015 3287 int.sub_nat_nat.equations._eqn_1 | |
0.000016 3288 int.sub_nat_nat._match_1.equations._eqn_1 | |
0.000016 3289 int.sub_nat_nat_of_sub_eq_zero | |
0.000014 3290 int.sub_nat_nat_of_le | |
0.000016 3291 nat.le_add_left | |
0.000015 3292 int.sub_nat_nat._match_1.equations._eqn_2 | |
0.000016 3293 int.sub_nat_nat_of_sub_eq_succ | |
0.000015 3294 nat.succ_pred_eq_of_pos | |
0.000015 3295 nat.lt_of_add_lt_add_left | |
0.000016 3296 nat.lt_of_add_lt_add_right | |
0.000015 3297 nat.add_sub_of_le | |
0.000016 3298 nat.sub_add_cancel | |
0.000015 3299 nat.sub_pos_of_lt | |
0.000016 3300 int.sub_nat_nat_of_lt | |
0.000014 3301 nat.sub_eq_iff_eq_add | |
0.000017 3302 nat.lt_of_sub_eq_succ | |
0.000014 3303 int.sub_nat_nat_elim | |
0.000017 3304 int.sub_nat_nat_add_left | |
0.000014 3305 int.sub_nat_nat_add_right | |
0.000016 3306 int.sub_nat_nat_add_add | |
0.000015 3307 int.sub_nat_nat_add | |
0.000016 3308 int.add_assoc_aux1 | |
0.000016 3309 int.neg_succ_of_nat_add_neg_succ_of_nat | |
0.000014 3310 int.neg_succ_of_nat.inj | |
0.000016 3311 int.neg_succ_of_nat.inj_eq | |
0.000015 3312 int.add_comm | |
0.000017 3313 int.neg_succ_of_nat_add_of_nat | |
0.000014 3314 int.sub_nat_nat_sub | |
0.000016 3315 nat.succ_sub | |
0.000016 3316 int.sub_nat_nat_add_neg_succ_of_nat | |
0.000014 3317 int.add_assoc_aux2 | |
0.000017 3318 int.add_assoc | |
0.000015 3319 int.add_zero | |
0.000014 3320 int.zero_add | |
0.000017 3321 sub_neg_monoid.nsmul._default | |
0.000015 3322 add_group.nsmul._default | |
0.000014 3323 add_comm_group.nsmul._default | |
0.000014 3324 ring.nsmul._default | |
0.000015 3325 int.comm_ring._proof_1 | |
0.000016 3326 int.comm_ring._proof_2 | |
0.000015 3327 int.sub | |
0.000016 3328 int.comm_ring._proof_3 | |
0.000015 3329 int.neg_of_nat_of_succ | |
0.000016 3330 nat.sub_self | |
0.000017 3331 int.of_nat_zero | |
0.000015 3332 int.sub_nat_self | |
0.000016 3333 int.neg_neg_of_nat_succ | |
0.000017 3334 int.add_left_neg | |
0.000015 3335 int.mul._main | |
0.000015 3336 int.mul | |
0.000016 3337 int.has_mul | |
0.000015 3338 int.of_nat_mul_of_nat | |
0.000016 3339 int.of_nat_mul_neg_succ_of_nat | |
0.000015 3340 int.neg_of_nat._main.equations._eqn_2 | |
0.000016 3341 int.neg_of_nat.equations._eqn_2 | |
0.000015 3342 int.of_nat_mul_neg_of_nat | |
0.000016 3343 int.neg_succ_of_nat_of_nat | |
0.000015 3344 int.mul_neg_succ_of_nat_neg_succ_of_nat | |
0.000017 3345 int.mul_comm | |
0.000017 3346 int.neg_of_nat_mul_of_nat | |
0.000015 3347 int.neg_succ_of_nat_mul_neg_of_nat | |
0.000016 3348 int.neg_of_nat_mul_neg_succ_of_nat | |
0.000015 3349 int.mul_assoc | |
0.000016 3350 int.one | |
0.000015 3351 int.has_one | |
0.000017 3352 int.one_mul | |
0.000015 3353 int.mul_one | |
0.000014 3354 ring.npow._default | |
0.000016 3355 int.comm_ring._proof_4 | |
0.000015 3356 int.comm_ring._proof_5 | |
0.000017 3357 int.mul_zero | |
0.000015 3358 int.zero_mul | |
0.000014 3359 int.of_nat_mul_sub_nat_nat | |
0.000017 3360 int.neg_of_nat_eq_sub_nat_nat_zero | |
0.000015 3361 int.neg_of_nat_add | |
0.175565 3362 int.neg_succ_of_nat_mul_sub_nat_nat | |
0.000057 3363 int.distrib_left | |
0.000024 3364 int.distrib_right | |
0.000015 3365 int.comm_ring | |
0.000014 3366 int.monoid | |
0.000014 3367 int.of_nat.inj_arrow | |
0.000015 3368 int.neg_succ_of_nat.inj_arrow | |
0.000014 3369 int.decidable_eq | |
0.000015 3370 int.nonneg | |
0.000014 3371 int.has_sub | |
0.000014 3372 int.le | |
0.000014 3373 int.has_le | |
0.000014 3374 int.lt | |
0.000014 3375 int.le.intro_sub | |
0.000014 3376 int.sub_eq_add_neg | |
0.000014 3377 int.add_right_neg | |
0.000014 3378 int.le.intro | |
0.000014 3379 int.le_refl | |
0.000014 3380 int.nonneg.elim | |
0.000014 3381 int.le.dest_sub | |
0.000018 3382 int.le.dest | |
0.000015 3383 int.le.elim | |
0.000016 3384 int.le_trans | |
0.000017 3385 int.has_lt | |
0.000017 3386 int.lt.dest | |
0.000018 3387 int.lt.elim | |
0.000016 3388 int.le_of_lt | |
0.000017 3389 int.coe_nat_inj | |
0.000017 3390 int.add_left_cancel | |
0.000015 3391 int.lt_irrefl | |
0.000016 3392 int.ne_of_lt | |
0.000015 3393 int.coe_nat_eq | |
0.000016 3394 int.add_left_comm | |
0.000015 3395 int.lt_add_succ | |
0.000016 3396 int.lt.intro | |
0.000016 3397 int.coe_nat_zero | |
0.000016 3398 int.lt_iff_le_and_ne | |
0.000015 3399 int.coe_nat_add | |
0.000014 3400 int.le_antisymm | |
0.000016 3401 int.lt_iff_le_not_le | |
0.000015 3402 int.neg_add | |
0.000016 3403 int.neg_neg | |
0.000015 3404 int.nonneg_or_nonneg_neg | |
0.000016 3405 int.le_total | |
0.000015 3406 int.decidable_nonneg | |
0.000016 3407 int.decidable_le | |
0.000015 3408 int.decidable_lt | |
0.000016 3409 int.linear_order | |
0.000015 3410 int.add_le_add_left | |
0.000016 3411 int.zero_lt_one | |
0.000014 3412 int.linear_ordered_comm_ring._proof_1 | |
0.000017 3413 int.coe_nat_mul | |
0.000014 3414 int.mul_pos | |
0.000017 3415 linear_order.decidable_eq | |
0.000015 3416 int.zero_ne_one | |
0.000016 3417 int.nontrivial | |
0.000014 3418 int.linear_ordered_comm_ring | |
0.000017 3419 int.linear_ordered_add_comm_group | |
0.000015 3420 int.semiring | |
0.000015 3421 int.div_zero | |
0.000016 3422 int.ring | |
0.000015 3423 int.comm_monoid | |
0.000014 3424 int.comm_semigroup | |
0.000017 3425 int.add_monoid | |
0.000014 3426 int.zero_div | |
0.000024 3427 nat.div_zero | |
0.000015 3428 int.div_neg | |
0.000015 3429 neg_add | |
0.000014 3430 neg_mul_neg | |
0.000016 3431 eq_sub_of_add_eq | |
0.000016 3432 int.eq_succ_of_zero_lt | |
0.000014 3433 nat.add_div_right | |
0.000016 3434 nat.add_mul_div_left | |
0.000015 3435 nat.add_mul_div_right | |
0.000014 3436 int.of_nat_sub | |
0.000014 3437 int.coe_nat_sub | |
0.000015 3438 nat.div_lt_iff_lt_mul | |
0.000013 3439 ordered_comm_monoid | |
0.000015 3440 ordered_comm_monoid.mul | |
0.000014 3441 ordered_comm_monoid.mul_assoc | |
0.000016 3442 ordered_comm_monoid.one | |
0.000015 3443 ordered_comm_monoid.one_mul | |
0.000016 3444 ordered_comm_monoid.mul_one | |
0.000015 3445 ordered_comm_monoid.npow | |
0.000016 3446 ordered_comm_monoid.npow_zero' | |
0.000015 3447 ordered_comm_monoid.npow_succ' | |
0.000015 3448 ordered_comm_monoid.mul_comm | |
0.000016 3449 ordered_comm_monoid.to_comm_monoid | |
0.000015 3450 linear_ordered_comm_monoid | |
0.000016 3451 linear_ordered_comm_monoid.mul | |
0.000015 3452 linear_ordered_comm_monoid.mul_assoc | |
0.000015 3453 linear_ordered_comm_monoid.one | |
0.000016 3454 linear_ordered_comm_monoid.one_mul | |
0.000015 3455 linear_ordered_comm_monoid.mul_one | |
0.000016 3456 linear_ordered_comm_monoid.npow | |
0.000016 3457 linear_ordered_comm_monoid.npow_zero' | |
0.000014 3458 linear_ordered_comm_monoid.npow_succ' | |
0.000016 3459 linear_ordered_comm_monoid.mul_comm | |
0.000015 3460 linear_ordered_comm_monoid.le | |
0.000017 3461 linear_ordered_comm_monoid.lt | |
0.000014 3462 linear_ordered_comm_monoid.le_refl | |
0.000016 3463 linear_ordered_comm_monoid.le_trans | |
0.000016 3464 linear_ordered_comm_monoid.lt_iff_le_not_le | |
0.000014 3465 linear_ordered_comm_monoid.le_antisymm | |
0.000017 3466 linear_ordered_comm_monoid.mul_le_mul_left | |
0.000015 3467 linear_ordered_comm_monoid.lt_of_mul_lt_mul_left | |
0.000014 3468 linear_ordered_comm_monoid.to_ordered_comm_monoid | |
0.000016 3469 ordered_comm_monoid.le | |
0.000015 3470 ordered_comm_monoid.lt | |
0.000017 3471 ordered_comm_monoid.le_refl | |
0.000015 3472 ordered_comm_monoid.le_trans | |
0.000014 3473 ordered_comm_monoid.lt_iff_le_not_le | |
0.000016 3474 ordered_comm_monoid.le_antisymm | |
0.000015 3475 ordered_comm_monoid.to_partial_order | |
0.000016 3476 linear_ordered_comm_monoid_with_zero | |
0.000015 3477 linear_ordered_comm_monoid_with_zero.le | |
0.000017 3478 linear_ordered_comm_monoid_with_zero.lt | |
0.000015 3479 linear_ordered_comm_monoid_with_zero.le_refl | |
0.000014 3480 linear_ordered_comm_monoid_with_zero.le_trans | |
0.000016 3481 linear_ordered_comm_monoid_with_zero.lt_iff_le_not_le | |
0.000015 3482 linear_ordered_comm_monoid_with_zero.le_antisymm | |
0.000016 3483 linear_ordered_comm_monoid_with_zero.le_total | |
0.000016 3484 linear_ordered_comm_monoid_with_zero.decidable_le | |
0.000014 3485 linear_ordered_comm_monoid_with_zero.decidable_eq | |
0.280886 3486 linear_ordered_comm_monoid_with_zero.decidable_lt | |
0.000078 3487 linear_ordered_comm_monoid_with_zero.mul | |
0.000026 3488 linear_ordered_comm_monoid_with_zero.mul_assoc | |
0.000015 3489 linear_ordered_comm_monoid_with_zero.one | |
0.000014 3490 linear_ordered_comm_monoid_with_zero.one_mul | |
0.000014 3491 linear_ordered_comm_monoid_with_zero.mul_one | |
0.000015 3492 linear_ordered_comm_monoid_with_zero.npow | |
0.000014 3493 linear_ordered_comm_monoid_with_zero.npow_zero' | |
0.000014 3494 linear_ordered_comm_monoid_with_zero.npow_succ' | |
0.000014 3495 linear_ordered_comm_monoid_with_zero.mul_comm | |
0.000014 3496 linear_ordered_comm_monoid_with_zero.mul_le_mul_left | |
0.000014 3497 linear_ordered_comm_monoid_with_zero.lt_of_mul_lt_mul_left | |
0.000014 3498 linear_ordered_comm_monoid_with_zero.to_linear_ordered_comm_monoid | |
0.000014 3499 comm_semiring.to_comm_monoid | |
0.000020 3500 comm_semiring.to_comm_monoid_with_zero._proof_1 | |
0.000015 3501 comm_semiring.to_comm_monoid_with_zero._proof_2 | |
0.000017 3502 comm_semiring.to_comm_monoid_with_zero._proof_3 | |
0.000017 3503 comm_semiring.to_comm_monoid_with_zero._proof_4 | |
0.000017 3504 comm_semiring.to_comm_monoid_with_zero._proof_5 | |
0.000017 3505 comm_semiring.to_comm_monoid_with_zero._proof_6 | |
0.000016 3506 comm_semiring.to_comm_monoid_with_zero._proof_7 | |
0.000017 3507 comm_semiring.to_comm_monoid_with_zero._proof_8 | |
0.000017 3508 comm_semiring.to_comm_monoid_with_zero | |
0.000015 3509 nat.linear_ordered_comm_monoid_with_zero._proof_1 | |
0.000014 3510 nat.linear_ordered_comm_monoid_with_zero._proof_2 | |
0.000014 3511 decidable_eq_of_decidable_le._main | |
0.000015 3512 decidable_eq_of_decidable_le | |
0.000014 3513 decidable_lt_of_decidable_le._main | |
0.000015 3514 decidable_lt_of_decidable_le | |
0.000016 3515 le_of_not_lt | |
0.000018 3516 linear_ordered_comm_monoid.lt_of_mul_lt_mul_left._default | |
0.000015 3517 nat.linear_ordered_comm_monoid_with_zero._proof_3 | |
0.000014 3518 nat.linear_ordered_comm_monoid_with_zero | |
0.000016 3519 nat.comm_monoid | |
0.000014 3520 nat.comm_semigroup | |
0.000017 3521 nat.div_eq_of_lt_le | |
0.000015 3522 nat.sub_le_sub_left | |
0.000016 3523 nat.div_mul_le_self | |
0.000015 3524 nat.mul_sub_div | |
0.000016 3525 sub_sub | |
0.000014 3526 int.neg_succ_of_nat_coe' | |
0.000017 3527 nat.sub_mul_div | |
0.000015 3528 int.add_mul_div_right | |
0.000014 3529 int.mul_div_cancel | |
0.000016 3530 int.mul_div_cancel_left | |
0.000015 3531 int.neg_div_of_dvd | |
0.000015 3532 int.of_nat_eq_of_nat_iff | |
0.000016 3533 int.coe_nat_eq_coe_nat_iff | |
0.000015 3534 int.coe_nat_inj' | |
0.000014 3535 int.coe_nat_eq_zero | |
0.000016 3536 int.neg_zero | |
0.000015 3537 int.eq_coe_of_zero_le | |
0.000016 3538 mul_neg_of_pos_of_neg | |
0.000015 3539 nonneg_of_mul_nonneg_left | |
0.000015 3540 int.le_of_coe_nat_le_coe_nat | |
0.000016 3541 int.coe_nat_le_coe_nat_of_le | |
0.000015 3542 int.coe_nat_le_coe_nat_iff | |
0.000016 3543 int.coe_nat_le | |
0.000015 3544 int.coe_nat_nonneg | |
0.000015 3545 int.lt_iff_add_one_le | |
0.000016 3546 int.coe_nat_succ | |
0.000015 3547 int.coe_nat_lt_coe_nat_iff | |
0.000016 3548 int.coe_nat_lt | |
0.000015 3549 int.coe_nat_pos | |
0.000016 3550 int.coe_nat_dvd | |
0.000015 3551 nat.gcd_dvd_left | |
0.000015 3552 int.nat_abs_neg | |
0.000015 3553 nat.le_of_mul_le_mul_left | |
0.000016 3554 nat.eq_of_mul_eq_mul_left | |
0.000015 3555 nat.eq_of_mul_eq_mul_right | |
0.000017 3556 nat.add_mod_right | |
0.000015 3557 nat.add_mul_mod_self_left | |
0.000016 3558 nat.mul_mod_right | |
0.000015 3559 nat.mod_eq_zero_of_dvd | |
0.000016 3560 nat.mul_div_cancel' | |
0.000015 3561 nat.div_mul_cancel | |
0.000016 3562 nat.dvd_gcd | |
0.000015 3563 nat.mul_mod_mul_left | |
0.000015 3564 nat.gcd_mul_left | |
0.000014 3565 nat.gcd_mul_right | |
0.000016 3566 nat.gcd_div | |
0.000015 3567 nat.zero_div | |
0.000016 3568 nat.div_self | |
0.000015 3569 nat.coprime_div_gcd_div_gcd | |
0.000016 3570 rat.mk_pnat._main | |
0.000015 3571 rat.mk_pnat | |
0.000016 3572 rat.add._main | |
0.000015 3573 rat.add | |
0.000016 3574 rat.has_add | |
0.000015 3575 nat.one_pos | |
0.000014 3576 nat.dvd_antisymm | |
0.000016 3577 nat.gcd_comm | |
0.000015 3578 nat.eq_zero_of_le_zero | |
0.000016 3579 nat.mod_one | |
0.000016 3580 nat.gcd_one_left | |
0.000014 3581 nat.gcd_one_right | |
0.000016 3582 nat.coprime_one_right | |
0.000015 3583 rat.of_int._proof_1 | |
0.000016 3584 rat.of_int | |
0.000015 3585 rat.has_zero | |
0.000014 3586 rat.mk_nat | |
0.000017 3587 nat.succ_pnat | |
0.000015 3588 rat.mk._main | |
0.000014 3589 rat.mk | |
0.000016 3590 rat.num | |
0.000015 3591 rat.denom | |
0.000016 3592 rat.mk_pnat._main._proof_1 | |
0.000016 3593 nat.div_one | |
0.000014 3594 rat.mk_pnat._main._proof_2 | |
0.000016 3595 int.div_one | |
0.000015 3596 rat.mk_nat.equations._eqn_1 | |
0.000016 3597 rat.mk_pnat._main.equations._eqn_1 | |
0.000015 3598 rat.mk_pnat.equations._eqn_1 | |
0.000016 3599 rat.no_confusion_type | |
0.000016 3600 rat.no_confusion | |
0.000014 3601 rat.mk'.inj | |
0.000017 3602 rat.mk'.inj_eq | |
0.000015 3603 rat.num_denom | |
0.000014 3604 rat.num_denom' | |
0.391000 3605 rat.num_denom_cases_on._main | |
0.000067 3606 rat.num_denom_cases_on | |
0.000024 3607 has_lt.lt.ne | |
0.000014 3608 has_lt.lt.ne' | |
0.000015 3609 rat.num_denom_cases_on'._proof_1 | |
0.000014 3610 rat.num_denom_cases_on' | |
0.000014 3611 int.of_nat_eq_coe | |
0.000014 3612 rat.mk._main.equations._eqn_1 | |
0.000014 3613 rat.mk.equations._eqn_1 | |
0.000014 3614 rat.mk._main.equations._eqn_2 | |
0.000014 3615 rat.mk.equations._eqn_2 | |
0.000014 3616 nat.succ_pnat.equations._eqn_1 | |
0.000013 3617 int.distrib | |
0.000019 3618 eq_neg_iff_add_eq_zero | |
0.000018 3619 neg_add_eq_iff_eq_add | |
0.000017 3620 eq_neg_of_eq_neg | |
0.000017 3621 eq_neg_iff_eq_neg | |
0.000018 3622 add_eq_zero_iff_neg_eq | |
0.000017 3623 neg_eq_iff_add_eq_zero | |
0.000017 3624 iff_eq_true_of_eq | |
0.000017 3625 int.add_comm_monoid | |
0.000017 3626 int.add_comm_semigroup | |
0.000017 3627 mul_right_cancel' | |
0.000015 3628 domain.to_cancel_monoid_with_zero._proof_1 | |
0.000014 3629 domain.to_cancel_monoid_with_zero._proof_2 | |
0.000016 3630 domain.to_cancel_monoid_with_zero._proof_3 | |
0.000015 3631 domain.to_cancel_monoid_with_zero._proof_4 | |
0.000016 3632 domain.to_cancel_monoid_with_zero._proof_5 | |
0.000015 3633 domain.to_cancel_monoid_with_zero._proof_6 | |
0.000016 3634 domain.to_cancel_monoid_with_zero._proof_7 | |
0.000015 3635 domain.to_cancel_monoid_with_zero._proof_8 | |
0.000016 3636 domain.to_cancel_monoid_with_zero._proof_9 | |
0.000018 3637 domain.to_cancel_monoid_with_zero | |
0.000015 3638 lt_or_gt_of_ne | |
0.000016 3639 mul_neg_of_neg_of_pos | |
0.000015 3640 linear_ordered_ring.to_domain._proof_1 | |
0.000016 3641 linear_ordered_ring.to_domain | |
0.000015 3642 int.coe_nat_ne_zero | |
0.000016 3643 int.mod._main | |
0.000015 3644 int.mod | |
0.000016 3645 int.has_mod | |
0.000015 3646 int.mod_zero | |
0.000016 3647 int.neg_succ_of_nat_coe | |
0.000015 3648 sub_sub_self | |
0.000016 3649 int.mod_add_div_aux | |
0.000018 3650 int.mod_add_div | |
0.000015 3651 int.mul_div_cancel_of_mod_eq_zero | |
0.000016 3652 int.div_mul_cancel_of_mod_eq_zero | |
0.000015 3653 int.mod_def | |
0.000016 3654 sub_add_eq_sub_sub_swap | |
0.000015 3655 add_sub_add_right_eq_sub | |
0.000016 3656 int.add_mul_mod_self | |
0.000015 3657 int.zero_mod | |
0.000017 3658 int.mul_mod_left | |
0.000014 3659 int.mul_mod_right | |
0.000017 3660 int.mod_eq_zero_of_dvd | |
0.000015 3661 int.div_mul_cancel | |
0.000016 3662 int.mul_div_cancel' | |
0.000014 3663 int.eq_mul_of_div_eq_right | |
0.000017 3664 int.eq_mul_of_div_eq_left | |
0.000014 3665 dvd.elim | |
0.000017 3666 dvd_mul_right | |
0.000015 3667 dvd_mul_of_dvd_left | |
0.000016 3668 dvd_mul_of_dvd_right | |
0.000015 3669 dvd_neg_of_dvd | |
0.000016 3670 dvd_of_dvd_neg | |
0.000014 3671 dvd_neg_iff_dvd | |
0.000016 3672 int.dvd_nat_abs | |
0.000016 3673 _private.3567162213.gcd_abs_dvd_left | |
0.000014 3674 int.mul_div_assoc | |
0.000016 3675 nat.eq_mul_of_div_eq_right | |
0.000015 3676 nat.eq_mul_of_div_eq_left | |
0.000016 3677 nat.mul_div_cancel | |
0.000015 3678 nat.mul_div_assoc | |
0.000016 3679 dvd_mul_left | |
0.000015 3680 nat.coprime.gcd_eq_one | |
0.000016 3681 nat.coprime.dvd_of_dvd_mul_right | |
0.000015 3682 nat.coprime.dvd_of_dvd_mul_left | |
0.000016 3683 nat.coprime.symm | |
0.000015 3684 int.mul_def | |
0.000016 3685 int.mul._main.equations._eqn_1 | |
0.000015 3686 int.mul.equations._eqn_1 | |
0.000038 3687 int.nat_abs._main.equations._eqn_1 | |
0.000017 3688 int.nat_abs.equations._eqn_1 | |
0.000018 3689 int.mul._main.equations._eqn_2 | |
0.000016 3690 int.mul.equations._eqn_2 | |
0.000017 3691 int.nat_abs_neg_of_nat | |
0.000015 3692 int.nat_abs._main.equations._eqn_2 | |
0.000016 3693 int.nat_abs.equations._eqn_2 | |
0.000015 3694 int.mul._main.equations._eqn_3 | |
0.000017 3695 int.mul.equations._eqn_3 | |
0.000014 3696 int.mul._main.equations._eqn_4 | |
0.000017 3697 int.mul.equations._eqn_4 | |
0.000014 3698 int.nat_abs_mul | |
0.000017 3699 int.nat_abs_of_nat | |
0.000015 3700 int.sign._main | |
0.000016 3701 int.sign | |
0.000015 3702 int.neg_eq_neg_one_mul | |
0.000017 3703 int.sign_mul_nat_abs | |
0.000014 3704 int.sign_zero | |
0.000017 3705 int.sign_mul | |
0.000014 3706 int.sign_eq_one_of_pos | |
0.000017 3707 rat.mk_eq | |
0.000015 3708 rat.lift_binop_eq | |
0.000014 3709 rat.mk_pnat_eq | |
0.000016 3710 mul_ne_zero_iff | |
0.000015 3711 mul_ne_zero | |
0.000017 3712 rat.add_def | |
0.000015 3713 int.add_semigroup | |
0.000014 3714 rat.add_assoc | |
0.000014 3715 int.nat_abs_zero | |
0.000017 3716 euclidean_domain | |
0.000015 3717 euclidean_domain.add | |
0.000014 3718 euclidean_domain.add_assoc | |
0.000016 3719 euclidean_domain.zero | |
0.000016 3720 euclidean_domain.zero_add | |
0.000014 3721 euclidean_domain.add_zero | |
0.000016 3722 euclidean_domain.nsmul | |
0.000015 3723 euclidean_domain.nsmul_zero' | |
0.000016 3724 euclidean_domain.nsmul_succ' | |
0.000016 3725 euclidean_domain.neg | |
0.000014 3726 euclidean_domain.sub | |
0.000016 3727 euclidean_domain.sub_eq_add_neg | |
0.000015 3728 euclidean_domain.add_left_neg | |
0.000016 3729 euclidean_domain.add_comm | |
0.000015 3730 euclidean_domain.mul | |
0.000016 3731 euclidean_domain.mul_assoc | |
0.584333 3732 euclidean_domain.one | |
0.000076 3733 euclidean_domain.one_mul | |
0.000024 3734 euclidean_domain.mul_one | |
0.000014 3735 euclidean_domain.npow | |
0.000015 3736 euclidean_domain.npow_zero' | |
0.000014 3737 euclidean_domain.npow_succ' | |
0.000014 3738 euclidean_domain.left_distrib | |
0.000014 3739 euclidean_domain.right_distrib | |
0.000014 3740 euclidean_domain.mul_comm | |
0.000014 3741 euclidean_domain.to_comm_ring | |
0.000014 3742 int.div_add_mod | |
0.000014 3743 int.euclidean_domain._proof_1 | |
0.000014 3744 int.euclidean_domain._proof_2 | |
0.000014 3745 int.nat_abs_of_nonneg | |
0.000014 3746 int.coe_zero_le | |
0.000014 3747 sub_le_sub_iff_left | |
0.000017 3748 sub_nonneg | |
0.000015 3749 sub_nonneg_of_le | |
0.000016 3750 int.eq_zero_of_nat_abs_eq_zero | |
0.000017 3751 int.nat_abs_pos_of_ne_zero | |
0.000017 3752 int.mod_nonneg | |
0.000015 3753 linear_ordered_add_comm_group.le | |
0.000016 3754 linear_ordered_add_comm_group.lt | |
0.000017 3755 linear_ordered_add_comm_group.le_refl | |
0.000017 3756 linear_ordered_add_comm_group.le_trans | |
0.000018 3757 linear_ordered_add_comm_group.lt_iff_le_not_le | |
0.000015 3758 linear_ordered_add_comm_group.le_antisymm | |
0.000016 3759 linear_ordered_add_comm_group.le_total | |
0.000017 3760 linear_ordered_add_comm_group.decidable_le | |
0.000015 3761 linear_ordered_add_comm_group.decidable_eq | |
0.000016 3762 linear_ordered_add_comm_group.decidable_lt | |
0.000015 3763 linear_ordered_add_comm_group.to_linear_order | |
0.000016 3764 abs | |
0.000015 3765 linear_ordered_add_comm_group.add_le_add_left | |
0.000016 3766 linear_ordered_add_comm_group.to_ordered_add_comm_group | |
0.000015 3767 eq_max | |
0.000016 3768 max_eq_left | |
0.000015 3769 neg_nonpos | |
0.000016 3770 abs_of_nonneg | |
0.000015 3771 max_comm | |
0.000016 3772 max_eq_right | |
0.000015 3773 abs_of_nonpos | |
0.000017 3774 int.neg_succ_lt_zero | |
0.000016 3775 int.abs_eq_nat_abs | |
0.000015 3776 is_total | |
0.000016 3777 is_total.total | |
0.000015 3778 sup_eq_right | |
0.000016 3779 sup_eq_left | |
0.000015 3780 sup_ind | |
0.000015 3781 has_le.le.is_total | |
0.000016 3782 abs_by_cases | |
0.000015 3783 int.mod_neg | |
0.000015 3784 int.mod_abs | |
0.000016 3785 int.coe_nat_lt_coe_nat_of_lt | |
0.000015 3786 add_lt_iff_neg_left | |
0.000014 3787 pos_of_neg_neg | |
0.000016 3788 neg_neg_of_pos | |
0.000015 3789 neg_neg_iff_pos | |
0.000016 3790 sub_lt_self_iff | |
0.000015 3791 sub_lt_self | |
0.000016 3792 int.mod_lt_of_pos | |
0.000015 3793 abs_of_neg | |
0.000017 3794 neg_pos | |
0.000015 3795 abs_zero | |
0.000016 3796 lt_self_iff_false | |
0.000016 3797 abs_of_pos | |
0.000015 3798 abs_pos | |
0.000016 3799 int.mod_lt | |
0.000015 3800 int.euclidean_domain._proof_3 | |
0.000016 3801 int.euclidean_domain._proof_4 | |
0.000015 3802 int.euclidean_domain | |
0.000016 3803 euclidean_domain.quotient | |
0.000015 3804 euclidean_domain.has_div | |
0.000017 3805 euclidean_domain.quotient_zero | |
0.000014 3806 euclidean_domain.div_zero | |
0.000017 3807 euclidean_domain.r | |
0.000014 3808 euclidean_domain.remainder | |
0.000017 3809 euclidean_domain.has_mod | |
0.000014 3810 add_neg_eq_iff_eq_add | |
0.000017 3811 sub_eq_iff_eq_add | |
0.000014 3812 sub_eq_iff_eq_add' | |
0.000017 3813 euclidean_domain.quotient_mul_add_remainder_eq | |
0.000014 3814 euclidean_domain.div_add_mod | |
0.000014 3815 euclidean_domain.mul_left_not_lt | |
0.000015 3816 euclidean_domain.remainder_lt | |
0.000016 3817 euclidean_domain.mod_lt | |
0.000015 3818 euclidean_domain.mul_div_cancel_left | |
0.000016 3819 euclidean_domain.mul_div_cancel | |
0.000015 3820 euclidean_domain.zero_div | |
0.000014 3821 rat.zero_mk_pnat | |
0.000016 3822 dite_eq_ite | |
0.000015 3823 rat.zero_mk_nat | |
0.000015 3824 rat.zero_mk | |
0.000016 3825 rat.mk_zero | |
0.000015 3826 int.semigroup | |
0.000016 3827 rat.div_mk_div_cancel_left | |
0.000015 3828 rat.zero_add | |
0.000016 3829 rat.add_zero | |
0.000015 3830 comm_ring.nsmul._default | |
0.000015 3831 rat.field._proof_1 | |
0.000016 3832 rat.field._proof_2 | |
0.000015 3833 rat.pos | |
0.000016 3834 rat.cop | |
0.000015 3835 rat.neg._proof_1 | |
0.000016 3836 rat.neg | |
0.000015 3837 sub_neg_monoid.sub._default | |
0.000016 3838 add_group.sub._default | |
0.000015 3839 add_comm_group.sub._default | |
0.000016 3840 ring.sub._default | |
0.000015 3841 comm_ring.sub._default | |
0.000015 3842 rat.field._proof_3 | |
0.000016 3843 rat.field._proof_4 | |
0.000015 3844 rat.field._proof_5 | |
0.000016 3845 rat.has_neg | |
0.000015 3846 rat.neg_def | |
0.000014 3847 rat.add_left_neg | |
0.000016 3848 comm_semigroup.to_is_commutative | |
0.000015 3849 rat.add_comm | |
0.000016 3850 rat.mul._main | |
0.000015 3851 rat.mul | |
0.000016 3852 rat.has_mul | |
0.000016 3853 rat.mul_def | |
0.000014 3854 rat.mul_assoc | |
0.000016 3855 rat.has_one | |
0.000015 3856 rat.one_mul | |
0.000016 3857 rat.mul_one | |
0.000015 3858 comm_ring.npow._default | |
0.000016 3859 rat.field._proof_6 | |
0.000015 3860 rat.field._proof_7 | |
0.000016 3861 rat.mul_comm | |
0.000015 3862 rat.add_mul | |
0.000017 3863 rat.mul_add | |
0.000017 3864 rat.inv._main | |
0.000015 3865 rat.inv | |
0.000017 3866 rat.field._proof_8 | |
0.000015 3867 rat.field._proof_9 | |
0.000016 3868 rat.field._proof_10 | |
1.747506 3869 rat.mk'.inj_arrow | |
0.000076 3870 rat.mk_eq_zero | |
0.000024 3871 rat.zero_ne_one | |
0.000015 3872 rat.field._proof_11 | |
0.000014 3873 rat.has_inv | |
0.000014 3874 rat.inv._main._proof_1 | |
0.000014 3875 rat.inv._main.equations._eqn_2 | |
0.000014 3876 rat.inv.equations._eqn_2 | |
0.000015 3877 rat.inv._main._proof_2 | |
0.000014 3878 rat.inv._main.equations._eqn_3 | |
0.000014 3879 rat.inv.equations._eqn_3 | |
0.000014 3880 rat.inv_def | |
0.000014 3881 rat.mul_inv_cancel | |
0.000015 3882 rat.field._proof_12 | |
0.000014 3883 rat.field | |
0.000014 3884 rat.nonneg | |
0.000014 3885 rat.division_ring | |
0.000016 3886 rat.add_comm_group | |
0.000015 3887 rat.add_group | |
0.000014 3888 rat.le | |
0.000017 3889 partial_order.lt._default | |
0.000017 3890 rat.has_le | |
0.000018 3891 rat.le_refl | |
0.000018 3892 rat.add_comm_monoid | |
0.000015 3893 rat.add_comm_semigroup | |
0.000014 3894 add_semiconj_by | |
0.000014 3895 add_commute | |
0.000014 3896 add_commute.eq | |
0.000016 3897 add_commute.add_neg_cancel | |
0.000015 3898 add_commute.add_neg_cancel_assoc | |
0.000018 3899 add_commute.all | |
0.000017 3900 add_neg_cancel_comm_assoc | |
0.000018 3901 rat.nonneg.equations._eqn_1 | |
0.000017 3902 nonneg_of_mul_nonneg_right | |
0.000018 3903 mul_nonneg | |
0.000017 3904 rat.mk_nonneg | |
0.000017 3905 le_add_of_nonneg_of_le | |
0.000017 3906 add_nonneg | |
0.000017 3907 rat.nonneg_add | |
0.000017 3908 rat.le_trans | |
0.000017 3909 rat.linear_order._proof_1 | |
0.000015 3910 rat.nonneg_antisymm | |
0.000017 3911 rat.le_antisymm | |
0.000015 3912 neg_le_neg | |
0.000016 3913 neg_nonneg_of_nonpos | |
0.000015 3914 rat.nonneg_total | |
0.000017 3915 rat.le_total | |
0.000014 3916 rat.decidable_nonneg._proof_1 | |
0.000017 3917 rat.decidable_nonneg | |
0.000015 3918 rat.decidable_eq._proof_1 | |
0.000016 3919 rat.decidable_eq._proof_2 | |
0.000015 3920 rat.decidable_eq._proof_3 | |
0.000016 3921 rat.decidable_eq | |
0.000015 3922 rat.linear_order._proof_2 | |
0.000017 3923 rat.linear_order | |
0.000015 3924 rat.le.equations._eqn_1 | |
0.000016 3925 add_sub_add_left_eq_sub | |
0.000015 3926 rat.add_le_add_left | |
0.000014 3927 rat.linear_ordered_field._proof_1 | |
0.000014 3928 rat.decidable_le._main | |
0.000015 3929 rat.decidable_le | |
0.000014 3930 rat.linear_ordered_field._proof_2 | |
0.000016 3931 rat.lattice | |
0.000016 3932 rat.semilattice_inf | |
0.000014 3933 rat.partial_order | |
0.000016 3934 sub_zero | |
0.000015 3935 rat.nonneg_iff_zero_le | |
0.000016 3936 rat.nonneg_mul | |
0.000015 3937 rat.mul_nonneg | |
0.000016 3938 rat.preorder | |
0.000015 3939 rat.semiring | |
0.000016 3940 rat.linear_ordered_field._proof_3 | |
0.000015 3941 rat.linear_ordered_field | |
0.000017 3942 field.to_euclidean_domain._proof_1 | |
0.000015 3943 mul_div_cancel' | |
0.000014 3944 field.to_euclidean_domain._proof_2 | |
0.000017 3945 field.to_euclidean_domain._match_1 | |
0.000015 3946 field.to_euclidean_domain._match_2 | |
0.000024 3947 field.to_euclidean_domain._proof_3 | |
0.000018 3948 field.to_euclidean_domain._proof_4 | |
0.000015 3949 field.to_euclidean_domain._match_3 | |
0.000014 3950 field.to_euclidean_domain._proof_5 | |
0.000015 3951 field.to_euclidean_domain | |
0.000014 3952 rat.comm_ring | |
0.000018 3953 rat.linear_ordered_comm_ring | |
0.000015 3954 rat.linear_ordered_ring | |
0.000016 3955 rat.linear_ordered_add_comm_group | |
0.000016 3956 le_abs_self | |
0.000014 3957 neg_le_abs_self | |
0.000016 3958 abs_nonneg | |
0.000015 3959 iff_def' | |
0.000014 3960 decidable.not_imp_not | |
0.000017 3961 decidable.not_iff_not | |
0.000015 3962 not_iff_not | |
0.000016 3963 ne_comm | |
0.000015 3964 has_le.le.lt_iff_ne | |
0.000016 3965 abs_eq_zero | |
0.000014 3966 max_le_iff | |
0.000017 3967 abs_le' | |
0.000014 3968 neg_le | |
0.000017 3969 abs_le | |
0.000015 3970 abs_add | |
0.000016 3971 neg_eq_iff_neg_eq | |
0.000015 3972 abs.equations._eqn_1 | |
0.000017 3973 abs_neg | |
0.000014 3974 abs_eq | |
0.000017 3975 abs_mul | |
0.000014 3976 abs_is_absolute_value | |
0.000017 3977 real | |
0.000015 3978 real.cases_on | |
0.000016 3979 cau_seq.pos | |
0.000014 3980 cau_seq.has_lt | |
0.000017 3981 sub_neg_eq_add | |
0.000015 3982 sub_sub_sub_cancel_right | |
0.000014 3983 sub_self_div_two | |
0.000016 3984 has_le.le.trans_lt | |
0.000016 3985 sup_lt_iff | |
0.000014 3986 max_lt_iff | |
0.000016 3987 neg_lt | |
0.000015 3988 abs_lt | |
0.000016 3989 cau_seq.pos_add_lim_zero | |
0.000015 3990 cau_seq.lt_of_eq_of_lt | |
0.000014 3991 cau_seq.lt_of_lt_of_eq | |
0.000016 3992 _private.2149295721.lt._main | |
0.000015 3993 _private.2149295721.lt | |
0.000016 3994 real.has_lt | |
0.000015 3995 _private.1284997043.le | |
0.000017 3996 real.has_le | |
0.000015 3997 cau_seq.completion.mk | |
0.000014 3998 cau_seq.completion.of_rat | |
0.000016 3999 cau_seq.completion.Cauchy.has_zero | |
0.000015 4000 _private.2220156581.zero | |
0.000016 4001 real.has_zero | |
0.000015 4002 nnreal | |
0.000020 4003 ennreal | |
0.000018 4004 has_edist | |
0.000015 4005 has_edist.edist | |
0.000015 4006 canonically_ordered_comm_semiring.mul | |
0.000016 4007 canonically_ordered_comm_semiring.mul_assoc | |
0.000015 4008 canonically_ordered_comm_semiring.one | |
0.000016 4009 canonically_ordered_comm_semiring.one_mul | |
0.000015 4010 canonically_ordered_comm_semiring.mul_one | |
0.060471 4011 canonically_ordered_comm_semiring.npow | |
0.000056 4012 canonically_ordered_comm_semiring.npow_zero' | |
0.000027 4013 canonically_ordered_comm_semiring.npow_succ' | |
0.000015 4014 canonically_ordered_comm_semiring.zero_mul | |
0.000014 4015 canonically_ordered_comm_semiring.mul_zero | |
0.000014 4016 canonically_ordered_comm_semiring.left_distrib | |
0.000014 4017 canonically_ordered_comm_semiring.right_distrib | |
0.000015 4018 canonically_ordered_comm_semiring.mul_comm | |
0.000014 4019 canonically_ordered_comm_semiring.to_comm_semiring | |
0.000014 4020 option.bind._main | |
0.000015 4021 option.bind | |
0.000014 4022 option.map | |
0.000014 4023 with_top.has_add | |
0.000014 4024 additive | |
0.000017 4025 with_zero | |
0.000017 4026 additive.of_mul._proof_1 | |
0.000017 4027 additive.of_mul._proof_2 | |
0.000015 4028 additive.of_mul | |
0.000014 4029 additive.to_mul | |
0.000017 4030 additive.has_add | |
0.000017 4031 additive.add_semigroup | |
0.000015 4032 additive.add_monoid._proof_1 | |
0.000016 4033 additive.has_zero | |
0.000017 4034 additive.add_zero_class._proof_1 | |
0.000015 4035 additive.add_zero_class._proof_2 | |
0.000016 4036 additive.add_zero_class | |
0.000017 4037 additive.add_monoid._proof_2 | |
0.000017 4038 additive.add_monoid._proof_3 | |
0.000018 4039 additive.add_monoid._proof_4 | |
0.000018 4040 additive.add_monoid._proof_5 | |
0.000015 4041 additive.add_monoid | |
0.000016 4042 additive.add_comm_monoid._proof_1 | |
0.000017 4043 additive.add_comm_monoid._proof_2 | |
0.000015 4044 additive.add_comm_monoid._proof_3 | |
0.000016 4045 additive.add_comm_monoid._proof_4 | |
0.000015 4046 additive.add_comm_monoid._proof_5 | |
0.000015 4047 additive.add_comm_semigroup._proof_1 | |
0.000016 4048 additive.add_comm_semigroup._proof_2 | |
0.000015 4049 additive.add_comm_semigroup | |
0.000015 4050 additive.add_comm_monoid._proof_6 | |
0.000016 4051 additive.add_comm_monoid | |
0.000015 4052 with_zero.has_zero | |
0.000016 4053 with_zero.mul_zero_class._proof_1 | |
0.000014 4054 with_zero.mul_zero_class._proof_2 | |
0.000016 4055 with_zero.mul_zero_class | |
0.000015 4056 with_zero.semigroup._match_1 | |
0.000016 4057 with_zero.semigroup._proof_1 | |
0.000015 4058 with_zero.semigroup | |
0.000016 4059 with_zero.monoid_with_zero._proof_1 | |
0.000015 4060 with_zero.has_coe_t | |
0.000014 4061 with_zero.has_one | |
0.000017 4062 with_zero.monoid_with_zero._match_1 | |
0.000015 4063 with_zero.monoid_with_zero._proof_2 | |
0.000016 4064 with_zero.monoid_with_zero._match_2 | |
0.000015 4065 with_zero.monoid_with_zero._proof_3 | |
0.000016 4066 with_zero.monoid_with_zero._proof_4 | |
0.000015 4067 with_zero.monoid_with_zero._proof_5 | |
0.000015 4068 with_zero.monoid_with_zero._proof_6 | |
0.000016 4069 with_zero.monoid_with_zero._proof_7 | |
0.000015 4070 with_zero.monoid_with_zero._proof_8 | |
0.000016 4071 with_zero.monoid_with_zero._proof_9 | |
0.000015 4072 with_zero.monoid_with_zero | |
0.000015 4073 with_zero.comm_monoid_with_zero._proof_1 | |
0.000016 4074 with_zero.comm_monoid_with_zero._proof_2 | |
0.000015 4075 with_zero.comm_monoid_with_zero._proof_3 | |
0.000015 4076 with_zero.comm_monoid_with_zero._proof_4 | |
0.000016 4077 with_zero.comm_monoid_with_zero._proof_5 | |
0.000015 4078 with_zero.comm_semigroup._proof_1 | |
0.000015 4079 with_zero.mul_zero | |
0.000016 4080 with_zero.comm_semigroup._match_1 | |
0.000015 4081 with_zero.comm_semigroup._proof_2 | |
0.000016 4082 with_zero.comm_semigroup | |
0.000015 4083 with_zero.comm_monoid_with_zero._proof_6 | |
0.000016 4084 with_zero.comm_monoid_with_zero._proof_7 | |
0.000015 4085 with_zero.comm_monoid_with_zero._proof_8 | |
0.000016 4086 with_zero.comm_monoid_with_zero | |
0.000015 4087 with_top.add_comm_monoid._proof_1 | |
0.000014 4088 with_top.has_coe_t | |
0.000016 4089 with_top.has_zero | |
0.000015 4090 with_top.add_comm_monoid._proof_2 | |
0.000016 4091 with_top.add_comm_monoid._proof_3 | |
0.000015 4092 with_top.add_comm_monoid._proof_4 | |
0.000016 4093 with_top.add_comm_monoid._proof_5 | |
0.000016 4094 with_top.add_comm_monoid._proof_6 | |
0.000014 4095 with_top.add_comm_monoid | |
0.000016 4096 with_top.canonically_ordered_comm_semiring._proof_1 | |
0.000016 4097 with_top.canonically_ordered_comm_semiring._proof_2 | |
0.000014 4098 with_top.canonically_ordered_comm_semiring._proof_3 | |
0.000016 4099 with_top.canonically_ordered_comm_semiring._proof_4 | |
0.000015 4100 with_top.canonically_ordered_comm_semiring._proof_5 | |
0.000016 4101 with_top.canonically_ordered_comm_semiring._proof_6 | |
0.000015 4102 with_top.ordered_add_comm_monoid._proof_1 | |
0.000015 4103 with_top.ordered_add_comm_monoid._proof_2 | |
0.000016 4104 with_top.ordered_add_comm_monoid._proof_3 | |
0.000015 4105 with_top.ordered_add_comm_monoid._proof_4 | |
0.000014 4106 with_top.ordered_add_comm_monoid._proof_5 | |
0.000017 4107 with_top.ordered_add_comm_monoid._proof_6 | |
0.000014 4108 option.has_mem | |
0.126196 4109 with_top.has_lt | |
0.000070 4110 with_top.preorder._proof_1 | |
0.000024 4111 with_top.preorder._match_1 | |
0.000014 4112 with_top.preorder._match_2 | |
0.000015 4113 with_top.preorder._proof_2 | |
0.000014 4114 option.not_mem_none | |
0.000014 4115 Exists.fst | |
0.000014 4116 exists_prop_of_false | |
0.000014 4117 exists_false_left | |
0.000014 4118 exists_false | |
0.000015 4119 option.mem_def | |
0.000014 4120 option.some.inj | |
0.000014 4121 option.some.inj_eq | |
0.000014 4122 forall_eq' | |
0.000014 4123 exists_eq_left' | |
0.000017 4124 exists_eq' | |
0.000019 4125 with_top.some_lt_none | |
0.000017 4126 with_top.some_lt_some | |
0.000017 4127 with_top.preorder._proof_3 | |
0.000016 4128 with_top.preorder | |
0.000015 4129 with_top.partial_order._proof_1 | |
0.000016 4130 with_top.partial_order._proof_2 | |
0.000018 4131 with_top.partial_order._proof_3 | |
0.000016 4132 with_top.partial_order._proof_4 | |
0.000014 4133 with_top.partial_order | |
0.000016 4134 with_top.ordered_add_comm_monoid._proof_7 | |
0.000017 4135 with_top.ordered_add_comm_monoid._proof_8 | |
0.000018 4136 with_top.ordered_add_comm_monoid._proof_9 | |
0.000014 4137 with_top.ordered_add_comm_monoid._proof_10 | |
0.000017 4138 has_top | |
0.000014 4139 has_top.top | |
0.000017 4140 with_top.has_top | |
0.000014 4141 order_top | |
0.000018 4142 order_top.top | |
0.000015 4143 order_top.to_has_top | |
0.000014 4144 with_top.order_top._proof_1 | |
0.000017 4145 with_top.order_top._proof_2 | |
0.000015 4146 with_top.order_top._proof_3 | |
0.000016 4147 with_top.order_top._proof_4 | |
0.000015 4148 with_top.order_top._proof_5 | |
0.000014 4149 with_top.order_top | |
0.000017 4150 with_top.none_eq_top | |
0.000015 4151 with_top.top_add | |
0.000016 4152 order_top.le | |
0.000015 4153 order_top.lt | |
0.000014 4154 order_top.le_refl | |
0.000016 4155 order_top.le_trans | |
0.000015 4156 order_top.lt_iff_le_not_le | |
0.000016 4157 order_top.le_antisymm | |
0.000015 4158 order_top.to_partial_order | |
0.000014 4159 order_top.le_top | |
0.000017 4160 le_top | |
0.000015 4161 top_unique | |
0.000014 4162 top_le_iff | |
0.000016 4163 with_top.add_top | |
0.000015 4164 with_top.coe_ne_top | |
0.000015 4165 with_top.top_ne_coe | |
0.000016 4166 with_top.some_eq_coe | |
0.000015 4167 option.some_inj | |
0.000016 4168 with_top.coe_le_coe | |
0.000015 4169 with_top.coe_eq_coe | |
0.000014 4170 with_top.le_coe_iff | |
0.000016 4171 with_top.coe_add | |
0.000016 4172 with_top.ordered_add_comm_monoid._proof_11 | |
0.000014 4173 not_top_lt | |
0.000016 4174 with_top.lt_iff_exists_coe | |
0.000015 4175 exists_and_distrib_left | |
0.000016 4176 with_top.add_eq_coe | |
0.000016 4177 with_top.coe_lt_top | |
0.000014 4178 with_top.coe_lt_coe | |
0.000016 4179 with_top.coe_lt_iff | |
0.000015 4180 with_top.ordered_add_comm_monoid._proof_12 | |
0.000015 4181 with_top.ordered_add_comm_monoid | |
0.000016 4182 with_top.canonically_ordered_add_monoid._proof_1 | |
0.000015 4183 with_top.canonically_ordered_add_monoid._proof_2 | |
0.000016 4184 with_top.canonically_ordered_add_monoid._proof_3 | |
0.000016 4185 with_top.canonically_ordered_add_monoid._proof_4 | |
0.000014 4186 with_top.canonically_ordered_add_monoid._proof_5 | |
0.000017 4187 with_top.canonically_ordered_add_monoid._proof_6 | |
0.000015 4188 with_top.order_bot._proof_1 | |
0.000014 4189 with_top.order_bot._proof_2 | |
0.000016 4190 with_top.order_bot._proof_3 | |
0.000016 4191 with_top.order_bot._proof_4 | |
0.000014 4192 with_top.order_bot._proof_5 | |
0.000016 4193 with_top.order_bot | |
0.000015 4194 canonically_ordered_add_monoid.bot | |
0.000017 4195 canonically_ordered_add_monoid.bot_le | |
0.000014 4196 canonically_ordered_add_monoid.to_order_bot | |
0.000017 4197 with_top.canonically_ordered_add_monoid._proof_7 | |
0.000014 4198 with_top.canonically_ordered_add_monoid._proof_8 | |
0.000017 4199 with_top.canonically_ordered_add_monoid._proof_9 | |
0.000015 4200 with_top.canonically_ordered_add_monoid._proof_10 | |
0.000014 4201 with_top.canonically_ordered_add_monoid._proof_11 | |
0.000014 4202 with_top.canonically_ordered_add_monoid._proof_12 | |
0.000014 4203 with_top.canonically_ordered_add_monoid._proof_13 | |
0.000014 4204 iff_true | |
0.000016 4205 true_iff | |
0.000015 4206 with_zero.coe_inj | |
0.000016 4207 with_top.canonically_ordered_add_monoid._match_2 | |
0.000015 4208 with_top.canonically_ordered_add_monoid._match_1 | |
0.000017 4209 with_top.canonically_ordered_add_monoid._proof_14 | |
0.000015 4210 with_top.canonically_ordered_add_monoid | |
0.000016 4211 with_top.canonically_ordered_comm_semiring._proof_7 | |
0.000015 4212 with_top.canonically_ordered_comm_semiring._proof_8 | |
0.000016 4213 with_top.canonically_ordered_comm_semiring._proof_9 | |
0.000016 4214 with_top.canonically_ordered_comm_semiring._proof_10 | |
0.000014 4215 with_top.canonically_ordered_comm_semiring._proof_11 | |
0.000016 4216 with_top.canonically_ordered_comm_semiring._proof_12 | |
0.000015 4217 with_top.canonically_ordered_comm_semiring._proof_13 | |
0.845635 4218 with_top.canonically_ordered_comm_semiring._proof_14 | |
0.000077 4219 option.decidable_eq._match_1 | |
0.000024 4220 option.decidable_eq._main | |
0.000015 4221 option.decidable_eq | |
0.000014 4222 coe_option | |
0.000014 4223 with_top.mul_zero_class._proof_1 | |
0.000014 4224 with_top.mul_zero_class._proof_2 | |
0.000014 4225 with_top.mul_zero_class | |
0.000015 4226 with_top.mul_def | |
0.000013 4227 with_top.top_ne_zero | |
0.000014 4228 option.none_bind' | |
0.000014 4229 option.some_bind' | |
0.000014 4230 with_top.top_mul | |
0.000014 4231 with_top.coe_eq_zero | |
0.000018 4232 with_top.coe_zero | |
0.000017 4233 with_top.no_zero_divisors | |
0.000015 4234 canonically_ordered_comm_semiring.eq_zero_or_eq_zero_of_mul_eq_zero | |
0.000017 4235 canonically_ordered_semiring.canonically_ordered_comm_semiring.to_no_zero_divisors | |
0.000016 4236 with_top.mul_top | |
0.000014 4237 with_top.coe_mul | |
0.000017 4238 _private.1376173507.assoc | |
0.000017 4239 with_top.canonically_ordered_comm_semiring._proof_15 | |
0.000015 4240 with_top.has_one | |
0.000016 4241 _private.3730366445.one_mul' | |
0.000017 4242 with_top.canonically_ordered_comm_semiring._proof_16 | |
0.000017 4243 option.bind_comm | |
0.000017 4244 _private.1416806013.comm | |
0.000018 4245 with_top.canonically_ordered_comm_semiring._proof_17 | |
0.000017 4246 comm_semiring.npow._default | |
0.000017 4247 with_top.canonically_ordered_comm_semiring._proof_18 | |
0.000015 4248 with_top.canonically_ordered_comm_semiring._proof_19 | |
0.000016 4249 with_top.canonically_ordered_comm_semiring._proof_20 | |
0.000015 4250 with_top.canonically_ordered_comm_semiring._proof_21 | |
0.000017 4251 with_top.canonically_ordered_comm_semiring._proof_22 | |
0.000015 4252 with_top.canonically_ordered_comm_semiring._proof_23 | |
0.000016 4253 with_top.add_monoid._proof_1 | |
0.000015 4254 with_top.add_monoid._proof_2 | |
0.000016 4255 with_top.add_monoid._proof_3 | |
0.000015 4256 with_top.add_monoid._proof_4 | |
0.000016 4257 with_top.add_monoid._proof_5 | |
0.000015 4258 with_top.add_monoid | |
0.000016 4259 le_add_of_le_of_nonneg | |
0.000015 4260 add_eq_zero_iff' | |
0.000014 4261 add_eq_zero_iff | |
0.000017 4262 with_top.mul_coe | |
0.000015 4263 _private.34982199.distrib' | |
0.000016 4264 with_top.canonically_ordered_comm_semiring._proof_24 | |
0.000015 4265 with_top.canonically_ordered_comm_semiring._proof_25 | |
0.000016 4266 with_top.canonically_ordered_comm_semiring._proof_26 | |
0.000015 4267 with_top.canonically_ordered_comm_semiring._proof_27 | |
0.000016 4268 with_top.canonically_ordered_comm_semiring | |
0.000015 4269 subtype.decidable_eq._proof_1 | |
0.000017 4270 subtype.no_confusion_type | |
0.000017 4271 subtype.no_confusion | |
0.000015 4272 subtype.mk.inj | |
0.000016 4273 subtype.mk.inj_arrow | |
0.000015 4274 subtype.decidable_eq._proof_2 | |
0.000014 4275 subtype.decidable_eq | |
0.000016 4276 real.decidable_eq | |
0.000015 4277 canonically_linear_ordered_add_monoid | |
0.000016 4278 canonically_linear_ordered_add_monoid.add | |
0.000015 4279 cau_seq.completion.Cauchy.has_add._proof_1 | |
0.000015 4280 cau_seq.completion.Cauchy.has_add | |
0.000014 4281 _private.2640539029.add._main | |
0.000014 4282 _private.2640539029.add | |
0.000014 4283 real.has_add | |
0.000015 4284 nnreal.real.has_coe | |
0.000016 4285 _private.2640539029.add._main.equations._eqn_1 | |
0.000015 4286 _private.2640539029.add.equations._eqn_1 | |
0.000017 4287 real.add_cauchy | |
0.000015 4288 real.no_confusion_type | |
0.000014 4289 real.no_confusion | |
0.000016 4290 real.of_cauchy.inj | |
0.000015 4291 real.of_cauchy.inj_eq | |
0.000015 4292 quotient.induction_on | |
0.000016 4293 cau_seq.completion.mk_eq_mk | |
0.000015 4294 cau_seq.completion.mk_add | |
0.000015 4295 cau_seq.completion.Cauchy.comm_ring._proof_1 | |
0.000016 4296 _private.1303984225.zero_def | |
0.000015 4297 cau_seq.completion.Cauchy.comm_ring._proof_2 | |
0.000014 4298 cau_seq.completion.Cauchy.comm_ring._proof_3 | |
0.000017 4299 cau_seq.completion.Cauchy.comm_ring._proof_4 | |
0.000014 4300 cau_seq.completion.Cauchy.comm_ring._proof_5 | |
0.000017 4301 quotient.lift_on | |
0.000015 4302 sub_eq_neg_add | |
0.000014 4303 neg_sub_neg | |
0.000017 4304 cau_seq.completion.Cauchy.has_neg._proof_1 | |
0.000015 4305 cau_seq.completion.Cauchy.has_neg | |
0.000014 4306 cau_seq.sub_lim_zero | |
0.000017 4307 cau_seq.completion.Cauchy.has_sub._proof_1 | |
0.000015 4308 cau_seq.completion.Cauchy.has_sub | |
0.000014 4309 cau_seq.completion.mk_sub | |
0.000016 4310 cau_seq.completion.mk_neg | |
0.000016 4311 cau_seq.completion.Cauchy.comm_ring._proof_6 | |
0.000014 4312 cau_seq.completion.Cauchy.comm_ring._proof_7 | |
0.000016 4313 cau_seq.completion.Cauchy.comm_ring._proof_8 | |
0.000015 4314 cau_seq.comm_ring._proof_1 | |
0.000016 4315 cau_seq.comm_ring._proof_2 | |
0.000015 4316 cau_seq.comm_ring._proof_3 | |
0.000016 4317 cau_seq.comm_ring._proof_4 | |
0.000015 4318 cau_seq.comm_ring._proof_5 | |
4.048507 4319 cau_seq.comm_ring._proof_6 | |
0.000082 4320 cau_seq.comm_ring._proof_7 | |
0.000022 4321 cau_seq.comm_ring._proof_8 | |
0.000015 4322 cau_seq.comm_ring._proof_9 | |
0.000014 4323 cau_seq.comm_ring._proof_10 | |
0.000014 4324 cau_seq.comm_ring._proof_11 | |
0.000016 4325 cau_seq.comm_ring._proof_12 | |
0.000014 4326 cau_seq.comm_ring._proof_13 | |
0.000014 4327 cau_seq.comm_ring._proof_14 | |
0.000015 4328 cau_seq.comm_ring._proof_15 | |
0.000014 4329 cau_seq.comm_ring._proof_16 | |
0.000014 4330 cau_seq.comm_ring | |
0.000015 4331 cau_seq.completion.Cauchy.has_mul._proof_1 | |
0.000014 4332 cau_seq.completion.Cauchy.has_mul | |
0.000014 4333 cau_seq.completion.mk_mul | |
0.000014 4334 cau_seq.completion.Cauchy.comm_ring._proof_9 | |
0.000014 4335 cau_seq.completion.Cauchy.has_one | |
0.000015 4336 _private.2752866263.one_def | |
0.000014 4337 cau_seq.completion.Cauchy.comm_ring._proof_10 | |
0.000014 4338 cau_seq.completion.Cauchy.comm_ring._proof_11 | |
0.000018 4339 cau_seq.completion.Cauchy.comm_ring._proof_12 | |
0.000015 4340 cau_seq.completion.Cauchy.comm_ring._proof_13 | |
0.000016 4341 cau_seq.completion.Cauchy.comm_ring._proof_14 | |
0.000015 4342 cau_seq.completion.Cauchy.comm_ring._proof_15 | |
0.000017 4343 cau_seq.completion.Cauchy.comm_ring._proof_16 | |
0.000015 4344 cau_seq.completion.Cauchy.comm_ring | |
0.000017 4345 real.comm_ring._proof_1 | |
0.000014 4346 _private.2220156581.zero.equations._eqn_1 | |
0.000018 4347 real.zero_cauchy | |
0.000018 4348 real.comm_ring._proof_2 | |
0.000014 4349 real.comm_ring._proof_3 | |
0.000017 4350 real.comm_ring._proof_4 | |
0.000015 4351 real.comm_ring._proof_5 | |
0.000017 4352 _private.3917730707.neg._main | |
0.000015 4353 _private.3917730707.neg | |
0.000017 4354 real.has_neg | |
0.000015 4355 real.comm_ring._proof_6 | |
0.000018 4356 _private.3917730707.neg._main.equations._eqn_1 | |
0.000015 4357 _private.3917730707.neg.equations._eqn_1 | |
0.000015 4358 real.neg_cauchy | |
0.000013 4359 real.comm_ring._proof_7 | |
0.000017 4360 real.comm_ring._proof_8 | |
0.000015 4361 _private.1968452691.mul._main | |
0.000017 4362 _private.1968452691.mul | |
0.000015 4363 real.has_mul | |
0.000014 4364 _private.1968452691.mul._main.equations._eqn_1 | |
0.000014 4365 _private.1968452691.mul.equations._eqn_1 | |
0.000015 4366 real.mul_cauchy | |
0.000013 4367 real.comm_ring._proof_9 | |
0.000017 4368 _private.2621602477.one | |
0.000016 4369 real.has_one | |
0.000017 4370 _private.2621602477.one.equations._eqn_1 | |
0.000017 4371 real.one_cauchy | |
0.000015 4372 real.comm_ring._proof_10 | |
0.000016 4373 real.comm_ring._proof_11 | |
0.000017 4374 real.comm_ring._proof_12 | |
0.000017 4375 real.comm_ring._proof_13 | |
0.000015 4376 real.comm_ring._proof_14 | |
0.000016 4377 real.comm_ring._proof_15 | |
0.000015 4378 real.comm_ring._proof_16 | |
0.000017 4379 real.comm_ring | |
0.000015 4380 real.mk | |
0.000016 4381 real.ind_mk | |
0.000015 4382 cau_seq.has_le | |
0.000014 4383 _private.1284997043.le.equations._eqn_1 | |
0.000016 4384 _private.3191803835.le_def | |
0.000015 4385 _private.2149295721.lt._main.equations._eqn_1 | |
0.000016 4386 _private.2149295721.lt.equations._eqn_1 | |
0.000015 4387 real.lt_cauchy | |
0.000016 4388 real.mk_lt | |
0.000015 4389 real.cauchy | |
0.000017 4390 real.ext_cauchy_iff | |
0.000015 4391 cau_seq.completion.mk_eq | |
0.000014 4392 real.mk_eq | |
0.000016 4393 real.mk_le | |
0.000015 4394 cau_seq.preorder._proof_1 | |
0.000017 4395 cau_seq.add_pos | |
0.000014 4396 cau_seq.lt_trans | |
0.000016 4397 cau_seq.preorder._match_1 | |
0.000016 4398 cau_seq.preorder._proof_2 | |
0.000014 4399 cau_seq.not_lim_zero_of_pos | |
0.000016 4400 cau_seq.lt_irrefl | |
0.000027 4401 cau_seq.preorder._match_2 | |
0.000015 4402 cau_seq.preorder._proof_3 | |
0.000014 4403 cau_seq.preorder | |
0.000019 4404 real.partial_order._proof_1 | |
0.000015 4405 real.partial_order._proof_2 | |
0.000017 4406 real.partial_order._proof_3 | |
0.000014 4407 cau_seq.le_antisymm | |
0.000017 4408 real.partial_order._proof_4 | |
0.000016 4409 real.partial_order | |
0.000015 4410 real.ring | |
0.000016 4411 real.add_comm_group | |
0.000015 4412 real.add_group | |
0.000016 4413 real.add_right_cancel_semigroup | |
0.000015 4414 real.preorder | |
0.000016 4415 real.inhabited | |
0.000015 4416 real.mk.equations._eqn_1 | |
0.000015 4417 real.mk_add | |
0.000016 4418 real.add_lt_add_iff_left | |
0.000015 4419 real.ordered_ring._proof_1 | |
0.000016 4420 semiring.add_assoc | |
0.000015 4421 semiring.zero_add | |
0.000016 4422 semiring.add_zero | |
0.000015 4423 semiring.nsmul | |
0.000016 4424 semiring.nsmul_zero' | |
0.000015 4425 semiring.nsmul_succ' | |
0.000016 4426 semiring.add_comm | |
0.000015 4427 semiring.to_add_comm_monoid | |
0.000016 4428 ring_hom | |
0.000017 4429 real.semiring | |
0.000015 4430 ring_hom.to_fun | |
0.000016 4431 ring_hom.has_coe_to_fun | |
0.000015 4432 function.comp_app | |
0.000016 4433 cau_seq.completion.of_rat_one | |
0.000015 4434 real.of_rat._proof_1 | |
0.000016 4435 cau_seq.const_mul | |
0.000015 4436 cau_seq.completion.of_rat_mul | |
0.000016 4437 euclidean_domain.exists_pair_ne | |
1.311466 4438 euclidean_domain.to_nontrivial | |
0.000076 4439 rat.nontrivial | |
0.000023 4440 real.of_rat._proof_2 | |
0.000015 4441 cau_seq.completion.of_rat_zero | |
0.000014 4442 real.of_rat._proof_3 | |
0.000014 4443 cau_seq.const_add | |
0.000014 4444 cau_seq.completion.of_rat_add | |
0.000015 4445 real.of_rat._proof_4 | |
0.000013 4446 real.of_rat | |
0.000014 4447 rat.ordered_ring | |
0.000015 4448 rat.ordered_semiring | |
0.000013 4449 ring_hom.map_zero' | |
0.000014 4450 ring_hom.map_zero | |
0.000014 4451 ring_hom.map_one' | |
0.000014 4452 ring_hom.map_one | |
0.000020 4453 rat.has_lt | |
0.000017 4454 cau_seq.const_sub | |
0.000016 4455 cau_seq.const_pos | |
0.000017 4456 cau_seq.const_lt | |
0.000015 4457 real.of_rat_lt | |
0.000016 4458 real.zero_lt_one | |
0.000018 4459 real.ordered_ring._proof_2 | |
0.000017 4460 real.mk_zero | |
0.000018 4461 iff_of_eq | |
0.000017 4462 real.mk_pos | |
0.000017 4463 real.mk_mul | |
0.000017 4464 mul_le_mul | |
0.000017 4465 cau_seq.mul_pos | |
0.000015 4466 real.mul_pos | |
0.000016 4467 real.ordered_ring | |
0.000017 4468 real.ordered_semiring | |
0.000015 4469 real.ordered_cancel_add_comm_monoid | |
0.000014 4470 real.ordered_add_comm_monoid | |
0.000014 4471 nnreal.has_add._proof_1 | |
0.000014 4472 nnreal.has_add | |
0.000016 4473 function.injective.add_semigroup._proof_1 | |
0.000017 4474 function.injective.add_semigroup | |
0.000018 4475 function.injective.add_comm_semigroup._proof_1 | |
0.000015 4476 function.injective.add_comm_semigroup._proof_2 | |
0.000016 4477 function.injective.add_comm_semigroup | |
0.000017 4478 function.injective.add_comm_monoid._proof_1 | |
0.000017 4479 function.injective.add_monoid._proof_1 | |
0.000016 4480 function.injective.add_zero_class._proof_1 | |
0.000018 4481 function.injective.add_zero_class._proof_2 | |
0.000017 4482 function.injective.add_zero_class | |
0.000017 4483 function.injective.add_monoid._proof_2 | |
0.000016 4484 function.injective.add_monoid._proof_3 | |
0.000017 4485 function.injective.add_monoid._proof_4 | |
0.000017 4486 function.injective.add_monoid._proof_5 | |
0.000015 4487 function.injective.add_monoid._proof_6 | |
0.000014 4488 function.injective.add_monoid._proof_7 | |
0.000017 4489 function.injective.add_monoid | |
0.000015 4490 function.injective.add_comm_monoid._proof_2 | |
0.000016 4491 function.injective.add_comm_monoid._proof_3 | |
0.000015 4492 function.injective.add_comm_monoid._proof_4 | |
0.000016 4493 function.injective.add_comm_monoid._proof_5 | |
0.000015 4494 function.injective.add_comm_monoid._proof_6 | |
0.000015 4495 function.injective.add_comm_monoid | |
0.000016 4496 function.injective.semiring._proof_1 | |
0.000015 4497 function.injective.semigroup._proof_1 | |
0.000016 4498 function.injective.semigroup | |
0.000015 4499 function.injective.monoid._proof_1 | |
0.000014 4500 function.injective.mul_one_class._proof_1 | |
0.000016 4501 function.injective.mul_one_class._proof_2 | |
0.000016 4502 function.injective.mul_one_class | |
0.000014 4503 function.injective.monoid._proof_2 | |
0.000016 4504 function.injective.monoid._proof_3 | |
0.000015 4505 function.injective.monoid._proof_4 | |
0.000016 4506 function.injective.monoid._proof_5 | |
0.000015 4507 function.injective.monoid._proof_6 | |
0.000015 4508 function.injective.monoid._proof_7 | |
0.000016 4509 function.injective.monoid | |
0.000015 4510 function.injective.monoid_with_zero._proof_1 | |
0.000016 4511 function.injective.monoid_with_zero._proof_2 | |
0.000016 4512 function.injective.monoid_with_zero._proof_3 | |
0.000014 4513 function.injective.monoid_with_zero._proof_4 | |
0.000016 4514 function.injective.monoid_with_zero._proof_5 | |
0.000015 4515 function.injective.mul_zero_class._proof_1 | |
0.000014 4516 function.injective.mul_zero_class._proof_2 | |
0.000017 4517 function.injective.mul_zero_class | |
0.000015 4518 function.injective.monoid_with_zero._proof_6 | |
0.000014 4519 function.injective.monoid_with_zero._proof_7 | |
0.000016 4520 function.injective.monoid_with_zero | |
0.000016 4521 function.injective.semiring._proof_2 | |
0.000014 4522 function.injective.semiring._proof_3 | |
0.000016 4523 function.injective.semiring._proof_4 | |
0.000016 4524 function.injective.semiring._proof_5 | |
0.000014 4525 function.injective.semiring._proof_6 | |
0.000016 4526 function.injective.semiring._proof_7 | |
0.000015 4527 function.injective.semiring._proof_8 | |
0.000016 4528 function.injective.semiring._proof_9 | |
0.000015 4529 function.injective.semiring._proof_10 | |
0.000016 4530 function.injective.semiring._proof_11 | |
0.000015 4531 function.injective.semiring._proof_12 | |
0.000016 4532 function.injective.semiring._proof_13 | |
0.000015 4533 function.injective.distrib._proof_1 | |
0.000016 4534 function.injective.distrib._proof_2 | |
0.000015 4535 function.injective.distrib | |
0.000017 4536 function.injective.semiring._proof_14 | |
0.000015 4537 function.injective.semiring._proof_15 | |
0.646642 4538 function.injective.semiring | |
0.000078 4539 function.injective.comm_semiring._proof_1 | |
0.000024 4540 function.injective.comm_semiring._proof_2 | |
0.000015 4541 function.injective.comm_semiring._proof_3 | |
0.000014 4542 function.injective.comm_semiring._proof_4 | |
0.000015 4543 function.injective.comm_semiring._proof_5 | |
0.000015 4544 function.injective.comm_semiring._proof_6 | |
0.000014 4545 function.injective.comm_semiring._proof_7 | |
0.000014 4546 function.injective.comm_semiring._proof_8 | |
0.000015 4547 function.injective.comm_semiring._proof_9 | |
0.000014 4548 function.injective.comm_semiring._proof_10 | |
0.000013 4549 function.injective.comm_semiring._proof_11 | |
0.000018 4550 function.injective.comm_semiring._proof_12 | |
0.000017 4551 function.injective.comm_semiring._proof_13 | |
0.000015 4552 function.injective.comm_semiring._proof_14 | |
0.000016 4553 function.injective.comm_semiring._proof_15 | |
0.000015 4554 function.injective.comm_semigroup._proof_1 | |
0.000017 4555 function.injective.comm_semigroup._proof_2 | |
0.000017 4556 function.injective.comm_semigroup | |
0.000018 4557 function.injective.comm_semiring._proof_16 | |
0.000016 4558 function.injective.comm_semiring | |
0.000017 4559 comm_ring.to_comm_semiring._proof_1 | |
0.000017 4560 comm_ring.to_comm_semiring._proof_2 | |
0.000017 4561 comm_ring.to_comm_semiring | |
0.000016 4562 real.comm_semiring | |
0.000014 4563 nnreal.has_zero._proof_1 | |
0.000016 4564 nnreal.has_zero | |
0.000016 4565 nnreal.has_one | |
0.000014 4566 nnreal.has_mul._proof_1 | |
0.000016 4567 nnreal.has_mul | |
0.000015 4568 coe_subtype | |
0.000016 4569 subtype.ext | |
0.000015 4570 subtype.coe_injective | |
0.000017 4571 nnreal.coe_injective | |
0.000015 4572 nnreal.comm_semiring._proof_1 | |
0.000016 4573 nnreal.comm_semiring._proof_2 | |
0.000015 4574 nnreal.comm_semiring._proof_3 | |
0.000016 4575 nnreal.comm_semiring._proof_4 | |
0.000015 4576 nnreal.comm_semiring._proof_5 | |
0.000016 4577 nnreal.comm_semiring._proof_6 | |
0.000016 4578 nnreal.comm_semiring._proof_7 | |
0.000014 4579 nnreal.comm_semiring._proof_8 | |
0.000016 4580 nnreal.comm_semiring._proof_9 | |
0.000016 4581 nnreal.comm_semiring._proof_10 | |
0.000014 4582 nnreal.comm_semiring._proof_11 | |
0.000016 4583 nnreal.comm_semiring._proof_12 | |
0.000015 4584 nnreal.comm_semiring._proof_13 | |
0.000015 4585 nnreal.comm_semiring._proof_14 | |
0.000016 4586 nnreal.comm_semiring._proof_15 | |
0.000015 4587 nnreal.comm_semiring._proof_16 | |
0.000014 4588 nnreal.comm_semiring._proof_17 | |
0.000017 4589 nnreal.comm_semiring._proof_18 | |
0.000014 4590 nnreal.comm_semiring._proof_19 | |
0.000017 4591 nnreal.comm_semiring._proof_20 | |
0.000015 4592 nnreal.comm_semiring | |
0.000014 4593 nnreal.has_bot | |
0.000017 4594 preorder.lift._proof_1 | |
0.000015 4595 preorder.lift._proof_2 | |
0.000014 4596 preorder.lift._proof_3 | |
0.000016 4597 preorder.lift | |
0.000015 4598 partial_order.lift._proof_1 | |
0.000017 4599 partial_order.lift._proof_2 | |
0.000015 4600 partial_order.lift._proof_3 | |
0.000015 4601 partial_order.lift._proof_4 | |
0.000016 4602 partial_order.lift | |
0.000015 4603 linear_order.lift._proof_1 | |
0.000016 4604 linear_order.lift._proof_2 | |
0.000016 4605 linear_order.lift._proof_3 | |
0.000014 4606 linear_order.lift._proof_4 | |
0.000017 4607 linear_order.lift._proof_5 | |
0.000015 4608 eq.decidable | |
0.000014 4609 has_lt.lt.decidable | |
0.000017 4610 linear_order.lift | |
0.000014 4611 ge_iff_le | |
0.000017 4612 cau_seq.abv_pos_of_not_lim_zero | |
0.000014 4613 le_neg_add_iff_add_le | |
0.000016 4614 le_sub_iff_add_le' | |
0.000015 4615 le_sub_iff_add_le | |
0.000017 4616 neg_add_le_iff_le_add | |
0.000015 4617 neg_add_le_iff_le_add' | |
0.000016 4618 neg_le_sub_iff_le_add | |
0.000015 4619 neg_le_sub_iff_le_add' | |
0.000014 4620 add_le_add_iff_right | |
0.000017 4621 sub_le_sub_iff_right | |
0.000015 4622 neg_eq_zero_sub | |
0.000016 4623 zero_sub | |
0.000015 4624 cau_seq.trichotomy | |
0.000015 4625 cau_seq.lt_total | |
0.000016 4626 cau_seq.le_total | |
0.000014 4627 real.linear_order._proof_1 | |
0.000017 4628 real.linear_order | |
0.000015 4629 nnreal.linear_order | |
0.000014 4630 nnreal.order_bot._match_1 | |
0.000017 4631 nnreal.order_bot._proof_1 | |
0.000014 4632 nnreal.order_bot | |
0.000014 4633 nnreal.canonically_linear_ordered_add_monoid._proof_1 | |
0.000014 4634 nnreal.canonically_linear_ordered_add_monoid._proof_2 | |
0.000015 4635 real.has_sub | |
0.000014 4636 real.ordered_add_comm_group | |
0.000016 4637 real.add_monoid | |
0.000016 4638 nnreal.eq | |
0.000014 4639 add_sub_cancel' | |
0.000016 4640 add_sub_cancel'_right | |
0.000015 4641 nnreal.canonically_linear_ordered_add_monoid._match_1 | |
0.000014 4642 nnreal.canonically_linear_ordered_add_monoid._match_2 | |
0.000017 4643 nnreal.canonically_linear_ordered_add_monoid._match_3 | |
0.000015 4644 nnreal.canonically_linear_ordered_add_monoid._proof_3 | |
0.000014 4645 nnreal.canonically_linear_ordered_add_monoid | |
0.903690 4646 canonically_linear_ordered_add_monoid.add_assoc | |
0.000078 4647 canonically_linear_ordered_add_monoid.zero | |
0.000024 4648 canonically_linear_ordered_add_monoid.zero_add | |
0.000015 4649 canonically_linear_ordered_add_monoid.add_zero | |
0.000014 4650 canonically_linear_ordered_add_monoid.nsmul | |
0.000014 4651 canonically_linear_ordered_add_monoid.nsmul_zero' | |
0.000015 4652 canonically_linear_ordered_add_monoid.nsmul_succ' | |
0.000014 4653 canonically_linear_ordered_add_monoid.add_comm | |
0.000014 4654 canonically_linear_ordered_add_monoid.le | |
0.000014 4655 canonically_linear_ordered_add_monoid.lt | |
0.000014 4656 canonically_linear_ordered_add_monoid.le_refl | |
0.000014 4657 canonically_linear_ordered_add_monoid.le_trans | |
0.000014 4658 canonically_linear_ordered_add_monoid.lt_iff_le_not_le | |
0.000014 4659 canonically_linear_ordered_add_monoid.le_antisymm | |
0.000015 4660 canonically_linear_ordered_add_monoid.add_le_add_left | |
0.000014 4661 canonically_linear_ordered_add_monoid.lt_of_add_lt_add_left | |
0.000014 4662 canonically_linear_ordered_add_monoid.bot | |
0.000014 4663 canonically_linear_ordered_add_monoid.bot_le | |
0.000015 4664 canonically_linear_ordered_add_monoid.le_iff_exists_add | |
0.000014 4665 function.injective.group_with_zero._proof_1 | |
0.000014 4666 function.injective.group_with_zero._proof_2 | |
0.000014 4667 function.injective.group_with_zero._proof_3 | |
0.000015 4668 function.injective.group_with_zero._proof_4 | |
0.000016 4669 function.injective.group_with_zero._proof_5 | |
0.000018 4670 function.injective.group_with_zero._proof_6 | |
0.000017 4671 function.injective.group_with_zero._proof_7 | |
0.000018 4672 function.injective.div_inv_monoid._proof_1 | |
0.000018 4673 function.injective.div_inv_monoid._proof_2 | |
0.000016 4674 function.injective.div_inv_monoid._proof_3 | |
0.000017 4675 function.injective.div_inv_monoid._proof_4 | |
0.000017 4676 function.injective.div_inv_monoid._proof_5 | |
0.000017 4677 function.injective.div_inv_monoid._proof_6 | |
0.000017 4678 function.injective.div_inv_monoid | |
0.000015 4679 function.injective.group_with_zero._proof_8 | |
0.000017 4680 pullback_nonzero | |
0.000017 4681 function.injective.group_with_zero._proof_9 | |
0.000015 4682 function.injective.group_with_zero._proof_10 | |
0.000014 4683 function.injective.ne | |
0.000017 4684 function.injective.ne_iff | |
0.000017 4685 function.injective.ne_iff' | |
0.000016 4686 function.injective.group_with_zero._proof_11 | |
0.000014 4687 function.injective.group_with_zero | |
0.000016 4688 function.injective.comm_group_with_zero._proof_1 | |
0.000016 4689 function.injective.comm_group_with_zero._proof_2 | |
0.000016 4690 function.injective.comm_group_with_zero._proof_3 | |
0.000015 4691 function.injective.comm_group_with_zero._proof_4 | |
0.000015 4692 function.injective.comm_group_with_zero._proof_5 | |
0.000016 4693 function.injective.comm_group_with_zero._proof_6 | |
0.000015 4694 function.injective.comm_group_with_zero._proof_7 | |
0.000016 4695 function.injective.comm_group_with_zero._proof_8 | |
0.000016 4696 function.injective.comm_group_with_zero._proof_9 | |
0.000014 4697 function.injective.comm_group_with_zero._proof_10 | |
0.000016 4698 function.injective.comm_group_with_zero._proof_11 | |
0.000015 4699 function.injective.comm_group_with_zero._proof_12 | |
0.000015 4700 function.injective.comm_group_with_zero | |
0.000014 4701 real.nontrivial | |
0.000015 4702 real.linear_ordered_comm_ring | |
0.000016 4703 inv_eq_one_div | |
0.000015 4704 neg_eq_neg_one_mul | |
0.000017 4705 mul_div_assoc | |
0.000015 4706 mul_div_mul_right | |
0.000015 4707 mul_div_mul_left | |
0.000016 4708 div_add_div | |
0.000015 4709 field.to_comm_ring | |
0.000016 4710 div_sub_div | |
0.000015 4711 inv_sub_inv | |
0.000016 4712 ne.equations._eqn_1 | |
0.000015 4713 is_absolute_value.abv_pos | |
0.000016 4714 monoid_with_zero_hom | |
0.000015 4715 monoid_with_zero_hom.to_fun | |
0.000015 4716 monoid_with_zero_hom.has_coe_to_fun | |
0.000016 4717 monoid_with_zero_hom.map_mul' | |
0.000015 4718 monoid_with_zero_hom.map_mul | |
0.000015 4719 monoid_with_zero_hom.map_zero' | |
0.000016 4720 monoid_with_zero_hom.map_zero | |
0.000016 4721 monoid_with_zero_hom.map_one' | |
0.000014 4722 monoid_with_zero_hom.map_one | |
0.000017 4723 monoid_with_zero_hom.map_inv' | |
0.000015 4724 monoid_with_zero_hom.map_div | |
0.000014 4725 is_absolute_value.abv_one | |
0.000016 4726 is_absolute_value.abv_hom | |
0.000015 4727 is_absolute_value.abv_div | |
0.000017 4728 lt_iff_lt_of_le_iff_le | |
0.000015 4729 div_eq_mul_one_div | |
0.000014 4730 one_div_pos | |
0.000017 4731 div_eq_iff_mul_eq | |
0.000014 4732 div_eq_iff | |
0.000017 4733 div_le_iff | |
0.000015 4734 lt_div_iff | |
0.000017 4735 div_mul_eq_mul_div | |
0.000014 4736 mul_mul_div | |
0.000017 4737 le_div_iff | |
0.000015 4738 div_lt_iff | |
0.000016 4739 div_lt_div_iff | |
0.000015 4740 has_lt.lt.trans_le | |
0.000015 4741 mul_lt_mul | |
2.523448 4742 div_lt_div | |
0.000076 4743 rat_inv_continuous_lemma | |
0.000024 4744 cau_seq.inv_aux | |
0.000015 4745 cau_seq.inv | |
0.000014 4746 cau_seq.lim_zero_congr | |
0.000014 4747 cau_seq.inv_apply | |
0.000015 4748 cau_seq.inv_mul_cancel | |
0.000014 4749 cau_seq.completion.Cauchy.has_inv._proof_1 | |
0.000014 4750 cau_seq.completion.Cauchy.has_inv | |
0.000015 4751 _private.4241956523.inv'._main | |
0.000015 4752 _private.4241956523.inv' | |
0.000014 4753 real.has_inv | |
0.000013 4754 field.div._default | |
0.000015 4755 real.linear_ordered_field._proof_1 | |
0.000013 4756 real.comm_monoid | |
0.000014 4757 real.comm_semigroup | |
0.000014 4758 _private.4241956523.inv'._main.equations._eqn_1 | |
0.000015 4759 _private.4241956523.inv'.equations._eqn_1 | |
0.000014 4760 real.inv_cauchy | |
0.000014 4761 cau_seq.completion.mk_eq_zero | |
0.000014 4762 cau_seq.completion.inv_mk | |
0.000014 4763 cau_seq.completion.inv_mul_cancel | |
0.000014 4764 real.linear_ordered_field._proof_2 | |
0.000014 4765 cau_seq.completion.inv_zero | |
0.000018 4766 real.linear_ordered_field._proof_3 | |
0.000017 4767 real.linear_ordered_field | |
0.000018 4768 real.field | |
0.000015 4769 nnreal.has_inv._proof_1 | |
0.000014 4770 nnreal.has_inv | |
0.000014 4771 push_neg.not_and_eq | |
0.000014 4772 push_neg.not_le_eq | |
0.000014 4773 lt_asymm | |
0.000016 4774 has_lt.lt.asymm | |
0.000015 4775 nonneg_and_nonneg_or_nonpos_and_nonpos_of_mul_nnonneg | |
0.000017 4776 le_of_neg_le_neg | |
0.000015 4777 mul_le_mul_of_nonpos_right | |
0.000018 4778 mul_nonneg_of_nonpos_of_nonpos | |
0.000015 4779 mul_nonneg_iff | |
0.000018 4780 inv_nonpos | |
0.000015 4781 div_nonneg_iff | |
0.000018 4782 div_nonneg | |
0.000015 4783 nnreal.has_div._proof_1 | |
0.000017 4784 nnreal.has_div | |
0.000015 4785 nnreal.comm_group_with_zero._proof_1 | |
0.000018 4786 nnreal.comm_group_with_zero._proof_2 | |
0.000015 4787 nnreal.comm_group_with_zero._proof_3 | |
0.000018 4788 nnreal.comm_group_with_zero._proof_4 | |
0.000015 4789 nnreal.comm_group_with_zero._proof_5 | |
0.000014 4790 nnreal.comm_group_with_zero._proof_6 | |
0.000014 4791 nnreal.comm_group_with_zero._proof_7 | |
0.000017 4792 nnreal.comm_group_with_zero._proof_8 | |
0.000017 4793 nnreal.comm_group_with_zero._proof_9 | |
0.000016 4794 nnreal.comm_group_with_zero._proof_10 | |
0.000017 4795 nnreal.comm_group_with_zero._proof_11 | |
0.000017 4796 nnreal.comm_group_with_zero._proof_12 | |
0.000015 4797 nnreal.comm_group_with_zero._proof_13 | |
0.000014 4798 nnreal.comm_group_with_zero._proof_14 | |
0.000015 4799 nnreal.comm_group_with_zero._proof_15 | |
0.000014 4800 nnreal.comm_group_with_zero._proof_16 | |
0.000015 4801 nnreal.comm_group_with_zero._proof_17 | |
0.000014 4802 nnreal.comm_group_with_zero | |
0.000014 4803 nnreal.canonically_ordered_comm_semiring._proof_1 | |
0.000014 4804 nnreal.canonically_ordered_comm_semiring | |
0.000014 4805 real.add_left_cancel_semigroup | |
0.000014 4806 nnreal.eq_iff | |
0.000014 4807 nnreal.linear_ordered_semiring._proof_1 | |
0.000015 4808 nnreal.linear_ordered_semiring._proof_2 | |
0.000014 4809 nnreal.linear_ordered_semiring._proof_3 | |
0.000014 4810 nnreal.linear_ordered_semiring._proof_4 | |
0.000015 4811 canonically_linear_ordered_add_monoid.le_total | |
0.000016 4812 canonically_linear_ordered_add_monoid.decidable_le | |
0.000015 4813 canonically_linear_ordered_add_monoid.decidable_eq | |
0.000017 4814 canonically_linear_ordered_add_monoid.decidable_lt | |
0.000015 4815 nnreal.linear_ordered_semiring._proof_5 | |
0.000016 4816 nnreal.linear_ordered_semiring | |
0.000015 4817 ennreal.canonically_ordered_comm_semiring | |
0.000016 4818 set.nonempty | |
0.000015 4819 set_of | |
0.000016 4820 upper_bounds | |
0.000015 4821 bdd_above | |
0.000016 4822 lower_bounds | |
0.000015 4823 bdd_below | |
0.000025 4824 conditionally_complete_linear_order | |
0.000015 4825 conditionally_complete_linear_order.le | |
0.000014 4826 conditionally_complete_linear_order.lt | |
0.000014 4827 conditionally_complete_linear_order.le_refl | |
0.000017 4828 conditionally_complete_linear_order.le_trans | |
0.000015 4829 conditionally_complete_linear_order.lt_iff_le_not_le | |
0.000015 4830 conditionally_complete_linear_order.le_antisymm | |
0.000016 4831 conditionally_complete_linear_order.le_total | |
0.000015 4832 conditionally_complete_linear_order.decidable_le | |
0.000016 4833 conditionally_complete_linear_order.decidable_eq | |
0.000015 4834 conditionally_complete_linear_order.decidable_lt | |
0.000015 4835 conditionally_complete_linear_order.to_linear_order | |
0.000016 4836 complete_linear_order | |
0.000015 4837 conditionally_complete_lattice | |
0.000016 4838 conditionally_complete_lattice.sup | |
0.000015 4839 complete_lattice | |
0.000015 4840 complete_lattice.sup | |
0.000016 4841 complete_lattice.le | |
0.000015 4842 complete_lattice.lt | |
0.000016 4843 complete_lattice.le_refl | |
0.000015 4844 complete_lattice.le_trans | |
0.000016 4845 complete_lattice.lt_iff_le_not_le | |
0.171009 4846 complete_lattice.le_antisymm | |
0.000062 4847 complete_lattice.le_sup_left | |
0.000025 4848 complete_lattice.le_sup_right | |
0.000015 4849 complete_lattice.sup_le | |
0.000014 4850 complete_lattice.inf | |
0.000015 4851 complete_lattice.inf_le_left | |
0.000014 4852 complete_lattice.inf_le_right | |
0.000014 4853 complete_lattice.le_inf | |
0.000014 4854 complete_lattice.Sup | |
0.000014 4855 complete_lattice.Inf | |
0.000014 4856 complete_semilattice_Sup | |
0.000014 4857 complete_semilattice_Sup.le | |
0.000015 4858 complete_semilattice_Sup.lt | |
0.000014 4859 complete_semilattice_Sup.le_refl | |
0.000018 4860 complete_semilattice_Sup.le_trans | |
0.000015 4861 complete_semilattice_Sup.lt_iff_le_not_le | |
0.000017 4862 complete_semilattice_Sup.le_antisymm | |
0.000016 4863 complete_semilattice_Sup.to_partial_order | |
0.000015 4864 complete_lattice.le_Sup | |
0.000016 4865 complete_lattice.Sup_le | |
0.000017 4866 complete_lattice.to_complete_semilattice_Sup | |
0.000017 4867 has_Sup | |
0.000018 4868 has_Sup.Sup | |
0.000018 4869 complete_semilattice_Sup.Sup | |
0.000016 4870 complete_semilattice_Sup.to_has_Sup | |
0.000018 4871 complete_semilattice_Sup.le_Sup | |
0.000017 4872 le_Sup | |
0.000015 4873 conditionally_complete_lattice_of_complete_lattice._proof_1 | |
0.000016 4874 complete_semilattice_Sup.Sup_le | |
0.000017 4875 Sup_le | |
0.000015 4876 conditionally_complete_lattice_of_complete_lattice._proof_2 | |
0.000016 4877 complete_semilattice_Inf | |
0.000015 4878 complete_semilattice_Inf.le | |
0.000014 4879 complete_semilattice_Inf.lt | |
0.000017 4880 complete_semilattice_Inf.le_refl | |
0.000015 4881 complete_semilattice_Inf.le_trans | |
0.000016 4882 complete_semilattice_Inf.lt_iff_le_not_le | |
0.000015 4883 complete_semilattice_Inf.le_antisymm | |
0.000035 4884 complete_semilattice_Inf.to_partial_order | |
0.000018 4885 complete_lattice.Inf_le | |
0.000015 4886 complete_lattice.le_Inf | |
0.000017 4887 complete_lattice.to_complete_semilattice_Inf | |
0.000017 4888 has_Inf | |
0.000023 4889 has_Inf.Inf | |
0.000030 4890 complete_semilattice_Inf.Inf | |
0.000021 4891 complete_semilattice_Inf.to_has_Inf | |
0.000016 4892 complete_semilattice_Inf.Inf_le | |
0.000014 4893 Inf_le | |
0.000014 4894 conditionally_complete_lattice_of_complete_lattice._proof_3 | |
0.000017 4895 complete_semilattice_Inf.le_Inf | |
0.000015 4896 le_Inf | |
0.000014 4897 conditionally_complete_lattice_of_complete_lattice._proof_4 | |
0.000016 4898 conditionally_complete_lattice_of_complete_lattice | |
0.000016 4899 complete_linear_order.sup | |
0.000014 4900 complete_linear_order.le | |
0.000016 4901 complete_linear_order.lt | |
0.000016 4902 complete_linear_order.le_refl | |
0.000014 4903 complete_linear_order.le_trans | |
0.000016 4904 complete_linear_order.lt_iff_le_not_le | |
0.000016 4905 complete_linear_order.le_antisymm | |
0.000014 4906 complete_linear_order.le_sup_left | |
0.000016 4907 complete_linear_order.le_sup_right | |
0.000016 4908 complete_linear_order.sup_le | |
0.000014 4909 complete_linear_order.inf | |
0.000016 4910 complete_linear_order.inf_le_left | |
0.000016 4911 complete_linear_order.inf_le_right | |
0.000014 4912 complete_linear_order.le_inf | |
0.000016 4913 complete_linear_order.top | |
0.000016 4914 complete_linear_order.le_top | |
0.000014 4915 complete_linear_order.bot | |
0.000016 4916 complete_linear_order.bot_le | |
0.000016 4917 complete_linear_order.Sup | |
0.000014 4918 complete_linear_order.le_Sup | |
0.000017 4919 complete_linear_order.Sup_le | |
0.000015 4920 complete_linear_order.Inf | |
0.000016 4921 complete_linear_order.Inf_le | |
0.000015 4922 complete_linear_order.le_Inf | |
0.000015 4923 complete_linear_order.to_complete_lattice | |
0.000016 4924 conditionally_complete_lattice.le | |
0.000015 4925 conditionally_complete_lattice.lt | |
0.000015 4926 conditionally_complete_lattice.le_refl | |
0.000016 4927 conditionally_complete_linear_order_of_complete_linear_order._proof_1 | |
0.000016 4928 conditionally_complete_lattice.le_trans | |
0.000014 4929 conditionally_complete_linear_order_of_complete_linear_order._proof_2 | |
0.000016 4930 conditionally_complete_lattice.lt_iff_le_not_le | |
0.000016 4931 conditionally_complete_linear_order_of_complete_linear_order._proof_3 | |
0.000014 4932 conditionally_complete_lattice.le_antisymm | |
0.000016 4933 conditionally_complete_linear_order_of_complete_linear_order._proof_4 | |
0.000016 4934 conditionally_complete_lattice.le_sup_left | |
0.000014 4935 conditionally_complete_linear_order_of_complete_linear_order._proof_5 | |
0.000017 4936 conditionally_complete_lattice.le_sup_right | |
0.000015 4937 conditionally_complete_linear_order_of_complete_linear_order._proof_6 | |
0.000014 4938 conditionally_complete_lattice.sup_le | |
0.000017 4939 conditionally_complete_linear_order_of_complete_linear_order._proof_7 | |
0.000015 4940 conditionally_complete_lattice.inf | |
0.209640 4941 conditionally_complete_lattice.inf_le_left | |
0.000064 4942 conditionally_complete_linear_order_of_complete_linear_order._proof_8 | |
0.000026 4943 conditionally_complete_lattice.inf_le_right | |
0.000014 4944 conditionally_complete_linear_order_of_complete_linear_order._proof_9 | |
0.000015 4945 conditionally_complete_lattice.le_inf | |
0.000014 4946 conditionally_complete_linear_order_of_complete_linear_order._proof_10 | |
0.000014 4947 conditionally_complete_lattice.Sup | |
0.000014 4948 conditionally_complete_lattice.Inf | |
0.000015 4949 conditionally_complete_lattice.le_cSup | |
0.000015 4950 conditionally_complete_linear_order_of_complete_linear_order._proof_11 | |
0.000014 4951 conditionally_complete_lattice.cSup_le | |
0.000014 4952 conditionally_complete_linear_order_of_complete_linear_order._proof_12 | |
0.000014 4953 conditionally_complete_lattice.cInf_le | |
0.000015 4954 conditionally_complete_linear_order_of_complete_linear_order._proof_13 | |
0.000014 4955 conditionally_complete_lattice.le_cInf | |
0.000014 4956 conditionally_complete_linear_order_of_complete_linear_order._proof_14 | |
0.000014 4957 complete_linear_order.le_total | |
0.000015 4958 complete_linear_order.decidable_le | |
0.000014 4959 complete_linear_order.decidable_eq | |
0.000014 4960 complete_linear_order.decidable_lt | |
0.000014 4961 conditionally_complete_linear_order_of_complete_linear_order | |
0.000017 4962 set.has_emptyc | |
0.000017 4963 conditionally_complete_linear_order_bot | |
0.000017 4964 semilattice_sup_top | |
0.000019 4965 semilattice_sup_top.sup | |
0.000017 4966 with_top.semilattice_sup._proof_1 | |
0.000017 4967 with_top.semilattice_sup._proof_2 | |
0.000016 4968 with_top.semilattice_sup._proof_3 | |
0.000017 4969 with_top.semilattice_sup._proof_4 | |
0.000015 4970 with_top.semilattice_sup._proof_5 | |
0.000016 4971 option.bind_eq_some' | |
0.000018 4972 option.map_none' | |
0.000017 4973 option.map_some' | |
0.000018 4974 option.map_eq_some' | |
0.000017 4975 with_top.semilattice_sup._proof_6 | |
0.000016 4976 with_top.semilattice_sup._proof_7 | |
0.000017 4977 with_top.semilattice_sup._proof_8 | |
0.000017 4978 with_top.semilattice_sup | |
0.000016 4979 semilattice_sup_top.le | |
0.000014 4980 semilattice_sup_top.lt | |
0.000016 4981 semilattice_sup_top.le_refl | |
0.000018 4982 with_top.lattice._proof_1 | |
0.000017 4983 semilattice_sup_top.le_trans | |
0.000015 4984 with_top.lattice._proof_2 | |
0.000017 4985 semilattice_sup_top.lt_iff_le_not_le | |
0.000017 4986 with_top.lattice._proof_3 | |
0.000017 4987 semilattice_sup_top.le_antisymm | |
0.000017 4988 with_top.lattice._proof_4 | |
0.000014 4989 semilattice_sup_top.le_sup_left | |
0.000017 4990 with_top.lattice._proof_5 | |
0.000015 4991 semilattice_sup_top.le_sup_right | |
0.000016 4992 with_top.lattice._proof_6 | |
0.000015 4993 semilattice_sup_top.sup_le | |
0.000016 4994 with_top.lattice._proof_7 | |
0.000015 4995 semilattice_inf_top | |
0.000017 4996 semilattice_inf_top.inf | |
0.000014 4997 with_top.semilattice_inf._proof_1 | |
0.000017 4998 with_top.semilattice_inf._proof_2 | |
0.000015 4999 with_top.semilattice_inf._proof_3 | |
0.000016 5000 with_top.semilattice_inf._proof_4 | |
0.000015 5001 with_top.semilattice_inf._proof_5 | |
0.000014 5002 option.lift_or_get._main | |
0.000017 5003 option.lift_or_get | |
0.000023 5004 option.lift_or_get._main.equations._eqn_3 | |
0.000023 5005 option.lift_or_get.equations._eqn_3 | |
0.000015 5006 option.lift_or_get._main.equations._eqn_4 | |
0.000015 5007 option.lift_or_get.equations._eqn_4 | |
0.000014 5008 with_top.semilattice_inf._proof_6 | |
0.000016 5009 option.lift_or_get._main.equations._eqn_2 | |
0.000015 5010 option.lift_or_get.equations._eqn_2 | |
0.000017 5011 with_top.semilattice_inf._proof_7 | |
0.000015 5012 with_top.has_le | |
0.000016 5013 with_top.some_le_some | |
0.000015 5014 with_top.semilattice_inf._proof_8 | |
0.000016 5015 with_top.semilattice_inf | |
0.000015 5016 semilattice_inf_top.le | |
0.000017 5017 semilattice_inf_top.lt | |
0.000015 5018 semilattice_inf_top.le_refl | |
0.000014 5019 semilattice_inf_top.le_trans | |
0.000017 5020 semilattice_inf_top.lt_iff_le_not_le | |
0.000015 5021 semilattice_inf_top.le_antisymm | |
0.000015 5022 semilattice_inf_top.inf_le_left | |
0.000016 5023 with_top.lattice._proof_8 | |
0.000015 5024 semilattice_inf_top.inf_le_right | |
0.000015 5025 with_top.lattice._proof_9 | |
0.000016 5026 semilattice_inf_top.le_inf | |
0.000016 5027 with_top.lattice._proof_10 | |
0.000014 5028 with_top.lattice | |
0.000024 5029 conditionally_complete_lattice.to_lattice | |
0.000018 5030 conditionally_complete_linear_order.sup | |
0.000014 5031 conditionally_complete_linear_order.le_sup_left | |
0.000015 5032 conditionally_complete_linear_order.le_sup_right | |
0.000014 5033 conditionally_complete_linear_order.sup_le | |
0.000014 5034 conditionally_complete_linear_order.inf | |
0.223599 5035 conditionally_complete_linear_order.inf_le_left | |
0.000063 5036 conditionally_complete_linear_order.inf_le_right | |
0.000024 5037 conditionally_complete_linear_order.le_inf | |
0.000014 5038 conditionally_complete_linear_order.Sup | |
0.000015 5039 conditionally_complete_linear_order.Inf | |
0.000014 5040 conditionally_complete_linear_order.le_cSup | |
0.000014 5041 conditionally_complete_linear_order.cSup_le | |
0.000014 5042 conditionally_complete_linear_order.cInf_le | |
0.000014 5043 conditionally_complete_linear_order.le_cInf | |
0.000014 5044 conditionally_complete_linear_order.to_conditionally_complete_lattice | |
0.000014 5045 conditionally_complete_linear_order_bot.sup | |
0.000014 5046 conditionally_complete_linear_order_bot.le | |
0.000014 5047 conditionally_complete_linear_order_bot.lt | |
0.000014 5048 conditionally_complete_linear_order_bot.le_refl | |
0.000014 5049 conditionally_complete_linear_order_bot.le_trans | |
0.000017 5050 conditionally_complete_linear_order_bot.lt_iff_le_not_le | |
0.000017 5051 conditionally_complete_linear_order_bot.le_antisymm | |
0.000015 5052 conditionally_complete_linear_order_bot.le_sup_left | |
0.000058 5053 conditionally_complete_linear_order_bot.le_sup_right | |
0.000017 5054 conditionally_complete_linear_order_bot.sup_le | |
0.000019 5055 conditionally_complete_linear_order_bot.inf | |
0.000015 5056 conditionally_complete_linear_order_bot.inf_le_left | |
0.000017 5057 conditionally_complete_linear_order_bot.inf_le_right | |
0.000017 5058 conditionally_complete_linear_order_bot.le_inf | |
0.000017 5059 conditionally_complete_linear_order_bot.Sup | |
0.000017 5060 conditionally_complete_linear_order_bot.Inf | |
0.000018 5061 conditionally_complete_linear_order_bot.le_cSup | |
0.000017 5062 conditionally_complete_linear_order_bot.cSup_le | |
0.000016 5063 conditionally_complete_linear_order_bot.cInf_le | |
0.000017 5064 conditionally_complete_linear_order_bot.le_cInf | |
0.000015 5065 conditionally_complete_linear_order_bot.le_total | |
0.000017 5066 conditionally_complete_linear_order_bot.decidable_le | |
0.000016 5067 conditionally_complete_linear_order_bot.decidable_eq | |
0.000017 5068 conditionally_complete_linear_order_bot.decidable_lt | |
0.000017 5069 conditionally_complete_linear_order_bot.to_conditionally_complete_linear_order | |
0.000015 5070 with_top.linear_order._proof_1 | |
0.000018 5071 with_top.linear_order._proof_2 | |
0.000017 5072 with_top.linear_order._proof_3 | |
0.000014 5073 with_top.linear_order._proof_4 | |
0.000017 5074 with_top.linear_order._proof_5 | |
0.000015 5075 with_bot | |
0.000016 5076 with_bot.has_lt | |
0.000015 5077 with_bot.preorder._proof_1 | |
0.000016 5078 with_bot.preorder._match_1 | |
0.000015 5079 with_bot.preorder._match_2 | |
0.000016 5080 with_bot.preorder._proof_2 | |
0.000015 5081 with_bot.some_lt_some | |
0.000016 5082 with_bot.preorder._proof_3 | |
0.000015 5083 with_bot.preorder | |
0.000016 5084 with_bot.has_coe_t | |
0.000015 5085 with_bot.coe_le_coe | |
0.000016 5086 with_bot.some_le_some | |
0.000015 5087 with_bot.decidable_le._main | |
0.000016 5088 with_bot.decidable_le | |
0.000015 5089 with_top.decidable_le | |
0.000016 5090 with_top.linear_order._proof_6 | |
0.000015 5091 with_top.linear_order._proof_7 | |
0.000014 5092 with_top.linear_order._proof_8 | |
0.000016 5093 with_top.linear_order._proof_9 | |
0.000015 5094 with_bot.decidable_lt._main | |
0.000015 5095 with_bot.decidable_lt | |
0.000016 5096 with_top.decidable_lt | |
0.000015 5097 with_top.linear_order | |
0.000016 5098 with_top.complete_linear_order._proof_1 | |
0.000015 5099 with_top.complete_linear_order._proof_2 | |
0.000015 5100 with_top.complete_linear_order._proof_3 | |
0.000015 5101 with_top.complete_linear_order._proof_4 | |
0.000016 5102 with_top.complete_linear_order._proof_5 | |
0.000015 5103 with_top.complete_linear_order._proof_6 | |
0.000015 5104 with_top.complete_linear_order._proof_7 | |
0.000013 5105 with_top.complete_linear_order._proof_8 | |
0.000014 5106 with_top.complete_linear_order._proof_9 | |
0.000014 5107 with_top.complete_linear_order._proof_10 | |
0.000014 5108 conditionally_complete_linear_order_bot.bot | |
0.000016 5109 conditionally_complete_linear_order_bot.bot_le | |
0.000015 5110 conditionally_complete_linear_order_bot.to_order_bot | |
0.000016 5111 with_top.complete_linear_order._proof_11 | |
0.000015 5112 with_top.complete_linear_order._proof_12 | |
0.000016 5113 set.decidable_mem | |
0.000015 5114 set.preimage | |
0.000017 5115 with_top.has_Sup | |
0.000014 5116 conditionally_complete_lattice.to_has_Sup | |
0.000017 5117 is_least | |
0.000014 5118 is_lub | |
0.000017 5119 decidable.not_iff_comm | |
0.000014 5120 not_iff_comm | |
0.000016 5121 set.nonempty.equations._eqn_1 | |
0.000015 5122 set.subset | |
0.000016 5123 set.has_subset | |
0.000015 5124 eq.subset | |
0.000016 5125 set.ext | |
0.204341 5126 set.subset.antisymm | |
0.000076 5127 set.subset.antisymm_iff | |
0.000024 5128 set.empty_subset | |
0.000015 5129 set.subset_empty_iff | |
0.000014 5130 set.eq_empty_iff_forall_not_mem | |
0.000014 5131 set.not_nonempty_iff_eq_empty | |
0.000014 5132 set.ne_empty_iff_nonempty | |
0.000014 5133 set.eq_empty_or_nonempty | |
0.000014 5134 set.preimage_empty | |
0.000014 5135 conditionally_complete_linear_order_bot.cSup_empty | |
0.000014 5136 cSup_empty | |
0.000014 5137 is_greatest | |
0.000014 5138 is_glb | |
0.000014 5139 is_glb.equations._eqn_1 | |
0.000013 5140 upper_bounds.equations._eqn_1 | |
0.000014 5141 set.ball_empty_iff | |
0.000019 5142 set.subset_univ | |
0.000017 5143 set.univ_subset_iff | |
0.000015 5144 imp_iff_right | |
0.000016 5145 set.eq_univ_iff_forall | |
0.000018 5146 set.mem_set_of_eq | |
0.000017 5147 upper_bounds_empty | |
0.000014 5148 lower_bounds_empty | |
0.000017 5149 is_greatest.equations._eqn_1 | |
0.000017 5150 set.mem_univ | |
0.000015 5151 set.has_singleton | |
0.000016 5152 set.mem_singleton_iff | |
0.000017 5153 order_top.upper_bounds_univ | |
0.000017 5154 set.mem_singleton | |
0.000017 5155 is_greatest_univ | |
0.000015 5156 is_glb_empty | |
0.000016 5157 order_dual.has_top | |
0.000017 5158 order_dual.order_top._proof_1 | |
0.000018 5159 order_dual.order_top._proof_2 | |
0.000016 5160 order_dual.order_top._proof_3 | |
0.000018 5161 order_dual.order_top._proof_4 | |
0.000016 5162 order_dual.order_top | |
0.000017 5163 is_lub_empty | |
0.000017 5164 le_cSup | |
0.000017 5165 with_top.not_top_le_coe | |
0.000014 5166 cSup_le | |
0.000015 5167 with_top.is_lub_Sup' | |
0.000016 5168 with_top.is_lub_Sup | |
0.000015 5169 with_top.complete_linear_order._proof_13 | |
0.000016 5170 with_top.complete_linear_order._proof_14 | |
0.000015 5171 with_top.has_Inf | |
0.000016 5172 conditionally_complete_lattice.to_has_Inf | |
0.000015 5173 cInf_le | |
0.000017 5174 le_cInf | |
0.000016 5175 push_neg.not_not_eq | |
0.000016 5176 with_top.is_glb_Inf' | |
0.000015 5177 with_top.is_glb_Inf | |
0.000016 5178 with_top.complete_linear_order._proof_15 | |
0.000015 5179 with_top.complete_linear_order._proof_16 | |
0.000016 5180 with_top.complete_linear_order._proof_17 | |
0.000015 5181 classical.dec_rel | |
0.000014 5182 with_top.complete_linear_order._proof_18 | |
0.000017 5183 with_top.complete_linear_order._proof_19 | |
0.000015 5184 with_top.complete_linear_order._proof_20 | |
0.000014 5185 with_top.complete_linear_order._proof_21 | |
0.000016 5186 with_top.complete_linear_order | |
0.000016 5187 nnreal.conditionally_complete_linear_order_bot._proof_1 | |
0.000014 5188 nnreal.conditionally_complete_linear_order_bot._proof_2 | |
0.000016 5189 nnreal.conditionally_complete_linear_order_bot._proof_3 | |
0.000015 5190 nnreal.conditionally_complete_linear_order_bot._proof_4 | |
0.000015 5191 nnreal.conditionally_complete_linear_order_bot._proof_5 | |
0.000016 5192 nnreal.conditionally_complete_linear_order_bot._proof_6 | |
0.000015 5193 int.cast._main | |
0.000016 5194 int.cast | |
0.000015 5195 int.cast_coe | |
0.000014 5196 le_neg | |
0.000015 5197 _private.3897234211.lbp | |
0.000016 5198 _private.651630769.wf_lbp._match_1 | |
0.000015 5199 nat.add_right_comm | |
0.000016 5200 _private.651630769.wf_lbp._match_2 | |
0.000015 5201 _private.651630769.wf_lbp._match_3 | |
0.000017 5202 _private.651630769.wf_lbp | |
0.000014 5203 nat.find_x._proof_1 | |
0.000016 5204 nat.find_x._proof_2 | |
0.000015 5205 nat.find_x._proof_3 | |
0.000016 5206 nat.find_x._proof_4 | |
0.000015 5207 nat.find_x._proof_5 | |
0.000016 5208 nat.find_x | |
0.000015 5209 nat.find | |
0.000016 5210 nat.find_spec | |
0.000015 5211 nat.find_min | |
0.000016 5212 nat.find_min' | |
0.000015 5213 int.exists_least_of_bdd | |
0.000016 5214 int.exists_greatest_of_bdd | |
0.000015 5215 real.linear_ordered_ring | |
0.000016 5216 has_scalar | |
0.000015 5217 has_scalar.smul | |
0.000016 5218 add_monoid.has_scalar_nat | |
0.000015 5219 archimedean | |
0.000016 5220 coe_trans | |
0.000016 5221 coe_coe | |
0.000014 5222 add_monoid_hom.congr_fun | |
0.000016 5223 nat.cast_zero | |
0.000015 5224 nat.cast_add_monoid_hom._proof_1 | |
0.000016 5225 nat.cast_add | |
0.000015 5226 nat.cast_add_monoid_hom | |
0.000016 5227 add_monoid_hom.cases_on | |
0.000015 5228 add_monoid_hom.coe_inj | |
0.000016 5229 add_monoid_hom.ext | |
0.000016 5230 add_monoid_hom.map_zero' | |
0.000014 5231 add_monoid_hom.map_zero | |
0.000016 5232 add_monoid_hom.map_add' | |
0.000016 5233 add_monoid_hom.map_add | |
0.000014 5234 add_monoid_hom.ext_nat | |
0.000017 5235 nat.cast_one | |
0.000015 5236 add_monoid_hom.eq_nat_cast | |
0.000014 5237 zero_nsmul | |
0.000016 5238 semiconj_by | |
0.000016 5239 commute | |
0.000016 5240 commute.symm | |
0.000015 5241 semiconj_by.equations._eqn_1 | |
0.000016 5242 semiconj_by.one_right | |
0.000015 5243 semiconj_by.eq | |
0.000016 5244 semiconj_by.mul_right | |
0.000015 5245 semiconj_by.pow_right | |
0.000016 5246 commute.pow_right | |
0.000014 5247 commute.pow_left | |
0.000016 5248 commute.refl | |
0.000016 5249 commute.pow_self | |
0.000014 5250 pow_mul_comm' | |
0.000016 5251 pow_succ' | |
0.000015 5252 pow_add | |
0.000016 5253 add_nsmul | |
0.000015 5254 nsmul_eq_smul | |
2.250385 5255 nsmul_one' | |
0.000079 5256 one_nsmul | |
0.000020 5257 nsmul_one | |
0.000015 5258 strict_mono.lt_iff_lt | |
0.000014 5259 nat.cast_lt | |
0.000015 5260 archimedean.arch | |
0.000013 5261 exists_nat_gt | |
0.000015 5262 exists_int_gt | |
0.000014 5263 rat.cast_coe | |
0.000014 5264 nat.cast_succ | |
0.000014 5265 int.add_neg_one | |
0.000014 5266 int.neg_succ_sub_one | |
0.000014 5267 rat.coe_int_eq_mk | |
0.000017 5268 rat.of_int_eq_mk | |
0.000018 5269 rat.coe_int_eq_of_int | |
0.000015 5270 inv_one | |
0.000017 5271 div_one | |
0.000014 5272 rat.cast_of_int | |
0.000017 5273 rat.cast_coe_int | |
0.000018 5274 rat.cast_coe_nat | |
0.000015 5275 exists_rat_gt | |
0.000016 5276 succ_nsmul' | |
0.000015 5277 nsmul_eq_mul' | |
0.000017 5278 commute.eq | |
0.000017 5279 semiconj_by.zero_left | |
0.000017 5280 commute.zero_left | |
0.000017 5281 semiconj_by.add_left | |
0.000017 5282 commute.add_left | |
0.000015 5283 semiconj_by.one_left | |
0.000016 5284 commute.one_left | |
0.000017 5285 nat.cast_commute | |
0.000015 5286 nsmul_eq_mul | |
0.000016 5287 archimedean_iff_nat_lt | |
0.000015 5288 floor_ring | |
0.000014 5289 int.to_nat._main | |
0.000016 5290 int.to_nat | |
0.000017 5291 floor_ring.floor | |
0.000016 5292 floor | |
0.000017 5293 ceil | |
0.000015 5294 nat_ceil | |
0.000016 5295 rat.floor._main | |
0.000015 5296 rat.floor | |
0.000016 5297 rat.floor._main.equations._eqn_1 | |
0.000015 5298 rat.floor.equations._eqn_1 | |
0.000016 5299 rat.le_def | |
0.000015 5300 le_of_sub_nonneg | |
0.000017 5301 int.div_mul_le | |
0.000015 5302 int.mul_le_of_le_div | |
0.000014 5303 int.neg_add_cancel_left | |
0.000016 5304 int.le_of_add_le_add_left | |
0.000015 5305 int.le_of_add_le_add_right | |
0.000015 5306 int.le_of_lt_add_one | |
0.000016 5307 lt_of_mul_lt_mul_right | |
0.000015 5308 neg_add_lt_iff_lt_add | |
0.000016 5309 sub_lt_iff_lt_add' | |
0.000015 5310 int.lt_div_add_one_mul_self | |
0.000015 5311 int.le_div_of_mul_le | |
0.000014 5312 int.le_div_iff_mul_le | |
0.000014 5313 rat.le_floor | |
0.000014 5314 rat.floor_ring | |
0.000017 5315 eq_div_iff_mul_eq | |
0.000015 5316 rat.denom_dvd | |
0.000016 5317 nat.cast_mul | |
0.000015 5318 int.cast_neg_of_nat | |
0.000017 5319 nat.cast_add_one | |
0.000014 5320 int.cast_mul | |
0.000016 5321 nat.commute_cast | |
0.000015 5322 int.cast_coe_nat | |
0.000016 5323 int.cast_zero | |
0.000015 5324 rat.cast_mk_of_ne_zero | |
0.000016 5325 nat.cast_sub | |
0.000015 5326 sub_left_inj | |
0.000017 5327 int.cast_neg_succ_of_nat | |
0.000015 5328 int.cast_sub_nat_nat | |
0.000014 5329 sub_eq_of_eq_add | |
0.000017 5330 nat.add_semigroup | |
0.000015 5331 int.cast_add | |
0.000014 5332 add_right_injective | |
0.000016 5333 add_right_inj | |
0.000016 5334 rat.cast_add_of_ne_zero | |
0.000014 5335 int.cast_neg | |
0.000016 5336 rat.cast_neg | |
0.000015 5337 rat.cast_sub_of_ne_zero | |
0.000014 5338 nat.cast_inj | |
0.000016 5339 nat.cast_eq_zero | |
0.000016 5340 nat.cast_ne_zero | |
0.000014 5341 rat.cast_sub | |
0.000016 5342 rat.mk_eq_div | |
0.000015 5343 ring_hom.map_mul' | |
0.000016 5344 ring_hom.to_monoid_with_zero_hom | |
0.000015 5345 ring_hom.map_div | |
0.000016 5346 int.cast_one | |
0.000015 5347 rat.cast_one | |
0.000017 5348 semiconj_by.zero_right | |
0.000015 5349 units.inv_mul_cancel_left | |
0.000016 5350 units.mul_inv_cancel_right | |
0.000015 5351 semiconj_by.units_inv_right | |
0.000016 5352 semiconj_by.inv_right' | |
0.000017 5353 semiconj_by.inv_right_iff' | |
0.000014 5354 commute.inv_right_iff' | |
0.000017 5355 commute.inv_right' | |
0.000015 5356 rat.cast_mul_of_ne_zero | |
0.000016 5357 rat.cast_mul | |
0.000015 5358 rat.cast_zero | |
0.000016 5359 rat.cast_add | |
0.000015 5360 rat.cast_hom | |
0.000016 5361 rat.cast_div | |
0.000014 5362 rat.cast_mk | |
0.000016 5363 int.cast_sub | |
0.000015 5364 nat.cast_nonneg | |
0.000016 5365 int.cast_nonneg | |
0.000015 5366 int.cast_le | |
0.000016 5367 rat.cast_nonneg | |
0.000015 5368 rat.ordered_add_comm_group | |
0.000016 5369 rat.cast_le | |
0.000015 5370 nat_ceil.equations._eqn_1 | |
0.000016 5371 int.to_nat_eq_max | |
0.000015 5372 int.to_nat_le | |
0.000016 5373 ceil.equations._eqn_1 | |
0.000015 5374 floor_ring.le_floor | |
0.000015 5375 le_floor | |
0.000016 5376 ceil_le | |
0.000015 5377 nat_ceil_le | |
0.000016 5378 le_nat_ceil | |
0.000015 5379 archimedean_iff_rat_lt | |
0.000016 5380 rat.cast_lt | |
0.000015 5381 archimedean_iff_rat_le | |
0.000016 5382 real.division_ring | |
0.000027 5383 real.mk_neg | |
0.000017 5384 ring_hom.map_add' | |
0.000014 5385 ring_hom.to_add_monoid_hom | |
0.000014 5386 ring_hom.eq_nat_cast | |
0.000019 5387 ring_hom.comp._proof_1 | |
0.000015 5388 ring_hom.map_mul | |
0.000018 5389 ring_hom.comp._proof_2 | |
0.000015 5390 ring_hom.comp._proof_3 | |
0.000016 5391 ring_hom.map_add | |
0.000015 5392 ring_hom.comp._proof_4 | |
0.000016 5393 ring_hom.comp | |
0.000015 5394 nat.cast_ring_hom._proof_1 | |
0.000015 5395 nat.cast_ring_hom._proof_2 | |
0.000016 5396 nat.cast_ring_hom._proof_3 | |
0.000015 5397 nat.cast_ring_hom | |
0.000016 5398 ring_hom.map_nat_cast | |
0.000015 5399 int.cast_add_hom._proof_1 | |
0.000016 5400 int.cast_add_hom | |
0.000015 5401 add_monoid_hom.ext_iff | |
0.000016 5402 add_monoid_hom.comp._proof_1 | |
0.000015 5403 has_zero.nonempty | |
0.000016 5404 add_monoid_hom.comp._proof_2 | |
0.000015 5405 add_monoid_hom.comp | |
0.000016 5406 ring_hom.has_coe_add_monoid_hom | |
3.903788 5407 int.of_nat_hom._proof_1 | |
0.000076 5408 int.of_nat_mul | |
0.000024 5409 int.of_nat_hom._proof_2 | |
0.000014 5410 int.of_nat_add | |
0.000015 5411 int.of_nat_hom | |
0.000014 5412 add_monoid_hom.map_add_eq_zero | |
0.000015 5413 add_neg_self | |
0.000014 5414 add_monoid_hom.eq_on_neg | |
0.000014 5415 add_monoid_hom.ext_int | |
0.000014 5416 int.coe_cast_add_hom | |
0.000014 5417 add_monoid_hom.eq_int_cast_hom | |
0.000014 5418 add_monoid_hom.eq_int_cast | |
0.000015 5419 ring_hom.eq_int_cast | |
0.000014 5420 int.cast_ring_hom._proof_1 | |
0.000014 5421 int.cast_ring_hom._proof_2 | |
0.000014 5422 int.cast_ring_hom._proof_3 | |
0.000014 5423 int.cast_ring_hom | |
0.000017 5424 ring_hom.map_int_cast | |
0.000017 5425 ring_hom.eq_rat_cast | |
0.000018 5426 real.of_rat_eq_cast | |
0.000016 5427 rat.ordered_cancel_add_comm_monoid | |
0.000018 5428 rat.ordered_add_comm_monoid | |
0.000017 5429 real.le_mk_of_forall_le | |
0.000016 5430 real.mk_le_of_forall_le | |
0.000018 5431 real.archimedean._match_1 | |
0.000015 5432 real.archimedean | |
0.000014 5433 exists_int_lt | |
0.000016 5434 exists_floor | |
0.000016 5435 archimedean.floor_ring._proof_1 | |
0.000016 5436 archimedean.floor_ring | |
0.000015 5437 real.floor_ring | |
0.000015 5438 floor_le | |
0.000016 5439 real.linear_ordered_semiring | |
0.000015 5440 nat.cast_pos | |
0.000015 5441 strict_mono.le_iff_le | |
0.000016 5442 nat.cast_le | |
0.000015 5443 ring_hom.map_inv | |
0.000015 5444 rat.cast_inv | |
0.000016 5445 sub_lt_iff_lt_add | |
0.000015 5446 int.succ | |
0.000017 5447 int.succ.equations._eqn_1 | |
0.000015 5448 floor_lt | |
0.000014 5449 int.lt_succ_self | |
0.000016 5450 lt_succ_floor | |
0.000016 5451 lt_floor_add_one | |
0.000016 5452 sub_one_lt_floor | |
0.000015 5453 one_div | |
0.000015 5454 div_eq_inv_mul | |
0.000016 5455 inv_le_inv | |
0.000015 5456 inv_le | |
0.000014 5457 densely_ordered | |
0.000016 5458 densely_ordered.dense | |
0.000015 5459 exists_between | |
0.000016 5460 le_of_forall_ge_of_dense | |
0.000015 5461 mul_two | |
0.000015 5462 add_self_div_two | |
0.000016 5463 div_lt_div_of_lt | |
0.000015 5464 linear_ordered_field.to_densely_ordered | |
0.000015 5465 le_sub | |
0.000016 5466 real.exists_sup | |
0.000015 5467 real.has_Sup._proof_1 | |
0.000016 5468 real.has_Sup | |
0.000016 5469 set.image | |
0.000016 5470 set.mem_image | |
0.000016 5471 set.mem_empty_eq | |
0.000014 5472 set.image_empty | |
0.000016 5473 exists_const | |
0.000016 5474 real.Sup_empty | |
0.000014 5475 le_cSup_of_le | |
0.000016 5476 real.lattice | |
0.000016 5477 real.has_Inf | |
0.000014 5478 real.Sup_def | |
0.000016 5479 real.Sup_le | |
0.000015 5480 real.le_Sup | |
0.000015 5481 real.conditionally_complete_linear_order._proof_1 | |
0.000016 5482 real.Sup_le_ub | |
0.000015 5483 real.conditionally_complete_linear_order._proof_2 | |
0.000016 5484 real.le_Inf | |
0.000016 5485 real.Inf_le | |
0.000014 5486 real.conditionally_complete_linear_order._proof_3 | |
0.000017 5487 real.lb_le_Inf | |
0.000015 5488 real.conditionally_complete_linear_order._proof_4 | |
0.000015 5489 real.conditionally_complete_linear_order | |
0.000016 5490 nnreal.of_real._proof_1 | |
0.000015 5491 nnreal.of_real | |
0.000016 5492 le_max_left_of_le | |
0.000015 5493 set.mem_image_of_mem | |
0.000015 5494 nnreal.bdd_above_coe | |
0.000016 5495 real.Sup_of_not_bdd_above | |
0.000016 5496 nnreal.has_Sup._proof_1 | |
0.000014 5497 nnreal.has_Sup | |
0.000017 5498 real.Inf_def | |
0.000015 5499 set.set_of_false | |
0.000014 5500 real.Inf_empty | |
0.000016 5501 set.nonempty.image | |
0.000015 5502 nnreal.has_Inf._match_1 | |
0.000015 5503 nnreal.has_Inf._proof_1 | |
0.000016 5504 nnreal.has_Inf | |
0.000015 5505 nnreal.conditionally_complete_linear_order_bot._proof_7 | |
0.000016 5506 set.nonempty.of_image | |
0.000016 5507 set.nonempty_image_iff | |
0.000014 5508 nnreal.conditionally_complete_linear_order_bot._match_1 | |
0.000017 5509 nnreal.conditionally_complete_linear_order_bot._proof_8 | |
0.000015 5510 nnreal.bdd_below_coe | |
0.000015 5511 nnreal.conditionally_complete_linear_order_bot._proof_9 | |
0.000016 5512 nnreal.conditionally_complete_linear_order_bot._match_2 | |
0.000015 5513 nnreal.conditionally_complete_linear_order_bot._proof_10 | |
0.000015 5514 nnreal.coe_Sup | |
0.000016 5515 bot_eq_zero | |
0.000016 5516 nnreal.coe_zero | |
0.000014 5517 nnreal.conditionally_complete_linear_order_bot._proof_11 | |
0.000016 5518 nnreal.conditionally_complete_linear_order_bot | |
0.000016 5519 ennreal.complete_linear_order | |
0.000016 5520 set.inter | |
0.000015 5521 set.has_inter | |
0.000014 5522 set.sUnion | |
0.000015 5523 topological_space | |
0.000016 5524 filter | |
0.000015 5525 prod | |
0.000016 5526 filter.sets | |
0.000014 5527 filter.has_mem | |
0.000017 5528 set.subset.refl | |
0.000014 5529 filter.partial_order._proof_1 | |
0.000016 5530 set.subset.trans | |
0.000015 5531 filter.partial_order._proof_2 | |
0.000016 5532 filter.partial_order._proof_3 | |
0.000016 5533 filter.cases_on | |
0.000014 5534 filter.filter_eq | |
0.000016 5535 filter.partial_order._proof_4 | |
0.000015 5536 filter.partial_order | |
0.000017 5537 filter.principal._proof_1 | |
0.000014 5538 set.subset_inter | |
0.000017 5539 filter.principal._proof_2 | |
0.303226 5540 filter.principal | |
0.000083 5541 prod.fst | |
0.000027 5542 prod.snd | |
0.000019 5543 id_rel | |
0.000014 5544 filter.univ_sets | |
0.000014 5545 filter.univ_mem_sets | |
0.000014 5546 filter.sets_of_superset | |
0.000014 5547 filter.mem_sets_of_superset | |
0.000014 5548 set.preimage_mono | |
0.000014 5549 filter.map._proof_1 | |
0.000014 5550 filter.inter_sets | |
0.000015 5551 filter.inter_mem_sets | |
0.000013 5552 filter.map._proof_2 | |
0.000014 5553 filter.map | |
0.000014 5554 filter.tendsto | |
0.000019 5555 prod.swap | |
0.000017 5556 set.range | |
0.000017 5557 infi | |
0.000015 5558 complete_lattice.top | |
0.000016 5559 complete_lattice.bot | |
0.000018 5560 bounded_lattice | |
0.000017 5561 bounded_lattice.lt | |
0.000018 5562 bounded_lattice.le | |
0.000015 5563 bounded_lattice.top | |
0.000016 5564 bounded_lattice.bot | |
0.000018 5565 bounded_lattice.sup | |
0.000017 5566 bounded_lattice.inf | |
0.000017 5567 semilattice_sup.lt._default | |
0.000015 5568 lattice.lt._default | |
0.000016 5569 bounded_lattice.cases_on | |
0.000017 5570 bounded_lattice.copy._aux_1 | |
0.000015 5571 bounded_lattice.copy._aux_2 | |
0.000016 5572 bounded_lattice.copy._proof_1 | |
0.000015 5573 bounded_lattice.copy._aux_3 | |
0.000016 5574 bounded_lattice.copy._aux_4 | |
0.000015 5575 bounded_lattice.copy._aux_5 | |
0.000015 5576 bounded_lattice.copy._aux_6 | |
0.000016 5577 bounded_lattice.copy._aux_7 | |
0.000015 5578 bounded_lattice.copy._aux_8 | |
0.000016 5579 bounded_lattice.copy._aux_9 | |
0.000015 5580 bounded_lattice.copy._aux_10 | |
0.000017 5581 bounded_lattice.copy._aux_11 | |
0.000015 5582 bounded_lattice.copy | |
0.000014 5583 complete_lattice.le_top | |
0.000016 5584 complete_lattice.bot_le | |
0.000015 5585 complete_lattice.to_bounded_lattice | |
0.000016 5586 bounded_lattice.le_refl | |
0.000016 5587 complete_lattice.copy._proof_1 | |
0.000014 5588 bounded_lattice.le_trans | |
0.000016 5589 complete_lattice.copy._proof_2 | |
0.000015 5590 bounded_lattice.lt_iff_le_not_le | |
0.000016 5591 complete_lattice.copy._proof_3 | |
0.000015 5592 bounded_lattice.le_antisymm | |
0.000016 5593 complete_lattice.copy._proof_4 | |
0.000015 5594 bounded_lattice.le_sup_left | |
0.000016 5595 complete_lattice.copy._proof_5 | |
0.000015 5596 bounded_lattice.le_sup_right | |
0.000016 5597 complete_lattice.copy._proof_6 | |
0.000015 5598 bounded_lattice.sup_le | |
0.000016 5599 complete_lattice.copy._proof_7 | |
0.000015 5600 bounded_lattice.inf_le_left | |
0.000015 5601 complete_lattice.copy._proof_8 | |
0.000016 5602 bounded_lattice.inf_le_right | |
0.000015 5603 complete_lattice.copy._proof_9 | |
0.000016 5604 bounded_lattice.le_inf | |
0.000015 5605 complete_lattice.copy._proof_10 | |
0.000015 5606 bounded_lattice.le_top | |
0.000016 5607 complete_lattice.copy._proof_11 | |
0.000015 5608 bounded_lattice.bot_le | |
0.000016 5609 complete_lattice.copy._proof_12 | |
0.000016 5610 complete_lattice.cases_on | |
0.000014 5611 complete_lattice.copy._aux_1 | |
0.000016 5612 complete_lattice.copy._aux_2 | |
0.000015 5613 complete_lattice.copy._aux_3 | |
0.000015 5614 complete_lattice.copy._aux_4 | |
0.000016 5615 complete_lattice.copy | |
0.000015 5616 order_dual.lattice._proof_1 | |
0.000014 5617 order_dual.lattice._proof_2 | |
0.000016 5618 order_dual.lattice._proof_3 | |
0.000015 5619 order_dual.lattice._proof_4 | |
0.000016 5620 order_dual.lattice._proof_5 | |
0.000015 5621 order_dual.lattice._proof_6 | |
0.000015 5622 order_dual.lattice._proof_7 | |
0.000014 5623 order_dual.has_inf | |
0.000014 5624 order_dual.semilattice_inf._proof_1 | |
0.000016 5625 order_dual.semilattice_inf._proof_2 | |
0.000016 5626 order_dual.semilattice_inf._proof_3 | |
0.000014 5627 order_dual.semilattice_inf._proof_4 | |
0.000016 5628 order_dual.semilattice_inf._proof_5 | |
0.000015 5629 order_dual.semilattice_inf | |
0.000016 5630 order_dual.lattice._proof_8 | |
0.000016 5631 order_dual.lattice._proof_9 | |
0.000016 5632 order_dual.lattice._proof_10 | |
0.000015 5633 order_dual.lattice | |
0.000016 5634 bounded_lattice.to_lattice | |
0.000015 5635 order_dual.bounded_lattice._proof_1 | |
0.000017 5636 order_dual.bounded_lattice._proof_2 | |
0.000017 5637 order_dual.bounded_lattice._proof_3 | |
0.000015 5638 order_dual.bounded_lattice._proof_4 | |
0.000016 5639 order_dual.bounded_lattice._proof_5 | |
0.000015 5640 order_dual.bounded_lattice._proof_6 | |
0.000016 5641 order_dual.bounded_lattice._proof_7 | |
0.000015 5642 order_dual.bounded_lattice._proof_8 | |
0.000016 5643 order_dual.bounded_lattice._proof_9 | |
0.000015 5644 order_dual.bounded_lattice._proof_10 | |
0.000016 5645 bounded_lattice.to_order_bot | |
0.000016 5646 order_dual.bounded_lattice._proof_11 | |
0.000014 5647 order_dual.has_bot | |
0.000016 5648 order_dual.order_bot._proof_1 | |
0.000015 5649 order_dual.order_bot._proof_2 | |
0.000016 5650 order_dual.order_bot._proof_3 | |
0.000015 5651 order_dual.order_bot._proof_4 | |
0.000015 5652 order_dual.order_bot | |
0.000016 5653 bounded_lattice.to_order_top | |
0.000015 5654 order_dual.bounded_lattice._proof_12 | |
0.000016 5655 order_dual.bounded_lattice | |
0.211799 5656 order_dual.complete_lattice._proof_1 | |
0.000073 5657 order_dual.complete_lattice._proof_2 | |
0.000024 5658 order_dual.complete_lattice._proof_3 | |
0.000015 5659 order_dual.complete_lattice._proof_4 | |
0.000014 5660 order_dual.complete_lattice._proof_5 | |
0.000014 5661 order_dual.complete_lattice._proof_6 | |
0.000016 5662 order_dual.complete_lattice._proof_7 | |
0.000014 5663 order_dual.complete_lattice._proof_8 | |
0.000014 5664 order_dual.complete_lattice._proof_9 | |
0.000014 5665 order_dual.complete_lattice._proof_10 | |
0.000014 5666 order_dual.complete_lattice._proof_11 | |
0.000014 5667 order_dual.complete_lattice._proof_12 | |
0.000014 5668 order_dual.has_Sup | |
0.000014 5669 order_dual.has_Inf | |
0.000014 5670 order_dual.complete_lattice | |
0.000014 5671 galois_connection | |
0.000019 5672 galois_insertion | |
0.000015 5673 galois_insertion.le_l_u | |
0.000016 5674 monotone | |
0.000017 5675 galois_connection.l_le | |
0.000017 5676 galois_connection.le_u | |
0.000015 5677 galois_connection.le_u_l | |
0.000016 5678 galois_connection.monotone_l | |
0.000017 5679 galois_insertion.gc | |
0.000016 5680 galois_insertion.lift_semilattice_sup._proof_1 | |
0.000019 5681 galois_insertion.lift_semilattice_sup._proof_2 | |
0.000017 5682 galois_connection.l_u_le | |
0.000017 5683 galois_connection.monotone_u | |
0.000014 5684 galois_insertion.lift_semilattice_sup._proof_3 | |
0.000017 5685 galois_insertion.lift_semilattice_sup | |
0.000015 5686 galois_insertion.lift_lattice._proof_1 | |
0.000014 5687 galois_insertion.lift_lattice._proof_2 | |
0.000016 5688 galois_insertion.lift_lattice._proof_3 | |
0.000015 5689 galois_insertion.lift_lattice._proof_4 | |
0.000016 5690 galois_insertion.lift_lattice._proof_5 | |
0.000015 5691 galois_insertion.lift_lattice._proof_6 | |
0.000017 5692 galois_insertion.lift_lattice._proof_7 | |
0.000015 5693 galois_insertion.choice | |
0.000014 5694 galois_insertion.lift_semilattice_inf._proof_1 | |
0.000016 5695 galois_insertion.choice_eq | |
0.000015 5696 galois_insertion.lift_semilattice_inf._proof_2 | |
0.000016 5697 galois_insertion.lift_semilattice_inf._proof_3 | |
0.000015 5698 galois_insertion.lift_semilattice_inf._proof_4 | |
0.000016 5699 galois_insertion.lift_semilattice_inf | |
0.000015 5700 galois_insertion.lift_lattice._proof_8 | |
0.000016 5701 galois_insertion.lift_lattice._proof_9 | |
0.000015 5702 galois_insertion.lift_lattice._proof_10 | |
0.000014 5703 galois_insertion.lift_lattice | |
0.000014 5704 galois_insertion.lift_bounded_lattice._proof_1 | |
0.000014 5705 galois_insertion.lift_bounded_lattice._proof_2 | |
0.000014 5706 galois_insertion.lift_bounded_lattice._proof_3 | |
0.000014 5707 galois_insertion.lift_bounded_lattice._proof_4 | |
0.000024 5708 galois_insertion.lift_bounded_lattice._proof_5 | |
0.000015 5709 galois_insertion.lift_bounded_lattice._proof_6 | |
0.000014 5710 galois_insertion.lift_bounded_lattice._proof_7 | |
0.000017 5711 galois_insertion.lift_bounded_lattice._proof_8 | |
0.000015 5712 galois_insertion.lift_bounded_lattice._proof_9 | |
0.000016 5713 galois_insertion.lift_bounded_lattice._proof_10 | |
0.000015 5714 galois_insertion.lift_order_top._proof_1 | |
0.000016 5715 galois_insertion.lift_order_top._proof_2 | |
0.000015 5716 galois_insertion.lift_order_top | |
0.000016 5717 galois_insertion.lift_bounded_lattice._proof_11 | |
0.000015 5718 galois_connection.lift_order_bot._proof_1 | |
0.000016 5719 galois_connection.lift_order_bot | |
0.000015 5720 galois_insertion.lift_bounded_lattice._proof_12 | |
0.000017 5721 galois_insertion.lift_bounded_lattice._proof_13 | |
0.000016 5722 galois_insertion.lift_bounded_lattice | |
0.000015 5723 galois_insertion.lift_complete_lattice._proof_1 | |
0.000017 5724 galois_insertion.lift_complete_lattice._proof_2 | |
0.000014 5725 galois_insertion.lift_complete_lattice._proof_3 | |
0.000017 5726 galois_insertion.lift_complete_lattice._proof_4 | |
0.000014 5727 galois_insertion.lift_complete_lattice._proof_5 | |
0.000016 5728 galois_insertion.lift_complete_lattice._proof_6 | |
0.000015 5729 galois_insertion.lift_complete_lattice._proof_7 | |
0.000018 5730 galois_insertion.lift_complete_lattice._proof_8 | |
0.000014 5731 galois_insertion.lift_complete_lattice._proof_9 | |
0.000017 5732 galois_insertion.lift_complete_lattice._proof_10 | |
0.000016 5733 galois_insertion.lift_complete_lattice._proof_11 | |
0.000015 5734 galois_insertion.lift_complete_lattice._proof_12 | |
0.000016 5735 supr | |
0.000015 5736 le_supr | |
0.000016 5737 le_supr_of_le | |
0.000016 5738 galois_insertion.lift_complete_lattice._proof_13 | |
0.000014 5739 supr_le | |
0.000016 5740 galois_insertion.lift_complete_lattice._proof_14 | |
0.000015 5741 le_infi | |
0.000014 5742 infi_le | |
0.000016 5743 infi_le_of_le | |
0.000015 5744 galois_insertion.lift_complete_lattice._proof_15 | |
1.661838 5745 galois_insertion.lift_complete_lattice._proof_16 | |
0.000082 5746 galois_insertion.lift_complete_lattice._proof_17 | |
0.000022 5747 galois_insertion.lift_complete_lattice | |
0.000015 5748 filter.generate_sets | |
0.000014 5749 filter.generate._proof_1 | |
0.000014 5750 filter.generate._proof_2 | |
0.000015 5751 filter.generate | |
0.000014 5752 bounded_distrib_lattice | |
0.000014 5753 bounded_distrib_lattice.sup | |
0.000014 5754 bounded_distrib_lattice.le | |
0.000016 5755 bounded_distrib_lattice.lt | |
0.000014 5756 bounded_distrib_lattice.le_refl | |
0.000014 5757 bounded_distrib_lattice.le_trans | |
0.000014 5758 bounded_distrib_lattice.lt_iff_le_not_le | |
0.000014 5759 bounded_distrib_lattice.le_antisymm | |
0.000018 5760 bounded_distrib_lattice.le_sup_left | |
0.000018 5761 bounded_distrib_lattice.le_sup_right | |
0.000016 5762 bounded_distrib_lattice.sup_le | |
0.000015 5763 bounded_distrib_lattice.inf | |
0.000016 5764 bounded_distrib_lattice.inf_le_left | |
0.000017 5765 bounded_distrib_lattice.inf_le_right | |
0.000018 5766 bounded_distrib_lattice.le_inf | |
0.000017 5767 bounded_distrib_lattice.top | |
0.000017 5768 bounded_distrib_lattice.le_top | |
0.000017 5769 bounded_distrib_lattice.bot | |
0.000017 5770 bounded_distrib_lattice.bot_le | |
0.000017 5771 bounded_distrib_lattice.to_bounded_lattice | |
0.000017 5772 semilattice_inf_bot_of_bounded_lattice._proof_1 | |
0.000017 5773 semilattice_inf_bot_of_bounded_lattice | |
0.000015 5774 has_compl | |
0.000014 5775 has_compl.compl | |
0.000016 5776 semilattice_sup_bot_of_bounded_lattice._proof_1 | |
0.000015 5777 semilattice_sup_bot_of_bounded_lattice | |
0.000014 5778 boolean_algebra.core | |
0.000014 5779 boolean_algebra.core.compl | |
0.000015 5780 boolean_algebra.core.to_has_compl | |
0.000016 5781 boolean_algebra | |
0.000015 5782 boolean_algebra.sup | |
0.000016 5783 set.has_le | |
0.000015 5784 set.has_lt | |
0.000016 5785 boolean_algebra.le | |
0.000015 5786 boolean_algebra.bot | |
0.000017 5787 pi.preorder._proof_1 | |
0.000014 5788 pi.preorder._proof_2 | |
0.000017 5789 pi.preorder._proof_3 | |
0.000015 5790 pi.preorder | |
0.000016 5791 pi.partial_order._proof_1 | |
0.000015 5792 pi.partial_order._proof_2 | |
0.000016 5793 pi.partial_order._proof_3 | |
0.000015 5794 pi.partial_order._proof_4 | |
0.000014 5795 pi.partial_order | |
0.000016 5796 boolean_algebra.lt | |
0.000015 5797 boolean_algebra.le_refl | |
0.000016 5798 pi.boolean_algebra._proof_1 | |
0.000015 5799 boolean_algebra.le_trans | |
0.000016 5800 pi.boolean_algebra._proof_2 | |
0.000015 5801 boolean_algebra.lt_iff_le_not_le | |
0.000017 5802 pi.boolean_algebra._proof_3 | |
0.000015 5803 boolean_algebra.le_antisymm | |
0.000014 5804 pi.boolean_algebra._proof_4 | |
0.000016 5805 pi.boolean_algebra._proof_5 | |
0.000015 5806 pi.boolean_algebra._proof_6 | |
0.000017 5807 pi.boolean_algebra._proof_7 | |
0.000015 5808 pi.boolean_algebra._proof_8 | |
0.000014 5809 boolean_algebra.bot_le | |
0.000017 5810 pi.boolean_algebra._proof_9 | |
0.000015 5811 boolean_algebra.le_sup_left | |
0.000016 5812 pi.boolean_algebra._proof_10 | |
0.000015 5813 boolean_algebra.le_sup_right | |
0.000016 5814 pi.boolean_algebra._proof_11 | |
0.000015 5815 boolean_algebra.sup_le | |
0.000015 5816 pi.boolean_algebra._proof_12 | |
0.000016 5817 boolean_algebra.inf | |
0.000015 5818 boolean_algebra.inf_le_left | |
0.000015 5819 pi.boolean_algebra._proof_13 | |
0.000016 5820 boolean_algebra.inf_le_right | |
0.000015 5821 pi.boolean_algebra._proof_14 | |
0.000016 5822 boolean_algebra.le_inf | |
0.000015 5823 pi.boolean_algebra._proof_15 | |
0.000015 5824 boolean_algebra.le_sup_inf | |
0.000016 5825 pi.boolean_algebra._proof_16 | |
0.000015 5826 boolean_algebra.sdiff | |
0.000015 5827 boolean_algebra.sup_inf_sdiff | |
0.000016 5828 pi.boolean_algebra._proof_17 | |
0.000014 5829 boolean_algebra.inf_inf_sdiff | |
0.000017 5830 pi.boolean_algebra._proof_18 | |
0.000015 5831 boolean_algebra.top | |
0.000015 5832 boolean_algebra.le_top | |
0.000016 5833 pi.boolean_algebra._proof_19 | |
0.000015 5834 boolean_algebra.compl | |
0.000016 5835 boolean_algebra.inf_compl_le_bot | |
0.000015 5836 pi.boolean_algebra._proof_20 | |
0.000015 5837 boolean_algebra.top_le_sup_compl | |
0.000016 5838 pi.boolean_algebra._proof_21 | |
0.000015 5839 boolean_algebra.sdiff_eq | |
0.000016 5840 pi.boolean_algebra._proof_22 | |
0.000015 5841 pi.boolean_algebra | |
0.000016 5842 boolean_algebra.core.bot | |
0.000024 5843 boolean_algebra.core.le | |
0.000016 5844 boolean_algebra.core.lt | |
0.000014 5845 boolean_algebra.core.le_refl | |
0.000014 5846 boolean_algebra.core.le_trans | |
0.000017 5847 boolean_algebra.core.lt_iff_le_not_le | |
0.000015 5848 boolean_algebra.core.le_antisymm | |
0.000017 5849 boolean_algebra.core.bot_le | |
0.000014 5850 boolean_algebra.core.sup | |
0.000016 5851 boolean_algebra.core.le_sup_left | |
0.000015 5852 boolean_algebra.core.le_sup_right | |
0.000016 5853 boolean_algebra.core.sup_le | |
0.000015 5854 boolean_algebra.core.inf | |
0.000017 5855 boolean_algebra.core.inf_le_left | |
0.728497 5856 boolean_algebra.core.inf_le_right | |
0.000077 5857 boolean_algebra.core.le_inf | |
0.000025 5858 boolean_algebra.core.le_sup_inf | |
0.000015 5859 boolean_algebra.core.top | |
0.000014 5860 boolean_algebra.core.le_top | |
0.000015 5861 boolean_algebra.core.to_bounded_distrib_lattice | |
0.000014 5862 distrib_lattice.to_lattice | |
0.000014 5863 bounded_distrib_lattice.le_sup_inf | |
0.000014 5864 bounded_distrib_lattice.to_distrib_lattice | |
0.000014 5865 inf_eq_left | |
0.000014 5866 inf_sup_self | |
0.000015 5867 inf_assoc | |
0.000014 5868 sup_inf_le | |
0.000014 5869 le_sup_inf | |
0.000014 5870 sup_inf_left | |
0.000013 5871 sup_inf_right | |
0.000014 5872 sup_inf_self | |
0.000018 5873 inf_sup_left | |
0.000015 5874 boolean_algebra.core.top_le_sup_compl | |
0.000014 5875 sup_compl_eq_top | |
0.000016 5876 semilattice_inf_top.to_semilattice_inf | |
0.000015 5877 semilattice_inf_top_of_bounded_lattice._proof_1 | |
0.000014 5878 semilattice_inf_top_of_bounded_lattice | |
0.000017 5879 semilattice_inf_top.top | |
0.000017 5880 semilattice_inf_top.le_top | |
0.000017 5881 semilattice_inf_top.to_order_top | |
0.000017 5882 inf_of_le_left | |
0.000017 5883 inf_top_eq | |
0.000017 5884 boolean_algebra.of_core._proof_1 | |
0.000017 5885 inf_comm | |
0.000017 5886 inf_left_right_swap | |
0.000014 5887 boolean_algebra.core.inf_compl_le_bot | |
0.000017 5888 inf_compl_eq_bot | |
0.000017 5889 compl_inf_eq_bot | |
0.000017 5890 inf_of_le_right | |
0.000018 5891 inf_bot_eq | |
0.000014 5892 bot_inf_eq | |
0.000018 5893 boolean_algebra.of_core._proof_2 | |
0.000015 5894 boolean_algebra.of_core._proof_3 | |
0.000017 5895 boolean_algebra.of_core | |
0.000017 5896 distrib_lattice.lt._default | |
0.000015 5897 bounded_distrib_lattice_Prop._proof_1 | |
0.000016 5898 bounded_distrib_lattice_Prop._proof_2 | |
0.000015 5899 bounded_distrib_lattice_Prop._proof_3 | |
0.000016 5900 bounded_distrib_lattice_Prop._proof_4 | |
0.000015 5901 bounded_distrib_lattice_Prop._proof_5 | |
0.000016 5902 bounded_distrib_lattice_Prop._proof_6 | |
0.000015 5903 bounded_distrib_lattice_Prop._proof_7 | |
0.000016 5904 bounded_distrib_lattice_Prop._proof_8 | |
0.000015 5905 bounded_distrib_lattice_Prop | |
0.000016 5906 boolean_algebra_Prop._proof_1 | |
0.000015 5907 boolean_algebra_Prop._proof_2 | |
0.000016 5908 boolean_algebra_Prop._proof_3 | |
0.000014 5909 boolean_algebra_Prop._proof_4 | |
0.000016 5910 boolean_algebra_Prop._proof_5 | |
0.000015 5911 boolean_algebra_Prop._proof_6 | |
0.000016 5912 boolean_algebra_Prop._proof_7 | |
0.000016 5913 boolean_algebra_Prop._proof_8 | |
0.000014 5914 boolean_algebra_Prop._proof_9 | |
0.000016 5915 boolean_algebra_Prop._proof_10 | |
0.000016 5916 boolean_algebra_Prop._proof_11 | |
0.000014 5917 boolean_algebra_Prop._proof_12 | |
0.000016 5918 boolean_algebra_Prop._proof_13 | |
0.000016 5919 boolean_algebra_Prop._match_1 | |
0.000014 5920 boolean_algebra_Prop._proof_14 | |
0.000016 5921 boolean_algebra_Prop._proof_15 | |
0.000015 5922 boolean_algebra_Prop | |
0.000016 5923 set.boolean_algebra._proof_1 | |
0.000015 5924 set.boolean_algebra._proof_2 | |
0.000016 5925 set.boolean_algebra._proof_3 | |
0.000015 5926 set.boolean_algebra._proof_4 | |
0.000015 5927 set.boolean_algebra._proof_5 | |
0.000016 5928 set.union | |
0.000015 5929 set.has_union | |
0.000016 5930 set.boolean_algebra._proof_6 | |
0.000016 5931 set.boolean_algebra._proof_7 | |
0.000014 5932 set.boolean_algebra._proof_8 | |
0.000016 5933 set.boolean_algebra._proof_9 | |
0.000015 5934 set.boolean_algebra._proof_10 | |
0.000015 5935 set.boolean_algebra._proof_11 | |
0.000016 5936 set.boolean_algebra._proof_12 | |
0.000015 5937 has_sep | |
0.000015 5938 has_sep.sep | |
0.000016 5939 set.sep | |
0.000016 5940 set.has_sep | |
0.000014 5941 set.diff | |
0.000016 5942 set.has_sdiff | |
0.000015 5943 set.boolean_algebra._proof_13 | |
0.000016 5944 set.boolean_algebra._proof_14 | |
0.000015 5945 set.boolean_algebra._proof_15 | |
0.000016 5946 set.compl | |
0.000015 5947 set.boolean_algebra._proof_16 | |
0.000015 5948 set.boolean_algebra._proof_17 | |
0.000016 5949 set.boolean_algebra._proof_18 | |
0.000015 5950 set.boolean_algebra | |
0.000016 5951 set.lattice_set._proof_1 | |
0.000015 5952 set.lattice_set._proof_2 | |
0.000016 5953 set.lattice_set._proof_3 | |
0.000014 5954 set.lattice_set._proof_4 | |
0.000016 5955 set.lattice_set._proof_5 | |
0.000016 5956 set.lattice_set._proof_6 | |
0.000014 5957 set.lattice_set._proof_7 | |
0.000017 5958 set.lattice_set._proof_8 | |
0.000015 5959 set.lattice_set._proof_9 | |
0.000014 5960 set.lattice_set._proof_10 | |
0.000017 5961 set.lattice_set._proof_11 | |
0.000015 5962 set.lattice_set._proof_12 | |
0.000016 5963 set.lattice_set._proof_13 | |
0.000015 5964 set.lattice_set._match_1 | |
0.000014 5965 set.lattice_set._proof_14 | |
0.000018 5966 set.lattice_set._proof_15 | |
0.000014 5967 set.lattice_set._proof_16 | |
0.000017 5968 set.lattice_set | |
0.000016 5969 filter.mk_of_closure._proof_1 | |
0.000015 5970 filter.mk_of_closure._proof_2 | |
0.000016 5971 filter.mk_of_closure._proof_3 | |
0.000015 5972 filter.mk_of_closure | |
0.000016 5973 filter.generate_sets.rec_on | |
0.232071 5974 filter.sets_iff_generate | |
0.000083 5975 filter.gi_generate._proof_1 | |
0.000023 5976 filter.gi_generate._proof_2 | |
0.000015 5977 filter.gi_generate._proof_3 | |
0.000014 5978 filter.filter_eq_iff | |
0.000015 5979 set.ext_iff | |
0.000014 5980 filter.mem_sets | |
0.000014 5981 filter.ext_iff | |
0.000014 5982 filter.ext | |
0.000014 5983 filter.mk_of_closure_sets | |
0.000014 5984 filter.gi_generate._proof_4 | |
0.000014 5985 filter.gi_generate | |
0.000015 5986 _private.1937548283.original_complete_lattice | |
0.000014 5987 filter.complete_lattice._proof_1 | |
0.000013 5988 filter.has_top._proof_1 | |
0.000015 5989 filter.has_top._proof_2 | |
0.000013 5990 set.mem_inter | |
0.000014 5991 filter.has_top._proof_3 | |
0.000015 5992 filter.has_top | |
0.000014 5993 filter.mem_top_sets_iff_forall | |
0.000018 5994 filter.mem_top_sets | |
0.000018 5995 filter.complete_lattice._proof_2 | |
0.000017 5996 filter.complete_lattice._proof_3 | |
0.000015 5997 filter.complete_lattice._proof_4 | |
0.000014 5998 set.inter_subset_left | |
0.000016 5999 filter.has_inf._proof_1 | |
0.000017 6000 filter.has_inf._match_1 | |
0.000017 6001 filter.has_inf._proof_2 | |
0.000017 6002 set.inter_assoc | |
0.000015 6003 set.inter_is_assoc | |
0.000016 6004 set.inter_comm | |
0.000017 6005 set.inter_is_comm | |
0.000015 6006 set.inter_subset_inter | |
0.000014 6007 filter.has_inf._match_2 | |
0.000016 6008 filter.has_inf._match_3 | |
0.000017 6009 filter.has_inf._proof_3 | |
0.000017 6010 filter.has_inf | |
0.000017 6011 filter.mem_inf_sets_of_left | |
0.000017 6012 set.inter_subset_right | |
0.000017 6013 filter.mem_inf_sets_of_right | |
0.000017 6014 filter.complete_lattice._match_1 | |
0.000017 6015 filter.complete_lattice._proof_5 | |
0.000015 6016 set.set_of_true | |
0.000016 6017 filter.join._proof_1 | |
0.000015 6018 filter.join._proof_2 | |
0.000016 6019 filter.join._match_1 | |
0.000015 6020 filter.join._proof_3 | |
0.000016 6021 filter.join | |
0.000015 6022 set.Inter | |
0.000016 6023 set.mem_Inter | |
0.000015 6024 set.mem_bInter_iff | |
0.000016 6025 filter.complete_lattice._proof_6 | |
0.000015 6026 filter.complete_lattice._proof_7 | |
0.000017 6027 filter.complete_lattice | |
0.000015 6028 filter.lift | |
0.000014 6029 filter.lift' | |
0.000017 6030 comp_rel | |
0.000015 6031 uniform_space.core | |
0.000014 6032 topological_space.is_open | |
0.000017 6033 uniform_space.core.uniformity | |
0.000015 6034 uniform_space | |
0.000015 6035 uniform_space.to_core | |
0.000016 6036 uniformity | |
0.000015 6037 pseudo_emetric_space | |
0.000016 6038 pseudo_emetric_space.to_has_edist | |
0.000016 6039 emetric_space | |
0.000014 6040 has_dist | |
0.000016 6041 has_dist.dist | |
0.000015 6042 ennreal.has_coe | |
0.000014 6043 ennreal.of_real | |
0.000016 6044 pseudo_metric_space | |
0.000016 6045 pseudo_metric_space.to_has_dist | |
0.000014 6046 metric_space | |
0.000016 6047 set.has_coe_to_sort | |
0.000015 6048 emetric.ball | |
0.000015 6049 emetric_space.to_pseudo_emetric_space | |
0.000016 6050 ennreal.to_nnreal._main | |
0.000015 6051 ennreal.to_nnreal | |
0.000014 6052 ennreal.to_real | |
0.000016 6053 pseudo_emetric_space.edist_self | |
0.000015 6054 ennreal.zero_to_real | |
0.000015 6055 pseudo_emetric_space.to_pseudo_metric_space_of_dist._proof_1 | |
0.000016 6056 pseudo_emetric_space.edist_comm | |
0.000024 6057 pseudo_emetric_space.to_pseudo_metric_space_of_dist._proof_2 | |
0.000017 6058 can_lift | |
0.000014 6059 can_lift.coe | |
0.000015 6060 option.is_some._main | |
0.000015 6061 option.is_some | |
0.000014 6062 option.get._main | |
0.000016 6063 option.get | |
0.000016 6064 option.is_some_none | |
0.000014 6065 option.is_some_some | |
0.000014 6066 coe_sort_tt | |
0.000014 6067 option.ne_none_iff_is_some | |
0.000017 6068 option.some_get | |
0.000014 6069 ennreal.nnreal.can_lift._proof_1 | |
0.000017 6070 ennreal.nnreal.can_lift | |
0.000017 6071 can_lift.cond | |
0.000014 6072 can_lift.prf | |
0.000017 6073 ennreal.to_real_add | |
0.000015 6074 nnreal.has_le | |
0.000016 6075 ennreal.coe_le_coe | |
0.000015 6076 ennreal.to_real_le_to_real | |
0.000016 6077 with_top.add_eq_top | |
0.000015 6078 ennreal.add_eq_top | |
0.000017 6079 pseudo_emetric_space.edist_triangle | |
0.000015 6080 pseudo_emetric_space.to_pseudo_metric_space_of_dist._proof_3 | |
0.000014 6081 ennreal.to_real.equations._eqn_1 | |
0.000016 6082 ennreal.of_real.equations._eqn_1 | |
0.000015 6083 nnreal.of_real_coe | |
0.000017 6084 ennreal.coe_to_nnreal | |
0.000015 6085 ennreal.of_real_to_real | |
0.000014 6086 pseudo_emetric_space.to_pseudo_metric_space_of_dist._proof_4 | |
0.000017 6087 uniform_space.core.to_topological_space._proof_1 | |
0.000015 6088 filter.mp_sets | |
0.000014 6089 filter.univ_mem_sets' | |
0.000016 6090 set.mem_inter_eq | |
0.000015 6091 prod.cases_on | |
0.000016 6092 prod.forall | |
0.000016 6093 uniform_space.core.to_topological_space._match_1 | |
0.000014 6094 uniform_space.core.to_topological_space._proof_2 | |
0.000017 6095 uniform_space.core.to_topological_space._match_2 | |
0.000015 6096 uniform_space.core.to_topological_space._proof_3 | |
0.000014 6097 uniform_space.core.to_topological_space | |
2.864907 6098 uniform_space.of_core._proof_1 | |
0.000076 6099 uniform_space.of_core | |
0.000025 6100 gt.equations._eqn_1 | |
0.000014 6101 id_rel.equations._eqn_1 | |
0.000015 6102 filter.le_principal_iff | |
0.000014 6103 filter.mem_principal_sets | |
0.000014 6104 set.subset_def | |
0.000014 6105 uniform_space_of_dist._proof_1 | |
0.000014 6106 filter.tendsto.equations._eqn_1 | |
0.000014 6107 le_infi_iff | |
0.000014 6108 filter.tendsto_infi | |
0.000014 6109 set.preimage_univ | |
0.000014 6110 filter.comap._proof_1 | |
0.000014 6111 filter.comap._match_1 | |
0.000015 6112 filter.comap._proof_2 | |
0.000013 6113 filter.comap._match_2 | |
0.000018 6114 filter.comap._match_3 | |
0.000018 6115 filter.comap._proof_3 | |
0.000017 6116 filter.comap | |
0.000017 6117 filter.map_le_iff_le_comap | |
0.000015 6118 filter.gc_map_comap | |
0.000016 6119 filter.map_mono | |
0.000016 6120 filter.tendsto.mono_left | |
0.000016 6121 filter.tendsto_infi' | |
0.000017 6122 filter.eventually | |
0.000018 6123 filter.mem_map | |
0.000015 6124 filter.eventually.equations._eqn_1 | |
0.000015 6125 filter.tendsto_principal | |
0.000014 6126 filter.eventually_principal | |
0.000014 6127 filter.tendsto_principal_principal | |
0.000014 6128 prod.fst_swap | |
0.000018 6129 prod.snd_swap | |
0.000015 6130 uniform_space_of_dist._proof_2 | |
0.000017 6131 filter.lift_le | |
0.000014 6132 filter.lift'_le | |
0.000017 6133 filter.mem_infi_sets | |
0.000015 6134 comp_rel.equations._eqn_1 | |
0.000014 6135 set.set_of_subset_set_of | |
0.000014 6136 uniform_space_of_dist._proof_3 | |
0.000018 6137 uniform_space_of_dist | |
0.000015 6138 pseudo_emetric_space.to_pseudo_metric_space_of_dist._proof_5 | |
0.000017 6139 pseudo_emetric_space.to_pseudo_metric_space_of_dist._proof_6 | |
0.000015 6140 pseudo_emetric_space.to_pseudo_metric_space_of_dist._proof_7 | |
0.000016 6141 pseudo_emetric_space.to_pseudo_metric_space_of_dist._proof_8 | |
0.000015 6142 pseudo_emetric_space.to_uniform_space | |
0.000018 6143 pseudo_emetric_space.to_uniform_space' | |
0.000015 6144 pseudo_metric_space.edist | |
0.000014 6145 pseudo_metric_space.to_has_edist | |
0.000014 6146 pseudo_metric_space.edist_dist | |
0.000018 6147 edist_dist | |
0.000015 6148 pseudo_metric_space.dist_self | |
0.000018 6149 dist_self | |
0.000014 6150 nnreal.of_real.equations._eqn_1 | |
0.000018 6151 nnreal.of_real_zero | |
0.000015 6152 ennreal.coe_zero | |
0.000014 6153 ennreal.of_real_zero | |
0.000014 6154 pseudo_metric_space.to_pseudo_emetric_space._proof_1 | |
0.000017 6155 pseudo_metric_space.dist_comm | |
0.000015 6156 dist_comm | |
0.000014 6157 pseudo_metric_space.to_pseudo_emetric_space._proof_2 | |
0.000015 6158 ennreal.coe_add | |
0.000017 6159 ennreal.coe_eq_coe | |
0.000017 6160 subtype.coe_mk | |
0.000017 6161 nnreal.coe_add | |
0.000017 6162 nnreal.of_real_add | |
0.000017 6163 ennreal.of_real_add | |
0.000015 6164 pseudo_metric_space.dist_triangle | |
0.000014 6165 dist_triangle | |
0.000016 6166 dist_nonneg | |
0.000016 6167 nnreal.coe_le_coe | |
0.000016 6168 nnreal.of_real_le_of_real_iff | |
0.000015 6169 ennreal.of_real_le_of_real_iff | |
0.000015 6170 pseudo_metric_space.to_pseudo_emetric_space._proof_3 | |
0.000016 6171 pseudo_metric_space.to_uniform_space | |
0.000015 6172 metric_space.to_uniform_space' | |
0.000016 6173 filter.has_basis | |
0.000015 6174 infi_subtype | |
0.000016 6175 infi_subtype' | |
0.000015 6176 filter.eq_Inf_of_mem_sets_iff_exists_mem | |
0.000017 6177 set.mem_range | |
0.000015 6178 exists_exists_eq_and | |
0.000016 6179 set.exists_range_iff | |
0.000015 6180 filter.eq_infi_of_mem_sets_iff_exists_mem | |
0.000014 6181 filter.eq_binfi_of_mem_sets_iff_exists_mem | |
0.000017 6182 filter.has_basis.mem_iff' | |
0.000015 6183 filter.has_basis.mem_iff | |
0.000014 6184 filter.has_basis.eq_binfi | |
0.000017 6185 filter.has_basis.mem_uniformity_iff | |
0.000015 6186 pseudo_metric_space.uniformity_dist | |
0.000014 6187 directed_on | |
0.000016 6188 order.preimage | |
0.000015 6189 directed | |
0.000016 6190 set.Union | |
0.000015 6191 nonempty.dcases_on | |
0.000014 6192 set.mem_Union | |
0.000017 6193 filter.mem_mk | |
0.000015 6194 filter.infi_sets_eq | |
0.000014 6195 filter.mem_infi | |
0.000017 6196 directed_on.equations._eqn_1 | |
0.000015 6197 directed.equations._eqn_1 | |
0.000014 6198 subtype.exists | |
0.000016 6199 set_coe.exists | |
0.000015 6200 subtype.forall | |
0.000016 6201 set_coe.forall | |
0.000015 6202 forall_prop_congr | |
0.000016 6203 forall_prop_congr' | |
0.000015 6204 directed_on_iff_directed | |
0.000016 6205 directed_on.directed_coe | |
0.000015 6206 nonempty_subtype | |
0.000015 6207 set.nonempty.to_subtype | |
0.000016 6208 filter.mem_binfi | |
0.000015 6209 directed_comp | |
0.000016 6210 function.comp.equations._eqn_1 | |
0.000015 6211 directed.mono | |
0.000014 6212 directed.mono_comp | |
0.000016 6213 filter.principal_mono | |
0.000015 6214 filter.has_basis_binfi_principal | |
0.000016 6215 le_or_gt | |
0.000015 6216 lt_min | |
0.000016 6217 no_top_order | |
0.000015 6218 set.Ioi | |
0.000016 6219 no_top_order.no_top | |
0.000015 6220 no_top | |
0.000018 6221 set.nonempty_Ioi | |
0.000017 6222 linear_ordered_semiring.to_no_top_order | |
1.407064 6223 metric.uniformity_basis_dist | |
0.000077 6224 metric.mem_uniformity_dist | |
0.000024 6225 ennreal.coe_lt_coe | |
0.000015 6226 ennreal.coe_pos | |
0.000014 6227 nnreal.coe_lt_coe | |
0.000014 6228 as_linear_order | |
0.000014 6229 total_of | |
0.000014 6230 as_linear_order.linear_order._proof_1 | |
0.000014 6231 as_linear_order.linear_order | |
0.000014 6232 lt_sup_iff | |
0.000014 6233 lt_max_iff | |
0.000014 6234 nnreal.of_real_pos | |
0.000014 6235 ennreal.of_real_pos | |
0.000014 6236 nnreal.of_real_lt_of_real_iff' | |
0.000014 6237 nnreal.of_real_lt_of_real_iff | |
0.000014 6238 ennreal.of_real_lt_of_real_iff | |
0.000015 6239 ennreal.lt_iff_exists_coe | |
0.000014 6240 with_top.densely_ordered._match_2 | |
0.000017 6241 with_top.densely_ordered._match_3 | |
0.000017 6242 with_top.densely_ordered._match_1 | |
0.000015 6243 with_top.densely_ordered | |
0.000016 6244 nnreal.densely_ordered._match_1 | |
0.000019 6245 nnreal.densely_ordered | |
0.000016 6246 nnreal.no_top_order._match_1 | |
0.000014 6247 nnreal.no_top_order | |
0.000016 6248 ennreal.densely_ordered | |
0.000015 6249 nnreal.coe_of_real | |
0.000015 6250 inv_div | |
0.000016 6251 rat.cast_inv_of_ne_zero | |
0.000017 6252 rat.cast_div_of_ne_zero | |
0.000015 6253 rat.coe_int_denom | |
0.000018 6254 rat.coe_int_num | |
0.000017 6255 rat.coe_nat_num | |
0.000015 6256 has_lt.lt.trans | |
0.000014 6257 rat.coe_nat_denom | |
0.000014 6258 lt_neg_add_iff_add_lt | |
0.000014 6259 lt_sub_iff_add_lt' | |
0.000014 6260 div_lt_iff' | |
0.000015 6261 exists_rat_btwn | |
0.000014 6262 nnreal.lt_iff_exists_rat_btwn | |
0.000016 6263 ennreal.lt_iff_exists_rat_btwn | |
0.000019 6264 ennreal.lt_iff_exists_real_btwn | |
0.000015 6265 pseudo_metric.uniformity_basis_edist | |
0.000016 6266 metric.uniformity_edist | |
0.000018 6267 pseudo_metric_space.to_pseudo_emetric_space | |
0.000016 6268 pseudo_metric_space.replace_uniformity._proof_1 | |
0.000017 6269 pseudo_metric_space.replace_uniformity | |
0.000016 6270 pseudo_emetric_space.uniformity_edist | |
0.000014 6271 uniformity_pseudoedist | |
0.000017 6272 pseudo_emetric_space.to_pseudo_metric_space_of_dist._proof_9 | |
0.000015 6273 pseudo_emetric_space.to_pseudo_metric_space_of_dist | |
0.000014 6274 emetric_space.to_metric_space_of_dist._proof_1 | |
0.000017 6275 emetric_space.to_metric_space_of_dist._proof_2 | |
0.000014 6276 emetric_space.to_metric_space_of_dist._proof_3 | |
0.000017 6277 emetric_space.to_metric_space_of_dist._proof_4 | |
0.000015 6278 emetric_space.to_metric_space_of_dist._proof_5 | |
0.000016 6279 nnreal.coe_eq | |
0.000015 6280 nnreal.coe_eq_zero | |
0.000016 6281 ennreal.none_eq_top | |
0.000015 6282 ennreal.top_to_nnreal | |
0.000016 6283 ennreal.some_eq_coe | |
0.000015 6284 ennreal.to_nnreal_coe | |
0.000016 6285 with_top.zero_ne_top | |
0.000015 6286 ennreal.zero_to_nnreal | |
0.000016 6287 ennreal.to_nnreal_eq_zero_iff | |
0.000015 6288 ennreal.to_real_eq_zero_iff | |
0.000017 6289 emetric_space.eq_of_edist_eq_zero | |
0.000014 6290 edist_eq_zero | |
0.000017 6291 emetric_space.to_metric_space_of_dist._proof_6 | |
0.000015 6292 emetric_space.to_metric_space_of_dist | |
0.000014 6293 emetric_space.to_metric_space._proof_1 | |
0.000016 6294 emetric_space.to_metric_space | |
0.000016 6295 emetric_space.induced._proof_1 | |
0.000016 6296 emetric_space.induced._proof_2 | |
0.000015 6297 emetric_space.induced._proof_3 | |
0.000014 6298 topological_space.is_open_univ | |
0.000017 6299 topological_space.induced._proof_1 | |
0.000015 6300 topological_space.is_open_inter | |
0.000016 6301 set.preimage_inter | |
0.000015 6302 topological_space.induced._proof_2 | |
0.000015 6303 classical.axiom_of_choice | |
0.000016 6304 classical.skolem | |
0.000015 6305 set.preimage.equations._eqn_1 | |
0.000016 6306 set.preimage_Union | |
0.000016 6307 infi_subtype'' | |
0.000014 6308 infi.equations._eqn_1 | |
0.000016 6309 forall_swap | |
0.000015 6310 forall_apply_eq_imp_iff | |
0.000029 6311 forall_apply_eq_imp_iff' | |
0.000017 6312 set.forall_range_iff | |
0.000014 6313 set.mem_range_self | |
0.000014 6314 forall_apply_eq_imp_iff₂ | |
0.000014 6315 set.ball_image_iff | |
0.000015 6316 set.range_comp | |
0.000016 6317 set.image.equations._eqn_1 | |
0.000015 6318 set.range.equations._eqn_1 | |
0.000017 6319 set.image_univ | |
0.000014 6320 subtype.coe_image | |
0.000017 6321 set.set_of_mem_eq | |
0.000014 6322 subtype.range_coe | |
0.000017 6323 Inf_image | |
0.000015 6324 Sup_image | |
0.000016 6325 set.sUnion_image | |
0.000014 6326 set.image_id' | |
0.000017 6327 set.sUnion_eq_bUnion | |
0.000014 6328 is_open | |
0.000016 6329 topological_space.is_open_sUnion | |
0.000015 6330 is_open_sUnion | |
0.000017 6331 is_open_Union | |
0.000015 6332 topological_space.induced._proof_3 | |
0.000016 6333 topological_space.induced | |
0.000015 6334 uniform_space.to_topological_space | |
0.000016 6335 filter.comap_principal | |
0.000015 6336 mem_id_rel | |
0.000017 6337 id_rel_subset | |
0.000014 6338 set.mem_preimage | |
0.000017 6339 filter.comap_mono | |
0.000015 6340 uniform_space.core.refl | |
0.000015 6341 uniform_space.comap._proof_1 | |
1.211210 6342 prod.swap.equations._eqn_1 | |
0.000078 6343 filter.map_compose | |
0.000023 6344 filter.map_map | |
0.000015 6345 filter.tendsto.comp | |
0.000014 6346 filter.map_comap_le | |
0.000014 6347 filter.tendsto_comap | |
0.000015 6348 filter.tendsto_comap_iff | |
0.000015 6349 uniform_space.core.symm | |
0.000014 6350 symm_le_uniformity | |
0.000014 6351 tendsto_swap_uniformity | |
0.000014 6352 uniform_space.comap._proof_2 | |
0.000014 6353 filter.mem_comap_sets | |
0.000014 6354 filter.has_basis.mem_of_superset | |
0.000014 6355 filter.has_basis.mem_of_mem | |
0.000015 6356 filter.has_basis.exists_iff | |
0.000014 6357 filter.has_basis.mem_lift_iff | |
0.000014 6358 filter.exists_sets_subset_iff | |
0.000026 6359 filter.basis_sets | |
0.000015 6360 id.equations._eqn_1 | |
0.000014 6361 filter.mem_lift_sets | |
0.000014 6362 monotone.comp | |
0.000019 6363 filter.comap_lift_eq | |
0.000019 6364 filter.monotone_principal | |
0.000017 6365 filter.lift'.equations._eqn_1 | |
0.000017 6366 filter.comap_lift'_eq | |
0.000017 6367 monotone_comp_rel | |
0.000014 6368 monotone_id | |
0.000016 6369 filter.comap_lift_eq2 | |
0.000017 6370 filter.comap_lift'_eq2 | |
0.000015 6371 infi_le_infi | |
0.000015 6372 filter.lift'_mono' | |
0.000016 6373 uniform_space.comap._match_2 | |
0.000017 6374 uniform_space.comap._match_3 | |
0.000018 6375 uniform_space.core.comp | |
0.000015 6376 uniform_space.comap._proof_3 | |
0.000016 6377 nhds | |
0.000015 6378 interior | |
0.000016 6379 is_open_interior | |
0.000017 6380 set.sUnion_subset | |
0.000015 6381 interior_subset | |
0.000016 6382 set.subset_sUnion_of_mem | |
0.000015 6383 interior_maximal | |
0.000017 6384 is_open.interior_eq | |
0.000014 6385 interior_eq_iff_open | |
0.000016 6386 subset_interior_iff_open | |
0.000016 6387 interior.equations._eqn_1 | |
0.000016 6388 mem_interior | |
0.000015 6389 nhds.equations._eqn_1 | |
0.000016 6390 nhds_def | |
0.000015 6391 is_open_inter | |
0.000016 6392 is_open_univ | |
0.000015 6393 nhds_basis_opens | |
0.000016 6394 mem_nhds_sets_iff | |
0.000014 6395 interior_eq_nhds' | |
0.000016 6396 interior_eq_nhds | |
0.000015 6397 is_open_iff_nhds | |
0.000016 6398 uniform_space.is_open_uniformity | |
0.000015 6399 is_open_uniformity | |
0.000017 6400 refl_le_uniformity | |
0.000014 6401 refl_mem_uniformity | |
0.000016 6402 filter.mem_lift'_sets | |
0.000015 6403 comp_le_uniformity | |
0.000016 6404 comp_mem_uniformity_sets | |
0.000016 6405 mem_nhds_uniformity_iff_right | |
0.000014 6406 is_open_induced_iff | |
0.000016 6407 mem_nhds_induced | |
0.000015 6408 nhds_induced | |
0.000016 6409 filter.comap.equations._eqn_1 | |
0.000015 6410 ball_congr | |
0.000015 6411 uniform_space.ball | |
0.000016 6412 nhds_eq_comap_uniformity_aux | |
0.000015 6413 nhds_eq_comap_uniformity | |
0.000016 6414 uniform_space.mem_nhds_iff | |
0.000015 6415 uniform_space.ball_mem_nhds | |
0.000016 6416 mem_nhds_left | |
0.000015 6417 uniform_space.comap._proof_4 | |
0.000014 6418 uniform_space.comap | |
0.000017 6419 uniformity_dist_of_mem_uniformity | |
0.000015 6420 canonically_ordered_semiring.zero_lt_one | |
0.000016 6421 nonempty.elim_to_inhabited | |
0.000015 6422 option.nontrivial | |
0.000016 6423 with_top.nontrivial | |
0.000015 6424 ennreal.nontrivial | |
0.000014 6425 ennreal.zero_lt_one | |
0.000017 6426 uniformity_basis_edist | |
0.000015 6427 mem_uniformity_edist | |
0.000015 6428 edist_mem_uniformity | |
0.000015 6429 emetric_space.induced._match_1 | |
0.000016 6430 emetric_space.induced._proof_4 | |
0.000016 6431 emetric_space.induced._proof_5 | |
0.000015 6432 emetric_space.induced | |
0.000015 6433 subtype.ext_iff | |
0.000016 6434 subtype.ext_iff_val | |
0.000015 6435 subtype.emetric_space._proof_1 | |
0.000016 6436 subtype.emetric_space | |
0.000015 6437 lt_top_iff_ne_top | |
0.000015 6438 pseudo_emetric_space.induced._proof_1 | |
0.000016 6439 pseudo_emetric_space.induced._proof_2 | |
0.000015 6440 pseudo_emetric_space.induced._proof_3 | |
0.000016 6441 pseudo_emetric_space.induced._match_1 | |
0.000015 6442 pseudo_emetric_space.induced._proof_4 | |
0.000016 6443 pseudo_emetric_space.induced | |
0.000015 6444 subtype.pseudo_emetric_space | |
0.000016 6445 edist_triangle_left | |
0.000015 6446 ennreal.top_add | |
0.000016 6447 with_top.add_lt_top | |
0.000015 6448 ennreal.add_lt_top | |
0.000016 6449 ennreal.coe_lt_top | |
0.000015 6450 ennreal.add_top | |
0.000016 6451 ne_top_of_lt | |
0.000015 6452 ennreal.add_lt_add | |
0.000015 6453 edist_ne_top_of_mem_ball | |
0.000014 6454 metric_space_emetric_ball | |
0.000014 6455 expr.coord | |
0.000016 6456 expr.coord.cases_on | |
0.000016 6457 expr.coord.repr._sunfold | |
0.000016 6458 omega.nat.preterm | |
0.000015 6459 omega.nat.preform | |
0.000014 6460 omega.nat.preform.cases_on | |
0.000017 6461 omega.nat.preform.below | |
0.000015 6462 omega.nat.preform.brec_on | |
0.000014 6463 pprod.snd | |
0.000017 6464 omega.nat.push_neg._main | |
0.000014 6465 omega.nat.push_neg | |
0.000017 6466 omega.nat.nnf._main | |
0.000015 6467 omega.nat.nnf | |
0.000016 6468 omega.nat.nnf._sunfold | |
0.000014 6469 right_cancel_monoid | |
0.000016 6470 right_cancel_monoid.mul | |
0.000015 6471 right_cancel_monoid.mul_assoc | |
0.000017 6472 right_cancel_monoid.one | |
0.131198 6473 right_cancel_monoid.one_mul | |
0.000059 6474 right_cancel_monoid.mul_one | |
0.000027 6475 right_cancel_monoid.npow | |
0.000014 6476 right_cancel_monoid.npow_zero' | |
0.000014 6477 right_cancel_monoid.npow_succ' | |
0.000014 6478 right_cancel_monoid.to_monoid | |
0.000015 6479 cancel_monoid | |
0.000014 6480 cancel_monoid.mul | |
0.000014 6481 cancel_monoid.mul_assoc | |
0.000014 6482 cancel_monoid.mul_right_cancel | |
0.000015 6483 cancel_monoid.one | |
0.000014 6484 cancel_monoid.one_mul | |
0.000014 6485 cancel_monoid.mul_one | |
0.000014 6486 cancel_monoid.npow | |
0.000014 6487 cancel_monoid.npow_zero' | |
0.000019 6488 cancel_monoid.npow_succ' | |
0.000018 6489 cancel_monoid.to_right_cancel_monoid | |
0.000015 6490 cancel_comm_monoid | |
0.000015 6491 cancel_comm_monoid.mul | |
0.000016 6492 cancel_comm_monoid.mul_assoc | |
0.000017 6493 cancel_comm_monoid.mul_left_cancel | |
0.000018 6494 cancel_comm_monoid.one | |
0.000015 6495 cancel_comm_monoid.one_mul | |
0.000016 6496 cancel_comm_monoid.mul_one | |
0.000017 6497 cancel_comm_monoid.npow | |
0.000018 6498 cancel_comm_monoid.npow_zero' | |
0.000016 6499 cancel_comm_monoid.npow_succ' | |
0.000017 6500 left_cancel_semigroup | |
0.000015 6501 left_cancel_semigroup.mul | |
0.000017 6502 left_cancel_semigroup.mul_assoc | |
0.000017 6503 left_cancel_semigroup.to_semigroup | |
0.000017 6504 left_cancel_semigroup.mul_left_cancel | |
0.000018 6505 mul_left_cancel | |
0.000017 6506 left_cancel_monoid | |
0.000017 6507 left_cancel_monoid.mul | |
0.000016 6508 left_cancel_monoid.mul_assoc | |
0.000017 6509 left_cancel_monoid.mul_left_cancel | |
0.000015 6510 left_cancel_monoid.to_left_cancel_semigroup | |
0.000015 6511 cancel_comm_monoid.to_left_cancel_monoid | |
0.000016 6512 cancel_comm_monoid.mul_comm | |
0.000017 6513 cancel_comm_monoid.to_comm_monoid | |
0.000015 6514 cancel_comm_monoid.to_cancel_monoid._proof_1 | |
0.000016 6515 cancel_comm_monoid.to_cancel_monoid | |
0.000016 6516 linear_ordered_cancel_comm_monoid | |
0.000016 6517 ordered_cancel_comm_monoid | |
0.000015 6518 ordered_cancel_comm_monoid.mul | |
0.000017 6519 order_dual.ordered_comm_monoid._proof_1 | |
0.000014 6520 order_dual.ordered_comm_monoid._proof_2 | |
0.000017 6521 order_dual.ordered_comm_monoid._proof_3 | |
0.000015 6522 order_dual.ordered_comm_monoid._proof_4 | |
0.000016 6523 order_dual.ordered_comm_monoid._proof_5 | |
0.000015 6524 order_dual.ordered_comm_monoid._proof_6 | |
0.000016 6525 order_dual.ordered_comm_monoid._proof_7 | |
0.000015 6526 order_dual.ordered_comm_monoid._proof_8 | |
0.000015 6527 order_dual.ordered_comm_monoid._proof_9 | |
0.000016 6528 order_dual.ordered_comm_monoid._proof_10 | |
0.000016 6529 ordered_comm_monoid.mul_le_mul_left | |
0.000015 6530 mul_le_mul_left' | |
0.000016 6531 order_dual.ordered_comm_monoid._proof_11 | |
0.000015 6532 ordered_comm_monoid.lt_of_mul_lt_mul_left | |
0.000015 6533 lt_of_mul_lt_mul_left' | |
0.000016 6534 order_dual.ordered_comm_monoid._proof_12 | |
0.000015 6535 order_dual.ordered_comm_monoid | |
0.000016 6536 ordered_cancel_comm_monoid.mul_assoc | |
0.000015 6537 ordered_cancel_comm_monoid.one | |
0.000015 6538 ordered_cancel_comm_monoid.one_mul | |
0.000016 6539 ordered_cancel_comm_monoid.mul_one | |
0.000015 6540 ordered_cancel_comm_monoid.npow | |
0.000015 6541 ordered_cancel_comm_monoid.npow_zero' | |
0.000014 6542 ordered_cancel_comm_monoid.npow_succ' | |
0.000017 6543 ordered_cancel_comm_monoid.mul_comm | |
0.000015 6544 ordered_cancel_comm_monoid.le | |
0.000016 6545 ordered_cancel_comm_monoid.lt | |
0.000015 6546 ordered_cancel_comm_monoid.le_refl | |
0.000016 6547 ordered_cancel_comm_monoid.le_trans | |
0.000017 6548 ordered_cancel_comm_monoid.lt_iff_le_not_le | |
0.000015 6549 ordered_cancel_comm_monoid.le_antisymm | |
0.000016 6550 ordered_cancel_comm_monoid.mul_left_cancel | |
0.000016 6551 ordered_cancel_comm_monoid.mul_le_mul_left | |
0.000014 6552 ordered_cancel_comm_monoid.to_partial_order | |
0.000016 6553 ordered_cancel_comm_monoid.to_cancel_comm_monoid | |
0.000015 6554 ordered_cancel_comm_monoid.le_of_mul_le_mul_left | |
0.000015 6555 le_of_mul_le_mul_left' | |
0.000016 6556 ordered_cancel_comm_monoid.to_ordered_comm_monoid._proof_1 | |
0.000015 6557 ordered_cancel_comm_monoid.to_ordered_comm_monoid | |
0.000017 6558 order_dual.ordered_cancel_comm_monoid._proof_1 | |
0.000014 6559 order_dual.ordered_cancel_comm_monoid._proof_2 | |
0.000017 6560 order_dual.ordered_cancel_comm_monoid._proof_3 | |
0.000015 6561 order_dual.ordered_cancel_comm_monoid._proof_4 | |
0.000014 6562 order_dual.ordered_cancel_comm_monoid._proof_5 | |
0.000016 6563 order_dual.ordered_cancel_comm_monoid._proof_6 | |
0.000015 6564 order_dual.ordered_cancel_comm_monoid._proof_7 | |
0.000017 6565 order_dual.ordered_cancel_comm_monoid._proof_8 | |
0.000015 6566 order_dual.ordered_cancel_comm_monoid._proof_9 | |
0.000016 6567 order_dual.ordered_cancel_comm_monoid._proof_10 | |
0.147605 6568 order_dual.ordered_cancel_comm_monoid._proof_11 | |
0.000079 6569 order_dual.ordered_cancel_comm_monoid._proof_12 | |
0.000020 6570 order_dual.ordered_cancel_comm_monoid._proof_13 | |
0.000015 6571 order_dual.ordered_cancel_comm_monoid | |
0.000015 6572 linear_ordered_cancel_comm_monoid.mul | |
0.000014 6573 linear_ordered_cancel_comm_monoid.mul_assoc | |
0.000014 6574 linear_ordered_cancel_comm_monoid.mul_left_cancel | |
0.000014 6575 linear_ordered_cancel_comm_monoid.one | |
0.000014 6576 linear_ordered_cancel_comm_monoid.one_mul | |
0.000015 6577 linear_ordered_cancel_comm_monoid.mul_one | |
0.000014 6578 linear_ordered_cancel_comm_monoid.npow | |
0.000015 6579 linear_ordered_cancel_comm_monoid.npow_zero' | |
0.000014 6580 linear_ordered_cancel_comm_monoid.npow_succ' | |
0.000014 6581 linear_ordered_cancel_comm_monoid.mul_comm | |
0.000018 6582 linear_ordered_cancel_comm_monoid.le | |
0.000019 6583 linear_ordered_cancel_comm_monoid.lt | |
0.000016 6584 linear_ordered_cancel_comm_monoid.le_refl | |
0.000017 6585 linear_ordered_cancel_comm_monoid.le_trans | |
0.000015 6586 linear_ordered_cancel_comm_monoid.lt_iff_le_not_le | |
0.000016 6587 linear_ordered_cancel_comm_monoid.le_antisymm | |
0.000015 6588 linear_ordered_cancel_comm_monoid.mul_le_mul_left | |
0.000016 6589 linear_ordered_cancel_comm_monoid.le_of_mul_le_mul_left | |
0.000018 6590 linear_ordered_cancel_comm_monoid.to_ordered_cancel_comm_monoid | |
0.000017 6591 order_dual.linear_ordered_cancel_comm_monoid._proof_7 | |
0.000015 6592 norm_cast.label | |
0.000015 6593 norm_cast.label.move.inj | |
0.000016 6594 norm_cast.label.move.inj_arrow | |
0.000017 6595 filter.prod | |
0.000017 6596 filter.tendsto_inf | |
0.000018 6597 filter.tendsto.prod_mk | |
0.000015 6598 set.set_semiring | |
0.000016 6599 set.image2 | |
0.000015 6600 set.has_mul | |
0.000016 6601 set.union_assoc | |
0.000015 6602 set.empty_union | |
0.000017 6603 set.union_empty | |
0.000015 6604 set.set_semiring.add_comm_monoid._proof_1 | |
0.000017 6605 set.set_semiring.add_comm_monoid._proof_2 | |
0.000015 6606 set.union_comm | |
0.000014 6607 set.set_semiring.add_comm_monoid | |
0.000016 6608 set.mem_image2 | |
0.000015 6609 set.image2_empty_left | |
0.000014 6610 set.empty_mul | |
0.000016 6611 set.set_semiring.mul_zero_class._proof_1 | |
0.000015 6612 set.image2_empty_right | |
0.000015 6613 set.mul_empty | |
0.000014 6614 set.set_semiring.mul_zero_class._proof_2 | |
0.000014 6615 set.set_semiring.mul_zero_class | |
0.000014 6616 set.set_semiring.semiring._proof_12 | |
0.000015 6617 pgame | |
0.000014 6618 pgame.short | |
0.000016 6619 pgame.short.rec_on | |
0.000015 6620 tactic.tfae.arrow | |
0.000017 6621 tactic.tfae.arrow.sizeof | |
0.000015 6622 tactic.tfae.arrow.left.sizeof_spec | |
0.000014 6623 local_equiv | |
0.000016 6624 local_equiv.source | |
0.000015 6625 local_equiv.target | |
0.000016 6626 nhds_within | |
0.000015 6627 continuous_within_at | |
0.000016 6628 continuous_on | |
0.000015 6629 local_equiv.to_fun | |
0.000015 6630 local_equiv.inv_fun | |
0.000016 6631 local_homeomorph | |
0.000015 6632 local_homeomorph.to_local_equiv | |
0.000016 6633 charted_space | |
0.000016 6634 singleton_charted_space._proof_1 | |
0.000014 6635 singleton_charted_space._proof_2 | |
0.000016 6636 singleton_charted_space | |
0.000016 6637 singleton_charted_space.equations._eqn_1 | |
0.000014 6638 superset | |
0.000016 6639 filter.ne_bot | |
0.000016 6640 cluster_pt | |
0.000014 6641 is_compact | |
0.000016 6642 boolean_algebra.to_core | |
0.000015 6643 is_closed | |
0.000016 6644 set.nonempty.mono | |
0.000016 6645 set.subset_Inter | |
0.000014 6646 set.Inter_subset | |
0.000016 6647 set.Inter_subset_of_subset | |
0.000016 6648 set.Inter_subset_Inter | |
0.000014 6649 set.mem_compl_eq | |
0.000016 6650 is_compl | |
0.000015 6651 sup_of_le_right | |
0.000016 6652 bot_sup_eq | |
0.000015 6653 inf_le_inf | |
0.000016 6654 inf_le_inf_left | |
0.000015 6655 inf_eq_bot_iff_le_compl | |
0.000016 6656 is_compl.top_le_sup | |
0.000016 6657 is_compl.sup_eq_top | |
0.000014 6658 disjoint.eq_bot | |
0.000016 6659 is_compl.inf_le_bot | |
0.000015 6660 is_compl.disjoint | |
0.000016 6661 is_compl.inf_eq_bot | |
0.000014 6662 is_compl.inf_left_eq_bot_iff | |
0.000017 6663 is_compl.disjoint_left_iff | |
0.000014 6664 is_compl.symm | |
0.000017 6665 is_compl.disjoint_right_iff | |
0.000014 6666 is_compl.le_left_iff | |
0.000017 6667 order_dual.bounded_distrib_lattice._proof_1 | |
0.000015 6668 order_dual.bounded_distrib_lattice._proof_2 | |
0.000016 6669 order_dual.bounded_distrib_lattice._proof_3 | |
0.000015 6670 order_dual.bounded_distrib_lattice._proof_4 | |
0.000016 6671 order_dual.bounded_distrib_lattice._proof_5 | |
0.000015 6672 order_dual.bounded_distrib_lattice._proof_6 | |
0.000016 6673 order_dual.bounded_distrib_lattice._proof_7 | |
0.000015 6674 order_dual.bounded_distrib_lattice._proof_8 | |
0.000017 6675 order_dual.bounded_distrib_lattice._proof_9 | |
0.000015 6676 order_dual.bounded_distrib_lattice._proof_10 | |
0.000016 6677 order_dual.distrib_lattice._proof_1 | |
0.579312 6678 order_dual.distrib_lattice._proof_2 | |
0.000077 6679 order_dual.distrib_lattice._proof_3 | |
0.000023 6680 order_dual.distrib_lattice._proof_4 | |
0.000015 6681 order_dual.distrib_lattice._proof_5 | |
0.000015 6682 order_dual.distrib_lattice._proof_6 | |
0.000014 6683 order_dual.distrib_lattice._proof_7 | |
0.000014 6684 order_dual.distrib_lattice._proof_8 | |
0.000014 6685 order_dual.distrib_lattice._proof_9 | |
0.000014 6686 order_dual.distrib_lattice._proof_10 | |
0.000014 6687 order_dual.distrib_lattice._proof_11 | |
0.000014 6688 order_dual.distrib_lattice | |
0.000014 6689 order_dual.bounded_distrib_lattice._proof_11 | |
0.000015 6690 order_dual.bounded_distrib_lattice._proof_12 | |
0.000014 6691 order_dual.bounded_distrib_lattice._proof_13 | |
0.000014 6692 order_dual.bounded_distrib_lattice | |
0.000014 6693 is_compl.to_order_dual | |
0.000014 6694 is_compl.left_le_iff | |
0.000017 6695 is_compl.right_le_iff | |
0.000017 6696 is_compl.antimono | |
0.000017 6697 is_compl.right_unique | |
0.000017 6698 is_compl.of_eq | |
0.000016 6699 is_compl_compl | |
0.000016 6700 is_compl.compl_eq | |
0.000017 6701 semilattice_sup_top.to_semilattice_sup | |
0.000017 6702 semilattice_sup_top.top | |
0.000017 6703 semilattice_sup_top.le_top | |
0.000017 6704 semilattice_sup_top.to_order_top | |
0.000015 6705 sup_of_le_left | |
0.000014 6706 top_sup_eq | |
0.000017 6707 semilattice_sup_top_of_bounded_lattice._proof_1 | |
0.000015 6708 semilattice_sup_top_of_bounded_lattice | |
0.000014 6709 is_compl_top_bot | |
0.000017 6710 compl_top | |
0.000016 6711 set.compl_univ | |
0.000016 6712 compl_compl | |
0.000015 6713 compl_le_compl | |
0.000016 6714 compl_le_compl_iff_le | |
0.000015 6715 set.compl_subset_compl | |
0.000016 6716 inf_sup_right | |
0.000016 6717 sup_left_comm | |
0.000014 6718 inf_left_comm | |
0.000016 6719 sup_top_eq | |
0.000015 6720 top_inf_eq | |
0.000015 6721 is_compl.sup_inf | |
0.000016 6722 is_compl.inf_sup | |
0.000015 6723 compl_inf | |
0.000016 6724 set.compl_inter | |
0.000015 6725 push_neg.not_forall_eq | |
0.000014 6726 not_not_of_not_imp | |
0.000017 6727 decidable.of_not_imp | |
0.000039 6728 not_of_not_imp | |
0.000017 6729 not_imp_of_and_not | |
0.000015 6730 decidable.not_imp | |
0.000017 6731 not_imp | |
0.000015 6732 push_neg.not_implies_eq | |
0.000014 6733 set.nonempty.ne_empty | |
0.000016 6734 set.empty_not_nonempty | |
0.000017 6735 filter.mem_bot_sets | |
0.000015 6736 filter.empty_in_sets_eq_bot | |
0.000017 6737 filter.ne_bot.ne' | |
0.000014 6738 filter.nonempty_of_mem_sets | |
0.000017 6739 filter.forall_sets_nonempty_iff_ne_bot | |
0.000015 6740 filter.has_basis.forall_iff | |
0.000015 6741 filter.has_basis.ne_bot_iff | |
0.000016 6742 filter.bounded_distrib_lattice._proof_1 | |
0.000015 6743 filter.bounded_distrib_lattice._proof_2 | |
0.000016 6744 filter.bounded_distrib_lattice._proof_3 | |
0.000015 6745 filter.bounded_distrib_lattice._proof_4 | |
0.000015 6746 filter.bounded_distrib_lattice._proof_5 | |
0.000016 6747 filter.bounded_distrib_lattice._proof_6 | |
0.000015 6748 filter.bounded_distrib_lattice._proof_7 | |
0.000015 6749 filter.bounded_distrib_lattice._proof_8 | |
0.000016 6750 filter.bounded_distrib_lattice._proof_9 | |
0.000015 6751 filter.bounded_distrib_lattice._proof_10 | |
0.000016 6752 filter.mem_sup_sets | |
0.000015 6753 filter.mem_inf_sets | |
0.000016 6754 set.subset_union_left | |
0.000016 6755 set.subset_union_right | |
0.000016 6756 generalized_boolean_algebra.le_sup_inf | |
0.000015 6757 generalized_boolean_algebra.to_distrib_lattice | |
0.000017 6758 boolean_algebra.to_generalized_boolean_algebra | |
0.000015 6759 set.union_subset | |
0.000014 6760 filter.bounded_distrib_lattice._proof_11 | |
0.000016 6761 filter.bounded_distrib_lattice._proof_12 | |
0.000015 6762 filter.bounded_distrib_lattice._proof_13 | |
0.000016 6763 filter.bounded_distrib_lattice | |
0.000015 6764 imp_and_distrib | |
0.000017 6765 set.subset_inter_iff | |
0.000015 6766 filter.inf_principal | |
0.000016 6767 set.inter_compl_self | |
0.000015 6768 filter.principal_empty | |
0.000014 6769 set.union_subset_iff | |
0.000014 6770 filter.sup_principal | |
0.000014 6771 em | |
0.000017 6772 set.union_compl_self | |
0.000015 6773 filter.principal_univ | |
0.000016 6774 filter.is_compl_principal | |
0.000015 6775 decidable.not_or_of_imp | |
0.000016 6776 or.neg_resolve_left | |
0.000015 6777 decidable.imp_iff_not_or | |
0.000016 6778 imp_iff_not_or | |
0.000015 6779 is_compl.le_right_iff | |
0.000017 6780 filter.mem_inf_principal | |
0.000015 6781 set.mem_inter_iff | |
0.000016 6782 filter.has_basis.inf_principal | |
0.000015 6783 filter.has_basis.inf_principal_ne_bot_iff | |
0.000017 6784 filter.inf_principal_ne_bot_iff | |
0.000015 6785 set.not_subset | |
0.000016 6786 set.inter_compl_nonempty_iff | |
0.000015 6787 filter.ne_bot_iff | |
0.000016 6788 filter.mem_iff_inf_principal_compl | |
0.000016 6789 filter.not_mem_iff_inf_principal_compl | |
0.000015 6790 is_compact.compl_mem_sets | |
0.000016 6791 is_compact.compl_mem_sets_of_nhds_within | |
0.000015 6792 is_compact.induction_on | |
0.725601 6793 mem_nhds_within_of_mem_nhds | |
0.000077 6794 mem_nhds_sets | |
0.000023 6795 is_compact.elim_directed_cover | |
0.000015 6796 finset.inhabited_finset | |
0.000014 6797 is_open_bUnion | |
0.000014 6798 supr_eq_supr_finset | |
0.000015 6799 set.Union_eq_Union_finset | |
0.000014 6800 directed_of_sup | |
0.000014 6801 finset.semilattice_sup_bot._proof_1 | |
0.000014 6802 finset.semilattice_sup_bot._proof_2 | |
0.000015 6803 finset.semilattice_sup_bot._proof_3 | |
0.000014 6804 finset.semilattice_sup_bot._proof_4 | |
0.000014 6805 finset.semilattice_sup_bot._proof_5 | |
0.000014 6806 finset.semilattice_sup_bot._proof_6 | |
0.000014 6807 finset.semilattice_sup_bot._proof_7 | |
0.000019 6808 finset.semilattice_sup_bot._proof_8 | |
0.000019 6809 finset.semilattice_sup_bot | |
0.000018 6810 set.bUnion_subset | |
0.000016 6811 set.subset_bUnion_of_mem | |
0.000017 6812 set.bUnion_subset_bUnion_left | |
0.000015 6813 is_compact.elim_finite_subcover | |
0.000015 6814 is_closed.is_open_compl | |
0.000016 6815 is_compact.elim_finite_subfamily_closed | |
0.000017 6816 is_open_compl_iff | |
0.000017 6817 cond._main | |
0.000017 6818 cond | |
0.000017 6819 set.mem_union_eq | |
0.000017 6820 bool.exists_bool | |
0.000016 6821 bool.cond_ff | |
0.000017 6822 bool.cond_tt | |
0.000016 6823 set.union_eq_Union | |
0.000015 6824 bool.forall_bool | |
0.000015 6825 is_open_union | |
0.000016 6826 is_closed_inter | |
0.000015 6827 set.inter_empty | |
0.000016 6828 is_trans | |
0.000015 6829 is_trans.trans | |
0.000016 6830 trans | |
0.000015 6831 directed.finset_le | |
0.000016 6832 trans_of | |
0.000015 6833 is_trans.swap | |
0.000016 6834 has_le.le.is_trans | |
0.000016 6835 ge.is_trans | |
0.000014 6836 set.subset_bInter | |
0.000017 6837 is_compact.nonempty_Inter_of_directed_nonempty_compact_closed | |
0.000015 6838 euclidean_domain.cases_on | |
0.000015 6839 euclidean_domain.no_confusion_type | |
0.000016 6840 euclidean_domain.no_confusion | |
0.000015 6841 euclidean_domain.mk.inj | |
0.000015 6842 euclidean_domain.mk.inj_arrow | |
0.000016 6843 has_norm | |
0.000015 6844 metric_space.to_pseudo_metric_space | |
0.000016 6845 has_norm.norm | |
0.000015 6846 normed_group | |
0.000015 6847 asymptotics.is_O_with | |
0.000016 6848 asymptotics.is_O | |
0.000014 6849 normed_field | |
0.000016 6850 normed_field.to_has_norm | |
0.000015 6851 normed_group.to_has_norm | |
0.000016 6852 real.linear_ordered_add_comm_group | |
0.000015 6853 real.pseudo_metric_space._proof_1 | |
0.000016 6854 abs_sub | |
0.000015 6855 real.pseudo_metric_space._proof_2 | |
0.000016 6856 abs_sub_le | |
0.000015 6857 real.pseudo_metric_space._proof_3 | |
0.000016 6858 real.pseudo_metric_space._proof_4 | |
0.000015 6859 real.pseudo_metric_space._proof_5 | |
0.000016 6860 real.pseudo_metric_space._proof_6 | |
0.000017 6861 real.pseudo_metric_space._proof_7 | |
0.000015 6862 real.pseudo_metric_space._proof_8 | |
0.000014 6863 real.pseudo_metric_space | |
0.000017 6864 real.metric_space._proof_1 | |
0.000015 6865 real.metric_space | |
0.000016 6866 real.normed_group._proof_1 | |
0.000015 6867 real.normed_group | |
0.000016 6868 normed_group.to_metric_space | |
0.000015 6869 normed_group.to_add_comm_group | |
0.000016 6870 normed_group.dist_eq | |
0.000015 6871 real.normed_field | |
0.000016 6872 asymptotics.is_O.equations._eqn_1 | |
0.000016 6873 asymptotics.is_O_with.equations._eqn_1 | |
0.000014 6874 semi_normed_group | |
0.000016 6875 semi_normed_group.to_has_norm | |
0.000015 6876 real.norm_of_nonneg | |
0.000015 6877 semi_normed_group.to_pseudo_metric_space | |
0.000029 6878 semi_normed_group.to_add_comm_group | |
0.000015 6879 semi_normed_group.dist_eq | |
0.000014 6880 dist_eq_norm | |
0.000017 6881 dist_zero_right | |
0.000015 6882 norm_nonneg | |
0.000016 6883 norm_norm | |
0.000015 6884 normed_group.to_semi_normed_group | |
0.000016 6885 asymptotics.is_O_with_norm_left | |
0.000015 6886 asymptotics.is_O_norm_left | |
0.000017 6887 asymptotics.is_O_with_norm_right | |
0.000015 6888 asymptotics.is_O_norm_right | |
0.000016 6889 asymptotics.is_O_norm_norm | |
0.000015 6890 normalization_monoid.norm_unit_zero | |
0.000016 6891 units.coe_one | |
0.000014 6892 normalize._proof_1 | |
0.000017 6893 normalization_monoid.norm_unit_coe_units | |
0.000014 6894 norm_unit_one | |
0.000017 6895 normalize._proof_2 | |
0.000014 6896 normalization_monoid.norm_unit_mul | |
0.000017 6897 normalize._proof_3 | |
0.000015 6898 normalize | |
0.000015 6899 gcd_monoid | |
0.000014 6900 gcd_monoid.lcm | |
0.000017 6901 associated | |
0.000015 6902 associated.refl | |
0.000016 6903 associated_of_dvd_dvd | |
0.000015 6904 normalize_apply | |
0.000016 6905 normalize_eq_normalize | |
0.000015 6906 dvd_antisymm_of_normalize_eq | |
0.000016 6907 gcd_monoid.norm_unit | |
0.000015 6908 gcd_monoid.norm_unit_zero | |
0.000016 6909 gcd_monoid.norm_unit_mul | |
0.000015 6910 gcd_monoid.norm_unit_coe_units | |
0.000016 6911 gcd_monoid.to_normalization_monoid | |
0.000015 6912 normalize_zero | |
0.000016 6913 gcd_monoid.gcd | |
0.000015 6914 gcd_monoid.normalize_gcd | |
0.000016 6915 normalize_gcd | |
0.000015 6916 gcd_monoid.gcd_mul_lcm | |
0.000016 6917 gcd_mul_lcm | |
0.000015 6918 left_inv_eq_right_inv | |
0.150612 6919 group.mul_left_inv | |
0.000079 6920 mul_left_inv | |
0.000027 6921 inv_mul_self | |
0.000019 6922 inv_eq_of_mul_eq_one | |
0.000015 6923 inv_inv | |
0.000014 6924 eq_inv_of_mul_eq_one | |
0.000014 6925 mul_eq_one_iff_eq_inv | |
0.000014 6926 mul_inv_eq_one | |
0.000014 6927 norm_unit_mul_norm_unit | |
0.000014 6928 normalize_idem | |
0.000014 6929 gcd_monoid.gcd_dvd_right | |
0.000014 6930 gcd_monoid.gcd_dvd_left | |
0.000014 6931 gcd_eq_normalize | |
0.000014 6932 gcd_monoid.dvd_gcd | |
0.000014 6933 gcd_zero_left | |
0.000015 6934 gcd_eq_zero_iff | |
0.000014 6935 associated.symm | |
0.000019 6936 associated_zero_iff_eq_zero | |
0.000018 6937 associated_normalize | |
0.000018 6938 normalize_eq_zero | |
0.000017 6939 cancel_monoid_with_zero.to_no_zero_divisors | |
0.000017 6940 gcd_monoid.lcm_zero_left | |
0.000017 6941 gcd_monoid.lcm_zero_right | |
0.000018 6942 lcm_eq_zero_iff | |
0.000017 6943 normalize_lcm | |
0.000018 6944 eq_zero_of_zero_dvd | |
0.000017 6945 zero_dvd_iff | |
0.000018 6946 mul_dvd_mul_iff_left | |
0.000015 6947 dvd_trans | |
0.000017 6948 units.mul_right_dvd | |
0.000014 6949 normalize_dvd_iff | |
0.000017 6950 units.dvd_mul_right | |
0.000015 6951 dvd_normalize_iff | |
0.000017 6952 mul_dvd_mul | |
0.000017 6953 mul_dvd_mul_left | |
0.000016 6954 gcd_mul_left | |
0.000015 6955 gcd_mul_right | |
0.000014 6956 dvd_gcd_iff | |
0.000014 6957 mul_left_inj' | |
0.000015 6958 mul_dvd_mul_iff_right | |
0.000016 6959 lcm_dvd_iff | |
0.000017 6960 lcm_dvd | |
0.000015 6961 dvd_lcm_right | |
0.000024 6962 dvd_lcm_left | |
0.000016 6963 lcm_comm | |
0.000014 6964 gcd_monoid.lcm.is_commutative | |
0.000014 6965 dvd.trans | |
0.000017 6966 lcm_assoc | |
0.000017 6967 gcd_monoid.lcm.is_associative | |
0.000017 6968 finset.lcm | |
0.000016 6969 multiset.lcm | |
0.000014 6970 multiset.lcm_zero | |
0.000014 6971 is_unit | |
0.000014 6972 units.mul_inv_cancel_left | |
0.000014 6973 units.coe_dvd | |
0.000015 6974 is_unit.dvd | |
0.000014 6975 is_unit_one | |
0.000016 6976 multiset.lcm_cons | |
0.000015 6977 multiset.lcm_dvd | |
0.000017 6978 finset.lcm_dvd_iff | |
0.000015 6979 finset.lcm_dvd | |
0.000016 6980 finset.dvd_lcm | |
0.000015 6981 finset.lcm_mono_fun | |
0.000018 6982 finsupp | |
0.000015 6983 set.inj_on | |
0.000017 6984 finset.set.has_coe_t | |
0.000017 6985 finsupp.support | |
0.000015 6986 set.finite | |
0.000017 6987 list.pairwise_map | |
0.000015 6988 list.pairwise_map_of_pairwise | |
0.000017 6989 list.pairwise.iff_of_mem | |
0.000015 6990 list.pairwise.and_mem | |
0.000017 6991 list.nodup_map_on | |
0.000014 6992 multiset.nodup_map_on | |
0.000015 6993 multiset.nodup_map | |
0.000014 6994 set.to_finset._proof_1 | |
0.000016 6995 set.to_finset | |
0.000015 6996 set.finite.fintype | |
0.000016 6997 set.finite.to_finset | |
0.000015 6998 set.finite_of_finite_image | |
0.000016 6999 and_iff_right_of_imp | |
0.000016 7000 and_iff_right_iff_imp | |
0.000014 7001 set.inter_eq_right_iff_subset | |
0.000014 7002 set.inter_eq_self_of_subset_right | |
0.000016 7003 set.fintype_subset._proof_1 | |
0.000015 7004 quot.rec_on | |
0.000014 7005 list.pmap._main | |
0.000017 7006 list.pmap | |
0.000015 7007 list.pmap._main.equations._eqn_1 | |
0.000016 7008 list.pmap.equations._eqn_1 | |
0.000015 7009 list.pmap._main._proof_1 | |
0.000016 7010 list.pmap._main._proof_2 | |
0.000015 7011 list.pmap._main.equations._eqn_2 | |
0.000014 7012 list.pmap.equations._eqn_2 | |
0.000019 7013 list.perm.pmap | |
0.000014 7014 multiset.pmap._proof_1 | |
0.000017 7015 multiset.pmap | |
0.000017 7016 fintype.subtype._proof_1 | |
0.000014 7017 list.attach._proof_1 | |
0.000017 7018 list.attach | |
0.000015 7019 list.attach.equations._eqn_1 | |
0.000016 7020 list.map_pmap | |
0.000015 7021 list.pmap_congr | |
0.000014 7022 list.pmap_eq_map_attach | |
0.000016 7023 list.nodup_map | |
0.000015 7024 list.pmap_eq_map | |
0.000015 7025 id.def | |
0.000016 7026 list.map_id | |
0.000015 7027 list.attach_map_val | |
0.000014 7028 list.pairwise_of_pairwise_map | |
0.000017 7029 list.nodup_of_nodup_map | |
0.000015 7030 list.nodup_attach | |
0.000014 7031 list.nodup_pmap | |
0.000016 7032 multiset.nodup_pmap | |
0.000015 7033 fintype.subtype._proof_2 | |
0.000016 7034 list.mem_attach | |
0.000015 7035 list.mem_pmap | |
0.000016 7036 multiset.mem_pmap | |
0.000015 7037 fintype.subtype._match_1 | |
0.000017 7038 fintype.subtype._proof_3 | |
0.000015 7039 fintype.subtype | |
0.000014 7040 fintype.of_finset | |
0.000016 7041 finset.filter._proof_1 | |
0.000015 7042 finset.filter | |
0.000016 7043 finset.mem_filter | |
0.000015 7044 list.map_congr | |
0.000016 7045 multiset.map_congr | |
0.000015 7046 subtype.val_eq_coe | |
0.000016 7047 set.to_finset.equations._eqn_1 | |
0.000015 7048 finset.mem_mk | |
0.000016 7049 finset.mem_univ_val | |
0.000015 7050 set.mem_to_finset | |
0.000016 7051 set.mem_sep_eq | |
0.000015 7052 set.fintype_sep._proof_1 | |
0.000016 7053 set.fintype_sep | |
0.000017 7054 set.fintype_inter | |
0.000015 7055 set.fintype_subset | |
0.000016 7056 classical.dec_pred | |
0.000015 7057 set.finite.subset | |
0.000016 7058 set.image_subset_iff | |
0.000015 7059 set.image_preimage_subset | |
0.000016 7060 set.finite.preimage | |
0.000015 7061 set.finite_mem_finset | |
0.000016 7062 finset.finite_to_set | |
0.000015 7063 finset.preimage._proof_1 | |
0.000017 7064 finset.preimage | |
0.000015 7065 finsupp.to_fun | |
0.117500 7066 finsupp.has_coe_to_fun | |
0.000074 7067 set.finite.mem_to_finset | |
0.000024 7068 finset.mem_preimage | |
0.000014 7069 finsupp.mem_support_to_fun | |
0.000015 7070 finsupp.comap_domain._proof_1 | |
0.000014 7071 finsupp.comap_domain | |
0.000014 7072 finsupp.comap_domain.equations._eqn_1 | |
0.000014 7073 int.add_neg_cancel_right | |
0.000014 7074 int.add_lt_add_left | |
0.000014 7075 int.add_lt_add_right | |
0.000014 7076 int.sub_left_lt_of_lt_add | |
0.000015 7077 equiv.perm | |
0.000014 7078 equiv.refl._proof_1 | |
0.000014 7079 equiv.refl._proof_2 | |
0.000014 7080 equiv.refl | |
0.000014 7081 function.left_inverse.comp | |
0.000014 7082 equiv.trans._proof_1 | |
0.000014 7083 function.right_inverse.comp | |
0.000014 7084 equiv.trans._proof_2 | |
0.000014 7085 equiv.trans | |
0.000014 7086 equiv_functor | |
0.000017 7087 equiv_functor.map | |
0.000017 7088 equiv.cases_on | |
0.000015 7089 equiv.no_confusion_type | |
0.000016 7090 equiv.no_confusion | |
0.000017 7091 equiv.mk.inj | |
0.000017 7092 equiv.mk.inj_eq | |
0.000017 7093 function.right_inverse.comp_eq_id | |
0.000017 7094 function.comp.right_id | |
0.000017 7095 function.comp.assoc | |
0.000014 7096 function.left_inverse.comp_eq_id | |
0.000017 7097 function.comp.left_id | |
0.000017 7098 function.left_inverse.eq_right_inverse | |
0.000016 7099 equiv.coe_fn_injective | |
0.000017 7100 equiv.ext | |
0.000015 7101 equiv.coe_trans | |
0.000016 7102 equiv.symm_apply_apply | |
0.000017 7103 equiv.symm_comp_self | |
0.000015 7104 equiv.coe_refl | |
0.000016 7105 equiv.trans_symm | |
0.000015 7106 equiv_functor.map_refl | |
0.000015 7107 equiv_functor.map_trans | |
0.000016 7108 equiv_functor.map_equiv._proof_1 | |
0.000015 7109 equiv.apply_symm_apply | |
0.000016 7110 equiv.self_comp_symm | |
0.000015 7111 equiv.symm_trans | |
0.000015 7112 equiv_functor.map_equiv._proof_2 | |
0.000016 7113 equiv_functor.map_equiv | |
0.000014 7114 functor | |
0.000017 7115 functor.map_const | |
0.000014 7116 functor.map | |
0.000014 7117 is_lawful_functor | |
0.000015 7118 is_lawful_functor.id_map | |
0.000013 7119 equiv_functor.of_is_lawful_functor._proof_1 | |
0.000072 7120 is_lawful_functor.comp_map | |
0.000019 7121 equiv_functor.of_is_lawful_functor._proof_2 | |
0.000016 7122 equiv_functor.of_is_lawful_functor | |
0.000016 7123 has_pure | |
0.000015 7124 has_seq | |
0.000014 7125 has_seq_left | |
0.000015 7126 has_seq_right | |
0.000016 7127 applicative | |
0.000015 7128 traversable | |
0.000016 7129 traversable.to_functor | |
0.000015 7130 applicative.to_functor | |
0.000016 7131 has_bind | |
0.000015 7132 monad | |
0.000016 7133 monad.to_applicative | |
0.000015 7134 option.monad | |
0.000015 7135 has_pure.pure | |
0.000016 7136 applicative.to_has_pure | |
0.000015 7137 option.traverse._main | |
0.000016 7138 option.traverse | |
0.000015 7139 option.traversable | |
0.000016 7140 traversable.traverse | |
0.000015 7141 id_bind | |
0.000015 7142 id.monad | |
0.000016 7143 id.mk | |
0.000015 7144 has_seq_left.seq_left | |
0.000016 7145 applicative.to_has_seq_left | |
0.000015 7146 has_seq.seq | |
0.000015 7147 applicative.to_has_seq | |
0.000016 7148 has_seq_right.seq_right | |
0.000015 7149 applicative.to_has_seq_right | |
0.000015 7150 is_lawful_applicative | |
0.000016 7151 functor.comp | |
0.000015 7152 functor.comp.mk | |
0.000015 7153 functor.comp.map._main | |
0.000016 7154 functor.comp.map | |
0.000015 7155 functor.comp.has_pure | |
0.000016 7156 functor.comp.seq._main | |
0.000015 7157 functor.comp.seq | |
0.000016 7158 functor.comp.applicative | |
0.000016 7159 applicative_transformation | |
0.000016 7160 applicative_transformation.app | |
0.000015 7161 applicative_transformation.has_coe_to_fun | |
0.000015 7162 is_lawful_traversable | |
0.000016 7163 is_lawful_traversable.to_is_lawful_functor | |
0.000015 7164 is_lawful_applicative.to_is_lawful_functor | |
0.000016 7165 has_bind.bind | |
0.000015 7166 monad.to_has_bind | |
0.000015 7167 is_lawful_monad | |
0.000016 7168 is_lawful_monad.to_is_lawful_applicative | |
0.000016 7169 option.is_lawful_monad | |
0.000014 7170 option.is_lawful_traversable._proof_1 | |
0.000016 7171 option.id_traverse | |
0.000016 7172 is_lawful_applicative.map_pure | |
0.000014 7173 functor.comp.functor | |
0.000017 7174 functor.comp.map_mk | |
0.000015 7175 functor.map_map | |
0.000016 7176 option.comp_traverse | |
0.000015 7177 option.traverse_eq_map_id | |
0.000015 7178 applicative_transformation.preserves_pure' | |
0.000016 7179 applicative_transformation.preserves_pure | |
0.000015 7180 is_lawful_applicative.pure_seq_eq_map | |
0.000015 7181 applicative_transformation.preserves_seq' | |
0.000016 7182 applicative_transformation.preserves_seq | |
0.000015 7183 applicative_transformation.preserves_map | |
0.000015 7184 option.naturality | |
0.000016 7185 option.is_lawful_traversable | |
0.000015 7186 equiv.injective | |
0.000016 7187 option.not_is_some_iff_eq_none | |
0.000016 7188 _private.3310278691.remove_none_aux._proof_1 | |
0.000015 7189 _private.3310278691.remove_none_aux | |
0.000016 7190 option.some_injective | |
0.000015 7191 _private.3310278691.remove_none_aux.equations._eqn_1 | |
0.000015 7192 equiv.apply_eq_iff_eq | |
0.524523 7193 _private.1660657303.remove_none_aux_none | |
0.000081 7194 equiv.symm_apply_eq | |
0.000023 7195 equiv.eq_symm_apply | |
0.000015 7196 option.is_some._main.equations._eqn_1 | |
0.000014 7197 option.is_some.equations._eqn_1 | |
0.000014 7198 option.is_some._main.equations._eqn_2 | |
0.000014 7199 option.is_some.equations._eqn_2 | |
0.000014 7200 option.is_some_iff_exists | |
0.000014 7201 _private.77680175.remove_none_aux_some | |
0.000014 7202 _private.4171312357.remove_none_aux_inv | |
0.000014 7203 equiv.remove_none._proof_1 | |
0.000014 7204 equiv.remove_none | |
0.000014 7205 equiv.trans_assoc | |
0.000014 7206 equiv.perm.perm_group._proof_1 | |
0.000014 7207 equiv.trans_refl | |
0.000014 7208 equiv.refl_trans | |
0.000017 7209 equiv.perm.perm_group._proof_2 | |
0.000019 7210 equiv.perm.perm_group._proof_3 | |
0.000017 7211 equiv.perm.perm_group._proof_4 | |
0.000016 7212 equiv.perm.perm_group._proof_5 | |
0.000014 7213 equiv.perm.perm_group._proof_6 | |
0.000016 7214 equiv.perm.perm_group._proof_7 | |
0.000017 7215 equiv.perm.perm_group | |
0.000017 7216 equiv.swap_core | |
0.000016 7217 equiv.swap_core.equations._eqn_1 | |
0.000017 7218 equiv.swap_core_swap_core | |
0.000017 7219 equiv.swap._proof_1 | |
0.000017 7220 equiv.swap._proof_2 | |
0.000017 7221 equiv.swap | |
0.000015 7222 equiv_functor.map_equiv_apply | |
0.000015 7223 equiv.perm.coe_mul | |
0.000016 7224 equiv.swap_core_self | |
0.000015 7225 equiv.swap_self | |
0.000014 7226 equiv.swap_apply_def | |
0.000016 7227 equiv.swap_apply_right | |
0.000015 7228 equiv.remove_none_none | |
0.000016 7229 equiv.swap_apply_left | |
0.000016 7230 equiv.remove_none_some | |
0.000014 7231 equiv.swap_apply_of_ne_of_ne | |
0.000016 7232 map_equiv_remove_none | |
0.000015 7233 quaternion_algebra | |
0.000017 7234 quaternion | |
0.000015 7235 complex | |
0.000015 7236 complex.re | |
0.000016 7237 complex.im | |
0.000015 7238 quaternion.has_coe | |
0.000014 7239 complex.has_coe | |
0.000017 7240 complex.has_one | |
0.000015 7241 quaternion_algebra.re | |
0.000016 7242 quaternion_algebra.im_i | |
0.000015 7243 quaternion_algebra.im_j | |
0.000016 7244 quaternion_algebra.im_k | |
0.000015 7245 quaternion_algebra.has_add | |
0.000016 7246 quaternion_algebra.cases_on | |
0.000015 7247 quaternion_algebra.ext | |
0.000015 7248 quaternion_algebra.has_add_add_re | |
0.000016 7249 tactic.ring_exp.add_pf_sum_lt | |
0.000015 7250 pow_one | |
0.000015 7251 tactic.ring_exp.atom_to_sum_pf | |
0.000016 7252 tactic.ring_exp.add_pf_z_sum | |
0.000015 7253 quaternion_algebra.has_add_add_im_i | |
0.000016 7254 quaternion_algebra.has_add_add_im_j | |
0.000015 7255 quaternion_algebra.has_add_add_im_k | |
0.000016 7256 quaternion_algebra.ring._proof_1 | |
0.000016 7257 quaternion_algebra.has_zero | |
0.000014 7258 quaternion_algebra.has_zero_zero_re | |
0.000016 7259 quaternion_algebra.has_zero_zero_im_i | |
0.000015 7260 quaternion_algebra.has_zero_zero_im_j | |
0.000017 7261 quaternion_algebra.has_zero_zero_im_k | |
0.000015 7262 quaternion_algebra.ring._proof_2 | |
0.000014 7263 quaternion_algebra.ring._proof_3 | |
0.000016 7264 quaternion_algebra.ring._proof_4 | |
0.000016 7265 quaternion_algebra.ring._proof_5 | |
0.000014 7266 quaternion_algebra.has_neg | |
0.000016 7267 quaternion_algebra.has_sub | |
0.000015 7268 quaternion_algebra.has_sub_sub_re | |
0.000017 7269 quaternion_algebra.has_neg_neg_re | |
0.000014 7270 tactic.ring_exp.sub_pf | |
0.000017 7271 tactic.ring_exp.negate_pf | |
0.000015 7272 tactic.ring_exp.mul_pf_sum | |
0.000014 7273 tactic.ring_exp.add_pf_sum_z | |
0.000017 7274 tactic.ring_exp.mul_p_pf_sum | |
0.000015 7275 tactic.ring_exp.prod_to_sum_pf | |
0.000014 7276 tactic.ring_exp.mul_pf_c_prod | |
0.000016 7277 tactic.ring_exp.mul_pf_c_c | |
0.000015 7278 tactic.ring_exp.mul_coeff_pf_mul_one | |
0.000016 7279 tactic.ring_exp.mul_p_pf_zero | |
0.000015 7280 tactic.ring_exp.mul_pf_zero | |
0.000016 7281 quaternion_algebra.has_sub_sub_im_i | |
0.000015 7282 quaternion_algebra.has_neg_neg_im_i | |
0.000016 7283 quaternion_algebra.has_sub_sub_im_j | |
0.000015 7284 quaternion_algebra.has_neg_neg_im_j | |
0.000018 7285 quaternion_algebra.has_sub_sub_im_k | |
0.000017 7286 quaternion_algebra.has_neg_neg_im_k | |
0.000015 7287 quaternion_algebra.ring._proof_6 | |
0.000014 7288 quaternion_algebra.ring._proof_7 | |
0.000017 7289 tactic.ring_exp.add_pf_sum_gt | |
0.000015 7290 quaternion_algebra.ring._proof_8 | |
0.000014 7291 quaternion_algebra.has_mul | |
0.000016 7292 quaternion_algebra.has_mul_mul_re | |
0.000015 7293 quaternion_algebra.has_mul_mul_im_i | |
0.000016 7294 quaternion_algebra.has_mul_mul_im_j | |
0.000015 7295 quaternion_algebra.has_mul_mul_im_k | |
0.000016 7296 tactic.ring_exp.mul_pp_pf_prod_lt | |
0.000015 7297 tactic.ring_exp.mul_coeff_pf_one_mul | |
0.000016 7298 tactic.ring_exp.mul_pp_pf_prod_gt | |
0.000015 7299 tactic.ring_exp.mul_pf_prod_c | |
0.000016 7300 norm_num.mul_neg_neg | |
0.000015 7301 quaternion_algebra.ring._proof_9 | |
0.000014 7302 quaternion_algebra.has_one | |
0.000016 7303 quaternion_algebra.has_one_one_re | |
0.334731 7304 quaternion_algebra.has_one_one_im_i | |
0.000076 7305 quaternion_algebra.has_one_one_im_j | |
0.000024 7306 quaternion_algebra.has_one_one_im_k | |
0.000015 7307 quaternion_algebra.ring._proof_10 | |
0.000014 7308 quaternion_algebra.ring._proof_11 | |
0.000014 7309 quaternion_algebra.ring._proof_12 | |
0.000015 7310 quaternion_algebra.ring._proof_13 | |
0.000014 7311 quaternion_algebra.ring._proof_14 | |
0.000014 7312 quaternion_algebra.ring._proof_15 | |
0.000014 7313 quaternion_algebra.ring | |
0.000015 7314 quaternion.ring | |
0.000014 7315 quaternion.coe_complex_one | |
0.000014 7316 monoid_hom | |
0.000014 7317 pi.has_one | |
0.000014 7318 pi.has_mul | |
0.000014 7319 pi.mul_one_class._proof_1 | |
0.000018 7320 pi.mul_one_class._proof_2 | |
0.000017 7321 pi.mul_one_class | |
0.000017 7322 monoid_hom.apply._proof_1 | |
0.000018 7323 monoid_hom.apply._proof_2 | |
0.000015 7324 monoid_hom.apply | |
0.000016 7325 nat.mul_le_mul_right | |
0.000018 7326 fin_prod_fin_equiv._proof_1 | |
0.000015 7327 fin_prod_fin_equiv._proof_2 | |
0.000017 7328 fin_prod_fin_equiv._proof_3 | |
0.000017 7329 fin_prod_fin_equiv._proof_4 | |
0.000019 7330 prod.mk.eta | |
0.000015 7331 prod.no_confusion_type | |
0.000016 7332 prod.no_confusion | |
0.000017 7333 prod.mk.inj | |
0.000018 7334 eq_true_of_and_eq_true_right | |
0.000015 7335 and_eq_of_eq_true_right | |
0.000014 7336 prod.mk.inj_iff | |
0.000017 7337 prod.ext_iff | |
0.000015 7338 prod.ext | |
0.000014 7339 fin.eq_of_veq | |
0.000016 7340 fin_prod_fin_equiv._match_1 | |
0.000016 7341 fin_prod_fin_equiv._proof_5 | |
0.000014 7342 fin_prod_fin_equiv._proof_6 | |
0.000016 7343 fin_prod_fin_equiv | |
0.000015 7344 fin_prod_fin_equiv.equations._eqn_1 | |
0.000014 7345 list.sublists_aux._main | |
0.000016 7346 list.sublists_aux | |
0.000016 7347 multiset.powerset_aux | |
0.000014 7348 list.sublists'_aux._main | |
0.000016 7349 list.sublists'_aux | |
0.000015 7350 list.sublists' | |
0.000016 7351 multiset.powerset_aux' | |
0.000015 7352 list.sublists | |
0.000016 7353 multiset.powerset_aux.equations._eqn_1 | |
0.000015 7354 list.sublists.equations._eqn_1 | |
0.000016 7355 multiset.coe_nil_eq_zero | |
0.000015 7356 list.sublists_aux₁._main | |
0.000017 7357 list.sublists_aux₁ | |
0.000015 7358 list.sublists_aux₁._main.equations._eqn_2 | |
0.000016 7359 list.sublists_aux₁.equations._eqn_2 | |
0.000015 7360 list.sublists_aux._main.equations._eqn_2 | |
0.000016 7361 list.sublists_aux.equations._eqn_2 | |
0.000015 7362 list.sublists_aux₁_eq_sublists_aux | |
0.000016 7363 list.sublists_aux_cons_eq_sublists_aux₁ | |
0.000015 7364 list.join._main | |
0.000015 7365 list.join | |
0.000016 7366 list.bind | |
0.000014 7367 list.ret | |
0.000016 7368 list.bind.equations._eqn_1 | |
0.000015 7369 list.join._main.equations._eqn_1 | |
0.000016 7370 list.join.equations._eqn_1 | |
0.000015 7371 list.join._main.equations._eqn_2 | |
0.000016 7372 list.join.equations._eqn_2 | |
0.000015 7373 list.bind_ret_eq_map | |
0.000016 7374 list.cons_bind | |
0.000015 7375 list.append_bind | |
0.000016 7376 list.bind_append | |
0.000017 7377 list.sublists_aux₁_bind | |
0.000015 7378 multiset.powerset_aux_eq_map_coe | |
0.000016 7379 list.sublists'.equations._eqn_1 | |
0.000015 7380 list.sublists'_aux._main.equations._eqn_2 | |
0.000016 7381 list.sublists'_aux.equations._eqn_2 | |
0.000015 7382 list.map_sublists'_aux | |
0.000016 7383 list.sublists'_aux_append | |
0.000015 7384 list.sublists'_aux_eq_sublists' | |
0.000017 7385 list.sublists'_cons | |
0.000015 7386 list.sublists_aux_eq_foldr.aux | |
0.000017 7387 list.sublists_aux_eq_foldr | |
0.000015 7388 list.sublists_aux_cons_cons | |
0.000015 7389 list.foldr_nil | |
0.000016 7390 list.map_nil | |
0.000014 7391 list.sublists_cons_perm_append | |
0.000017 7392 list.sublists_perm_sublists' | |
0.000015 7393 multiset.powerset_aux_perm_powerset_aux' | |
0.000014 7394 multiset.powerset_aux'_nil | |
0.000016 7395 multiset.powerset_aux'.equations._eqn_1 | |
0.000015 7396 list.map_map | |
0.000014 7397 multiset.powerset_aux'_cons | |
0.000014 7398 multiset.cons_swap | |
0.000015 7399 multiset.cons_inj_right | |
0.000016 7400 multiset.powerset_aux'_perm | |
0.000015 7401 multiset.powerset_aux_perm | |
0.000015 7402 multiset.powerset._proof_1 | |
0.000015 7403 multiset.powerset | |
0.000016 7404 multiset.quot_mk_to_coe | |
0.000016 7405 multiset.powerset_coe' | |
0.000016 7406 multiset.mem_coe | |
0.000015 7407 list.sublists'_nil | |
0.000016 7408 list.eq_of_mem_singleton | |
0.000015 7409 list.mem_singleton | |
0.000016 7410 list.mem_sublists' | |
0.000015 7411 list.subperm.equations._eqn_1 | |
0.000016 7412 list.inhabited | |
0.000018 7413 multiset.mem_powerset | |
0.000015 7414 finset.powerset._proof_1 | |
0.000018 7415 multiset.nodup_of_nodup_map | |
0.000024 7416 multiset.coe_map | |
0.000017 7417 multiset.powerset_coe | |
0.000014 7418 list.sublist.map | |
0.000014 7419 list.reverse_rec_on._proof_1 | |
0.000017 7420 list.reverse_rec_on._proof_2 | |
0.000015 7421 list.reverse_rec_on | |
0.000014 7422 list.monad | |
0.000016 7423 list.traverse._main | |
0.000015 7424 list.traverse | |
0.000017 7425 list.traversable | |
0.167723 7426 list.sublists_aux₁._main.equations._eqn_1 | |
0.000076 7427 list.sublists_aux₁.equations._eqn_1 | |
0.000026 7428 list.sublists_aux₁_append | |
0.000015 7429 list.bind_eq_bind | |
0.000049 7430 list.sublists_aux_cons_append | |
0.000016 7431 list.map_eq_map | |
0.000015 7432 list.map_id' | |
0.000014 7433 list.sublists_append | |
0.000014 7434 list.sublists_singleton | |
0.000014 7435 list.nil_bind | |
0.000014 7436 list.sublists_concat | |
0.000014 7437 list.sublist_append_of_sublist_left | |
0.000017 7438 list.sublist.append_right | |
0.000018 7439 list.sublist.reverse | |
0.000016 7440 list.reverse_sublist_iff | |
0.000017 7441 list.sublists_reverse | |
0.000015 7442 list.sublists_eq_sublists' | |
0.000016 7443 list.sublists'_reverse | |
0.000017 7444 list.mem_map_of_injective | |
0.000017 7445 list.reverse_involutive | |
0.000017 7446 list.reverse_injective | |
0.000017 7447 list.mem_sublists | |
0.000017 7448 list.append_sublist_append_right | |
0.000017 7449 list.map_ret_sublist_sublists | |
0.000016 7450 multiset.map_single_le_powerset | |
0.000015 7451 multiset.coe_nodup | |
0.000016 7452 list.nodup.sublist_ext | |
0.000018 7453 list.sublists'_eq_sublists | |
0.000017 7454 list.nodup_map_iff | |
0.000018 7455 list.lex | |
0.000014 7456 list.reverse_inj | |
0.000017 7457 list.lex.dcases_on | |
0.000017 7458 list.lex.to_ne | |
0.000015 7459 list.pairwise_sublists' | |
0.000016 7460 list.mem_reverse | |
0.000016 7461 list.pairwise_reverse | |
0.000014 7462 list.pairwise_sublists | |
0.000016 7463 list.nodup_sublists | |
0.000015 7464 list.nodup_reverse | |
0.000014 7465 list.nodup_sublists' | |
0.000016 7466 multiset.nodup_powerset | |
0.000016 7467 finset.powerset._proof_2 | |
0.000014 7468 finset.powerset | |
0.000016 7469 finset.has_decidable_eq._main | |
0.000015 7470 finset.has_decidable_eq | |
0.000015 7471 multiset.nodup_erase_of_nodup | |
0.000016 7472 finset.erase._proof_1 | |
0.000015 7473 finset.erase | |
0.000014 7474 finset.powerset.equations._eqn_1 | |
0.000016 7475 finset.no_confusion_type | |
0.000015 7476 finset.no_confusion | |
0.000015 7477 finset.mk.inj | |
0.000016 7478 finset.mk.inj_eq | |
0.000014 7479 finset.mem_powerset | |
0.000017 7480 list.nodup_erase_eq_filter | |
0.000015 7481 multiset.nodup_erase_eq_filter | |
0.000016 7482 multiset.mem_erase_iff_of_nodup | |
0.000015 7483 finset.mem_erase | |
0.000016 7484 finset.subset_insert_iff | |
0.000015 7485 dec_em | |
0.000014 7486 finset.insert_erase | |
0.000017 7487 multiset.erase_subset | |
0.000015 7488 finset.erase_subset | |
0.000014 7489 finset.erase_insert_subset | |
0.000016 7490 finset.erase_eq_of_not_mem | |
0.000016 7491 finset.ne_insert_of_not_mem | |
0.000014 7492 finset.powerset_insert | |
0.000016 7493 finset.prod_union_inter | |
0.000015 7494 finset.prod_union | |
0.000016 7495 finset.disjoint_iff_ne | |
0.000015 7496 finset.not_mem_of_mem_powerset_of_not_mem | |
0.000014 7497 list.pw_filter_eq_self | |
0.000014 7498 list.erase_dup_eq_self | |
0.000014 7499 multiset.erase_dup_eq_self | |
0.000014 7500 finset.image_val_of_inj_on | |
0.000014 7501 multiset.map_map | |
0.000016 7502 finset.fold_image | |
0.000015 7503 finset.prod_image | |
0.000016 7504 and.imp_right | |
0.000015 7505 and_or_distrib_left | |
0.000016 7506 and.elim | |
0.000015 7507 not_and_self | |
0.000016 7508 finset.erase_insert | |
0.000015 7509 finset.prod_powerset_insert | |
0.000016 7510 measurable_space | |
0.000015 7511 set.Ici | |
0.000016 7512 filter.at_top | |
0.000015 7513 has_sum | |
0.000016 7514 summable | |
0.000014 7515 tsum | |
0.000016 7516 topological_space.generate_open | |
0.000015 7517 topological_space.generate_from | |
0.000016 7518 preorder.topology | |
0.000015 7519 ennreal.topological_space | |
0.000016 7520 measure_theory.outer_measure | |
0.000015 7521 measurable_space.measurable_set' | |
0.000016 7522 measurable_set | |
0.000016 7523 pairwise | |
0.000014 7524 function.on_fun | |
0.000016 7525 measure_theory.outer_measure.measure_of | |
0.000014 7526 t2_space | |
0.000017 7527 filter.has_basis.inf | |
0.000015 7528 filter.has_basis.inf_basis_ne_bot_iff | |
0.000014 7529 filter.has_basis.inf_ne_bot_iff | |
0.000017 7530 filter.inf_ne_bot_iff | |
0.000014 7531 t2_space.t2 | |
0.000016 7532 eq_of_nhds_ne_bot | |
0.000015 7533 ne_bot_of_le_ne_bot | |
0.000016 7534 filter.ne_bot.mono | |
0.000015 7535 filter.ne_bot_of_le | |
0.000016 7536 is_least.unique | |
0.000015 7537 is_lub.unique | |
0.000016 7538 set.ball_image_of_ball | |
0.000015 7539 monotone.mem_upper_bounds_image | |
0.000015 7540 galois_connection.upper_bounds_l_image_subset | |
0.000016 7541 galois_connection.is_lub_l_image | |
0.000015 7542 galois_connection.l_bot | |
0.000015 7543 filter.map_bot | |
0.000016 7544 filter.map_eq_bot_iff | |
0.000015 7545 filter.map_ne_bot_iff | |
0.000016 7546 filter.ne_bot.map | |
0.000014 7547 filter.map_ne_bot | |
0.000016 7548 tendsto_nhds_unique | |
0.000015 7549 filter.has_basis_infi_principal | |
0.000016 7550 set.mem_Ici | |
0.000014 7551 set.left_mem_Ici | |
0.000017 7552 set.Ici_subset_Ici | |
0.000015 7553 filter.at_top_basis | |
0.000017 7554 set.nonempty_Ici | |
0.000015 7555 filter.at_top_ne_bot | |
0.000016 7556 has_sum.unique | |
0.000015 7557 tsum.equations._eqn_1 | |
0.087200 7558 summable.has_sum | |
0.000065 7559 has_sum.tsum_eq | |
0.000024 7560 has_sum.equations._eqn_1 | |
0.000014 7561 all_mem_nhds | |
0.000015 7562 all_mem_nhds_filter | |
0.000014 7563 tendsto_nhds | |
0.000014 7564 tendsto_const_nhds | |
0.000014 7565 has_sum_zero | |
0.000014 7566 tsum_zero | |
0.000014 7567 t1_space | |
0.000015 7568 regular_space | |
0.000014 7569 set.singleton_subset_iff | |
0.000014 7570 set.eq_empty_of_subset_empty | |
0.000014 7571 regular_space.t2_space._match_1 | |
0.000014 7572 regular_space.t2_space._match_2 | |
0.000017 7573 regular_space.t2_space._match_3 | |
0.000017 7574 regular_space.t2_space._match_4 | |
0.000017 7575 regular_space.regular | |
0.000014 7576 t1_space.t1 | |
0.000017 7577 is_closed_singleton | |
0.000017 7578 regular_space.to_t1_space | |
0.000017 7579 regular_space.t2_space | |
0.000018 7580 set.Iio | |
0.000017 7581 order_topology | |
0.000017 7582 is_open_iff_forall_mem_open | |
0.000017 7583 t2_space.t1_space._match_1 | |
0.000017 7584 t2_separation | |
0.000017 7585 set.mem_singleton_of_eq | |
0.000018 7586 t2_space.t1_space | |
0.000015 7587 Prop.linear_order._proof_1 | |
0.000014 7588 Prop.linear_order._proof_2 | |
0.000016 7589 Prop.linear_order._proof_3 | |
0.000015 7590 Prop.linear_order._proof_4 | |
0.000017 7591 Prop.linear_order._proof_5 | |
0.000014 7592 Prop.linear_order._proof_6 | |
0.000017 7593 Prop.linear_order._proof_7 | |
0.000014 7594 Prop.linear_order._proof_8 | |
0.000014 7595 Prop.linear_order._proof_9 | |
0.000017 7596 Prop.linear_order | |
0.000014 7597 tmp_order._proof_1 | |
0.000016 7598 tmp_order._proof_2 | |
0.000015 7599 tmp_order._proof_3 | |
0.000016 7600 topological_space.cases_on | |
0.000015 7601 topological_space_eq | |
0.000015 7602 complete_lattice_Prop._proof_1 | |
0.000017 7603 complete_lattice_Prop._proof_2 | |
0.000015 7604 complete_lattice_Prop._proof_3 | |
0.000016 7605 complete_lattice_Prop._proof_4 | |
0.000014 7606 complete_lattice_Prop._proof_5 | |
0.000017 7607 complete_lattice_Prop._proof_6 | |
0.000015 7608 complete_lattice_Prop._proof_7 | |
0.000016 7609 complete_lattice_Prop._proof_8 | |
0.000016 7610 complete_lattice_Prop._proof_9 | |
0.000014 7611 complete_lattice_Prop._proof_10 | |
0.000016 7612 complete_lattice_Prop._proof_11 | |
0.000015 7613 complete_lattice_Prop._proof_12 | |
0.000016 7614 complete_lattice_Prop._proof_13 | |
0.000015 7615 complete_lattice_Prop._match_1 | |
0.000016 7616 complete_lattice_Prop._proof_14 | |
0.000015 7617 complete_lattice_Prop._proof_15 | |
0.000016 7618 complete_lattice_Prop._proof_16 | |
0.000015 7619 complete_lattice_Prop | |
0.000016 7620 tmp_order._proof_4 | |
0.000015 7621 tmp_order | |
0.000016 7622 mk_of_closure._proof_1 | |
0.000015 7623 mk_of_closure._proof_2 | |
0.000016 7624 mk_of_closure._proof_3 | |
0.000015 7625 mk_of_closure | |
0.000015 7626 topological_space.generate_open.rec_on | |
0.000016 7627 _private.2684659371.generate_from_le_iff_subset_is_open | |
0.000015 7628 gi_generate_from._proof_1 | |
0.000014 7629 gi_generate_from._proof_2 | |
0.000016 7630 gi_generate_from._proof_3 | |
0.000015 7631 mk_of_closure_sets | |
0.000016 7632 gi_generate_from._proof_4 | |
0.000015 7633 gi_generate_from | |
0.000016 7634 tmp_complete_lattice | |
0.000016 7635 topological_space.complete_lattice | |
0.000014 7636 prod.topological_space | |
0.000016 7637 order_closed_topology | |
0.000016 7638 set.prod | |
0.000014 7639 order_closed_topology.to_t2_space._match_1 | |
0.000017 7640 order_closed_topology.to_t2_space._match_2 | |
0.000015 7641 filter.prod.equations._eqn_1 | |
0.000014 7642 prod.topological_space.equations._eqn_1 | |
0.000016 7643 is_greatest.unique | |
0.000015 7644 is_glb.unique | |
0.000017 7645 set.insert | |
0.000015 7646 set.has_insert | |
0.000016 7647 monotone.mem_lower_bounds_image | |
0.000015 7648 galois_connection.lower_bounds_u_image_subset | |
0.000014 7649 galois_connection.is_glb_u_image | |
0.000017 7650 set.insert_eq | |
0.000015 7651 is_lub.union | |
0.000014 7652 is_glb.union | |
0.000016 7653 is_least.is_glb | |
0.000015 7654 set.eq_of_mem_singleton | |
0.000016 7655 is_greatest_singleton | |
0.000015 7656 is_least_singleton | |
0.000015 7657 is_glb_singleton | |
0.000016 7658 is_glb.insert | |
0.000014 7659 is_glb_pair | |
0.000016 7660 set.mem_insert_iff | |
0.000016 7661 exists_or_distrib | |
0.000014 7662 set.image_insert_eq | |
0.000016 7663 set.set_of_eq_eq_singleton | |
0.000015 7664 set.image_singleton | |
0.000016 7665 set.image_pair | |
0.000015 7666 galois_connection.u_inf | |
0.000017 7667 topological_space.nhds_adjoint._proof_1 | |
0.000015 7668 topological_space.nhds_adjoint._match_1 | |
0.000014 7669 topological_space.nhds_adjoint._proof_2 | |
0.000016 7670 topological_space.nhds_adjoint._match_2 | |
0.000015 7671 topological_space.nhds_adjoint._proof_3 | |
0.000016 7672 topological_space.nhds_adjoint | |
0.000015 7673 topological_space.partial_order._proof_1 | |
0.000016 7674 topological_space.partial_order._proof_2 | |
0.000015 7675 topological_space.partial_order._proof_3 | |
0.000016 7676 topological_space.partial_order._proof_4 | |
0.000015 7677 topological_space.partial_order | |
2.037221 7678 supr_congr_Prop | |
0.000084 7679 infi_congr_Prop | |
0.000022 7680 le_nhds_iff | |
0.000014 7681 gc_nhds | |
0.000015 7682 nhds_inf | |
0.000014 7683 nhds_prod_eq | |
0.000014 7684 filter.has_basis.comap | |
0.000014 7685 filter.has_basis.prod | |
0.000014 7686 filter.has_basis.prod_nhds | |
0.000014 7687 prod.exists | |
0.000014 7688 is_open_prod_iff | |
0.000015 7689 order_closed_topology.is_closed_le' | |
0.000014 7690 continuous | |
0.000015 7691 set.preimage_compl | |
0.000014 7692 is_closed_compl_iff | |
0.000018 7693 is_open.is_closed_compl | |
0.000017 7694 continuous.is_open_preimage | |
0.000016 7695 continuous_def | |
0.000014 7696 continuous_iff_is_closed | |
0.000016 7697 topological_space.coinduced._proof_1 | |
0.000017 7698 topological_space.coinduced._proof_2 | |
0.000016 7699 set.preimage_sUnion | |
0.000017 7700 topological_space.coinduced._proof_3 | |
0.000015 7701 topological_space.coinduced | |
0.000017 7702 continuous_iff_coinduced_le | |
0.000015 7703 continuous_inf_rng | |
0.000016 7704 continuous_induced_rng | |
0.000017 7705 continuous.prod_mk | |
0.000015 7706 is_closed_le_prod | |
0.000017 7707 is_closed_le | |
0.000016 7708 continuous_le_dom | |
0.000018 7709 continuous_inf_dom_right | |
0.000017 7710 continuous_induced_dom | |
0.000015 7711 continuous_snd | |
0.000017 7712 continuous_inf_dom_left | |
0.000017 7713 continuous_fst | |
0.000015 7714 _private.1286801.is_closed_eq_aux | |
0.000017 7715 order_closed_topology.to_t2_space | |
0.000015 7716 order_topology.to_order_closed_topology._match_1 | |
0.000017 7717 order_topology.to_order_closed_topology._match_2 | |
0.000015 7718 order_topology.to_order_closed_topology._match_3 | |
0.000016 7719 order_topology.topology_eq_generate_intervals | |
0.000015 7720 is_open_iff_generate_intervals | |
0.000016 7721 is_open_gt' | |
0.000015 7722 is_open_lt' | |
0.000016 7723 dense_or_discrete | |
0.000015 7724 order_separated | |
0.000016 7725 order_topology.to_order_closed_topology | |
0.000015 7726 ne_iff_lt_or_gt | |
0.000017 7727 nhds_within_union | |
0.000015 7728 order_topology.regular_space._match_5 | |
0.000016 7729 set.Ico | |
0.000015 7730 filter.inf_principal_eq_bot | |
0.000016 7731 order_topology.regular_space._match_3 | |
0.000015 7732 order_topology.regular_space._match_4 | |
0.000017 7733 set.Ioc | |
0.000015 7734 order_dual.linear_order._proof_1 | |
0.000016 7735 order_dual.linear_order._proof_2 | |
0.000014 7736 order_dual.linear_order._proof_3 | |
0.000018 7737 order_dual.linear_order._proof_4 | |
0.000015 7738 order_dual.linear_order._proof_5 | |
0.000016 7739 order_dual.linear_order._proof_6 | |
0.000015 7740 order_dual.linear_order._proof_7 | |
0.000015 7741 order_dual.linear_order._proof_8 | |
0.000016 7742 order_dual.linear_order._proof_9 | |
0.000015 7743 order_dual.linear_order | |
0.000016 7744 set.dual_Ico | |
0.000015 7745 set.dual_Ioc | |
0.000017 7746 infi_le_infi_const | |
0.000014 7747 topological_space.generate_open.drec | |
0.000017 7748 topological_space.nhds_generate_from | |
0.000015 7749 le_binfi | |
0.000016 7750 nhds_eq_order | |
0.000015 7751 set.Iic | |
0.000016 7752 set.subset.rfl | |
0.000016 7753 set.inter_subset_inter_right | |
0.000014 7754 set.mem_Iic | |
0.000017 7755 set.right_mem_Iic | |
0.000015 7756 set.Iic_subset_Iio | |
0.000014 7757 max_lt | |
0.000016 7758 set.mem_Iio | |
0.000016 7759 order.preimage.equations._eqn_1 | |
0.000016 7760 set.Ioi_subset_Ioi | |
0.000015 7761 set.Ioi_subset_Ioi_iff | |
0.000016 7762 le_sup_iff | |
0.000015 7763 is_total.swap | |
0.000016 7764 order_dual.is_total_le | |
0.000015 7765 inf_le_iff | |
0.000015 7766 min_le_iff | |
0.000016 7767 le_max_iff | |
0.000015 7768 exists_Ioc_subset_of_mem_nhds' | |
0.000016 7769 order_dual.topological_space | |
0.000015 7770 order_dual.order_topology | |
0.000016 7771 exists_Ico_subset_of_mem_nhds' | |
0.000015 7772 Exists.snd | |
0.000016 7773 exists_Ico_subset_of_mem_nhds | |
0.000015 7774 is_lub_Sup | |
0.000016 7775 is_lub.Sup_eq | |
0.000016 7776 Sup_empty | |
0.000014 7777 set.sUnion_empty | |
0.000016 7778 is_open_empty | |
0.000015 7779 nhds_within.equations._eqn_1 | |
0.000016 7780 nhds_within_empty | |
0.000015 7781 order_topology.regular_space._match_6 | |
0.000017 7782 order_topology.regular_space._match_1 | |
0.000015 7783 order_topology.regular_space._match_2 | |
0.000014 7784 exists_Ioc_subset_of_mem_nhds | |
0.000017 7785 order_topology.regular_space | |
0.000015 7786 ennreal.order_topology | |
0.000015 7787 ennreal.t2_space | |
0.000017 7788 nonpos_iff_eq_zero | |
0.000015 7789 measure_theory.outer_measure.of_function._proof_1 | |
0.000016 7790 infi_le_infi2 | |
0.000015 7791 measure_theory.outer_measure.of_function._proof_2 | |
0.000014 7792 ennreal.not_top_le_coe | |
0.000017 7793 le_of_forall_le_of_dense | |
0.000015 7794 lt_add_iff_pos_right | |
0.000014 7795 nnreal.le_of_forall_pos_le_add | |
0.000017 7796 true_implies_iff | |
0.000015 7797 ennreal.le_of_forall_pos_le_add | |
0.000014 7798 encodable | |
0.000017 7799 nnreal.equations._eqn_1 | |
0.000014 7800 nnreal.pseudo_metric_space._proof_1 | |
0.000017 7801 pseudo_metric_space.induced._proof_1 | |
2.943122 7802 pseudo_metric_space.induced._proof_2 | |
0.000077 7803 pseudo_metric_space.induced._proof_3 | |
0.000024 7804 pseudo_metric_space.induced._proof_4 | |
0.000015 7805 metric.dist_mem_uniformity | |
0.000014 7806 pseudo_metric_space.induced._match_1 | |
0.000014 7807 pseudo_metric_space.induced._proof_5 | |
0.000014 7808 pseudo_metric_space.induced | |
0.000014 7809 subtype.psudo_metric_space | |
0.000015 7810 nnreal.pseudo_metric_space | |
0.000013 7811 nnreal.topological_space | |
0.000014 7812 real.add_comm_monoid | |
0.000014 7813 real.monoid | |
0.000014 7814 encodable.encode | |
0.000014 7815 nontrivial_of_lt | |
0.000014 7816 pow_pos | |
0.000014 7817 uniform_continuous | |
0.000014 7818 uniform_space.of_core_eq._proof_1 | |
0.000014 7819 uniform_space.of_core_eq | |
0.000014 7820 uniform_space.has_Inf._proof_1 | |
0.000014 7821 uniform_space.has_Inf._proof_2 | |
0.000014 7822 filter.lift_mono | |
0.000017 7823 filter.lift'_mono | |
0.000017 7824 uniform_space.has_Inf._proof_3 | |
0.000015 7825 uniform_space.has_Inf | |
0.000017 7826 uniform_space.partial_order._proof_1 | |
0.000015 7827 uniform_space.partial_order._proof_2 | |
0.000015 7828 uniform_space.partial_order._proof_3 | |
0.000014 7829 uniform_space.cases_on | |
0.000014 7830 uniform_space.mk' | |
0.000014 7831 iff_iff_eq | |
0.000014 7832 eq_iff_iff | |
0.000014 7833 uniform_space.core.cases_on | |
0.000017 7834 uniform_space.core_eq | |
0.000014 7835 uniform_space_eq | |
0.000018 7836 uniform_space.partial_order._proof_4 | |
0.000015 7837 uniform_space.partial_order | |
0.000017 7838 uniform_space.complete_lattice._proof_1 | |
0.000015 7839 uniform_space.complete_lattice._proof_2 | |
0.000017 7840 uniform_space.complete_lattice._proof_3 | |
0.000015 7841 uniform_space.complete_lattice._proof_4 | |
0.000018 7842 _private.1385533749.le_Inf | |
0.000015 7843 uniform_space.complete_lattice._match_1 | |
0.000014 7844 uniform_space.complete_lattice._proof_5 | |
0.000014 7845 uniform_space.complete_lattice._match_2 | |
0.000014 7846 uniform_space.complete_lattice._proof_6 | |
0.000014 7847 _private.3523736609.Inf_le | |
0.000017 7848 uniform_space.complete_lattice._proof_7 | |
0.000015 7849 uniform_space.complete_lattice._proof_8 | |
0.000017 7850 uniform_space.complete_lattice._proof_9 | |
0.000015 7851 uniform_space.complete_lattice._proof_10 | |
0.000017 7852 uniform_space.has_top._proof_1 | |
0.000015 7853 uniform_space.has_top._proof_2 | |
0.000017 7854 uniform_space.has_top._proof_3 | |
0.000015 7855 uniform_space.has_top | |
0.000014 7856 uniform_space.complete_lattice._proof_11 | |
0.000014 7857 uniform_space.has_bot._proof_1 | |
0.000015 7858 filter.map_principal | |
0.000014 7859 set.image_subset_preimage_of_inverse | |
0.000016 7860 set.preimage_subset_image_of_inverse | |
0.000015 7861 set.image_eq_preimage_of_inverse | |
0.000017 7862 prod.swap_swap | |
0.000015 7863 prod.swap_left_inverse | |
0.000018 7864 prod.swap_right_inverse | |
0.000015 7865 set.image_swap_eq_preimage_swap | |
0.000014 7866 prod.swap_prod_mk | |
0.000014 7867 swap_id_rel | |
0.000017 7868 uniform_space.has_bot._proof_2 | |
0.000014 7869 filter.lift_principal | |
0.000018 7870 filter.lift'_principal | |
0.000014 7871 mem_comp_rel | |
0.000018 7872 id_comp_rel | |
0.000014 7873 uniform_space.has_bot._proof_3 | |
0.000015 7874 is_open_fold | |
0.000014 7875 discrete_topology | |
0.000014 7876 discrete_topology.eq_bot | |
0.000014 7877 is_open_discrete | |
0.000016 7878 discrete_topology_bot | |
0.000015 7879 uniform_space.has_bot._proof_4 | |
0.000017 7880 uniform_space.has_bot | |
0.000014 7881 uniform_space.complete_lattice._proof_12 | |
0.000015 7882 uniform_space.complete_lattice._proof_13 | |
0.000014 7883 uniform_space.complete_lattice._proof_14 | |
0.000014 7884 uniform_space.complete_lattice._proof_15 | |
0.000016 7885 uniform_space.complete_lattice._proof_16 | |
0.000016 7886 uniform_space.complete_lattice | |
0.000016 7887 Sup_eq_supr | |
0.000017 7888 Inf_eq_infi | |
0.000017 7889 le_of_nhds_le_nhds | |
0.000015 7890 eq_of_nhds_eq_nhds | |
0.000016 7891 is_glb_Inf | |
0.000016 7892 is_glb.Inf_eq | |
0.000015 7893 is_glb.infi_eq | |
0.000016 7894 Inf_range | |
0.000018 7895 galois_connection.u_infi | |
0.000014 7896 nhds_infi | |
0.000017 7897 nhds_basis_uniformity' | |
0.000017 7898 nhds_eq_uniformity | |
0.000016 7899 infi_uniformity | |
0.000016 7900 plift | |
0.000017 7901 inf_is_commutative | |
0.000014 7902 finset.inf._proof_1 | |
0.000016 7903 inf_is_associative | |
0.000015 7904 finset.inf._proof_2 | |
0.000016 7905 finset.inf | |
0.000015 7906 plift.down | |
0.000017 7907 finset.sup_le | |
0.000015 7908 finset.sup_eq_supr | |
0.000016 7909 finset.inf_eq_infi | |
0.000015 7910 infi_eq_infi_finset | |
0.000014 7911 filter.infi_sets_eq_finite | |
0.000016 7912 plift.cases_on | |
0.000016 7913 plift.up_down | |
0.000016 7914 plift.down_up | |
0.000015 7915 equiv.plift | |
0.000014 7916 supr.equations._eqn_1 | |
0.000017 7917 function.surjective.exists | |
0.000015 7918 function.surjective.range_comp | |
0.000015 7919 function.surjective.supr_comp | |
0.000016 7920 function.surjective.infi_comp | |
0.000015 7921 equiv.surjective | |
3.057541 7922 filter.infi_sets_eq_finite' | |
0.000075 7923 filter.mem_infi_finite' | |
0.000024 7924 function.injective.decidable_eq | |
0.000015 7925 equiv.decidable_eq | |
0.000014 7926 plift.decidable_eq | |
0.000014 7927 is_idempotent | |
0.000014 7928 finset.insert_idem | |
0.000014 7929 is_idempotent.idempotent | |
0.000014 7930 finset.fold_insert_idem | |
0.000014 7931 sup_idem | |
0.000015 7932 inf_idem | |
0.000013 7933 inf_is_idempotent | |
0.000014 7934 finset.inf_insert | |
0.000015 7935 filter.infi_sets_induct | |
0.000014 7936 le_of_inf_eq | |
0.000017 7937 and_iff_left_of_imp | |
0.000017 7938 and_iff_left_iff_imp | |
0.000018 7939 set.inter_eq_left_iff_subset | |
0.000015 7940 set.inter_eq_self_of_subset_left | |
0.000016 7941 filter.lift_infi | |
0.000017 7942 filter.principal_eq_iff_eq | |
0.000015 7943 filter.lift'_infi | |
0.000016 7944 infi_of_empty' | |
0.000020 7945 infi_of_empty | |
0.000015 7946 to_topological_space_top | |
0.000016 7947 to_topological_space_infi | |
0.000017 7948 to_topological_space_Inf | |
0.000018 7949 infi_or | |
0.000016 7950 infi_inf_eq | |
0.000017 7951 infi_union | |
0.000015 7952 infi_infi_eq_left | |
0.000016 7953 infi_insert | |
0.000015 7954 infi_singleton | |
0.000016 7955 infi_pair | |
0.000016 7956 to_topological_space_inf | |
0.000014 7957 to_topological_space_comap | |
0.000016 7958 uniform_space.core.to_topological_space.equations._eqn_1 | |
0.000015 7959 uniform_space.to_core_to_topological_space | |
0.000016 7960 prod.uniform_space._proof_1 | |
0.000015 7961 prod.uniform_space | |
0.000016 7962 uniform_add_group | |
0.000015 7963 cauchy | |
0.000016 7964 complete_space | |
0.000014 7965 set.indicator | |
0.000017 7966 set.piecewise | |
0.000017 7967 set.eq_on | |
0.000015 7968 set.comp_eq_of_eq_on_range | |
0.000016 7969 set.piecewise_eq_of_mem | |
0.000015 7970 set.piecewise_eq_on | |
0.000017 7971 set.piecewise_range_comp | |
0.000015 7972 set.indicator_range_comp | |
0.000014 7973 true.dcases_on | |
0.000017 7974 infi_true | |
0.000015 7975 filter.has_basis.eq_infi | |
0.000016 7976 filter.has_basis.map | |
0.000014 7977 filter.map_at_top_eq | |
0.000016 7978 finset.le_eq_subset | |
0.000015 7979 filter.map_at_top_finset_sum_le_of_sum_eq | |
0.000016 7980 set.inj_on_of_injective | |
0.000015 7981 function.injective.inj_on | |
0.000016 7982 finset.sum_image | |
0.000015 7983 classical.dec_eq | |
0.000016 7984 finset.sum_sdiff | |
0.000016 7985 finset.fold_congr | |
0.000014 7986 finset.sum_congr | |
0.000014 7987 finset.sum_subset | |
0.000014 7988 set.inj_on.equations._eqn_1 | |
0.000014 7989 finset.coe_inj | |
0.000016 7990 set.mem_image_iff_bex | |
0.000015 7991 finset.coe_image | |
0.000016 7992 set.coe_to_finset | |
0.000017 7993 set.finite.coe_to_finset | |
0.000014 7994 finset.coe_preimage | |
0.000017 7995 set.image_preimage_eq_inter_range | |
0.000015 7996 finset.coe_filter | |
0.000016 7997 set.sep_mem_eq | |
0.000015 7998 finset.image_preimage | |
0.000016 7999 finset.sum_preimage' | |
0.000015 8000 multiset.filter_subset | |
0.000016 8001 finset.filter_subset | |
0.000015 8002 not_imp_comm | |
0.000016 8003 finset.sum_filter_of_ne | |
0.000016 8004 not.imp_symm | |
0.000025 8005 finset.sum_preimage | |
0.000017 8006 finset.coe_subset | |
0.000014 8007 finset.image_subset_iff | |
0.000015 8008 finset.image_subset_iff_subset_preimage | |
0.000016 8009 function.injective.map_at_top_finset_sum_eq | |
0.000015 8010 function.injective.has_sum_iff | |
0.000015 8011 function.injective.summable_iff | |
0.000016 8012 set.indicator_of_not_mem | |
0.000015 8013 cauchy_seq | |
0.000014 8014 complete_space.complete | |
0.000017 8015 filter.prod_mono | |
0.000015 8016 cauchy.mono | |
0.000016 8017 filter.has_pure._proof_1 | |
0.000015 8018 filter.has_pure._proof_2 | |
0.000014 8019 filter.has_pure | |
0.000017 8020 set.not_mem_empty | |
0.000015 8021 filter.pure_ne_bot | |
0.000014 8022 filter.mem_pure_sets | |
0.000016 8023 mem_of_nhds | |
0.000015 8024 pure_le_nhds | |
0.000015 8025 nhds_ne_bot | |
0.000016 8026 filter.lift.equations._eqn_1 | |
0.000015 8027 filter.lift_inf | |
0.000014 8028 filter.le_lift | |
0.000016 8029 filter.lift_const | |
0.000015 8030 filter.mem_lift | |
0.000017 8031 filter.mem_principal_self | |
0.000014 8032 filter.lift_principal2 | |
0.000017 8033 filter.prod_def | |
0.000014 8034 filter.functor | |
0.000016 8035 filter.lift_assoc | |
0.000015 8036 set.monotone_preimage | |
0.000016 8037 lift_nhds_left | |
0.000015 8038 set.preimage_id | |
0.000016 8039 filter.map_eq_comap_of_inverse | |
0.000015 8040 prod.swap_swap_eq | |
0.000015 8041 filter.map_swap_eq_comap_swap | |
0.000016 8042 uniformity_le_symm | |
0.000015 8043 uniformity_eq_symm | |
0.000015 8044 filter.map_lift_eq2 | |
0.000016 8045 lift_nhds_right | |
0.000015 8046 filter.monotone_lift' | |
0.000016 8047 monotone_const | |
0.000015 8048 monotone_lam | |
0.000016 8049 set.prod_mono | |
0.000015 8050 set.monotone_prod | |
0.000016 8051 nhds_nhds_eq_uniformity_uniformity_prod | |
0.000015 8052 cauchy_nhds | |
0.000016 8053 cauchy_iff_exists_le_nhds | |
0.000016 8054 cauchy_map_iff_exists_tendsto | |
0.000014 8055 summable_iff_cauchy_seq_finset | |
0.000016 8056 prod.has_le | |
0.000015 8057 prod.preorder._match_1 | |
0.000016 8058 prod.preorder._proof_1 | |
0.000015 8059 prod.preorder._match_2 | |
1.945479 8060 prod.preorder._match_3 | |
0.000076 8061 prod.preorder._match_4 | |
0.000023 8062 prod.preorder._match_5 | |
0.000015 8063 prod.preorder._match_6 | |
0.000014 8064 prod.preorder._proof_2 | |
0.000014 8065 prod.preorder._proof_3 | |
0.000015 8066 prod.preorder | |
0.000014 8067 cauchy_seq.equations._eqn_1 | |
0.000014 8068 cauchy.equations._eqn_1 | |
0.000014 8069 filter.inter_mem_inf_sets | |
0.000014 8070 filter.preimage_mem_comap | |
0.000014 8071 filter.prod_mem_prod | |
0.000014 8072 set.subset_preimage_image | |
0.000014 8073 filter.image_mem_map | |
0.000014 8074 set.mem_prod | |
0.000019 8075 exists_and_distrib_right | |
0.000018 8076 set.prod_image_image_eq | |
0.000016 8077 filter.mem_prod_iff | |
0.000015 8078 filter.tendsto_inf_left | |
0.000017 8079 filter.tendsto_fst | |
0.000015 8080 filter.tendsto_inf_right | |
0.000016 8081 filter.tendsto_snd | |
0.000015 8082 filter.prod_map_map_eq | |
0.000017 8083 cauchy_map_iff | |
0.000015 8084 filter.at_top.equations._eqn_1 | |
0.000016 8085 filter.comap_infi | |
0.000015 8086 set.range_subset_iff | |
0.000015 8087 set.range_const_subset | |
0.000014 8088 set.range_const | |
0.000017 8089 Inf_singleton | |
0.000015 8090 infi_const | |
0.000018 8091 infi_inf | |
0.000014 8092 inf_infi | |
0.000015 8093 filter.prod_infi_right | |
0.000016 8094 filter.prod_infi_left | |
0.000017 8095 filter.prod_principal_principal | |
0.000019 8096 infi_prod | |
0.000015 8097 infi_comm | |
0.000017 8098 filter.filter_eq_bot_of_not_nonempty | |
0.000015 8099 nonempty_prod | |
0.000018 8100 filter.comap_bot | |
0.000014 8101 filter.bot_prod | |
0.000017 8102 filter.prod_bot | |
0.000015 8103 filter.prod_at_top_at_top_eq | |
0.000016 8104 filter.comap_comap | |
0.000015 8105 filter.mem_map_sets_iff | |
0.000016 8106 mem_map_sets_iff' | |
0.000017 8107 filter.tendsto_map'_iff | |
0.000015 8108 inf_uniformity | |
0.000016 8109 uniformity_prod | |
0.000017 8110 filter.comap_inf | |
0.000015 8111 uniformity_prod_eq_prod | |
0.000016 8112 uniform_continuous.equations._eqn_1 | |
0.000018 8113 mem_uniformity_of_uniform_continuous_invariant | |
0.000015 8114 uniform_add_group.uniform_continuous_sub | |
0.000016 8115 uniform_continuous_sub | |
0.000016 8116 uniform_continuous.comp | |
0.000018 8117 uniform_continuous.prod_mk | |
0.000015 8118 uniform_continuous.sub | |
0.000016 8119 uniform_continuous_of_const | |
0.000015 8120 uniform_continuous_const | |
0.000016 8121 uniform_continuous.neg | |
0.000017 8122 uniform_continuous.add | |
0.000015 8123 tendsto_prod_uniformity_fst | |
0.000014 8124 uniform_continuous_fst | |
0.000016 8125 tendsto_prod_uniformity_snd | |
0.000016 8126 uniform_continuous_snd | |
0.000016 8127 uniform_continuous_add | |
0.000015 8128 uniformity_eq_comap_nhds_zero | |
0.000016 8129 prod.has_sup | |
0.000015 8130 prod.partial_order._proof_1 | |
0.000016 8131 prod.partial_order._proof_2 | |
0.000015 8132 prod.partial_order._proof_3 | |
0.000014 8133 prod.partial_order._match_1 | |
0.000017 8134 prod.partial_order._match_2 | |
0.000015 8135 prod.partial_order._match_3 | |
0.000016 8136 prod.partial_order._match_4 | |
0.000015 8137 prod.partial_order._proof_4 | |
0.000016 8138 prod.partial_order | |
0.000015 8139 prod.semilattice_sup._proof_1 | |
0.000016 8140 prod.semilattice_sup._proof_2 | |
0.000015 8141 prod.semilattice_sup._proof_3 | |
0.000014 8142 prod.semilattice_sup._proof_4 | |
0.000017 8143 prod.semilattice_sup._proof_5 | |
0.000015 8144 prod.semilattice_sup._proof_6 | |
0.000016 8145 prod.semilattice_sup._proof_7 | |
0.000015 8146 prod.semilattice_sup | |
0.000016 8147 filter.tendsto_def | |
0.000015 8148 true.inhabited | |
0.000016 8149 filter.mem_at_top_sets | |
0.000016 8150 filter.tendsto_at_top' | |
0.000015 8151 prod.nonempty | |
0.000016 8152 disjoint.comm | |
0.000014 8153 disjoint.symm | |
0.000016 8154 has_continuous_add | |
0.000016 8155 topological_add_group | |
0.000016 8156 filter.has_basis.prod_self | |
0.000015 8157 filter.mem_prod_self_iff | |
0.000016 8158 set.mk_mem_prod | |
0.000015 8159 set.prod_subset_iff | |
0.000015 8160 continuous_at | |
0.000016 8161 filter.has_basis.ge_iff | |
0.000015 8162 filter.has_basis.tendsto_right_iff | |
0.000017 8163 filter.has_basis.eventually_iff | |
0.000015 8164 filter.has_basis.tendsto_iff | |
0.000014 8165 is_open.preimage | |
0.000016 8166 continuous.tendsto | |
0.000016 8167 continuous_iff_continuous_at | |
0.000016 8168 has_continuous_add.continuous_add | |
0.000015 8169 tendsto_add | |
0.000016 8170 filter.tendsto.prod_mk_nhds | |
0.000015 8171 filter.tendsto.add | |
0.000016 8172 continuous_at.add | |
0.000015 8173 topological_add_group.to_has_continuous_add | |
0.000016 8174 continuous.continuous_at | |
0.000015 8175 continuous_at_fst | |
0.000016 8176 topological_add_group.continuous_neg | |
0.000015 8177 filter.tendsto.neg | |
0.000016 8178 continuous_at_snd | |
0.000015 8179 exists_nhds_half_neg | |
0.000016 8180 coinduced_le_iff_le_induced | |
0.000015 8181 gc_coinduced_induced | |
0.000016 8182 continuous_iff_le_induced | |
0.000015 8183 to_nhds_mono | |
0.000016 8184 to_topological_space_mono | |
0.000015 8185 uniform_continuous_iff | |
0.000016 8186 uniform_continuous.continuous | |
1.626248 8187 filter.map_id | |
0.000074 8188 filter.tendsto_id' | |
0.000023 8189 filter.tendsto_id | |
0.000015 8190 uniform_continuous_id | |
0.000014 8191 uniform_continuous_neg | |
0.000016 8192 uniform_add_group.to_topological_add_group | |
0.000014 8193 cauchy_seq_finset_iff_vanishing | |
0.000014 8194 summable_iff_vanishing | |
0.000015 8195 finset.disjoint_of_subset_left | |
0.000014 8196 summable.summable_of_eq_zero_or_self | |
0.000014 8197 set.indicator_of_mem | |
0.000014 8198 set.indicator_eq_zero_or_self | |
0.000014 8199 summable.indicator | |
0.000017 8200 summable.comp_injective | |
0.000017 8201 uniform_add_group.mk' | |
0.000018 8202 prod.pseudo_metric_space_max._proof_1 | |
0.000015 8203 prod.pseudo_metric_space_max._proof_2 | |
0.000016 8204 prod.pseudo_metric_space_max._proof_3 | |
0.000016 8205 monotone.map_max | |
0.000017 8206 max_le_max | |
0.000017 8207 nnreal.of_real_mono | |
0.000017 8208 nnreal.of_real_le_of_real | |
0.000015 8209 ennreal.of_real_le_of_real | |
0.000015 8210 prod.pseudo_metric_space_max._proof_4 | |
0.000016 8211 set.preimage_set_of_eq | |
0.000015 8212 forall_3_true_iff | |
0.000016 8213 prod.pseudo_metric_space_max._proof_5 | |
0.000015 8214 prod.pseudo_metric_space_max | |
0.000016 8215 filter.has_basis.uniform_continuous_iff | |
0.000015 8216 metric.uniform_continuous_iff | |
0.000016 8217 real.uniform_continuous_add | |
0.000015 8218 real.dist_eq | |
0.000016 8219 real.uniform_continuous_neg | |
0.000015 8220 real.uniform_add_group | |
0.000016 8221 set.countable | |
0.000016 8222 filter.is_countably_generated | |
0.000014 8223 filter.has_antimono_basis | |
0.000016 8224 filter.has_antimono_basis.decreasing | |
0.000016 8225 filter.has_antimono_basis.to_has_basis | |
0.000014 8226 exists_prop_of_true | |
0.000016 8227 exists_true_left | |
0.000015 8228 filter_basis | |
0.000017 8229 filter_basis.sets | |
0.000015 8230 filter.countable_filter_basis | |
0.000016 8231 set.sInter | |
0.000015 8232 set.fintype_empty._proof_1 | |
0.000016 8233 set.fintype_empty | |
0.000015 8234 set.finite_empty | |
0.000016 8235 Inf_empty | |
0.000015 8236 set.sInter_empty | |
0.000016 8237 filter.filter_basis.of_sets._proof_1 | |
0.000015 8238 set.fintype_union._proof_1 | |
0.000016 8239 set.fintype_union | |
0.000014 8240 set.finite.union | |
0.000017 8241 Inf_union | |
0.000015 8242 set.sInter_union | |
0.000014 8243 filter.filter_basis.of_sets._proof_2 | |
0.000017 8244 filter.filter_basis.of_sets | |
0.000015 8245 filter.is_countably_generated.generating_set | |
0.000016 8246 filter_basis.nonempty | |
0.000015 8247 filter.is_countably_generated.countable_filter_basis._proof_1 | |
0.000016 8248 filter_basis.inter_sets | |
0.000015 8249 filter.is_countably_generated.countable_filter_basis._proof_2 | |
0.000015 8250 encodable.decode | |
0.000016 8251 encodable.encodek | |
0.000015 8252 encodable.of_left_injection._proof_1 | |
0.000015 8253 encodable.of_left_injection | |
0.000016 8254 function.partial_inv | |
0.000015 8255 function.is_partial_inv | |
0.000015 8256 option.some.inj_arrow | |
0.000016 8257 function.partial_inv.equations._eqn_1 | |
0.000015 8258 function.partial_inv_of_injective | |
0.000016 8259 encodable.of_inj._proof_1 | |
0.000015 8260 encodable.of_inj | |
0.000016 8261 set.countable.to_encodable | |
0.000016 8262 function.surj_inv | |
0.000014 8263 function.right_inverse.left_inverse | |
0.000016 8264 function.right_inverse.injective | |
0.000016 8265 function.surj_inv_eq | |
0.000015 8266 function.right_inverse_surj_inv | |
0.000016 8267 function.injective_surj_inv | |
0.000015 8268 set.countable.image | |
0.000014 8269 function.embedding | |
0.000016 8270 function.embedding.to_fun | |
0.000015 8271 set.embedding_of_subset._proof_1 | |
0.000017 8272 set.embedding_of_subset._match_1 | |
0.000014 8273 set.embedding_of_subset._match_2 | |
0.000016 8274 set.embedding_of_subset._proof_2 | |
0.000015 8275 set.embedding_of_subset | |
0.000017 8276 function.embedding.inj' | |
0.000015 8277 set.countable.mono | |
0.000016 8278 function.embedding.has_coe_to_fun | |
0.000015 8279 finset.map._proof_1 | |
0.000015 8280 finset.map | |
0.000016 8281 finset.mem_map | |
0.000015 8282 set.embedding_of_subset_apply | |
0.000015 8283 subtype.mk.inj_eq | |
0.000014 8284 encodable.encode_subtype._main | |
0.000017 8285 encodable.encode_subtype | |
0.000015 8286 encodable.decode_subtype | |
0.000014 8287 encodable.encode_subtype._main.equations._eqn_1 | |
0.000017 8288 encodable.encode_subtype.equations._eqn_1 | |
0.000015 8289 encodable.decode_subtype.equations._eqn_1 | |
0.000016 8290 encodable.subtype._match_1 | |
0.000015 8291 encodable.subtype._proof_1 | |
0.000016 8292 encodable.subtype | |
0.000015 8293 set.countable_encodable | |
0.000016 8294 set.countable_range | |
0.000016 8295 encodable.of_left_inverse._proof_1 | |
0.000014 8296 encodable.of_left_inverse | |
0.000016 8297 encodable.of_equiv | |
0.000015 8298 nat.mkpair | |
0.000016 8299 encodable.encode_list._main | |
0.000016 8300 encodable.encode_list | |
0.000014 8301 encodable.decode_list._match_1 | |
0.000017 8302 decode_list._main._pack._wf_rec_mk_dec_tactic._aux_1 | |
0.131477 8303 nat.bodd_div2._match_1 | |
0.000075 8304 nat.bodd_div2._main | |
0.000026 8305 nat.bodd_div2 | |
0.000015 8306 nat.div2 | |
0.000014 8307 nat.shiftr._main | |
0.000014 8308 nat.shiftr | |
0.000014 8309 nat.sqrt_aux._match_1 | |
0.000014 8310 sqrt_aux._main._pack._wf_rec_mk_dec_tactic._aux_1 | |
0.000015 8311 sqrt_aux._main._pack._wf_rec_mk_dec_tactic._aux_2 | |
0.000014 8312 nat.bodd | |
0.000014 8313 bxor._main | |
0.000014 8314 bxor | |
0.000014 8315 band._main | |
0.000014 8316 band | |
0.000015 8317 nat.bodd_zero | |
0.000014 8318 bnot._main | |
0.000016 8319 bnot | |
0.000018 8320 nat.bodd.equations._eqn_1 | |
0.000017 8321 nat.bodd_div2._main.equations._eqn_2 | |
0.000015 8322 nat.bodd_div2.equations._eqn_2 | |
0.000016 8323 nat.bodd_succ | |
0.000017 8324 nat.bodd_add | |
0.000015 8325 nat.bodd_mul | |
0.000016 8326 bnot._main.equations._eqn_1 | |
0.000015 8327 bnot.equations._eqn_1 | |
0.000014 8328 bnot._main.equations._eqn_2 | |
0.000016 8329 bnot.equations._eqn_2 | |
0.000015 8330 nat.mod_two_eq_zero_or_one | |
0.000016 8331 nat.mod_two_of_bodd | |
0.000018 8332 nat.div2.equations._eqn_1 | |
0.000014 8333 nat.div2_succ | |
0.000019 8334 cond._main.equations._eqn_2 | |
0.000015 8335 cond.equations._eqn_2 | |
0.000019 8336 cond._main.equations._eqn_1 | |
0.000015 8337 cond.equations._eqn_1 | |
0.000016 8338 nat.bodd_add_div2 | |
0.000015 8339 nat.div2_val | |
0.000016 8340 nat.mul_pos | |
0.000015 8341 nat.div_div_eq_div_mul | |
0.000016 8342 nat.shiftr_eq_div_pow | |
0.000018 8343 nat.le_div_iff_mul_le' | |
0.000015 8344 nat.div_lt_iff_lt_mul' | |
0.000016 8345 nat.sqrt_aux_dec | |
0.000015 8346 nat.sqrt_aux._main._pack | |
0.000016 8347 nat.sqrt_aux._main | |
0.000015 8348 nat.sqrt_aux | |
0.000016 8349 nat.bit | |
0.000017 8350 nat.shiftl'._main | |
0.000015 8351 nat.shiftl' | |
0.000015 8352 nat.shiftl | |
0.000016 8353 nat.sqrt._match_1 | |
0.000015 8354 nat.bit0_val | |
0.000015 8355 nat.bit1_val | |
0.000016 8356 nat.bit_val | |
0.000015 8357 nat.bit_decomp | |
0.000015 8358 binary_rec._main._pack._wf_rec_mk_dec_tactic._aux_1 | |
0.000016 8359 nat.binary_rec._main._pack | |
0.000015 8360 nat.binary_rec._main | |
0.000016 8361 nat.binary_rec | |
0.000015 8362 nat.size | |
0.000016 8363 nat.sqrt | |
0.000015 8364 nat.unpair | |
0.000016 8365 nat.mkpair.equations._eqn_1 | |
0.000015 8366 nat.add_sub_cancel' | |
0.000016 8367 _private.2024985191.is_sqrt | |
0.000015 8368 nat.sqrt.equations._eqn_1 | |
0.000016 8369 nat.sqrt._match_1.equations._eqn_1 | |
0.000015 8370 nat.shiftl_eq_mul_pow | |
0.000016 8371 nat.one_shiftl | |
0.000015 8372 nat.size.equations._eqn_1 | |
0.000016 8373 nat.binary_rec._main._pack._proof_1 | |
0.000015 8374 nat.binary_rec._main._pack._proof_2 | |
0.000016 8375 nat.binary_rec._main._pack.equations._eqn_1 | |
0.000015 8376 nat.binary_rec._main.equations._eqn_1 | |
0.000017 8377 nat.binary_rec.equations._eqn_1 | |
0.000017 8378 cast | |
0.000015 8379 eq_mpr_eq_cast | |
0.000017 8380 cast_eq | |
0.000017 8381 nat.div2_bit | |
0.000015 8382 nat.size_bit | |
0.000016 8383 nat.shiftl_succ | |
0.000015 8384 nat.add_lt_add_right | |
0.000015 8385 nat.add_lt_add | |
0.000014 8386 nat.bit0_lt | |
0.000014 8387 nat.add_le_add | |
0.000014 8388 nat.bit1_lt_bit0 | |
0.000016 8389 nat.bit_lt_bit0 | |
0.000015 8390 nat.lt_size_self | |
0.000017 8391 nat.mul_le_mul_of_nonneg_right | |
0.000016 8392 nat.mul_le_mul_of_nonneg_left | |
0.000015 8393 nat.mul_le_mul | |
0.000017 8394 nat.pow_le_pow_of_le_right | |
0.000015 8395 lt_of_not_ge' | |
0.000014 8396 lt_imp_lt_of_le_imp_le | |
0.000016 8397 nat.bit0_le | |
0.000016 8398 nat.bit0_lt_bit1 | |
0.000014 8399 nat.bit0_le_bit | |
0.000016 8400 nat.size_le | |
0.000015 8401 nat.lt_size | |
0.000016 8402 nat.size_pos | |
0.000015 8403 nat.size_eq_zero | |
0.000015 8404 _private.2024985191.is_sqrt.equations._eqn_1 | |
0.000016 8405 nat.sqrt._match_1.equations._eqn_2 | |
0.000016 8406 nat.sqrt_aux._main._pack.equations._eqn_1 | |
0.000014 8407 nat.sqrt_aux._main.equations._eqn_1 | |
0.000016 8408 nat.sqrt_aux.equations._eqn_1 | |
0.000016 8409 int.eq_neg_succ_of_lt_zero | |
0.000014 8410 add_lt_add_iff_right | |
0.000016 8411 sub_lt_sub_iff_right | |
0.000016 8412 sub_lt_zero | |
0.000014 8413 nat.sqrt_aux._match_1.equations._eqn_2 | |
0.000016 8414 nat.sqrt_aux_2 | |
0.000015 8415 nat.mul_ne_zero | |
0.000014 8416 nat.le_sub_right_of_add_le | |
0.000017 8417 nat.le_sub_left_of_add_le | |
0.000015 8418 nat.lt_add_of_sub_lt_left | |
0.000016 8419 nat.sub_lt_left_iff_lt_add | |
0.000026 8420 nat.sub_lt_right_iff_lt_add | |
0.000016 8421 nat.distrib | |
0.000014 8422 nat.semigroup | |
0.000019 8423 nat.mul_div_cancel_left | |
0.000015 8424 nat.sqrt_aux._match_1.equations._eqn_1 | |
0.000014 8425 nat.sqrt_aux_1 | |
0.000015 8426 nat.sub_eq_of_eq_add | |
0.000014 8427 linear_ordered_comm_monoid_with_zero.zero | |
0.000016 8428 linear_ordered_comm_monoid_with_zero.zero_mul | |
0.000015 8429 linear_ordered_comm_monoid_with_zero.mul_zero | |
0.000016 8430 linear_ordered_comm_monoid_with_zero.to_comm_monoid_with_zero | |
0.000015 8431 nat.comm_cancel_monoid_with_zero._proof_1 | |
0.000016 8432 nat.comm_cancel_monoid_with_zero._proof_2 | |
0.000016 8433 nat.comm_cancel_monoid_with_zero._proof_3 | |
0.211061 8434 nat.comm_cancel_monoid_with_zero._proof_4 | |
0.000083 8435 nat.comm_cancel_monoid_with_zero._proof_5 | |
0.000024 8436 nat.comm_cancel_monoid_with_zero._proof_6 | |
0.000014 8437 nat.comm_cancel_monoid_with_zero._proof_7 | |
0.000015 8438 nat.comm_cancel_monoid_with_zero._proof_8 | |
0.000014 8439 nat.comm_cancel_monoid_with_zero._proof_9 | |
0.000014 8440 nat.comm_cancel_monoid_with_zero._proof_10 | |
0.000014 8441 nat.comm_cancel_monoid_with_zero | |
0.000014 8442 _private.1964874191.sqrt_aux_is_sqrt_lemma | |
0.000014 8443 nat.zero_shiftr | |
0.000015 8444 nat.sqrt_aux_0 | |
0.000014 8445 nat.shiftr._main.equations._eqn_2 | |
0.000014 8446 nat.shiftr.equations._eqn_2 | |
0.000018 8447 nat.shiftr._main.equations._eqn_1 | |
0.000017 8448 nat.shiftr.equations._eqn_1 | |
0.000019 8449 nat.mul_div_right | |
0.000017 8450 _private.2678829159.sqrt_aux_is_sqrt | |
0.000017 8451 _private.3978629425.sqrt_is_sqrt | |
0.000017 8452 nat.sqrt_le | |
0.000017 8453 le_imp_le_of_lt_imp_lt | |
0.000017 8454 nat.lt_of_sub_lt_sub_right | |
0.000017 8455 nat.add_lt_of_lt_sub_right | |
0.000015 8456 nat.add_lt_of_lt_sub_left | |
0.000014 8457 nat.sub_le_left_of_le_add | |
0.000016 8458 nat.lt_succ_sqrt | |
0.000015 8459 nat.sqrt_le_add | |
0.000016 8460 nat.mkpair_unpair | |
0.000015 8461 nat.le_mul_self | |
0.000016 8462 nat.le_mkpair_right | |
0.000015 8463 nat.unpair_le_right | |
0.000016 8464 encodable.decode_list._main._pack | |
0.000015 8465 encodable.decode_list._main | |
0.000017 8466 encodable.decode_list | |
0.000015 8467 encodable.encode_list._main.equations._eqn_1 | |
0.000016 8468 encodable.encode_list.equations._eqn_1 | |
0.000015 8469 encodable.decode_list._main._pack.equations._eqn_1 | |
0.000017 8470 encodable.decode_list._main.equations._eqn_1 | |
0.000015 8471 encodable.decode_list.equations._eqn_1 | |
0.000016 8472 nat.unpair.equations._eqn_1 | |
0.000016 8473 nat.mul_self_le_mul_self | |
0.000015 8474 nat.mul_self_lt_mul_self | |
0.000014 8475 nat.mul_self_le_mul_self_iff | |
0.000024 8476 nat.mul_self_lt_mul_self_iff | |
0.000015 8477 nat.le_sqrt | |
0.000015 8478 nat.sqrt_lt | |
0.000014 8479 nat.sqrt_add_eq | |
0.000017 8480 nat.unpair_mkpair | |
0.000014 8481 encodable.encode_list._main.equations._eqn_2 | |
0.000015 8482 encodable.encode_list.equations._eqn_2 | |
0.000014 8483 encodable.decode_list._main._pack.equations._eqn_2 | |
0.000017 8484 encodable.decode_list._main.equations._eqn_2 | |
0.000015 8485 encodable.decode_list.equations._eqn_2 | |
0.000017 8486 encodable.decode_list._match_1.equations._eqn_1 | |
0.000017 8487 option.map_eq_map | |
0.000015 8488 option.seq_some | |
0.000018 8489 encodable.list._proof_1 | |
0.000015 8490 encodable.list | |
0.000015 8491 is_antisymm | |
0.000016 8492 list.split._match_1 | |
0.000016 8493 list.split._main | |
0.000014 8494 list.split | |
0.000016 8495 prod.mk.inj_arrow | |
0.000015 8496 list.split._main.equations._eqn_2 | |
0.000017 8497 list.split.equations._eqn_2 | |
0.000015 8498 list.split_cons_of_eq | |
0.000016 8499 list.length_split_le | |
0.000016 8500 list.length_split_lt | |
0.000014 8501 list.sizeof._main | |
0.000016 8502 list.sizeof | |
0.000015 8503 list.has_sizeof | |
0.000016 8504 default.sizeof._main | |
0.000015 8505 default.sizeof | |
0.000016 8506 default_has_sizeof | |
0.000015 8507 list.sizeof._main.equations._eqn_2 | |
0.000015 8508 list.sizeof.equations._eqn_2 | |
0.000016 8509 default.sizeof._main.equations._eqn_1 | |
0.000015 8510 default.sizeof.equations._eqn_1 | |
0.000015 8511 lt_add_iff_pos_left | |
0.000016 8512 merge._main._pack._wf_rec_mk_dec_tactic._aux_1 | |
0.000015 8513 merge._main._pack._wf_rec_mk_dec_tactic._aux_2 | |
0.000014 8514 list.merge._main._pack | |
0.000017 8515 list.merge._main | |
0.000015 8516 list.merge | |
0.000016 8517 list.merge_sort._main._pack | |
0.000015 8518 list.merge_sort._main | |
0.000014 8519 list.merge_sort | |
0.000017 8520 list.sorted | |
0.000015 8521 is_antisymm.antisymm | |
0.000014 8522 antisymm | |
0.000017 8523 list.length_singleton | |
0.000015 8524 list.eq_of_perm_of_sorted | |
0.000015 8525 list.merge_sort._main._pack._proof_1 | |
0.000016 8526 list.merge_sort._main._pack.equations._eqn_3 | |
0.000015 8527 list.merge_sort._main.equations._eqn_3 | |
0.000015 8528 list.merge_sort.equations._eqn_3 | |
0.000016 8529 list.merge_sort_cons_cons | |
0.000015 8530 list.merge._main._pack.equations._eqn_2 | |
0.000016 8531 list.merge._main.equations._eqn_2 | |
0.000016 8532 list.merge.equations._eqn_2 | |
0.000014 8533 list.merge._main._pack.equations._eqn_3 | |
0.000016 8534 list.merge._main.equations._eqn_3 | |
0.000015 8535 list.merge.equations._eqn_3 | |
0.000016 8536 list.merge._main._pack.equations._eqn_4 | |
0.000015 8537 list.merge._main.equations._eqn_4 | |
0.000016 8538 list.merge.equations._eqn_4 | |
0.000016 8539 list.perm_merge | |
0.000014 8540 list.perm_split | |
0.000016 8541 list.perm_merge_sort | |
0.000015 8542 list.sorted_nil | |
0.000016 8543 list.sorted_singleton | |
0.000016 8544 list.sorted_cons | |
0.000014 8545 list.pairwise_of_pairwise_cons | |
0.074846 8546 list.sorted_of_sorted_cons | |
0.000123 8547 or.left_comm | |
0.000023 8548 list.rel_of_sorted_cons | |
0.000014 8549 list.sorted.merge | |
0.000015 8550 list.sorted_merge_sort | |
0.000014 8551 multiset.sort._proof_1 | |
0.000014 8552 multiset.sort | |
0.000014 8553 _private.3804559837.enle | |
0.000014 8554 _private.3804559837.enle.equations._eqn_1 | |
0.000014 8555 _private.3351462201.decidable_enle._proof_1 | |
0.000015 8556 _private.3351462201.decidable_enle | |
0.000021 8557 is_refl | |
0.000032 8558 is_preorder | |
0.000032 8559 is_preorder.to_is_trans | |
0.000025 8560 is_partial_order | |
0.000027 8561 is_partial_order.to_is_preorder | |
0.000020 8562 is_linear_order | |
0.000015 8563 is_linear_order.to_is_partial_order | |
0.000015 8564 rel_embedding | |
0.000014 8565 is_preorder.to_is_refl | |
0.000014 8566 is_refl.refl | |
0.000014 8567 rel_embedding.to_embedding | |
0.000015 8568 rel_embedding.has_coe_to_fun | |
0.000014 8569 rel_embedding.map_rel_iff' | |
0.000014 8570 rel_embedding.map_rel_iff | |
0.000014 8571 refl | |
0.000015 8572 rel_embedding.is_refl | |
0.000016 8573 rel_embedding.cases_on | |
0.000018 8574 is_trans.dcases_on | |
0.000017 8575 rel_embedding.is_trans | |
0.000016 8576 rel_embedding.is_preorder | |
0.000016 8577 is_antisymm.dcases_on | |
0.000017 8578 rel_embedding.is_antisymm | |
0.000017 8579 is_partial_order.to_is_antisymm | |
0.000017 8580 rel_embedding.is_partial_order | |
0.000016 8581 is_total.dcases_on | |
0.000016 8582 rel_embedding.is_total | |
0.000015 8583 is_linear_order.to_is_total | |
0.000014 8584 rel_embedding.is_linear_order | |
0.000016 8585 encodable.encode_injective | |
0.000015 8586 rel_embedding.preimage._proof_1 | |
0.000017 8587 rel_embedding.preimage | |
0.000015 8588 has_le.le.is_refl | |
0.000014 8589 has_le.le.is_antisymm | |
0.000017 8590 has_le.le.is_linear_order | |
0.000015 8591 _private.4150475629.enle.is_linear_order | |
0.000016 8592 encodable.encode_multiset._proof_1 | |
0.000015 8593 encodable.encode_multiset._proof_2 | |
0.000015 8594 encodable.encode_multiset._proof_3 | |
0.000016 8595 encodable.encode_multiset | |
0.000015 8596 encodable.decode_multiset | |
0.000016 8597 encodable.encode_multiset.equations._eqn_1 | |
0.000015 8598 encodable.decode_multiset.equations._eqn_1 | |
0.000017 8599 multiset.sort_eq | |
0.000015 8600 encodable.multiset._proof_1 | |
0.000015 8601 encodable.multiset | |
0.000016 8602 multiset.nodup_decidable._proof_1 | |
0.000015 8603 list.decidable_pairwise | |
0.000014 8604 list.nodup_decidable | |
0.000017 8605 multiset.nodup_decidable | |
0.000014 8606 encodable.decidable_eq_of_encodable._main | |
0.000017 8607 encodable.decidable_eq_of_encodable | |
0.000015 8608 encodable.finset._match_1 | |
0.000016 8609 encodable.finset._match_2 | |
0.000015 8610 encodable.finset._match_3 | |
0.000016 8611 encodable.finset._proof_1 | |
0.000015 8612 encodable.finset._match_4 | |
0.000016 8613 encodable.finset._proof_2 | |
0.000015 8614 encodable.finset | |
0.000016 8615 set.countable_set_of_finite_subset | |
0.000018 8616 filter.is_countably_generated.countable_generating_set | |
0.000015 8617 filter.is_countably_generated.countable_filter_basis._proof_3 | |
0.000016 8618 filter.is_countably_generated.countable_filter_basis | |
0.000015 8619 filter.countable_filter_basis.to_filter_basis | |
0.000016 8620 filter.countable_filter_basis.countable | |
0.000015 8621 filter_basis.has_mem | |
0.000016 8622 filter_basis.filter._match_1 | |
0.000016 8623 filter_basis.filter._proof_1 | |
0.000014 8624 filter_basis.filter._match_2 | |
0.000016 8625 filter_basis.filter._proof_2 | |
0.000016 8626 filter_basis.filter._match_3 | |
0.000014 8627 filter_basis.filter._match_4 | |
0.000017 8628 filter_basis.filter._match_5 | |
0.000015 8629 filter_basis.filter._proof_3 | |
0.000014 8630 filter_basis.filter | |
0.000017 8631 filter.is_countably_generated.eq_generate | |
0.000014 8632 filter_basis.mem_filter_iff | |
0.000016 8633 filter_basis.mem_filter_of_mem | |
0.000015 8634 filter_basis.generate | |
0.000017 8635 filter.is_basis | |
0.000014 8636 filter.is_basis.filter_basis._match_1 | |
0.000017 8637 filter.is_basis.nonempty | |
0.000015 8638 filter.is_basis.filter_basis._proof_1 | |
0.000016 8639 filter.is_basis.inter | |
0.000015 8640 filter.is_basis.filter_basis._proof_2 | |
0.000016 8641 filter.is_basis.filter_basis | |
0.000015 8642 filter.is_basis.filter | |
0.000017 8643 filter.has_basis.is_basis | |
0.000015 8644 filter.generate_sets.drec | |
0.000016 8645 unique | |
0.000015 8646 fintype.of_subsingleton._proof_1 | |
0.000017 8647 fintype.of_subsingleton | |
0.000014 8648 unique.to_inhabited | |
0.000017 8649 unique.inhabited | |
0.000014 8650 subsingleton_of_forall_eq | |
0.000018 8651 unique.uniq | |
0.000017 8652 unique.eq_default | |
0.000015 8653 unique.subsingleton | |
0.000016 8654 unique.fintype | |
0.000015 8655 set.unique_singleton._match_1 | |
0.000016 8656 set.unique_singleton._proof_1 | |
0.000015 8657 set.unique_singleton | |
0.000015 8658 set.fintype_singleton | |
0.000014 8659 set.finite_singleton | |
0.880785 8660 set.sInter_singleton | |
0.000081 8661 set.univ.equations._eqn_1 | |
0.000021 8662 multiset.attach._proof_1 | |
0.000015 8663 multiset.attach | |
0.000014 8664 multiset.nodup_attach | |
0.000014 8665 finset.attach._proof_1 | |
0.000014 8666 finset.attach | |
0.000014 8667 multiset.mem_attach | |
0.000014 8668 finset.mem_attach | |
0.000014 8669 finset.subtype.fintype | |
0.000014 8670 set.finite.induction_on | |
0.000014 8671 set.insert_subset | |
0.000014 8672 filter.mem_generate_iff | |
0.000018 8673 filter.has_basis_generate | |
0.000015 8674 filter.is_basis.mem_filter_basis_iff | |
0.000014 8675 filter.is_basis.mem_filter_iff | |
0.000017 8676 filter.has_basis.filter_eq | |
0.000017 8677 filter.generate_eq_generate_inter | |
0.000017 8678 filter.of_sets_filter_eq_generate | |
0.000015 8679 filter.is_countably_generated.filter_basis_filter | |
0.000014 8680 false_of_true_eq_false | |
0.000017 8681 filter_basis.nonempty_sets | |
0.000017 8682 filter_basis.eq_infi_principal | |
0.000017 8683 filter.is_countably_generated.exists_countable_infi_principal | |
0.000017 8684 infi_false | |
0.000016 8685 infi_top | |
0.000016 8686 infi_emptyset | |
0.000015 8687 is_glb_cInf | |
0.000016 8688 is_glb.cInf_eq | |
0.000017 8689 is_least.nonempty | |
0.000015 8690 is_least.cInf_eq | |
0.000016 8691 cInf_singleton | |
0.000015 8692 cinfi_const | |
0.000016 8693 option.iget._main | |
0.000015 8694 option.iget | |
0.000016 8695 option.iget_some | |
0.000015 8696 set.countable_iff_exists_surjective_to_subtype | |
0.000016 8697 filter.countable_binfi_eq_infi_seq | |
0.000015 8698 filter.countable_binfi_eq_infi_seq' | |
0.000016 8699 filter.countable_binfi_principal_eq_seq_infi | |
0.000015 8700 filter.is_countably_generated.exists_seq | |
0.000016 8701 Exists.some | |
0.000015 8702 filter.has_basis.index._proof_1 | |
0.000016 8703 Exists.some_spec | |
0.000015 8704 filter.has_basis.index._proof_2 | |
0.000016 8705 filter.has_basis.index | |
0.000015 8706 subtype.prop | |
0.000016 8707 subtype.coe_prop | |
0.000014 8708 filter.has_basis.property_index | |
0.000016 8709 filter.has_basis.set_index_mem | |
0.000015 8710 monotone_of_monotone_nat | |
0.000016 8711 filter.has_basis.set_index_subset | |
0.000015 8712 filter.is_countably_generated.exists_antimono_subbasis | |
0.000016 8713 filter.is_countably_generated.exists_antimono_basis | |
0.000016 8714 set.bInter_mono' | |
0.000014 8715 set.Iic_subset_Iic | |
0.000016 8716 infi_neg | |
0.000015 8717 set.Inter_neg | |
0.000016 8718 set.Inter_univ | |
0.000016 8719 set.bInter_union | |
0.000014 8720 set.bInter_singleton | |
0.000016 8721 set.bInter_insert | |
0.000015 8722 filter.inter_mem_sets_iff | |
0.000016 8723 filter.bInter_mem_sets | |
0.000015 8724 set.fintype_le_nat._proof_1 | |
0.000014 8725 set.fintype_le_nat._proof_2 | |
0.000017 8726 set.fintype_lt_nat._proof_1 | |
0.000014 8727 set.fintype_lt_nat | |
0.000017 8728 set.fintype_le_nat | |
0.000014 8729 set.finite_le_nat | |
0.000017 8730 filter.antimono_seq_of_seq | |
0.000014 8731 encodable.nat._proof_1 | |
0.000017 8732 encodable.nat | |
0.000015 8733 filter.is_basis.filter_eq_generate | |
0.000014 8734 filter.has_basis.eq_generate | |
0.000016 8735 filter.is_countably_generated_seq | |
0.000015 8736 filter.is_countably_generated_iff_exists_antimono_basis | |
0.000016 8737 filter.is_countably_generated.exists_antimono_seq' | |
0.000015 8738 filter.has_basis.le_basis_iff | |
0.000017 8739 set.mem_prod_eq | |
0.000014 8740 filter.has_basis.cauchy_iff | |
0.000017 8741 cauchy_iff | |
0.000015 8742 sequentially_complete.set_seq_aux._proof_1 | |
0.000016 8743 sequentially_complete.set_seq_aux | |
0.000029 8744 sequentially_complete.set_seq | |
0.000016 8745 filter.ne_bot.nonempty_of_mem | |
0.000014 8746 sequentially_complete.set_seq_mem | |
0.000014 8747 sequentially_complete.seq._proof_1 | |
0.000017 8748 sequentially_complete.seq | |
0.000015 8749 prod_mk_mem_comp_rel | |
0.000014 8750 le_nhds_of_cauchy_adhp_aux | |
0.000019 8751 set.bInter_subset_of_mem | |
0.000017 8752 sequentially_complete.set_seq_sub_aux | |
0.000015 8753 set.bInter_subset_bInter_left | |
0.000014 8754 sequentially_complete.set_seq_mono | |
0.000019 8755 sequentially_complete.set_seq_prod_subset | |
0.000015 8756 sequentially_complete.seq_mem | |
0.000014 8757 sequentially_complete.le_nhds_of_seq_tendsto_nhds | |
0.000016 8758 sequentially_complete.seq_pair_mem | |
0.000015 8759 uniform_space.complete_of_convergent_controlled_sequences | |
0.000016 8760 prod.map | |
0.000015 8761 cauchy_map_iff' | |
0.000016 8762 prod.map_fst | |
0.000015 8763 prod.map_snd | |
0.000016 8764 prod.map_def | |
0.000015 8765 cauchy_seq_iff_tendsto | |
0.000017 8766 cauchy_seq_of_controlled | |
0.000015 8767 uniform_space.complete_of_cauchy_seq_tendsto | |
0.000016 8768 filter.is_countably_generated_of_seq | |
0.000015 8769 ennreal.has_inv | |
0.000016 8770 emetric.mk_uniformity_basis | |
0.000015 8771 ennreal.top_mul | |
0.000016 8772 ennreal.inv_top | |
0.000015 8773 function.bijective | |
0.000017 8774 function.involutive.surjective | |
0.000015 8775 function.involutive.bijective | |
0.000014 8776 ennreal.top_ne_coe | |
5.235310 8777 ennreal.top_ne_zero | |
0.000080 8778 ennreal.coe_eq_zero | |
0.000024 8779 ennreal.inv_zero | |
0.000015 8780 with_top.coe_le_iff | |
0.000014 8781 ennreal.coe_le_iff | |
0.000014 8782 le_of_mul_le_mul_left | |
0.000014 8783 mul_le_mul_left | |
0.000024 8784 nnreal.inv_le | |
0.000017 8785 ennreal.coe_one | |
0.000014 8786 ennreal.coe_mul | |
0.000014 8787 ennreal.coe_inv | |
0.000014 8788 ennreal.inv_inv | |
0.000014 8789 ennreal.inv_involutive | |
0.000017 8790 ennreal.inv_bijective | |
0.000015 8791 ennreal.inv_eq_inv | |
0.000014 8792 ennreal.inv_eq_zero | |
0.000014 8793 ennreal.inv_ne_zero | |
0.000014 8794 ennreal.inv_pos | |
0.000014 8795 with_top.coe_one | |
0.000014 8796 with_top.coe_nat | |
0.000014 8797 with_top.nat_ne_top | |
0.000017 8798 ennreal.nat_ne_top | |
0.000015 8799 ennreal.not_lt_zero | |
0.000017 8800 or.symm | |
0.000015 8801 has_le.le.lt_or_eq | |
0.000017 8802 eq_or_lt_of_le | |
0.000015 8803 ennreal.inv_eq_top | |
0.000014 8804 inv_lt_inv | |
0.000014 8805 ennreal.inv_lt_inv | |
0.000016 8806 monoid_hom.to_fun | |
0.000015 8807 monoid_hom.has_coe_to_fun | |
0.000017 8808 monoid_hom.map_one' | |
0.000015 8809 monoid_hom.map_one | |
0.000017 8810 monoid_hom.map_mul' | |
0.000015 8811 monoid_hom.map_mul | |
0.000014 8812 monoid_hom.map_pow | |
0.000017 8813 add_monoid_hom.to_multiplicative._proof_1 | |
0.000015 8814 add_monoid_hom.to_multiplicative._proof_2 | |
0.000017 8815 add_monoid_hom.to_multiplicative._proof_3 | |
0.000014 8816 monoid_hom.cases_on | |
0.000018 8817 monoid_hom.coe_inj | |
0.000015 8818 monoid_hom.ext | |
0.000017 8819 add_monoid_hom.to_multiplicative._proof_4 | |
0.000016 8820 add_monoid_hom.to_multiplicative | |
0.000018 8821 add_monoid_hom.map_nsmul | |
0.000015 8822 nnreal.coe_one | |
0.000014 8823 nnreal.coe_mul | |
0.000014 8824 nnreal.to_real_hom | |
0.000016 8825 nnreal.nsmul_coe | |
0.000015 8826 nnreal.archimedean._match_1 | |
0.000017 8827 nnreal.archimedean | |
0.000015 8828 ennreal.coe_nat | |
0.000017 8829 ennreal.coe_lt_coe_nat | |
0.000016 8830 ennreal.exists_nat_gt | |
0.000017 8831 ennreal.inv_ne_top | |
0.000015 8832 ennreal.exists_inv_nat_lt | |
0.000014 8833 uniformity_basis_edist_inv_nat | |
0.000014 8834 emetric.uniformity_has_countable_basis | |
0.000018 8835 emetric.complete_of_cauchy_seq_tendsto | |
0.000015 8836 metric.complete_of_cauchy_seq_tendsto | |
0.000017 8837 prod.map.equations._eqn_1 | |
0.000015 8838 filter.has_basis.cauchy_seq_iff | |
0.000018 8839 symm_of_uniformity | |
0.000014 8840 comp_symm_of_uniformity | |
0.000014 8841 filter.has_basis.cauchy_seq_iff' | |
0.000014 8842 metric.cauchy_seq_iff' | |
0.000018 8843 cau_seq.is_complete | |
0.000015 8844 cau_seq.is_complete.is_complete | |
0.000017 8845 cau_seq.complete | |
0.000015 8846 cau_seq.lim | |
0.000017 8847 cau_seq.const_neg | |
0.000015 8848 cau_seq.exists_gt | |
0.000014 8849 cau_seq.exists_lt | |
0.000014 8850 sub_right_comm | |
0.000018 8851 real.add_comm_semigroup | |
0.000014 8852 real.cau_seq_converges | |
0.000014 8853 real.abs.cau_seq.is_complete | |
0.000014 8854 metric.ball | |
0.000017 8855 nhds_basis_uniformity | |
0.000018 8856 metric.nhds_basis_ball | |
0.000017 8857 metric.mem_nhds_iff | |
0.000017 8858 cau_seq.equiv_lim | |
0.000018 8859 real.complete_space | |
0.000015 8860 has_sum.summable | |
0.000016 8861 inv_pow' | |
0.000017 8862 norm_num.sub_pos | |
0.000015 8863 norm_num.add_pos_neg_pos | |
0.000017 8864 norm_num.clear_denom_add | |
0.000018 8865 bit0_pos | |
0.000015 8866 zero_lt_one' | |
0.000017 8867 norm_num.clear_denom_div | |
0.000017 8868 norm_num.one_succ | |
0.000018 8869 norm_num.inv_one_div | |
0.000015 8870 has_continuous_mul | |
0.000016 8871 topological_semiring | |
0.000015 8872 add_monoid_hom.mul_left._proof_1 | |
0.000017 8873 add_monoid_hom.mul_left._proof_2 | |
0.000015 8874 add_monoid_hom.mul_left | |
0.000016 8875 finset.sum_eq_multiset_sum | |
0.000015 8876 list.sum | |
0.000014 8877 multiset.sum_eq_foldl | |
0.000016 8878 multiset.coe_sum | |
0.000015 8879 list.sum.equations._eqn_1 | |
0.000016 8880 list.foldl_map | |
0.000016 8881 list.foldl_hom | |
0.000014 8882 list.sum_hom | |
0.000016 8883 multiset.sum_hom | |
0.000015 8884 add_monoid_hom.map_multiset_sum | |
0.000016 8885 add_monoid_hom.map_sum | |
0.000015 8886 has_sum.map | |
0.000016 8887 continuous.comp | |
0.000015 8888 has_continuous_mul.continuous_mul | |
0.000016 8889 continuous_mul | |
0.000015 8890 continuous.mul | |
0.000016 8891 topological_semiring.to_has_continuous_mul | |
0.000015 8892 continuous_at_const | |
0.000016 8893 continuous_const | |
0.000015 8894 continuous_id | |
0.000016 8895 has_sum.mul_left | |
0.000017 8896 topological_ring | |
0.000015 8897 topological_ring.to_has_continuous_add | |
0.000018 8898 topological_ring.to_has_continuous_mul | |
0.000017 8899 topological_ring.to_topological_semiring | |
0.000014 8900 lt_sub_iff_add_lt | |
0.000017 8901 neg_add_lt_iff_lt_add_right | |
0.000014 8902 neg_lt_sub_iff_lt_add | |
0.000017 8903 abs_sub_lt_iff | |
0.000015 8904 sub_lt | |
0.000016 8905 set.set_of_and | |
0.000015 8906 set.mem_Ioi | |
0.000016 8907 set.Ioi.equations._eqn_1 | |
0.000015 8908 sub_sub_cancel | |
0.000016 8909 set.Iio.equations._eqn_1 | |
0.000015 8910 nhds_eq_infi_abs_sub | |
1.771240 8911 linear_ordered_add_comm_group.tendsto_nhds | |
0.000084 8912 set.nonempty.fst | |
0.000022 8913 set.nonempty.snd | |
0.000015 8914 set.nonempty.prod | |
0.000016 8915 set.prod_nonempty_iff | |
0.000014 8916 set.prod_eq_empty_iff | |
0.000014 8917 set.fst_image_prod_subset | |
0.000015 8918 set.fst_image_prod | |
0.000014 8919 set.mem_image_eq | |
0.000015 8920 eq_false_of_not_eq_true | |
0.000014 8921 or_eq_of_eq_false_right | |
0.000014 8922 not_eq_of_eq_true | |
0.000015 8923 auto.classical.implies_iff_not_or | |
0.000014 8924 auto.not_exists_eq | |
0.000014 8925 auto.not_and_eq | |
0.000014 8926 set.image_subset | |
0.000014 8927 set.snd_image_prod_subset | |
0.000014 8928 set.snd_image_prod | |
0.000018 8929 set.prod_subset_prod_iff | |
0.000015 8930 filter.prod_mem_prod_iff | |
0.000016 8931 prod_mem_nhds_iff | |
0.000017 8932 prod_mem_nhds_sets | |
0.000017 8933 eventually_abs_sub_lt | |
0.000017 8934 add_sub_comm | |
0.000015 8935 has_le.le.le_iff_eq | |
0.000014 8936 abs_nonpos_iff | |
0.000017 8937 filter.eventually.mp | |
0.000017 8938 filter.eventually_of_forall | |
0.000017 8939 filter.eventually.mono | |
0.000016 8940 linear_ordered_add_comm_group.topological_add_group | |
0.000015 8941 order_topology_of_nhds_abs | |
0.000017 8942 metric.ball.equations._eqn_1 | |
0.000015 8943 real.order_topology | |
0.000016 8944 real.topological_add_group | |
0.000015 8945 subtype.uniform_space | |
0.000016 8946 subtype.topological_space | |
0.000015 8947 filter.range_mem_map | |
0.000015 8948 filter.map_comap | |
0.000016 8949 filter.map_comap_of_mem | |
0.000015 8950 map_nhds_induced_of_mem | |
0.000014 8951 map_nhds_subtype_coe_eq | |
0.000017 8952 filter.tendsto_map' | |
0.000015 8953 tendsto_of_uniform_continuous_subtype | |
0.000015 8954 real.uniform_continuous_mul | |
0.000014 8955 is_open.prod | |
0.000014 8956 closure | |
0.000015 8957 frontier | |
0.000016 8958 continuous_at.equations._eqn_1 | |
0.000015 8959 continuous_on.equations._eqn_1 | |
0.000016 8960 continuous_within_at.equations._eqn_1 | |
0.000017 8961 nhds_within_univ | |
0.000015 8962 continuous_iff_continuous_on_univ | |
0.000016 8963 filter.tendsto.if | |
0.000015 8964 filter.tendsto.piecewise | |
0.000016 8965 nhds_within_inter' | |
0.000015 8966 filter.tendsto.piecewise_nhds_within | |
0.000016 8967 set.inter_univ | |
0.000015 8968 set.inter_union_distrib_left | |
0.000016 8969 is_greatest.is_lub | |
0.000015 8970 is_lub_singleton | |
0.000018 8971 is_lub.insert | |
0.000017 8972 is_lub_pair | |
0.000015 8973 galois_connection.l_sup | |
0.000016 8974 filter.map_sup | |
0.000015 8975 filter.tendsto_sup | |
0.000016 8976 continuous_within_at_union | |
0.000015 8977 continuous_within_at.union | |
0.000016 8978 filter.eventually_eq | |
0.000015 8979 filter.ext' | |
0.000016 8980 filter.eventually_map | |
0.000015 8981 filter.eventually.congr | |
0.000016 8982 filter.eventually_congr | |
0.000015 8983 filter.map_congr | |
0.000016 8984 continuous_within_at.congr_of_eventually_eq | |
0.000015 8985 self_mem_nhds_within | |
0.000016 8986 continuous_within_at.congr | |
0.000015 8987 filter.frequently | |
0.000016 8988 filter.frequently.equations._eqn_1 | |
0.000015 8989 mem_interior_iff_mem_nhds | |
0.000017 8990 closure.equations._eqn_1 | |
0.000014 8991 set.sInter_image | |
0.000017 8992 set.compl_sUnion | |
0.000014 8993 set.compl_image | |
0.000016 8994 set.compl_image_set_of | |
0.000015 8995 closure_eq_compl_interior_compl | |
0.000017 8996 mem_closure_iff_frequently | |
0.000014 8997 cluster_pt_principal_iff | |
0.000017 8998 filter.frequently.exists | |
0.000014 8999 filter.frequently.and_eventually | |
0.000017 9000 and_not_self | |
0.000015 9001 filter.frequently_iff_forall_eventually_exists_and | |
0.000016 9002 filter.frequently_iff | |
0.000019 9003 cluster_pt_principal_iff_frequently | |
0.000015 9004 mem_closure_iff_cluster_pt | |
0.000014 9005 mem_closure_iff_nhds_within_ne_bot | |
0.000016 9006 filter.tendsto_bot | |
0.000015 9007 continuous_within_at_of_not_mem_closure | |
0.000016 9008 set.subset_sInter | |
0.000015 9009 subset_closure | |
0.000017 9010 compl_injective | |
0.000015 9011 compl_inj_iff | |
0.000016 9012 closure_compl | |
0.000015 9013 monotone.map_inf_le | |
0.000016 9014 set.sInter_subset_of_mem | |
0.000015 9015 closure_minimal | |
0.000016 9016 set.sUnion_eq_compl_sInter_compl | |
0.000015 9017 set.image_comp | |
0.000016 9018 set.compl_comp_compl | |
0.000015 9019 auto.not_forall_eq | |
0.000016 9020 auto.not_or_eq | |
0.000015 9021 auto.not_not_eq | |
0.000016 9022 set.image_congr | |
0.000014 9023 set.image_id | |
0.000016 9024 set.compl_compl_image | |
0.000015 9025 set.compl_sInter | |
0.000016 9026 is_closed_sInter | |
0.000015 9027 is_closed_closure | |
0.000016 9028 closure_mono | |
0.000017 9029 monotone_closure | |
0.000016 9030 closure_inter_subset_inter_closure | |
0.000016 9031 set.piecewise_eq_of_not_mem | |
0.000015 9032 continuous_on.piecewise' | |
0.000016 9033 continuous_on.if' | |
0.000015 9034 if_t_t | |
0.000016 9035 nhds_within_mono | |
0.000015 9036 tendsto_nhds_within_mono_left | |
0.000016 9037 set.mem_compl_iff | |
0.000015 9038 continuous_on.mono | |
0.000016 9039 continuous_on.if | |
0.000015 9040 set.univ_inter | |
0.000016 9041 continuous_if | |
0.973233 9042 frontier.equations._eqn_1 | |
0.000076 9043 set.diff_eq | |
0.000025 9044 frontier_eq_closure_inter_closure | |
0.000015 9045 is_closed.closure_eq | |
0.000014 9046 closure_le_eq | |
0.000014 9047 closure_lt_subset_le | |
0.000014 9048 frontier_le_subset_eq | |
0.000014 9049 continuous_if_le | |
0.000014 9050 continuous.continuous_on | |
0.000014 9051 continuous.if_le | |
0.000014 9052 continuous.min | |
0.000014 9053 is_closed.preimage | |
0.000014 9054 continuous_swap | |
0.000014 9055 order_dual.order_closed_topology | |
0.000014 9056 continuous.max | |
0.000014 9057 continuous_abs | |
0.000014 9058 real.continuous_mul | |
0.000014 9059 real.topological_ring | |
0.000018 9060 real.topological_semiring | |
0.000017 9061 geom_sum | |
0.000015 9062 pi.can_lift._proof_1 | |
0.000016 9063 pi.can_lift | |
0.000017 9064 nnreal.can_lift._proof_1 | |
0.000018 9065 nnreal.can_lift | |
0.000015 9066 ring_hom.map_sum | |
0.000014 9067 nnreal.coe_sum | |
0.000017 9068 filter.eventually_le | |
0.000017 9069 is_closed.closure_subset | |
0.000015 9070 filter.frequently.mem_closure | |
0.000016 9071 filter.frequently.mem_of_closed | |
0.000018 9072 filter.tendsto.eventually | |
0.000017 9073 filter.tendsto.frequently | |
0.000017 9074 is_closed.mem_of_frequently_of_tendsto | |
0.000015 9075 filter.compl_not_mem_sets | |
0.000016 9076 filter.eventually.frequently | |
0.000015 9077 is_closed.mem_of_tendsto | |
0.000017 9078 le_of_tendsto_of_tendsto | |
0.000015 9079 ge_of_tendsto | |
0.000016 9080 ge_of_tendsto' | |
0.000015 9081 nhds_subtype_eq_comap | |
0.000016 9082 tendsto_subtype_rng | |
0.000015 9083 nnreal.tendsto_coe | |
0.000016 9084 nnreal.tendsto_coe' | |
0.000016 9085 inducing | |
0.000014 9086 embedding | |
0.000016 9087 inducing.induced | |
0.000015 9088 embedding.to_inducing | |
0.000016 9089 embedding.tendsto_nhds_iff | |
0.000015 9090 le_generate_from_iff_subset_is_open | |
0.000015 9091 le_generate_from | |
0.000016 9092 set.Icc | |
0.000015 9093 set.ord_connected | |
0.000016 9094 subtype.preorder | |
0.000015 9095 set.ord_connected.out' | |
0.000014 9096 set.ord_connected.out | |
0.000017 9097 order_topology_of_ord_connected | |
0.000015 9098 set.ord_connected_Ici | |
0.000014 9099 nnreal.order_topology | |
0.000016 9100 is_open_lt | |
0.000015 9101 is_open_Ioi | |
0.000016 9102 is_open_Iio | |
0.000015 9103 ennreal.embedding_coe | |
0.000016 9104 ennreal.tendsto_coe | |
0.000015 9105 ennreal.of_nnreal_hom._proof_1 | |
0.000016 9106 ennreal.of_nnreal_hom._proof_2 | |
0.000015 9107 ennreal.of_nnreal_hom | |
0.000016 9108 ennreal.coe_finset_sum | |
0.000015 9109 ennreal.has_sum_coe | |
0.000016 9110 filter.mem_at_top | |
0.000015 9111 filter.tendsto_at_top_at_top_of_monotone | |
0.000016 9112 monotone.tendsto_at_top_at_top | |
0.000015 9113 list.length_range' | |
0.000016 9114 list.range'_append | |
0.000015 9115 list.range'_sublist_right | |
0.000016 9116 list.range'_subset_right | |
0.000015 9117 list.range_subset | |
0.000016 9118 multiset.range_subset | |
0.000015 9119 finset.range_subset | |
0.000016 9120 finset.range_mono | |
0.000015 9121 finset.exists_nat_subset_range | |
0.000016 9122 filter.tendsto_finset_range | |
0.000015 9123 has_sum.tendsto_sum_nat | |
0.000016 9124 tendsto_order | |
0.000015 9125 push_neg.not_exists_eq | |
0.000016 9126 exists_lt_of_lt_cSup | |
0.000015 9127 set.range_nonempty_iff_nonempty | |
0.000016 9128 set.range_nonempty | |
0.000016 9129 exists_lt_of_lt_csupr | |
0.000014 9130 le_csupr | |
0.000016 9131 filter.tendsto_of_not_nonempty | |
0.000015 9132 tendsto_at_top_csupr | |
0.000016 9133 order_top.bdd_above | |
0.000015 9134 tendsto_at_top_supr | |
0.000016 9135 supr_eq_of_tendsto | |
0.000015 9136 finset.sum_le_sum_of_subset | |
0.000016 9137 ennreal.has_sum | |
0.000015 9138 ennreal.tsum_eq_supr_sum | |
0.000017 9139 supr_le_supr2 | |
0.000015 9140 supr_comp_le | |
0.000016 9141 monotone.supr_comp_eq | |
0.000015 9142 finset.sum_mono_set | |
0.000016 9143 ennreal.tsum_eq_supr_sum' | |
0.000015 9144 ennreal.tsum_eq_supr_nat | |
0.000016 9145 ennreal.summable | |
0.000015 9146 ennreal.has_sum_iff_tendsto_nat | |
0.000014 9147 nnreal.has_sum_iff_tendsto_nat | |
0.000016 9148 has_sum_iff_tendsto_nat_of_nonneg | |
0.000015 9149 pow_nonneg | |
0.000016 9150 geom_sum₂ | |
0.000015 9151 geom_sum₂_with_one | |
0.000016 9152 finset.range_zero | |
0.000015 9153 finset.sum_empty | |
0.000016 9154 multiset.range.equations._eqn_1 | |
0.000015 9155 list.range'_concat | |
0.000016 9156 list.range_succ | |
0.000015 9157 multiset.coe_add | |
0.000016 9158 multiset.range_succ | |
0.000015 9159 finset.range_succ | |
0.000016 9160 finset.sum_range_succ_comm | |
0.000015 9161 semiconj_by.add_right | |
0.000014 9162 commute.add_right | |
0.000016 9163 is_add_hom | |
0.000016 9164 is_add_monoid_hom | |
0.000014 9165 is_add_monoid_hom.map_zero | |
0.000016 9166 add_monoid_hom.of._proof_1 | |
0.000015 9167 is_add_hom.map_add | |
0.000016 9168 is_add_monoid_hom.to_is_add_hom | |
0.000015 9169 add_monoid_hom.of._proof_2 | |
0.000016 9170 add_monoid_hom.of | |
0.000015 9171 finset.sum_hom | |
0.000016 9172 is_add_monoid_hom.is_add_monoid_hom_mul_left | |
0.000015 9173 finset.mul_sum | |
0.000016 9174 commute.geom_sum₂_mul_add | |
0.000015 9175 semiconj_by.neg_left | |
1.191360 9176 semiconj_by.sub_left | |
0.000078 9177 commute.sub_left | |
0.000024 9178 commute.geom_sum₂_mul | |
0.000014 9179 commute.one_right | |
0.000015 9180 geom_sum_mul | |
0.000014 9181 geom_sum_eq | |
0.000015 9182 one_div_mul_one_div_rev | |
0.000015 9183 eq_inv_of_mul_right_eq_one | |
0.000014 9184 eq_one_div_of_mul_eq_one | |
0.000013 9185 one_div_neg_one_eq_neg_one | |
0.000014 9186 one_div_neg_eq_neg_one_div | |
0.000015 9187 mul_one_div | |
0.000014 9188 div_neg_eq_neg_div | |
0.000014 9189 neg_inv | |
0.000014 9190 tendsto_mul | |
0.000014 9191 filter.tendsto.mul | |
0.000016 9192 semi_normed_ring | |
0.000017 9193 semi_normed_ring.to_pseudo_metric_space | |
0.000017 9194 semi_normed_ring.to_ring | |
0.000018 9195 semi_normed_ring.to_has_norm | |
0.000017 9196 semi_normed_ring.to_semi_normed_group._proof_1 | |
0.000017 9197 semi_normed_ring.to_semi_normed_group._proof_2 | |
0.000018 9198 semi_normed_ring.to_semi_normed_group._proof_3 | |
0.000015 9199 semi_normed_ring.to_semi_normed_group._proof_4 | |
0.000016 9200 semi_normed_ring.to_semi_normed_group._proof_5 | |
0.000015 9201 semi_normed_ring.to_semi_normed_group._proof_6 | |
0.000016 9202 semi_normed_ring.to_semi_normed_group._proof_7 | |
0.000017 9203 semi_normed_ring.to_semi_normed_group._proof_8 | |
0.000017 9204 semi_normed_ring.dist_eq | |
0.000017 9205 semi_normed_ring.to_semi_normed_group | |
0.000017 9206 metric.mem_ball | |
0.000015 9207 real.dist_0_eq_abs | |
0.000016 9208 abs_dist | |
0.000017 9209 metric.uniformity_eq_comap_nhds_zero | |
0.000015 9210 nhds_comap_dist | |
0.000016 9211 tendsto_iff_dist_tendsto_zero | |
0.000015 9212 tendsto_iff_norm_tendsto_zero | |
0.000017 9213 tendsto_of_tendsto_of_tendsto_of_le_of_le' | |
0.000017 9214 squeeze_zero' | |
0.000015 9215 squeeze_zero | |
0.000016 9216 norm_add_le | |
0.000015 9217 norm_add_le_of_le | |
0.000016 9218 semi_normed_ring.norm_mul | |
0.000015 9219 norm_mul_le | |
0.000016 9220 norm_zero | |
0.000015 9221 lipschitz_with | |
0.000016 9222 emetric.uniform_continuous_iff | |
0.000015 9223 ennreal.div_inv_monoid._proof_1 | |
0.000016 9224 ennreal.div_inv_monoid._proof_2 | |
0.000015 9225 ennreal.div_inv_monoid._proof_3 | |
0.000016 9226 ennreal.div_inv_monoid._proof_4 | |
0.000015 9227 ennreal.div_inv_monoid._proof_5 | |
0.000016 9228 ennreal.div_inv_monoid._proof_6 | |
0.000015 9229 ennreal.div_inv_monoid | |
0.000014 9230 canonically_ordered_semiring.mul_pos | |
0.000017 9231 ennreal.coe_ne_top | |
0.000014 9232 lipschitz_with.edist_le_mul | |
0.000016 9233 ennreal.zero_div | |
0.000015 9234 ennreal.div_top | |
0.000016 9235 ite_eq_left_iff | |
0.000015 9236 ennreal.mul_top | |
0.000016 9237 ennreal.mul_le_mul_left | |
0.000015 9238 with_top.top_mul_top | |
0.000016 9239 with_top.mul_eq_top_iff | |
0.000015 9240 ennreal.mul_eq_top | |
0.000015 9241 ennreal.div_eq_top | |
0.000016 9242 ennreal.zero_ne_top | |
0.000015 9243 ennreal.le_div_iff_mul_le | |
0.000015 9244 ennreal.div_le_iff_le_mul | |
0.000015 9245 ennreal.div_le_of_le_mul | |
0.000016 9246 ennreal.mul_lt_of_lt_div | |
0.000016 9247 lipschitz_with.uniform_continuous | |
0.000015 9248 ennreal.max_zero_right | |
0.000015 9249 prod.pseudo_emetric_space_max._proof_1 | |
0.000016 9250 prod.pseudo_emetric_space_max._proof_2 | |
0.000015 9251 prod.pseudo_emetric_space_max._proof_3 | |
0.000016 9252 prod.pseudo_emetric_space_max._proof_4 | |
0.000015 9253 prod.pseudo_emetric_space_max | |
0.000016 9254 nndist | |
0.000015 9255 nndist.equations._eqn_1 | |
0.000014 9256 ennreal.coe_nnreal_eq | |
0.000014 9257 ennreal.of_real_eq_coe_nnreal | |
0.000016 9258 edist_nndist | |
0.000015 9259 dist_add_right | |
0.000016 9260 dist_add_left | |
0.000017 9261 dist_add_add_le | |
0.000014 9262 nndist_add_add_le | |
0.000016 9263 edist_add_add_le | |
0.000015 9264 lipschitz_with.add | |
0.000016 9265 norm_sub_rev | |
0.000015 9266 dist_neg_neg | |
0.000016 9267 lipschitz_with.neg | |
0.000015 9268 lipschitz_with.sub | |
0.000016 9269 lipschitz_with.of_edist_le | |
0.000015 9270 lipschitz_with.prod_fst | |
0.000017 9271 lipschitz_with.prod_snd | |
0.000014 9272 normed_uniform_group | |
0.000016 9273 normed_top_monoid | |
0.000015 9274 sub_le_iff_le_add' | |
0.000016 9275 abs_sub_le_iff | |
0.000015 9276 sub_le_iff_le_add | |
0.000017 9277 dist_triangle_left | |
0.000015 9278 abs_dist_sub_le | |
0.000016 9279 uniform_continuous_dist | |
0.000015 9280 continuous_dist | |
0.000016 9281 filter.tendsto.dist | |
0.000016 9282 tendsto_norm | |
0.000014 9283 filter.tendsto.norm | |
0.000016 9284 has_continuous_sub | |
0.000016 9285 has_continuous_sub.continuous_sub | |
0.000014 9286 filter.tendsto.sub | |
0.000016 9287 continuous_add | |
0.000015 9288 continuous.add | |
0.000016 9289 continuous.neg | |
0.000015 9290 topological_add_group.to_has_continuous_sub | |
0.000016 9291 normed_top_group | |
0.000015 9292 semi_normed_ring_top_monoid | |
0.000017 9293 semi_normed_comm_ring | |
0.000014 9294 semi_normed_comm_ring.to_semi_normed_ring | |
0.000017 9295 normed_ring | |
0.000015 9296 normed_ring.to_ring | |
0.000016 9297 normed_comm_ring | |
0.000015 9298 normed_ring.to_has_norm | |
0.000026 9299 normed_comm_ring.to_normed_ring | |
2.655239 9300 normed_ring.to_metric_space | |
0.000081 9301 normed_ring.dist_eq | |
0.000019 9302 normed_comm_ring.to_semi_normed_comm_ring._proof_1 | |
0.000015 9303 normed_ring.norm_mul | |
0.000014 9304 normed_comm_ring.to_semi_normed_comm_ring._proof_2 | |
0.000015 9305 normed_comm_ring.mul_comm | |
0.000015 9306 normed_comm_ring.to_semi_normed_comm_ring | |
0.000014 9307 normed_field.to_field | |
0.000014 9308 normed_field.to_normed_comm_ring._proof_1 | |
0.000015 9309 normed_field.to_normed_comm_ring._proof_2 | |
0.000014 9310 normed_field.to_normed_comm_ring._proof_3 | |
0.000014 9311 normed_field.to_normed_comm_ring._proof_4 | |
0.000014 9312 normed_field.to_normed_comm_ring._proof_5 | |
0.000014 9313 normed_field.to_normed_comm_ring._proof_6 | |
0.000015 9314 normed_field.to_normed_comm_ring._proof_7 | |
0.000014 9315 normed_field.to_normed_comm_ring._proof_8 | |
0.000014 9316 normed_field.to_normed_comm_ring._proof_9 | |
0.000014 9317 normed_field.to_normed_comm_ring._proof_10 | |
0.000014 9318 normed_field.to_normed_comm_ring._proof_11 | |
0.000017 9319 normed_field.to_normed_comm_ring._proof_12 | |
0.000015 9320 normed_field.to_normed_comm_ring._proof_13 | |
0.000015 9321 normed_field.to_normed_comm_ring._proof_14 | |
0.000016 9322 normed_field.to_normed_comm_ring._proof_15 | |
0.000017 9323 normed_field.to_metric_space | |
0.000015 9324 normed_field.dist_eq | |
0.000018 9325 normed_field.norm_mul' | |
0.000017 9326 normed_field.norm_mul | |
0.000019 9327 normed_field.to_normed_comm_ring._proof_16 | |
0.000017 9328 normed_field.to_normed_comm_ring._proof_17 | |
0.000017 9329 normed_field.to_normed_comm_ring | |
0.000018 9330 has_le.le.eq_or_lt | |
0.000017 9331 filter.map_at_top_eq_of_gc | |
0.000015 9332 le_iff_le_iff_lt_iff_lt | |
0.000017 9333 nat.le_sub_left_iff_add_le | |
0.000017 9334 nat.le_sub_right_iff_add_le | |
0.000018 9335 filter.map_add_at_top_eq_nat | |
0.000017 9336 filter.tendsto_add_at_top_iff_nat | |
0.000018 9337 filter.tendsto_congr' | |
0.000016 9338 filter.tendsto_congr | |
0.000017 9339 filter.tendsto.congr | |
0.000017 9340 filter.tendsto.mono_right | |
0.000017 9341 set.Ioo | |
0.000017 9342 list.tfae | |
0.000016 9343 list.nth._main | |
0.000029 9344 list.nth | |
0.000015 9345 list.nth_le._main | |
0.000014 9346 list.nth_le | |
0.000014 9347 list.nth_le_mem | |
0.000019 9348 list.nth_le_nth | |
0.000015 9349 list.nth_len_le | |
0.000014 9350 list.nth_eq_some | |
0.000014 9351 list.nth_mem | |
0.000014 9352 list.tfae.out | |
0.000014 9353 list.tfae_of_forall | |
0.000016 9354 implies | |
0.000015 9355 implies.trans | |
0.000016 9356 nhds_within_has_basis | |
0.000015 9357 nhds_within_basis_open | |
0.000016 9358 mem_nhds_within | |
0.000016 9359 set.Ioi_inter_Iio | |
0.000014 9360 set.Ioo_subset_Ioo | |
0.000016 9361 set.Ioo_subset_Ioo_left | |
0.000016 9362 Ioo_mem_nhds_within_Ioi | |
0.000014 9363 mem_nhds_within_iff_exists_mem_nhds_inter | |
0.000016 9364 set.Ioc_subset_Ioi_self | |
0.000015 9365 nhds_within_restrict'' | |
0.000017 9366 nhds_within_restrict' | |
0.000015 9367 nhds_within_restrict | |
0.000015 9368 nhds_within_le_of_mem | |
0.000016 9369 set.Ioo_subset_Ioc_self | |
0.000014 9370 Ioc_mem_nhds_within_Ioi | |
0.000017 9371 set.mem_Ico | |
0.000015 9372 set.left_mem_Ico | |
0.000015 9373 nhds_within_Ioc_eq_nhds_within_Ioi | |
0.000016 9374 set.Ioo_subset_Ioi_self | |
0.000015 9375 nhds_within_Ioo_eq_nhds_within_Ioi | |
0.000016 9376 tfae_mem_nhds_within_Ioi | |
0.000015 9377 mem_nhds_within_Ioi_iff_exists_Ioo_subset' | |
0.000016 9378 mem_nhds_within_Ioi_iff_exists_Ioo_subset | |
0.000016 9379 mem_nhds_within_Ioi_iff_exists_Ioc_subset | |
0.000014 9380 tendsto_inv_at_top_zero' | |
0.000016 9381 tendsto_inv_at_top_zero | |
0.000016 9382 bdd_above.equations._eqn_1 | |
0.000014 9383 not_bdd_above_iff' | |
0.000017 9384 not_bdd_above_iff | |
0.000015 9385 filter.tendsto_at_top_at_top_of_monotone' | |
0.000016 9386 le_mul_of_one_le_left | |
0.000015 9387 pow_mono | |
0.000014 9388 pow_le_pow | |
0.000016 9389 lt_one_add | |
0.000016 9390 bit0.equations._eqn_1 | |
0.000014 9391 commute.left_comm | |
0.000017 9392 one_add_mul_le_pow' | |
0.000015 9393 zero_le_two | |
0.000016 9394 add_one_pow_unbounded_of_pos | |
0.000015 9395 tendsto_add_one_pow_at_top_at_top_of_pos | |
0.000017 9396 tendsto_pow_at_top_at_top_of_one_lt | |
0.000015 9397 lt_inv | |
0.000015 9398 one_lt_inv | |
0.000016 9399 tendsto_pow_at_top_nhds_0_of_lt_1 | |
0.000015 9400 has_sum_geometric_of_lt_1 | |
0.000016 9401 one_half_pos | |
0.000015 9402 mul_lt_mul_left | |
0.000016 9403 lt_mul_iff_one_lt_right | |
0.000015 9404 lt_mul_of_one_lt_right | |
0.000016 9405 one_add_one_eq_two | |
0.000016 9406 one_lt_two | |
0.000014 9407 div_two_lt_of_pos | |
0.000016 9408 half_lt_self | |
0.000015 9409 one_half_lt_one | |
0.000017 9410 has_sum_geometric_two' | |
0.000015 9411 option.cases_on'._main | |
0.000015 9412 option.cases_on' | |
0.000016 9413 le_of_tendsto_of_tendsto' | |
0.000015 9414 has_sum_le | |
0.000016 9415 function.is_partial_inv_left | |
0.000016 9416 function.partial_inv_left | |
0.000014 9417 option.cases_on'._main.equations._eqn_2 | |
0.799799 9418 option.cases_on'.equations._eqn_2 | |
0.000077 9419 option.cases_on'._main.equations._eqn_1 | |
0.000023 9420 option.cases_on'.equations._eqn_1 | |
0.000015 9421 function.support | |
0.000014 9422 subtype.range_coe_subtype | |
0.000014 9423 function.support_subset_iff' | |
0.000015 9424 has_sum_subtype_iff_of_support_subset | |
0.000014 9425 has_sum_subtype_support | |
0.000014 9426 set.eq_univ_of_forall | |
0.000014 9427 equiv.range_eq_univ | |
0.000014 9428 equiv.has_sum_iff | |
0.000014 9429 equiv.has_sum_iff_of_support | |
0.000015 9430 equiv.of_left_inverse._proof_1 | |
0.000014 9431 nonempty_of_exists | |
0.000014 9432 equiv.of_left_inverse._proof_2 | |
0.000019 9433 equiv.of_left_inverse._proof_3 | |
0.000018 9434 equiv.of_left_inverse._match_1 | |
0.000015 9435 equiv.of_left_inverse._proof_4 | |
0.000016 9436 equiv.of_left_inverse | |
0.000018 9437 equiv.of_injective._proof_1 | |
0.000017 9438 equiv.of_injective | |
0.000015 9439 equiv.of_bijective._proof_1 | |
0.000017 9440 equiv.subtype_equiv._proof_1 | |
0.000015 9441 equiv.subtype_equiv._proof_2 | |
0.000017 9442 subtype.ext_val | |
0.000016 9443 equiv.subtype_equiv._match_1 | |
0.000017 9444 equiv.subtype_equiv._proof_3 | |
0.000015 9445 equiv.subtype_equiv._match_2 | |
0.000014 9446 equiv.subtype_equiv._proof_4 | |
0.000017 9447 equiv.subtype_equiv | |
0.000014 9448 equiv.subtype_equiv_prop._proof_1 | |
0.000015 9449 equiv.subtype_equiv_prop | |
0.000014 9450 equiv.set_congr | |
0.000014 9451 set.range_iff_surjective | |
0.000017 9452 function.surjective.range_eq | |
0.000017 9453 equiv.of_bijective._proof_2 | |
0.000017 9454 equiv.set.univ._match_1 | |
0.000017 9455 equiv.set.univ._proof_1 | |
0.000015 9456 equiv.set.univ._proof_2 | |
0.000014 9457 equiv.set.univ | |
0.000016 9458 equiv.of_bijective | |
0.000016 9459 has_sum_iff_has_sum_of_ne_zero_bij | |
0.000014 9460 function.mem_support | |
0.000017 9461 has_sum_le_inj | |
0.000014 9462 pos_sum_of_encodable._proof_1 | |
0.000017 9463 pos_sum_of_encodable | |
0.000014 9464 nnreal.has_sum_coe | |
0.000017 9465 nnreal.exists_pos_sum_of_encodable | |
0.000015 9466 ennreal.tsum_coe_eq | |
0.000014 9467 ennreal.exists_pos_sum_of_encodable | |
0.000017 9468 multiset.map_zero | |
0.000015 9469 multiset.fold_distrib | |
0.000014 9470 finset.fold_op_distrib | |
0.000017 9471 finset.sum_add_distrib | |
0.000014 9472 has_sum.add | |
0.000017 9473 tsum_add | |
0.000015 9474 nhds_top_order | |
0.000014 9475 tendsto_nhds_top_mono | |
0.000016 9476 tendsto_nhds_top_mono' | |
0.000016 9477 le_add_right | |
0.000014 9478 le_add_left | |
0.000016 9479 open_embedding | |
0.000015 9480 inducing.map_nhds_of_mem | |
0.000017 9481 embedding.map_nhds_of_mem | |
0.000015 9482 open_embedding.to_embedding | |
0.000014 9483 open_embedding.open_range | |
0.000016 9484 open_embedding.map_nhds_eq | |
0.000016 9485 is_open_map | |
0.000016 9486 is_open_map.is_open_range | |
0.000015 9487 open_embedding_of_embedding_open | |
0.000016 9488 induced_compose | |
0.000015 9489 induced_inf | |
0.000015 9490 inducing.prod_mk | |
0.000016 9491 embedding.inj | |
0.000015 9492 embedding.prod_mk | |
0.000016 9493 filter.le_map | |
0.000015 9494 is_open_map.image_mem_nhds | |
0.000016 9495 is_open_map.nhds_le | |
0.000016 9496 imp_congr_right | |
0.000014 9497 is_open_iff_mem_nhds | |
0.000016 9498 is_open_map.of_nhds_le | |
0.000015 9499 is_open_map_iff_nhds_le | |
0.000016 9500 is_open_map.prod | |
0.000015 9501 eq.ge | |
0.000015 9502 inducing.is_open_map | |
0.000016 9503 open_embedding.is_open_map | |
0.000015 9504 open_embedding.prod | |
0.000016 9505 is_open_compl_singleton | |
0.000015 9506 is_open_ne | |
0.000014 9507 ennreal.is_open_ne_top | |
0.000016 9508 ennreal.open_embedding_coe | |
0.000015 9509 ennreal.nhds_coe_coe | |
0.000016 9510 topological_semiring.to_has_continuous_add | |
0.000015 9511 continuous_subtype_mk | |
0.000016 9512 continuous_subtype_val | |
0.000015 9513 nnreal.topological_semiring | |
0.000016 9514 ennreal.has_continuous_add | |
0.000015 9515 ennreal.tsum_add | |
0.000017 9516 upper_bounds_mono_mem | |
0.000015 9517 is_lub.upper_bounds_eq | |
0.000014 9518 is_lub_le_iff | |
0.000016 9519 mem_upper_bounds | |
0.000016 9520 lt_is_lub_iff | |
0.000014 9521 is_glb_lt_iff | |
0.000016 9522 complete_linear_order.to_linear_order | |
0.000015 9523 Inf_lt_iff | |
0.000016 9524 infi_lt_iff | |
0.000015 9525 with_top.add_lt_add_iff_left | |
0.000014 9526 ennreal.add_lt_add_iff_left | |
0.000016 9527 ennreal.lt_add_right | |
0.000016 9528 filter.eventually_at_top | |
0.000014 9529 sum_le_has_sum | |
0.000016 9530 le_has_sum | |
0.000015 9531 le_tsum | |
0.000014 9532 le_tsum' | |
0.000017 9533 ennreal.le_tsum | |
0.000014 9534 sigma | |
0.000016 9535 filter.mem_sets_of_eq_bot | |
0.000016 9536 compl_le_of_compl_le | |
0.000014 9537 compl_le_iff_compl_le | |
0.000016 9538 set.compl_subset_comm | |
0.000015 9539 nhds_is_closed | |
0.000016 9540 closed_nhds_basis | |
0.000015 9541 sigma.cases_on | |
0.000016 9542 sigma.no_confusion_type | |
0.000015 9543 sigma.no_confusion | |
0.000016 9544 sigma.decidable_eq._match_2 | |
0.000015 9545 sigma.decidable_eq._match_1 | |
0.000014 9546 sigma.decidable_eq._main | |
0.000017 9547 sigma.decidable_eq | |
0.000015 9548 sigma.fst | |
0.526297 9549 sigma_mk_injective | |
0.000080 9550 multiset.join | |
0.000022 9551 multiset.bind | |
0.000015 9552 multiset.sigma | |
0.000014 9553 quot.exists_rep | |
0.000014 9554 quotient.exists_rep | |
0.000014 9555 list.sigma | |
0.000014 9556 multiset.sigma.equations._eqn_1 | |
0.000015 9557 list.sigma.equations._eqn_1 | |
0.000014 9558 multiset.coe_join | |
0.000014 9559 multiset.coe_bind | |
0.000015 9560 multiset.coe_sigma | |
0.000014 9561 list.disjoint | |
0.000015 9562 or_and_distrib_right | |
0.000014 9563 list.mem_join | |
0.000014 9564 list.pairwise_join | |
0.000014 9565 list.disjoint_left | |
0.000014 9566 list.nodup_join | |
0.000018 9567 list.nodup_bind | |
0.000017 9568 sigma.mk.inj | |
0.000018 9569 sigma.mk.inj_arrow | |
0.000016 9570 list.nodup_sigma | |
0.000017 9571 multiset.nodup_sigma | |
0.000017 9572 finset.sigma._proof_1 | |
0.000015 9573 finset.sigma | |
0.000016 9574 sigma.snd | |
0.000017 9575 multiset.bind.equations._eqn_1 | |
0.000015 9576 multiset.join_zero | |
0.000014 9577 multiset.sum_cons | |
0.000017 9578 multiset.join_cons | |
0.000017 9579 multiset.mem_join | |
0.000015 9580 exists_exists_and_eq_and | |
0.000016 9581 multiset.mem_bind | |
0.000015 9582 heq_of_eq | |
0.000014 9583 sigma.mk.inj_eq | |
0.000016 9584 sigma.mk.inj_iff | |
0.000015 9585 heq_iff_eq | |
0.000016 9586 multiset.mem_sigma | |
0.000015 9587 finset.mem_sigma | |
0.000017 9588 sigma.eta | |
0.000014 9589 finset.sigma_preimage_mk | |
0.000017 9590 function.embedding.sigma_mk | |
0.000015 9591 finset.bUnion | |
0.000016 9592 finset.bUnion_val | |
0.000015 9593 finset.mem_bUnion | |
0.000016 9594 function.embedding.sigma_mk_apply | |
0.000015 9595 finset.sigma_eq_bUnion | |
0.000016 9596 finset.bUnion_empty | |
0.000015 9597 finset.bUnion_insert | |
0.000017 9598 disjoint_bot_left | |
0.000015 9599 finset.disjoint_empty_left | |
0.000015 9600 finset.forall_mem_empty_iff | |
0.000016 9601 finset.disjoint_union_left | |
0.000016 9602 finset.forall_mem_insert | |
0.000014 9603 finset.disjoint_bUnion_left | |
0.000017 9604 finset.disjoint_bUnion_right | |
0.000015 9605 finset.sum_bUnion | |
0.000025 9606 finset.sum.equations._eqn_1 | |
0.000028 9607 finset.map_val | |
0.000030 9608 finset.sum_map | |
0.000024 9609 finset.sum_sigma | |
0.000017 9610 list.sum_nil | |
0.000014 9611 list.sum_cons | |
0.000017 9612 tendsto_list_sum | |
0.000015 9613 tendsto_multiset_sum | |
0.000016 9614 tendsto_finset_sum | |
0.000015 9615 supr_range | |
0.000014 9616 filter.infi_eq_generate | |
0.000017 9617 set.fintype_range._proof_1 | |
0.000015 9618 set.fintype_range | |
0.000016 9619 set.finite_range | |
0.000015 9620 set.bUnion_range | |
0.000016 9621 set.finite_subset_Union | |
0.000015 9622 set.eq_finite_Union_of_finite_subset_Union | |
0.000016 9623 set.sInter_eq_bInter | |
0.000015 9624 filter.sInter_mem_sets | |
0.000016 9625 set.mem_sInter | |
0.000015 9626 set.sInter_Union | |
0.000017 9627 filter.mem_infi_iff | |
0.000015 9628 filter.at_top_finset_eq_infi | |
0.000014 9629 finset.mem_coe | |
0.000016 9630 finset.coe_singleton | |
0.000015 9631 finset.singleton_subset_set_iff | |
0.000017 9632 finset.singleton_subset_iff | |
0.000014 9633 filter.tendsto_at_top_finset_of_monotone | |
0.000016 9634 monotone.tendsto_at_top_finset | |
0.000015 9635 finset.monotone_preimage | |
0.000016 9636 finset.mem_singleton_self | |
0.000015 9637 filter.tendsto_finset_preimage_at_top_at_top | |
0.000017 9638 has_sum.sigma | |
0.000015 9639 equiv.sigma_equiv_prod._match_1 | |
0.000016 9640 equiv.sigma_equiv_prod._proof_1 | |
0.000015 9641 equiv.sigma_equiv_prod._match_2 | |
0.000015 9642 equiv.sigma_equiv_prod._proof_2 | |
0.000016 9643 equiv.sigma_equiv_prod | |
0.000015 9644 has_sum.prod_fiberwise | |
0.000016 9645 tsum_prod' | |
0.000015 9646 ennreal.tsum_prod | |
0.000017 9647 equiv.nat_prod_nat_equiv_nat._proof_1 | |
0.000015 9648 equiv.nat_prod_nat_equiv_nat | |
0.000014 9649 equiv.summable_iff_of_has_sum_iff | |
0.000017 9650 equiv.tsum_eq_tsum_of_has_sum_iff_has_sum | |
0.000015 9651 tsum_eq_tsum_of_has_sum_iff_has_sum | |
0.000015 9652 equiv.tsum_eq | |
0.000016 9653 set.Union_subset | |
0.000015 9654 equiv.nat_prod_nat_equiv_nat.equations._eqn_1 | |
0.000014 9655 equiv.coe_fn_mk | |
0.000014 9656 equiv.coe_fn_symm_mk | |
0.000017 9657 set.subset_Union | |
0.000016 9658 tsum_le_tsum | |
0.000016 9659 ennreal.tsum_le_tsum | |
0.000015 9660 measure_theory.outer_measure.of_function._proof_3 | |
0.000016 9661 measure_theory.outer_measure.of_function | |
0.000015 9662 measure_theory.extend | |
0.000015 9663 measure_theory.extend.equations._eqn_1 | |
0.000016 9664 measure_theory.extend_eq | |
0.000016 9665 measure_theory.extend_empty | |
0.000014 9666 measure_theory.induced_outer_measure._proof_1 | |
0.000016 9667 measure_theory.induced_outer_measure | |
0.000015 9668 measure_theory.outer_measure.has_coe_to_fun | |
0.000016 9669 measurable_space.measurable_set_empty | |
0.000016 9670 measurable_set.empty | |
0.000014 9671 measure_theory.outer_measure.empty | |
0.000017 9672 measure_theory.outer_measure.trim | |
0.000015 9673 measure_theory.measure | |
0.000016 9674 measure_theory.measure.to_outer_measure | |
0.000015 9675 measure_theory.measure.has_coe_to_fun | |
0.467010 9676 mul_action | |
0.000075 9677 mul_action.to_has_scalar | |
0.000021 9678 distrib_mul_action | |
0.000015 9679 distrib_mul_action.to_mul_action | |
0.000014 9680 semimodule | |
0.000014 9681 smul_with_zero | |
0.000014 9682 smul_with_zero.to_has_scalar | |
0.000014 9683 mul_action_with_zero | |
0.000014 9684 mul_action_with_zero.to_mul_action | |
0.000015 9685 mul_action_with_zero.smul_zero | |
0.000014 9686 mul_action_with_zero.zero_smul | |
0.000014 9687 mul_action_with_zero.to_smul_with_zero | |
0.000014 9688 semimodule.to_distrib_mul_action | |
0.000015 9689 mul_action.one_smul | |
0.000014 9690 semimodule.to_mul_action_with_zero._proof_1 | |
0.000018 9691 mul_action.mul_smul | |
0.000019 9692 semimodule.to_mul_action_with_zero._proof_2 | |
0.000016 9693 distrib_mul_action.smul_zero | |
0.000018 9694 smul_zero | |
0.000016 9695 semimodule.to_mul_action_with_zero._proof_3 | |
0.000018 9696 semimodule.zero_smul | |
0.000018 9697 semimodule.to_mul_action_with_zero | |
0.000017 9698 linear_map | |
0.000016 9699 measure_theory.outer_measure.empty' | |
0.000018 9700 measure_theory.outer_measure.has_add._proof_1 | |
0.000017 9701 measure_theory.outer_measure.mono | |
0.000016 9702 measure_theory.outer_measure.has_add._proof_2 | |
0.000017 9703 measure_theory.outer_measure.Union_nat | |
0.000015 9704 measure_theory.outer_measure.has_add._proof_3 | |
0.000017 9705 measure_theory.outer_measure.has_add | |
0.000017 9706 measure_theory.measure.trimmed | |
0.000014 9707 measure_theory.measure_eq_trim | |
0.000015 9708 measure_theory.measure_eq_induced_outer_measure | |
0.000016 9709 encodable.decode2 | |
0.000015 9710 supr_comm | |
0.000014 9711 encodable.decode2.equations._eqn_1 | |
0.000017 9712 option.guard_eq_some | |
0.000015 9713 encodable.mem_decode2' | |
0.000016 9714 encodable.mem_decode2 | |
0.000015 9715 infi_infi_eq_right | |
0.000016 9716 supr_supr_eq_right | |
0.000015 9717 encodable.supr_decode2 | |
0.000016 9718 encodable.Union_decode2 | |
0.000015 9719 measurable_space.measurable_set_Union | |
0.000015 9720 supr_neg | |
0.000016 9721 set.Union_neg | |
0.000015 9722 supr_bot | |
0.000015 9723 set.Union_empty | |
0.000016 9724 encodable.Union_decode2_cases | |
0.000015 9725 measurable_set.bUnion_decode2 | |
0.000014 9726 measurable_set.Union | |
0.000017 9727 finset.attach_val | |
0.000014 9728 multiset.attach_map_val | |
0.000017 9729 finset.erase_dup_eq_self | |
0.000015 9730 finset.attach_image_val | |
0.000016 9731 finset.sum_attach | |
0.000015 9732 filter.singleton_mem_pure_sets | |
0.000016 9733 filter.le_pure_iff | |
0.000015 9734 filter.eventually_ge_at_top | |
0.000016 9735 filter.order_top.at_top_eq | |
0.000015 9736 filter.tendsto_pure | |
0.000016 9737 filter.tendsto_pure_pure | |
0.000016 9738 filter.tendsto_at_top_pure | |
0.000014 9739 order_top.tendsto_at_top_nhds | |
0.000016 9740 finset.order_top._proof_1 | |
0.000015 9741 finset.order_top._proof_2 | |
0.000015 9742 finset.order_top._proof_3 | |
0.000016 9743 finset.order_top._proof_4 | |
0.000016 9744 finset.subset_univ | |
0.000014 9745 finset.order_top | |
0.000014 9746 has_sum_fintype | |
0.000015 9747 finset_coe.fintype | |
0.000014 9748 finset.has_sum | |
0.000016 9749 has_sum_sum_of_ne_finset_zero | |
0.000015 9750 has_sum_single | |
0.000016 9751 tsum_eq_single | |
0.000015 9752 nat.rec_zero | |
0.000017 9753 measure_theory.outer_measure.of_function_le | |
0.000015 9754 measure_theory.outer_measure.of_function_eq | |
0.000014 9755 set.union_diff_cancel | |
0.000017 9756 tsum_eq_tsum_of_ne_zero_bij | |
0.000014 9757 supr_false | |
0.000017 9758 option.get_mem | |
0.000014 9759 encodable.encodek2 | |
0.000017 9760 option.get_of_mem | |
0.000014 9761 tsum_supr_decode2 | |
0.000017 9762 tsum_Union_decode2 | |
0.000015 9763 option.ext | |
0.000016 9764 measure_theory.extend_Union_nat | |
0.000015 9765 set.bot_eq_empty | |
0.000015 9766 encodable.Union_decode2_disjoint_on | |
0.000016 9767 measure_theory.extend_Union | |
0.000015 9768 sum | |
0.000016 9769 unit | |
0.000015 9770 sum.cases_on | |
0.000015 9771 encodable.encode_sum._main | |
0.000016 9772 encodable.encode_sum | |
0.000015 9773 encodable.decode_sum._match_1 | |
0.000014 9774 encodable.decode_sum | |
0.000016 9775 encodable.encode_sum._main.equations._eqn_1 | |
0.000027 9776 encodable.encode_sum.equations._eqn_1 | |
0.000016 9777 encodable.decode_sum.equations._eqn_1 | |
0.000014 9778 nat.bodd_div2_eq | |
0.000014 9779 nat.bodd_bit | |
0.000014 9780 nat.bodd_bit0 | |
0.000014 9781 nat.div2_bit0 | |
0.000014 9782 encodable.decode_sum._match_1.equations._eqn_1 | |
0.000016 9783 sum.no_confusion_type | |
0.000015 9784 sum.no_confusion | |
0.000017 9785 sum.inl.inj | |
0.000015 9786 sum.inl.inj_eq | |
0.000016 9787 encodable.encode_sum._main.equations._eqn_2 | |
0.000016 9788 encodable.encode_sum.equations._eqn_2 | |
0.000014 9789 nat.bodd_bit1 | |
0.000016 9790 nat.div2_bit1 | |
0.000014 9791 encodable.decode_sum._match_1.equations._eqn_2 | |
0.000017 9792 sum.inr.inj | |
0.000015 9793 sum.inr.inj_eq | |
0.000016 9794 encodable.sum._proof_1 | |
0.000014 9795 encodable.sum | |
0.000017 9796 punit.cases_on | |
0.000015 9797 iff_eq_of_eq_true_right | |
0.241297 9798 eq_iff_true_of_subsingleton | |
0.000074 9799 punit.rec_on | |
0.000024 9800 punit_eq | |
0.000015 9801 punit.subsingleton | |
0.000014 9802 encodable.unit._match_1 | |
0.000014 9803 encodable.unit._proof_1 | |
0.000014 9804 encodable.unit | |
0.000014 9805 sum.rec_on | |
0.000014 9806 equiv.bool_equiv_punit_sum_punit._proof_1 | |
0.000014 9807 equiv.bool_equiv_punit_sum_punit._proof_2 | |
0.000014 9808 equiv.bool_equiv_punit_sum_punit | |
0.000014 9809 encodable.bool | |
0.000014 9810 function.on_fun.equations._eqn_1 | |
0.000014 9811 pairwise.equations._eqn_1 | |
0.000014 9812 pairwise_on_bool | |
0.000018 9813 pairwise_disjoint_on_bool | |
0.000017 9814 bool.fintype._proof_1 | |
0.000018 9815 finset.mk_zero | |
0.000017 9816 finset.mk_cons | |
0.000015 9817 is_lawful_singleton | |
0.000016 9818 is_lawful_singleton.insert_emptyc_eq | |
0.000017 9819 finset.is_lawful_singleton | |
0.000017 9820 bool.fintype._proof_2 | |
0.000017 9821 bool.fintype | |
0.000017 9822 tsum_fintype | |
0.000017 9823 fintype.univ_bool | |
0.000017 9824 measure_theory.extend_union | |
0.000017 9825 generalized_boolean_algebra.inf_inf_sdiff | |
0.000015 9826 inf_inf_sdiff | |
0.000016 9827 sdiff_le | |
0.000018 9828 inf_sdiff_right | |
0.000014 9829 sdiff_inf_sdiff | |
0.000016 9830 inf_sdiff_self_right | |
0.000015 9831 set.inter_diff_self | |
0.000017 9832 set.disjoint_diff | |
0.000015 9833 decidable.and_iff_not_or_not | |
0.000016 9834 and_iff_not_or_not | |
0.000015 9835 set.inter_eq_compl_compl_union_compl | |
0.000016 9836 measurable_space.measurable_set_compl | |
0.000017 9837 measurable_set.compl | |
0.000015 9838 measurable_set.union | |
0.000014 9839 measurable_set.inter | |
0.000016 9840 measurable_set.diff | |
0.000015 9841 measure_theory.extend_mono | |
0.000016 9842 measure_theory.extend_Union_le_tsum_nat' | |
0.000015 9843 set.disjointed | |
0.000015 9844 supr_le_supr | |
0.000016 9845 set.Union_subset_Union | |
0.000015 9846 set.mem_bUnion | |
0.000014 9847 set.mem_bInter | |
0.000014 9848 set.subset_Union_disjointed | |
0.000014 9849 set.bUnion_subset_Union | |
0.000014 9850 set.Union_disjointed | |
0.000016 9851 set.disjointed.equations._eqn_1 | |
0.000015 9852 nat.lt_succ_iff_lt_or_eq | |
0.000016 9853 set.Inter_lt_succ | |
0.000015 9854 set.disjointed_induct | |
0.000016 9855 measurable_set.disjointed | |
0.000015 9856 or.drec | |
0.000017 9857 set.disjoint_disjointed | |
0.000015 9858 measure_theory.extend_Union_le_tsum_nat | |
0.000016 9859 measure_theory.induced_outer_measure_eq_extend | |
0.000015 9860 measure_theory.measure.m_Union | |
0.000016 9861 measure_theory.measure_eq_extend | |
0.000015 9862 measure_theory.measure_Union | |
0.000016 9863 measure_theory.measure.has_add._proof_1 | |
0.000015 9864 measure_theory.outer_measure.cases_on | |
0.000016 9865 measure_theory.outer_measure.coe_fn_injective | |
0.000015 9866 measure_theory.outer_measure.ext | |
0.000016 9867 fin.has_zero | |
0.000017 9868 nat.succ_lt_succ | |
0.000015 9869 fin.succ._main | |
0.000016 9870 fin.succ | |
0.000015 9871 order_embedding | |
0.000014 9872 fin.le | |
0.000016 9873 fin.has_le | |
0.000015 9874 order_embedding.of_strict_mono._proof_1 | |
0.000016 9875 order_embedding.of_strict_mono | |
0.000015 9876 fin.lt | |
0.000016 9877 fin.has_lt | |
0.000015 9878 fin.fin_to_nat | |
0.000016 9879 fin.linear_order._proof_1 | |
0.000015 9880 fin.linear_order._proof_2 | |
0.000014 9881 fin.linear_order._proof_3 | |
0.000017 9882 fin.linear_order._proof_4 | |
0.000015 9883 fin.linear_order._proof_5 | |
0.000014 9884 fin.decidable_le | |
0.000016 9885 fin.veq_of_eq | |
0.000015 9886 fin.decidable_eq._proof_1 | |
0.000015 9887 fin.decidable_eq | |
0.000016 9888 fin.decidable_lt | |
0.000015 9889 fin.linear_order | |
0.000016 9890 fin.cast_lt | |
0.000015 9891 fin.cast_le._proof_1 | |
0.000016 9892 fin.cast_le._proof_2 | |
0.000015 9893 fin.cast_le | |
0.000016 9894 fin.cast_add | |
0.000014 9895 fin.cast_succ | |
0.000018 9896 fin.mk_zero | |
0.000017 9897 fin.induction._proof_1 | |
0.000015 9898 nat.lt_of_succ_lt | |
0.000016 9899 fin.induction._proof_2 | |
0.000014 9900 fin.induction | |
0.000017 9901 fin.cases | |
0.000014 9902 fin.cons | |
0.000016 9903 matrix.vec_cons | |
0.000015 9904 fin.elim0._main | |
0.000017 9905 fin.elim0 | |
0.000014 9906 fin_zero_elim | |
0.000016 9907 matrix.vec_empty | |
0.000015 9908 measure_theory.outer_measure.mono' | |
0.000016 9909 measure_theory.extend_mono' | |
0.000016 9910 measure_theory.induced_outer_measure_eq_extend' | |
0.000016 9911 measure_theory.induced_outer_measure_eq' | |
0.000015 9912 measure_theory.induced_outer_measure_eq_infi | |
0.000014 9913 measure_theory.outer_measure.trim_eq_infi | |
0.000016 9914 is_compl_bot_top | |
0.000016 9915 compl_bot | |
0.000014 9916 set.compl_empty | |
0.000016 9917 measurable_set.univ | |
0.000015 9918 Inf_eq_top | |
0.000016 9919 infi_eq_top | |
0.000015 9920 measurable_set.of_compl | |
0.000016 9921 measurable_set.compl_iff | |
0.000015 9922 set.compl_Inter | |
0.000016 9923 measurable_set.Inter | |
0.000015 9924 ennreal.lt_inv_iff_lt_inv | |
0.000015 9925 gt_mem_nhds | |
0.000016 9926 ennreal.inv_lt_iff_inv_lt | |
0.000015 9927 lt_mem_nhds | |
0.000016 9928 ennreal.continuous_inv | |
0.281352 9929 ennreal.tendsto_inv_iff | |
0.000077 9930 ennreal.nhds_top | |
0.000024 9931 supr_congr | |
0.000015 9932 infi_congr | |
0.000014 9933 ennreal.ne_top_equiv_nnreal._match_1 | |
0.000014 9934 ennreal.ne_top_equiv_nnreal._proof_1 | |
0.000014 9935 ennreal.ne_top_equiv_nnreal._proof_2 | |
0.000015 9936 ennreal.ne_top_equiv_nnreal | |
0.000014 9937 ennreal.cinfi_ne_top | |
0.000014 9938 ennreal.infi_ne_top | |
0.000014 9939 ennreal.nhds_top' | |
0.000014 9940 ennreal.tendsto_nhds_top_iff_nnreal | |
0.000014 9941 ennreal.tendsto_nhds_top_iff_nat | |
0.000014 9942 ennreal.tendsto_nhds_top | |
0.000014 9943 ennreal.coe_nat_lt_coe | |
0.000018 9944 ennreal.coe_nat_lt_coe_nat | |
0.000017 9945 ennreal.tendsto_nat_nhds_top | |
0.000017 9946 ennreal.tendsto_inv_nat_nhds_zero | |
0.000015 9947 measure_theory.outer_measure.exists_measurable_superset_eq_trim | |
0.000014 9948 has_le.le.trans_eq | |
0.000014 9949 measure_theory.outer_measure.trim_eq | |
0.000016 9950 measure_theory.outer_measure.exists_measurable_superset_forall_eq_trim | |
0.000018 9951 equiv.fin_equiv_subtype._proof_1 | |
0.000017 9952 equiv.fin_equiv_subtype._proof_2 | |
0.000017 9953 equiv.fin_equiv_subtype._match_1 | |
0.000016 9954 equiv.fin_equiv_subtype._proof_3 | |
0.000018 9955 equiv.fin_equiv_subtype._match_2 | |
0.000015 9956 equiv.fin_equiv_subtype._proof_4 | |
0.000016 9957 equiv.fin_equiv_subtype | |
0.000017 9958 encodable.fin | |
0.000015 9959 fin.forall_fin_succ | |
0.000014 9960 matrix.cons_val_zero | |
0.000017 9961 matrix.vec_cons.equations._eqn_1 | |
0.000014 9962 fin.cons.equations._eqn_1 | |
0.000017 9963 fin.cases_succ | |
0.000014 9964 fin.cons_succ | |
0.000017 9965 matrix.cons_val_succ | |
0.000014 9966 measure_theory.outer_measure.trim_binop | |
0.000017 9967 measure_theory.outer_measure.add_apply | |
0.000014 9968 measure_theory.outer_measure.trim_add | |
0.000017 9969 measure_theory.measure.has_add._proof_2 | |
0.000014 9970 measure_theory.measure.has_add | |
0.000017 9971 measure_theory.outer_measure.has_zero._proof_1 | |
0.000016 9972 measure_theory.outer_measure.has_zero._proof_2 | |
0.000015 9973 measure_theory.outer_measure.has_zero._proof_3 | |
0.000017 9974 measure_theory.outer_measure.has_zero | |
0.000015 9975 measure_theory.measure.has_zero._proof_1 | |
0.000014 9976 measure_theory.outer_measure.trim_zero | |
0.000017 9977 measure_theory.measure.has_zero | |
0.000014 9978 pi.has_add | |
0.000017 9979 pi.add_comm_monoid._proof_1 | |
0.000015 9980 pi.has_zero | |
0.000016 9981 pi.add_comm_monoid._proof_2 | |
0.000015 9982 pi.add_comm_monoid._proof_3 | |
0.000016 9983 pi.add_comm_monoid._proof_4 | |
0.000015 9984 pi.add_comm_monoid._proof_5 | |
0.000017 9985 pi.add_comm_monoid._proof_6 | |
0.000015 9986 pi.add_comm_monoid | |
0.000015 9987 measure_theory.outer_measure.add_comm_monoid._proof_1 | |
0.000016 9988 measure_theory.outer_measure.add_comm_monoid._proof_2 | |
0.000015 9989 measure_theory.outer_measure.add_comm_monoid._proof_3 | |
0.000015 9990 measure_theory.outer_measure.add_comm_monoid._proof_4 | |
0.000016 9991 measure_theory.outer_measure.add_comm_monoid._proof_5 | |
0.000015 9992 measure_theory.outer_measure.add_comm_monoid._proof_6 | |
0.000015 9993 measure_theory.outer_measure.add_comm_monoid._proof_7 | |
0.000016 9994 measure_theory.outer_measure.add_comm_monoid._proof_8 | |
0.000015 9995 measure_theory.outer_measure.add_comm_monoid | |
0.000015 9996 measure_theory.measure.cases_on | |
0.000016 9997 measure_theory.measure.to_outer_measure_injective | |
0.000015 9998 measure_theory.measure.zero_to_outer_measure | |
0.000016 9999 measure_theory.measure.add_to_outer_measure | |
0.000015 10000 measure_theory.measure.add_comm_monoid | |
0.000015 10001 one_smul | |
0.000016 10002 function.injective.mul_action._proof_1 | |
0.000015 10003 function.injective.mul_action._proof_2 | |
0.000015 10004 function.injective.mul_action | |
0.000014 10005 function.injective.distrib_mul_action._proof_1 | |
0.000014 10006 function.injective.distrib_mul_action._proof_2 | |
0.000017 10007 distrib_mul_action.smul_add | |
0.000015 10008 smul_add | |
0.000016 10009 function.injective.distrib_mul_action._proof_3 | |
0.000015 10010 function.injective.distrib_mul_action._proof_4 | |
0.000016 10011 function.injective.distrib_mul_action | |
0.000015 10012 function.injective.semimodule._proof_1 | |
0.000017 10013 function.injective.semimodule._proof_2 | |
0.000015 10014 function.injective.semimodule._proof_3 | |
0.000014 10015 function.injective.semimodule._proof_4 | |
0.000016 10016 semimodule.add_smul | |
0.000016 10017 add_smul | |
0.000014 10018 function.injective.semimodule._proof_5 | |
0.000016 10019 smul_with_zero.zero_smul | |
0.000015 10020 zero_smul | |
0.000017 10021 function.injective.semimodule._proof_6 | |
0.000014 10022 function.injective.semimodule | |
0.000017 10023 measure_theory.outer_measure.has_scalar._proof_1 | |
0.000015 10024 canonically_ordered_semiring.mul_le_mul | |
0.000014 10025 ennreal.mul_le_mul | |
0.391205 10026 ennreal.mul_left_mono | |
0.000076 10027 measure_theory.outer_measure.has_scalar._proof_2 | |
0.000024 10028 filter.prod_comm' | |
0.000014 10029 filter.prod_comm | |
0.000015 10030 nhds_swap | |
0.000014 10031 with_top.lt_iff_exists_coe_btwn | |
0.000015 10032 ennreal.lt_iff_exists_nnreal_btwn | |
0.000014 10033 ennreal.mul_lt_mul | |
0.000014 10034 ennreal.tendsto_mul | |
0.000014 10035 ennreal.tendsto.mul | |
0.000015 10036 ennreal.tendsto.const_mul | |
0.000014 10037 ennreal.tsum_mul_left | |
0.000015 10038 rel_supr_tsum | |
0.000014 10039 measure_theory.outer_measure.Union | |
0.000014 10040 measure_theory.outer_measure.has_scalar._proof_3 | |
0.000019 10041 measure_theory.outer_measure.has_scalar | |
0.000018 10042 pi.add_monoid._proof_1 | |
0.000016 10043 pi.add_monoid._proof_2 | |
0.000017 10044 pi.add_monoid._proof_3 | |
0.000017 10045 pi.add_monoid._proof_4 | |
0.000015 10046 pi.add_monoid._proof_5 | |
0.000016 10047 pi.add_monoid | |
0.000017 10048 pi.has_scalar | |
0.000017 10049 pi.mul_action._proof_1 | |
0.000017 10050 pi.mul_action._proof_2 | |
0.000017 10051 pi.mul_action | |
0.000015 10052 pi.distrib_mul_action._proof_1 | |
0.000015 10053 pi.distrib_mul_action._proof_2 | |
0.000016 10054 pi.distrib_mul_action._proof_3 | |
0.000015 10055 pi.distrib_mul_action._proof_4 | |
0.000015 10056 pi.distrib_mul_action | |
0.000016 10057 pi.semimodule._proof_1 | |
0.000015 10058 pi.semimodule._proof_2 | |
0.000016 10059 pi.semimodule._proof_3 | |
0.000015 10060 pi.semimodule._proof_4 | |
0.000016 10061 pi.semimodule | |
0.000015 10062 monoid.to_mul_action._proof_1 | |
0.000016 10063 monoid.to_mul_action._proof_2 | |
0.000015 10064 monoid.to_mul_action | |
0.000015 10065 semiring.to_semimodule._proof_1 | |
0.000016 10066 semiring.to_semimodule._proof_2 | |
0.000015 10067 semiring.to_semimodule._proof_3 | |
0.000014 10068 semiring.to_semimodule._proof_4 | |
0.000017 10069 semiring.to_semimodule | |
0.000015 10070 measure_theory.outer_measure.coe_zero | |
0.000016 10071 measure_theory.outer_measure.coe_add | |
0.000015 10072 mul_zero_class.to_smul_with_zero | |
0.000016 10073 measure_theory.outer_measure.coe_smul | |
0.000015 10074 measure_theory.outer_measure.semimodule._proof_1 | |
0.000015 10075 measure_theory.outer_measure.semimodule._proof_2 | |
0.000016 10076 measure_theory.outer_measure.semimodule._proof_3 | |
0.000015 10077 measure_theory.outer_measure.semimodule._proof_4 | |
0.000014 10078 measure_theory.outer_measure.semimodule._proof_5 | |
0.000017 10079 measure_theory.outer_measure.semimodule._proof_6 | |
0.000015 10080 measure_theory.outer_measure.semimodule | |
0.000016 10081 measure_theory.outer_measure.measure_of_eq_coe | |
0.000015 10082 measure_theory.coe_to_outer_measure | |
0.000016 10083 pi.smul_apply | |
0.000015 10084 algebra.id.smul_eq_mul | |
0.000016 10085 measure_theory.measure.has_scalar._proof_1 | |
0.000015 10086 measure_theory.outer_measure.trim_op | |
0.000017 10087 measure_theory.outer_measure.smul_apply | |
0.000015 10088 measure_theory.outer_measure.trim_smul | |
0.000016 10089 measure_theory.measure.has_scalar._proof_2 | |
0.000015 10090 measure_theory.measure.has_scalar | |
0.000016 10091 measure_theory.measure.smul_to_outer_measure | |
0.000015 10092 measure_theory.measure.semimodule | |
0.000016 10093 linear_map.to_fun | |
0.000015 10094 linear_map.has_coe_to_fun | |
0.000015 10095 measurable_space.partial_order._proof_1 | |
0.000016 10096 measurable_space.partial_order._proof_2 | |
0.000015 10097 measurable_space.partial_order._proof_3 | |
0.000016 10098 measurable_space.cases_on | |
0.000015 10099 measurable_space.ext | |
0.000015 10100 measurable_space.partial_order._proof_4 | |
0.000016 10101 measurable_space.partial_order | |
0.000015 10102 measurable_space.dynkin_system | |
0.000016 10103 measurable_space.dynkin_system.has | |
0.000015 10104 measurable_space.dynkin_system.has_empty | |
0.000014 10105 measurable_space.dynkin_system.has_compl | |
0.000017 10106 measurable_space.dynkin_system.to_measurable_space._proof_1 | |
0.000015 10107 measurable_space.dynkin_system.has_Union_nat | |
0.000014 10108 measurable_space.dynkin_system.has_Union | |
0.000014 10109 measurable_space.dynkin_system.to_measurable_space._proof_2 | |
0.000015 10110 measurable_space.dynkin_system.to_measurable_space | |
0.000014 10111 measure_theory.outer_measure.is_caratheodory | |
0.000016 10112 measure_theory.outer_measure.is_caratheodory.equations._eqn_1 | |
0.000015 10113 disjoint.sdiff_eq_left | |
0.000016 10114 disjoint_bot_right | |
0.000017 10115 sdiff_bot | |
0.000015 10116 set.diff_empty | |
0.000017 10117 set.inhabited | |
0.000014 10118 measure_theory.outer_measure.is_caratheodory_empty | |
0.000017 10119 measure_theory.outer_measure.is_caratheodory_compl | |
0.000015 10120 measure_theory.outer_measure.caratheodory_dynkin._proof_1 | |
0.000016 10121 set.inter_union_diff | |
0.000015 10122 supr_bool_eq | |
0.000017 10123 fintype.sum_bool | |
0.000015 10124 rel_sup_add | |
0.000016 10125 measure_theory.outer_measure.union | |
0.379796 10126 measure_theory.outer_measure.le_inter_add_diff | |
0.000076 10127 measure_theory.outer_measure.is_caratheodory_iff_le' | |
0.000024 10128 set.inter_Union | |
0.000015 10129 set.Union_lt_succ | |
0.000014 10130 set.union_inter_cancel_left | |
0.000015 10131 le_of_inf_le_sup_le | |
0.000013 10132 eq_of_inf_eq_sup_eq | |
0.000014 10133 sdiff_unique | |
0.000014 10134 inf_sdiff_assoc | |
0.000014 10135 set.inter_diff_assoc | |
0.000014 10136 disjoint.sdiff_eq_of_sup_eq | |
0.000014 10137 disjoint.sup_sdiff_cancel_left | |
0.000014 10138 set.union_diff_cancel_left | |
0.000014 10139 measure_theory.outer_measure.measure_inter_union | |
0.000014 10140 measure_theory.outer_measure.is_caratheodory_sum | |
0.000014 10141 Sup_range | |
0.000019 10142 filter.eventually.filter_mono | |
0.000018 10143 filter.frequently.filter_mono | |
0.000017 10144 pure_le_nhds_within | |
0.000017 10145 mem_of_mem_nhds_within | |
0.000017 10146 filter.eventually.self_of_nhds_within | |
0.000016 10147 set.dual_Ioi | |
0.000017 10148 set.dual_Icc | |
0.000018 10149 set.Ici_inter_Iio | |
0.000015 10150 set.Ico_subset_Ico | |
0.000016 10151 set.Ico_subset_Ico_left | |
0.000015 10152 Ico_mem_nhds_within_Ici | |
0.000014 10153 set.Icc_subset_Ici_self | |
0.000016 10154 set.Ico_subset_Icc_self | |
0.000015 10155 Icc_mem_nhds_within_Ici | |
0.000016 10156 nhds_within_Icc_eq_nhds_within_Ici | |
0.000015 10157 nhds_within_Ico_eq_nhds_within_Ici | |
0.000016 10158 tfae_mem_nhds_within_Ici | |
0.000015 10159 tfae_mem_nhds_within_Iic | |
0.000014 10160 list.nth._main.equations._eqn_2 | |
0.000016 10161 list.nth.equations._eqn_2 | |
0.000016 10162 auto_param_eq | |
0.000014 10163 list.nth._main.equations._eqn_3 | |
0.000016 10164 list.nth.equations._eqn_3 | |
0.000015 10165 mem_nhds_within_Iic_iff_exists_Ioc_subset' | |
0.000016 10166 is_lub.exists_between | |
0.000015 10167 is_lub.frequently_mem | |
0.000014 10168 is_lub.frequently_nhds_mem | |
0.000017 10169 is_lub.mem_closure | |
0.000015 10170 is_lub.nhds_within_ne_bot | |
0.000014 10171 is_lub.inter_Ici_of_mem | |
0.000016 10172 is_lub.mem_upper_bounds_of_tendsto | |
0.000026 10173 le_of_tendsto | |
0.000019 10174 is_lub.is_lub_of_tendsto | |
0.000014 10175 ennreal.bsupr_add | |
0.000015 10176 ennreal.Sup_add | |
0.000013 10177 ennreal.supr_add | |
0.000015 10178 sdiff_le_sdiff_self | |
0.000014 10179 set.diff_subset_diff_right | |
0.000016 10180 ge_of_eq | |
0.000016 10181 sup_bot_eq | |
0.000014 10182 sup_sdiff | |
0.000016 10183 sdiff_self | |
0.000015 10184 sup_sdiff_right_self | |
0.000016 10185 sup_sdiff_left_self | |
0.000014 10186 set.union_diff_left | |
0.000016 10187 set.inter_left_comm | |
0.000015 10188 compl_sup | |
0.000016 10189 set.compl_union | |
0.000015 10190 measure_theory.outer_measure.is_caratheodory_union | |
0.000015 10191 measure_theory.outer_measure.is_caratheodory_Union_lt | |
0.000016 10192 measure_theory.outer_measure.is_caratheodory_Union_nat | |
0.000015 10193 measure_theory.outer_measure.caratheodory_dynkin._proof_2 | |
0.000016 10194 measure_theory.outer_measure.caratheodory_dynkin | |
0.000015 10195 measure_theory.outer_measure.is_caratheodory_compl_iff | |
0.000016 10196 measure_theory.outer_measure.is_caratheodory_inter | |
0.000015 10197 measure_theory.outer_measure.caratheodory._proof_1 | |
0.000014 10198 measure_theory.outer_measure.caratheodory | |
0.000014 10199 measure_theory.measure.of_measurable._proof_1 | |
0.000014 10200 measure_theory.measure.of_measurable._proof_2 | |
0.000016 10201 measure_theory.measure.of_measurable._proof_3 | |
0.000015 10202 measure_theory.measure.of_measurable._proof_4 | |
0.000016 10203 measure_theory.measure.of_measurable._proof_5 | |
0.000017 10204 measure_theory.induced_outer_measure_eq | |
0.000015 10205 measure_theory.measure.of_measurable._proof_6 | |
0.000016 10206 measure_theory.outer_measure.trim.equations._eqn_1 | |
0.000015 10207 measure_theory.measure.of_measurable._proof_7 | |
0.000016 10208 measure_theory.measure.of_measurable | |
0.000015 10209 measure_theory.outer_measure.f_Union | |
0.000016 10210 measure_theory.outer_measure.Union_eq_of_caratheodory | |
0.000015 10211 measure_theory.outer_measure.to_measure._proof_1 | |
0.000015 10212 measure_theory.outer_measure.to_measure | |
0.000015 10213 measure_theory.outer_measure.trim_congr | |
0.000017 10214 measure_theory.measure.ext | |
0.000014 10215 linear_map.map_add' | |
0.000016 10216 linear_map.map_add | |
0.000015 10217 measure_theory.to_measure_apply | |
0.000016 10218 pi.add_apply | |
0.000015 10219 measure_theory.measure.coe_add | |
0.000016 10220 measure_theory.measure.lift_linear._proof_1 | |
0.000015 10221 linear_map.map_smul' | |
0.000016 10222 linear_map.map_smul | |
0.000015 10223 measure_theory.measure.coe_smul | |
0.000016 10224 measure_theory.measure.lift_linear._proof_2 | |
0.000015 10225 measure_theory.measure.lift_linear | |
0.000016 10226 linear_map.comp._proof_1 | |
0.000015 10227 has_one.nonempty | |
0.000016 10228 linear_map.comp._proof_2 | |
0.000015 10229 linear_map.comp | |
0.000016 10230 measure_theory.outer_measure.map._proof_1 | |
0.000015 10231 measure_theory.outer_measure.map._proof_2 | |
0.295314 10232 measure_theory.outer_measure.map._proof_3 | |
0.000077 10233 measure_theory.outer_measure.map._proof_4 | |
0.000024 10234 measure_theory.outer_measure.map | |
0.000014 10235 measure_theory.outer_measure.comap._proof_1 | |
0.000015 10236 measure_theory.outer_measure.comap._proof_2 | |
0.000014 10237 exists_swap | |
0.000015 10238 set.image_Union | |
0.000014 10239 measure_theory.outer_measure.comap._proof_3 | |
0.000014 10240 measure_theory.outer_measure.comap._proof_4 | |
0.000015 10241 measure_theory.outer_measure.comap._proof_5 | |
0.000013 10242 measure_theory.outer_measure.comap | |
0.000014 10243 measure_theory.outer_measure.restrict | |
0.000014 10244 measure_theory.outer_measure.restrict.equations._eqn_1 | |
0.000015 10245 linear_map.coe_comp | |
0.000014 10246 measure_theory.outer_measure.map_apply | |
0.000014 10247 measure_theory.outer_measure.comap_apply | |
0.000014 10248 subtype.image_preimage_coe | |
0.000013 10249 measure_theory.outer_measure.restrict_apply | |
0.000014 10250 measure_theory.to_outer_measure_eq_induced_outer_measure | |
0.000018 10251 measure_theory.outer_measure.is_caratheodory_iff_le | |
0.000017 10252 set.Union_inter | |
0.000015 10253 set.inter_subset_inter_left | |
0.000016 10254 set.Union_diff | |
0.000017 10255 sdiff_le_self_sdiff | |
0.000015 10256 set.diff_subset_diff_left | |
0.000016 10257 measure_theory.outer_measure.of_function_caratheodory | |
0.000018 10258 measure_theory.measure_union | |
0.000015 10259 measure_theory.le_to_outer_measure_caratheodory | |
0.000016 10260 measure_theory.measure.restrictₗ._proof_1 | |
0.000017 10261 measure_theory.measure.restrictₗ | |
0.000019 10262 measure_theory.measure.restrict | |
0.000017 10263 measure_theory.measure.restrictₗ_apply | |
0.000018 10264 measure_theory.measure.restrictₗ.equations._eqn_1 | |
0.000017 10265 measure_theory.measure.lift_linear_apply | |
0.000016 10266 measure_theory.measure.restrict_apply | |
0.000018 10267 set.pairwise_on | |
0.000014 10268 finset.attach_eq_univ | |
0.000014 10269 supr_subtype | |
0.000017 10270 supr_subtype' | |
0.000015 10271 set.bUnion_eq_Union | |
0.000014 10272 set.pairwise_on.on_injective | |
0.000016 10273 measure_theory.measure_bUnion | |
0.000016 10274 trunc | |
0.000014 10275 trunc.mk | |
0.000014 10276 trunc.exists_rep | |
0.000014 10277 trunc.nonempty | |
0.000016 10278 pi.subsingleton | |
0.000015 10279 trunc.ind | |
0.000017 10280 trunc.induction_on | |
0.000014 10281 trunc.induction_on₂ | |
0.000017 10282 trunc.eq | |
0.000016 10283 trunc.subsingleton | |
0.000015 10284 encodable.trunc_encodable_of_fintype._proof_1 | |
0.000017 10285 list.find_index._main | |
0.000014 10286 list.find_index | |
0.000017 10287 list.index_of | |
0.000015 10288 list.index_of_cons | |
0.000016 10289 nat.succ_inj' | |
0.000014 10290 list.index_of_eq_length | |
0.000017 10291 list.index_of_le_length | |
0.000015 10292 list.index_of_lt_length | |
0.000016 10293 list.nth_le._main.equations._eqn_2 | |
0.000015 10294 list.nth_le.equations._eqn_2 | |
0.000016 10295 list.nth_le._main._proof_1 | |
0.000015 10296 list.nth_le._main.equations._eqn_3 | |
0.000016 10297 list.nth_le.equations._eqn_3 | |
0.000015 10298 list.index_of_nth_le | |
0.000017 10299 list.index_of_nth | |
0.000015 10300 encodable.encodable_of_list._proof_1 | |
0.000016 10301 encodable.encodable_of_list | |
0.000015 10302 encodable.trunc_encodable_of_fintype | |
0.000016 10303 set.finite.countable | |
0.000015 10304 finset.countable_to_set | |
0.000016 10305 measure_theory.measure_bUnion_finset | |
0.000015 10306 pairwise.pairwise_on | |
0.000016 10307 measure_theory.measure_mono | |
0.000015 10308 set.bUnion_subset_bUnion_right | |
0.000017 10309 set.disjointed_subset | |
0.000014 10310 option.to_finset._match_1 | |
0.000017 10311 option.to_finset | |
0.000014 10312 option.to_finset.equations._eqn_1 | |
0.000017 10313 option.to_finset._match_1.equations._eqn_1 | |
0.000015 10314 option.to_finset._match_1.equations._eqn_2 | |
0.000016 10315 option.mem_to_finset | |
0.000015 10316 finset.supr_option_to_finset | |
0.000016 10317 finset.set_bUnion_option_to_finset | |
0.000015 10318 infi_exists | |
0.000016 10319 supr_exists | |
0.000015 10320 finset.supr_bUnion | |
0.000016 10321 finset.set_bUnion_bUnion | |
0.000015 10322 set.Union.equations._eqn_1 | |
0.000016 10323 supr_of_empty' | |
0.000017 10324 supr_of_empty | |
0.000015 10325 measure_theory.measure_empty | |
0.000016 10326 measure_theory.measure_Union_eq_supr | |
0.000015 10327 measure_theory.measure.restrict_Union_apply_eq_supr | |
0.000015 10328 subfield | |
0.000015 10329 subring | |
0.000015 10330 subring.carrier | |
0.000016 10331 submonoid | |
0.000016 10332 submonoid.carrier | |
0.000014 10333 set_like | |
0.000016 10334 set_like.coe | |
0.000016 10335 set_like.set.has_coe_t | |
0.000014 10336 submonoid.cases_on | |
0.000016 10337 submonoid.set_like._proof_1 | |
0.000015 10338 submonoid.set_like | |
0.000016 10339 set_like.has_mem | |
0.000015 10340 submonoid.one_mem' | |
0.000015 10341 submonoid.one_mem | |
0.000016 10342 submonoid.comap._proof_1 | |
0.000015 10343 submonoid.mul_mem' | |
0.000016 10344 submonoid.mul_mem | |
0.000015 10345 submonoid.comap._proof_2 | |
0.000016 10346 submonoid.comap | |
0.237195 10347 ring_hom.to_monoid_hom | |
0.000076 10348 ring_hom.has_coe_monoid_hom | |
0.000024 10349 subsemiring | |
0.000014 10350 subsemiring.carrier | |
0.000015 10351 subsemiring.one_mem' | |
0.000014 10352 subsemiring.mul_mem' | |
0.000014 10353 subsemiring.to_submonoid | |
0.000014 10354 subring.one_mem' | |
0.000014 10355 subring.mul_mem' | |
0.000014 10356 subring.zero_mem' | |
0.000014 10357 subring.add_mem' | |
0.000014 10358 subring.to_subsemiring | |
0.000014 10359 subring.to_submonoid._proof_1 | |
0.000014 10360 subring.to_submonoid._proof_2 | |
0.000015 10361 subring.to_submonoid | |
0.000014 10362 subring.comap._proof_1 | |
0.000017 10363 subring.comap._proof_2 | |
0.000017 10364 add_subgroup | |
0.000018 10365 add_subgroup.carrier | |
0.000016 10366 add_subgroup.cases_on | |
0.000015 10367 add_subgroup.set_like._proof_1 | |
0.000016 10368 add_subgroup.set_like | |
0.000017 10369 add_submonoid | |
0.000015 10370 add_submonoid.carrier | |
0.000016 10371 add_submonoid.cases_on | |
0.000017 10372 add_submonoid.set_like._proof_1 | |
0.000015 10373 add_submonoid.set_like | |
0.000017 10374 add_submonoid.zero_mem' | |
0.000019 10375 add_submonoid.zero_mem | |
0.000015 10376 add_submonoid.comap._proof_1 | |
0.000015 10377 add_submonoid.add_mem' | |
0.000014 10378 add_submonoid.add_mem | |
0.000016 10379 add_submonoid.comap._proof_2 | |
0.000017 10380 add_submonoid.comap | |
0.000017 10381 add_subgroup.zero_mem' | |
0.000015 10382 add_subgroup.add_mem' | |
0.000014 10383 add_subgroup.to_add_submonoid | |
0.000016 10384 add_subgroup.comap._proof_1 | |
0.000014 10385 add_subgroup.comap._proof_2 | |
0.000015 10386 add_monoid_hom.map_neg | |
0.000016 10387 add_subgroup.neg_mem' | |
0.000015 10388 add_subgroup.neg_mem | |
0.000016 10389 add_subgroup.comap._proof_3 | |
0.000015 10390 add_subgroup.comap | |
0.000016 10391 subring.neg_mem' | |
0.000023 10392 subring.to_add_subgroup | |
0.000017 10393 subring.comap._proof_3 | |
0.000014 10394 subring.comap._proof_4 | |
0.000015 10395 subring.comap._proof_5 | |
0.000014 10396 subring.comap | |
0.000016 10397 subfield.carrier | |
0.000015 10398 subfield.one_mem' | |
0.000014 10399 subfield.mul_mem' | |
0.000017 10400 subfield.zero_mem' | |
0.000014 10401 subfield.add_mem' | |
0.000017 10402 subfield.neg_mem' | |
0.000015 10403 subfield.to_subring | |
0.000016 10404 subfield.comap._proof_1 | |
0.000015 10405 subfield.comap._proof_2 | |
0.000016 10406 subfield.comap._proof_3 | |
0.000015 10407 subfield.comap._proof_4 | |
0.000016 10408 subfield.comap._proof_5 | |
0.000015 10409 subfield.cases_on | |
0.000015 10410 subfield.set_like._proof_1 | |
0.000016 10411 subfield.set_like | |
0.000014 10412 subfield.inv_mem' | |
0.000017 10413 subfield.inv_mem | |
0.000014 10414 subfield.comap._proof_6 | |
0.000017 10415 subfield.comap | |
0.000015 10416 subfield.comap.equations._eqn_1 | |
0.000015 10417 submodule | |
0.000016 10418 set_like.coe_injective' | |
0.000014 10419 set_like.coe_injective | |
0.000017 10420 set_like.partial_order._proof_1 | |
0.000015 10421 set_like.partial_order._proof_2 | |
0.000015 10422 set_like.partial_order._proof_3 | |
0.000016 10423 set_like.partial_order._proof_4 | |
0.000015 10424 set_like.partial_order | |
0.000016 10425 submodule.carrier | |
0.000015 10426 submodule.cases_on | |
0.000017 10427 submodule.set_like._proof_1 | |
0.000014 10428 submodule.set_like | |
0.000016 10429 submodule.order_bot._proof_2 | |
0.000015 10430 stream | |
0.000017 10431 stream.is_seq | |
0.000014 10432 seq | |
0.000017 10433 generalized_continued_fraction.pair | |
0.000015 10434 generalized_continued_fraction | |
0.000014 10435 stream.nth | |
0.000016 10436 stream.map | |
0.000015 10437 generalized_continued_fraction.pair.b | |
0.000017 10438 stream.tail | |
0.000015 10439 generalized_continued_fraction.h | |
0.000014 10440 generalized_continued_fraction.next_numerator | |
0.000017 10441 generalized_continued_fraction.pair.a | |
0.000015 10442 generalized_continued_fraction.next_denominator | |
0.000014 10443 generalized_continued_fraction.next_continuants | |
0.000016 10444 generalized_continued_fraction.continuants_aux._match_1 | |
0.000015 10445 seq.nth | |
0.000016 10446 generalized_continued_fraction.s | |
0.000015 10447 generalized_continued_fraction.continuants_aux._main | |
0.000016 10448 generalized_continued_fraction.continuants_aux | |
0.000015 10449 generalized_continued_fraction.continuants | |
0.000017 10450 generalized_continued_fraction.denominators | |
0.000015 10451 generalized_continued_fraction.denominators.equations._eqn_1 | |
0.000016 10452 finset.card | |
0.000015 10453 is_primitive_root | |
0.000016 10454 add_monoid_algebra | |
0.000015 10455 polynomial | |
0.000016 10456 finsupp.sum | |
0.000015 10457 finset.filter_congr_decidable | |
0.000016 10458 finsupp.on_finset._proof_1 | |
0.000016 10459 finsupp.on_finset | |
0.000015 10460 finsupp.mem_support_iff | |
0.000017 10461 finsupp.zip_with._proof_1 | |
0.000017 10462 finsupp.zip_with | |
0.000015 10463 finsupp.has_add._proof_1 | |
0.000016 10464 finsupp.has_add | |
0.000015 10465 finsupp.cases_on | |
0.000016 10466 finsupp.coe_fn_injective | |
0.000015 10467 finsupp.ext | |
0.000014 10468 finsupp.add_monoid._match_1 | |
0.000016 10469 finsupp.add_monoid._match_2 | |
0.000016 10470 finsupp.add_monoid._match_3 | |
0.415830 10471 finsupp.add_monoid._proof_1 | |
0.000078 10472 finsupp.has_zero._proof_1 | |
0.000023 10473 finsupp.has_zero | |
0.000015 10474 finsupp.add_zero_class._match_1 | |
0.000015 10475 finsupp.add_zero_class._proof_1 | |
0.000014 10476 finsupp.add_zero_class._match_2 | |
0.000015 10477 finsupp.add_zero_class._proof_2 | |
0.000014 10478 finsupp.add_zero_class | |
0.000014 10479 finsupp.add_monoid._proof_2 | |
0.000014 10480 finsupp.add_monoid._proof_3 | |
0.000015 10481 not_imp_not | |
0.000014 10482 finsupp.map_range._proof_1 | |
0.000014 10483 finsupp.map_range | |
0.000014 10484 nsmul_add' | |
0.000014 10485 succ_nsmul | |
0.000015 10486 nsmul_zero | |
0.000014 10487 finsupp.map_range_apply | |
0.000016 10488 add_monoid.to_smul_with_zero | |
0.000017 10489 finsupp.coe_zero | |
0.000018 10490 pi.zero_apply | |
0.000015 10491 finsupp.add_monoid._proof_4 | |
0.000014 10492 finsupp.coe_add | |
0.000014 10493 finsupp.add_monoid._proof_5 | |
0.000016 10494 finsupp.add_monoid | |
0.000019 10495 finsupp.add_comm_monoid._proof_1 | |
0.000016 10496 finsupp.add_comm_monoid._proof_2 | |
0.000018 10497 finsupp.add_comm_monoid._proof_3 | |
0.000017 10498 finsupp.add_comm_monoid._proof_4 | |
0.000019 10499 finsupp.add_comm_monoid._proof_5 | |
0.000015 10500 finsupp.add_comm_monoid._match_1 | |
0.000017 10501 finsupp.add_comm_monoid._match_2 | |
0.000015 10502 finsupp.add_comm_monoid._proof_6 | |
0.000016 10503 finsupp.add_comm_monoid | |
0.000015 10504 add_monoid_algebra.add_comm_monoid | |
0.000016 10505 finsupp.single._proof_1 | |
0.000017 10506 finsupp.single | |
0.000015 10507 add_monoid_algebra.has_mul | |
0.000016 10508 add_monoid_algebra.mul_def | |
0.000016 10509 finsupp.add_apply | |
0.000014 10510 finsupp.not_mem_support_iff | |
0.000016 10511 finsupp.sum_of_support_subset | |
0.000015 10512 finsupp.support_on_finset_subset | |
0.000016 10513 finsupp.support_zip_with | |
0.000015 10514 finsupp.support_add | |
0.000015 10515 finsupp.sum_add_index | |
0.000016 10516 function.update | |
0.000015 10517 finsupp.single_apply | |
0.000016 10518 set.indicator.equations._eqn_1 | |
0.000015 10519 finsupp.single_eq_indicator | |
0.000015 10520 set.piecewise_eq_indicator | |
0.000016 10521 function.update_same | |
0.000015 10522 function.update_noteq | |
0.000015 10523 set.piecewise_singleton | |
0.000016 10524 finsupp.single_eq_update | |
0.000015 10525 function.funext_iff | |
0.000015 10526 function.forall_update_iff | |
0.000016 10527 function.update_eq_iff | |
0.000015 10528 function.update_eq_self | |
0.000015 10529 finsupp.single_zero | |
0.000016 10530 finsupp.single_eq_same | |
0.000015 10531 finsupp.single_eq_of_ne | |
0.000015 10532 finsupp.single_add | |
0.000016 10533 finsupp.sum_add | |
0.000015 10534 add_monoid_algebra.distrib._proof_1 | |
0.000014 10535 finsupp.sum_zero | |
0.000017 10536 add_monoid_algebra.distrib._proof_2 | |
0.000015 10537 add_monoid_algebra.distrib | |
0.000014 10538 add_monoid_algebra.semiring._proof_1 | |
0.000017 10539 finsupp.sum_zero_index | |
0.000015 10540 add_monoid_algebra.mul_zero_class._proof_1 | |
0.000014 10541 add_monoid_algebra.mul_zero_class._proof_2 | |
0.000017 10542 add_monoid_algebra.mul_zero_class | |
0.000015 10543 add_monoid_algebra.semiring._proof_2 | |
0.000016 10544 add_monoid_algebra.semiring._proof_3 | |
0.000015 10545 finsupp.has_scalar._proof_1 | |
0.000014 10546 finsupp.has_scalar | |
0.000017 10547 add_monoid_algebra.has_scalar | |
0.000015 10548 add_comm_monoid.nat_semimodule._proof_1 | |
0.000015 10549 pow_mul | |
0.000016 10550 pow_mul' | |
0.000015 10551 mul_nsmul | |
0.000015 10552 add_comm_monoid.nat_semimodule._proof_2 | |
0.000016 10553 commute.right_comm | |
0.000015 10554 commute.mul_pow | |
0.000016 10555 commute.all | |
0.000015 10556 mul_pow | |
0.000015 10557 nsmul_add | |
0.000016 10558 add_comm_monoid.nat_semimodule._proof_3 | |
0.000015 10559 add_comm_monoid.nat_semimodule._proof_4 | |
0.000015 10560 add_comm_monoid.nat_semimodule._proof_5 | |
0.000016 10561 add_comm_monoid.nat_semimodule._proof_6 | |
0.000015 10562 add_comm_monoid.nat_semimodule | |
0.000016 10563 add_monoid_algebra.semiring._proof_4 | |
0.000015 10564 finsupp.coe_smul | |
0.000014 10565 add_monoid_algebra.semiring._proof_5 | |
0.000014 10566 add_monoid_algebra.semiring._proof_6 | |
0.000014 10567 finsupp.sum_finset_sum_index | |
0.000015 10568 finsupp.sum_sum_index | |
0.000016 10569 finsupp.support_single_subset | |
0.000015 10570 finsupp.sum_single_index | |
0.000016 10571 add_monoid_algebra.semigroup._proof_1 | |
0.000017 10572 add_monoid_algebra.semigroup | |
0.000015 10573 add_monoid_algebra.semiring._proof_7 | |
0.000016 10574 add_monoid_algebra.has_one | |
0.000015 10575 add_monoid_algebra.one_def | |
0.000014 10576 add_equiv | |
0.000017 10577 add_monoid_hom.has_add._proof_1 | |
0.000015 10578 add_monoid_hom.has_add._proof_2 | |
0.000014 10579 add_monoid_hom.has_add | |
0.000017 10580 add_equiv.to_fun | |
0.000015 10581 add_equiv.has_coe_to_fun | |
0.000016 10582 finsupp.lift_add_hom._proof_1 | |
0.000015 10583 finsupp.lift_add_hom._proof_2 | |
0.000016 10584 finsupp.single_add_hom._proof_1 | |
0.000015 10585 finsupp.single_add_hom._proof_2 | |
0.000016 10586 finsupp.single_add_hom | |
0.223931 10587 add_monoid_hom.coe_comp | |
0.000084 10588 add_monoid_hom.coe_mk | |
0.000023 10589 finsupp.single_add_hom_apply | |
0.000015 10590 finsupp.lift_add_hom._proof_3 | |
0.000014 10591 add_submonoid.has_Inf._proof_1 | |
0.000014 10592 add_submonoid.has_Inf._proof_2 | |
0.000014 10593 add_submonoid.has_Inf | |
0.000014 10594 add_submonoid.closure | |
0.000014 10595 add_submonoid.has_top._proof_1 | |
0.000014 10596 add_submonoid.has_top._proof_2 | |
0.000014 10597 add_submonoid.has_top | |
0.000014 10598 add_monoid_hom.eq_of_eq_on_mtop | |
0.000014 10599 add_monoid_hom.eq_mlocus._proof_1 | |
0.000014 10600 add_monoid_hom.eq_mlocus._proof_2 | |
0.000019 10601 add_monoid_hom.eq_mlocus | |
0.000017 10602 add_submonoid.mem_Inf | |
0.000017 10603 add_submonoid.mem_closure | |
0.000017 10604 add_submonoid.subset_closure | |
0.000017 10605 complete_lattice_of_Inf._proof_1 | |
0.000017 10606 complete_lattice_of_Inf._proof_2 | |
0.000017 10607 complete_lattice_of_Inf._proof_3 | |
0.000017 10608 set.mem_insert | |
0.000016 10609 complete_lattice_of_Inf._proof_4 | |
0.000015 10610 set.mem_insert_of_mem | |
0.000015 10611 complete_lattice_of_Inf._proof_5 | |
0.000016 10612 upper_bounds_union | |
0.000016 10613 lower_bounds_union | |
0.000014 10614 is_glb.lower_bounds_eq | |
0.000016 10615 lower_bounds_singleton | |
0.000015 10616 lower_bounds_insert | |
0.000015 10617 complete_lattice_of_Inf._proof_6 | |
0.000016 10618 complete_lattice_of_Inf._proof_7 | |
0.000015 10619 complete_lattice_of_Inf._proof_8 | |
0.000014 10620 complete_lattice_of_Inf._proof_9 | |
0.000016 10621 complete_lattice_of_Inf._proof_10 | |
0.000016 10622 complete_lattice_of_Inf._proof_11 | |
0.000014 10623 complete_lattice_of_Inf._proof_12 | |
0.000016 10624 complete_lattice_of_Inf | |
0.000015 10625 is_glb.of_image | |
0.000014 10626 set_like.coe_subset_coe | |
0.000017 10627 is_glb_infi | |
0.000015 10628 is_glb_binfi | |
0.000014 10629 add_submonoid.complete_lattice._proof_1 | |
0.000017 10630 add_submonoid.complete_lattice._proof_2 | |
0.000015 10631 add_submonoid.complete_lattice._proof_3 | |
0.000014 10632 add_submonoid.complete_lattice._proof_4 | |
0.000016 10633 add_submonoid.complete_lattice._proof_5 | |
0.000016 10634 add_submonoid.complete_lattice._proof_6 | |
0.000014 10635 add_submonoid.complete_lattice._proof_7 | |
0.000016 10636 add_submonoid.complete_lattice._proof_8 | |
0.000015 10637 add_submonoid.has_inf._proof_1 | |
0.000015 10638 add_submonoid.has_inf._match_1 | |
0.000016 10639 add_submonoid.has_inf._match_2 | |
0.000015 10640 add_submonoid.has_inf._proof_2 | |
0.000015 10641 add_submonoid.has_inf | |
0.000016 10642 add_submonoid.complete_lattice._proof_9 | |
0.000015 10643 add_submonoid.complete_lattice._proof_10 | |
0.000016 10644 add_submonoid.complete_lattice._proof_11 | |
0.000016 10645 add_submonoid.mem_top | |
0.000014 10646 add_submonoid.complete_lattice._proof_12 | |
0.000016 10647 add_submonoid.has_bot._proof_1 | |
0.000016 10648 add_submonoid.has_bot._proof_2 | |
0.000014 10649 add_submonoid.has_bot | |
0.000017 10650 add_submonoid.mem_bot | |
0.000015 10651 add_submonoid.complete_lattice._proof_13 | |
0.000014 10652 add_submonoid.complete_lattice._proof_14 | |
0.000014 10653 add_submonoid.complete_lattice._proof_15 | |
0.000014 10654 add_submonoid.complete_lattice._proof_16 | |
0.000017 10655 add_submonoid.complete_lattice._proof_17 | |
0.000015 10656 add_submonoid.complete_lattice | |
0.000016 10657 add_submonoid.closure_le | |
0.000015 10658 add_monoid_hom.eq_on_mclosure | |
0.000016 10659 add_monoid_hom.eq_of_eq_on_mdense | |
0.000027 10660 finsupp.fun_support_eq | |
0.000015 10661 finset.coe_empty | |
0.000014 10662 finset.coe_eq_empty | |
0.000014 10663 finsupp.coe_fn_inj | |
0.000015 10664 finsupp.coe_eq_zero | |
0.000014 10665 function.support_eq_empty_iff | |
0.000014 10666 finsupp.support_eq_empty | |
0.000017 10667 finsupp.erase._proof_1 | |
0.000015 10668 finsupp.erase | |
0.000014 10669 finsupp.erase_same | |
0.000016 10670 finsupp.erase_ne | |
0.000015 10671 finsupp.single_add_erase | |
0.000016 10672 finsupp.support_erase | |
0.000016 10673 finsupp.induction | |
0.000014 10674 finsupp.add_closure_Union_range_single | |
0.000016 10675 finsupp.add_hom_ext | |
0.000015 10676 finsupp.add_hom_ext' | |
0.000014 10677 finsupp.lift_add_hom._proof_4 | |
0.000016 10678 add_monoid_hom.add_apply | |
0.000015 10679 finsupp.lift_add_hom._proof_5 | |
0.000017 10680 finsupp.lift_add_hom | |
0.000015 10681 add_monoid_hom.id._proof_1 | |
0.000014 10682 add_monoid_hom.id._proof_2 | |
0.000016 10683 add_monoid_hom.id | |
0.000015 10684 add_equiv.inv_fun | |
0.000015 10685 add_equiv.left_inv | |
0.000016 10686 add_equiv.right_inv | |
0.000014 10687 add_equiv.to_equiv | |
0.000016 10688 equiv.apply_eq_iff_eq_symm_apply | |
0.000015 10689 finsupp.lift_add_hom_single_add_hom | |
0.000016 10690 finsupp.sum_single | |
0.000015 10691 add_monoid_algebra.mul_one_class._proof_1 | |
0.000016 10692 add_monoid_algebra.mul_one_class._proof_2 | |
0.000015 10693 add_monoid_algebra.mul_one_class | |
0.000017 10694 add_monoid_algebra.semiring._proof_8 | |
0.000017 10695 add_monoid_algebra.semiring._proof_9 | |
0.167688 10696 add_monoid_algebra.semiring._proof_10 | |
0.000080 10697 add_monoid_algebra.semiring._proof_11 | |
0.000023 10698 add_monoid_algebra.semiring._proof_12 | |
0.000015 10699 add_monoid_algebra.semiring._proof_13 | |
0.000014 10700 add_monoid_algebra.semiring._proof_14 | |
0.000014 10701 add_monoid_algebra.semiring._proof_15 | |
0.000014 10702 add_monoid_algebra.semiring._proof_16 | |
0.000014 10703 add_monoid_algebra.semiring._proof_17 | |
0.000013 10704 add_monoid_algebra.semiring | |
0.000014 10705 polynomial.semiring | |
0.000014 10706 finsupp.ext_iff' | |
0.000014 10707 finsupp.finsupp.decidable_eq._proof_1 | |
0.000014 10708 multiset.decidable_dforall_multiset._proof_1 | |
0.000014 10709 multiset.decidable_forall_multiset._proof_1 | |
0.000014 10710 multiset.decidable_forall_multiset._proof_2 | |
0.000014 10711 multiset.decidable_forall_multiset | |
0.000014 10712 multiset.decidable_dforall_multiset._proof_2 | |
0.000018 10713 multiset.decidable_dforall_multiset._match_1 | |
0.000017 10714 multiset.decidable_dforall_multiset._proof_3 | |
0.000017 10715 multiset.decidable_dforall_multiset | |
0.000018 10716 finset.decidable_dforall_finset | |
0.000016 10717 finsupp.finsupp.decidable_eq | |
0.000017 10718 multiset.has_emptyc | |
0.000018 10719 with_bot.has_bot | |
0.000017 10720 with_bot.partial_order._proof_1 | |
0.000016 10721 with_bot.partial_order._proof_2 | |
0.000016 10722 with_bot.partial_order._proof_3 | |
0.000014 10723 with_bot.partial_order._proof_4 | |
0.000016 10724 with_bot.partial_order | |
0.000015 10725 with_bot.order_bot._proof_1 | |
0.000014 10726 with_bot.order_bot._proof_2 | |
0.000017 10727 with_bot.order_bot._proof_3 | |
0.000015 10728 with_bot.order_bot._proof_4 | |
0.000014 10729 with_bot.order_bot._proof_5 | |
0.000017 10730 with_bot.order_bot | |
0.000015 10731 with_bot.semilattice_sup._proof_1 | |
0.000014 10732 with_bot.semilattice_sup._proof_2 | |
0.000017 10733 with_bot.semilattice_sup._proof_3 | |
0.000015 10734 with_bot.semilattice_sup._proof_4 | |
0.000016 10735 with_bot.semilattice_sup._proof_5 | |
0.000015 10736 with_bot.semilattice_sup._proof_6 | |
0.000015 10737 with_bot.semilattice_sup._proof_7 | |
0.000014 10738 with_bot.semilattice_sup._proof_8 | |
0.000014 10739 with_bot.semilattice_sup | |
0.000014 10740 polynomial.support | |
0.000017 10741 polynomial.degree | |
0.000015 10742 add_monoid_algebra.ring._proof_1 | |
0.000016 10743 add_monoid_algebra.ring._proof_2 | |
0.000015 10744 add_monoid_algebra.ring._proof_3 | |
0.000017 10745 add_monoid_algebra.ring._proof_4 | |
0.000014 10746 add_monoid_algebra.ring._proof_5 | |
0.000017 10747 finsupp.add_group._proof_1 | |
0.000015 10748 finsupp.add_group._proof_2 | |
0.000014 10749 finsupp.add_group._proof_3 | |
0.000017 10750 finsupp.add_group._proof_4 | |
0.000015 10751 finsupp.add_group._proof_5 | |
0.000015 10752 finsupp.has_sub._proof_1 | |
0.000016 10753 finsupp.has_sub | |
0.000015 10754 finsupp.add_group._proof_6 | |
0.000014 10755 finsupp.add_group._match_1 | |
0.000016 10756 finsupp.add_group._proof_7 | |
0.000015 10757 finsupp.add_group | |
0.000016 10758 add_monoid_algebra.add_group | |
0.000015 10759 add_monoid_algebra.ring._proof_6 | |
0.000016 10760 add_monoid_algebra.ring._proof_7 | |
0.000015 10761 add_monoid_algebra.ring._proof_8 | |
0.000015 10762 add_monoid_algebra.ring._proof_9 | |
0.000016 10763 add_monoid_algebra.ring._proof_10 | |
0.000015 10764 add_monoid_algebra.ring._proof_11 | |
0.000015 10765 add_monoid_algebra.ring._proof_12 | |
0.000016 10766 add_monoid_algebra.ring._proof_13 | |
0.000015 10767 add_monoid_algebra.ring._proof_14 | |
0.000016 10768 add_monoid_algebra.ring._proof_15 | |
0.000015 10769 add_monoid_algebra.ring | |
0.000016 10770 polynomial.ring | |
0.000015 10771 finsupp.semimodule._proof_1 | |
0.000016 10772 finsupp.semimodule._proof_2 | |
0.000015 10773 finsupp.semimodule._proof_3 | |
0.000014 10774 finsupp.semimodule._proof_4 | |
0.000016 10775 finsupp.semimodule._proof_5 | |
0.000015 10776 finsupp.semimodule._proof_6 | |
0.000016 10777 finsupp.semimodule | |
0.000015 10778 add_monoid_algebra.semimodule | |
0.000016 10779 polynomial.semimodule | |
0.000016 10780 finsupp.lsingle._proof_1 | |
0.000014 10781 finsupp.map_range_single | |
0.000016 10782 finsupp.smul_single | |
0.000015 10783 finsupp.lsingle._proof_2 | |
0.000016 10784 finsupp.lsingle | |
0.000015 10785 polynomial.monomial | |
0.000014 10786 polynomial.X | |
0.000016 10787 add_monoid_algebra.single_zero_ring_hom._proof_1 | |
0.000015 10788 finsupp.single_add_hom.equations._eqn_1 | |
0.000016 10789 monoid_algebra | |
0.000016 10790 monoid_algebra.add_comm_monoid | |
0.000014 10791 monoid_algebra.has_mul | |
0.000016 10792 monoid_algebra.single_mul_single | |
0.000016 10793 add_monoid_algebra.single_mul_single | |
0.000014 10794 add_monoid_algebra.single_zero_ring_hom._proof_2 | |
0.000016 10795 add_monoid_algebra.single_zero_ring_hom._proof_3 | |
0.000015 10796 add_monoid_algebra.single_zero_ring_hom._proof_4 | |
0.000015 10797 add_monoid_algebra.single_zero_ring_hom | |
0.000016 10798 polynomial.C | |
0.000015 10799 polynomial.coeff | |
0.342032 10800 option.get_or_else._main | |
0.000128 10801 option.get_or_else | |
0.000031 10802 polynomial.nat_degree | |
0.000027 10803 polynomial.leading_coeff | |
0.000018 10804 polynomial.monic | |
0.000015 10805 polynomial.monic.equations._eqn_1 | |
0.000014 10806 polynomial.monic.decidable._proof_1 | |
0.000014 10807 polynomial.monic.decidable | |
0.000014 10808 option.rec_on | |
0.000014 10809 with_bot.well_founded_lt | |
0.000014 10810 polynomial.degree_lt_wf | |
0.000014 10811 polynomial.has_well_founded | |
0.000015 10812 with_bot.linear_order._proof_1 | |
0.000014 10813 with_bot.linear_order._proof_2 | |
0.000014 10814 with_bot.linear_order._proof_3 | |
0.000014 10815 with_bot.linear_order._proof_4 | |
0.000018 10816 with_bot.linear_order._proof_5 | |
0.000017 10817 with_bot.linear_order._proof_6 | |
0.000017 10818 with_bot.linear_order._proof_7 | |
0.000017 10819 with_bot.linear_order._proof_8 | |
0.000018 10820 with_bot.linear_order._proof_9 | |
0.000018 10821 with_bot.linear_order | |
0.000015 10822 le_bot_iff | |
0.000017 10823 polynomial.support.equations._eqn_1 | |
0.000016 10824 polynomial.support_eq_empty | |
0.000017 10825 option.lift_or_get._main.equations._eqn_1 | |
0.000015 10826 option.lift_or_get.equations._eqn_1 | |
0.000014 10827 option.lift_or_get_comm | |
0.000015 10828 finset.max._proof_1 | |
0.000014 10829 option.lift_or_get_assoc | |
0.000014 10830 finset.max._proof_2 | |
0.000017 10831 finset.max | |
0.000017 10832 finset.nonempty | |
0.000017 10833 multiset.exists_mem_of_ne_zero | |
0.000015 10834 finset.val_eq_zero | |
0.000014 10835 finset.nonempty_of_ne_empty | |
0.000016 10836 finset.eq_empty_or_nonempty | |
0.000015 10837 finset.max_of_mem | |
0.000017 10838 finset.max_of_nonempty | |
0.000015 10839 finset.max_empty | |
0.000015 10840 finset.max_eq_none | |
0.000016 10841 finset.max_eq_sup_with_bot | |
0.000015 10842 polynomial.degree.equations._eqn_1 | |
0.000016 10843 polynomial.degree_eq_bot | |
0.000015 10844 finsupp.support_map_range | |
0.000015 10845 finsupp.support_neg | |
0.000016 10846 polynomial.support_neg | |
0.000015 10847 polynomial.degree_neg | |
0.000015 10848 finset.sup_mono | |
0.000016 10849 polynomial.support_add | |
0.000015 10850 finset.empty_union | |
0.000015 10851 finset.fold_empty | |
0.000016 10852 finset.sup_empty | |
0.000015 10853 finset.insert_eq | |
0.000014 10854 finset.union_assoc | |
0.000017 10855 finset.insert_union | |
0.000015 10856 sup_is_idempotent | |
0.000014 10857 finset.sup_insert | |
0.000017 10858 finset.sup_union | |
0.000015 10859 sup_eq_max | |
0.000014 10860 with_bot.lattice._proof_1 | |
0.000016 10861 with_bot.lattice._proof_2 | |
0.000015 10862 with_bot.lattice._proof_3 | |
0.000017 10863 with_bot.lattice._proof_4 | |
0.000015 10864 with_bot.lattice._proof_5 | |
0.000014 10865 with_bot.lattice._proof_6 | |
0.000016 10866 with_bot.lattice._proof_7 | |
0.000015 10867 with_bot.semilattice_inf._proof_1 | |
0.000015 10868 with_bot.semilattice_inf._proof_2 | |
0.000016 10869 with_bot.semilattice_inf._proof_3 | |
0.000015 10870 with_bot.semilattice_inf._proof_4 | |
0.000015 10871 with_bot.semilattice_inf._proof_5 | |
0.000016 10872 with_bot.semilattice_inf._proof_6 | |
0.000015 10873 with_bot.semilattice_inf._proof_7 | |
0.000014 10874 with_bot.semilattice_inf._proof_8 | |
0.000017 10875 with_bot.semilattice_inf | |
0.000015 10876 with_bot.lattice._proof_8 | |
0.000014 10877 with_bot.lattice._proof_9 | |
0.000016 10878 with_bot.lattice._proof_10 | |
0.000015 10879 with_bot.lattice | |
0.000015 10880 lattice.cases_on | |
0.000016 10881 semilattice_sup.cases_on | |
0.000015 10882 semilattice_sup.no_confusion_type | |
0.000015 10883 semilattice_sup.no_confusion | |
0.000016 10884 semilattice_sup.mk.inj | |
0.000016 10885 semilattice_sup.mk.inj_arrow | |
0.000014 10886 semilattice_inf.cases_on | |
0.000016 10887 semilattice_inf.no_confusion_type | |
0.000015 10888 semilattice_inf.no_confusion | |
0.000015 10889 semilattice_inf.mk.inj | |
0.000016 10890 semilattice_inf.mk.inj_arrow | |
0.000016 10891 partial_order.cases_on | |
0.000014 10892 partial_order.no_confusion_type | |
0.000016 10893 partial_order.no_confusion | |
0.000016 10894 partial_order.mk.inj | |
0.000014 10895 partial_order.mk.inj_arrow | |
0.000017 10896 preorder.cases_on | |
0.000015 10897 preorder.no_confusion_type | |
0.000014 10898 preorder.no_confusion | |
0.000016 10899 preorder.mk.inj | |
0.000016 10900 preorder.mk.inj_arrow | |
0.000014 10901 partial_order.to_preorder_injective | |
0.000017 10902 has_le.cases_on | |
0.000015 10903 has_le.no_confusion_type | |
0.000014 10904 has_le.no_confusion | |
0.000016 10905 has_le.mk.inj | |
0.000016 10906 has_le.mk.inj_arrow | |
0.000016 10907 preorder.to_has_le_injective | |
0.000015 10908 has_le.ext | |
0.000016 10909 partial_order.ext | |
0.000016 10910 eq_of_forall_ge_iff | |
0.000014 10911 semilattice_sup.ext_sup | |
0.000016 10912 semilattice_sup.ext | |
0.000016 10913 eq_of_forall_le_iff | |
0.000014 10914 semilattice_inf.ext_inf | |
0.000016 10915 semilattice_inf.ext | |
0.000016 10916 lattice.ext | |
0.000014 10917 with_bot.lattice_eq_DLO | |
0.000016 10918 with_bot.sup_eq_max | |
0.000016 10919 polynomial.degree_add_le | |
0.000014 10920 polynomial.degree_erase_le | |
0.000017 10921 polynomial.nat_degree.equations._eqn_1 | |
0.285434 10922 option.eq_none_iff_forall_not_mem | |
0.000074 10923 polynomial.degree_eq_nat_degree | |
0.000024 10924 multiset.mem_erase_of_nodup | |
0.000015 10925 finset.not_mem_erase | |
0.000014 10926 option.lift_or_get_choice | |
0.000014 10927 eq_min | |
0.000015 10928 min_eq_left | |
0.000014 10929 min_comm | |
0.000014 10930 min_eq_right | |
0.000014 10931 min_choice | |
0.000014 10932 max_choice | |
0.000014 10933 option.lift_or_get_idem | |
0.000014 10934 max_idem | |
0.000014 10935 finset.max_insert | |
0.000017 10936 finset.mem_of_max | |
0.000018 10937 polynomial.degree_erase_lt | |
0.000017 10938 polynomial.degree_sub_lt | |
0.000016 10939 with_bot.add_monoid | |
0.000017 10940 polynomial.degree_zero | |
0.000016 10941 with_bot.bot_add | |
0.000014 10942 polynomial.X.equations._eqn_1 | |
0.000016 10943 polynomial.monomial_mul_monomial | |
0.000018 10944 polynomial.single_eq_C_mul_X | |
0.000016 10945 polynomial.degree_sum_le | |
0.000017 10946 finset.sup_mono_fun | |
0.000017 10947 polynomial.ext | |
0.000017 10948 finsupp.smul_single' | |
0.000016 10949 polynomial.X_pow_eq_monomial | |
0.000017 10950 polynomial.monomial_eq_smul_X | |
0.000015 10951 finsupp.smul_apply | |
0.000015 10952 polynomial.coeff_smul | |
0.000016 10953 add_monoid_algebra.has_coe_to_fun | |
0.000014 10954 monoid_algebra.has_coe_to_fun | |
0.000017 10955 monoid_algebra.mul_def | |
0.000014 10956 finsupp.zero_apply | |
0.000016 10957 finsupp.apply_add_hom._proof_1 | |
0.000015 10958 finsupp.apply_add_hom._proof_2 | |
0.000293 10959 finsupp.apply_add_hom | |
0.000020 10960 finsupp.sum_apply | |
0.000018 10961 monoid_algebra.mul_apply | |
0.000014 10962 finset.sum_eq_single_of_mem | |
0.000014 10963 finset.sum_eq_single | |
0.000014 10964 not_eq_of_eq_false | |
0.000014 10965 finset.sum_eq_zero | |
0.000014 10966 finset.sum_dite_eq' | |
0.000015 10967 finset.sum_ite_eq' | |
0.000014 10968 monoid_algebra.single_mul_apply_aux | |
0.000014 10969 add_monoid_algebra.single_mul_apply_aux | |
0.000019 10970 add_monoid_algebra.single_zero_mul_apply | |
0.000017 10971 polynomial.coeff_C_mul | |
0.000017 10972 polynomial.C_mul_X_pow_eq_monomial | |
0.000017 10973 distrib_mul_action_hom | |
0.000015 10974 distrib_mul_action_hom.to_fun | |
0.000016 10975 distrib_mul_action_hom.has_coe_to_fun | |
0.000017 10976 distrib_mul_action_hom.map_zero' | |
0.000015 10977 distrib_mul_action_hom.map_zero | |
0.000016 10978 linear_map.to_distrib_mul_action_hom._proof_1 | |
0.000017 10979 linear_map.to_distrib_mul_action_hom | |
0.000017 10980 linear_map.map_zero | |
0.000017 10981 finsupp.support_single_ne_zero | |
0.000014 10982 polynomial.support_monomial | |
0.000017 10983 polynomial.degree_monomial | |
0.000016 10984 polynomial.degree_monomial_le | |
0.000017 10985 polynomial.degree_C_mul_X_pow_le | |
0.000019 10986 with_top.add_semigroup._proof_1 | |
0.000017 10987 with_top.add_semigroup | |
0.000017 10988 with_bot.add_semigroup | |
0.000015 10989 with_bot.coe_add | |
0.000016 10990 with_bot.add_comm_monoid | |
0.000015 10991 with_bot.ordered_add_comm_monoid._proof_1 | |
0.000016 10992 with_bot.ordered_add_comm_monoid._proof_2 | |
0.000015 10993 with_bot.ordered_add_comm_monoid._proof_3 | |
0.000016 10994 with_bot.ordered_add_comm_monoid._proof_4 | |
0.000015 10995 with_bot.ordered_add_comm_monoid._proof_5 | |
0.000016 10996 with_bot.ordered_add_comm_monoid._proof_6 | |
0.000015 10997 with_bot.ordered_add_comm_monoid._proof_7 | |
0.000016 10998 with_bot.ordered_add_comm_monoid._proof_8 | |
0.000015 10999 with_bot.ordered_add_comm_monoid._proof_9 | |
0.000017 11000 with_bot.ordered_add_comm_monoid._proof_10 | |
0.000014 11001 with_bot.ordered_add_comm_monoid._proof_11 | |
0.000017 11002 with_bot.ordered_add_comm_monoid._proof_12 | |
0.000018 11003 with_bot.ordered_add_comm_monoid | |
0.000015 11004 polynomial.le_degree_of_ne_zero | |
0.000016 11005 polynomial.coeff.equations._eqn_1 | |
0.000015 11006 polynomial.mem_support_iff | |
0.000017 11007 polynomial.degree_mul_le | |
0.000015 11008 list.nat.antidiagonal | |
0.000017 11009 multiset.nat.antidiagonal | |
0.000015 11010 list.nat.nodup_antidiagonal | |
0.000016 11011 multiset.nat.nodup_antidiagonal | |
0.000015 11012 finset.nat.antidiagonal | |
0.000015 11013 multiset.product | |
0.000014 11014 list.product | |
0.000014 11015 multiset.product.equations._eqn_1 | |
0.000014 11016 list.product.equations._eqn_1 | |
0.000014 11017 multiset.coe_product | |
0.000016 11018 list.nodup_product | |
0.000015 11019 multiset.nodup_product | |
0.000016 11020 finset.product._proof_1 | |
0.000015 11021 finset.product | |
0.000016 11022 prod.decidable_eq._match_2 | |
0.000014 11023 prod.decidable_eq._match_1 | |
0.000016 11024 prod.decidable_eq._main | |
0.000016 11025 prod.decidable_eq | |
0.000014 11026 multiset.mem_product | |
0.000016 11027 finset.mem_product | |
0.000016 11028 finset.product_eq_bUnion | |
0.000014 11029 finset.sum_product | |
0.000016 11030 finset.sum_filter | |
0.000015 11031 monoid_algebra.mul_apply_antidiagonal | |
0.000016 11032 add_monoid_algebra.mul_apply_antidiagonal | |
0.000015 11033 finset.nat.antidiagonal.equations._eqn_1 | |
0.000014 11034 multiset.nat.antidiagonal.equations._eqn_1 | |
0.278726 11035 list.nat.antidiagonal.equations._eqn_1 | |
0.000079 11036 list.nat.mem_antidiagonal | |
0.000023 11037 multiset.nat.mem_antidiagonal | |
0.000015 11038 finset.nat.mem_antidiagonal | |
0.000014 11039 polynomial.coeff_mul | |
0.000014 11040 polynomial.coeff_eq_zero_of_degree_lt | |
0.000015 11041 nat.conditionally_complete_linear_order_bot._proof_1 | |
0.000014 11042 nat.conditionally_complete_linear_order_bot._proof_2 | |
0.000014 11043 nat.conditionally_complete_linear_order_bot._proof_3 | |
0.000014 11044 nat.conditionally_complete_linear_order_bot._proof_4 | |
0.000014 11045 nat.conditionally_complete_linear_order_bot._proof_5 | |
0.000014 11046 nat.conditionally_complete_linear_order_bot._proof_6 | |
0.000014 11047 nat.conditionally_complete_linear_order_bot._proof_7 | |
0.000014 11048 nat.conditionally_complete_linear_order_bot._proof_8 | |
0.000014 11049 nat.conditionally_complete_linear_order_bot._proof_9 | |
0.000014 11050 nat.conditionally_complete_linear_order_bot._proof_10 | |
0.000014 11051 nat.has_Sup | |
0.000014 11052 nat.has_Inf | |
0.000014 11053 nat.Sup_def | |
0.000019 11054 nat.conditionally_complete_linear_order_bot._proof_11 | |
0.000015 11055 nat.conditionally_complete_linear_order_bot._proof_12 | |
0.000014 11056 nat.Inf_def | |
0.000016 11057 nat.conditionally_complete_linear_order_bot._proof_13 | |
0.000015 11058 nat.conditionally_complete_linear_order_bot._proof_14 | |
0.000017 11059 nat.conditionally_complete_linear_order_bot._proof_15 | |
0.000017 11060 nat.conditionally_complete_linear_order_bot._proof_16 | |
0.000019 11061 nat.conditionally_complete_linear_order_bot._proof_17 | |
0.000017 11062 nat.conditionally_complete_linear_order_bot | |
0.000017 11063 with_bot.none_eq_bot | |
0.000015 11064 with_bot.get_or_else_bot | |
0.000015 11065 with_bot.some_eq_coe | |
0.000014 11066 option.get_or_else_coe | |
0.000014 11067 with_bot.get_or_else_bot_le_iff | |
0.000014 11068 with_bot.gi_get_or_else_bot._proof_1 | |
0.000016 11069 with_bot.gi_get_or_else_bot._proof_2 | |
0.000018 11070 with_bot.gi_get_or_else_bot._proof_3 | |
0.000017 11071 with_bot.gi_get_or_else_bot | |
0.000015 11072 polynomial.degree_le_nat_degree | |
0.000014 11073 with_bot.coe_lt_coe | |
0.000014 11074 not_lt_iff_eq_or_lt | |
0.000014 11075 add_left_cancel_iff | |
0.000015 11076 polynomial.coeff_mul_degree_add_degree | |
0.000014 11077 polynomial.leading_coeff_zero | |
0.000014 11078 polynomial.degree_mul' | |
0.000016 11079 polynomial.monic.leading_coeff | |
0.000017 11080 by_contradiction | |
0.000015 11081 polynomial.leading_coeff_eq_zero | |
0.000016 11082 polynomial.degree_mul_monic | |
0.000017 11083 polynomial.degree_C_mul_X_pow | |
0.000017 11084 polynomial.leading_coeff.equations._eqn_1 | |
0.000018 11085 polynomial.nat_degree_eq_of_degree_eq_some | |
0.000015 11086 polynomial.nat_degree_mul' | |
0.000017 11087 polynomial.leading_coeff_mul' | |
0.000015 11088 polynomial.leading_coeff_mul_monic | |
0.000017 11089 polynomial.C_1 | |
0.000015 11090 polynomial.nat_degree_C_mul_X_pow | |
0.000017 11091 polynomial.nat_degree_monomial | |
0.000017 11092 polynomial.leading_coeff_monomial | |
0.000017 11093 polynomial.leading_coeff_C_mul_X_pow | |
0.000015 11094 polynomial.leading_coeff_X_pow | |
0.000014 11095 polynomial.monic_X_pow | |
0.000015 11096 polynomial.leading_coeff_mul_X_pow | |
0.000016 11097 polynomial.leading_coeff_C | |
0.000019 11098 polynomial.monic.ne_zero | |
0.000017 11099 polynomial.C_0 | |
0.000015 11100 polynomial.nontrivial.of_polynomial_ne | |
0.000016 11101 polynomial.monic.ne_zero_of_polynomial_ne | |
0.000017 11102 polynomial.div_wf_lemma | |
0.000015 11103 polynomial.div_mod_by_monic_aux._main._pack | |
0.000017 11104 polynomial.div_mod_by_monic_aux._main | |
0.000017 11105 polynomial.div_mod_by_monic_aux | |
0.000015 11106 polynomial.mod_by_monic | |
0.000014 11107 polynomial.div_by_monic | |
0.000016 11108 eq_add_neg_iff_add_eq | |
0.000015 11109 eq_sub_iff_add_eq | |
0.000017 11110 polynomial.mod_by_monic.equations._eqn_1 | |
0.000015 11111 polynomial.div_mod_by_monic_aux._main._pack.equations._eqn_1 | |
0.000014 11112 polynomial.div_mod_by_monic_aux._main.equations._eqn_1 | |
0.000017 11113 polynomial.div_mod_by_monic_aux.equations._eqn_1 | |
0.000015 11114 polynomial.div_by_monic.equations._eqn_1 | |
0.000014 11115 sub_add_eq_sub_sub | |
0.000016 11116 add_monoid_algebra.comm_ring._proof_1 | |
0.000015 11117 add_monoid_algebra.comm_ring._proof_2 | |
0.000016 11118 add_monoid_algebra.comm_ring._proof_3 | |
0.000015 11119 add_monoid_algebra.comm_ring._proof_4 | |
0.000016 11120 add_monoid_algebra.comm_ring._proof_5 | |
0.000015 11121 add_monoid_algebra.comm_ring._proof_6 | |
0.000016 11122 add_monoid_algebra.comm_ring._proof_7 | |
0.000015 11123 add_monoid_algebra.comm_ring._proof_8 | |
0.000016 11124 add_monoid_algebra.comm_ring._proof_9 | |
0.000015 11125 add_monoid_algebra.comm_ring._proof_10 | |
0.000016 11126 add_monoid_algebra.comm_ring._proof_11 | |
0.000016 11127 add_monoid_algebra.comm_ring._proof_12 | |
0.257759 11128 add_monoid_algebra.comm_ring._proof_13 | |
0.000077 11129 add_monoid_algebra.comm_ring._proof_14 | |
0.000023 11130 add_monoid_algebra.comm_ring._proof_15 | |
0.000015 11131 add_monoid_algebra.comm_semiring._proof_1 | |
0.000014 11132 add_monoid_algebra.comm_semiring._proof_2 | |
0.000014 11133 add_monoid_algebra.comm_semiring._proof_3 | |
0.000015 11134 add_monoid_algebra.comm_semiring._proof_4 | |
0.000015 11135 add_monoid_algebra.comm_semiring._proof_5 | |
0.000014 11136 add_monoid_algebra.comm_semiring._proof_6 | |
0.000014 11137 add_monoid_algebra.comm_semiring._proof_7 | |
0.000014 11138 add_monoid_algebra.comm_semiring._proof_8 | |
0.000015 11139 add_monoid_algebra.comm_semiring._proof_9 | |
0.000014 11140 add_monoid_algebra.comm_semiring._proof_10 | |
0.000014 11141 add_monoid_algebra.comm_semiring._proof_11 | |
0.000014 11142 add_monoid_algebra.comm_semiring._proof_12 | |
0.000019 11143 add_monoid_algebra.comm_semiring._proof_13 | |
0.000018 11144 add_monoid_algebra.comm_semiring._proof_14 | |
0.000017 11145 add_monoid_algebra.comm_semiring._proof_15 | |
0.000017 11146 monoid_algebra.distrib._proof_1 | |
0.000017 11147 monoid_algebra.distrib._proof_2 | |
0.000017 11148 monoid_algebra.distrib | |
0.000015 11149 monoid_algebra.semiring._proof_1 | |
0.000016 11150 monoid_algebra.mul_zero_class._proof_1 | |
0.000017 11151 monoid_algebra.mul_zero_class._proof_2 | |
0.000015 11152 monoid_algebra.mul_zero_class | |
0.000016 11153 monoid_algebra.semiring._proof_2 | |
0.000017 11154 monoid_algebra.semiring._proof_3 | |
0.000015 11155 monoid_algebra.semiring._proof_4 | |
0.000015 11156 monoid_algebra.semiring._proof_5 | |
0.000016 11157 monoid_algebra.semiring._proof_6 | |
0.000018 11158 monoid_algebra.semigroup._proof_1 | |
0.000014 11159 monoid_algebra.semigroup | |
0.000026 11160 monoid_algebra.semiring._proof_7 | |
0.000017 11161 monoid_algebra.has_one | |
0.000014 11162 monoid_algebra.one_def | |
0.000014 11163 monoid_algebra.mul_one_class._proof_1 | |
0.000015 11164 monoid_algebra.mul_one_class._proof_2 | |
0.000014 11165 monoid_algebra.mul_one_class | |
0.000017 11166 monoid_algebra.semiring._proof_8 | |
0.000015 11167 monoid_algebra.semiring._proof_9 | |
0.000014 11168 monoid_algebra.semiring._proof_10 | |
0.000017 11169 monoid_algebra.semiring._proof_11 | |
0.000014 11170 monoid_algebra.semiring._proof_12 | |
0.000015 11171 monoid_algebra.semiring._proof_13 | |
0.000014 11172 monoid_algebra.semiring._proof_14 | |
0.000014 11173 monoid_algebra.semiring._proof_15 | |
0.000016 11174 monoid_algebra.semiring._proof_16 | |
0.000015 11175 monoid_algebra.semiring._proof_17 | |
0.000016 11176 monoid_algebra.semiring | |
0.000015 11177 monoid_algebra.comm_semiring._proof_1 | |
0.000017 11178 monoid_algebra.comm_semiring._proof_2 | |
0.000014 11179 monoid_algebra.comm_semiring._proof_3 | |
0.000016 11180 monoid_algebra.comm_semiring._proof_4 | |
0.000018 11181 monoid_algebra.comm_semiring._proof_5 | |
0.000015 11182 monoid_algebra.comm_semiring._proof_6 | |
0.000014 11183 monoid_algebra.comm_semiring._proof_7 | |
0.000016 11184 monoid_algebra.comm_semiring._proof_8 | |
0.000015 11185 monoid_algebra.comm_semiring._proof_9 | |
0.000014 11186 monoid_algebra.comm_semiring._proof_10 | |
0.000016 11187 monoid_algebra.comm_semiring._proof_11 | |
0.000015 11188 monoid_algebra.comm_semiring._proof_12 | |
0.000016 11189 monoid_algebra.comm_semiring._proof_13 | |
0.000015 11190 monoid_algebra.comm_semiring._proof_14 | |
0.000016 11191 monoid_algebra.comm_semiring._proof_15 | |
0.000015 11192 finsupp.sum.equations._eqn_1 | |
0.000017 11193 finset.sum_comm | |
0.000015 11194 monoid_algebra.comm_semiring._proof_16 | |
0.000016 11195 monoid_algebra.comm_semiring | |
0.000015 11196 add_monoid_algebra.comm_semiring._proof_16 | |
0.000016 11197 add_monoid_algebra.comm_semiring | |
0.000017 11198 add_monoid_algebra.comm_ring._proof_16 | |
0.000015 11199 add_monoid_algebra.comm_ring | |
0.000016 11200 polynomial.comm_ring | |
0.000015 11201 polynomial.mod_by_monic_eq_sub_mul_div | |
0.000016 11202 polynomial.mod_by_monic_add_div | |
0.000015 11203 polynomial.monic.def | |
0.000016 11204 polynomial.subsingleton_of_monic_zero | |
0.000015 11205 polynomial.degree_mod_by_monic_lt | |
0.000016 11206 exists_eq_mul_right_of_dvd | |
0.000015 11207 polynomial.dvd_iff_mod_by_monic_eq_zero | |
0.000016 11208 polynomial.decidable_dvd_monic | |
0.000015 11209 polynomial.monic_one | |
0.000016 11210 eq_zero_of_zero_eq_one | |
0.000015 11211 unique_of_zero_eq_one | |
0.000016 11212 subsingleton_iff_zero_eq_one | |
0.000015 11213 subsingleton_of_zero_eq_one | |
0.000016 11214 polynomial.monic_mul | |
0.000015 11215 polynomial.monic_pow | |
0.000016 11216 ring_hom.map_neg | |
0.000015 11217 polynomial.C_neg | |
0.000015 11218 with_bot.has_one | |
0.000016 11219 eq_of_zero_eq_one | |
0.000015 11220 polynomial.monic_of_degree_le | |
0.000016 11221 polynomial.degree_X_pow_le | |
0.000016 11222 polynomial.coeff_add | |
0.000014 11223 polynomial.monomial.equations._eqn_1 | |
0.492173 11224 polynomial.coeff_X_pow | |
0.000084 11225 polynomial.monic_X_pow_add | |
0.000022 11226 with_bot.has_zero | |
0.000015 11227 polynomial.degree_C | |
0.000014 11228 polynomial.degree_C_le | |
0.000014 11229 polynomial.monic_X_add_C | |
0.000014 11230 polynomial.monic_X_sub_C | |
0.000014 11231 polynomial.root_multiplicity._proof_1 | |
0.000014 11232 multiplicity.finite | |
0.000015 11233 polynomial.comm_semiring | |
0.000014 11234 le_mul_of_one_le_right | |
0.000014 11235 polynomial.nat_degree_C | |
0.000014 11236 polynomial.nat_degree_one | |
0.000014 11237 polynomial.nat_degree_zero | |
0.000018 11238 zero_pow | |
0.000015 11239 polynomial.leading_coeff_one | |
0.000017 11240 polynomial.leading_coeff_pow' | |
0.000015 11241 polynomial.degree_pow' | |
0.000016 11242 with_bot.coe_zero | |
0.000017 11243 with_bot.coe_nsmul | |
0.000015 11244 polynomial.nat_degree_pow' | |
0.000017 11245 not_lt_bot | |
0.000015 11246 finsupp.inhabited | |
0.000016 11247 finsupp.unique_of_right._proof_1 | |
0.000018 11248 finsupp.unique_of_right | |
0.000017 11249 add_monoid_algebra.unique | |
0.000016 11250 polynomial.unique | |
0.000016 11251 polynomial.multiplicity_finite_of_degree_pos_of_monic | |
0.000015 11252 max_eq_left_of_lt | |
0.000016 11253 polynomial.degree_le_degree | |
0.000018 11254 polynomial.coeff_nat_degree_eq_zero_of_degree_lt | |
0.000017 11255 polynomial.ne_zero_of_degree_gt | |
0.000018 11256 polynomial.degree_add_eq_left_of_degree_lt | |
0.000015 11257 polynomial.degree_sub_eq_left_of_degree_lt | |
0.000014 11258 polynomial.degree_X | |
0.000015 11259 polynomial.degree_X_sub_C | |
0.000016 11260 polynomial.multiplicity_X_sub_C_finite | |
0.000015 11261 polynomial.root_multiplicity | |
0.000016 11262 polynomial.eval₂ | |
0.000015 11263 ring_hom.id._proof_1 | |
0.000015 11264 ring_hom.id._proof_2 | |
0.000016 11265 ring_hom.id._proof_3 | |
0.000015 11266 ring_hom.id._proof_4 | |
0.000015 11267 ring_hom.id | |
0.000016 11268 polynomial.eval | |
0.000015 11269 polynomial.is_root | |
0.000014 11270 polynomial.eval₂_C | |
0.000016 11271 polynomial.eval_C | |
0.000016 11272 polynomial.coeff_monomial | |
0.000016 11273 polynomial.coeff_C_zero | |
0.000015 11274 polynomial.coeff_C | |
0.000014 11275 polynomial.eq_C_of_degree_le_zero | |
0.000017 11276 polynomial.is_root.equations._eqn_1 | |
0.000015 11277 polynomial.degree_pos_of_root | |
0.000016 11278 polynomial.is_root.def | |
0.000015 11279 add_monoid_hom.mul_right._proof_1 | |
0.000015 11280 add_monoid_hom.mul_right._proof_2 | |
0.000016 11281 add_monoid_hom.mul_right | |
0.000015 11282 add_monoid_algebra.lift_nc | |
0.000016 11283 to_add_one | |
0.000016 11284 powers_hom._proof_1 | |
0.000014 11285 powers_hom._proof_2 | |
0.000016 11286 of_add_nsmul | |
0.000015 11287 nat.cast_id | |
0.000016 11288 of_add_to_add | |
0.000016 11289 monoid_hom.mk_coe | |
0.000014 11290 powers_hom._proof_3 | |
0.000016 11291 powers_hom | |
0.000016 11292 polynomial.eval₂_eq_lift_nc | |
0.000014 11293 monoid_algebra.lift_nc | |
0.000016 11294 add_monoid_hom.map_finsupp_sum | |
0.000015 11295 finsupp.lift_add_hom_apply_single | |
0.000015 11296 monoid_algebra.lift_nc_single | |
0.000016 11297 is_add_monoid_hom.is_add_monoid_hom_mul_right | |
0.000015 11298 finset.sum_mul | |
0.000017 11299 finsupp.sum_mul | |
0.000015 11300 finsupp.mul_sum | |
0.000014 11301 ring_hom.coe_add_monoid_hom | |
0.000016 11302 monoid_algebra.lift_nc_mul | |
0.000016 11303 add_monoid_algebra.lift_nc_mul | |
0.000014 11304 polynomial.eval₂_mul_noncomm | |
0.000016 11305 polynomial.eval₂_mul | |
0.000016 11306 polynomial.eval_mul | |
0.000014 11307 polynomial.eval₂_add | |
0.000016 11308 polynomial.eval₂_zero | |
0.000016 11309 polynomial.eval₂_neg | |
0.000014 11310 polynomial.eval₂_sub | |
0.000016 11311 polynomial.eval_sub | |
0.000015 11312 polynomial.eval₂_X | |
0.000017 11313 polynomial.eval_X | |
0.000015 11314 nontrivial_of_ne | |
0.000016 11315 polynomial.not_monic_zero | |
0.000015 11316 polynomial.ne_zero_of_monic | |
0.000014 11317 polynomial.mod_by_monic_X_sub_C_eq_C_eval | |
0.000016 11318 polynomial.mul_div_by_monic_eq_iff_is_root | |
0.000015 11319 polynomial.mod_by_monic_eq_self_iff | |
0.000017 11320 polynomial.div_by_monic_eq_zero_iff | |
0.000015 11321 with_bot.bot_lt_some | |
0.000015 11322 polynomial.degree_add_eq_right_of_degree_lt | |
0.000016 11323 polynomial.degree_add_div_by_monic | |
0.000015 11324 nat.lt_add_of_pos_left | |
0.000016 11325 polynomial.degree_div_by_monic_lt | |
0.000015 11326 domain.exists_pair_ne | |
0.000017 11327 domain.to_nontrivial | |
0.000015 11328 multiset.card_cons | |
0.000014 11329 with_top.add_comm_semigroup._proof_1 | |
0.000017 11330 with_top.add_comm_semigroup._proof_2 | |
0.000015 11331 with_top.add_comm_semigroup | |
0.000014 11332 with_bot.add_comm_semigroup | |
0.000016 11333 roption | |
0.000016 11334 roption.dom | |
0.000014 11335 roption.get | |
0.000016 11336 enat | |
0.000016 11337 enat.find | |
0.000014 11338 multiplicity | |
0.000016 11339 multiplicity.equations._eqn_1 | |
0.000016 11340 polynomial.root_multiplicity.equations._eqn_1 | |
0.000014 11341 enat.find_get | |
0.000016 11342 polynomial.root_multiplicity_eq_multiplicity | |
0.000015 11343 integral_domain.to_comm_cancel_monoid_with_zero._proof_1 | |
0.403923 11344 integral_domain.to_comm_cancel_monoid_with_zero._proof_2 | |
0.000077 11345 integral_domain.to_comm_cancel_monoid_with_zero._proof_3 | |
0.000024 11346 integral_domain.to_comm_cancel_monoid_with_zero._proof_4 | |
0.000015 11347 integral_domain.to_comm_cancel_monoid_with_zero._proof_5 | |
0.000014 11348 integral_domain.to_comm_cancel_monoid_with_zero._proof_6 | |
0.000014 11349 integral_domain.to_comm_cancel_monoid_with_zero._proof_7 | |
0.000014 11350 integral_domain.to_comm_cancel_monoid_with_zero._proof_8 | |
0.000014 11351 integral_domain.to_comm_cancel_monoid_with_zero._proof_9 | |
0.000014 11352 integral_domain.to_comm_cancel_monoid_with_zero._proof_10 | |
0.000014 11353 integral_domain.to_comm_cancel_monoid_with_zero | |
0.000015 11354 polynomial.integral_domain._proof_1 | |
0.000014 11355 polynomial.integral_domain._proof_2 | |
0.000014 11356 polynomial.integral_domain._proof_3 | |
0.000014 11357 polynomial.integral_domain._proof_4 | |
0.000014 11358 polynomial.integral_domain._proof_5 | |
0.000014 11359 polynomial.integral_domain._proof_6 | |
0.000014 11360 polynomial.integral_domain._proof_7 | |
0.000019 11361 polynomial.integral_domain._proof_8 | |
0.000015 11362 polynomial.integral_domain._proof_9 | |
0.000016 11363 polynomial.integral_domain._proof_10 | |
0.000017 11364 polynomial.integral_domain._proof_11 | |
0.000018 11365 polynomial.integral_domain._proof_12 | |
0.000015 11366 polynomial.integral_domain._proof_13 | |
0.000016 11367 polynomial.integral_domain._proof_14 | |
0.000016 11368 polynomial.integral_domain._proof_15 | |
0.000017 11369 polynomial.integral_domain._proof_16 | |
0.000018 11370 exists_ne | |
0.000015 11371 finsupp.ext_iff | |
0.000017 11372 ite_eq_right_iff | |
0.000016 11373 set.indicator_apply_eq_zero | |
0.000015 11374 finsupp.single_eq_zero | |
0.000015 11375 finsupp.nontrivial | |
0.000016 11376 add_monoid_algebra.nontrivial | |
0.000015 11377 polynomial.nontrivial | |
0.000016 11378 polynomial.integral_domain._proof_17 | |
0.000015 11379 polynomial.leading_coeff_mul | |
0.000014 11380 polynomial.no_zero_divisors | |
0.000016 11381 polynomial.integral_domain._proof_18 | |
0.000015 11382 polynomial.integral_domain | |
0.000016 11383 prime | |
0.000015 11384 multiplicity.finite_of_finite_mul_left | |
0.000016 11385 multiplicity.finite_of_finite_mul_right | |
0.000015 11386 nat.sub_add_comm | |
0.000016 11387 nat.sub_lt_self | |
0.000015 11388 multiplicity.finite_mul_aux | |
0.000016 11389 multiplicity.finite_mul | |
0.000015 11390 multiplicity.finite_mul_iff | |
0.000015 11391 polynomial.degree_X_pow | |
0.000016 11392 polynomial.degree_X_pow_sub_C | |
0.000015 11393 polynomial.X_pow_sub_C_ne_zero | |
0.000016 11394 polynomial.X_sub_C_ne_zero | |
0.000015 11395 polynomial.eval.equations._eqn_1 | |
0.000016 11396 polynomial.eval₂.equations._eqn_1 | |
0.000014 11397 ring_hom.id_apply | |
0.000017 11398 polynomial.le_nat_degree_of_ne_zero | |
0.000015 11399 polynomial.le_nat_degree_of_mem_supp | |
0.000014 11400 polynomial.supp_subset_range | |
0.000017 11401 polynomial.sum_over_range' | |
0.000015 11402 polynomial.nat_degree_le_iff_degree_le | |
0.000014 11403 polynomial.nat_degree_le_of_degree_le | |
0.000016 11404 polynomial.nat_degree_mul_le | |
0.000015 11405 polynomial.degree_sub_le | |
0.000027 11406 polynomial.degree_X_le | |
0.000015 11407 polynomial.nat_degree_X_sub_C_le | |
0.000015 11408 finset.prod_insert | |
0.000017 11409 finset.prod_range_succ_comm | |
0.000016 11410 finset.prod_range_succ | |
0.000014 11411 finset.prod_range_succ' | |
0.000017 11412 finset.sum_range_succ' | |
0.000015 11413 polynomial.coeff_sub | |
0.000016 11414 add_right_cancel_iff | |
0.000015 11415 polynomial.coeff_mul_X_pow | |
0.000014 11416 polynomial.coeff_mul_X | |
0.000016 11417 monoid_algebra.mul_single_apply_aux | |
0.000016 11418 add_monoid_algebra.mul_single_apply_aux | |
0.000014 11419 add_monoid_algebra.mul_single_zero_apply | |
0.000016 11420 polynomial.coeff_mul_C | |
0.000015 11421 polynomial.coeff_mul_X_sub_C | |
0.000016 11422 finset.prod_empty | |
0.000016 11423 finset.prod_range_zero | |
0.000014 11424 finset.prod_range_induction | |
0.000016 11425 finset.sum_range_induction | |
0.000015 11426 tactic.abel.unfold_sub | |
0.000017 11427 norm_num.subst_into_add | |
0.000015 11428 gpow._main | |
0.000014 11429 gpow | |
0.000016 11430 multiplicative.div_inv_monoid._proof_1 | |
0.000016 11431 multiplicative.div_inv_monoid._proof_2 | |
0.000014 11432 multiplicative.div_inv_monoid._proof_3 | |
0.000016 11433 multiplicative.div_inv_monoid._proof_4 | |
0.000015 11434 multiplicative.div_inv_monoid._proof_5 | |
0.000014 11435 multiplicative.has_inv | |
0.000017 11436 multiplicative.has_div | |
0.000015 11437 multiplicative.div_inv_monoid | |
0.000016 11438 multiplicative.group._proof_1 | |
0.000015 11439 multiplicative.group._proof_2 | |
0.000015 11440 multiplicative.group._proof_3 | |
0.000016 11441 multiplicative.group._proof_4 | |
0.000015 11442 multiplicative.group._proof_5 | |
0.000015 11443 multiplicative.group._proof_6 | |
0.644020 11444 multiplicative.group | |
0.000078 11445 gsmul | |
0.000025 11446 tactic.abel.termg | |
0.000015 11447 tactic.abel.termg.equations._eqn_1 | |
0.000015 11448 one_gsmul | |
0.000014 11449 tactic.abel.term_atomg | |
0.000014 11450 norm_num.subst_into_neg | |
0.000014 11451 group.has_pow | |
0.000015 11452 one_inv | |
0.000015 11453 gpow_neg | |
0.000014 11454 neg_gsmul | |
0.000014 11455 tactic.abel.term_neg | |
0.000015 11456 int.induction_on | |
0.000014 11457 gpow_zero | |
0.000014 11458 gpow_coe_nat | |
0.000014 11459 right_cancel_semigroup | |
0.000014 11460 right_cancel_semigroup.mul | |
0.000015 11461 right_cancel_semigroup.mul_assoc | |
0.000014 11462 right_cancel_semigroup.to_semigroup | |
0.000014 11463 right_cancel_monoid.mul_right_cancel | |
0.000014 11464 right_cancel_monoid.to_right_cancel_semigroup | |
0.000015 11465 inv_mul_cancel_left | |
0.000014 11466 group.to_cancel_monoid._proof_1 | |
0.000014 11467 mul_right_inv | |
0.000014 11468 mul_inv_cancel_right | |
0.000017 11469 group.to_cancel_monoid._proof_2 | |
0.000017 11470 group.to_cancel_monoid | |
0.000017 11471 right_cancel_semigroup.mul_right_cancel | |
0.000018 11472 mul_right_cancel | |
0.000016 11473 mul_left_injective | |
0.000017 11474 mul_left_inj | |
0.000017 11475 int.neg_succ_of_nat_eq | |
0.000017 11476 gpow_one | |
0.000016 11477 mul_inv_cancel_left | |
0.000015 11478 mul_inv_rev | |
0.000015 11479 inv_mul_cancel_right | |
0.000016 11480 gpow_add_one | |
0.000015 11481 gpow_sub_one | |
0.000016 11482 gpow_add | |
0.000015 11483 add_gsmul | |
0.000016 11484 tactic.abel.term_add_termg | |
0.000015 11485 zero_gsmul | |
0.000015 11486 tactic.abel.zero_termg | |
0.000016 11487 tactic.abel.term_add_constg | |
0.000015 11488 tactic.abel.const_add_termg | |
0.000014 11489 norm_num.add_neg_pos_pos | |
0.000017 11490 finset.sum_range_sub' | |
0.000015 11491 with_bot.bot_lt_coe | |
0.000016 11492 polynomial.coeff_eq_zero_of_nat_degree_lt | |
0.000015 11493 polynomial.coeff_nat_degree_succ_eq_zero | |
0.000015 11494 finset.nat.antidiagonal_zero | |
0.000016 11495 polynomial.mul_coeff_zero | |
0.000015 11496 polynomial.coeff_X_zero | |
0.000014 11497 polynomial.eval_mul_X_sub_C | |
0.000017 11498 polynomial.eval₂_one | |
0.000015 11499 polynomial.eval_one | |
0.000016 11500 polynomial.not_is_unit_X_sub_C | |
0.000015 11501 polynomial.C_inj | |
0.000014 11502 polynomial.dvd_iff_is_root | |
0.000017 11503 polynomial.prime_X_sub_C | |
0.000015 11504 roption.some | |
0.000016 11505 enat.has_coe | |
0.000015 11506 roption.cases_on | |
0.000016 11507 roption.no_confusion_type | |
0.000015 11508 roption.no_confusion | |
0.000016 11509 roption.mk.inj | |
0.000015 11510 roption.some_inj | |
0.000016 11511 enat.coe_inj | |
0.000015 11512 roption.ext' | |
0.000017 11513 enat.coe_get | |
0.000015 11514 roption.mem | |
0.000014 11515 roption.has_mem | |
0.000016 11516 enat.has_le | |
0.000016 11517 one_dvd | |
0.000016 11518 multiplicity.pow_dvd_of_le_multiplicity | |
0.000015 11519 enat.partial_order._proof_1 | |
0.000014 11520 enat.partial_order._match_1 | |
0.000017 11521 enat.partial_order._match_2 | |
0.000015 11522 enat.partial_order._proof_2 | |
0.000014 11523 enat.partial_order._proof_3 | |
0.000017 11524 enat.partial_order._match_3 | |
0.000015 11525 enat.partial_order._match_4 | |
0.000016 11526 enat.partial_order._proof_4 | |
0.000015 11527 enat.partial_order | |
0.000015 11528 roption.none | |
0.000016 11529 enat.has_top | |
0.000015 11530 roption.mem_some | |
0.000016 11531 roption.eq_some_iff | |
0.000015 11532 roption.some_get | |
0.000016 11533 roption.not_mem_none | |
0.000016 11534 roption.ext | |
0.000014 11535 roption.eq_none_iff | |
0.000014 11536 roption.eq_none_iff' | |
0.000014 11537 roption.induction_on | |
0.000017 11538 enat.cases_on | |
0.000014 11539 enat.has_zero | |
0.000016 11540 enat.has_bot | |
0.000015 11541 enat.semilattice_sup_bot._proof_1 | |
0.000017 11542 enat.has_sup._proof_1 | |
0.000015 11543 enat.has_sup._proof_2 | |
0.000017 11544 enat.has_sup | |
0.000015 11545 enat.semilattice_sup_bot._proof_2 | |
0.000016 11546 enat.semilattice_sup_bot._proof_3 | |
0.000015 11547 enat.semilattice_sup_bot._match_1 | |
0.000015 11548 enat.semilattice_sup_bot._match_2 | |
0.000016 11549 enat.semilattice_sup_bot._proof_4 | |
0.000015 11550 enat.semilattice_sup_bot | |
0.000016 11551 enat.order_top._proof_1 | |
0.000015 11552 enat.order_top | |
0.000016 11553 enat.coe_le_coe | |
0.000015 11554 enat.linear_order._proof_1 | |
0.000014 11555 enat.linear_order | |
0.000017 11556 multiplicity.pow_multiplicity_dvd | |
0.000015 11557 enat.le_def | |
0.000016 11558 enat.lt_def | |
0.000015 11559 enat.dom_coe | |
0.000014 11560 enat.get_coe' | |
0.000016 11561 enat.lt_coe_iff | |
0.000016 11562 pow_dvd_pow | |
0.000014 11563 multiplicity.is_greatest | |
0.000016 11564 enat.le_coe_iff | |
0.000015 11565 multiplicity.unique | |
0.000016 11566 multiplicity.unique' | |
0.000015 11567 multiplicity.eq_some_iff | |
0.000016 11568 enat.coe_lt_coe | |
0.000015 11569 multiplicity.is_greatest' | |
0.000015 11570 prime.div_or_div | |
0.000016 11571 pow_eq_zero | |
0.000015 11572 pow_ne_zero | |
0.000014 11573 prime.ne_zero | |
0.000017 11574 succ_dvd_or_succ_dvd_of_succ_sum_dvd_mul | |
0.000015 11575 multiplicity.mul' | |
0.000016 11576 polynomial.root_multiplicity_mul | |
0.000015 11577 roption.get_some | |
0.000016 11578 roption.get_eq_iff_eq_some | |
0.000015 11579 is_unit_iff_dvd_one | |
1.251047 11580 is_unit_iff_forall_dvd | |
0.000076 11581 units.coe_hom | |
0.000024 11582 units.coe_pow | |
0.000014 11583 is_unit.pow | |
0.000015 11584 multiplicity.not_unit_of_finite | |
0.000014 11585 multiplicity.ne_zero_of_finite | |
0.000014 11586 multiplicity.get_multiplicity_self | |
0.000014 11587 polynomial.root_multiplicity_X_sub_C_self | |
0.000014 11588 multiplicity.multiplicity_eq_zero_of_not_dvd | |
0.000016 11589 enat.coe_zero | |
0.000014 11590 polynomial.root_multiplicity_eq_zero | |
0.000014 11591 polynomial.root_X_sub_C | |
0.000014 11592 polynomial.root_multiplicity_X_sub_C | |
0.000014 11593 polynomial.exists_multiset_roots | |
0.000015 11594 polynomial.roots | |
0.000014 11595 polynomial.nth_roots | |
0.000014 11596 primitive_roots | |
0.000017 11597 complex.has_add | |
0.000017 11598 complex.cases_on | |
0.000017 11599 complex.ext | |
0.000015 11600 complex.ext_iff | |
0.000017 11601 complex.add_re | |
0.000016 11602 tactic.ring.horner | |
0.000017 11603 tactic.ring.horner.equations._eqn_1 | |
0.000015 11604 tactic.ring.horner_atom | |
0.000017 11605 tactic.ring.horner_add_const | |
0.000019 11606 complex.add_im | |
0.000015 11607 complex.comm_ring._proof_1 | |
0.000016 11608 complex.has_zero | |
0.000017 11609 complex.zero_re | |
0.000017 11610 complex.zero_im | |
0.000015 11611 complex.comm_ring._proof_2 | |
0.000016 11612 complex.comm_ring._proof_3 | |
0.000015 11613 complex.comm_ring._proof_4 | |
0.000017 11614 complex.comm_ring._proof_5 | |
0.000014 11615 complex.has_neg | |
0.000016 11616 complex.has_sub | |
0.000015 11617 complex.comm_ring._proof_6 | |
0.000017 11618 complex.neg_re | |
0.000015 11619 complex.neg_im | |
0.000016 11620 complex.comm_ring._proof_7 | |
0.000015 11621 tactic.ring.const_add_horner | |
0.000014 11622 complex.comm_ring._proof_8 | |
0.000017 11623 complex.has_mul | |
0.000015 11624 complex.mul_re | |
0.000015 11625 complex.mul_im | |
0.000016 11626 tactic.ring.unfold_sub | |
0.000015 11627 norm_num.subst_into_mul | |
0.000016 11628 tactic.ring.horner_mul_const | |
0.000015 11629 tactic.ring.horner_neg | |
0.000016 11630 tactic.ring.horner_const_mul | |
0.000016 11631 norm_num.mul_neg_pos | |
0.000015 11632 tactic.ring.horner_add_horner_eq | |
0.000016 11633 complex.comm_ring._proof_9 | |
0.000015 11634 complex.one_re | |
0.000014 11635 complex.one_im | |
0.000017 11636 complex.comm_ring._proof_10 | |
0.000015 11637 complex.comm_ring._proof_11 | |
0.000015 11638 complex.comm_ring._proof_12 | |
0.000014 11639 complex.comm_ring._proof_13 | |
0.000014 11640 complex.comm_ring._proof_14 | |
0.000016 11641 complex.comm_ring._proof_15 | |
0.000015 11642 complex.comm_ring._proof_16 | |
0.000017 11643 complex.comm_ring | |
0.000015 11644 complex.conj._proof_1 | |
0.000017 11645 real.domain._proof_1 | |
0.000016 11646 real.domain | |
0.000016 11647 complex.conj._proof_2 | |
0.000015 11648 complex.conj._proof_3 | |
0.000014 11649 complex.conj._proof_4 | |
0.000017 11650 complex.conj | |
0.000015 11651 complex.norm_sq._proof_1 | |
0.000014 11652 complex.norm_sq._proof_2 | |
0.000016 11653 tactic.ring.horner_mul_horner | |
0.000015 11654 tactic.ring.horner_mul_horner_zero | |
0.000016 11655 tactic.ring.horner_horner | |
0.000015 11656 norm_num.add_neg_neg | |
0.000017 11657 tactic.ring.zero_horner | |
0.000014 11658 complex.norm_sq._proof_3 | |
0.000017 11659 complex.norm_sq | |
0.000015 11660 complex.has_inv | |
0.000014 11661 complex.field._proof_1 | |
0.000016 11662 complex.field._proof_2 | |
0.000015 11663 complex.inv_def | |
0.000016 11664 complex.conj_re | |
0.000015 11665 complex.conj_im | |
0.000015 11666 complex.norm_sq.equations._eqn_1 | |
0.000016 11667 monoid_with_zero_hom.coe_mk | |
0.000015 11668 complex.of_real_re | |
0.000016 11669 complex.of_real_im | |
0.000015 11670 complex.of_real_add | |
0.000016 11671 complex.of_real_mul | |
0.000015 11672 complex.mul_conj | |
0.000016 11673 abs_mul_abs_self | |
0.000015 11674 abs_mul_self | |
0.000015 11675 mul_self_nonneg | |
0.000016 11676 mul_self_eq_zero | |
0.000015 11677 mul_self_add_mul_self_eq_zero | |
0.000016 11678 eq_zero_of_mul_self_add_mul_self_eq_zero | |
0.000015 11679 complex.norm_sq_zero | |
0.000015 11680 complex.norm_sq_eq_zero | |
0.000016 11681 complex.of_real_one | |
0.000015 11682 complex.mul_inv_cancel | |
0.000017 11683 complex.of_real_zero | |
0.000015 11684 complex.inv_re | |
0.000014 11685 complex.norm_sq_of_real | |
0.000016 11686 inv_mul_mul_self | |
0.000015 11687 div_self_mul_self' | |
0.000016 11688 complex.inv_im | |
0.000015 11689 zero_div | |
0.000016 11690 complex.of_real_inv | |
0.000015 11691 complex.inv_zero | |
0.000016 11692 complex.field | |
0.000015 11693 nat.coprime.equations._eqn_1 | |
0.000016 11694 nat.coprime.decidable._proof_1 | |
0.000015 11695 nat.coprime.decidable | |
0.000017 11696 nat.totient | |
0.000015 11697 list.length_pmap | |
0.000016 11698 multiset.card_pmap | |
0.000015 11699 multiset.card_attach | |
0.000016 11700 finset.card_attach | |
0.000015 11701 finset.card.equations._eqn_1 | |
0.000016 11702 list.length_map | |
0.000015 11703 multiset.card_map | |
0.000016 11704 finset.card_image_of_inj_on | |
0.000016 11705 finset.card_image_of_injective | |
0.000014 11706 finset.card_congr | |
0.000017 11707 primitive_roots.equations._eqn_1 | |
0.000015 11708 multiset.mem_to_finset | |
0.000015 11709 polynomial.nth_roots.equations._eqn_1 | |
0.535131 11710 polynomial.roots.equations._eqn_1 | |
0.000077 11711 polynomial.count_roots | |
0.000023 11712 enat.has_one | |
0.000015 11713 enat.coe_lt_top | |
0.000014 11714 enat.pos_iff_one_le | |
0.000015 11715 multiplicity.dvd_of_multiplicity_pos | |
0.000014 11716 enat.has_add._proof_1 | |
0.000015 11717 enat.has_add._proof_2 | |
0.000014 11718 enat.has_add | |
0.000014 11719 enat.add_comm_monoid._proof_1 | |
0.000015 11720 enat.add_comm_monoid._proof_2 | |
0.000015 11721 enat.add_comm_monoid._proof_3 | |
0.000014 11722 enat.add_comm_monoid._proof_4 | |
0.000014 11723 enat.add_comm_monoid._proof_5 | |
0.000014 11724 enat.add_comm_monoid._proof_6 | |
0.000014 11725 enat.add_comm_monoid._proof_7 | |
0.000014 11726 enat.add_comm_monoid._proof_8 | |
0.000016 11727 enat.add_comm_monoid | |
0.000018 11728 enat.top_add | |
0.000015 11729 enat.ordered_add_comm_monoid._match_1 | |
0.000016 11730 enat.ordered_add_comm_monoid._proof_1 | |
0.000017 11731 enat.add_top | |
0.000018 11732 enat.coe_add | |
0.000017 11733 enat.ordered_add_comm_monoid._proof_2 | |
0.000014 11734 enat.ordered_add_comm_monoid | |
0.000017 11735 enat.canonically_ordered_add_monoid._match_1 | |
0.000017 11736 enat.canonically_ordered_add_monoid._proof_1 | |
0.000015 11737 enat.canonically_ordered_add_monoid | |
0.000014 11738 multiplicity.dvd_iff_multiplicity_pos | |
0.000015 11739 polynomial.root_multiplicity_pos | |
0.000014 11740 polynomial.mem_roots | |
0.000018 11741 ring_hom.map_pow | |
0.000017 11742 is_semiring_hom | |
0.000017 11743 is_mul_hom | |
0.000017 11744 is_monoid_hom | |
0.000015 11745 is_monoid_hom.map_one | |
0.000016 11746 monoid_hom.of._proof_1 | |
0.000017 11747 is_mul_hom.map_mul | |
0.000016 11748 is_monoid_hom.to_is_mul_hom | |
0.000014 11749 monoid_hom.of._proof_2 | |
0.000016 11750 monoid_hom.of | |
0.000015 11751 is_semiring_hom.map_mul | |
0.000015 11752 is_semiring_hom.map_one | |
0.000016 11753 is_semiring_hom.is_monoid_hom | |
0.000015 11754 ring_hom.of._proof_1 | |
0.000016 11755 ring_hom.of._proof_2 | |
0.000015 11756 is_semiring_hom.map_add | |
0.000017 11757 is_semiring_hom.map_zero | |
0.000015 11758 is_semiring_hom.is_add_monoid_hom | |
0.000014 11759 ring_hom.of._proof_3 | |
0.000017 11760 ring_hom.of._proof_4 | |
0.000015 11761 ring_hom.of | |
0.000014 11762 polynomial.eval₂.is_semiring_hom | |
0.000016 11763 polynomial.eval₂_ring_hom | |
0.000015 11764 polynomial.eval₂_pow | |
0.000015 11765 polynomial.eval_pow | |
0.000016 11766 polynomial.mem_nth_roots | |
0.000015 11767 is_primitive_root.pow_eq_one | |
0.000016 11768 mem_primitive_roots | |
0.000016 11769 nat.coprime_zero_right | |
0.000014 11770 units.mk_of_mul_eq_one._proof_1 | |
0.000067 11771 units.mk_of_mul_eq_one | |
0.000017 11772 is_unit_of_mul_eq_one | |
0.000017 11773 is_primitive_root.is_unit | |
0.000015 11774 comm_group | |
0.000016 11775 comm_group.mul | |
0.000015 11776 comm_group.mul_assoc | |
0.000016 11777 comm_group.one | |
0.000014 11778 comm_group.one_mul | |
0.000017 11779 comm_group.mul_one | |
0.000014 11780 comm_group.npow | |
0.000016 11781 comm_group.npow_zero' | |
0.000017 11782 comm_group.npow_succ' | |
0.000015 11783 comm_group.mul_comm | |
0.000017 11784 comm_group.to_comm_monoid | |
0.000015 11785 units.comm_group._proof_1 | |
0.000016 11786 units.comm_group._proof_2 | |
0.000015 11787 units.comm_group._proof_3 | |
0.000016 11788 units.comm_group._proof_4 | |
0.000015 11789 units.comm_group._proof_5 | |
0.000016 11790 units.comm_group._proof_6 | |
0.000017 11791 units.comm_group._proof_7 | |
0.000015 11792 units.comm_group._proof_8 | |
0.000016 11793 units.comm_group | |
0.000015 11794 is_primitive_root.dcases_on | |
0.000016 11795 is_primitive_root.iff_def | |
0.000015 11796 units.ext_iff | |
0.000016 11797 is_primitive_root.coe_units_iff | |
0.000015 11798 is_primitive_root.dvd_of_pow_eq_one | |
0.000017 11799 int.sizeof | |
0.000014 11800 int.has_sizeof_inst | |
0.000018 11801 xgcd_aux._main._pack._wf_rec_mk_dec_tactic._aux_1 | |
0.000017 11802 nat.xgcd_aux._main._pack | |
0.000015 11803 nat.xgcd_aux._main | |
0.000016 11804 nat.xgcd_aux | |
0.000014 11805 nat.xgcd | |
0.000016 11806 nat.gcd_a | |
0.000015 11807 nat.gcd_b | |
0.000017 11808 _private.1868879389.P._main | |
0.000015 11809 _private.1868879389.P | |
0.000014 11810 nat.gcd_a.equations._eqn_1 | |
0.000016 11811 nat.gcd_b.equations._eqn_1 | |
0.000015 11812 nat.xgcd_val | |
0.000016 11813 nat.xgcd.equations._eqn_1 | |
0.000015 11814 nat.xgcd_aux._main._pack.equations._eqn_1 | |
0.000014 11815 nat.xgcd_aux._main.equations._eqn_1 | |
0.000017 11816 nat.xgcd_aux.equations._eqn_1 | |
0.000015 11817 nat.xgcd_zero_left | |
0.000016 11818 nat.xgcd_aux._main._pack.equations._eqn_2 | |
0.000015 11819 nat.xgcd_aux._main.equations._eqn_2 | |
0.000016 11820 nat.xgcd_aux.equations._eqn_2 | |
0.000015 11821 nat.xgcd_aux_rec | |
0.000016 11822 nat.xgcd_aux_fst | |
0.000015 11823 nat.xgcd_aux_val | |
0.000017 11824 nat.xgcd_aux_P | |
0.000014 11825 _private.1868879389.P._main.equations._eqn_1 | |
0.000017 11826 _private.1868879389.P.equations._eqn_1 | |
0.000015 11827 nat.gcd_eq_gcd_ab | |
0.000014 11828 gpow_sub | |
0.000016 11829 gpow_mul | |
0.000015 11830 one_gpow | |
0.000016 11831 is_primitive_root.pow_of_coprime | |
0.000016 11832 nat.eq_zero_of_dvd_of_div_eq_zero | |
0.313938 11833 nat.mul_right_inj | |
0.000076 11834 nat.div_eq_zero_iff | |
0.000024 11835 nat.eq_zero_of_dvd_of_lt | |
0.000015 11836 units.mul_left_inj | |
0.000014 11837 is_unit.mul_left_inj | |
0.000014 11838 nat.sub_le_self | |
0.000014 11839 iff.to_eq | |
0.000014 11840 is_primitive_root.pow_inj | |
0.000015 11841 invertible | |
0.000014 11842 invertible.inv_of | |
0.000014 11843 invertible.mul_inv_of_self | |
0.000015 11844 mul_inv_of_self | |
0.000014 11845 unit_of_invertible._proof_1 | |
0.000015 11846 invertible.inv_of_mul_self | |
0.000018 11847 inv_of_mul_self | |
0.000018 11848 unit_of_invertible._proof_2 | |
0.000017 11849 unit_of_invertible | |
0.000015 11850 is_unit_of_invertible | |
0.000016 11851 invertible_of_pow_succ_eq_one._proof_1 | |
0.000017 11852 invertible_of_pow_succ_eq_one._proof_2 | |
0.000015 11853 invertible_of_pow_succ_eq_one | |
0.000016 11854 invertible_of_pow_eq_one._proof_1 | |
0.000017 11855 invertible_of_pow_eq_one | |
0.000017 11856 is_unit_of_pow_eq_one | |
0.000018 11857 coe_pnat_nat | |
0.000017 11858 subgroup | |
0.000016 11859 subgroup.carrier | |
0.000015 11860 subgroup.cases_on | |
0.000016 11861 subgroup.set_like._proof_1 | |
0.000017 11862 subgroup.set_like | |
0.000017 11863 roots_of_unity._proof_1 | |
0.000017 11864 roots_of_unity._proof_2 | |
0.000018 11865 inv_pow | |
0.000014 11866 roots_of_unity._proof_3 | |
0.000018 11867 roots_of_unity | |
0.000017 11868 subgroup.one_mem' | |
0.000016 11869 subgroup.copy._proof_1 | |
0.000016 11870 subgroup.mul_mem' | |
0.000014 11871 subgroup.copy._proof_2 | |
0.000016 11872 subgroup.inv_mem' | |
0.000015 11873 subgroup.copy._proof_3 | |
0.000016 11874 subgroup.copy | |
0.000015 11875 submonoid.map._proof_1 | |
0.000016 11876 submonoid.map._proof_2 | |
0.000015 11877 submonoid.map | |
0.000016 11878 subgroup.to_submonoid | |
0.000015 11879 subgroup.map._proof_1 | |
0.000016 11880 subgroup.map._proof_2 | |
0.000015 11881 subgroup.inv_mem | |
0.000016 11882 monoid_hom.map_mul_eq_one | |
0.000015 11883 monoid_hom.map_inv | |
0.000017 11884 subgroup.map._proof_3 | |
0.000015 11885 subgroup.map | |
0.000016 11886 submonoid.has_top._proof_1 | |
0.000015 11887 submonoid.has_top._proof_2 | |
0.000016 11888 submonoid.has_top | |
0.000015 11889 subgroup.has_top._proof_1 | |
0.000015 11890 subgroup.has_top._proof_2 | |
0.000016 11891 subgroup.has_top._proof_3 | |
0.000015 11892 subgroup.has_top | |
0.000016 11893 subgroup.coe_map | |
0.000015 11894 subgroup.coe_top | |
0.000016 11895 monoid_hom.range._proof_1 | |
0.000024 11896 monoid_hom.range | |
0.000016 11897 gpowers_hom._proof_1 | |
0.000014 11898 monoid_hom.map_gpow | |
0.000018 11899 of_add_gsmul | |
0.000017 11900 gsmul_eq_mul | |
0.000015 11901 int.cast_id | |
0.000016 11902 gsmul_int_int | |
0.000015 11903 gpowers_hom._proof_2 | |
0.000017 11904 gpowers_hom | |
0.000017 11905 subgroup.gpowers._proof_1 | |
0.000015 11906 subgroup.gpowers | |
0.000017 11907 fintype.card | |
0.000015 11908 set.has_ssubset | |
0.000014 11909 set.eq_or_ssubset_of_subset | |
0.000016 11910 finset.card_map | |
0.000015 11911 finset.val_lt_iff | |
0.000016 11912 finset.card_lt_card | |
0.000015 11913 finset.card_lt_univ_of_not_mem | |
0.000017 11914 finset.coe_map | |
0.000015 11915 finset.coe_univ | |
0.000014 11916 fintype.card_lt_of_injective_of_not_mem | |
0.000016 11917 fintype.card_lt_of_injective_not_surjective | |
0.000015 11918 set.inclusion._proof_1 | |
0.000015 11919 set.inclusion | |
0.000016 11920 set.inclusion_injective | |
0.000015 11921 set.ssubset_iff_subset_ne | |
0.000015 11922 set.inclusion.equations._eqn_1 | |
0.000016 11923 subtype.mk_eq_mk | |
0.000015 11924 set.range_inclusion | |
0.000016 11925 set.eq_of_inclusion_surjective | |
0.000015 11926 set.card_lt_card | |
0.000014 11927 set.eq_of_subset_of_card_le | |
0.000017 11928 fintype.of_bijective._proof_1 | |
0.000014 11929 multiset.mem_map_of_injective | |
0.000016 11930 finset.mem_map' | |
0.000015 11931 finset.mem_map_of_mem | |
0.000016 11932 fintype.of_bijective._match_1 | |
0.000015 11933 fintype.of_bijective._proof_2 | |
0.000016 11934 fintype.of_bijective | |
0.000015 11935 equiv.bijective | |
0.000016 11936 fintype.of_equiv | |
0.000015 11937 set_like.has_coe_to_sort | |
0.000016 11938 zmod._main | |
0.000015 11939 zmod | |
0.000014 11940 fact | |
0.000016 11941 fact.out | |
0.000015 11942 fin.mk | |
0.000016 11943 list.fin_range._proof_1 | |
0.000015 11944 list.fin_range | |
0.000014 11945 list.nodup_fin_range | |
0.000016 11946 finset.fin_range | |
0.000015 11947 fin.eta | |
0.000016 11948 list.mem_fin_range | |
0.000015 11949 finset.mem_fin_range | |
0.000016 11950 fin.fintype | |
0.000015 11951 zmod.fintype._main | |
0.000016 11952 zmod.fintype | |
0.000015 11953 pnat.pos | |
0.000016 11954 _private.4164854483.mlt | |
0.000015 11955 fin.add._main | |
0.000017 11956 fin.add | |
0.000014 11957 fin.has_add | |
0.000016 11958 fin.eq_iff_veq | |
0.000015 11959 fin.add._main._proof_1 | |
0.000016 11960 fin.add._main.equations._eqn_1 | |
0.000015 11961 fin.add.equations._eqn_1 | |
0.000016 11962 fin.add_def | |
0.000015 11963 fin.val_eq_coe | |
0.000015 11964 nat.mod_add_mod | |
0.000016 11965 nat.add_mod_mod | |
0.000015 11966 fin.inhabited | |
0.000016 11967 fin.add_comm_monoid._proof_1 | |
0.000015 11968 fin.val_zero' | |
0.000016 11969 fin.is_lt | |
0.000014 11970 fin.zero_add | |
0.000017 11971 fin.add_zero | |
0.000015 11972 fin.add_comm_monoid._proof_2 | |
0.000014 11973 fin.add_comm_monoid._proof_3 | |
0.138055 11974 fin.add_comm_monoid._proof_4 | |
0.000084 11975 fin.add_comm_monoid | |
0.000023 11976 fin.add_comm_group._proof_1 | |
0.000015 11977 fin.add_comm_group._proof_2 | |
0.000014 11978 fin.add_comm_group._proof_3 | |
0.000015 11979 fin.add_comm_group._proof_4 | |
0.000014 11980 fin.add_comm_group._proof_5 | |
0.000014 11981 int.nat_mod | |
0.000015 11982 int.nat_mod.equations._eqn_1 | |
0.000015 11983 int.to_nat_of_nonneg | |
0.000014 11984 int.coe_nat_ne_zero_iff_pos | |
0.000014 11985 fin.has_neg._proof_1 | |
0.000015 11986 fin.has_neg | |
0.000014 11987 fin.sub._main | |
0.000014 11988 fin.sub | |
0.000013 11989 int.coe_nat_mod | |
0.000014 11990 int.add_mul_mod_self_left | |
0.000014 11991 int.mod_add_mod | |
0.000018 11992 int.add_mod_eq_add_mod_right | |
0.000017 11993 int.mod_add_cancel_right | |
0.000017 11994 int.mod_add_cancel_left | |
0.000017 11995 int.add_mod_self | |
0.000017 11996 int.add_mod_self_left | |
0.000015 11997 int.mod_mod | |
0.000015 11998 fin.add_comm_group._match_2 | |
0.000016 11999 fin.add_comm_group._match_3 | |
0.000017 12000 fin.add_comm_group._proof_6 | |
0.000017 12001 int.add_mod_mod | |
0.000018 12002 fin.add_comm_group._match_1 | |
0.000017 12003 fin.add_comm_group._proof_7 | |
0.000025 12004 fin.add_comm_group._proof_8 | |
0.000021 12005 fin.add_comm_group | |
0.000017 12006 fin.comm_ring._proof_1 | |
0.000016 12007 fin.comm_ring._proof_2 | |
0.000014 12008 fin.comm_ring._proof_3 | |
0.000016 12009 fin.comm_ring._proof_4 | |
0.000015 12010 fin.comm_ring._proof_5 | |
0.000016 12011 fin.comm_ring._proof_6 | |
0.000015 12012 fin.comm_ring._proof_7 | |
0.000017 12013 fin.comm_ring._proof_8 | |
0.000015 12014 fin.mul._main | |
0.000014 12015 fin.mul | |
0.000016 12016 fin.has_mul | |
0.000027 12017 nat.modeq | |
0.000015 12018 nat.modeq.trans | |
0.000014 12019 nat.modeq.equations._eqn_1 | |
0.000014 12020 int.mod_sub_cancel_right | |
0.000014 12021 int.mod_eq_mod_iff_mod_sub_eq_zero | |
0.000015 12022 int.dvd_of_mod_eq_zero | |
0.000016 12023 int.dvd_iff_mod_eq_zero | |
0.000015 12024 nat.modeq.modeq_iff_dvd | |
0.000017 12025 nat.modeq.modeq_of_dvd | |
0.000015 12026 nat.modeq.dvd_of_modeq | |
0.000016 12027 nat.modeq.modeq_of_dvd_of_modeq | |
0.000015 12028 nat.modeq.modeq_mul_left' | |
0.000017 12029 nat.modeq.modeq_mul_left | |
0.000014 12030 nat.modeq.modeq_mul_right | |
0.000017 12031 nat.modeq.modeq_mul | |
0.000015 12032 nat.mod_mod | |
0.000016 12033 nat.modeq.refl | |
0.000015 12034 fin.comm_semigroup._match_1 | |
0.000017 12035 fin.comm_semigroup._match_2 | |
0.000015 12036 fin.comm_semigroup._match_3 | |
0.000016 12037 fin.comm_semigroup._proof_1 | |
0.000015 12038 fin.comm_semigroup._match_4 | |
0.000017 12039 fin.comm_semigroup._match_5 | |
0.000015 12040 fin.comm_semigroup._proof_2 | |
0.000016 12041 fin.comm_semigroup | |
0.000015 12042 fin.comm_ring._proof_9 | |
0.000016 12043 fin.of_nat._proof_1 | |
0.000015 12044 fin.of_nat | |
0.000016 12045 fin.has_one | |
0.000015 12046 fin.eq_zero | |
0.000014 12047 fin.unique | |
0.000017 12048 fin.mul._main._proof_1 | |
0.000017 12049 fin.mul._main.equations._eqn_1 | |
0.000016 12050 fin.mul.equations._eqn_1 | |
0.000014 12051 fin.mul_def | |
0.000016 12052 fin.val_one | |
0.000015 12053 fin.one_mul | |
0.000016 12054 fin.mul_one | |
0.000015 12055 fin.comm_ring._proof_10 | |
0.000017 12056 fin.comm_ring._proof_11 | |
0.000015 12057 dvd_add | |
0.000016 12058 nat.modeq.modeq_add | |
0.000015 12059 _private.627668947.left_distrib_aux | |
0.000015 12060 fin.comm_ring._proof_12 | |
0.000016 12061 fin.comm_ring._proof_13 | |
0.000015 12062 fin.comm_ring | |
0.000014 12063 zmod.comm_ring._main | |
0.000017 12064 zmod.comm_ring | |
0.000015 12065 submonoid.has_mul._proof_1 | |
0.000016 12066 submonoid.has_mul | |
0.000015 12067 subgroup.has_mul | |
0.000015 12068 add_equiv.of_bijective._proof_1 | |
0.000016 12069 add_equiv.of_bijective._proof_2 | |
0.000015 12070 add_equiv.of_bijective | |
0.000015 12071 function.injective.group._proof_1 | |
0.000016 12072 function.injective.group._proof_2 | |
0.000015 12073 function.injective.group._proof_3 | |
0.000015 12074 function.injective.group._proof_4 | |
0.000016 12075 function.injective.group._proof_5 | |
0.000015 12076 function.injective.group._proof_6 | |
0.000016 12077 function.injective.group._proof_7 | |
0.000015 12078 function.injective.group | |
0.000017 12079 submonoid.has_one | |
0.000015 12080 subgroup.has_one | |
0.000014 12081 subgroup.has_inv._proof_1 | |
0.000016 12082 subgroup.has_inv | |
0.000016 12083 subgroup.div_mem | |
0.000014 12084 subgroup.has_div._proof_1 | |
0.000016 12085 subgroup.has_div | |
0.000015 12086 subgroup.to_group._proof_1 | |
0.000016 12087 subgroup.to_group._proof_2 | |
0.000016 12088 subgroup.to_group._proof_3 | |
0.000014 12089 subgroup.to_group._proof_4 | |
0.000016 12090 subgroup.to_group._proof_5 | |
0.000015 12091 subgroup.to_group | |
0.000015 12092 additive.sub_neg_monoid._proof_1 | |
0.000016 12093 additive.sub_neg_monoid._proof_2 | |
0.000015 12094 additive.sub_neg_monoid._proof_3 | |
0.000014 12095 additive.sub_neg_monoid._proof_4 | |
0.000017 12096 additive.sub_neg_monoid._proof_5 | |
0.000015 12097 additive.has_neg | |
0.000015 12098 additive.has_sub | |
0.000016 12099 additive.sub_neg_monoid | |
0.000015 12100 additive.add_group._proof_1 | |
0.000015 12101 additive.add_group._proof_2 | |
0.860790 12102 additive.add_group._proof_3 | |
0.000076 12103 additive.add_group._proof_4 | |
0.000024 12104 additive.add_group._proof_5 | |
0.000015 12105 additive.add_group._proof_6 | |
0.000014 12106 additive.add_group | |
0.000014 12107 add_subgroup.has_bot._proof_1 | |
0.000014 12108 add_subgroup.has_bot._proof_2 | |
0.000015 12109 add_submonoid.mem_carrier | |
0.000014 12110 neg_eq_zero | |
0.000014 12111 add_subgroup.has_bot._proof_3 | |
0.000014 12112 add_subgroup.has_bot | |
0.000014 12113 add_monoid_hom.ker | |
0.000014 12114 add_monoid_hom.lift_of_right_inverse_aux._proof_1 | |
0.000015 12115 add_neg_eq_zero | |
0.000014 12116 add_monoid_hom.mem_ker | |
0.000017 12117 add_monoid_hom.lift_of_right_inverse_aux._proof_2 | |
0.000017 12118 add_monoid_hom.lift_of_right_inverse_aux | |
0.000018 12119 add_monoid_hom.lift_of_right_inverse._proof_1 | |
0.000015 12120 add_monoid_hom.lift_of_right_inverse._proof_2 | |
0.000016 12121 add_monoid_hom.comp_apply | |
0.000016 12122 add_monoid_hom.lift_of_right_inverse_aux_comp_apply | |
0.000014 12123 add_monoid_hom.lift_of_right_inverse._proof_3 | |
0.000016 12124 add_monoid_hom.lift_of_right_inverse_aux.equations._eqn_1 | |
0.000017 12125 add_monoid_hom.lift_of_right_inverse._proof_4 | |
0.000018 12126 add_monoid_hom.lift_of_right_inverse | |
0.000017 12127 zmod.val._main | |
0.000017 12128 zmod.val | |
0.000016 12129 zmod.cast._main | |
0.000017 12130 zmod.cast | |
0.000017 12131 zmod.has_coe_t | |
0.000014 12132 int.nat_cast_eq_coe_nat | |
0.000016 12133 fin.ext | |
0.000018 12134 fin.val_add | |
0.000016 12135 fin.of_nat.equations._eqn_1 | |
0.000018 12136 nat.add_mod | |
0.000015 12137 fin.of_nat_eq_coe | |
0.000017 12138 fin.coe_val_of_lt | |
0.000018 12139 fin.coe_val_eq_self | |
0.000015 12140 fin.coe_coe_eq_self | |
0.000014 12141 zmod.int_cast_zmod_cast | |
0.000014 12142 zmod.int_cast_right_inverse | |
0.000017 12143 is_primitive_root.zmod_equiv_gpowers._proof_1 | |
0.000014 12144 is_primitive_root.zmod_equiv_gpowers._proof_2 | |
0.000017 12145 is_primitive_root.zmod_equiv_gpowers._proof_3 | |
0.000015 12146 char_p | |
0.000016 12147 dvd_neg | |
0.000015 12148 nat.can_lift._proof_1 | |
0.000017 12149 nat.can_lift | |
0.000015 12150 char_p.cast_eq_zero_iff | |
0.000014 12151 char_p.int_cast_eq_zero_iff | |
0.000016 12152 zmod.val_nat_cast | |
0.000015 12153 zmod.val_zero | |
0.000015 12154 nat.dvd_of_mod_eq_zero | |
0.000016 12155 nat.dvd_iff_mod_eq_zero | |
0.000015 12156 zmod.char_p | |
0.000016 12157 is_primitive_root.zmod_equiv_gpowers._proof_4 | |
0.000015 12158 add_monoid_hom.injective_iff | |
0.000015 12159 comm_group.inv | |
0.000016 12160 comm_group.div | |
0.000015 12161 comm_group.div_eq_mul_inv | |
0.000017 12162 comm_group.mul_left_inv | |
0.000015 12163 comm_group.to_group | |
0.000014 12164 is_primitive_root.pow_eq_one_iff_dvd | |
0.000017 12165 inv_involutive | |
0.000015 12166 inv_injective | |
0.000014 12167 inv_inj | |
0.000016 12168 is_primitive_root.gpow_eq_one_iff_dvd | |
0.000016 12169 has_coe_t_aux | |
0.000014 12170 has_coe_t_aux.coe | |
0.000017 12171 coe_fn_trans | |
0.000015 12172 coe_base_aux | |
0.000014 12173 add_monoid_hom.lift_of_right_inverse_comp_apply | |
0.000017 12174 is_primitive_root.zmod_equiv_gpowers._proof_5 | |
0.000015 12175 is_primitive_root.zmod_equiv_gpowers | |
0.000015 12176 fintype.of_multiset._proof_1 | |
0.000016 12177 fintype.of_multiset | |
0.000015 12178 multiset.subtype.fintype | |
0.000016 12179 mem_roots_of_unity | |
0.000015 12180 mem_roots_of_unity_iff_mem_nth_roots | |
0.000017 12181 roots_of_unity_equiv_nth_roots._proof_1 | |
0.000015 12182 subtype.val_injective | |
0.000014 12183 subtype.linear_order | |
0.000017 12184 pnat.linear_order | |
0.000015 12185 pnat.has_one | |
0.000016 12186 pnat.one_le | |
0.000015 12187 roots_of_unity_equiv_nth_roots._proof_2 | |
0.000017 12188 roots_of_unity_equiv_nth_roots._proof_3 | |
0.000014 12189 units.coe_mk | |
0.000015 12190 roots_of_unity_equiv_nth_roots._proof_4 | |
0.000016 12191 roots_of_unity_equiv_nth_roots._proof_5 | |
0.000015 12192 roots_of_unity_equiv_nth_roots._proof_6 | |
0.000016 12193 roots_of_unity_equiv_nth_roots | |
0.000016 12194 roots_of_unity.fintype | |
0.000014 12195 submonoid.to_monoid._proof_1 | |
0.000016 12196 submonoid.to_monoid._proof_2 | |
0.000015 12197 submonoid.to_monoid._proof_3 | |
0.000017 12198 submonoid.to_monoid | |
0.000015 12199 submonoid.to_mul_one_class._proof_1 | |
0.000015 12200 submonoid.to_mul_one_class._proof_2 | |
0.000016 12201 submonoid.to_mul_one_class._proof_3 | |
0.000015 12202 submonoid.to_mul_one_class | |
0.000016 12203 submonoid.subtype._proof_1 | |
0.000015 12204 submonoid.subtype._proof_2 | |
0.000017 12205 submonoid.subtype | |
0.000015 12206 submonoid.coe_pow | |
0.000016 12207 submonoid.pow_mem | |
0.000015 12208 subgroup.pow_mem | |
0.000015 12209 subgroup.gpow_mem | |
0.000016 12210 subgroup.gpowers_subset | |
0.000015 12211 fintype.of_equiv_card | |
0.000015 12212 fintype.subsingleton._match_1 | |
0.000016 12213 fintype.subsingleton._match_2 | |
0.000016 12214 fintype.subsingleton | |
0.000014 12215 fintype.card_congr | |
0.000016 12216 multiset.card_le_of_le | |
0.000016 12217 list.erase_dup_sublist | |
0.000014 12218 multiset.erase_dup_le | |
0.581107 12219 multiset.empty_eq_zero | |
0.000076 12220 multiset.card_zero | |
0.000024 12221 polynomial.card_roots | |
0.000015 12222 is_ring_hom | |
0.000014 12223 is_ring_hom.map_add | |
0.000014 12224 is_ring_hom.map_zero | |
0.000015 12225 is_ring_hom.map_neg | |
0.000014 12226 is_ring_hom.map_sub | |
0.000014 12227 is_ring_hom.of_semiring | |
0.000014 12228 ring_hom.is_semiring_hom | |
0.000014 12229 ring_hom.is_ring_hom | |
0.000014 12230 polynomial.card_nth_roots | |
0.000014 12231 card_roots_of_unity | |
0.000014 12232 list.fin_range.equations._eqn_1 | |
0.000014 12233 list.length_range | |
0.000014 12234 list.length_fin_range | |
0.000019 12235 fintype.card_fin | |
0.000015 12236 zmod.card | |
0.000014 12237 is_primitive_root.gpowers_eq | |
0.000014 12238 is_primitive_root.gpow_eq_one | |
0.000018 12239 is_primitive_root.eq_pow_of_mem_roots_of_unity | |
0.000017 12240 is_primitive_root.eq_pow_of_pow_eq_one | |
0.000017 12241 nat.mul_left_inj | |
0.000017 12242 is_primitive_root.pow_iff_coprime | |
0.000017 12243 is_primitive_root.is_primitive_root_iff | |
0.000015 12244 is_primitive_root.card_primitive_roots | |
0.000015 12245 rel_iso | |
0.000016 12246 order_iso | |
0.000017 12247 equiv.to_embedding | |
0.000017 12248 rel_iso.to_equiv | |
0.000017 12249 rel_iso.map_rel_iff' | |
0.000018 12250 rel_iso.to_rel_embedding | |
0.000015 12251 rel_iso.rel_embedding.has_coe | |
0.000019 12252 rel_iso.has_coe_to_fun | |
0.000015 12253 rel_iso.map_rel_iff | |
0.000016 12254 rel_iso.symm._proof_1 | |
0.000015 12255 rel_iso.symm | |
0.000016 12256 order_iso.symm | |
0.000015 12257 rel_iso.trans._proof_1 | |
0.000016 12258 rel_iso.trans | |
0.000015 12259 order_iso.trans | |
0.000016 12260 strict_mono.order_iso._proof_1 | |
0.000015 12261 strict_mono.order_iso | |
0.000016 12262 order_iso.set_congr._proof_1 | |
0.000015 12263 order_iso.set_congr | |
0.000017 12264 order_iso.set.univ._proof_1 | |
0.000014 12265 order_iso.set.univ | |
0.000017 12266 strict_mono.order_iso_of_surjective | |
0.000015 12267 mul_self_lt_mul_self | |
0.000016 12268 nnreal.sqrt._proof_1 | |
0.000015 12269 filter.at_bot | |
0.000016 12270 is_preconnected | |
0.000014 12271 preconnected_space | |
0.000016 12272 set.subset_compl_iff_disjoint | |
0.000015 12273 is_preconnected_closed_iff | |
0.000017 12274 preconnected_space.is_preconnected_univ | |
0.000015 12275 intermediate_value_univ₂ | |
0.000016 12276 intermediate_value_univ | |
0.000015 12277 mem_range_of_exists_le_of_exists_ge | |
0.000017 12278 set.restrict | |
0.000014 12279 subtype.preconnected_space | |
0.000017 12280 map_nhds_induced_eq | |
0.000014 12281 inducing.map_nhds_eq | |
0.000017 12282 embedding.map_nhds_eq | |
0.000014 12283 embedding_subtype_coe | |
0.000017 12284 nhds_within_eq_map_subtype_coe | |
0.000014 12285 set.restrict.equations._eqn_1 | |
0.000017 12286 tendsto_nhds_within_iff_subtype | |
0.000015 12287 continuous_within_at_iff_continuous_at_restrict | |
0.000014 12288 continuous_on_iff_continuous_restrict | |
0.000017 12289 is_preconnected.intermediate_value₂ | |
0.000015 12290 continuous_on_const | |
0.000014 12291 is_preconnected.intermediate_value | |
0.000016 12292 continuous_on_id | |
0.000015 12293 is_preconnected.Icc_subset | |
0.000014 12294 is_preconnected_of_forall_pair | |
0.000016 12295 set.interval | |
0.000016 12296 set.interval.equations._eqn_1 | |
0.000014 12297 set.interval_of_le | |
0.000016 12298 set.interval_of_ge | |
0.000015 12299 set.ord_connected.interval_subset | |
0.000016 12300 set.mem_Icc | |
0.000015 12301 set.left_mem_interval | |
0.000014 12302 set.interval_swap | |
0.000016 12303 set.right_mem_interval | |
0.000016 12304 set.Icc_subset_Icc | |
0.000014 12305 set.right_mem_Icc | |
0.000016 12306 set.left_mem_Icc | |
0.000015 12307 is_lub.mem_of_is_closed | |
0.000016 12308 is_lub_cSup | |
0.000016 12309 is_closed.cSup_mem | |
0.000014 12310 is_closed.mem_of_ge_of_forall_exists_gt | |
0.000017 12311 set.Icc_subset_Icc_right | |
0.000015 12312 is_closed_ge' | |
0.000014 12313 is_closed_Ici | |
0.000016 12314 is_closed_le' | |
0.000015 12315 is_closed_Iic | |
0.000017 12316 is_closed_Icc | |
0.000015 12317 set.Ico_subset_Ico_right | |
0.000014 12318 is_closed.Icc_subset_of_forall_exists_gt | |
0.000016 12319 set.Ioi_subset_Ici_self | |
0.000015 12320 sup_sdiff_left | |
0.000014 12321 sup_sdiff_self_right | |
0.000016 12322 sup_sdiff_self_left | |
0.000015 12323 inf_sdiff_self_left | |
0.000014 12324 sup_le_sup_right | |
0.000016 12325 sdiff_le_iff | |
0.000015 12326 set.diff_subset_iff | |
0.000016 12327 set.union_eq_self_of_subset_left | |
0.000015 12328 diff_subset_closure_iff | |
0.000014 12329 set.mem_diff | |
0.000017 12330 set.Ici_diff_left | |
0.000015 12331 inf_sdiff_left | |
0.000014 12332 sup_inf_inf_sdiff | |
0.000016 12333 inf_sdiff_sup_left | |
0.000016 12334 inf_sdiff_sup_right | |
0.000014 12335 sdiff_sdiff_right | |
0.000014 12336 sdiff_sdiff_right_self | |
0.000017 12337 sdiff_sdiff_eq_self | |
0.000015 12338 set.diff_diff_cancel_left | |
0.000016 12339 set.Ici_diff_Ioi_same | |
0.000015 12340 is_glb.frequently_mem | |
0.000016 12341 is_glb.frequently_nhds_mem | |
0.000015 12342 is_glb.mem_closure | |
0.000016 12343 is_lub_Iio | |
0.000015 12344 and.symm | |
0.000014 12345 order_dual.densely_ordered | |
0.000017 12346 is_glb_Ioi | |
0.000014 12347 closure_Ioi' | |
0.000017 12348 nhds_within_Ioi_ne_bot' | |
0.607277 12349 nhds_within_Ioi_self_ne_bot' | |
0.000077 12350 is_closed.Icc_subset_of_forall_mem_nhds_within | |
0.000024 12351 imp_eq_of_eq_true_left | |
0.000014 12352 set.union_is_comm | |
0.000015 12353 is_preconnected_Icc | |
0.000014 12354 is_preconnected_interval | |
0.000015 12355 is_preconnected_iff_ord_connected | |
0.000014 12356 set.ord_connected.is_preconnected | |
0.000014 12357 set.ord_connected_univ | |
0.000014 12358 ordered_connected_space | |
0.000014 12359 filter.eventually.exists | |
0.000015 12360 order_dual.nonempty | |
0.000013 12361 filter.at_bot_ne_bot | |
0.000014 12362 has_Sup_to_nonempty | |
0.000015 12363 filter.mem_at_bot | |
0.000013 12364 filter.eventually_le_at_bot | |
0.000019 12365 continuous.surjective | |
0.000019 12366 filter.tendsto_at_top | |
0.000017 12367 filter.monotone_mem_sets | |
0.000017 12368 filter.tendsto_at_top_mono' | |
0.000017 12369 filter.tendsto.at_top_mul_at_top | |
0.000017 12370 filter.tendsto_mul_self_at_top | |
0.000017 12371 filter.order_bot.at_bot_eq | |
0.000017 12372 filter.eventually_pure | |
0.000017 12373 nnreal.sqrt._proof_2 | |
0.000015 12374 nnreal.sqrt | |
0.000015 12375 real.sqrt | |
0.000016 12376 complex.abs | |
0.000014 12377 nnreal.coe_nonneg | |
0.000017 12378 real.sqrt_nonneg | |
0.000015 12379 complex.abs_nonneg | |
0.000016 12380 real.sqrt.equations._eqn_1 | |
0.000016 12381 nnreal.sqrt_eq_iff_sqr_eq | |
0.000014 12382 nnreal.sqrt_eq_zero | |
0.000016 12383 nnreal.sqrt_zero | |
0.000015 12384 real.sqrt_zero | |
0.000016 12385 order_iso.le_iff_le | |
0.000015 12386 real.sqrt_le | |
0.000017 12387 real.sqrt_inj | |
0.000015 12388 real.sqrt_eq_zero | |
0.000014 12389 complex.norm_sq_nonneg | |
0.000016 12390 complex.abs_eq_zero | |
0.000016 12391 mul_self_le_mul_self | |
0.000014 12392 nonneg_le_nonneg_of_squares_le | |
0.000016 12393 mul_self_le_mul_self_iff | |
0.000015 12394 order_iso.symm_apply_apply | |
0.000016 12395 nnreal.mul_sqrt_self | |
0.000016 12396 real.mul_self_sqrt | |
0.000016 12397 complex.mul_self_abs | |
0.000015 12398 add_mul_self_eq | |
0.000016 12399 tactic.ring.horner_add_horner_gt | |
0.000015 12400 complex.norm_sq_add | |
0.000016 12401 real.semigroup | |
0.000015 12402 complex.abs.equations._eqn_1 | |
0.000016 12403 complex.norm_sq_mul | |
0.000015 12404 linear_ordered_comm_group_with_zero | |
0.000016 12405 linear_ordered_comm_group_with_zero.le | |
0.000015 12406 linear_ordered_comm_group_with_zero.lt | |
0.000017 12407 linear_ordered_comm_group_with_zero.le_refl | |
0.000014 12408 linear_ordered_comm_group_with_zero.le_trans | |
0.000017 12409 linear_ordered_comm_group_with_zero.lt_iff_le_not_le | |
0.000015 12410 linear_ordered_comm_group_with_zero.le_antisymm | |
0.000016 12411 linear_ordered_comm_group_with_zero.le_total | |
0.000016 12412 linear_ordered_comm_group_with_zero.decidable_le | |
0.000014 12413 linear_ordered_comm_group_with_zero.decidable_eq | |
0.000016 12414 linear_ordered_comm_group_with_zero.decidable_lt | |
0.000015 12415 linear_ordered_comm_group_with_zero.mul | |
0.000017 12416 linear_ordered_comm_group_with_zero.mul_assoc | |
0.000015 12417 linear_ordered_comm_group_with_zero.one | |
0.000016 12418 linear_ordered_comm_group_with_zero.one_mul | |
0.000015 12419 linear_ordered_comm_group_with_zero.mul_one | |
0.000016 12420 linear_ordered_comm_group_with_zero.npow | |
0.000015 12421 linear_ordered_comm_group_with_zero.npow_zero' | |
0.000015 12422 linear_ordered_comm_group_with_zero.npow_succ' | |
0.000016 12423 linear_ordered_comm_group_with_zero.mul_comm | |
0.000016 12424 linear_ordered_comm_group_with_zero.mul_le_mul_left | |
0.000014 12425 linear_ordered_comm_group_with_zero.lt_of_mul_lt_mul_left | |
0.000017 12426 linear_ordered_comm_group_with_zero.zero | |
0.000015 12427 linear_ordered_comm_group_with_zero.zero_mul | |
0.000014 12428 linear_ordered_comm_group_with_zero.mul_zero | |
0.000015 12429 linear_ordered_comm_group_with_zero.zero_le_one | |
0.000014 12430 linear_ordered_comm_group_with_zero.to_linear_ordered_comm_monoid_with_zero | |
0.000016 12431 canonically_linear_ordered_add_monoid.to_canonically_ordered_add_monoid | |
0.000015 12432 nnreal.linear_ordered_comm_group_with_zero._proof_1 | |
0.000017 12433 linear_ordered_comm_monoid_with_zero.lt_of_mul_lt_mul_left._default | |
0.000017 12434 nnreal.linear_ordered_comm_group_with_zero._proof_2 | |
0.000016 12435 nnreal.linear_ordered_comm_group_with_zero._proof_3 | |
0.000014 12436 nnreal.linear_ordered_comm_group_with_zero | |
0.000016 12437 linear_ordered_comm_monoid.le_total | |
0.000015 12438 linear_ordered_comm_monoid.decidable_le | |
0.000017 12439 linear_ordered_comm_monoid.decidable_eq | |
0.000015 12440 linear_ordered_comm_monoid.decidable_lt | |
0.000016 12441 linear_ordered_comm_monoid.to_linear_order | |
0.000015 12442 linear_ordered_comm_monoid_with_zero.zero_le_one | |
0.000016 12443 zero_le_one' | |
0.000015 12444 zero_le' | |
0.000016 12445 le_zero_iff | |
0.000015 12446 nnreal.of_real_eq_zero | |
0.000028 12447 nnreal.of_real_mul | |
0.000016 12448 mul_mul_mul_comm | |
8.467856 12449 nnreal.sqrt_mul | |
0.000078 12450 real.sqrt_mul | |
0.000026 12451 complex.abs_mul | |
0.000054 12452 complex.norm_sq_conj | |
0.000016 12453 complex.abs_conj | |
0.000014 12454 complex.re_sq_le_norm_sq | |
0.000014 12455 complex.abs_re_le_abs | |
0.000015 12456 complex.re_le_abs | |
0.000013 12457 complex.abs_add | |
0.000014 12458 complex.abs.is_absolute_value | |
0.000015 12459 complex.sub_re | |
0.000014 12460 complex.is_cau_seq_re | |
0.000014 12461 complex.cau_seq_re | |
0.000015 12462 complex.sub_im | |
0.000014 12463 complex.im_sq_le_norm_sq | |
0.000015 12464 complex.abs_im_le_abs | |
0.000014 12465 complex.is_cau_seq_im | |
0.000014 12466 complex.cau_seq_im | |
0.000014 12467 complex.lim_aux | |
0.000019 12468 complex.I | |
0.000017 12469 complex.I_re | |
0.000015 12470 complex.I_im | |
0.000016 12471 complex.re_add_im | |
0.000015 12472 real.sqrt_mul_self | |
0.000015 12473 real.sqrt_mul_self_eq_abs | |
0.000016 12474 complex.abs_of_real | |
0.000015 12475 complex.norm_sq_I | |
0.000015 12476 nnreal.of_real_one | |
0.000014 12477 nnreal.sqrt_one | |
0.000016 12478 real.sqrt_one | |
0.000017 12479 complex.abs_I | |
0.000014 12480 complex.abs_le_abs_re_add_abs_im | |
0.000017 12481 complex.equiv_lim_aux | |
0.000015 12482 complex.abs.cau_seq.is_complete._proof_1 | |
0.000014 12483 complex.abs.cau_seq.is_complete | |
0.000014 12484 nat.factorial._main | |
0.000014 12485 nat.factorial | |
0.000015 12486 is_cau_series_of_abv_le_cau | |
0.000016 12487 is_cau_series_of_abv_cau | |
0.000015 12488 monoid_with_zero_hom.to_monoid_hom | |
0.000017 12489 is_absolute_value.abv_pow | |
0.000015 12490 local_ring | |
0.000016 12491 local_ring.to_nontrivial | |
0.000015 12492 units.is_unit | |
0.000014 12493 is_unit.mk0 | |
0.000014 12494 field.local_ring | |
0.000018 12495 neg_div | |
0.000015 12496 neg_div_neg_eq | |
0.000017 12497 lt_neg | |
0.000015 12498 nat.pred_lt | |
0.000017 12499 sub_nonpos | |
0.000015 12500 forall_ge_le_of_forall_le_succ | |
0.000017 12501 sub_add | |
0.000015 12502 is_cau_of_decreasing_bounded | |
0.000014 12503 is_cau_of_mono_bounded | |
0.000014 12504 norm_num.nonneg_pos | |
0.000014 12505 one_div_nonneg | |
0.000014 12506 div_le_div_of_le | |
0.000018 12507 add_neg_le_iff_le_add' | |
0.000015 12508 sub_le_self_iff | |
0.000016 12509 sub_le_self | |
0.000015 12510 sub_le_sub_left | |
0.000017 12511 is_cau_geo_series | |
0.000015 12512 is_cau_geo_series_const | |
0.000017 12513 series_ratio_test | |
0.000015 12514 complex.abs_abs | |
0.000014 12515 nat.factorial_succ | |
0.000014 12516 div_mul_div | |
0.000014 12517 div_div_eq_div_mul | |
0.000014 12518 mul_div_right_comm | |
0.000017 12519 complex.abs_div | |
0.000015 12520 complex.of_real | |
0.000017 12521 complex.of_real_nat_cast | |
0.000015 12522 complex.abs_of_nonneg | |
0.000014 12523 complex.abs_cast_nat | |
0.000014 12524 div_le_div_of_le_left | |
0.000016 12525 complex.is_cau_abs_exp | |
0.000017 12526 complex.is_cau_exp | |
0.000017 12527 complex.exp' | |
0.000016 12528 complex.exp | |
0.000018 12529 complex.cos | |
0.000015 12530 real.cos | |
0.000016 12531 intermediate_value_Icc' | |
0.000015 12532 bit0_le_bit0 | |
0.000014 12533 norm_num.lt_one_bit0 | |
0.000016 12534 norm_num.le_one_bit0 | |
0.000015 12535 nondiscrete_normed_field | |
0.000016 12536 normed_space | |
0.000015 12537 nondiscrete_normed_field.to_normed_field | |
0.000017 12538 continuous_linear_map | |
0.000015 12539 normed_space.to_semimodule | |
0.000014 12540 asymptotics.is_o | |
0.000017 12541 continuous_linear_map.to_linear_map | |
0.000015 12542 continuous_linear_map.linear_map.has_coe | |
0.000016 12543 continuous_linear_map.to_fun | |
0.000015 12544 has_fderiv_at_filter | |
0.000014 12545 has_fderiv_at | |
0.000016 12546 differentiable_at | |
0.000016 12547 differentiable | |
0.000014 12548 has_vadd | |
0.000016 12549 has_vadd.vadd | |
0.000015 12550 add_action | |
0.000015 12551 has_vsub | |
0.000016 12552 add_action.to_has_vadd | |
0.000015 12553 has_vsub.vsub | |
0.000016 12554 add_torsor | |
0.000015 12555 add_torsor.nonempty | |
0.000015 12556 add_monoid.to_add_action._proof_1 | |
0.000016 12557 add_monoid.to_add_action._proof_2 | |
0.000015 12558 add_monoid.to_add_action | |
0.000016 12559 add_group_is_add_torsor._proof_1 | |
0.000015 12560 add_group_is_add_torsor | |
0.000016 12561 asymptotics.is_o.equations._eqn_1 | |
0.000015 12562 asymptotics.is_O_with_congr | |
0.000017 12563 asymptotics.is_O_with.congr' | |
0.000015 12564 asymptotics.is_O_with.congr | |
0.000017 12565 asymptotics.is_O_with.congr_const | |
0.000016 12566 asymptotics.is_O_with.trans | |
0.000014 12567 asymptotics.is_o.trans_is_O_with | |
0.000016 12568 asymptotics.is_O_with_iff | |
0.000015 12569 asymptotics.is_O_with.of_bound | |
0.000016 12570 asymptotics.is_O_with.bound | |
0.000016 12571 asymptotics.is_O_with.weaken | |
0.000014 12572 asymptotics.is_O_with.exists_pos | |
0.000016 12573 asymptotics.is_O_iff_is_O_with | |
0.000015 12574 asymptotics.is_O.is_O_with | |
0.000016 12575 asymptotics.is_O.exists_pos | |
0.000015 12576 asymptotics.is_o.trans_is_O | |
0.000015 12577 normed_ring.to_normed_group._proof_1 | |
0.000016 12578 normed_ring.to_normed_group._proof_2 | |
0.000015 12579 normed_ring.to_normed_group._proof_3 | |
0.000017 12580 normed_ring.to_normed_group._proof_4 | |
0.000015 12581 normed_ring.to_normed_group._proof_5 | |
0.000014 12582 normed_ring.to_normed_group._proof_6 | |
2.265495 12583 normed_ring.to_normed_group._proof_7 | |
0.000078 12584 normed_ring.to_normed_group._proof_8 | |
0.000024 12585 normed_ring.to_normed_group | |
0.000015 12586 asymptotics.is_O_with.is_O | |
0.000014 12587 norm_one_class | |
0.000014 12588 norm_one_class.norm_one | |
0.000014 12589 metric_space.eq_of_dist_eq_zero | |
0.000014 12590 eq_of_dist_eq_zero | |
0.000014 12591 dist_eq_zero | |
0.000014 12592 norm_eq_zero | |
0.000014 12593 normed_field.to_norm_one_class | |
0.000014 12594 asymptotics.is_O_with_const_const | |
0.000014 12595 asymptotics.is_O_with_const_one | |
0.000014 12596 asymptotics.is_O_const_one | |
0.000014 12597 asymptotics.is_O_const_const | |
0.000018 12598 asymptotics.is_o_const_iff_is_o_one | |
0.000017 12599 metric.closed_ball | |
0.000017 12600 metric.mk_uniformity_basis_le | |
0.000015 12601 metric.uniformity_basis_dist_le | |
0.000017 12602 metric.nhds_basis_closed_ball | |
0.000017 12603 metric.mem_closed_ball | |
0.000016 12604 asymptotics.is_o_const_iff | |
0.000018 12605 asymptotics.is_o_one_iff | |
0.000015 12606 asymptotics.is_O_with.trans_is_o | |
0.000015 12607 asymptotics.is_O.trans_is_o | |
0.000016 12608 asymptotics.is_O.trans_tendsto | |
0.000026 12609 asymptotics.is_O_congr | |
0.000016 12610 asymptotics.is_O.congr' | |
0.000015 12611 asymptotics.is_O.congr | |
0.000017 12612 asymptotics.is_O.congr_left | |
0.000016 12613 asymptotics.is_O_with.add | |
0.000016 12614 asymptotics.is_O.add | |
0.000018 12615 norm_neg | |
0.000018 12616 asymptotics.is_O_with_neg_left | |
0.000017 12617 asymptotics.is_O_neg_left | |
0.000015 12618 asymptotics.is_O.neg_left | |
0.000014 12619 asymptotics.is_O.sub | |
0.000014 12620 asymptotics.is_O.congr_of_sub | |
0.000016 12621 asymptotics.is_o_iff | |
0.000015 12622 asymptotics.is_o.def' | |
0.000016 12623 asymptotics.is_o.is_O_with | |
0.000017 12624 asymptotics.is_o.is_O | |
0.000017 12625 asymptotics.is_O_with.comp_tendsto | |
0.000015 12626 asymptotics.is_O.comp_tendsto | |
0.000016 12627 asymptotics.is_O_with_of_le' | |
0.000015 12628 asymptotics.is_O_of_le' | |
0.000016 12629 metric.tendsto_nhds_nhds | |
0.000015 12630 normed_group.tendsto_nhds_nhds | |
0.000015 12631 nondiscrete_normed_field.non_trivial | |
0.000016 12632 normed_field.exists_one_lt_norm | |
0.000015 12633 semi_normed_space | |
0.000016 12634 semi_normed_space.to_semimodule | |
0.000015 12635 fpow._main | |
0.000015 12636 fpow | |
0.000015 12637 int.has_pow | |
0.000016 12638 pow_unbounded_of_one_lt | |
0.000015 12639 int.of_nat_nonneg | |
0.000016 12640 fpow_neg_succ_of_nat | |
0.000015 12641 inv_le_one | |
0.000014 12642 one_le_pow_of_one_le | |
0.000016 12643 fpow_le_of_le | |
0.000015 12644 int.lt_succ | |
0.000016 12645 fpow_neg | |
0.000015 12646 le_inv | |
0.000016 12647 inv_lt | |
0.000014 12648 exists_int_pow_near | |
0.000017 12649 ne.le_iff_lt | |
0.000015 12650 dist_le_zero | |
0.000016 12651 dist_pos | |
0.000015 12652 norm_pos_iff | |
0.000016 12653 monoid_with_zero_hom.map_fpow | |
0.000014 12654 normed_field.norm_hom._proof_1 | |
0.000017 12655 normed_field.norm_hom._proof_2 | |
0.000014 12656 normed_field.norm_hom | |
0.000017 12657 normed_field.norm_fpow | |
0.000014 12658 semi_normed_space.norm_smul_le | |
0.000017 12659 smul_smul | |
0.000014 12660 units.inv_smul_smul | |
0.000014 12661 inv_smul_smul' | |
0.000017 12662 normed_field.norm_inv | |
0.000015 12663 norm_smul | |
0.000016 12664 fpow_zero | |
0.000015 12665 fpow_coe_nat | |
0.000014 12666 fpow_one | |
0.000016 12667 fpow_add_one | |
0.000015 12668 fpow_sub_one | |
0.000015 12669 fpow_add | |
0.000016 12670 fpow_pos_of_pos | |
0.000015 12671 rescale_to_shell_semi_normed | |
0.000015 12672 normed_space.norm_smul_le | |
0.000016 12673 normed_space.to_semi_normed_space | |
0.000015 12674 rescale_to_shell | |
0.000014 12675 linear_map.bound_of_shell | |
0.000017 12676 div_le_iff' | |
0.000015 12677 one_div_div | |
0.000014 12678 linear_map.bound_of_continuous | |
0.000016 12679 continuous_linear_map.cont | |
0.000015 12680 continuous_linear_map.bound | |
0.000017 12681 continuous_linear_map.is_O_id | |
0.000014 12682 continuous_linear_map.is_O_comp | |
0.000016 12683 continuous_linear_map.is_O_sub | |
0.000015 12684 has_fderiv_at_filter.is_O_sub | |
0.000016 12685 has_fderiv_at_filter.tendsto_nhds | |
0.000014 12686 has_fderiv_at.continuous_at | |
0.000016 12687 differentiable_at.continuous_at | |
0.000015 12688 differentiable.continuous | |
0.000017 12689 real.nondiscrete_normed_field._proof_1 | |
0.000015 12690 real.nondiscrete_normed_field | |
0.000014 12691 normed_field.to_normed_space._proof_1 | |
0.000016 12692 normed_field.to_normed_space | |
0.000016 12693 is_scalar_tower | |
0.000016 12694 has_continuous_smul | |
0.000015 12695 linear_map.smul_right._proof_1 | |
0.000014 12696 is_scalar_tower.smul_assoc | |
0.000016 12697 smul_assoc | |
0.000015 12698 linear_map.smul_right._proof_2 | |
0.000016 12699 linear_map.smul_right | |
0.000015 12700 continuous_linear_map.smul_right._proof_1 | |
0.000016 12701 continuous_linear_map.smul_right._proof_2 | |
0.000015 12702 has_continuous_smul.continuous_smul | |
0.000016 12703 continuous.smul | |
0.000015 12704 continuous_linear_map.smul_right._proof_3 | |
0.000014 12705 continuous_linear_map.smul_right | |
0.000017 12706 is_scalar_tower.left | |
0.749229 12707 has_deriv_at_filter._proof_1 | |
0.000079 12708 smul_neg | |
0.000024 12709 smul_sub | |
0.000014 12710 module | |
0.000015 12711 neg_smul | |
0.000014 12712 sub_smul | |
0.000015 12713 semi_normed_space.has_continuous_smul | |
0.000014 12714 has_deriv_at_filter._proof_2 | |
0.000014 12715 linear_map.id._proof_1 | |
0.000014 12716 linear_map.id._proof_2 | |
0.000014 12717 linear_map.id | |
0.000015 12718 continuous_linear_map.id | |
0.000014 12719 continuous_linear_map.has_one | |
0.000014 12720 has_deriv_at_filter | |
0.000014 12721 has_deriv_at | |
0.000015 12722 has_fderiv_at.differentiable_at | |
0.000014 12723 has_deriv_at.differentiable_at | |
0.000014 12724 complex.sin | |
0.000018 12725 real.sin | |
0.000018 12726 normed_group.core | |
0.000017 12727 semi_normed_group.core | |
0.000018 12728 semi_normed_group.core.norm_zero | |
0.000015 12729 semi_normed_group.of_core._proof_1 | |
0.000016 12730 semi_normed_group.core.norm_neg | |
0.000017 12731 semi_normed_group.of_core._proof_2 | |
0.000015 12732 semi_normed_group.core.triangle | |
0.000016 12733 semi_normed_group.of_core._proof_3 | |
0.000017 12734 semi_normed_group.of_core._proof_4 | |
0.000017 12735 semi_normed_group.of_core._proof_5 | |
0.000015 12736 semi_normed_group.of_core._proof_6 | |
0.000015 12737 semi_normed_group.of_core._proof_7 | |
0.000016 12738 semi_normed_group.of_core._proof_8 | |
0.000015 12739 semi_normed_group.of_core._proof_9 | |
0.000017 12740 semi_normed_group.of_core | |
0.000017 12741 normed_group.core.norm_eq_zero_iff | |
0.000015 12742 normed_group.core.triangle | |
0.000016 12743 normed_group.core.norm_neg | |
0.000017 12744 normed_group.core.to_semi_normed_group.core | |
0.000015 12745 normed_group.of_core._proof_1 | |
0.000016 12746 normed_group.of_core._proof_2 | |
0.000016 12747 normed_group.of_core | |
0.000014 12748 complex.has_norm | |
0.000016 12749 complex.abs_neg | |
0.000015 12750 complex.normed_group._proof_1 | |
0.000017 12751 complex.normed_group | |
0.000015 12752 complex.normed_field._proof_1 | |
0.000015 12753 complex.normed_field | |
0.000016 12754 complex.of_real_bit0 | |
0.000015 12755 complex.abs_two | |
0.000015 12756 complex.nondiscrete_normed_field._proof_1 | |
0.000016 12757 complex.nondiscrete_normed_field | |
0.000016 12758 complex.has_scalar | |
0.000014 12759 complex.smul_re | |
0.000016 12760 complex.smul_im | |
0.000015 12761 complex.mul_action._proof_1 | |
0.000016 12762 complex.mul_action._proof_2 | |
0.000015 12763 complex.mul_action | |
0.000017 12764 complex.distrib_mul_action._proof_1 | |
0.000015 12765 complex.distrib_mul_action._proof_2 | |
0.000016 12766 complex.distrib_mul_action | |
0.000015 12767 complex.semimodule._proof_1 | |
0.000017 12768 complex.semimodule._proof_2 | |
0.000015 12769 complex.semimodule | |
0.000016 12770 linear_isometry | |
0.000015 12771 linear_isometry.to_linear_map | |
0.000016 12772 linear_isometry.has_coe_to_fun | |
0.000015 12773 isometry | |
0.000015 12774 lipschitz_with.continuous | |
0.000016 12775 isometry.lipschitz | |
0.000015 12776 isometry.continuous | |
0.000014 12777 ennreal.to_real_of_real | |
0.000017 12778 dist_edist | |
0.000015 12779 isometry_emetric_iff_metric | |
0.000016 12780 add_monoid_hom.map_add_neg | |
0.000015 12781 add_monoid_hom.map_sub | |
0.000015 12782 add_monoid_hom.isometry_iff_norm | |
0.000016 12783 add_monoid_hom.isometry_of_norm | |
0.000027 12784 linear_map.to_add_monoid_hom | |
0.000016 12785 linear_isometry.norm_map' | |
0.000014 12786 linear_isometry.norm_map | |
0.000018 12787 linear_isometry.isometry | |
0.000016 12788 linear_isometry.continuous | |
0.000016 12789 linear_isometry.to_continuous_linear_map | |
0.000015 12790 algebra | |
0.000014 12791 algebra.to_has_scalar | |
0.000017 12792 algebra.to_ring_hom | |
0.000015 12793 algebra_map | |
0.000014 12794 algebra.smul_def' | |
0.000016 12795 algebra.smul_def'' | |
0.000015 12796 algebra.to_semimodule._proof_1 | |
0.000016 12797 algebra.to_semimodule._proof_2 | |
0.000015 12798 algebra.to_semimodule._proof_3 | |
0.000017 12799 algebra.to_semimodule._proof_4 | |
0.000015 12800 algebra.to_semimodule._proof_5 | |
0.000014 12801 algebra.to_semimodule._proof_6 | |
0.000017 12802 algebra.to_semimodule | |
0.000014 12803 ring_hom.to_algebra'._proof_1 | |
0.000017 12804 ring_hom.to_algebra' | |
0.000015 12805 ring_hom.to_algebra._proof_1 | |
0.000015 12806 ring_hom.to_algebra | |
0.000016 12807 algebra.id | |
0.000015 12808 algebra.smul_def | |
0.000016 12809 algebra.id.map_eq_self | |
0.000015 12810 complex.algebra._proof_1 | |
0.000015 12811 complex.algebra._proof_2 | |
0.000014 12812 complex.algebra._proof_3 | |
0.000016 12813 complex.algebra._proof_4 | |
0.000015 12814 ring_hom.to_fun_eq_coe | |
0.000017 12815 ring_hom.coe_comp | |
0.000015 12816 complex.of_real_eq_coe | |
0.000014 12817 algebra.commutes' | |
0.000016 12818 algebra.commutes | |
0.000016 12819 complex.algebra._match_1 | |
0.000014 12820 complex.algebra._proof_5 | |
0.000016 12821 complex.algebra._proof_6 | |
0.000015 12822 complex.algebra | |
0.000016 12823 complex.coe_algebra_map | |
0.000016 12824 complex.of_real_inj | |
0.000014 12825 complex.of_real_eq_zero | |
0.000016 12826 complex.of_real_lm._proof_1 | |
0.000016 12827 complex.of_real_lm | |
0.000014 12828 complex.of_real_lm_coe | |
0.000017 12829 complex.norm_real | |
1.360990 12830 complex.of_real_li._proof_1 | |
0.000075 12831 complex.of_real_li | |
0.000024 12832 complex.of_real_clm | |
0.000015 12833 continuous_linear_map.comp._proof_1 | |
0.000014 12834 continuous_linear_map.comp | |
0.000015 12835 semi_normed_comm_ring.to_comm_ring._proof_1 | |
0.000014 12836 semi_normed_comm_ring.to_comm_ring._proof_2 | |
0.000015 12837 semi_normed_comm_ring.to_comm_ring._proof_3 | |
0.000014 12838 semi_normed_comm_ring.to_comm_ring._proof_4 | |
0.000014 12839 semi_normed_comm_ring.to_comm_ring._proof_5 | |
0.000015 12840 semi_normed_comm_ring.to_comm_ring._proof_6 | |
0.000014 12841 semi_normed_comm_ring.to_comm_ring._proof_7 | |
0.000014 12842 semi_normed_comm_ring.to_comm_ring._proof_8 | |
0.000014 12843 semi_normed_comm_ring.to_comm_ring._proof_9 | |
0.000014 12844 semi_normed_comm_ring.to_comm_ring._proof_10 | |
0.000015 12845 semi_normed_comm_ring.to_comm_ring._proof_11 | |
0.000014 12846 semi_normed_comm_ring.to_comm_ring._proof_12 | |
0.000014 12847 semi_normed_comm_ring.to_comm_ring._proof_13 | |
0.000017 12848 semi_normed_comm_ring.to_comm_ring._proof_14 | |
0.000017 12849 semi_normed_comm_ring.to_comm_ring._proof_15 | |
0.000017 12850 semi_normed_comm_ring.mul_comm | |
0.000015 12851 semi_normed_comm_ring.to_comm_ring | |
0.000016 12852 normed_algebra | |
0.000017 12853 normed_ring.to_semi_normed_ring | |
0.000015 12854 semi_normed_algebra | |
0.000016 12855 semi_normed_algebra.to_algebra | |
0.000017 12856 semi_normed_algebra.norm_algebra_map_eq | |
0.000015 12857 norm_algebra_map_eq | |
0.000016 12858 semi_normed_algebra.to_semi_normed_space._proof_1 | |
0.000015 12859 semi_normed_algebra.to_semi_normed_space | |
0.000017 12860 normed_algebra.to_algebra | |
0.000017 12861 normed_algebra.norm_algebra_map_eq | |
0.000017 12862 normed_algebra.to_semi_normed_algebra | |
0.000017 12863 normed_algebra.to_normed_space._proof_1 | |
0.000017 12864 normed_algebra.to_normed_space | |
0.000016 12865 complex.normed_algebra._proof_1 | |
0.000017 12866 complex.normed_algebra | |
0.000015 12867 normed_algebra.id._proof_1 | |
0.000016 12868 normed_algebra.id._proof_2 | |
0.000015 12869 normed_algebra.id._proof_3 | |
0.000014 12870 normed_algebra.id | |
0.000016 12871 lipschitz_with.equations._eqn_1 | |
0.000015 12872 dist_nndist | |
0.000017 12873 lipschitz_with_iff_dist_le_mul | |
0.000014 12874 lipschitz_with.of_dist_le_mul | |
0.000016 12875 nnreal.le_coe_of_real | |
0.000016 12876 lipschitz_with.of_dist_le' | |
0.000014 12877 linear_map.map_sub | |
0.000016 12878 linear_map.lipschitz_of_bound | |
0.000015 12879 linear_map.continuous_of_bound | |
0.000017 12880 linear_map.mk_continuous | |
0.000015 12881 complex.smul_coe | |
0.000016 12882 complex.re_lm._proof_1 | |
0.000015 12883 complex.re_lm | |
0.000014 12884 complex.re_lm_coe | |
0.000017 12885 real.norm_eq_abs | |
0.000015 12886 complex.norm_eq_abs | |
0.000014 12887 complex.re_clm._proof_1 | |
0.000016 12888 complex.re_clm | |
0.000015 12889 linear_map.compatible_smul | |
0.000015 12890 linear_map.compatible_smul.map_smul | |
0.000016 12891 linear_map.map_smul_of_tower | |
0.000016 12892 linear_map.restrict_scalars._proof_1 | |
0.000014 12893 linear_map.restrict_scalars | |
0.000016 12894 continuous_linear_map.continuous | |
0.000015 12895 continuous_linear_map.restrict_scalars._proof_1 | |
0.000015 12896 continuous_linear_map.restrict_scalars | |
0.000016 12897 smul_one_smul | |
0.000015 12898 linear_map.is_scalar_tower.compatible_smul._proof_1 | |
0.000014 12899 linear_map.is_scalar_tower.compatible_smul | |
0.000014 12900 restrict_scalars | |
0.000014 12901 restrict_scalars.add_comm_monoid | |
0.000017 12902 mul_action_with_zero.comp_hom._proof_1 | |
0.000015 12903 mul_action_with_zero.comp_hom._proof_2 | |
0.000017 12904 zero_hom | |
0.000017 12905 zero_hom.to_fun | |
0.000015 12906 zero_hom.has_coe_to_fun | |
0.000016 12907 smul_with_zero.smul_zero | |
0.000015 12908 smul_zero' | |
0.000016 12909 smul_with_zero.comp_hom._proof_1 | |
0.000015 12910 zero_hom.map_zero' | |
0.000016 12911 zero_hom.map_zero | |
0.000015 12912 smul_with_zero.comp_hom._proof_2 | |
0.000017 12913 smul_with_zero.comp_hom | |
0.000014 12914 monoid_with_zero_hom.to_zero_hom | |
0.000017 12915 mul_action_with_zero.comp_hom._proof_3 | |
0.000014 12916 mul_action_with_zero.comp_hom._proof_4 | |
0.000017 12917 mul_action_with_zero.comp_hom | |
0.000014 12918 semimodule.comp_hom._proof_1 | |
0.000017 12919 semimodule.comp_hom._proof_2 | |
0.000015 12920 mul_action.comp_hom._proof_1 | |
0.000014 12921 mul_action.comp_hom._proof_2 | |
0.000017 12922 mul_action.comp_hom | |
0.000014 12923 distrib_mul_action.comp_hom._proof_1 | |
0.000017 12924 distrib_mul_action.comp_hom._proof_2 | |
0.000015 12925 distrib_mul_action.comp_hom._proof_3 | |
0.000014 12926 distrib_mul_action.comp_hom._proof_4 | |
0.000016 12927 distrib_mul_action.comp_hom | |
0.000016 12928 semimodule.comp_hom._proof_3 | |
0.000014 12929 semimodule.comp_hom._proof_4 | |
0.000016 12930 semimodule.comp_hom._proof_5 | |
0.000015 12931 semimodule.comp_hom._proof_6 | |
0.000016 12932 semimodule.comp_hom | |
1.066999 12933 restrict_scalars.module_orig | |
0.000077 12934 restrict_scalars.semimodule | |
0.000023 12935 module.complex_to_real | |
0.000015 12936 restrict_scalars.is_scalar_tower | |
0.000014 12937 module.real_complex_tower | |
0.000015 12938 complex.of_real_clm_apply | |
0.000014 12939 continuous_linear_map.coe_comp' | |
0.000014 12940 continuous_linear_map.coe_restrict_scalars' | |
0.000014 12941 continuous_linear_map.smul_right_apply | |
0.000014 12942 continuous_linear_map.one_apply | |
0.000014 12943 complex.re_clm_apply | |
0.000014 12944 has_deriv_at_filter.equations._eqn_1 | |
0.000014 12945 continuous_linear_map.cases_on | |
0.000014 12946 continuous_linear_map.coe_injective | |
0.000014 12947 continuous_linear_map.coe_inj | |
0.000014 12948 linear_map.cases_on | |
0.000017 12949 linear_map.coe_injective | |
0.000015 12950 linear_map.ext | |
0.000017 12951 smul_eq_mul | |
0.000017 12952 linear_map.ext_ring | |
0.000015 12953 continuous_linear_map.ext_ring | |
0.000016 12954 continuous_linear_map.map_smul_of_tower | |
0.000018 12955 continuous_linear_map.smul_right_one_one | |
0.000015 12956 has_fderiv_at_filter_iff_has_deriv_at_filter | |
0.000014 12957 has_fderiv_at_iff_has_deriv_at | |
0.000017 12958 has_fderiv_at.has_deriv_at | |
0.000016 12959 asymptotics.is_o_iff_forall_is_O_with | |
0.000015 12960 asymptotics.is_o.of_is_O_with | |
0.000017 12961 asymptotics.is_o.forall_is_O_with | |
0.000018 12962 asymptotics.is_o.comp_tendsto | |
0.000017 12963 filter.tendsto_map | |
0.000015 12964 asymptotics.is_o_congr | |
0.000016 12965 asymptotics.is_o.congr' | |
0.000015 12966 asymptotics.is_o.congr | |
0.000017 12967 asymptotics.is_o.congr_left | |
0.000017 12968 asymptotics.is_o.add | |
0.000015 12969 asymptotics.is_o.triangle | |
0.000018 12970 continuous_linear_map.map_sub | |
0.000017 12971 has_fderiv_at_filter.comp | |
0.000017 12972 asymptotics.is_O_with.mono | |
0.000015 12973 asymptotics.is_o.mono | |
0.000016 12974 has_fderiv_at_filter.mono | |
0.000015 12975 has_fderiv_at.comp | |
0.000016 12976 asymptotics.is_o.of_bound | |
0.000015 12977 asymptotics.is_o_zero | |
0.000017 12978 continuous_linear_map.has_fderiv_at_filter | |
0.000015 12979 continuous_linear_map.has_fderiv_at | |
0.000014 12980 has_fderiv_at.restrict_scalars | |
0.000016 12981 has_deriv_at_iff_has_fderiv_at | |
0.000015 12982 has_deriv_at.has_fderiv_at | |
0.000014 12983 has_deriv_at.real_of_complex | |
0.000017 12984 has_strict_fderiv_at | |
0.000015 12985 has_strict_deriv_at._proof_1 | |
0.000014 12986 has_strict_deriv_at._proof_2 | |
0.000015 12987 has_strict_deriv_at | |
0.000016 12988 has_fderiv_at.equations._eqn_1 | |
0.000015 12989 has_fderiv_at_filter.equations._eqn_1 | |
0.000016 12990 has_strict_fderiv_at.has_fderiv_at | |
0.000015 12991 has_strict_deriv_at.has_deriv_at | |
0.000017 12992 complex.sin.equations._eqn_1 | |
0.000017 12993 linear_map.has_add._proof_1 | |
0.000015 12994 linear_map.has_add._proof_2 | |
0.000016 12995 linear_map.has_add | |
0.000017 12996 continuous_linear_map.has_add._proof_1 | |
0.000015 12997 continuous_linear_map.has_add | |
0.000015 12998 smul_comm_class | |
0.000016 12999 linear_map.has_scalar._proof_1 | |
0.000016 13000 smul_comm_class.smul_comm | |
0.000015 13001 linear_map.has_scalar._proof_2 | |
0.000016 13002 linear_map.has_scalar | |
0.000019 13003 continuous_linear_map.has_scalar._proof_1 | |
0.000015 13004 continuous_linear_map.has_scalar | |
0.000016 13005 algebra_compatible_smul | |
0.000015 13006 is_scalar_tower.to_smul_comm_class | |
0.000015 13007 continuous_linear_map.add_apply | |
0.000016 13008 smul_comm_class_self | |
0.000015 13009 continuous_linear_map.coe_smul' | |
0.000015 13010 has_strict_fderiv_at.equations._eqn_1 | |
0.000016 13011 has_strict_deriv_at.equations._eqn_1 | |
0.000015 13012 has_strict_fderiv_at_iff_has_strict_deriv_at | |
0.000016 13013 has_strict_fderiv_at.has_strict_deriv_at | |
0.000015 13014 continuous_at.prod | |
0.000015 13015 continuous_at.comp | |
0.000016 13016 continuous_at.prod_map | |
0.000015 13017 continuous_at.prod_map' | |
0.000016 13018 has_strict_fderiv_at.continuous_at | |
0.000015 13019 has_strict_fderiv_at.is_O_sub | |
0.000016 13020 has_strict_fderiv_at.comp | |
0.000015 13021 prod.has_add | |
0.000014 13022 prod.add_semigroup._proof_1 | |
0.000017 13023 prod.add_semigroup | |
0.000015 13024 prod.add_comm_semigroup._proof_1 | |
0.000016 13025 prod.add_comm_semigroup._proof_2 | |
0.000015 13026 prod.add_comm_semigroup | |
0.000014 13027 prod.add_comm_group._proof_1 | |
0.000016 13028 prod.add_monoid._proof_1 | |
0.000015 13029 prod.has_zero | |
0.000017 13030 prod.rec_on | |
0.000015 13031 prod.add_zero_class._proof_1 | |
0.000014 13032 prod.add_zero_class._proof_2 | |
0.000016 13033 prod.add_zero_class | |
0.000015 13034 prod.add_monoid._proof_2 | |
0.000025 13035 prod.add_monoid._proof_3 | |
0.000019 13036 prod.add_monoid._proof_4 | |
0.000015 13037 prod.add_monoid._proof_5 | |
0.000014 13038 prod.add_monoid._proof_6 | |
0.000014 13039 prod.add_monoid._proof_7 | |
0.000014 13040 prod.add_monoid | |
0.000014 13041 prod.add_group._proof_1 | |
0.000017 13042 prod.add_group._proof_2 | |
0.000015 13043 prod.add_group._proof_3 | |
0.533732 13044 prod.add_group._proof_4 | |
0.000079 13045 prod.add_group._proof_5 | |
0.000024 13046 prod.has_neg | |
0.000014 13047 prod.has_sub | |
0.000015 13048 prod.add_group._proof_6 | |
0.000014 13049 prod.add_group._proof_7 | |
0.000015 13050 prod.add_group | |
0.000014 13051 prod.add_comm_group._proof_2 | |
0.000014 13052 prod.add_comm_group._proof_3 | |
0.000014 13053 prod.add_comm_group._proof_4 | |
0.000014 13054 prod.add_comm_group._proof_5 | |
0.000015 13055 prod.add_comm_group._proof_6 | |
0.000014 13056 prod.add_comm_group._proof_7 | |
0.000015 13057 prod.add_comm_group._proof_8 | |
0.000015 13058 prod.add_comm_group | |
0.000019 13059 prod.fst_sub | |
0.000017 13060 prod.snd_sub | |
0.000017 13061 prod.semi_normed_group._proof_1 | |
0.000015 13062 prod.semi_normed_group | |
0.000015 13063 prod.metric_space_max._proof_1 | |
0.000016 13064 prod.metric_space_max._proof_2 | |
0.000017 13065 prod.metric_space_max._proof_3 | |
0.000017 13066 prod.metric_space_max._proof_4 | |
0.000019 13067 prod.metric_space_max._proof_5 | |
0.000015 13068 prod.metric_space_max._proof_6 | |
0.000016 13069 prod.metric_space_max | |
0.000017 13070 prod.normed_group._proof_1 | |
0.000017 13071 prod.normed_group | |
0.000015 13072 prod.add_comm_monoid._proof_1 | |
0.000015 13073 prod.add_comm_monoid._proof_2 | |
0.000016 13074 prod.add_comm_monoid._proof_3 | |
0.000015 13075 prod.add_comm_monoid._proof_4 | |
0.000016 13076 prod.add_comm_monoid._proof_5 | |
0.000015 13077 prod.add_comm_monoid._proof_6 | |
0.000014 13078 prod.add_comm_monoid | |
0.000014 13079 prod.has_scalar | |
0.000014 13080 prod.mul_action._match_1 | |
0.000016 13081 prod.mul_action._proof_1 | |
0.000015 13082 prod.mul_action._proof_2 | |
0.000017 13083 prod.mul_action | |
0.000017 13084 prod.distrib_mul_action._proof_1 | |
0.000015 13085 prod.distrib_mul_action._proof_2 | |
0.000016 13086 prod.distrib_mul_action | |
0.000015 13087 prod.semimodule._proof_1 | |
0.000015 13088 prod.semimodule._proof_2 | |
0.000016 13089 prod.semimodule._proof_3 | |
0.000015 13090 prod.semimodule._match_1 | |
0.000014 13091 prod.semimodule._proof_4 | |
0.000017 13092 prod.semimodule | |
0.000015 13093 prod.semi_normed_space._proof_1 | |
0.000014 13094 prod.semi_normed_space._proof_2 | |
0.000017 13095 prod.semi_norm_def | |
0.000014 13096 prod.smul_fst | |
0.000017 13097 prod.smul_snd | |
0.000015 13098 monotone_mul_left_of_nonneg | |
0.000016 13099 mul_max_of_nonneg | |
0.000015 13100 prod.semi_normed_space._proof_3 | |
0.000016 13101 prod.semi_normed_space | |
0.000016 13102 prod.normed_space._proof_1 | |
0.000014 13103 prod.normed_space | |
0.000016 13104 prod.mk_add_mk | |
0.000015 13105 linear_map.prod._proof_1 | |
0.000016 13106 prod.smul_mk | |
0.000016 13107 linear_map.prod._proof_2 | |
0.000014 13108 linear_map.prod | |
0.000016 13109 continuous_linear_map.prod._proof_1 | |
0.000016 13110 continuous_linear_map.prod | |
0.000014 13111 is_bounded_bilinear_map | |
0.000016 13112 linear_map.mk_continuous_of_exists_bound._match_1 | |
0.000015 13113 linear_map.mk_continuous_of_exists_bound | |
0.000017 13114 is_bounded_bilinear_map.add_right | |
0.000015 13115 is_bounded_bilinear_map.add_left | |
0.000014 13116 is_bounded_bilinear_map.linear_deriv._proof_1 | |
0.000017 13117 is_bounded_bilinear_map.smul_right | |
0.000015 13118 is_bounded_bilinear_map.smul_left | |
0.000014 13119 is_bounded_bilinear_map.linear_deriv._proof_2 | |
0.000017 13120 is_bounded_bilinear_map.linear_deriv | |
0.000015 13121 is_bounded_bilinear_map.bound | |
0.000014 13122 is_bounded_bilinear_map.deriv._proof_1 | |
0.000016 13123 is_bounded_bilinear_map.deriv | |
0.000015 13124 smul_comm_class.symm | |
0.000017 13125 is_scalar_tower.to_smul_comm_class' | |
0.000014 13126 smul_algebra_smul_comm | |
0.000017 13127 is_bounded_bilinear_map_smul | |
0.000015 13128 asymptotics.is_o_neg_left | |
0.000014 13129 asymptotics.is_o.neg_left | |
0.000017 13130 asymptotics.is_o.sub | |
0.000015 13131 asymptotics.is_o.congr_of_sub | |
0.000016 13132 prod.mk_sub_mk | |
0.000015 13133 is_bounded_bilinear_map.map_sub_right | |
0.000016 13134 is_bounded_bilinear_map.map_sub_left | |
0.000015 13135 is_bounded_bilinear_map_deriv_coe | |
0.000014 13136 metric_space.induced._proof_1 | |
0.000017 13137 metric_space.induced._proof_2 | |
0.000014 13138 metric_space.induced._proof_3 | |
0.000017 13139 metric_space.induced._proof_4 | |
0.000015 13140 metric_space.induced._proof_5 | |
0.000016 13141 metric_space.induced._proof_6 | |
0.000015 13142 metric_space.induced | |
0.000016 13143 int.cast_eq_zero | |
0.000015 13144 int.cast_inj | |
0.000016 13145 int.cast_injective | |
0.000015 13146 int.metric_space._proof_1 | |
0.000017 13147 emetric_space.to_uniform_space' | |
0.000015 13148 metric.metric_space.to_emetric_space._proof_1 | |
0.000016 13149 metric.metric_space.to_emetric_space._proof_2 | |
0.000015 13150 metric.metric_space.to_emetric_space._proof_3 | |
0.000016 13151 metric.metric_space.to_emetric_space._proof_4 | |
0.000015 13152 ennreal.of_real_eq_zero | |
0.000016 13153 metric.metric_space.to_emetric_space._proof_5 | |
0.000015 13154 metric.metric_space.to_emetric_space | |
1.011664 13155 metric_space.replace_uniformity._proof_1 | |
0.000076 13156 metric_space.replace_uniformity._proof_2 | |
0.000025 13157 metric_space.replace_uniformity._proof_3 | |
0.000015 13158 metric_space.replace_uniformity._proof_4 | |
0.000014 13159 metric_space.replace_uniformity._proof_5 | |
0.000015 13160 metric_space.replace_uniformity | |
0.000014 13161 int.uniform_space | |
0.000014 13162 int.cast_mono | |
0.000015 13163 int.cast_max | |
0.000014 13164 int.cast_abs | |
0.000014 13165 int.lt_add_one_iff | |
0.000014 13166 int.coe_nat_one | |
0.000014 13167 strict_mono_of_le_iff_le | |
0.000014 13168 int.cast_strict_mono | |
0.000017 13169 int.cast_lt | |
0.000015 13170 int.metric_space._proof_2 | |
0.000018 13171 int.metric_space | |
0.000015 13172 int.dist_eq | |
0.000017 13173 int.normed_comm_ring._proof_1 | |
0.000015 13174 int.normed_comm_ring._proof_2 | |
0.000015 13175 int.normed_comm_ring | |
0.000016 13176 continuous_linear_map.add_comm_group._proof_1 | |
0.000017 13177 function.injective.comp | |
0.000015 13178 continuous_linear_map.coe_fn_injective | |
0.000016 13179 continuous_linear_map.ext | |
0.000018 13180 continuous_linear_map.add_comm_monoid._proof_1 | |
0.000017 13181 linear_map.has_zero._proof_1 | |
0.000018 13182 linear_map.has_zero._proof_2 | |
0.000015 13183 linear_map.has_zero | |
0.000016 13184 continuous_linear_map.has_zero._proof_1 | |
0.000018 13185 continuous_linear_map.has_zero | |
0.000015 13186 continuous_linear_map.add_comm_monoid._proof_2 | |
0.000016 13187 continuous_linear_map.add_comm_monoid._proof_3 | |
0.000019 13188 continuous_linear_map.map_add | |
0.000016 13189 continuous_linear_map.add_comm_monoid._proof_4 | |
0.000017 13190 continuous_linear_map.map_smul | |
0.000015 13191 add_comm_monoid.nat_smul_comm_class | |
0.000016 13192 continuous_linear_map.add_comm_monoid._proof_5 | |
0.000015 13193 continuous_linear_map.continuous_nsmul | |
0.000016 13194 continuous_linear_map.continuous.nsmul | |
0.000015 13195 continuous_linear_map.add_comm_monoid._proof_6 | |
0.000044 13196 continuous_linear_map.coe_mk' | |
0.000016 13197 linear_map.coe_mk | |
0.000014 13198 continuous_linear_map.zero_apply | |
0.000014 13199 continuous_linear_map.add_comm_monoid._proof_7 | |
0.000015 13200 continuous_linear_map.add_comm_monoid._proof_8 | |
0.000017 13201 continuous_linear_map.add_comm_monoid._proof_9 | |
0.000015 13202 continuous_linear_map.add_comm_monoid | |
0.000016 13203 continuous_linear_map.add_comm_group._proof_2 | |
0.000015 13204 continuous_linear_map.add_comm_group._proof_3 | |
0.000017 13205 continuous_linear_map.add_comm_group._proof_4 | |
0.000014 13206 continuous_linear_map.add_comm_group._proof_5 | |
0.000017 13207 continuous_linear_map.add_comm_group._proof_6 | |
0.000015 13208 continuous_linear_map.add_comm_group._proof_7 | |
0.000016 13209 linear_map.has_neg._proof_1 | |
0.000015 13210 linear_map.has_neg._proof_2 | |
0.000016 13211 linear_map.has_neg | |
0.000015 13212 continuous_linear_map.has_neg._proof_1 | |
0.000016 13213 continuous_linear_map.has_neg | |
0.000015 13214 linear_map.has_sub._proof_1 | |
0.000016 13215 linear_map.has_sub._proof_2 | |
0.000015 13216 linear_map.has_sub | |
0.000016 13217 continuous.sub | |
0.000015 13218 continuous_linear_map.has_sub._proof_1 | |
0.000016 13219 continuous_linear_map.has_sub | |
0.000015 13220 continuous_linear_map.add_comm_group._proof_8 | |
0.000017 13221 continuous_linear_map.add_comm_group._proof_9 | |
0.000015 13222 continuous_linear_map.add_comm_group._proof_10 | |
0.000016 13223 continuous_linear_map.add_comm_group | |
0.000015 13224 continuous_linear_map.to_normed_group._proof_1 | |
0.000016 13225 continuous_linear_map.op_norm | |
0.000015 13226 continuous_linear_map.has_op_norm | |
0.000016 13227 norm_le_zero_iff | |
0.000015 13228 continuous_linear_map.map_zero | |
0.000016 13229 continuous_linear_map.bounds_nonempty | |
0.000015 13230 continuous_linear_map.bounds_bdd_below | |
0.000015 13231 continuous_linear_map.le_op_norm | |
0.000016 13232 continuous_linear_map.op_norm_nonneg | |
0.000015 13233 continuous_linear_map.op_norm_zero_iff | |
0.000016 13234 continuous_linear_map.op_norm_le_bound | |
0.000015 13235 lipschitz_with.dist_le_mul | |
0.000014 13236 continuous_linear_map.op_norm_le_of_lipschitz | |
0.000017 13237 continuous_linear_map.lipschitz | |
0.000015 13238 continuous_linear_map.op_norm_add_le | |
0.000016 13239 continuous_linear_map.norm_def | |
0.000015 13240 continuous_linear_map.neg_apply | |
0.000014 13241 continuous_linear_map.op_norm_neg | |
0.000016 13242 continuous_linear_map.to_normed_group._proof_2 | |
0.000015 13243 continuous_linear_map.to_normed_group | |
0.000016 13244 asymptotics.is_O_iff | |
0.000015 13245 asymptotics.is_O.of_bound | |
0.000014 13246 is_bounded_bilinear_map.is_O | |
0.000014 13247 is_bounded_bilinear_map.is_O_comp | |
0.000017 13248 continuous_linear_map.semimodule._proof_1 | |
0.000016 13249 continuous_linear_map.semimodule._proof_2 | |
0.000015 13250 continuous_linear_map.semimodule._proof_3 | |
0.000016 13251 continuous_linear_map.semimodule._proof_4 | |
0.891563 13252 continuous_linear_map.semimodule._proof_5 | |
0.000077 13253 continuous_linear_map.semimodule._proof_6 | |
0.000026 13254 continuous_linear_map.semimodule | |
0.000015 13255 continuous_linear_map.to_normed_space._proof_1 | |
0.000014 13256 continuous_linear_map.to_normed_space._proof_2 | |
0.000014 13257 continuous_linear_map.op_norm_smul_le | |
0.000014 13258 continuous_linear_map.to_normed_space | |
0.000015 13259 continuous_linear_map.inhabited | |
0.000014 13260 is_bounded_bilinear_map_apply | |
0.000014 13261 asymptotics.is_O_with.mul | |
0.000014 13262 asymptotics.is_o.mul_is_O | |
0.000014 13263 asymptotics.is_o_norm_left | |
0.000014 13264 asymptotics.is_o.norm_left | |
0.000014 13265 normed_linear_ordered_field | |
0.000014 13266 normed_linear_ordered_field.to_has_norm | |
0.000018 13267 real.normed_linear_ordered_field._proof_1 | |
0.000015 13268 real.normed_linear_ordered_field | |
0.000017 13269 is_linear_map | |
0.000016 13270 is_bounded_linear_map | |
0.000018 13271 is_bounded_linear_map.bound | |
0.000015 13272 is_bounded_linear_map.is_O_id | |
0.000017 13273 is_linear_map.with_bound | |
0.000017 13274 continuous_linear_map.inl | |
0.000015 13275 continuous_linear_map.inr | |
0.000016 13276 linear_map.inl | |
0.000017 13277 linear_map.inr | |
0.000018 13278 linear_equiv | |
0.000017 13279 linear_map.add_apply | |
0.000016 13280 linear_map.add_comm_monoid._proof_1 | |
0.000017 13281 linear_map.zero_apply | |
0.000016 13282 linear_map.add_comm_monoid._proof_2 | |
0.000014 13283 linear_map.add_comm_monoid._proof_3 | |
0.000016 13284 linear_map.add_comm_monoid._proof_4 | |
0.000015 13285 linear_map.add_comm_monoid._proof_5 | |
0.000016 13286 linear_map.add_comm_monoid._proof_6 | |
0.000015 13287 linear_map.add_comm_monoid._proof_7 | |
0.000016 13288 linear_map.add_comm_monoid._proof_8 | |
0.000015 13289 linear_map.add_comm_monoid | |
0.000017 13290 linear_map.distrib_mul_action._proof_1 | |
0.000014 13291 linear_map.distrib_mul_action._proof_2 | |
0.000017 13292 linear_map.distrib_mul_action._proof_3 | |
0.000014 13293 linear_map.distrib_mul_action._proof_4 | |
0.000016 13294 linear_map.distrib_mul_action | |
0.000015 13295 linear_map.semimodule._proof_1 | |
0.000017 13296 linear_map.semimodule._proof_2 | |
0.000014 13297 linear_map.semimodule | |
0.000016 13298 add_comm_monoid.nat_smul_comm_class' | |
0.000015 13299 linear_equiv.to_fun | |
0.000016 13300 linear_equiv.has_coe_to_fun | |
0.000015 13301 linear_map.inverse._proof_1 | |
0.000017 13302 linear_map.inverse._proof_2 | |
0.000015 13303 linear_map.inverse | |
0.000016 13304 linear_equiv.map_add' | |
0.000015 13305 linear_equiv.map_smul' | |
0.000017 13306 linear_equiv.to_linear_map | |
0.000015 13307 linear_equiv.inv_fun | |
0.000016 13308 linear_equiv.left_inv | |
0.000015 13309 linear_equiv.right_inv | |
0.000016 13310 linear_equiv.symm._proof_1 | |
0.000015 13311 linear_equiv.symm._proof_2 | |
0.000016 13312 linear_equiv.to_add_equiv | |
0.000015 13313 linear_equiv.to_equiv | |
0.000017 13314 linear_equiv.symm._proof_3 | |
0.000015 13315 linear_equiv.symm._proof_4 | |
0.000016 13316 linear_equiv.symm | |
0.000017 13317 linear_map.fst._proof_1 | |
0.000015 13318 linear_map.fst._proof_2 | |
0.000016 13319 linear_map.fst | |
0.000015 13320 linear_map.snd._proof_1 | |
0.000014 13321 linear_map.snd._proof_2 | |
0.000016 13322 linear_map.snd | |
0.000015 13323 linear_map.coprod | |
0.000016 13324 prod.fst_add | |
0.000016 13325 prod.snd_add | |
0.000014 13326 linear_map.coprod_apply | |
0.000016 13327 linear_map.coprod_equiv._proof_1 | |
0.000015 13328 linear_map.smul_apply | |
0.000016 13329 linear_map.coprod_equiv._proof_2 | |
0.000015 13330 linear_map.comp_apply | |
0.000015 13331 linear_map.inl_apply | |
0.000014 13332 linear_map.coprod_inl | |
0.000014 13333 linear_map.inr_apply | |
0.000014 13334 linear_map.coprod_inr | |
0.000014 13335 linear_map.coprod_equiv._proof_3 | |
0.000016 13336 linear_map.comp_coprod | |
0.000015 13337 linear_map.id_apply | |
0.000016 13338 linear_map.coprod_inl_inr | |
0.000015 13339 linear_map.comp_id | |
0.000017 13340 linear_map.coprod_equiv._proof_4 | |
0.000015 13341 linear_map.coprod_equiv | |
0.000016 13342 linear_equiv.injective | |
0.000015 13343 linear_map.prod_ext_iff | |
0.000016 13344 continuous_linear_map.prod_ext_iff | |
0.000015 13345 continuous_linear_map.prod_ext | |
0.000016 13346 continuous_linear_map.inl_apply | |
0.000015 13347 continuous_linear_map.add_comp | |
0.000016 13348 continuous_linear_map.inr_apply | |
0.000015 13349 continuous_linear_map.smul_comp | |
0.000016 13350 is_bounded_bilinear_map.is_bounded_linear_map_deriv | |
0.000015 13351 prod.has_continuous_add | |
0.000017 13352 continuous.prod_map | |
0.000015 13353 prod.topological_add_group | |
0.000017 13354 asymptotics.is_O_with_of_le | |
0.000015 13355 asymptotics.is_O_with_refl | |
0.000015 13356 asymptotics.is_O_refl | |
0.000016 13357 asymptotics.is_O.of_norm_right | |
0.000015 13358 asymptotics.is_O_with_const_mul_self | |
0.000016 13359 asymptotics.is_O_const_mul_self | |
0.000015 13360 asymptotics.is_o_norm_right | |
0.000016 13361 asymptotics.is_O_with.exists_nonneg | |
1.086486 13362 asymptotics.is_O.exists_nonneg | |
0.000076 13363 asymptotics.is_O.trans | |
0.000024 13364 asymptotics.is_O.mul | |
0.000014 13365 asymptotics.is_O.norm_norm | |
0.000015 13366 asymptotics.is_O_with_fst_prod | |
0.000014 13367 asymptotics.is_O_fst_prod | |
0.000015 13368 asymptotics.is_O_fst_prod' | |
0.000014 13369 asymptotics.is_O_with_snd_prod | |
0.000015 13370 asymptotics.is_O_snd_prod | |
0.000014 13371 asymptotics.is_O_snd_prod' | |
0.000014 13372 is_bounded_bilinear_map.is_O' | |
0.000014 13373 asymptotics.is_O.mul_is_o | |
0.000015 13374 is_bounded_bilinear_map.has_strict_fderiv_at | |
0.000014 13375 asymptotics.is_O_with.prod_left_same | |
0.000014 13376 asymptotics.is_o.prod_left | |
0.000014 13377 has_strict_fderiv_at.prod | |
0.000014 13378 has_strict_fderiv_at.smul | |
0.000015 13379 has_strict_deriv_at.smul | |
0.000015 13380 has_strict_deriv_at.mul | |
0.000014 13381 has_strict_fderiv_at_const | |
0.000014 13382 has_strict_deriv_at_const | |
0.000014 13383 has_strict_deriv_at.mul_const | |
0.000014 13384 has_strict_fderiv_at.add | |
0.000014 13385 has_strict_deriv_at.add | |
0.000014 13386 has_strict_deriv_at.scomp | |
0.000015 13387 has_strict_deriv_at.comp | |
0.000014 13388 is_R_or_C | |
0.000014 13389 is_R_or_C.to_nondiscrete_normed_field | |
0.000014 13390 multilinear_map | |
0.000014 13391 Pi.topological_space | |
0.000018 13392 multilinear_map.to_fun | |
0.000015 13393 continuous_multilinear_map | |
0.000017 13394 formal_multilinear_series | |
0.000018 13395 continuous_multilinear_map.to_multilinear_map | |
0.000017 13396 continuous_multilinear_map.has_coe_to_fun | |
0.000018 13397 continuous_multilinear_map.uncurry0 | |
0.000017 13398 has_fderiv_within_at | |
0.000017 13399 function.injective.add_comm_group._proof_1 | |
0.000014 13400 function.injective.add_comm_group._proof_2 | |
0.000017 13401 function.injective.add_comm_group._proof_3 | |
0.000015 13402 function.injective.add_comm_group._proof_4 | |
0.000017 13403 function.injective.add_comm_group._proof_5 | |
0.000017 13404 function.injective.sub_neg_add_monoid._proof_1 | |
0.000017 13405 function.injective.sub_neg_add_monoid._proof_2 | |
0.000015 13406 function.injective.sub_neg_add_monoid._proof_3 | |
0.000014 13407 function.injective.sub_neg_add_monoid._proof_4 | |
0.000014 13408 function.injective.sub_neg_add_monoid._proof_5 | |
0.000014 13409 function.injective.sub_neg_add_monoid._proof_6 | |
0.000015 13410 function.injective.sub_neg_add_monoid | |
0.000014 13411 function.injective.add_group._proof_1 | |
0.000016 13412 function.injective.add_group._proof_2 | |
0.000015 13413 function.injective.add_group._proof_3 | |
0.000017 13414 function.injective.add_group._proof_4 | |
0.000017 13415 function.injective.add_group._proof_5 | |
0.000015 13416 function.injective.add_group._proof_6 | |
0.000014 13417 function.injective.add_group._proof_7 | |
0.000016 13418 function.injective.add_group | |
0.000017 13419 function.injective.add_comm_group._proof_6 | |
0.000017 13420 function.injective.add_comm_group._proof_7 | |
0.000017 13421 function.injective.add_comm_group._proof_8 | |
0.000017 13422 function.injective.add_comm_group | |
0.000015 13423 multilinear_map.has_coe_to_fun | |
0.000016 13424 multilinear_map.map_add' | |
0.000015 13425 multilinear_map.map_add | |
0.000017 13426 multilinear_map.has_add._proof_1 | |
0.000017 13427 multilinear_map.map_smul' | |
0.000016 13428 multilinear_map.map_smul | |
0.000016 13429 multilinear_map.has_add._proof_2 | |
0.000015 13430 multilinear_map.has_add | |
0.000014 13431 continuous_multilinear_map.cont | |
0.000017 13432 continuous_multilinear_map.has_add._proof_1 | |
0.000015 13433 continuous_multilinear_map.has_add | |
0.000014 13434 continuous_multilinear_map.add_comm_group._proof_1 | |
0.000016 13435 multilinear_map.has_zero._proof_1 | |
0.000016 13436 multilinear_map.has_zero._proof_2 | |
0.000014 13437 multilinear_map.has_zero | |
0.000016 13438 continuous_multilinear_map.has_zero._proof_1 | |
0.000015 13439 continuous_multilinear_map.has_zero._proof_2 | |
0.000015 13440 continuous_multilinear_map.has_zero._proof_3 | |
0.000016 13441 continuous_multilinear_map.has_zero | |
0.000015 13442 multilinear_map.has_neg._proof_1 | |
0.000015 13443 multilinear_map.has_neg._proof_2 | |
0.000016 13444 multilinear_map.has_neg | |
0.000015 13445 continuous_multilinear_map.has_neg._proof_1 | |
0.000014 13446 continuous_multilinear_map.has_neg._proof_2 | |
0.000016 13447 continuous_multilinear_map.has_neg._proof_3 | |
0.000015 13448 continuous_multilinear_map.has_neg | |
0.000016 13449 multilinear_map.has_sub._proof_1 | |
0.000015 13450 multilinear_map.has_sub._proof_2 | |
0.000017 13451 multilinear_map.has_sub | |
0.000015 13452 continuous_multilinear_map.has_sub._proof_1 | |
0.000014 13453 continuous_multilinear_map.has_sub._proof_2 | |
0.000017 13454 continuous_multilinear_map.has_sub._proof_3 | |
0.000015 13455 continuous_multilinear_map.has_sub | |
0.000014 13456 multilinear_map.cases_on | |
0.000016 13457 multilinear_map.coe_inj | |
0.686157 13458 multilinear_map.ext | |
0.000074 13459 multilinear_map.add_apply | |
0.000023 13460 multilinear_map.add_comm_monoid._proof_1 | |
0.000015 13461 multilinear_map.zero_apply | |
0.000014 13462 multilinear_map.add_comm_monoid._proof_2 | |
0.000014 13463 multilinear_map.add_comm_monoid._proof_3 | |
0.000015 13464 multilinear_map.add_comm_monoid._proof_4 | |
0.000014 13465 multilinear_map.add_comm_monoid._proof_5 | |
0.000014 13466 multilinear_map.coe_mk | |
0.000015 13467 multilinear_map.add_comm_monoid._proof_6 | |
0.000014 13468 multilinear_map.add_comm_monoid._proof_7 | |
0.000013 13469 multilinear_map.add_comm_monoid._proof_8 | |
0.000014 13470 multilinear_map.add_comm_monoid | |
0.000015 13471 multilinear_map.add_comm_group._proof_1 | |
0.000014 13472 multilinear_map.add_comm_group._proof_2 | |
0.000017 13473 multilinear_map.add_comm_group._proof_3 | |
0.000017 13474 multilinear_map.add_comm_group._proof_4 | |
0.000017 13475 multilinear_map.add_comm_group._proof_5 | |
0.000017 13476 multilinear_map.sub_apply | |
0.000017 13477 multilinear_map.neg_apply | |
0.000014 13478 multilinear_map.add_comm_group._proof_6 | |
0.000016 13479 multilinear_map.add_comm_group._proof_7 | |
0.000017 13480 multilinear_map.add_comm_group._proof_8 | |
0.000018 13481 multilinear_map.add_comm_group | |
0.000016 13482 continuous_multilinear_map.cases_on | |
0.000017 13483 continuous_multilinear_map.to_multilinear_map_inj | |
0.000017 13484 continuous_multilinear_map.add_comm_group._proof_2 | |
0.000018 13485 continuous_multilinear_map.add_comm_group._proof_3 | |
0.000016 13486 continuous_multilinear_map.add_comm_group._proof_4 | |
0.000015 13487 continuous_multilinear_map.add_comm_group._proof_5 | |
0.000015 13488 continuous_multilinear_map.add_comm_group._proof_6 | |
0.000016 13489 continuous_multilinear_map.add_comm_group | |
0.000015 13490 continuous_multilinear_map.to_normed_group._proof_1 | |
0.000014 13491 continuous_multilinear_map.op_norm | |
0.000015 13492 continuous_multilinear_map.has_op_norm | |
0.000014 13493 continuous_multilinear_map.ext | |
0.000016 13494 continuous_multilinear_map.zero_apply | |
0.000015 13495 ordered_comm_semiring | |
0.000016 13496 ordered_comm_semiring.add | |
0.000015 13497 ordered_comm_semiring.add_assoc | |
0.000016 13498 ordered_comm_semiring.zero | |
0.000016 13499 ordered_comm_semiring.zero_add | |
0.000016 13500 ordered_comm_semiring.add_zero | |
0.000015 13501 ordered_comm_semiring.nsmul | |
0.000014 13502 ordered_comm_semiring.nsmul_zero' | |
0.000016 13503 ordered_comm_semiring.nsmul_succ' | |
0.000016 13504 ordered_comm_semiring.add_comm | |
0.000014 13505 ordered_comm_semiring.mul | |
0.000016 13506 ordered_comm_semiring.mul_assoc | |
0.000015 13507 ordered_comm_semiring.one | |
0.000016 13508 ordered_comm_semiring.one_mul | |
0.000015 13509 ordered_comm_semiring.mul_one | |
0.000015 13510 ordered_comm_semiring.npow | |
0.000016 13511 ordered_comm_semiring.npow_zero' | |
0.000015 13512 ordered_comm_semiring.npow_succ' | |
0.000016 13513 ordered_comm_semiring.zero_mul | |
0.000016 13514 ordered_comm_semiring.mul_zero | |
0.000014 13515 ordered_comm_semiring.left_distrib | |
0.000017 13516 ordered_comm_semiring.right_distrib | |
0.000015 13517 ordered_comm_semiring.add_left_cancel | |
0.000014 13518 ordered_comm_semiring.le | |
0.000016 13519 ordered_comm_semiring.lt | |
0.000015 13520 ordered_comm_semiring.le_refl | |
0.000015 13521 ordered_comm_semiring.le_trans | |
0.000016 13522 ordered_comm_semiring.lt_iff_le_not_le | |
0.000016 13523 ordered_comm_semiring.le_antisymm | |
0.000014 13524 ordered_comm_semiring.add_le_add_left | |
0.000016 13525 ordered_comm_semiring.le_of_add_le_add_left | |
0.000015 13526 ordered_comm_semiring.zero_le_one | |
0.000015 13527 ordered_comm_semiring.mul_lt_mul_of_pos_left | |
0.000016 13528 ordered_comm_semiring.mul_lt_mul_of_pos_right | |
0.000015 13529 ordered_comm_semiring.to_ordered_semiring | |
0.000017 13530 ordered_comm_semiring.mul_comm | |
0.000015 13531 ordered_comm_semiring.to_comm_semiring | |
0.000014 13532 multiset.prod_eq_foldr | |
0.000016 13533 multiset.foldr_zero | |
0.000015 13534 multiset.mem_cons_of_mem | |
0.000017 13535 multiset.foldr_induction' | |
0.000014 13536 multiset.foldr_induction | |
0.000015 13537 multiset.prod_induction | |
0.000016 13538 quotient.mk' | |
0.000015 13539 quotient.induction_on' | |
0.000015 13540 list.forall_mem_map_iff | |
0.000016 13541 multiset.forall_mem_map_iff | |
0.000015 13542 finset.prod_induction | |
0.000014 13543 finset.prod_nonneg | |
0.000017 13544 ordered_comm_ring | |
0.000014 13545 ordered_comm_ring.add | |
0.000017 13546 ordered_comm_ring.add_assoc | |
0.000015 13547 ordered_comm_ring.zero | |
0.000016 13548 ordered_comm_ring.zero_add | |
0.000015 13549 ordered_comm_ring.add_zero | |
0.000016 13550 ordered_comm_ring.nsmul | |
0.000015 13551 ordered_comm_ring.nsmul_zero' | |
0.000016 13552 ordered_comm_ring.nsmul_succ' | |
0.000015 13553 ordered_comm_ring.add_comm | |
0.000015 13554 ordered_comm_ring.mul | |
0.000016 13555 ordered_comm_ring.mul_assoc | |
2.533914 13556 ordered_comm_ring.one | |
0.000076 13557 ordered_comm_ring.one_mul | |
0.000024 13558 ordered_comm_ring.mul_one | |
0.000015 13559 ordered_comm_ring.npow | |
0.000014 13560 ordered_comm_ring.npow_zero' | |
0.000014 13561 ordered_comm_ring.npow_succ' | |
0.000047 13562 ordered_comm_ring.zero_mul | |
0.000016 13563 ordered_comm_ring.mul_zero | |
0.000014 13564 ordered_comm_ring.left_distrib | |
0.000014 13565 ordered_comm_ring.right_distrib | |
0.000014 13566 ordered_comm_ring.add_left_cancel | |
0.000014 13567 ordered_comm_ring.le | |
0.000014 13568 ordered_comm_ring.lt | |
0.000015 13569 ordered_comm_ring.le_refl | |
0.000018 13570 ordered_comm_ring.le_trans | |
0.000018 13571 ordered_comm_ring.lt_iff_le_not_le | |
0.000017 13572 ordered_comm_ring.le_antisymm | |
0.000015 13573 ordered_comm_ring.neg | |
0.000016 13574 ordered_comm_ring.sub | |
0.000017 13575 ordered_comm_ring.sub_eq_add_neg | |
0.000015 13576 ordered_comm_ring.add_left_neg | |
0.000016 13577 ordered_comm_ring.add_le_add_left | |
0.000016 13578 ordered_comm_ring.le_of_add_le_add_left | |
0.000014 13579 ordered_comm_ring.zero_le_one | |
0.000014 13580 ordered_comm_ring.mul_lt_mul_of_pos_left | |
0.000014 13581 ordered_comm_ring.mul_lt_mul_of_pos_right | |
0.000018 13582 ordered_comm_ring.mul_comm | |
0.000017 13583 ordered_comm_ring.to_ordered_comm_semiring | |
0.000017 13584 linear_ordered_comm_ring.to_ordered_comm_ring | |
0.000018 13585 finset.exists_mem_insert | |
0.000017 13586 finset.prod_eq_zero_iff | |
0.000018 13587 multilinear_map.map_coord_zero | |
0.000017 13588 continuous_multilinear_map.map_coord_zero | |
0.000015 13589 nnreal.distrib_lattice | |
0.000014 13590 nnreal.semilattice_sup_bot | |
0.000017 13591 nnnorm | |
0.000014 13592 pi.add_comm_group._proof_1 | |
0.000017 13593 pi.add_comm_group._proof_2 | |
0.000015 13594 pi.add_comm_group._proof_3 | |
0.000015 13595 pi.add_comm_group._proof_4 | |
0.000016 13596 pi.add_comm_group._proof_5 | |
0.000015 13597 pi.has_neg | |
0.000015 13598 pi.has_sub | |
0.000016 13599 pi.add_comm_group._proof_6 | |
0.000015 13600 pi.add_comm_group._proof_7 | |
0.000016 13601 pi.add_comm_group._proof_8 | |
0.000016 13602 pi.add_comm_group | |
0.000014 13603 ennreal.bot_eq_zero | |
0.000016 13604 pseudo_emetric_space_pi._proof_1 | |
0.000015 13605 pseudo_emetric_space_pi._proof_2 | |
0.000017 13606 pseudo_emetric_space_pi._proof_3 | |
0.000015 13607 Pi.uniform_space._proof_1 | |
0.000014 13608 Pi.uniform_space | |
0.000016 13609 Pi.uniformity | |
0.000015 13610 infi_pos | |
0.000017 13611 set.Inter_pos | |
0.000015 13612 finset.inf_empty | |
0.000014 13613 false_implies_iff | |
0.000016 13614 pi.inhabited | |
0.000016 13615 finset.inf_congr | |
0.000014 13616 filter.mem_infi_sets_finset | |
0.000016 13617 filter.infi_principal_finset | |
0.000016 13618 filter.infi_principal_fintype | |
0.000014 13619 finset.cons_induction_on | |
0.000016 13620 finset.fold_cons | |
0.000015 13621 finset.sup_cons | |
0.000017 13622 finset.sup_lt_iff | |
0.000015 13623 pseudo_emetric_space_pi._proof_4 | |
0.000016 13624 pseudo_emetric_space_pi | |
0.000015 13625 edist_pi_def | |
0.000016 13626 ennreal.lt_top_iff_ne_top | |
0.000015 13627 edist_ne_top | |
0.000016 13628 edist_lt_top | |
0.000015 13629 pseudo_metric_space_pi._proof_1 | |
0.000015 13630 finset.comp_sup_eq_sup_comp | |
0.000016 13631 monotone.map_sup | |
0.000015 13632 finset.comp_sup_eq_sup_comp_of_is_total | |
0.000014 13633 ennreal.coe_mono | |
0.000017 13634 ennreal.coe_finset_sup | |
0.000015 13635 pseudo_metric_space_pi._proof_2 | |
0.000014 13636 pseudo_metric_space_pi | |
0.000016 13637 nndist_eq_nnnorm | |
0.000016 13638 pi.semi_normed_group._proof_1 | |
0.000014 13639 pi.semi_normed_group | |
0.000016 13640 metric_space_pi._proof_1 | |
0.000016 13641 metric_space_pi._proof_2 | |
0.000014 13642 metric_space_pi._proof_3 | |
0.000016 13643 metric_space_pi._proof_4 | |
0.000015 13644 metric_space_pi._proof_5 | |
0.000016 13645 edist_le_zero | |
0.000015 13646 metric_space_pi._proof_6 | |
0.000015 13647 metric_space_pi | |
0.000016 13648 pi.normed_group._proof_1 | |
0.000016 13649 pi.normed_group | |
0.000014 13650 finset.prod_eq_zero | |
0.000016 13651 finset.piecewise | |
0.000015 13652 finset.piecewise.equations._eqn_1 | |
0.000016 13653 finset.piecewise_univ | |
0.000016 13654 finset.piecewise_empty | |
0.000014 13655 finset.piecewise_coe | |
0.000016 13656 set.piecewise.equations._eqn_1 | |
0.000016 13657 set.piecewise_insert | |
0.000014 13658 finset.coe_insert | |
0.000016 13659 finset.piecewise_insert | |
0.000015 13660 finset.piecewise_eq_of_not_mem | |
0.000015 13661 multilinear_map.map_piecewise_smul | |
0.000016 13662 multilinear_map.map_smul_univ | |
0.000015 13663 finset.prod_eq_multiset_prod | |
0.000014 13664 list.prod_hom | |
0.000017 13665 multiset.prod_hom | |
0.000015 13666 monoid_hom.map_multiset_prod | |
0.000014 13667 monoid_hom.map_prod | |
0.000017 13668 normed_field.norm_prod | |
0.000015 13669 finset.prod_congr | |
0.000016 13670 finset.prod_mul_distrib | |
0.000015 13671 finset.prod_pos | |
0.000016 13672 multilinear_map.bound_of_shell | |
0.000015 13673 pi.add_group._proof_1 | |
0.000014 13674 pi.add_group._proof_2 | |
0.000016 13675 pi.add_group._proof_3 | |
0.000015 13676 pi.add_group._proof_4 | |
1.374280 13677 pi.add_group._proof_5 | |
0.000076 13678 pi.add_group._proof_6 | |
0.000024 13679 pi.add_group._proof_7 | |
0.000015 13680 pi.add_group | |
0.000014 13681 set.exists_mem_of_nonempty | |
0.000014 13682 multilinear_map.map_zero | |
0.000016 13683 dist_pi_def | |
0.000013 13684 dist_lt_coe | |
0.000015 13685 dist_pi_lt_iff | |
0.000014 13686 pi_norm_lt_iff | |
0.000014 13687 fintype.card.equations._eqn_1 | |
0.000014 13688 finset.card_empty | |
0.000014 13689 finset.card_insert_of_not_mem | |
0.000014 13690 finset.prod_const | |
0.000014 13691 finset.prod_le_prod | |
0.000014 13692 add_pos_of_nonneg_of_pos | |
0.000014 13693 finset.coe_nonempty | |
0.000014 13694 set.nonempty_iff_univ_nonempty | |
0.000018 13695 finset.univ_nonempty_iff | |
0.000018 13696 finset.ne_empty_of_mem | |
0.000017 13697 finset.nonempty.ne_empty | |
0.000018 13698 finset.nonempty_iff_ne_empty | |
0.000017 13699 finset.univ_eq_empty | |
0.000017 13700 multilinear_map.exists_bound_of_continuous | |
0.000017 13701 continuous_multilinear_map.bound | |
0.000016 13702 continuous_multilinear_map.bounds_nonempty | |
0.000015 13703 continuous_multilinear_map.op_norm_nonneg | |
0.000016 13704 continuous_multilinear_map.bounds_bdd_below | |
0.000018 13705 continuous_multilinear_map.le_op_norm | |
0.000017 13706 continuous_multilinear_map.op_norm_le_bound | |
0.000018 13707 continuous_multilinear_map.op_norm_zero_iff | |
0.000017 13708 continuous_multilinear_map.op_norm_add_le | |
0.000017 13709 continuous_multilinear_map.norm_def | |
0.000015 13710 continuous_multilinear_map.neg_apply | |
0.000016 13711 continuous_multilinear_map.op_norm_neg | |
0.000017 13712 continuous_multilinear_map.to_normed_group._proof_2 | |
0.000017 13713 continuous_multilinear_map.to_normed_group | |
0.000016 13714 continuous_multilinear_map.add_comm_monoid._proof_1 | |
0.000015 13715 continuous_multilinear_map.add_comm_monoid._proof_2 | |
0.000017 13716 continuous_multilinear_map.add_comm_monoid._proof_3 | |
0.000017 13717 continuous_multilinear_map.add_comm_monoid | |
0.000015 13718 multilinear_map.has_scalar._proof_1 | |
0.000014 13719 multilinear_map.has_scalar._proof_2 | |
0.000016 13720 multilinear_map.has_scalar | |
0.000015 13721 continuous_multilinear_map.has_scalar._proof_1 | |
0.000015 13722 continuous_multilinear_map.has_scalar._proof_2 | |
0.000016 13723 continuous_multilinear_map.has_scalar._proof_3 | |
0.000015 13724 continuous_multilinear_map.has_scalar | |
0.000016 13725 continuous_multilinear_map.semimodule._proof_1 | |
0.000015 13726 continuous_multilinear_map.semimodule._proof_2 | |
0.000016 13727 continuous_multilinear_map.semimodule._proof_3 | |
0.000016 13728 continuous_multilinear_map.semimodule._proof_4 | |
0.000014 13729 continuous_multilinear_map.semimodule._proof_5 | |
0.000016 13730 continuous_multilinear_map.semimodule._proof_6 | |
0.000016 13731 continuous_multilinear_map.semimodule | |
0.000015 13732 continuous_multilinear_map.to_normed_space._proof_1 | |
0.000016 13733 continuous_multilinear_map.to_normed_space._proof_2 | |
0.000014 13734 continuous_multilinear_map.op_norm_smul_le | |
0.000016 13735 continuous_multilinear_map.to_normed_space._proof_3 | |
0.000016 13736 continuous_multilinear_map.to_normed_space | |
0.000016 13737 continuous_multilinear_map.curry_left._proof_1 | |
0.000015 13738 continuous_multilinear_map.curry_left._proof_2 | |
0.000016 13739 multilinear_map.mk_continuous._proof_1 | |
0.000015 13740 multilinear_map.mk_continuous._proof_2 | |
0.000017 13741 lt_inf_iff | |
0.000015 13742 lt_min_iff | |
0.000015 13743 continuous_at_of_locally_lipschitz | |
0.000016 13744 multilinear_map.map_neg | |
0.000015 13745 multilinear_map.map_sub | |
0.000015 13746 finset.piecewise_eq_of_mem | |
0.000016 13747 multilinear_map.norm_image_sub_le_of_bound' | |
0.000015 13748 dist_le_coe | |
0.000016 13749 subtype.eta | |
0.000015 13750 nndist_pi_def | |
0.000016 13751 dist_pi_le_iff | |
0.000015 13752 pi_norm_le_iff | |
0.000014 13753 norm_le_pi_norm | |
0.000016 13754 finset.piecewise_singleton | |
0.000015 13755 finset.update_eq_piecewise | |
0.000015 13756 is_symm | |
0.000014 13757 is_equiv | |
0.000014 13758 is_equiv.to_is_preorder | |
0.000016 13759 eq_is_equiv | |
0.000015 13760 finset.filter_not | |
0.000016 13761 finset.filter_union_filter_neg_eq | |
0.000017 13762 finset.disjoint_right | |
0.000015 13763 congr_arg2 | |
0.000016 13764 finset.prod_attach | |
0.000015 13765 finset.prod_apply_dite | |
0.000016 13766 finset.prod_apply_ite | |
0.000015 13767 finset.prod_ite | |
0.000016 13768 finset.filter_mem_eq_inter | |
0.000015 13769 finset.sdiff_eq_filter | |
0.000014 13770 finset.prod_piecewise | |
0.000016 13771 finset.inter_comm | |
0.000015 13772 finset.insert_inter_of_mem | |
0.000016 13773 finset.empty_inter | |
0.000015 13774 finset.singleton_inter_of_mem | |
0.000016 13775 finset.inter_singleton_of_mem | |
0.000015 13776 multiset.card_singleton | |
0.000016 13777 finset.card_singleton | |
0.000015 13778 finset.prod_update_of_mem | |
0.000014 13779 finset.union_empty | |
0.000016 13780 finset.union_left_comm | |
0.000015 13781 finset.union_insert | |
0.602056 13782 finset.insert_eq_of_mem | |
0.000077 13783 finset.inter_insert_of_mem | |
0.000024 13784 finset.insert_inter_of_not_mem | |
0.000015 13785 finset.inter_insert_of_not_mem | |
0.000014 13786 finset.card_union_add_card_inter | |
0.000014 13787 finset.card_disjoint_union | |
0.000015 13788 finset.card_sdiff | |
0.000015 13789 finset.card_univ_diff | |
0.000025 13790 finset.sum_const | |
0.000015 13791 finset.card_univ | |
0.000014 13792 multilinear_map.norm_image_sub_le_of_bound | |
0.000014 13793 pow_le_pow_of_le_left | |
0.000014 13794 norm_le_of_mem_closed_ball | |
0.000015 13795 multilinear_map.continuous_of_bound | |
0.000014 13796 multilinear_map.mk_continuous._proof_3 | |
0.000014 13797 multilinear_map.mk_continuous | |
0.000014 13798 multilinear_map.distrib_mul_action._proof_1 | |
0.000014 13799 multilinear_map.distrib_mul_action._proof_2 | |
0.000014 13800 multilinear_map.distrib_mul_action._proof_3 | |
0.000015 13801 multilinear_map.distrib_mul_action._proof_4 | |
0.000014 13802 multilinear_map.distrib_mul_action | |
0.000014 13803 multilinear_map.semimodule._proof_1 | |
0.000014 13804 multilinear_map.semimodule._proof_2 | |
0.000014 13805 multilinear_map.semimodule | |
0.000014 13806 multilinear_map.curry_left._proof_1 | |
0.000014 13807 continuous_multilinear_map.curry_left._proof_3 | |
0.000014 13808 multilinear_map.curry_left._proof_2 | |
0.000014 13809 fin.cases_zero | |
0.000014 13810 fin.cons_zero | |
0.000015 13811 fin.ext_iff | |
0.000014 13812 fin.succ_ne_zero | |
0.000019 13813 nat.pred_lt_pred | |
0.000015 13814 fin.val_zero | |
0.000017 13815 fin.vne_of_ne | |
0.000015 13816 fin.pred._main | |
0.000016 13817 fin.pred | |
0.000015 13818 fin.succ_pred | |
0.000017 13819 rel_embedding.injective | |
0.000015 13820 fin.succ_embedding._match_1 | |
0.000017 13821 fin.succ_embedding._match_2 | |
0.000014 13822 fin.succ_embedding._proof_1 | |
0.000015 13823 fin.succ_embedding | |
0.000014 13824 fin.succ_injective | |
0.000016 13825 fin.succ_inj | |
0.000015 13826 fin.cons_update | |
0.000017 13827 multilinear_map.curry_left._proof_3 | |
0.000015 13828 multilinear_map.curry_left._proof_4 | |
0.000018 13829 fin.update_cons_zero | |
0.000014 13830 multilinear_map.cons_add | |
0.000017 13831 multilinear_map.curry_left._proof_5 | |
0.000016 13832 multilinear_map.cons_smul | |
0.000014 13833 multilinear_map.curry_left._proof_6 | |
0.000014 13834 multilinear_map.curry_left | |
0.000016 13835 strict_mono.ite' | |
0.000015 13836 strict_mono.ite | |
0.000016 13837 rel_embedding.coe_fn_to_embedding | |
0.000015 13838 order_embedding.lt_embedding._proof_1 | |
0.000018 13839 order_embedding.lt_embedding | |
0.000015 13840 order_embedding.lt_iff_lt | |
0.000014 13841 order_embedding.strict_mono | |
0.000014 13842 fin.lt_iff_coe_lt_coe | |
0.000017 13843 fin.coe_cast_succ | |
0.000017 13844 fin.succ._main.equations._eqn_1 | |
0.000017 13845 fin.succ.equations._eqn_1 | |
0.000016 13846 fin.coe_mk | |
0.000017 13847 fin.coe_succ | |
0.000015 13848 fin.cast_succ_lt_succ | |
0.000014 13849 fin.succ_above_aux | |
0.000014 13850 fin.succ_above | |
0.000015 13851 fin.bounded_lattice._proof_1 | |
0.000014 13852 fin.bounded_lattice._proof_2 | |
0.000014 13853 fin.bounded_lattice._proof_3 | |
0.000014 13854 fin.bounded_lattice._proof_4 | |
0.000014 13855 fin.bounded_lattice._proof_5 | |
0.000017 13856 fin.bounded_lattice._proof_6 | |
0.000017 13857 fin.bounded_lattice._proof_7 | |
0.000017 13858 fin.bounded_lattice._proof_8 | |
0.000017 13859 fin.bounded_lattice._proof_9 | |
0.000018 13860 fin.bounded_lattice._proof_10 | |
0.000014 13861 fin.last | |
0.000017 13862 fin.le_last | |
0.000015 13863 fin.zero_le | |
0.000018 13864 fin.bounded_lattice | |
0.000017 13865 fin.pred_above._proof_1 | |
0.000015 13866 fin.pred_above._proof_2 | |
0.000014 13867 fin.pred_above | |
0.000016 13868 fin.cast_pred | |
0.000015 13869 fin.pred_above.equations._eqn_1 | |
0.000016 13870 fin.succ_above.equations._eqn_1 | |
0.000015 13871 order_embedding.coe_of_strict_mono | |
0.000015 13872 fin.succ_above_above | |
0.000016 13873 fin.le_iff_coe_le_coe | |
0.000015 13874 add_left_cancel_monoid.zero | |
0.000016 13875 add_left_cancel_monoid.zero_add | |
0.000015 13876 add_left_cancel_monoid.add_zero | |
0.000016 13877 add_left_cancel_monoid.nsmul | |
0.000016 13878 add_left_cancel_monoid.nsmul_zero' | |
0.000015 13879 add_left_cancel_monoid.nsmul_succ' | |
0.000016 13880 add_left_cancel_monoid.to_add_monoid | |
0.000016 13881 fin.cast_succ_lt_last | |
0.000014 13882 fin.cast_pred.equations._eqn_1 | |
0.000016 13883 fin.coe_pred | |
0.000015 13884 fin.coe_last | |
0.000017 13885 nat.succ_sub_one | |
0.000015 13886 nat.add_succ_sub_one | |
0.000016 13887 fin.cast_pred_last | |
0.000015 13888 add_right_eq_self | |
0.000016 13889 self_eq_add_right | |
0.000016 13890 nat.one_ne_zero | |
0.000014 13891 fin.cast_succ_cast_lt | |
0.000016 13892 fin.cast_succ_cast_pred | |
0.000015 13893 fin.cast_succ_lt_cast_succ_iff | |
0.000016 13894 fin.cast_lt_cast_succ | |
0.000015 13895 fin.cast_pred_cast_succ | |
0.000015 13896 fin.lt_last_iff_coe_cast_pred | |
0.000016 13897 nat.le_pred_of_lt | |
0.000015 13898 fin.succ_above_below | |
0.000016 13899 function.embedding.cases_on | |
0.000015 13900 rel_embedding.coe_fn_inj | |
0.000017 13901 rel_embedding.ext | |
1.161817 13902 fin.succ_above_last | |
0.000083 13903 fin.eq_last_of_not_lt | |
0.000021 13904 fin.univ_cast_succ | |
0.000015 13905 fin.univ_succ_above | |
0.000014 13906 fin.succ_above_ne | |
0.000014 13907 fin.succ_above_right_injective | |
0.000015 13908 fin.succ_above_right_inj | |
0.000014 13909 fin.prod_univ_succ_above | |
0.000014 13910 fin.prod_univ_succ | |
0.000014 13911 continuous_multilinear_map.norm_map_cons_le | |
0.000014 13912 continuous_multilinear_map.curry_left._proof_4 | |
0.000014 13913 continuous_multilinear_map.cons_add | |
0.000015 13914 continuous_multilinear_map.curry_left._proof_5 | |
0.000014 13915 continuous_multilinear_map.cons_smul | |
0.000015 13916 continuous_multilinear_map.curry_left._proof_6 | |
0.000016 13917 multilinear_map.mk_continuous_norm_le | |
0.000015 13918 continuous_multilinear_map.curry_left._proof_7 | |
0.000015 13919 continuous_multilinear_map.curry_left | |
0.000017 13920 has_ftaylor_series_up_to_on | |
0.000017 13921 times_cont_diff_within_at | |
0.000018 13922 times_cont_diff_at | |
0.000015 13923 linear_isometry_equiv | |
0.000017 13924 continuous_multilinear_curry_fin1._proof_1 | |
0.000015 13925 continuous_multilinear_curry_fin1._proof_2 | |
0.000017 13926 linear_isometry_equiv.to_linear_equiv | |
0.000014 13927 linear_isometry_equiv.has_coe_to_fun | |
0.000025 13928 linear_equiv.trans._proof_1 | |
0.000015 13929 linear_equiv.trans._proof_2 | |
0.000014 13930 linear_equiv.trans._proof_3 | |
0.000014 13931 linear_equiv.trans._proof_4 | |
0.000017 13932 linear_equiv.trans | |
0.000017 13933 linear_isometry_equiv.norm_map' | |
0.000017 13934 linear_isometry_equiv.norm_map | |
0.000016 13935 linear_isometry_equiv.trans._proof_1 | |
0.000019 13936 linear_isometry_equiv.trans | |
0.000015 13937 continuous_multilinear_curry_right_equiv._proof_1 | |
0.000014 13938 continuous_multilinear_curry_right_equiv._proof_3 | |
0.000014 13939 continuous_multilinear_curry_right_equiv._proof_2 | |
0.000016 13940 continuous_multilinear_curry_fin1._proof_3 | |
0.000015 13941 continuous_multilinear_curry_fin1._proof_4 | |
0.000015 13942 linear_equiv.apply_symm_apply | |
0.000016 13943 linear_isometry_equiv.symm._proof_1 | |
0.000015 13944 linear_isometry_equiv.symm | |
0.000014 13945 linear_equiv.symm_apply_apply | |
0.000018 13946 linear_isometry_equiv.of_bounds._proof_1 | |
0.000015 13947 linear_isometry_equiv.of_bounds | |
0.000017 13948 continuous_multilinear_curry_right_equiv._proof_4 | |
0.000017 13949 continuous_multilinear_curry_right_equiv._proof_5 | |
0.000017 13950 continuous_multilinear_curry_right_equiv._proof_6 | |
0.000017 13951 continuous_multilinear_map.uncurry_right._proof_1 | |
0.000017 13952 continuous_multilinear_map.uncurry_right._proof_2 | |
0.000017 13953 linear_map.add_comm_group._proof_1 | |
0.000017 13954 linear_map.add_comm_group._proof_2 | |
0.000017 13955 linear_map.add_comm_group._proof_3 | |
0.000017 13956 linear_map.add_comm_group._proof_4 | |
0.000016 13957 linear_map.add_comm_group._proof_5 | |
0.000017 13958 linear_map.sub_apply | |
0.000017 13959 linear_map.neg_apply | |
0.000017 13960 linear_map.add_comm_group._proof_6 | |
0.000017 13961 linear_map.add_comm_group._proof_7 | |
0.000017 13962 linear_map.add_comm_group._proof_8 | |
0.000017 13963 linear_map.add_comm_group | |
0.000017 13964 continuous_multilinear_map.uncurry_right._proof_3 | |
0.000017 13965 continuous_multilinear_map.map_add | |
0.000017 13966 continuous_multilinear_map.uncurry_right._proof_4 | |
0.000016 13967 continuous_multilinear_map.map_smul | |
0.000017 13968 continuous_multilinear_map.uncurry_right._proof_5 | |
0.000017 13969 multilinear_map.uncurry_right._proof_1 | |
0.000017 13970 multilinear_map.uncurry_right._proof_2 | |
0.000017 13971 fin.init | |
0.000016 13972 fin.init.equations._eqn_1 | |
0.000017 13973 order_embedding.eq_iff_eq | |
0.000017 13974 fin.init_update_cast_succ | |
0.000017 13975 fin.init_update_last | |
0.000017 13976 multilinear_map.uncurry_right._proof_3 | |
0.000017 13977 multilinear_map.uncurry_right._proof_4 | |
0.000017 13978 multilinear_map.uncurry_right | |
0.000017 13979 fin.prod_univ_cast_succ | |
0.000017 13980 continuous_multilinear_map.norm_map_init_le | |
0.000016 13981 continuous_multilinear_map.uncurry_right._proof_6 | |
0.000017 13982 continuous_multilinear_map.uncurry_right | |
0.000017 13983 continuous_multilinear_curry_right_equiv._proof_7 | |
0.000017 13984 continuous_multilinear_curry_right_equiv._proof_8 | |
0.000016 13985 continuous_multilinear_map.curry_right._proof_1 | |
0.000017 13986 continuous_multilinear_map.curry_right._proof_2 | |
0.000017 13987 multilinear_map.curry_right._proof_1 | |
0.000017 13988 continuous_multilinear_map.curry_right._proof_3 | |
0.000017 13989 multilinear_map.curry_right._proof_2 | |
0.000017 13990 fin.snoc._proof_1 | |
0.000016 13991 fin.snoc._proof_2 | |
0.000017 13992 fin.snoc | |
0.000017 13993 fin.snoc.equations._eqn_1 | |
0.000016 13994 function.bijective.injective | |
0.000017 13995 eq_rec_on_bijective | |
1.165109 13996 cast_bijective | |
0.000077 13997 cast_inj | |
0.000026 13998 fin.snoc_last | |
0.000015 13999 fin.update_snoc_last | |
0.000014 14000 multilinear_map.snoc_add | |
0.000014 14001 multilinear_map.curry_right._proof_3 | |
0.000014 14002 multilinear_map.snoc_smul | |
0.000014 14003 multilinear_map.curry_right._proof_4 | |
0.000013 14004 heq_of_cast_eq | |
0.000017 14005 eq_rec_compose | |
0.000017 14006 fin.snoc_update | |
0.000016 14007 multilinear_map.curry_right._proof_5 | |
0.000015 14008 multilinear_map.curry_right._proof_6 | |
0.000017 14009 multilinear_map.curry_right | |
0.000017 14010 fin.snoc_cast_succ | |
0.000017 14011 continuous_multilinear_map.norm_map_snoc_le | |
0.000017 14012 continuous_multilinear_map.curry_right._proof_4 | |
0.000015 14013 continuous_multilinear_map.curry_right._proof_5 | |
0.000014 14014 continuous_multilinear_map.curry_right._proof_6 | |
0.000015 14015 linear_map.mk_continuous_norm_le | |
0.000017 14016 continuous_multilinear_map.curry_right._proof_7 | |
0.000017 14017 continuous_multilinear_map.curry_right | |
0.000017 14018 continuous_multilinear_map.curry_right_apply | |
0.000015 14019 continuous_multilinear_map.uncurry_right_apply | |
0.000015 14020 fin.init_snoc | |
0.000015 14021 continuous_multilinear_map.curry_uncurry_right | |
0.000018 14022 proof_irrel_heq | |
0.000016 14023 fin.snoc_init_self | |
0.000017 14024 continuous_multilinear_map.uncurry_curry_right | |
0.000017 14025 continuous_multilinear_curry_right_equiv._proof_9 | |
0.000017 14026 continuous_multilinear_curry_right_equiv._proof_10 | |
0.000016 14027 continuous_multilinear_curry_right_equiv._proof_11 | |
0.000017 14028 continuous_multilinear_curry_right_equiv | |
0.000017 14029 continuous_multilinear_curry_fin0._proof_1 | |
0.000017 14030 continuous_multilinear_curry_fin0._proof_2 | |
0.000017 14031 continuous_multilinear_curry_fin0._proof_3 | |
0.000017 14032 continuous_multilinear_curry_fin0._proof_4 | |
0.000016 14033 continuous_multilinear_map.curry0._proof_1 | |
0.000017 14034 continuous_multilinear_map.curry0._proof_2 | |
0.000017 14035 continuous_multilinear_map.curry0._proof_3 | |
0.000017 14036 continuous_multilinear_map.curry0 | |
0.000017 14037 continuous_multilinear_map.uncurry0_apply | |
0.000016 14038 pi.unique_of_empty._proof_1 | |
0.000017 14039 pi.unique_of_empty | |
0.000017 14040 fin.tuple0_unique._proof_1 | |
0.000017 14041 fin.tuple0_unique | |
0.000017 14042 continuous_multilinear_map.curry0_apply | |
0.000017 14043 continuous_multilinear_map.apply_zero_curry0 | |
0.000017 14044 continuous_multilinear_map.uncurry0_curry0 | |
0.000017 14045 continuous_multilinear_map.curry0_uncurry0 | |
0.000017 14046 fin.prod_univ_zero | |
0.000017 14047 continuous_multilinear_map.fin0_apply_norm | |
0.000017 14048 continuous_multilinear_map.uncurry0_norm | |
0.000017 14049 continuous_multilinear_curry_fin0 | |
0.000017 14050 continuous_multilinear_curry_fin1 | |
0.000017 14051 dense | |
0.000017 14052 set_like.mem_coe | |
0.000017 14053 submodule.zero_mem' | |
0.000017 14054 submodule.zero_mem | |
0.000016 14055 submodule.has_bot._proof_1 | |
0.000017 14056 submodule.has_bot._proof_2 | |
0.000017 14057 submodule.has_bot._proof_3 | |
0.000017 14058 submodule.has_bot | |
0.000017 14059 submodule.inhabited' | |
0.000017 14060 submodule.has_Inf._proof_1 | |
0.000017 14061 submodule.add_mem' | |
0.000017 14062 submodule.add_mem | |
0.000016 14063 submodule.has_Inf._proof_2 | |
0.000017 14064 submodule.smul_mem' | |
0.000017 14065 submodule.smul_mem | |
0.000016 14066 submodule.has_Inf._proof_3 | |
0.000017 14067 submodule.has_Inf | |
0.000017 14068 submodule.span | |
0.000017 14069 tangent_cone_at | |
0.000017 14070 unique_diff_within_at | |
0.000016 14071 set.diagonal | |
0.000017 14072 is_closed_of_closure_subset | |
0.000017 14073 closure_subset_iff_is_closed | |
0.000017 14074 is_closed_iff_cluster_pt | |
0.000017 14075 filter.ne_bot.ne | |
0.000016 14076 is_closed_diagonal | |
0.000017 14077 is_closed_eq | |
0.000017 14078 set.eq_on.closure | |
0.000017 14079 submodule.mem_span | |
0.000017 14080 submodule.subset_span | |
0.000017 14081 submodule.span_le | |
0.000017 14082 submodule.span_induction | |
0.000017 14083 linear_map.eq_on_span | |
0.000017 14084 linear_map.eq_on_span' | |
0.000017 14085 continuous_linear_map.eq_on_closure_span | |
0.000017 14086 continuous_linear_map.ext_on | |
0.000017 14087 separation_rel | |
0.000016 14088 separated_space | |
0.000017 14089 t2_iff_is_closed_diagonal | |
0.000017 14090 separated_space.out | |
0.000017 14091 separation_rel.equations._eqn_1 | |
0.000016 14092 filter.has_basis.sInter_sets | |
0.000017 14093 filter.has_basis.separation_rel | |
0.000017 14094 filter.has_basis.dcases_on | |
0.000017 14095 filter.has_basis_iff | |
0.000016 14096 filter.has_basis_self | |
0.000017 14097 symmetric_rel | |
0.000018 14098 symmetrize_rel | |
0.000029 14099 symmetrize_mem_uniformity | |
0.000016 14100 symmetrize_rel.equations._eqn_1 | |
0.000018 14101 symmetric_rel.equations._eqn_1 | |
0.000017 14102 set.preimage_comp | |
0.000015 14103 symmetric_symmetrize_rel | |
0.000014 14104 comp_rel_mono | |
0.000017 14105 set.sep_subset | |
2.212980 14106 symmetrize_rel_subset_self | |
0.000078 14107 comp_symm_mem_uniformity_sets | |
0.000024 14108 subset_comp_self | |
0.000015 14109 subset_comp_self_of_mem_uniformity | |
0.000014 14110 comp_comp_symm_mem_uniformity_sets | |
0.000014 14111 filter.has_basis.cluster_pt_iff | |
0.000016 14112 sort.inhabited | |
0.000014 14113 sort.inhabited' | |
0.000014 14114 filter.has_basis_principal | |
0.000014 14115 mem_closure_iff_nhds_basis' | |
0.000014 14116 mem_closure_iff_nhds_basis | |
0.000014 14117 filter.has_basis.prod' | |
0.000018 14118 ball_mono | |
0.000017 14119 uniform_space.mem_nhds_iff_symm | |
0.000017 14120 uniform_space.has_basis_nhds | |
0.000016 14121 symmetric_rel_inter | |
0.000014 14122 uniform_space.has_basis_nhds_prod | |
0.000017 14123 mem_ball_symmetry | |
0.000017 14124 mem_comp_comp | |
0.000017 14125 closure_eq_uniformity | |
0.000015 14126 uniformity_has_basis_closed | |
0.000014 14127 uniformity_has_basis_closure | |
0.000014 14128 separation_rel_eq_inter_closure | |
0.000018 14129 is_closed_separation_rel | |
0.000017 14130 separated_space_iff | |
0.000017 14131 separated_equiv | |
0.000015 14132 separated_def | |
0.000014 14133 separated_def' | |
0.000016 14134 filter.inf_eq_bot_iff | |
0.000015 14135 disjoint.mono | |
0.000018 14136 filter.not_ne_bot | |
0.000017 14137 t2_iff_nhds | |
0.000015 14138 separated_iff_t2 | |
0.000014 14139 set.compl_inter_self | |
0.000017 14140 separated_regular._match_1 | |
0.000015 14141 closure_eq_cluster_pts | |
0.000018 14142 cluster_pt.equations._eqn_1 | |
0.000017 14143 set.prod_mk_mem_set_prod_eq | |
0.000015 14144 filter.prod_eq_bot | |
0.000014 14145 filter.prod_ne_bot | |
0.000018 14146 filter.prod_inf_prod | |
0.000015 14147 closure_prod_eq | |
0.000016 14148 mem_closure_iff_nhds_ne_bot | |
0.000018 14149 filter.lift_lift_same_le_lift | |
0.000016 14150 filter.lift_lift_same_eq_lift | |
0.000017 14151 filter.lift_lift'_same_eq_lift' | |
0.000017 14152 nhds_eq_uniformity_prod | |
0.000017 14153 filter.map_lift'_eq2 | |
0.000016 14154 filter.inhabited_mem | |
0.000017 14155 filter.lift'_inf_principal_eq | |
0.000017 14156 filter.infi_ne_bot_of_directed' | |
0.000017 14157 filter.infi_ne_bot_iff_of_directed' | |
0.000017 14158 subtype.forall' | |
0.000017 14159 filter.lift_ne_bot_iff | |
0.000016 14160 filter.principal_eq_bot_iff | |
0.000017 14161 filter.principal_ne_bot_iff | |
0.000017 14162 filter.lift'_ne_bot_iff | |
0.000016 14163 set.monotone_inter | |
0.000017 14164 closure_eq_inter_uniformity | |
0.000017 14165 separated_regular._match_2 | |
0.000017 14166 separated_regular | |
0.000017 14167 eq_of_le_of_forall_le_of_dense | |
0.000017 14168 eq_of_forall_dist_le | |
0.000016 14169 metric.metric_space.to_separated | |
0.000017 14170 asymptotics.is_o_norm_norm | |
0.000017 14171 asymptotics.is_o.of_norm_norm | |
0.000017 14172 asymptotics.is_o.norm_norm | |
0.000017 14173 asymptotics.is_O.smul_is_o | |
0.000017 14174 tendsto_zero_iff_norm_tendsto_zero | |
0.000016 14175 filter.tendsto.congr' | |
0.000017 14176 add_le_iff_nonpos_left | |
0.000017 14177 eventually_ne_of_tendsto_norm_at_top | |
0.000017 14178 continuous.dist | |
0.000017 14179 continuous_norm | |
0.000017 14180 tangent_cone_at.lim_zero | |
0.000016 14181 ge_mem_nhds | |
0.000017 14182 asymptotics.is_O_const_of_tendsto | |
0.000017 14183 asymptotics.is_O_one_of_tendsto | |
0.000017 14184 has_fderiv_within_at.lim | |
0.000017 14185 has_fderiv_within_at.unique_on | |
0.000016 14186 unique_diff_within_at.eq | |
0.000017 14187 unique_diff_within_at.equations._eqn_1 | |
0.000017 14188 normed_field.norm_pow | |
0.000016 14189 tangent_cone_univ | |
0.000017 14190 submodule.has_top._proof_1 | |
0.000017 14191 submodule.has_top._proof_2 | |
0.000016 14192 submodule.has_top._proof_3 | |
0.000017 14193 submodule.has_top | |
0.000017 14194 submodule.order_top._proof_1 | |
0.000017 14195 submodule.order_top._proof_2 | |
0.000017 14196 submodule.order_top._proof_3 | |
0.000017 14197 submodule.order_top._proof_4 | |
0.000017 14198 submodule.order_top._proof_5 | |
0.000017 14199 submodule.order_top | |
0.000017 14200 eq_top_iff | |
0.000017 14201 set_like.le_def | |
0.000016 14202 submodule.span_univ | |
0.000018 14203 submodule.top_coe | |
0.000017 14204 dense_univ | |
0.000015 14205 is_closed_univ | |
0.000016 14206 closure_univ | |
0.000017 14207 unique_diff_within_at_univ | |
0.000017 14208 has_fderiv_within_at.equations._eqn_1 | |
0.000017 14209 has_fderiv_within_at_univ | |
0.000017 14210 has_fderiv_at.unique | |
0.000017 14211 metric.eventually_nhds_iff_ball | |
0.000017 14212 metric.is_open_iff | |
0.000017 14213 add_lt_add_of_lt_of_le | |
0.000017 14214 metric.ball_subset | |
0.000017 14215 metric.exists_ball_subset_ball | |
0.000017 14216 metric.is_open_ball | |
0.000017 14217 metric.mem_ball_self | |
0.000017 14218 metric.ball_mem_nhds | |
0.000017 14219 restrict_scalars.normed_group | |
0.000017 14220 normed_space.restrict_scalars._proof_1 | |
0.000017 14221 normed_space.restrict_scalars._proof_2 | |
0.000017 14222 normed_space.restrict_scalars._proof_3 | |
0.000017 14223 normed_space.restrict_scalars | |
0.000017 14224 restrict_scalars.normed_space | |
0.000017 14225 is_R_or_C.to_normed_algebra | |
0.000017 14226 vector_space | |
0.000016 14227 convex | |
0.000017 14228 has_deriv_within_at | |
0.949963 14229 mem_closure_of_tendsto | |
0.000076 14230 continuous_within_at.mem_closure_image | |
0.000024 14231 continuous_within_at.mem_closure | |
0.000015 14232 continuous_within_at.prod | |
0.000014 14233 continuous_within_at.closure_le | |
0.000014 14234 closure_Ioi | |
0.000016 14235 continuous_within_at.mono | |
0.000014 14236 continuous_within_at_univ | |
0.000013 14237 continuous_at.continuous_within_at | |
0.000019 14238 continuous.continuous_within_at | |
0.000017 14239 continuous_within_at_const | |
0.000016 14240 continuous_within_at.add | |
0.000015 14241 continuous_within_at.mul | |
0.000016 14242 continuous_within_at_id | |
0.000015 14243 is_closed_induced_iff | |
0.000017 14244 set.restrict_eq | |
0.000018 14245 set.preimage_image_eq | |
0.000016 14246 function.injective.image_injective | |
0.000015 14247 subtype.preimage_coe_eq_preimage_coe_iff | |
0.000015 14248 continuous_on_iff_is_closed | |
0.000016 14249 continuous_on.preimage_closed_of_closed | |
0.000017 14250 continuous_on.prod | |
0.000017 14251 nhds_within_Ioi_ne_bot | |
0.000017 14252 nhds_within_Ioi_self_ne_bot | |
0.000017 14253 and.imp_left | |
0.000017 14254 set.Ioo_subset_Ico_self | |
0.000016 14255 set.Ioo_subset_Icc_self | |
0.000017 14256 Icc_mem_nhds_within_Ioi | |
0.000016 14257 sup_sdiff_right | |
0.000017 14258 sdiff_inf | |
0.000015 14259 sdiff_inf_self_right | |
0.000016 14260 sdiff_eq_sdiff_iff_inf_eq_inf | |
0.000017 14261 sdiff_eq_self_iff_disjoint | |
0.000017 14262 set.diff_eq_self | |
0.000017 14263 set.singleton_inter_nonempty | |
0.000017 14264 set.singleton_inter_eq_empty | |
0.000017 14265 set.diff_singleton_eq_self | |
0.000016 14266 has_deriv_within_at.equations._eqn_1 | |
0.000017 14267 asymptotics.is_O_of_le | |
0.000017 14268 normed_field.norm_div | |
0.000017 14269 div_self | |
0.000017 14270 asymptotics.is_o.tendsto_0 | |
0.000017 14271 div_mul_cancel_of_imp | |
0.000018 14272 asymptotics.is_o_iff_tendsto' | |
0.000017 14273 asymptotics.is_o_iff_tendsto | |
0.000017 14274 has_fderiv_at_filter_iff_tendsto | |
0.000017 14275 has_deriv_at_filter_iff_tendsto | |
0.000017 14276 homeomorph | |
0.000017 14277 homeomorph.to_equiv | |
0.000017 14278 homeomorph.has_coe_to_fun | |
0.000017 14279 add_units | |
0.000017 14280 add_units.val | |
0.000017 14281 add_units.has_coe | |
0.000017 14282 add_units.neg | |
0.000017 14283 add_units.val_neg | |
0.000017 14284 add_units.add_group._proof_1 | |
0.000017 14285 add_units.neg_val | |
0.000017 14286 add_units.add_group._proof_2 | |
0.000017 14287 add_units.cases_on | |
0.000017 14288 add_units.ext | |
0.000017 14289 add_units.add_group._proof_3 | |
0.000017 14290 add_units.add_group._proof_4 | |
0.000017 14291 add_units.add_group._proof_5 | |
0.000017 14292 add_units.add_group._proof_6 | |
0.000016 14293 add_units.add_group._proof_7 | |
0.000017 14294 add_units.add_group._proof_8 | |
0.000017 14295 add_units.add_group._proof_9 | |
0.000017 14296 add_units.add_group._proof_10 | |
0.000017 14297 add_units.add_group._proof_11 | |
0.000017 14298 add_units.add_group._proof_12 | |
0.000017 14299 add_units.add_group._proof_13 | |
0.000017 14300 add_units.add_group._proof_14 | |
0.000015 14301 add_units.add_group._proof_15 | |
0.000015 14302 add_units.add_group._proof_16 | |
0.000016 14303 add_units.add_group._proof_17 | |
0.000017 14304 add_units.add_group._proof_18 | |
0.000017 14305 add_units.add_group | |
0.000017 14306 add_units.add_neg | |
0.000017 14307 add_units.add_neg_cancel_right | |
0.000017 14308 add_units.add_right._proof_1 | |
0.000017 14309 add_units.neg_add | |
0.000017 14310 add_units.neg_add_cancel_right | |
0.000017 14311 add_units.add_right._proof_2 | |
0.000017 14312 add_units.add_right | |
0.000018 14313 to_add_units._proof_1 | |
0.000017 14314 to_add_units._proof_2 | |
0.000017 14315 to_add_units._proof_3 | |
0.000016 14316 to_add_units | |
0.000018 14317 equiv.add_right | |
0.000016 14318 homeomorph.add_right._proof_1 | |
0.000017 14319 homeomorph.add_right._proof_2 | |
0.000017 14320 homeomorph.add_right._proof_3 | |
0.000017 14321 homeomorph.add_right._proof_4 | |
0.000017 14322 homeomorph.add_right | |
0.000018 14323 homeomorph.continuous_inv_fun | |
0.000017 14324 homeomorph.continuous_to_fun | |
0.000017 14325 homeomorph.symm | |
0.000017 14326 induced_iff_nhds_eq | |
0.000017 14327 inducing.nhds_eq_comap | |
0.000016 14328 inducing_of_inducing_compose | |
0.000017 14329 homeomorph.continuous | |
0.000017 14330 homeomorph.symm_apply_apply | |
0.000017 14331 homeomorph.symm_comp_self | |
0.000017 14332 induced_id | |
0.000017 14333 inducing_id | |
0.000017 14334 homeomorph.inducing | |
0.000017 14335 homeomorph.injective | |
0.000017 14336 homeomorph.embedding | |
0.000017 14337 homeomorph.nhds_eq_comap | |
0.000017 14338 homeomorph.apply_symm_apply | |
0.000017 14339 homeomorph.comap_nhds_eq | |
0.000016 14340 nhds_translation_add_neg | |
0.000018 14341 nhds_translation | |
0.000016 14342 filter.tendsto_iff_comap | |
0.000017 14343 tendsto_inf_principal_nhds_iff_of_forall_eq | |
0.000017 14344 no_zero_smul_divisors | |
0.000017 14345 no_zero_smul_divisors.eq_zero_or_eq_zero_of_smul_eq_zero | |
0.000017 14346 smul_eq_zero | |
0.000017 14347 units.smul_eq_zero | |
0.000017 14348 no_zero_smul_divisors.of_division_ring | |
0.000017 14349 sub_ne_zero | |
3.159665 14350 has_deriv_at_filter_iff_tendsto_slope | |
0.000080 14351 has_deriv_within_at_iff_tendsto_slope | |
0.000024 14352 has_deriv_within_at_iff_tendsto_slope' | |
0.000015 14353 sdiff_sup | |
0.000014 14354 sdiff_sdiff_left | |
0.000209 14355 sdiff_idem | |
0.000016 14356 has_deriv_within_at_diff_singleton | |
0.000015 14357 has_deriv_within_at_Ioi_iff_Ici | |
0.000019 14358 has_deriv_within_at.Ioi_of_Ici | |
0.000017 14359 Ioi_mem_nhds | |
0.000015 14360 image_le_of_liminf_slope_right_lt_deriv_boundary' | |
0.000015 14361 continuous_within_at.tendsto | |
0.000014 14362 set.maps_to | |
0.000014 14363 continuous_within_at.tendsto_nhds_within | |
0.000016 14364 continuous_within_at.comp | |
0.000017 14365 continuous_on.comp | |
0.000015 14366 set.subset_preimage_univ | |
0.000014 14367 continuous.comp_continuous_on | |
0.000014 14368 continuous_on.add | |
0.000014 14369 continuous_on.mul | |
0.000017 14370 continuous_within_at.sub | |
0.000015 14371 continuous_on.sub | |
0.000016 14372 has_fderiv_at_filter.has_deriv_at_filter | |
0.000018 14373 has_fderiv_at_filter.add | |
0.000017 14374 has_deriv_at_filter.add | |
0.000017 14375 has_deriv_within_at.add | |
0.000018 14376 has_fderiv_within_at_iff_has_deriv_within_at | |
0.000017 14377 has_fderiv_within_at.has_deriv_within_at | |
0.000017 14378 set.maps_to' | |
0.000017 14379 set.maps_to_image | |
0.000017 14380 continuous_within_at.tendsto_nhds_within_image | |
0.000017 14381 has_fderiv_within_at.continuous_within_at | |
0.000018 14382 has_fderiv_within_at.comp | |
0.000017 14383 has_fderiv_at.comp_has_fderiv_within_at | |
0.000017 14384 is_bounded_bilinear_map.has_fderiv_at | |
0.000017 14385 has_fderiv_at_filter.prod | |
0.000018 14386 has_fderiv_within_at.prod | |
0.000017 14387 has_fderiv_within_at.smul | |
0.000017 14388 has_deriv_within_at.smul | |
0.000017 14389 has_deriv_within_at.mul | |
0.000017 14390 has_fderiv_at_filter_const | |
0.000017 14391 has_deriv_at_filter_const | |
0.000018 14392 has_deriv_within_at_const | |
0.000015 14393 has_deriv_within_at.const_mul | |
0.000014 14394 has_deriv_at_filter.add_const | |
0.000017 14395 has_deriv_at_filter.sub_const | |
0.000017 14396 has_deriv_within_at.sub_const | |
0.000017 14397 continuous_linear_map.coe_id' | |
0.000015 14398 sub_sub_sub_cancel_left | |
0.000014 14399 has_fderiv_at_filter_id | |
0.000016 14400 has_deriv_at_filter_id | |
0.000019 14401 has_deriv_within_at_id | |
0.000016 14402 image_le_of_liminf_slope_right_le_deriv_boundary | |
0.000017 14403 filter.frequently.mp | |
0.000027 14404 set.diff_union_self | |
0.000015 14405 has_deriv_within_at.limsup_norm_slope_le | |
0.000015 14406 abs_norm_sub_norm_le | |
0.000017 14407 norm_sub_norm_le | |
0.000018 14408 has_deriv_within_at.limsup_slope_norm_le | |
0.000018 14409 sub_pos_of_lt | |
0.000016 14410 has_deriv_within_at.liminf_right_slope_norm_le | |
0.000017 14411 image_norm_le_of_norm_deriv_right_le_deriv_boundary' | |
0.000017 14412 has_deriv_at_filter.tendsto_nhds | |
0.000017 14413 has_deriv_at.continuous_at | |
0.000016 14414 has_fderiv_at.has_fderiv_at_filter | |
0.000017 14415 has_fderiv_at.has_fderiv_within_at | |
0.000017 14416 has_deriv_at.has_deriv_within_at | |
0.000017 14417 image_norm_le_of_norm_deriv_right_le_deriv_boundary | |
0.000017 14418 has_fderiv_at_filter.neg | |
0.000017 14419 has_deriv_at_filter.neg | |
0.000016 14420 has_deriv_at_filter.sub | |
0.000017 14421 has_deriv_within_at.sub | |
0.000017 14422 has_deriv_within_at_univ | |
0.000017 14423 has_deriv_at.mul | |
0.000016 14424 has_deriv_at_const | |
0.000017 14425 has_deriv_at.sub | |
0.000017 14426 has_deriv_at_id | |
0.000017 14427 norm_image_sub_le_of_norm_deriv_right_le_segment | |
0.000017 14428 has_deriv_within_at.continuous_within_at | |
0.000017 14429 has_fderiv_within_at_inter' | |
0.000017 14430 has_deriv_within_at_inter' | |
0.000017 14431 has_fderiv_within_at.mono | |
0.000017 14432 has_deriv_within_at.mono | |
0.000017 14433 has_deriv_within_at.nhds_within | |
0.000017 14434 norm_image_sub_le_of_norm_deriv_le_segment' | |
0.000017 14435 norm_image_sub_le_of_norm_deriv_le_segment_01' | |
0.000017 14436 has_deriv_within_at_iff_has_fderiv_within_at | |
0.000017 14437 has_fderiv_within_at.comp_has_deriv_within_at | |
0.000017 14438 segment | |
0.000016 14439 segment_eq_image | |
0.000017 14440 segment_eq_image' | |
0.000017 14441 convex.equations._eqn_1 | |
0.000017 14442 segment.equations._eqn_1 | |
0.000017 14443 segment_eq_image₂ | |
0.000017 14444 convex_iff_segment_subset | |
0.000017 14445 convex.segment_subset | |
0.000017 14446 has_deriv_at_filter.const_add | |
0.000016 14447 has_deriv_at.const_add | |
0.000017 14448 has_deriv_within_at.smul_const | |
0.000017 14449 has_deriv_at.smul_const | |
0.000017 14450 continuous_linear_map.le_of_op_norm_le | |
0.000016 14451 convex.norm_image_sub_le_of_norm_has_fderiv_within_le | |
0.000017 14452 has_fderiv_at_filter.sub | |
0.000017 14453 has_fderiv_within_at.sub | |
0.000017 14454 continuous_linear_map.has_fderiv_within_at | |
0.000017 14455 convex.norm_image_sub_le_of_norm_has_fderiv_within_le' | |
0.000017 14456 set.sep_univ | |
1.644417 14457 ordered_semimodule | |
0.000078 14458 convex_on | |
0.000023 14459 ordered_semimodule.smul_lt_smul_of_pos | |
0.000015 14460 smul_lt_smul_of_pos | |
0.000014 14461 smul_le_smul_of_nonneg | |
0.000014 14462 convex_on.convex_lt | |
0.000015 14463 linear_ordered_comm_ring.to_ordered_semimodule | |
0.000014 14464 convex_on_dist | |
0.000014 14465 convex_univ | |
0.000013 14466 convex_ball | |
0.000019 14467 prod.dist_eq | |
0.000017 14468 ball_prod_same | |
0.000015 14469 has_strict_fderiv_at_of_has_fderiv_at_of_continuous_at | |
0.000016 14470 filter.eventually.self_of_nhds | |
0.000018 14471 eventually_nhds_iff | |
0.000015 14472 filter.eventually.eventually_nhds | |
0.000018 14473 eventually_eventually_nhds | |
0.000015 14474 has_fderiv_within_at_inter | |
0.000016 14475 has_fderiv_within_at.has_fderiv_at | |
0.000017 14476 filter.eventually_eq.has_fderiv_at_filter_iff | |
0.000015 14477 has_fderiv_at_filter.congr_of_eventually_eq | |
0.000014 14478 has_fderiv_within_at.congr_mono | |
0.000019 14479 has_fderiv_within_at.congr | |
0.000014 14480 continuous_linear_equiv | |
0.000015 14481 continuous_linear_equiv.to_linear_equiv | |
0.000014 14482 continuous_linear_equiv.to_continuous_linear_map._proof_1 | |
0.000016 14483 continuous_linear_equiv.to_continuous_linear_map._proof_2 | |
0.000017 14484 continuous_linear_equiv.continuous_to_fun | |
0.000015 14485 continuous_linear_equiv.to_continuous_linear_map | |
0.000019 14486 continuous_linear_equiv.continuous_linear_map.has_coe | |
0.000015 14487 linear_equiv.linear_map.has_coe | |
0.000014 14488 linear_isometry_equiv.to_linear_isometry | |
0.000016 14489 linear_isometry_equiv.isometry | |
0.000018 14490 linear_isometry_equiv.continuous | |
0.000018 14491 isometric | |
0.000016 14492 isometric.to_equiv | |
0.000017 14493 isometric.has_coe_to_fun | |
0.000017 14494 isometry.right_inv | |
0.000017 14495 isometric.isometry_to_fun | |
0.000017 14496 isometric.isometry | |
0.000017 14497 isometric.symm._proof_1 | |
0.000016 14498 isometric.symm | |
0.000017 14499 linear_isometry_equiv.to_isometric | |
0.000017 14500 isometric.continuous | |
0.000017 14501 linear_isometry_equiv.continuous_linear_equiv.has_coe_t._proof_1 | |
0.000017 14502 linear_isometry_equiv.continuous_linear_equiv.has_coe_t | |
0.000017 14503 linear_isometry_equiv.continuous_linear_map.has_coe_t | |
0.000017 14504 continuous_linear_equiv.has_coe_to_fun | |
0.000017 14505 continuous_linear_equiv.symm._proof_1 | |
0.000017 14506 continuous_linear_equiv.symm._proof_2 | |
0.000017 14507 continuous_linear_equiv.symm._proof_3 | |
0.000017 14508 continuous_linear_equiv.symm._proof_4 | |
0.000017 14509 continuous_linear_equiv.continuous_inv_fun | |
0.000017 14510 continuous_linear_equiv.symm | |
0.000017 14511 continuous_linear_equiv.symm_apply_apply | |
0.000017 14512 continuous_linear_equiv.symm_comp_self | |
0.000017 14513 continuous_linear_map.comp_assoc | |
0.000017 14514 continuous_linear_equiv.coe_symm_comp_coe | |
0.000017 14515 continuous_linear_map.id_comp | |
0.000016 14516 continuous_linear_equiv.has_fderiv_at | |
0.000017 14517 continuous_linear_equiv.comp_has_fderiv_within_at_iff | |
0.000017 14518 continuous_linear_equiv.apply_symm_apply | |
0.000017 14519 continuous_linear_equiv.coe_comp_coe_symm | |
0.000017 14520 continuous_linear_equiv.comp_has_fderiv_within_at_iff' | |
0.000017 14521 linear_isometry_equiv.comp_has_fderiv_within_at_iff' | |
0.000017 14522 coe_fn.equations._eqn_1 | |
0.000017 14523 has_ftaylor_series_up_to_on.fderiv_within | |
0.000017 14524 has_ftaylor_series_up_to_on.zero_eq | |
0.000017 14525 has_ftaylor_series_up_to_on.has_fderiv_within_at | |
0.000017 14526 has_ftaylor_series_up_to_on.has_fderiv_at | |
0.000017 14527 has_ftaylor_series_up_to_on.eventually_has_fderiv_at | |
0.000017 14528 linear_isometry_equiv.continuous_at | |
0.000017 14529 continuous_within_at_inter | |
0.000017 14530 continuous_within_at.continuous_at | |
0.000017 14531 continuous_on.continuous_at | |
0.000017 14532 has_ftaylor_series_up_to_on.cont | |
0.000017 14533 has_ftaylor_series_up_to_on.has_strict_fderiv_at | |
0.000017 14534 set.insert_eq_of_mem | |
0.000017 14535 times_cont_diff_at.has_strict_fderiv_at' | |
0.000017 14536 times_cont_diff_at.has_strict_deriv_at' | |
0.000017 14537 proper_space | |
0.000017 14538 metric.cauchy_iff | |
0.000017 14539 totally_bounded | |
0.000017 14540 is_complete | |
0.000017 14541 ultrafilter | |
0.000017 14542 ultrafilter.to_filter | |
0.000016 14543 ultrafilter.filter.has_coe_t | |
0.000017 14544 ultrafilter.ne_bot' | |
0.000017 14545 ultrafilter.has_mem | |
0.000017 14546 filter.empty_nmem_sets | |
0.000015 14547 ultrafilter.ne_bot | |
0.000016 14548 ultrafilter.empty_not_mem | |
0.000017 14549 Sup_insert | |
0.000017 14550 set.sUnion_insert | |
0.000017 14551 filter.eventually.and | |
0.000016 14552 ultrafilter.le_of_le | |
0.000017 14553 ultrafilter.unique | |
0.000017 14554 ultrafilter.le_of_inf_ne_bot | |
0.000017 14555 ultrafilter.compl_not_mem_iff | |
0.000017 14556 ultrafilter.compl_mem_iff_not_mem | |
0.000017 14557 ultrafilter.mem_or_compl_mem | |
1.120652 14558 ultrafilter.em | |
0.000077 14559 ultrafilter.eventually_or | |
0.000024 14560 ultrafilter.union_mem_iff | |
0.000014 14561 ultrafilter.finite_sUnion_mem_iff | |
0.000015 14562 set.fintype_image._proof_1 | |
0.000014 14563 set.fintype_image | |
0.000014 14564 set.finite.image | |
0.000014 14565 set.bex_image_iff | |
0.000015 14566 ultrafilter.finite_bUnion_mem_iff | |
0.000014 14567 ultrafilter.cauchy_of_totally_bounded | |
0.000014 14568 zorn.chain | |
0.000017 14569 filter.infi_ne_bot_of_directed | |
0.000018 14570 filter.nonempty_of_ne_bot | |
0.000017 14571 directed_of_chain | |
0.000015 14572 refl_of | |
0.000014 14573 is_refl.swap | |
0.000062 14574 ge.is_refl | |
0.000021 14575 set.forall_insert_of_forall | |
0.000015 14576 zorn.chain_insert | |
0.000014 14577 zorn.super_chain | |
0.000014 14578 zorn.succ_chain | |
0.000014 14579 zorn.chain_closure | |
0.000014 14580 zorn.max_chain | |
0.000017 14581 zorn.is_max_chain | |
0.000018 14582 zorn.chain_closure.drec | |
0.000017 14583 zorn.succ_chain.equations._eqn_1 | |
0.000016 14584 zorn.succ_spec | |
0.000015 14585 zorn.succ_increasing | |
0.000014 14586 decidable.or_iff_not_imp_right | |
0.000018 14587 or_iff_not_imp_right | |
0.000015 14588 _private.779619327.chain_closure_succ_total_aux | |
0.000017 14589 set.sUnion_subset_iff | |
0.000017 14590 _private.3604490851.chain_closure_succ_total | |
0.000015 14591 zorn.chain_closure_succ_fixpoint | |
0.000014 14592 zorn.chain_closure_closure | |
0.000017 14593 zorn.chain_closure_succ_fixpoint_iff | |
0.000015 14594 zorn.is_max_chain.equations._eqn_1 | |
0.000016 14595 decidable.not_forall_not | |
0.000018 14596 not_forall_not | |
0.000017 14597 zorn.super_of_not_max | |
0.000016 14598 zorn.chain_succ | |
0.000017 14599 zorn.chain_closure_total | |
0.000017 14600 zorn.chain_chain_closure | |
0.000017 14601 zorn.max_chain_spec | |
0.000017 14602 set.ssubset_def | |
0.000017 14603 set.ssubset_iff_insert | |
0.000017 14604 set.ssubset_insert | |
0.000016 14605 zorn.exists_maximal_of_chains_bounded | |
0.000017 14606 ultrafilter.exists_le | |
0.000017 14607 ultrafilter.of | |
0.000017 14608 ultrafilter.of_le | |
0.000017 14609 set.nonempty_diff | |
0.000017 14610 finset.set_bUnion_coe | |
0.000016 14611 filter.prod_same_eq | |
0.000017 14612 filter.mem_prod_same_iff | |
0.000017 14613 supr_supr_eq_left | |
0.000017 14614 finset.supr_singleton | |
0.000016 14615 finset.set_bUnion_singleton | |
0.000017 14616 totally_bounded_iff_filter | |
0.000017 14617 totally_bounded_iff_ultrafilter | |
0.000016 14618 filter.forall_ne_bot_le_iff | |
0.000017 14619 cluster_pt.mono | |
0.000017 14620 ultrafilter.le_of_inf_ne_bot' | |
0.000017 14621 cluster_pt.of_le_nhds | |
0.000017 14622 ultrafilter.cluster_pt_iff | |
0.000017 14623 compact_iff_ultrafilter_le_nhds | |
0.000016 14624 le_nhds_of_cauchy_adhp | |
0.000017 14625 compact_iff_totally_bounded_complete | |
0.000017 14626 proper_space.compact_ball | |
0.000017 14627 complete_of_proper | |
0.000016 14628 submodule.fg | |
0.000017 14629 is_noetherian | |
0.000017 14630 finite_dimensional | |
0.000017 14631 submodule.to_add_submonoid | |
0.000017 14632 submodule.comap._proof_1 | |
0.000017 14633 submodule.comap._proof_2 | |
0.000017 14634 submodule.comap._proof_3 | |
0.000016 14635 submodule.comap | |
0.000017 14636 linear_map.ker | |
0.000016 14637 finsupp.lsum._proof_1 | |
0.000017 14638 finsupp.sum_map_range_index | |
0.000017 14639 finsupp.sum_smul_index' | |
0.000017 14640 const_smul_hom | |
0.000016 14641 finset.smul_sum | |
0.000017 14642 finsupp.smul_sum | |
0.000017 14643 finsupp.lsum._proof_2 | |
0.000017 14644 linear_map.to_add_monoid_hom_injective | |
0.000017 14645 finsupp.lhom_ext | |
0.000017 14646 linear_map.congr_fun | |
0.000016 14647 finsupp.lhom_ext' | |
0.000017 14648 finsupp.lsingle_apply | |
0.000017 14649 finsupp.lsum._proof_3 | |
0.000017 14650 finsupp.lsum._proof_4 | |
0.000017 14651 finsupp.lsum._proof_5 | |
0.000016 14652 finsupp.lsum._proof_6 | |
0.000017 14653 finsupp.lsum | |
0.000017 14654 finsupp.total._proof_1 | |
0.000017 14655 finsupp.total | |
0.000016 14656 linear_independent | |
0.000017 14657 is_basis | |
0.000017 14658 linear_independent.restrict_of_comp_subtype | |
0.000017 14659 zorn.zorn_partial_order | |
0.000017 14660 zorn.zorn_subset | |
0.000014 14661 zorn.zorn_subset₀ | |
0.000016 14662 set.sUnion_range | |
0.000017 14663 set.sUnion_eq_Union | |
0.000017 14664 finsupp.supported._proof_1 | |
0.000017 14665 finset.coe_union | |
0.000017 14666 finsupp.supported._proof_2 | |
0.000017 14667 finsupp.support_smul | |
0.000017 14668 finsupp.supported._proof_3 | |
0.000016 14669 finsupp.supported | |
0.000017 14670 linear_independent.equations._eqn_1 | |
0.000017 14671 submodule.complete_lattice._proof_1 | |
0.000017 14672 submodule.complete_lattice._proof_2 | |
0.000017 14673 submodule.complete_lattice._proof_3 | |
0.000017 14674 submodule.complete_lattice._proof_4 | |
0.000016 14675 _private.4162105895.le_Inf' | |
0.000017 14676 submodule.complete_lattice._match_1 | |
0.000017 14677 submodule.complete_lattice._proof_5 | |
0.000017 14678 submodule.complete_lattice._match_2 | |
0.000016 14679 submodule.complete_lattice._proof_6 | |
0.000017 14680 _private.556769737.Inf_le' | |
0.000017 14681 submodule.complete_lattice._proof_7 | |
0.251820 14682 submodule.has_inf._proof_1 | |
0.000076 14683 submodule.has_inf._proof_2 | |
0.000024 14684 submodule.has_inf._proof_3 | |
0.000015 14685 submodule.has_inf | |
0.000014 14686 submodule.complete_lattice._proof_8 | |
0.000014 14687 submodule.complete_lattice._proof_9 | |
0.000014 14688 submodule.complete_lattice._proof_10 | |
0.000014 14689 submodule.complete_lattice._proof_11 | |
0.000015 14690 submodule.order_bot._proof_1 | |
0.000016 14691 submodule.order_bot._proof_3 | |
0.000017 14692 submodule.order_bot._proof_4 | |
0.000018 14693 submodule.mem_bot | |
0.000015 14694 submodule.order_bot._proof_5 | |
0.000017 14695 submodule.order_bot | |
0.000015 14696 submodule.complete_lattice._proof_12 | |
0.000015 14697 submodule.complete_lattice._proof_13 | |
0.000016 14698 submodule.complete_lattice._proof_14 | |
0.000017 14699 submodule.complete_lattice._proof_15 | |
0.000017 14700 submodule.complete_lattice._proof_16 | |
0.000017 14701 submodule.complete_lattice | |
0.000017 14702 submodule.mem_top | |
0.000015 14703 submodule.disjoint_def | |
0.000014 14704 linear_map.mem_ker | |
0.000018 14705 linear_map.disjoint_ker | |
0.000015 14706 linear_map.ker_eq_bot' | |
0.000018 14707 linear_independent_iff | |
0.000016 14708 finsupp.total_apply | |
0.000015 14709 finsupp.mem_supported | |
0.000014 14710 finset.subtype._proof_1 | |
0.000018 14711 finset.subtype._proof_2 | |
0.000015 14712 finset.subtype | |
0.000014 14713 finset.subtype.equations._eqn_1 | |
0.000014 14714 function.embedding.coe_fn_mk | |
0.000017 14715 finset.mem_subtype | |
0.000016 14716 finsupp.subtype_domain._proof_1 | |
0.000016 14717 finsupp.subtype_domain | |
0.000014 14718 finsupp.support_subtype_domain | |
0.000018 14719 finset.subtype_eq_empty | |
0.000015 14720 finsupp.subtype_domain_eq_zero_iff' | |
0.000016 14721 finsupp.subtype_domain_eq_zero_iff | |
0.000018 14722 multiset.pmap_eq_map | |
0.000017 14723 multiset.pmap_eq_map_attach | |
0.000017 14724 multiset.map_eq_map_of_bij_of_nodup | |
0.000016 14725 finset.sum_bij | |
0.000017 14726 finsupp.sum_subtype_domain_index | |
0.000017 14727 exists_unique | |
0.000017 14728 quotient.rec_on | |
0.000017 14729 list.choose_x._match_2 | |
0.000017 14730 list.choose_x._match_1 | |
0.000017 14731 list.choose_x._main | |
0.000017 14732 list.choose_x | |
0.000016 14733 exists_of_exists_unique | |
0.000018 14734 multiset.choose_x._proof_1 | |
0.000017 14735 multiset.choose_x._proof_2 | |
0.000017 14736 multiset.choose_x | |
0.000016 14737 finset.choose_x | |
0.000017 14738 finset.choose | |
0.000017 14739 exists_unique.intro | |
0.000017 14740 function.embedding.injective | |
0.000017 14741 finsupp.emb_domain._match_1 | |
0.000017 14742 finsupp.emb_domain._proof_1 | |
0.000017 14743 finset.choose_spec | |
0.000017 14744 finset.choose_mem | |
0.000017 14745 ne.irrefl | |
0.000017 14746 false_of_ne | |
0.000017 14747 ne_self_iff_false | |
0.000017 14748 finsupp.emb_domain._proof_2 | |
0.000017 14749 finsupp.emb_domain | |
0.000017 14750 function.embedding.subtype._proof_1 | |
0.000017 14751 function.embedding.subtype | |
0.000017 14752 function.injective.eq_iff' | |
0.000017 14753 finset.choose_property | |
0.000015 14754 finsupp.emb_domain_apply | |
0.000014 14755 finsupp.emb_domain_injective | |
0.000017 14756 finsupp.emb_domain_zero | |
0.000017 14757 finsupp.emb_domain_eq_zero | |
0.000017 14758 finsupp.support_emb_domain | |
0.000017 14759 function.embedding.coe_subtype | |
0.000017 14760 finsupp.map_domain | |
0.000017 14761 finsupp.map_domain.equations._eqn_1 | |
0.000017 14762 finsupp.map_domain_apply | |
0.000017 14763 finsupp.map_domain_notin_range | |
0.000017 14764 finsupp.emb_domain_notin_range | |
0.000017 14765 finsupp.emb_domain_eq_map_domain | |
0.000017 14766 finsupp.sum_map_domain_index | |
0.000017 14767 linear_independent_comp_subtype | |
0.000017 14768 linear_independent_subtype | |
0.000017 14769 linear_independent_of_finite | |
0.000017 14770 linear_independent_comp_subtype_disjoint | |
0.000017 14771 linear_independent_subtype_disjoint | |
0.000017 14772 disjoint.mono_left | |
0.000017 14773 finsupp.supported_mono | |
0.000016 14774 linear_independent.mono | |
0.000017 14775 finsupp.mem_supported' | |
0.000017 14776 finsupp.supported_empty | |
0.000017 14777 linear_independent_empty | |
0.000017 14778 linear_independent_Union_of_directed | |
0.000017 14779 linear_independent_sUnion_of_directed | |
0.000017 14780 zorn.chain.total_of_refl | |
0.000016 14781 zorn.chain.directed_on | |
0.000017 14782 set.union_singleton | |
0.000018 14783 nontrivial_iff | |
0.000016 14784 subsingleton_iff | |
0.000017 14785 not_nontrivial_iff_subsingleton | |
0.000017 14786 subsingleton_or_nontrivial | |
0.000017 14787 linear_independent_of_subsingleton | |
0.000017 14788 finsupp.map_domain_add | |
0.000017 14789 finsupp.lmap_domain._proof_1 | |
0.000017 14790 finsupp.map_range_zero | |
0.000017 14791 finsupp.map_domain_zero | |
0.000017 14792 finsupp.map_range_add | |
0.000017 14793 finsupp.map_domain_single | |
0.000017 14794 finsupp.map_domain_smul | |
0.000017 14795 finsupp.lmap_domain | |
0.000017 14796 finsupp.lmap_domain_apply | |
0.000017 14797 finsupp.total_comp | |
0.000017 14798 linear_independent.comp | |
0.000017 14799 linear_independent_equiv | |
0.398973 14800 linear_independent_equiv' | |
0.000075 14801 linear_independent_subtype_range | |
0.000021 14802 finsupp.single_injective | |
0.000015 14803 finsupp.single_eq_single_iff | |
0.000014 14804 finsupp.add_comm_group._proof_1 | |
0.000014 14805 finsupp.add_comm_group._proof_2 | |
0.000014 14806 finsupp.add_comm_group._proof_3 | |
0.000015 14807 finsupp.add_comm_group._proof_4 | |
0.000014 14808 finsupp.add_comm_group._proof_5 | |
0.000014 14809 finsupp.add_comm_group._proof_6 | |
0.000016 14810 finsupp.add_comm_group._proof_7 | |
0.000017 14811 finsupp.add_comm_group._proof_8 | |
0.000017 14812 finsupp.add_comm_group | |
0.000015 14813 eq_add_of_sub_eq' | |
0.000015 14814 linear_independent.injective | |
0.000016 14815 linear_independent.to_subtype_range | |
0.000020 14816 linear_independent.to_subtype_range' | |
0.000015 14817 sum.elim | |
0.000016 14818 sum.inl_injective | |
0.000017 14819 sum.inr_injective | |
0.000015 14820 add_submonoid.map._proof_1 | |
0.000014 14821 add_submonoid.map._proof_2 | |
0.000017 14822 add_submonoid.map | |
0.000019 14823 submodule.map._proof_1 | |
0.000015 14824 submodule.map._proof_2 | |
0.000016 14825 submodule.map._proof_3 | |
0.000017 14826 submodule.map | |
0.000015 14827 submodule.span_eq_of_le | |
0.000014 14828 finsupp.single_mem_supported | |
0.000017 14829 finsupp.total_single | |
0.000015 14830 submodule.map_le_iff_le_comap | |
0.000016 14831 add_submonoid.list_sum_mem | |
0.000017 14832 add_submonoid.multiset_sum_mem | |
0.000017 14833 add_submonoid.sum_mem | |
0.000017 14834 submodule.sum_mem | |
0.000017 14835 linear_map.coe_smul_right | |
0.000016 14836 linear_map.id_coe | |
0.000017 14837 finsupp.span_eq_map_total | |
0.000017 14838 submodule.mem_map | |
0.000016 14839 finsupp.mem_span_iff_total | |
0.000017 14840 set.inter_eq_Inter | |
0.000017 14841 set_like.ext | |
0.000017 14842 submodule.ext | |
0.000016 14843 set.subset_Inter_iff | |
0.000017 14844 submodule.Inf_coe | |
0.000017 14845 infi_range | |
0.000016 14846 set.bInter_range | |
0.000017 14847 submodule.infi_coe | |
0.000017 14848 submodule.mem_infi | |
0.000015 14849 finsupp.supported_Inter | |
0.000014 14850 infi_bool_eq | |
0.000017 14851 finsupp.supported_inter | |
0.000017 14852 set.disjoint_iff_inter_eq_empty | |
0.000016 14853 finsupp.disjoint_supported_supported | |
0.000017 14854 submodule.mem_inf | |
0.000017 14855 linear_independent_iff_injective_total | |
0.000017 14856 linear_independent.injective_total | |
0.000016 14857 linear_independent.disjoint_span_image | |
0.000017 14858 true_eq_false_of_false | |
0.000017 14859 set.is_compl_range_inl_range_inr | |
0.000017 14860 finsupp.lapply._proof_1 | |
0.000016 14861 finsupp.lapply._proof_2 | |
0.000017 14862 finsupp.lapply | |
0.000016 14863 finsupp.lapply_apply | |
0.000018 14864 linear_map.map_sum | |
0.000016 14865 linear_independent_iff' | |
0.000017 14866 submodule.disjoint_def' | |
0.000017 14867 sub_mul_action | |
0.000017 14868 sub_mul_action.carrier | |
0.000017 14869 sub_mul_action.cases_on | |
0.000017 14870 sub_mul_action.set_like._proof_1 | |
0.000017 14871 sub_mul_action.set_like | |
0.000016 14872 neg_one_smul | |
0.000017 14873 sub_mul_action.smul_mem' | |
0.000016 14874 sub_mul_action.smul_mem | |
0.000017 14875 sub_mul_action.neg_mem | |
0.000017 14876 submodule.to_sub_mul_action | |
0.000016 14877 submodule.neg_mem | |
0.000017 14878 sum.inl.inj_arrow | |
0.000017 14879 sum.inr.inj_arrow | |
0.000017 14880 sum.decidable_eq | |
0.000028 14881 finset.disjoint_filter | |
0.000020 14882 set.disjoint_left | |
0.000018 14883 finset.filter_or | |
0.000017 14884 set.mem_union | |
0.000018 14885 set.range_inl_union_range_inr | |
0.000017 14886 finset.filter_true | |
0.000017 14887 linear_independent_sum | |
0.000018 14888 linear_independent.sum_type | |
0.000017 14889 sum.exists | |
0.000015 14890 sum.elim_inl | |
0.000016 14891 sum.elim_inr | |
0.000017 14892 set.sum.elim_range | |
0.000017 14893 linear_independent.union | |
0.000016 14894 unique.forall_iff | |
0.000017 14895 finsupp.unique_single | |
0.000017 14896 finsupp.total_unique | |
0.000017 14897 division_ring.to_nontrivial | |
0.000016 14898 finsupp.unique_ext | |
0.000017 14899 linear_independent_unique_iff | |
0.000017 14900 linear_independent_unique | |
0.000017 14901 linear_independent_singleton | |
0.000016 14902 submodule.mem_span_singleton | |
0.000017 14903 sub_mul_action.smul_of_tower_mem | |
0.000017 14904 sub_mul_action.smul_mem_iff' | |
0.000017 14905 sub_mul_action.smul_mem_iff | |
0.000016 14906 submodule.smul_mem_iff | |
0.000017 14907 submodule.disjoint_span_singleton | |
0.000017 14908 submodule.disjoint_span_singleton' | |
0.000017 14909 linear_independent.insert | |
0.000017 14910 set.subset_insert | |
0.000017 14911 exists_linear_independent | |
0.000017 14912 exists_subset_is_basis | |
0.000017 14913 exists_is_basis | |
0.000017 14914 is_irrefl | |
0.000016 14915 is_strict_order | |
0.000017 14916 well_founded.dcases_on | |
0.000017 14917 rel_embedding.swap._proof_1 | |
0.000017 14918 rel_embedding.swap | |
0.000017 14919 is_trichotomous | |
0.000017 14920 is_asymm | |
0.000016 14921 is_trichotomous.trichotomous | |
0.000017 14922 trichotomous | |
0.000017 14923 is_irrefl.irrefl | |
0.000016 14924 irrefl | |
0.000017 14925 is_asymm.asymm | |
0.000017 14926 asymm | |
0.000017 14927 is_asymm.is_irrefl | |
0.274063 14928 rel_embedding.of_monotone._proof_1 | |
0.000075 14929 rel_embedding.of_monotone._proof_2 | |
0.000024 14930 rel_embedding.of_monotone | |
0.000015 14931 has_lt.lt.is_trichotomous | |
0.000014 14932 is_asymm_of_is_trans_of_is_irrefl | |
0.000015 14933 is_strict_order.to_is_trans | |
0.000014 14934 is_strict_order.to_is_irrefl | |
0.000014 14935 rel_embedding.nat_lt._proof_1 | |
0.000015 14936 rel_embedding.nat_lt._proof_2 | |
0.000014 14937 rel_embedding.nat_lt | |
0.000017 14938 irrefl_of | |
0.000017 14939 is_irrefl.swap | |
0.000018 14940 is_strict_order.swap | |
0.000017 14941 rel_embedding.nat_gt | |
0.000017 14942 nat.iterate._main | |
0.000015 14943 nat.iterate | |
0.000014 14944 function.iterate_succ | |
0.000017 14945 function.semiconj | |
0.000019 14946 function.semiconj.comp_eq | |
0.000015 14947 function.commute | |
0.000017 14948 function.semiconj.id_right | |
0.000017 14949 function.semiconj.eq | |
0.000015 14950 function.semiconj.comp_right | |
0.000014 14951 function.semiconj.iterate_right | |
0.000014 14952 function.commute.iterate_right | |
0.000014 14953 function.commute.refl | |
0.000016 14954 function.commute.self_iterate | |
0.000017 14955 function.iterate_succ' | |
0.000015 14956 rel_embedding.well_founded_iff_no_descending_seq | |
0.000014 14957 has_lt.lt.is_irrefl | |
0.000016 14958 gt.is_irrefl | |
0.000020 14959 has_lt.lt.is_trans | |
0.000015 14960 gt.is_trans | |
0.000016 14961 gt.is_strict_order | |
0.000017 14962 complete_lattice.is_compact_element | |
0.000017 14963 complete_lattice.is_Sup_finite_compact | |
0.000017 14964 complete_lattice.is_sup_closed_compact | |
0.000017 14965 well_founded.has_min | |
0.000017 14966 well_founded.well_founded_iff_has_min | |
0.000017 14967 well_founded.eq_iff_not_lt_of_le | |
0.000016 14968 well_founded.well_founded_iff_has_max' | |
0.000017 14969 finset.subset_insert | |
0.000017 14970 finset.sup_eq_Sup | |
0.000017 14971 is_least.mono | |
0.000017 14972 upper_bounds_mono_set | |
0.000017 14973 is_lub.mono | |
0.000017 14974 Sup_le_Sup | |
0.000017 14975 complete_lattice.well_founded.is_Sup_finite_compact | |
0.000016 14976 and_congr_left' | |
0.000017 14977 set.eq_singleton_iff_unique_mem | |
0.000017 14978 and_congr_left | |
0.000016 14979 set.eq_singleton_iff_nonempty_unique_mem | |
0.000017 14980 Sup_eq_bot | |
0.000017 14981 eq_singleton_bot_of_Sup_eq_bot_of_nonempty | |
0.000016 14982 finset.sup_of_mem | |
0.000017 14983 finset.sup'._match_1 | |
0.000017 14984 finset.sup' | |
0.000017 14985 finset.sup'.equations._eqn_1 | |
0.000017 14986 finset.coe_sup' | |
0.000017 14987 finset.sup'_le | |
0.000017 14988 finset.le_sup' | |
0.000016 14989 finset.sup'_eq_sup | |
0.000017 14990 with_bot.rec_bot_coe | |
0.000017 14991 finset.sup_induction | |
0.000017 14992 finset.sup'_induction | |
0.000017 14993 finset.sup_closed_of_sup_closed | |
0.000017 14994 complete_lattice.is_Sup_finite_compact.is_sup_closed_compact | |
0.000025 14995 rel_hom | |
0.000016 14996 rel_hom.to_fun | |
0.000014 14997 rel_hom.has_coe_to_fun | |
0.000017 14998 le_or_lt | |
0.000017 14999 strict_mono.monotone | |
0.000018 15000 rel_hom.map_rel' | |
0.000014 15001 rel_hom.map_rel | |
0.000017 15002 rel_hom.swap._proof_1 | |
0.000017 15003 rel_hom.swap | |
0.000015 15004 rel_hom.map_sup | |
0.000017 15005 rel_embedding.to_rel_hom._proof_1 | |
0.000017 15006 rel_embedding.to_rel_hom | |
0.000017 15007 complete_lattice.is_sup_closed_compact.well_founded | |
0.000017 15008 complete_lattice.is_Sup_finite_compact_iff_all_elements_compact | |
0.000017 15009 complete_lattice.well_founded_characterisations | |
0.000017 15010 is_noetherian.dcases_on | |
0.000017 15011 is_lub.supr_eq | |
0.000017 15012 galois_connection.l_supr | |
0.000017 15013 submodule.gi._proof_1 | |
0.000016 15014 submodule.gi._proof_2 | |
0.000017 15015 submodule.gi._proof_3 | |
0.000017 15016 submodule.gi | |
0.000017 15017 submodule.span_Union | |
0.000016 15018 set.bUnion_of_singleton | |
0.000017 15019 submodule.span_eq_supr_of_singleton_spans | |
0.000017 15020 finset.sup_le_of_le_directed | |
0.000017 15021 set.nonempty_of_mem | |
0.000016 15022 multiset.sup_singleton | |
0.000017 15023 finset.sup_singleton | |
0.000018 15024 complete_lattice.is_compact_element_iff_le_of_directed_Sup_le | |
0.000016 15025 finset.image_empty | |
0.000017 15026 finset.image_union | |
0.000017 15027 finset.image_singleton | |
0.000017 15028 finset.image_insert | |
0.000017 15029 finset.sup_finset_image | |
0.000016 15030 complete_lattice.finset_sup_compact_of_compact | |
0.000017 15031 Sup_eq_supr' | |
0.000017 15032 submodule.span_eq | |
0.000017 15033 submodule.coe_supr_of_directed | |
0.000016 15034 submodule.mem_supr_of_directed | |
0.000017 15035 submodule.mem_Sup_of_directed | |
0.000017 15036 submodule.mem_span_singleton_self | |
0.000016 15037 submodule.singleton_span_is_compact_element | |
0.000017 15038 infi_image | |
0.000017 15039 supr_image | |
0.000017 15040 finset.subset_image_iff | |
0.000017 15041 submodule.fg_iff_compact | |
0.000016 15042 is_noetherian_iff_well_founded | |
0.000017 15043 well_founded_submodule_gt | |
0.000015 15044 nat_embedding_aux._main._pack._wf_rec_mk_dec_tactic._aux_1 | |
0.000016 15045 _private.2924392639.nat_embedding_aux._main._pack | |
0.229819 15046 _private.2924392639.nat_embedding_aux._main | |
0.000076 15047 _private.2924392639.nat_embedding_aux | |
0.000024 15048 _private.2924392639.nat_embedding_aux._main._pack.equations._eqn_1 | |
0.000015 15049 _private.2924392639.nat_embedding_aux._main.equations._eqn_1 | |
0.000014 15050 _private.2924392639.nat_embedding_aux.equations._eqn_1 | |
0.000014 15051 _private.1108035719.nat_embedding_aux_injective | |
0.000015 15052 infinite.nat_embedding | |
0.000014 15053 submodule.has_add._proof_1 | |
0.000014 15054 submodule.has_add | |
0.000017 15055 add_submonoid.has_add._proof_1 | |
0.000017 15056 add_submonoid.has_add | |
0.000017 15057 add_submonoid.has_zero | |
0.000016 15058 add_submonoid.to_add_comm_monoid._proof_1 | |
0.000016 15059 add_submonoid.to_add_comm_monoid._proof_2 | |
0.000019 15060 add_submonoid.to_add_comm_monoid._proof_3 | |
0.000017 15061 add_submonoid.to_add_comm_monoid | |
0.000017 15062 submodule.add_comm_monoid._proof_1 | |
0.000015 15063 submodule.has_zero | |
0.000015 15064 submodule.add_comm_monoid._proof_2 | |
0.000016 15065 submodule.add_comm_monoid._proof_3 | |
0.000017 15066 submodule.add_comm_monoid._proof_4 | |
0.000017 15067 submodule.add_comm_monoid._proof_5 | |
0.000017 15068 submodule.add_comm_monoid._proof_6 | |
0.000017 15069 submodule.add_comm_monoid | |
0.000017 15070 submodule.smul_of_tower_mem | |
0.000017 15071 submodule.has_scalar._proof_1 | |
0.000017 15072 submodule.has_scalar | |
0.000017 15073 sub_mul_action.has_scalar'._proof_1 | |
0.000017 15074 sub_mul_action.has_scalar' | |
0.000017 15075 sub_mul_action.mul_action'._proof_1 | |
0.000017 15076 sub_mul_action.mul_action'._proof_2 | |
0.000017 15077 sub_mul_action.mul_action' | |
0.000017 15078 submodule.semimodule'._proof_1 | |
0.000017 15079 submodule.semimodule'._proof_2 | |
0.000017 15080 set_coe.ext | |
0.000017 15081 submodule.coe_smul_of_tower | |
0.000017 15082 submodule.coe_add | |
0.000017 15083 submodule.semimodule'._proof_3 | |
0.000017 15084 submodule.coe_zero | |
0.000017 15085 submodule.semimodule'._proof_4 | |
0.000016 15086 submodule.semimodule'._proof_5 | |
0.000017 15087 submodule.semimodule'._proof_6 | |
0.000017 15088 submodule.semimodule' | |
0.000017 15089 submodule.semimodule._proof_1 | |
0.000017 15090 submodule.semimodule | |
0.000017 15091 linear_map.range | |
0.000017 15092 submodule.coe_mk | |
0.000016 15093 linear_map.cod_restrict._proof_1 | |
0.000017 15094 linear_map.cod_restrict._proof_2 | |
0.000017 15095 linear_map.cod_restrict | |
0.000017 15096 linear_map.range_coe | |
0.000017 15097 linear_map.mem_range | |
0.000017 15098 linear_map.mem_range_self | |
0.000017 15099 linear_map.range_restrict | |
0.000017 15100 linear_equiv.of_left_inverse._proof_1 | |
0.000016 15101 linear_equiv.of_left_inverse._proof_2 | |
0.000017 15102 submodule.inhabited | |
0.000018 15103 submodule.subtype._proof_1 | |
0.000016 15104 submodule.coe_smul | |
0.000017 15105 submodule.subtype._proof_2 | |
0.000017 15106 submodule.subtype | |
0.000017 15107 linear_equiv.of_left_inverse._match_1 | |
0.000016 15108 linear_equiv.of_left_inverse._proof_3 | |
0.000017 15109 linear_equiv.of_left_inverse | |
0.000017 15110 function.has_left_inverse | |
0.000017 15111 function.injective.has_left_inverse | |
0.000017 15112 add_subgroup.sub_mem | |
0.000017 15113 submodule.to_add_subgroup._proof_1 | |
0.000017 15114 submodule.to_add_subgroup._proof_2 | |
0.000017 15115 submodule.to_add_subgroup._proof_3 | |
0.000017 15116 submodule.to_add_subgroup | |
0.000017 15117 submodule.sub_mem | |
0.000016 15118 linear_map.disjoint_ker' | |
0.000018 15119 linear_map.ker_eq_bot | |
0.000017 15120 linear_equiv.of_injective._proof_1 | |
0.000017 15121 linear_equiv.of_injective._proof_2 | |
0.000025 15122 linear_equiv.of_injective | |
0.000017 15123 linear_equiv.of_top._proof_1 | |
0.000015 15124 linear_equiv.of_top._proof_2 | |
0.000014 15125 linear_equiv.of_top._proof_3 | |
0.000017 15126 linear_equiv.of_top._match_1 | |
0.000017 15127 linear_equiv.of_top._proof_4 | |
0.000015 15128 linear_equiv.of_top._proof_5 | |
0.000014 15129 linear_equiv.of_top | |
0.000016 15130 linear_equiv.of_bijective | |
0.000017 15131 add_subgroup.has_add | |
0.000017 15132 add_subgroup.has_zero | |
0.000017 15133 add_subgroup.has_neg._proof_1 | |
0.000017 15134 add_subgroup.has_neg | |
0.000016 15135 add_subgroup.has_sub._proof_1 | |
0.000017 15136 add_subgroup.has_sub | |
0.000018 15137 add_subgroup.to_add_comm_group._proof_1 | |
0.000017 15138 add_subgroup.to_add_comm_group._proof_2 | |
0.000016 15139 add_subgroup.to_add_comm_group._proof_3 | |
0.000017 15140 add_subgroup.to_add_comm_group._proof_4 | |
0.000017 15141 add_subgroup.to_add_comm_group._proof_5 | |
0.000017 15142 add_subgroup.to_add_comm_group | |
0.000017 15143 submodule.add_comm_group._proof_1 | |
0.000016 15144 submodule.add_comm_group._proof_2 | |
0.000017 15145 submodule.add_comm_group._proof_3 | |
0.000017 15146 submodule.add_comm_group._proof_4 | |
0.000017 15147 submodule.add_comm_group._proof_5 | |
0.000017 15148 submodule.has_neg._proof_1 | |
0.000017 15149 submodule.has_neg | |
0.516296 15150 submodule.add_comm_group._proof_6 | |
0.000076 15151 submodule.add_comm_group._proof_7 | |
0.000026 15152 submodule.add_comm_group._proof_8 | |
0.000015 15153 submodule.add_comm_group | |
0.000014 15154 finsupp.range_total | |
0.000015 15155 linear_independent.total_equiv._proof_1 | |
0.000014 15156 linear_map.ker.equations._eqn_1 | |
0.000014 15157 linear_map.comap_cod_restrict | |
0.000014 15158 submodule.gc_map_comap | |
0.000019 15159 submodule.map_bot | |
0.000017 15160 linear_map.ker_cod_restrict | |
0.000015 15161 linear_independent.total_equiv._proof_2 | |
0.000018 15162 linear_map.range.equations._eqn_1 | |
0.000015 15163 linear_map.cod_restrict_apply | |
0.000014 15164 submodule.mem_comap | |
0.000017 15165 submodule.subtype_apply | |
0.000017 15166 linear_map.map_cod_restrict | |
0.000015 15167 linear_map.range_le_iff_comap | |
0.000014 15168 submodule.comap_top | |
0.000017 15169 submodule.map_top | |
0.000019 15170 submodule.map_comap_subtype | |
0.000017 15171 submodule.range_subtype | |
0.000017 15172 linear_independent.total_equiv._proof_3 | |
0.000017 15173 linear_independent.total_equiv | |
0.000014 15174 linear_independent.repr | |
0.000014 15175 finsupp.single_of_emb_domain_single | |
0.000018 15176 finsupp.total_emb_domain | |
0.000015 15177 finsupp.total_map_domain | |
0.000016 15178 linear_independent.total_repr | |
0.000017 15179 surjective_of_linear_independent_of_span | |
0.000017 15180 subtype.mem | |
0.000017 15181 eq_of_linear_independent_of_span_subtype | |
0.000017 15182 le_of_span_le_span | |
0.000016 15183 submodule.span_mono | |
0.000017 15184 span_le_span_iff | |
0.000017 15185 set.image_subset_image_iff | |
0.000017 15186 finite_of_linear_independent | |
0.000016 15187 finite_dimensional.exists_is_basis_finite | |
0.000017 15188 finite_dimensional.exists_is_basis_finset | |
0.000017 15189 cardinal.is_equivalent._match_1 | |
0.000017 15190 cardinal.is_equivalent._match_2 | |
0.000017 15191 cardinal.is_equivalent._match_3 | |
0.000017 15192 cardinal.is_equivalent._proof_1 | |
0.000017 15193 cardinal.is_equivalent | |
0.000017 15194 cardinal | |
0.000017 15195 function.embedding.trans._proof_1 | |
0.000016 15196 function.embedding.trans | |
0.000017 15197 function.embedding.congr | |
0.000017 15198 cardinal.has_le._match_1 | |
0.000017 15199 cardinal.has_le._match_2 | |
0.000017 15200 cardinal.has_le._match_3 | |
0.000016 15201 cardinal.has_le._match_4 | |
0.000017 15202 cardinal.has_le._proof_1 | |
0.000017 15203 cardinal.has_le | |
0.000017 15204 function.injective_id | |
0.000017 15205 function.embedding.refl | |
0.000016 15206 cardinal.linear_order._proof_1 | |
0.000017 15207 cardinal.linear_order._proof_2 | |
0.000017 15208 cardinal.linear_order._proof_3 | |
0.000017 15209 lfp | |
0.000016 15210 or_eq_of_eq_false_left | |
0.000017 15211 and_eq_of_eq_false_left | |
0.000017 15212 and_eq_of_eq_false_right | |
0.000017 15213 set.image_union | |
0.000016 15214 lfp_le | |
0.000017 15215 le_lfp | |
0.000017 15216 lfp_eq | |
0.000017 15217 function.embedding.schroeder_bernstein | |
0.000015 15218 function.embedding.antisymm | |
0.000014 15219 cardinal.linear_order._proof_4 | |
0.000014 15220 ulift | |
0.000017 15221 ulift.down | |
0.000017 15222 ulift.cases_on | |
0.000016 15223 ulift.up_down | |
0.000018 15224 equiv.ulift._proof_1 | |
0.000016 15225 equiv.ulift | |
0.000017 15226 _private.3580800523.sets | |
0.000017 15227 zorn.chain.total | |
0.000017 15228 function.embedding.min_injective | |
0.000017 15229 function.embedding.total | |
0.000017 15230 cardinal.linear_order._proof_5 | |
0.000017 15231 cardinal.linear_order._proof_6 | |
0.000017 15232 cardinal.linear_order._proof_7 | |
0.000016 15233 cardinal.linear_order._proof_8 | |
0.000017 15234 cardinal.linear_order._proof_9 | |
0.000017 15235 cardinal.linear_order | |
0.000017 15236 quot.out | |
0.000017 15237 quotient.out | |
0.000017 15238 cardinal.min._proof_1 | |
0.000017 15239 cardinal.min | |
0.000016 15240 vector_space.dim._proof_1 | |
0.000017 15241 cardinal.mk | |
0.000017 15242 vector_space.dim | |
0.000017 15243 cardinal.lift._match_1 | |
0.000016 15244 cardinal.lift._proof_1 | |
0.000016 15245 cardinal.lift | |
0.000017 15246 cardinal.omega | |
0.000017 15247 cardinal.lift_id' | |
0.000017 15248 cardinal.lift_id | |
0.000016 15249 cardinal.min_eq | |
0.000017 15250 cardinal.mk_range_eq | |
0.000017 15251 is_basis.injective | |
0.000016 15252 sum.map._main | |
0.000017 15253 sum.map | |
0.000017 15254 sum.map_map | |
0.000017 15255 sum.map_id_id | |
0.000016 15256 equiv.sum_congr._proof_1 | |
0.000017 15257 equiv.sum_congr._proof_2 | |
0.000017 15258 equiv.sum_congr | |
0.000017 15259 cardinal.has_add._match_1 | |
0.000017 15260 cardinal.has_add._match_2 | |
0.000016 15261 cardinal.has_add._proof_1 | |
0.000017 15262 cardinal.has_add | |
0.000017 15263 equiv.sum_assoc._proof_1 | |
0.000017 15264 equiv.sum_assoc._proof_2 | |
0.000017 15265 equiv.sum_assoc | |
0.000017 15266 cardinal.comm_semiring._proof_1 | |
0.000017 15267 pempty | |
0.000017 15268 cardinal.has_zero | |
0.000017 15269 sum.swap._main | |
0.000017 15270 sum.swap | |
0.000017 15271 sum.swap_swap | |
0.000017 15272 equiv.sum_comm | |
0.000017 15273 pempty.cases_on | |
0.000017 15274 equiv.sum_pempty._proof_1 | |
0.000017 15275 equiv.sum_pempty._proof_2 | |
0.000017 15276 equiv.sum_pempty | |
0.000017 15277 equiv.pempty_sum | |
0.104474 15278 _private.3230180353.zero_add | |
0.000074 15279 _private.1698148731.add_comm | |
0.000025 15280 cardinal.comm_semiring._proof_2 | |
0.000016 15281 add_comm_monoid.nsmul._default | |
0.000014 15282 semiring.nsmul._default | |
0.000014 15283 cardinal.comm_semiring._proof_3 | |
0.000014 15284 cardinal.comm_semiring._proof_4 | |
0.000014 15285 cardinal.comm_semiring._proof_5 | |
0.000014 15286 prod.map_mk | |
0.000019 15287 equiv.prod_congr._match_1 | |
0.000017 15288 equiv.prod_congr._proof_1 | |
0.000017 15289 equiv.prod_congr._match_2 | |
0.000015 15290 equiv.prod_congr._proof_2 | |
0.000017 15291 equiv.prod_congr | |
0.000015 15292 cardinal.has_mul._match_1 | |
0.000015 15293 cardinal.has_mul._match_2 | |
0.000016 15294 cardinal.has_mul._proof_1 | |
0.000017 15295 cardinal.has_mul | |
0.000016 15296 equiv.prod_assoc._match_1 | |
0.000015 15297 equiv.prod_assoc._proof_1 | |
0.000015 15298 equiv.prod_assoc._match_2 | |
0.000014 15299 equiv.prod_assoc._proof_2 | |
0.000014 15300 equiv.prod_assoc | |
0.000017 15301 cardinal.comm_semiring._proof_6 | |
0.000017 15302 cardinal.has_one | |
0.000017 15303 equiv.prod_comm._match_1 | |
0.000016 15304 equiv.prod_comm._proof_1 | |
0.000017 15305 equiv.prod_comm._match_2 | |
0.000017 15306 equiv.prod_comm._proof_2 | |
0.000016 15307 equiv.prod_comm | |
0.000017 15308 equiv.prod_punit._match_1 | |
0.000017 15309 equiv.prod_punit._proof_1 | |
0.000017 15310 equiv.prod_punit._proof_2 | |
0.000017 15311 equiv.prod_punit | |
0.000023 15312 equiv.punit_prod | |
0.000019 15313 _private.3967702453.one_mul | |
0.000017 15314 _private.2839425443.mul_comm | |
0.000018 15315 cardinal.comm_semiring._proof_7 | |
0.000017 15316 cardinal.comm_semiring._proof_8 | |
0.000017 15317 cardinal.comm_semiring._proof_9 | |
0.000017 15318 cardinal.comm_semiring._proof_10 | |
0.000017 15319 equiv.equiv_pempty._proof_1 | |
0.000015 15320 equiv.equiv_pempty._proof_2 | |
0.000014 15321 equiv.equiv_pempty | |
0.000017 15322 equiv.pempty_prod._match_1 | |
0.000017 15323 equiv.pempty_prod._proof_1 | |
0.000017 15324 equiv.pempty_prod | |
0.000016 15325 _private.3410667467.zero_mul | |
0.000017 15326 cardinal.comm_semiring._proof_11 | |
0.000017 15327 equiv.sum_prod_distrib._match_1 | |
0.000017 15328 equiv.sum_prod_distrib._match_2 | |
0.000017 15329 equiv.sum_prod_distrib._proof_1 | |
0.000017 15330 equiv.sum_prod_distrib._proof_2 | |
0.000017 15331 equiv.sum_prod_distrib | |
0.000017 15332 equiv.prod_sum_distrib | |
0.000017 15333 _private.592668001.left_distrib | |
0.000017 15334 cardinal.comm_semiring._proof_12 | |
0.000017 15335 cardinal.comm_semiring | |
0.000017 15336 function.embedding.of_not_nonempty._proof_1 | |
0.000017 15337 function.embedding.of_not_nonempty._proof_2 | |
0.000017 15338 function.embedding.of_not_nonempty | |
0.000017 15339 pempty.elim._main | |
0.000017 15340 pempty.elim | |
0.000017 15341 cardinal.zero_le | |
0.000017 15342 cardinal.order_bot | |
0.000017 15343 function.embedding.sum_map._match_1 | |
0.000017 15344 function.embedding.sum_map._proof_1 | |
0.000017 15345 function.embedding.sum_map | |
0.000017 15346 cardinal.add_le_add | |
0.000018 15347 cardinal.add_le_add_left | |
0.000017 15348 cardinal.canonically_ordered_comm_semiring._proof_1 | |
0.000017 15349 cardinal.canonically_ordered_comm_semiring._proof_2 | |
0.000017 15350 equiv.set.union'._proof_1 | |
0.000017 15351 equiv.set.union'._proof_2 | |
0.000017 15352 equiv.set.union'._match_1 | |
0.000017 15353 equiv.set.union'._match_1._proof_1 | |
0.000017 15354 equiv.set.union'._match_1.equations._eqn_1 | |
0.000017 15355 equiv.set.union'._match_1._proof_2 | |
0.000016 15356 equiv.set.union'._match_1.equations._eqn_2 | |
0.000018 15357 equiv.set.union'._match_2 | |
0.000017 15358 equiv.set.union'._proof_3 | |
0.000017 15359 equiv.set.union'._proof_4 | |
0.000017 15360 equiv.set.union' | |
0.000017 15361 equiv.set.union._proof_1 | |
0.000017 15362 equiv.set.union._proof_2 | |
0.000017 15363 equiv.set.union | |
0.000017 15364 equiv.set.sum_compl._proof_1 | |
0.000016 15365 equiv.set.of_eq._proof_1 | |
0.000017 15366 equiv.set.of_eq._proof_2 | |
0.000017 15367 equiv.set.of_eq._proof_3 | |
0.000017 15368 equiv.set.of_eq._proof_4 | |
0.000017 15369 equiv.set.of_eq | |
0.000017 15370 equiv.set.sum_compl._proof_2 | |
0.000017 15371 equiv.set.sum_compl | |
0.000017 15372 cardinal.le_iff_exists_add | |
0.000017 15373 empty | |
0.000017 15374 equiv.equiv_empty._proof_1 | |
0.000017 15375 equiv.equiv_empty._proof_2 | |
0.000016 15376 equiv.equiv_empty | |
0.000017 15377 equiv.empty_of_not_nonempty._proof_1 | |
0.000017 15378 equiv.empty_of_not_nonempty | |
0.000017 15379 equiv.empty_equiv_pempty._proof_1 | |
0.000017 15380 equiv.empty_equiv_pempty | |
0.000017 15381 cardinal.ne_zero_iff_nonempty | |
0.000017 15382 cardinal.eq_zero_or_eq_zero_of_mul_eq_zero | |
0.000017 15383 cardinal.canonically_ordered_comm_semiring | |
0.000016 15384 cardinal.lift_umax | |
0.000017 15385 cardinal.lift_mk_le | |
0.000017 15386 cardinal.lift_le | |
0.000017 15387 cardinal.lift_inj | |
0.000017 15388 cardinal.lift_lift | |
0.000017 15389 cardinal.lift_max | |
0.000017 15390 cardinal.lift_mk_eq | |
0.000017 15391 cardinal.mk_range_eq_of_injective | |
0.200435 15392 is_basis.repr._proof_1 | |
0.000073 15393 submodule.eq_top_iff' | |
0.000024 15394 is_basis.mem_span | |
0.000015 15395 is_basis.repr | |
0.000014 15396 cardinal.sum | |
0.000014 15397 function.embedding.of_surjective | |
0.000016 15398 cardinal.mk_le_of_surjective | |
0.000014 15399 set.sigma_to_Union._proof_1 | |
0.000014 15400 set.sigma_to_Union | |
0.000017 15401 set.sigma_to_Union_surjective | |
0.000017 15402 equiv.sigma_congr_right._match_1 | |
0.000017 15403 equiv.sigma_congr_right._proof_1 | |
0.000016 15404 equiv.sigma_congr_right._match_2 | |
0.000015 15405 equiv.sigma_congr_right._proof_2 | |
0.000014 15406 equiv.sigma_congr_right | |
0.000019 15407 quot.out_eq | |
0.000018 15408 cardinal.sum_mk | |
0.000017 15409 cardinal.mk_Union_le_sum_mk | |
0.000015 15410 sigma.map | |
0.000014 15411 function.injective.sigma_map | |
0.000015 15412 function.embedding.sigma_map._proof_1 | |
0.000014 15413 function.embedding.sigma_map | |
0.000016 15414 cardinal.sum_le_sum | |
0.000017 15415 cardinal.lift_lt | |
0.000015 15416 function.embedding.equiv_of_surjective._proof_1 | |
0.000014 15417 function.embedding.equiv_of_surjective | |
0.000017 15418 function.embedding.cod_restrict._proof_1 | |
0.000015 15419 function.embedding.cod_restrict | |
0.000017 15420 cardinal.lift_down | |
0.000016 15421 cardinal.lt_lift_iff | |
0.000017 15422 cardinal.le_mk_iff_exists_set | |
0.000017 15423 equiv.pempty_equiv_pempty | |
0.000017 15424 cardinal.lift_zero | |
0.000017 15425 cardinal.lift_add | |
0.000016 15426 equiv.punit_equiv_punit._proof_1 | |
0.000017 15427 equiv.punit_equiv_punit._proof_2 | |
0.000017 15428 equiv.punit_equiv_punit | |
0.000017 15429 cardinal.lift_one | |
0.000016 15430 cardinal.lift_nat_cast | |
0.000017 15431 equiv.pempty_of_not_nonempty._proof_1 | |
0.000017 15432 equiv.pempty_of_not_nonempty | |
0.000017 15433 sigma.fintype._match_1 | |
0.000017 15434 sigma.fintype._proof_1 | |
0.000016 15435 sigma.fintype | |
0.000017 15436 ulift.fintype | |
0.000017 15437 equiv.sum_equiv_sigma_bool._match_1 | |
0.000017 15438 equiv.sum_equiv_sigma_bool._proof_1 | |
0.000016 15439 equiv.sum_equiv_sigma_bool._proof_2 | |
0.000017 15440 equiv.sum_equiv_sigma_bool | |
0.000017 15441 sum.fintype | |
0.000017 15442 punit.fintype | |
0.000017 15443 trunc.out | |
0.000017 15444 fintype.equiv_fin._proof_1 | |
0.000017 15445 fintype.equiv_fin._proof_2 | |
0.000017 15446 fintype.equiv_fin_of_forall_mem_list._proof_1 | |
0.000017 15447 fintype.equiv_fin_of_forall_mem_list._proof_2 | |
0.000017 15448 fintype.equiv_fin_of_forall_mem_list._proof_3 | |
0.000017 15449 list.nth_le_of_mem | |
0.000016 15450 list.pairwise_iff_nth_le | |
0.000017 15451 list.nodup_iff_nth_le_inj | |
0.000017 15452 fintype.equiv_fin_of_forall_mem_list._match_1 | |
0.000017 15453 fintype.equiv_fin_of_forall_mem_list._proof_4 | |
0.000017 15454 fintype.equiv_fin_of_forall_mem_list | |
0.000017 15455 fintype.equiv_fin._proof_3 | |
0.000017 15456 fintype.equiv_fin | |
0.000017 15457 fintype.card_eq | |
0.000016 15458 multiset.sum_zero | |
0.000017 15459 multiset.card_join | |
0.000017 15460 multiset.card_bind | |
0.000017 15461 multiset.card_sigma | |
0.000017 15462 finset.card_sigma | |
0.000017 15463 fintype.card_sigma | |
0.000017 15464 fintype.card_sum | |
0.000017 15465 fintype.card_punit | |
0.000017 15466 cardinal.mk_fin | |
0.000017 15467 cardinal.lift_mk_fin | |
0.000017 15468 cardinal.fintype_card | |
0.000017 15469 equiv.arrow_congr._proof_1 | |
0.000017 15470 equiv.arrow_congr._proof_2 | |
0.000017 15471 equiv.arrow_congr | |
0.000017 15472 cardinal.power._match_1 | |
0.000016 15473 cardinal.power._match_2 | |
0.000017 15474 cardinal.power._proof_1 | |
0.000017 15475 cardinal.power | |
0.000016 15476 cardinal.has_pow | |
0.000017 15477 equiv.Prop_equiv_bool._proof_1 | |
0.000017 15478 bool.to_bool_coe | |
0.000017 15479 equiv.Prop_equiv_bool._proof_2 | |
0.000017 15480 equiv.Prop_equiv_bool | |
0.000017 15481 cardinal.prop_eq_two | |
0.000016 15482 ulift.no_confusion_type | |
0.000017 15483 ulift.no_confusion | |
0.000017 15484 ulift.up.inj | |
0.000017 15485 iff_not_self | |
0.000017 15486 function.cantor_surjective | |
0.000017 15487 function.cantor_injective | |
0.000017 15488 ulift.up.inj_arrow | |
0.000017 15489 cardinal.cantor | |
0.000017 15490 cardinal.succ._proof_1 | |
0.000017 15491 cardinal.succ | |
0.000017 15492 cardinal.succ.equations._eqn_1 | |
0.000016 15493 cardinal.lt_succ_self | |
0.000017 15494 quotient.out_eq | |
0.000017 15495 cardinal.mk_out | |
0.000017 15496 cardinal.min_le | |
0.000017 15497 cardinal.succ_le | |
0.000017 15498 cardinal.add_one_le_succ | |
0.000017 15499 finset.card_le_of_subset | |
0.000017 15500 finset.card_le_card_of_inj_on | |
0.000016 15501 fintype.card_le_of_injective | |
0.000018 15502 cardinal.nat_cast_le | |
0.000016 15503 cardinal.nat_cast_lt | |
0.000017 15504 cardinal.nat_succ | |
0.000017 15505 cardinal.omega.equations._eqn_1 | |
0.000017 15506 cardinal.nat_lt_omega | |
0.000017 15507 cardinal.lt_omega | |
0.000015 15508 cardinal.lt_omega_iff_fintype | |
0.000016 15509 cardinal.lt_omega_iff_finite | |
0.000017 15510 cardinal.mk_def | |
0.000017 15511 cardinal.mul_def | |
0.000017 15512 cardinal.sum_const | |
0.000016 15513 cardinal.wf | |
0.000017 15514 is_strict_total_order' | |
0.000017 15515 is_well_order | |
0.083757 15516 Well_order | |
0.000065 15517 Well_order.cases_on | |
0.000020 15518 ordinal.is_equivalent._match_1 | |
0.000015 15519 ordinal.is_equivalent._match_2 | |
0.000014 15520 rel_iso.refl._proof_1 | |
0.000015 15521 rel_iso.refl | |
0.000014 15522 ordinal.is_equivalent._match_3 | |
0.000014 15523 ordinal.is_equivalent._match_4 | |
0.000014 15524 ordinal.is_equivalent._match_5 | |
0.000018 15525 ordinal.is_equivalent._match_6 | |
0.000018 15526 ordinal.is_equivalent._match_7 | |
0.000015 15527 ordinal.is_equivalent._match_8 | |
0.000014 15528 ordinal.is_equivalent._match_9 | |
0.000014 15529 ordinal.is_equivalent._match_10 | |
0.000014 15530 ordinal.is_equivalent._match_11 | |
0.000017 15531 ordinal.is_equivalent._proof_1 | |
0.000016 15532 ordinal.is_equivalent | |
0.000017 15533 ordinal | |
0.000016 15534 well_founded.min | |
0.000015 15535 principal_seg | |
0.000025 15536 ordinal.lt._match_1 | |
0.000019 15537 ordinal.lt._match_2 | |
0.000017 15538 function.embedding.trans_apply | |
0.000017 15539 rel_embedding.trans._proof_1 | |
0.000018 15540 rel_embedding.trans | |
0.000017 15541 principal_seg.to_rel_embedding | |
0.000016 15542 principal_seg.rel_embedding.has_coe | |
0.000017 15543 principal_seg.top | |
0.000017 15544 principal_seg.has_coe_to_fun | |
0.000017 15545 principal_seg.down | |
0.000017 15546 principal_seg.coe_fn_to_rel_embedding | |
0.000017 15547 rel_embedding.coe_trans | |
0.000017 15548 principal_seg.coe_coe_fn | |
0.000017 15549 rel_iso.coe_coe_fn | |
0.000017 15550 rel_iso.apply_symm_apply | |
0.000016 15551 principal_seg.equiv_lt._match_1 | |
0.000017 15552 principal_seg.equiv_lt._match_2 | |
0.000017 15553 principal_seg.equiv_lt._proof_1 | |
0.000017 15554 principal_seg.equiv_lt | |
0.000016 15555 initial_seg | |
0.000017 15556 initial_seg.to_rel_embedding | |
0.000017 15557 initial_seg.rel_embedding.has_coe | |
0.000017 15558 initial_seg.has_coe_to_fun | |
0.000017 15559 initial_seg.init | |
0.000017 15560 initial_seg.init' | |
0.000017 15561 initial_seg.init_iff | |
0.000017 15562 principal_seg.down' | |
0.000017 15563 rel_embedding.trans_apply | |
0.000016 15564 principal_seg.lt_le._proof_1 | |
0.000017 15565 principal_seg.lt_le | |
0.000017 15566 initial_seg.of_iso._proof_1 | |
0.000017 15567 initial_seg.of_iso | |
0.000017 15568 ordinal.lt._match_3 | |
0.000017 15569 ordinal.lt._match_4 | |
0.000016 15570 ordinal.lt._match_5 | |
0.000017 15571 ordinal.lt._match_6 | |
0.000017 15572 ordinal.lt._match_7 | |
0.000017 15573 ordinal.lt._match_8 | |
0.000017 15574 ordinal.lt._match_9 | |
0.000017 15575 ordinal.lt._match_10 | |
0.000017 15576 ordinal.lt._proof_1 | |
0.000016 15577 ordinal.lt | |
0.000017 15578 ordinal.has_lt | |
0.000017 15579 ordinal.type | |
0.000017 15580 ordinal.induction_on | |
0.000016 15581 subrel | |
0.000017 15582 is_strict_total_order'.to_is_trichotomous | |
0.000018 15583 is_trichotomous.dcases_on | |
0.000017 15584 rel_embedding.is_trichotomous | |
0.000017 15585 rel_embedding.is_irrefl | |
0.000017 15586 rel_embedding.is_strict_order | |
0.000017 15587 is_strict_total_order'.to_is_strict_order | |
0.000016 15588 rel_embedding.is_strict_total_order' | |
0.000018 15589 is_well_order.to_is_strict_total_order' | |
0.000017 15590 rel_embedding.acc | |
0.000016 15591 rel_embedding.well_founded | |
0.000017 15592 is_well_order.wf | |
0.000017 15593 rel_embedding.is_well_order | |
0.000017 15594 subrel.rel_embedding._proof_1 | |
0.000017 15595 subrel.rel_embedding | |
0.000017 15596 subrel.is_well_order | |
0.000017 15597 ordinal.typein._proof_1 | |
0.000017 15598 ordinal.typein | |
0.000016 15599 rel_iso.of_surjective._proof_1 | |
0.000017 15600 rel_iso.of_surjective._proof_2 | |
0.000017 15601 rel_iso.of_surjective | |
0.000016 15602 rel_embedding.cod_restrict | |
0.000017 15603 principal_seg.lt_top | |
0.000017 15604 ordinal.typein_top | |
0.000015 15605 ordinal.typein_surj | |
0.000015 15606 ordinal.le._match_1 | |
0.000017 15607 ordinal.le._match_2 | |
0.000017 15608 initial_seg.coe_fn_to_rel_embedding | |
0.000017 15609 initial_seg.trans._proof_1 | |
0.000016 15610 initial_seg.trans | |
0.000017 15611 ordinal.le._match_3 | |
0.000017 15612 ordinal.le._match_4 | |
0.000016 15613 ordinal.le._match_5 | |
0.000017 15614 ordinal.le._match_6 | |
0.000017 15615 ordinal.le._match_7 | |
0.000017 15616 ordinal.le._match_8 | |
0.000016 15617 ordinal.le._match_9 | |
0.000017 15618 ordinal.le._match_10 | |
0.000017 15619 ordinal.le._proof_1 | |
0.000017 15620 ordinal.le | |
0.000016 15621 ordinal.has_le | |
0.000017 15622 rel_embedding.refl._proof_1 | |
0.000017 15623 rel_embedding.refl | |
0.000017 15624 initial_seg.refl._proof_1 | |
0.000017 15625 initial_seg.refl | |
0.000017 15626 ordinal.partial_order._match_1 | |
0.000017 15627 ordinal.partial_order._proof_1 | |
0.000016 15628 ordinal.partial_order._match_2 | |
0.000018 15629 ordinal.partial_order._match_3 | |
0.000017 15630 ordinal.partial_order._match_4 | |
0.000016 15631 ordinal.partial_order._match_5 | |
0.000017 15632 ordinal.partial_order._match_6 | |
0.000017 15633 ordinal.partial_order._proof_2 | |
0.000016 15634 principal_seg.init | |
0.000017 15635 principal_seg.has_coe_initial_seg._proof_1 | |
0.000017 15636 principal_seg.has_coe_initial_seg | |
0.000017 15637 is_well_order.is_trans | |
0.165358 15638 is_well_order.is_irrefl | |
0.000074 15639 is_extensional | |
0.000024 15640 initial_seg.cases_on | |
0.000014 15641 is_extensional.ext | |
0.000015 15642 initial_seg.unique_of_extensional | |
0.000014 15643 is_extensional_of_is_strict_total_order' | |
0.000014 15644 is_well_order.is_extensional | |
0.000014 15645 initial_seg.subsingleton | |
0.000014 15646 initial_seg.eq | |
0.000019 15647 principal_seg.irrefl | |
0.000017 15648 ordinal.partial_order._match_7 | |
0.000017 15649 ordinal.partial_order._match_8 | |
0.000015 15650 initial_seg.lt_or_eq._proof_1 | |
0.000016 15651 is_well_order.is_trichotomous | |
0.000015 15652 initial_seg.eq_or_principal | |
0.000015 15653 initial_seg.lt_or_eq._proof_2 | |
0.000016 15654 initial_seg.lt_or_eq | |
0.000017 15655 ordinal.partial_order._match_9 | |
0.000015 15656 ordinal.partial_order._match_10 | |
0.000015 15657 ordinal.partial_order._match_11 | |
0.000014 15658 ordinal.partial_order._proof_3 | |
0.000014 15659 initial_seg.antisymm.aux | |
0.000017 15660 initial_seg.antisymm._proof_1 | |
0.000017 15661 initial_seg.antisymm._proof_2 | |
0.000017 15662 initial_seg.antisymm | |
0.000016 15663 ordinal.partial_order._match_12 | |
0.000017 15664 ordinal.partial_order._match_13 | |
0.000017 15665 ordinal.partial_order._match_14 | |
0.000017 15666 ordinal.partial_order._match_15 | |
0.000017 15667 ordinal.partial_order._proof_4 | |
0.000016 15668 ordinal.partial_order | |
0.000017 15669 principal_seg.of_element._match_1 | |
0.000017 15670 principal_seg.of_element._proof_1 | |
0.000017 15671 principal_seg.of_element | |
0.000017 15672 ordinal.typein_lt_type | |
0.000017 15673 principal_seg.trans | |
0.000017 15674 principal_seg.cases_on | |
0.000017 15675 principal_seg.subsingleton | |
0.000017 15676 principal_seg.cod_restrict._match_1 | |
0.000016 15677 principal_seg.cod_restrict._proof_1 | |
0.000017 15678 principal_seg.cod_restrict | |
0.000017 15679 ordinal.typein_lt_typein | |
0.000017 15680 ordinal.wf | |
0.000016 15681 ordinal.min._match_1 | |
0.000017 15682 ordinal.min | |
0.000017 15683 cardinal.nontrivial | |
0.000017 15684 cardinal.le_sum | |
0.000017 15685 nonempty_embedding_to_cardinal | |
0.000016 15686 embedding_to_cardinal | |
0.000017 15687 well_ordering_rel | |
0.000018 15688 has_lt.lt.is_strict_total_order' | |
0.000017 15689 cardinal.wo | |
0.000017 15690 well_ordering_rel.is_well_order | |
0.000038 15691 cardinal.ord._proof_1 | |
0.000019 15692 cardinal.ord._proof_2 | |
0.000018 15693 sum.lex | |
0.000017 15694 sum.lex.dcases_on | |
0.000017 15695 sum.lex_inl_inl | |
0.000017 15696 sum.lex_inr_inl | |
0.000015 15697 sum.lex_inr_inr | |
0.000018 15698 sum.lex_acc_inr | |
0.000017 15699 sum.lex_acc_inl | |
0.000017 15700 sum.lex_wf | |
0.000015 15701 sum.lex.is_well_order | |
0.000014 15702 ordinal.has_add._match_3 | |
0.000016 15703 ordinal.has_add._match_4 | |
0.000017 15704 rel_iso.cases_on | |
0.000017 15705 equiv.sum_congr_apply | |
0.000017 15706 sum.map_inl | |
0.000017 15707 sum.map_inr | |
0.000016 15708 rel_iso.sum_lex_congr._proof_1 | |
0.000017 15709 rel_iso.sum_lex_congr | |
0.000017 15710 ordinal.has_add._match_5 | |
0.000017 15711 ordinal.has_add._match_6 | |
0.000017 15712 ordinal.has_add._match_7 | |
0.000017 15713 ordinal.has_add._match_8 | |
0.000017 15714 ordinal.has_add._match_9 | |
0.000017 15715 ordinal.has_add._match_10 | |
0.000017 15716 ordinal.has_add._proof_1 | |
0.000017 15717 ordinal.has_add | |
0.000016 15718 trichotomous_of | |
0.000017 15719 empty_relation | |
0.000017 15720 empty_relation.is_well_order | |
0.000017 15721 subsingleton_pempty | |
0.000017 15722 ordinal.has_zero | |
0.000016 15723 equiv.sum_assoc_apply_in1 | |
0.000018 15724 equiv.sum_assoc_apply_in2 | |
0.000017 15725 equiv.sum_assoc_apply_in3 | |
0.000016 15726 ordinal.add_monoid._match_1 | |
0.000017 15727 ordinal.add_monoid._match_2 | |
0.000017 15728 ordinal.add_monoid._match_3 | |
0.000017 15729 ordinal.add_monoid._proof_1 | |
0.000017 15730 ordinal.add_monoid._proof_2 | |
0.000017 15731 ordinal.add_monoid._proof_3 | |
0.000016 15732 ordinal.add_monoid._proof_4 | |
0.000018 15733 ordinal.add_monoid._proof_5 | |
0.000016 15734 ordinal.add_monoid._proof_6 | |
0.000017 15735 ordinal.add_monoid._proof_7 | |
0.000017 15736 ordinal.add_monoid | |
0.000017 15737 rel_embedding.collapse._proof_1 | |
0.000017 15738 is_well_order.is_asymm | |
0.000017 15739 rel_embedding.collapse_F._proof_1 | |
0.000017 15740 rel_embedding.collapse_F._proof_2 | |
0.000016 15741 well_founded.not_lt_min | |
0.000017 15742 rel_embedding.collapse_F._proof_3 | |
0.000017 15743 rel_embedding.collapse_F | |
0.000016 15744 rel_embedding.collapse_F.equations._eqn_1 | |
0.000017 15745 well_founded.min_mem | |
0.000017 15746 rel_embedding.collapse_F.lt | |
0.000017 15747 rel_embedding.collapse._proof_2 | |
0.000016 15748 rel_embedding.collapse_F.not_lt | |
0.000017 15749 rel_embedding.collapse._proof_3 | |
0.000017 15750 rel_embedding.collapse | |
0.000017 15751 ordinal.type_le' | |
0.000017 15752 ordinal.add_le_add_right | |
0.000017 15753 ordinal.zero_le | |
0.000017 15754 ordinal.le_add_left | |
0.000016 15755 ordinal.add_le_add_left | |
0.000017 15756 ordinal.le_add_right | |
0.000017 15757 ordinal.le_total | |
0.000017 15758 ordinal.linear_order | |
0.000017 15759 ordinal.min_le | |
0.214186 15760 ordinal.min_eq | |
0.000077 15761 ordinal.le_min | |
0.000024 15762 rel_iso.preimage._proof_1 | |
0.000014 15763 rel_iso.preimage | |
0.000014 15764 cardinal.ord._proof_3 | |
0.000014 15765 cardinal.ord | |
0.000015 15766 cardinal.ord_eq | |
0.000015 15767 partial_order_of_SO._proof_1 | |
0.000014 15768 partial_order_of_SO._match_1 | |
0.000014 15769 partial_order_of_SO._proof_2 | |
0.000016 15770 partial_order_of_SO._match_3 | |
0.000017 15771 partial_order_of_SO._proof_3 | |
0.000015 15772 partial_order_of_SO._match_2 | |
0.000019 15773 partial_order_of_SO._proof_4 | |
0.000015 15774 partial_order_of_SO | |
0.000018 15775 linear_order_of_STO'._proof_1 | |
0.000015 15776 linear_order_of_STO'._proof_2 | |
0.000017 15777 linear_order_of_STO'._proof_3 | |
0.000015 15778 linear_order_of_STO'._proof_4 | |
0.000014 15779 linear_order_of_STO'._match_1 | |
0.000014 15780 linear_order_of_STO'._proof_5 | |
0.000019 15781 linear_order_of_STO'._proof_6 | |
0.000017 15782 linear_order_of_STO'._proof_7 | |
0.000017 15783 linear_order_of_STO'._proof_8 | |
0.000016 15784 linear_order_of_STO'._proof_9 | |
0.000015 15785 asymm_of | |
0.000014 15786 linear_order_of_STO'._proof_10 | |
0.000014 15787 linear_order_of_STO' | |
0.000015 15788 prod.lex | |
0.000016 15789 ordinal.card._match_1 | |
0.000018 15790 ordinal.card._match_2 | |
0.000017 15791 ordinal.card._match_3 | |
0.000016 15792 ordinal.card._match_4 | |
0.000017 15793 ordinal.card._proof_1 | |
0.000018 15794 ordinal.card | |
0.000016 15795 ordinal.card_le_card | |
0.000018 15796 prod.lex.is_well_order._match_2 | |
0.000029 15797 prod.lex.is_well_order._match_1 | |
0.000017 15798 prod.lex.is_well_order._match_3 | |
0.000015 15799 prod.lex.is_well_order._match_4 | |
0.000017 15800 prod.lex.dcases_on | |
0.000017 15801 prod.lex.is_well_order._match_5 | |
0.000018 15802 prod.lex.rec_on | |
0.000017 15803 prod.lex_accessible | |
0.000017 15804 prod.lex_wf | |
0.000016 15805 prod.lex.is_well_order | |
0.000017 15806 ordinal.has_lt.lt.is_well_order | |
0.000017 15807 le_of_forall_lt | |
0.000017 15808 ordinal.card_type | |
0.000017 15809 cardinal.ord_le_type | |
0.000017 15810 cardinal.ord_le | |
0.000017 15811 cardinal.lt_ord | |
0.000017 15812 ordinal.has_one | |
0.000017 15813 ordinal.succ | |
0.000017 15814 prod.lex_def | |
0.000016 15815 injective_of_increasing | |
0.000017 15816 ordinal.typein_injective | |
0.000017 15817 ordinal.typein_inj | |
0.000017 15818 equiv.subtype_prod_equiv_prod._proof_1 | |
0.000016 15819 equiv.subtype_prod_equiv_prod._proof_2 | |
0.000017 15820 equiv.subtype_prod_equiv_prod._proof_3 | |
0.000017 15821 equiv.subtype_prod_equiv_prod._match_1 | |
0.000017 15822 equiv.subtype_prod_equiv_prod._proof_4 | |
0.000017 15823 equiv.subtype_prod_equiv_prod._match_2 | |
0.000017 15824 equiv.subtype_prod_equiv_prod._proof_5 | |
0.000017 15825 equiv.subtype_prod_equiv_prod | |
0.000016 15826 equiv.set.prod | |
0.000017 15827 equiv.set.insert._proof_1 | |
0.000017 15828 equiv.set.insert._proof_2 | |
0.000017 15829 equiv.set.singleton._match_1 | |
0.000017 15830 equiv.set.singleton._proof_1 | |
0.000017 15831 equiv.set.singleton._match_2 | |
0.000017 15832 equiv.set.singleton._proof_2 | |
0.000017 15833 equiv.set.singleton | |
0.000017 15834 equiv.set.insert | |
0.000017 15835 set.decidable_set_of | |
0.000016 15836 cardinal.mul_lt_omega | |
0.000017 15837 ordinal.is_limit | |
0.000017 15838 cardinal.omega_ne_zero | |
0.000017 15839 ordinal.card_zero | |
0.000017 15840 ordinal.le_zero | |
0.000016 15841 cardinal.card_ord | |
0.000017 15842 ordinal.card_one | |
0.000016 15843 ordinal.card_add | |
0.000017 15844 ordinal.lift._match_2 | |
0.000017 15845 ordinal.lift._match_3 | |
0.000016 15846 ordinal.lift._match_4 | |
0.000017 15847 ordinal.lift._match_5 | |
0.000017 15848 ordinal.lift._proof_1 | |
0.000017 15849 ordinal.lift | |
0.000016 15850 nat.lt.is_well_order | |
0.000018 15851 ordinal.omega | |
0.000017 15852 ordinal.omin._match_1 | |
0.000016 15853 ordinal.omin | |
0.000017 15854 ordinal.sub._proof_1 | |
0.000017 15855 ordinal.sub | |
0.000017 15856 ordinal.has_sub | |
0.000017 15857 quotient.decidable_eq._proof_1 | |
0.000017 15858 quotient.decidable_eq._match_1 | |
0.000017 15859 quotient.decidable_eq | |
0.000016 15860 sum.inl_ne_inr | |
0.000017 15861 ordinal.lt_succ_self | |
0.000017 15862 ordinal.succ_le | |
0.000017 15863 ordinal.succ_lt_of_not_succ | |
0.000017 15864 ordinal.zero_or_succ_or_limit | |
0.000017 15865 ordinal.add_succ | |
0.000016 15866 ordinal.omin_mem | |
0.000017 15867 ordinal.le_add_sub | |
0.000017 15868 ordinal.le_omin | |
0.000017 15869 ordinal.omin_le | |
0.000017 15870 ordinal.sub_le | |
0.000017 15871 ordinal.lt_sub | |
0.000017 15872 ordinal.enum._match_1 | |
0.000017 15873 ordinal.type_eq | |
0.000017 15874 principal_seg.top_eq | |
0.000017 15875 ordinal.enum._match_2 | |
0.000017 15876 ordinal.enum._match_3 | |
0.000017 15877 ordinal.enum._match_4 | |
0.000016 15878 ordinal.enum._proof_1 | |
0.000017 15879 ordinal.enum | |
0.000017 15880 ordinal.is_limit.pos | |
0.000017 15881 ordinal.enum_type | |
0.000017 15882 ordinal.enum_typein | |
0.000017 15883 ordinal.typein_enum | |
0.000017 15884 ordinal.add_le_of_limit | |
0.000016 15885 ordinal.add_sub_cancel_of_le | |
0.000017 15886 ordinal.omega.equations._eqn_1 | |
0.000017 15887 ordinal.one_eq_type_unit | |
0.000017 15888 ordinal.lift_one | |
2.387704 15889 ordinal.one_eq_lift_type_unit | |
0.000083 15890 ordinal.lift_add | |
0.000022 15891 ordinal.lift_umax | |
0.000015 15892 ordinal.lift_type_le | |
0.000014 15893 ordinal.lift_le | |
0.000014 15894 ordinal.type_add | |
0.000014 15895 has_lt.lt.is_asymm | |
0.000014 15896 ordinal.one_add_omega | |
0.000014 15897 ordinal.one_add_of_omega_le | |
0.000014 15898 ordinal.lift_lt | |
0.000018 15899 ordinal.lift_id' | |
0.000014 15900 ordinal.lift_id | |
0.000015 15901 ordinal.lift_type_eq | |
0.000016 15902 ordinal.lift_down' | |
0.000017 15903 ordinal.lift_card | |
0.000015 15904 ordinal.lift_down | |
0.000014 15905 ordinal.lt_lift_iff | |
0.000017 15906 cardinal.lift_omega | |
0.000019 15907 cardinal.ord_omega | |
0.000015 15908 cardinal.ord_le_ord | |
0.000017 15909 cardinal.add_one_of_omega_le | |
0.000015 15910 ordinal.succ_lt_of_is_limit | |
0.000014 15911 ordinal.le_succ_of_is_limit | |
0.000016 15912 ordinal.card_nat | |
0.000018 15913 cardinal.ord_lt_ord | |
0.000017 15914 cardinal.ord_nat | |
0.000015 15915 ordinal.nat_le_card | |
0.000014 15916 ordinal.nat_lt_card | |
0.000015 15917 ordinal.card_le_nat | |
0.000014 15918 ordinal.card_eq_nat | |
0.000016 15919 ordinal.lt_omega | |
0.000017 15920 ordinal.nat_lt_omega | |
0.000017 15921 ordinal.omega_pos | |
0.000017 15922 ordinal.omega_ne_zero | |
0.000017 15923 ordinal.omega_is_limit | |
0.000017 15924 ordinal.succ.equations._eqn_1 | |
0.000017 15925 ordinal.card_succ | |
0.000016 15926 cardinal.ord_is_limit | |
0.000017 15927 canonically_ordered_semiring.mul_le_mul_left' | |
0.000017 15928 cardinal.one_lt_omega | |
0.000017 15929 cardinal.mul_eq_self | |
0.000017 15930 canonically_ordered_semiring.mul_le_mul_right' | |
0.000017 15931 cardinal.mul_eq_max | |
0.000017 15932 linear_independent.repr_eq | |
0.000016 15933 linear_independent.repr_eq_single | |
0.000017 15934 is_basis.repr_eq_single | |
0.000017 15935 set.union_insert | |
0.000017 15936 set.insert_subset_insert | |
0.000017 15937 submodule.span_insert_eq_span | |
0.000016 15938 submodule.span_union | |
0.000017 15939 submodule.mem_sup | |
0.000017 15940 exists_comm | |
0.000017 15941 submodule.mem_span_insert | |
0.000017 15942 mem_span_insert_exchange | |
0.000017 15943 set.union_subset_union | |
0.000017 15944 exists_of_linear_independent_of_finite_span | |
0.000017 15945 exists_finite_card_le_of_finite_of_linear_independent_of_span | |
0.000017 15946 cardinal.nat_cast_inj | |
0.000016 15947 fintype.card_coe | |
0.000017 15948 cardinal.finset_card | |
0.000017 15949 is_basis.le_span | |
0.000017 15950 mk_eq_mk_of_basis | |
0.000016 15951 mk_eq_mk_of_basis' | |
0.000017 15952 is_basis.range | |
0.000017 15953 is_basis.mk_eq_dim'' | |
0.000017 15954 is_basis.mk_range_eq_dim | |
0.000017 15955 is_basis.mk_eq_dim | |
0.000016 15956 set.finite.exists_finset_coe | |
0.000017 15957 submodule.fg_def | |
0.000017 15958 submodule.span_image | |
0.000016 15959 submodule.fg_map | |
0.000017 15960 is_noetherian.noetherian | |
0.000017 15961 submodule.map_mono | |
0.000017 15962 submodule.map_comap_le | |
0.000016 15963 linear_map.map_comap_eq | |
0.000017 15964 linear_map.map_comap_eq_self | |
0.000017 15965 is_noetherian_of_surjective | |
0.000017 15966 set_like.coe_set_eq | |
0.000017 15967 set_like.ext'_iff | |
0.000016 15968 linear_map.range_eq_top | |
0.000017 15969 linear_equiv.range | |
0.000017 15970 is_noetherian_of_linear_equiv | |
0.000017 15971 submodule.restricted_module | |
0.000017 15972 is_noetherian_ring | |
0.000017 15973 is_noetherian_ring.to_is_noetherian | |
0.000017 15974 submodule.span_empty | |
0.000016 15975 submodule.fg_bot | |
0.000017 15976 or.by_cases.equations._eqn_1 | |
0.000017 15977 finset.nonempty_of_sum_ne_zero | |
0.000017 15978 finset.sum_filter_ne_zero | |
0.000017 15979 finset.exists_ne_zero_of_sum_ne_zero | |
0.000017 15980 finsupp.support_sum | |
0.000016 15981 finset.mem_of_subset | |
0.000017 15982 finset.bUnion_mono | |
0.000017 15983 finset.bUnion_singleton | |
0.000016 15984 finsupp.map_domain_support | |
0.000018 15985 finsupp.supported_comap_lmap_domain | |
0.000016 15986 function.inv_fun_on_mem | |
0.000017 15987 finsupp.map_domain_comp | |
0.000017 15988 finsupp.lmap_domain_comp | |
0.000016 15989 finsupp.map_domain_congr | |
0.000017 15990 finsupp.map_domain_id | |
0.000017 15991 finsupp.lmap_domain_supported | |
0.000016 15992 submodule.fg_of_fg_map_of_fg_inf_ker | |
0.000017 15993 is_noetherian_prod._match_1 | |
0.000017 15994 is_noetherian_prod | |
0.000017 15995 is_noetherian_pi | |
0.000017 15996 is_noetherian_of_fg_of_noetherian | |
0.000016 15997 ideal | |
0.000015 15998 submodule.is_principal | |
0.000016 15999 is_principal_ideal_ring | |
0.000017 16000 is_noetherian_ring_iff | |
0.000017 16001 submodule.is_principal.principal | |
0.000017 16002 is_principal_ideal_ring.principal | |
0.000016 16003 principal_ideal_ring.is_noetherian_ring | |
0.000017 16004 decidable.or_iff_not_and_not | |
0.000017 16005 or_iff_not_and_not | |
0.000017 16006 euclidean_domain.integral_domain._proof_1 | |
0.000017 16007 euclidean_domain.integral_domain | |
0.000016 16008 ideal.span | |
0.000017 16009 ideal.mem_span_singleton' | |
0.000017 16010 ideal.mem_span_singleton | |
0.000017 16011 euclidean_domain.mod_eq_zero | |
0.000016 16012 ideal.add_mem | |
0.000017 16013 ideal.mul_mem_left | |
1.690814 16014 ideal.mul_mem_right | |
0.000074 16015 euclidean_domain.mod_eq_sub_mul_div | |
0.000023 16016 ideal.sub_mem | |
0.000015 16017 mod_mem_iff | |
0.000015 16018 euclidean_domain.to_principal_ideal_domain._match_1 | |
0.000014 16019 euclidean_domain.r_well_founded | |
0.000015 16020 submodule.bot_coe | |
0.000014 16021 ideal.zero_mem | |
0.000014 16022 euclidean_domain.to_principal_ideal_domain | |
0.000018 16023 finite_dimensional.finite_dimensional_iff_dim_lt_omega | |
0.000017 16024 finsupp.lmap_domain_total | |
0.000017 16025 linear_map.ker_comp | |
0.000015 16026 finsupp.supported_univ | |
0.000017 16027 submodule.comap_bot | |
0.000015 16028 submodule.map_inf_eq_map_inf_comap | |
0.000017 16029 linear_independent.map | |
0.000017 16030 linear_independent.map' | |
0.000015 16031 linear_map.ker_eq_bot_of_injective | |
0.000015 16032 linear_equiv.ker | |
0.000017 16033 linear_equiv.coe_coe | |
0.000019 16034 linear_equiv.is_basis | |
0.000018 16035 linear_equiv.lift_dim_eq | |
0.000017 16036 linear_equiv.dim_eq | |
0.000015 16037 dim_top | |
0.000014 16038 linear_independent.of_comp | |
0.000017 16039 linear_independent_span | |
0.000019 16040 submodule.subtype_eq_val | |
0.000015 16041 set_like.coe_eq_coe | |
0.000017 16042 is_basis_span | |
0.000017 16043 dim_span | |
0.000016 16044 dim_span_set | |
0.000017 16045 cardinal.mk_le_mk_of_subset | |
0.000017 16046 dim_span_le | |
0.000017 16047 finite_dimensional.iff_fg | |
0.000017 16048 finite_dimensional.of_fintype_basis | |
0.000016 16049 prod.fintype._match_1 | |
0.000017 16050 prod.fintype._proof_1 | |
0.000017 16051 prod.fintype | |
0.000016 16052 ite_smul | |
0.000017 16053 finset.sum_extend_by_zero | |
0.000017 16054 linear_independent_iff'' | |
0.000017 16055 add_monoid_hom.add_comm_monoid._proof_1 | |
0.000017 16056 add_monoid_hom.has_zero._proof_1 | |
0.000017 16057 add_monoid_hom.has_zero._proof_2 | |
0.000017 16058 add_monoid_hom.has_zero | |
0.000016 16059 add_monoid_hom.add_comm_monoid._proof_2 | |
0.000017 16060 add_monoid_hom.add_comm_monoid._proof_3 | |
0.000017 16061 add_monoid_hom.add_comm_monoid._proof_4 | |
0.000017 16062 add_monoid_hom.add_comm_monoid._proof_5 | |
0.000017 16063 add_monoid_hom.add_comm_monoid._proof_6 | |
0.000017 16064 add_monoid_hom.add_comm_monoid._proof_7 | |
0.000017 16065 add_monoid_hom.add_comm_monoid._proof_8 | |
0.000016 16066 add_monoid_hom.add_comm_monoid | |
0.000017 16067 add_monoid_hom.zero_apply | |
0.000017 16068 add_monoid_hom.flip._proof_1 | |
0.000017 16069 add_monoid_hom.flip._proof_2 | |
0.000017 16070 add_monoid_hom.flip._proof_3 | |
0.000017 16071 add_monoid_hom.flip._proof_4 | |
0.000016 16072 add_monoid_hom.flip | |
0.000017 16073 const_smul_hom_apply | |
0.000017 16074 smul_add_hom._proof_1 | |
0.000017 16075 smul_add_hom._proof_2 | |
0.000017 16076 smul_add_hom | |
0.000017 16077 finset.sum_smul | |
0.000017 16078 finset.subset_product | |
0.000017 16079 linear_independent_smul | |
0.000017 16080 set.has_scalar | |
0.000016 16081 set.mem_smul | |
0.000017 16082 set.range_smul_range | |
0.000018 16083 submodule.restrict_scalars._proof_1 | |
0.000016 16084 submodule.restrict_scalars._proof_2 | |
0.000017 16085 submodule.restrict_scalars | |
0.000017 16086 submodule.smul_mem_span_smul_of_mem | |
0.000017 16087 submodule.smul_mem_span_smul | |
0.000017 16088 submodule.smul_mem_span_smul' | |
0.000017 16089 submodule.span_smul | |
0.000017 16090 submodule.restrict_scalars_top | |
0.000016 16091 submodule.restrict_scalars_injective | |
0.000015 16092 submodule.restrict_scalars_inj | |
0.000015 16093 is_basis.smul | |
0.000016 16094 finite_dimensional.trans | |
0.000017 16095 is_R_or_C.I | |
0.000017 16096 is_R_or_C.re | |
0.000017 16097 is_R_or_C.im | |
0.000016 16098 is_R_or_C.algebra_map_coe | |
0.000017 16099 is_R_or_C.algebra_map_eq_of_real | |
0.000017 16100 is_R_or_C.re_add_im_ax | |
0.000016 16101 is_R_or_C.re_add_im | |
0.000017 16102 finite_dimensional.is_R_or_C_to_real | |
0.000017 16103 cardinal.to_nat._proof_1 | |
0.000016 16104 cardinal.to_nat._proof_2 | |
0.000017 16105 cardinal.to_nat | |
0.000017 16106 finite_dimensional.findim | |
0.000017 16107 nnnorm_smul | |
0.000017 16108 nnreal.bot_eq_zero | |
0.000017 16109 nnreal.mul_sup | |
0.000016 16110 nnreal.mul_finset_sup | |
0.000017 16111 pi.semi_normed_space._proof_1 | |
0.000017 16112 pi.semi_normed_space | |
0.000017 16113 pi.normed_space._proof_1 | |
0.000016 16114 pi.normed_space | |
0.000017 16115 linear_equiv.to_continuous_linear_equiv._proof_1 | |
0.000017 16116 linear_equiv.to_continuous_linear_equiv._proof_2 | |
0.000017 16117 linear_equiv.to_continuous_linear_equiv._proof_3 | |
0.000016 16118 linear_equiv.to_continuous_linear_equiv._proof_4 | |
0.000017 16119 module_equiv_finsupp._proof_1 | |
0.000071 16120 module_equiv_finsupp._proof_2 | |
0.000022 16121 module_equiv_finsupp | |
0.000017 16122 is_basis.equiv_fun._proof_1 | |
0.000015 16123 is_basis.equiv_fun._proof_2 | |
0.000014 16124 finsupp.equiv_fun_on_fintype._proof_1 | |
0.000017 16125 finsupp.equiv_fun_on_fintype._proof_2 | |
0.000019 16126 finsupp.equiv_fun_on_fintype._proof_3 | |
0.000017 16127 finsupp.equiv_fun_on_fintype | |
0.000017 16128 is_basis.equiv_fun._proof_3 | |
1.521127 16129 is_basis.equiv_fun._proof_4 | |
0.000073 16130 is_basis.equiv_fun | |
0.000026 16131 pi.add_zero_class._proof_1 | |
0.000014 16132 pi.add_zero_class._proof_2 | |
0.000015 16133 pi.add_zero_class | |
0.000014 16134 add_monoid_hom.apply._proof_1 | |
0.000015 16135 add_monoid_hom.apply._proof_2 | |
0.000014 16136 add_monoid_hom.apply | |
0.000014 16137 finset.sum_apply | |
0.000016 16138 fintype.sum_apply | |
0.000019 16139 mul_ite | |
0.000016 16140 mul_boole | |
0.000017 16141 pi_eq_sum_univ | |
0.000015 16142 linear_map.pi_apply_eq_sum_univ | |
0.000015 16143 continuous_list_sum | |
0.000014 16144 continuous_multiset_sum | |
0.000017 16145 continuous_finset_sum | |
0.000017 16146 continuous_infi_dom | |
0.000017 16147 continuous_apply | |
0.000017 16148 linear_map.continuous_on_pi | |
0.000018 16149 empty.cases_on | |
0.000017 16150 empty.elim._main | |
0.000017 16151 empty.elim | |
0.000016 16152 empty.fintype._proof_1 | |
0.000017 16153 empty.fintype | |
0.000018 16154 fintype.card_empty | |
0.000017 16155 fintype.card_eq_zero_iff | |
0.000018 16156 linear_map.proj._proof_1 | |
0.000017 16157 linear_map.proj._proof_2 | |
0.000018 16158 linear_map.proj | |
0.000017 16159 normal_space | |
0.000018 16160 normal_space.to_t1_space | |
0.000015 16161 locally_finite | |
0.000017 16162 paracompact_space | |
0.000018 16163 set_coe.forall' | |
0.000017 16164 option.elim._main | |
0.000018 16165 option.elim | |
0.000017 16166 set.exists_range_iff' | |
0.000018 16167 set.Union_eq_univ_iff | |
0.000017 16168 paracompact_space.locally_finite_refinement | |
0.000018 16169 precise_refinement | |
0.000018 16170 option.forall | |
0.000018 16171 is_lub_supr | |
0.000017 16172 supr_le_iff | |
0.000018 16173 supr_option | |
0.000015 16174 set.Union_option | |
0.000017 16175 option.elim._main.equations._eqn_1 | |
0.000018 16176 option.elim.equations._eqn_1 | |
0.000017 16177 option.elim._main.equations._eqn_2 | |
0.000017 16178 option.elim.equations._eqn_2 | |
0.000017 16179 set.compl_subset_iff_union | |
0.000017 16180 set.subset_compl_comm | |
0.000017 16181 locally_finite.comp_injective | |
0.000017 16182 precise_refinement_set | |
0.000017 16183 locally_finite.is_closed_Union | |
0.000018 16184 interior_mem_nhds | |
0.000017 16185 set.subset_eq_empty | |
0.000017 16186 is_closed_empty | |
0.000017 16187 closure_empty | |
0.000017 16188 closure_empty_iff | |
0.000017 16189 closure_nonempty_iff | |
0.000015 16190 set.nonempty.of_closure | |
0.000014 16191 closure_inter_open | |
0.000016 16192 closure_inter_open' | |
0.000016 16193 locally_finite.closure | |
0.000017 16194 locally_finite.closure_Union | |
0.000017 16195 set.compl_Union | |
0.000017 16196 disjoint_compl_right | |
0.000016 16197 normal_of_paracompact_t2 | |
0.000017 16198 eq_of_forall_edist_le | |
0.000017 16199 to_separated | |
0.000017 16200 strong_rec'._main._pack._wf_rec_mk_dec_tactic._aux_1 | |
0.000016 16201 nat.strong_rec'._main._pack | |
0.000018 16202 nat.strong_rec'._main | |
0.000016 16203 nat.strong_rec' | |
0.000017 16204 nat.strong_rec_on' | |
0.000017 16205 nat.strong_rec_on'.equations._eqn_1 | |
0.000017 16206 nat.strong_rec'._main._pack.equations._eqn_1 | |
0.000017 16207 nat.strong_rec'._main.equations._eqn_1 | |
0.000017 16208 nat.strong_rec'.equations._eqn_1 | |
0.000017 16209 nat.strong_rec_on_beta' | |
0.000017 16210 emetric.nhds_basis_eball | |
0.000017 16211 emetric.mem_nhds_iff | |
0.000016 16212 emetric.is_open_iff | |
0.000017 16213 ennreal.has_sub | |
0.000017 16214 bot_lt_iff_ne_bot | |
0.000017 16215 ennreal.bot_lt_iff_ne_bot | |
0.000016 16216 ennreal.sub_eq_zero_of_le | |
0.000017 16217 ennreal.forall_ennreal | |
0.000017 16218 ennreal.le_coe_iff | |
0.000017 16219 ennreal.top_sub_coe | |
0.000017 16220 ennreal.sub_infty | |
0.000017 16221 nnreal.has_sub | |
0.000017 16222 nnreal.coe_sub | |
0.000017 16223 nnreal.sub_eq_zero | |
0.000017 16224 nnreal.sub_le_iff_le_add | |
0.000017 16225 ennreal.coe_sub | |
0.000016 16226 nnreal.sub_def | |
0.000017 16227 nnreal.coe_max | |
0.000017 16228 nnreal.coe_mk | |
0.000016 16229 linear_ordered_add_comm_monoid | |
0.000017 16230 linear_ordered_add_comm_monoid.le | |
0.000017 16231 linear_ordered_add_comm_monoid.lt | |
0.000017 16232 linear_ordered_add_comm_monoid.le_refl | |
0.000016 16233 linear_ordered_add_comm_monoid.le_trans | |
0.000017 16234 linear_ordered_add_comm_monoid.lt_iff_le_not_le | |
0.000017 16235 linear_ordered_add_comm_monoid.le_antisymm | |
0.000017 16236 linear_ordered_add_comm_monoid.le_total | |
0.000017 16237 linear_ordered_add_comm_monoid.decidable_le | |
0.000016 16238 linear_ordered_add_comm_monoid.decidable_eq | |
0.000017 16239 linear_ordered_add_comm_monoid.decidable_lt | |
0.000017 16240 linear_ordered_add_comm_monoid.to_linear_order | |
0.000017 16241 linear_ordered_cancel_add_comm_monoid | |
0.000016 16242 linear_ordered_cancel_add_comm_monoid.le | |
0.000017 16243 linear_ordered_cancel_add_comm_monoid.lt | |
0.000016 16244 linear_ordered_cancel_add_comm_monoid.le_refl | |
0.000017 16245 linear_ordered_cancel_add_comm_monoid.le_trans | |
0.000017 16246 linear_ordered_cancel_add_comm_monoid.lt_iff_le_not_le | |
0.000017 16247 linear_ordered_cancel_add_comm_monoid.le_antisymm | |
0.000017 16248 linear_ordered_cancel_add_comm_monoid.le_total | |
0.874415 16249 linear_ordered_cancel_add_comm_monoid.decidable_le | |
0.000082 16250 linear_ordered_cancel_add_comm_monoid.decidable_eq | |
0.000021 16251 linear_ordered_cancel_add_comm_monoid.decidable_lt | |
0.000015 16252 linear_ordered_cancel_add_comm_monoid.add | |
0.000015 16253 linear_ordered_cancel_add_comm_monoid.add_assoc | |
0.000014 16254 linear_ordered_cancel_add_comm_monoid.zero | |
0.000014 16255 linear_ordered_cancel_add_comm_monoid.zero_add | |
0.000014 16256 linear_ordered_cancel_add_comm_monoid.add_zero | |
0.000014 16257 linear_ordered_cancel_add_comm_monoid.nsmul | |
0.000014 16258 linear_ordered_cancel_add_comm_monoid.nsmul_zero' | |
0.000017 16259 linear_ordered_cancel_add_comm_monoid.nsmul_succ' | |
0.000017 16260 linear_ordered_cancel_add_comm_monoid.add_comm | |
0.000017 16261 linear_ordered_cancel_add_comm_monoid.add_left_cancel | |
0.000015 16262 linear_ordered_cancel_add_comm_monoid.add_le_add_left | |
0.000019 16263 linear_ordered_cancel_add_comm_monoid.lt_of_add_lt_add_left | |
0.000015 16264 linear_ordered_cancel_add_comm_monoid.to_linear_ordered_add_comm_monoid | |
0.000016 16265 linear_ordered_add_comm_group.to_linear_ordered_cancel_add_comm_monoid._proof_1 | |
0.000017 16266 linear_ordered_add_comm_group.to_linear_ordered_cancel_add_comm_monoid._proof_2 | |
0.000017 16267 linear_ordered_add_comm_monoid.lt_of_add_lt_add_left._default | |
0.000015 16268 linear_ordered_add_comm_group.to_linear_ordered_cancel_add_comm_monoid._proof_3 | |
0.000015 16269 linear_ordered_add_comm_group.to_linear_ordered_cancel_add_comm_monoid | |
0.000016 16270 linear_ordered_cancel_add_comm_monoid.le_of_add_le_add_left | |
0.000017 16271 linear_ordered_cancel_add_comm_monoid.to_ordered_cancel_add_comm_monoid | |
0.000017 16272 monotone.add | |
0.000017 16273 monotone.add_const | |
0.000017 16274 max_add_add_right | |
0.000017 16275 nnreal.sub_add_eq_max | |
0.000017 16276 nnreal.sub_add_cancel_of_le | |
0.000018 16277 ennreal.sub_add_cancel_of_le | |
0.000017 16278 ennreal.sub_add_self_eq_max | |
0.000017 16279 ennreal.le_sub_add_self | |
0.000017 16280 ennreal.sub_le_iff_le_add | |
0.000016 16281 ennreal.sub_eq_zero_iff_le | |
0.000017 16282 ennreal.zero_lt_sub_iff_lt | |
0.000017 16283 emetric.mem_ball | |
0.000017 16284 emetric.ball_subset | |
0.000017 16285 ennreal.add_sub_cancel_of_le | |
0.000016 16286 emetric.exists_ball_subset_ball | |
0.000018 16287 emetric.is_open_ball | |
0.000017 16288 ennreal.inv_one | |
0.000016 16289 ennreal.top_mul_top | |
0.000017 16290 ennreal.top_pow | |
0.000017 16291 ennreal.coe_pow | |
0.000017 16292 ennreal.inv_pow | |
0.000016 16293 nat.cast_bit0 | |
0.000017 16294 nat.cast_pow | |
0.000017 16295 nat.pow_lt_pow_succ | |
0.000017 16296 nat.lt_pow_self | |
0.000016 16297 nat.lt_two_pow | |
0.000017 16298 ennreal.exists_inv_two_pow_lt | |
0.000017 16299 ennreal.div_zero_iff | |
0.000017 16300 ennreal.div_pos_iff | |
0.000017 16301 gt.lt | |
0.000016 16302 emetric.ball_subset_ball | |
0.000017 16303 emetric.mem_ball_self | |
0.000017 16304 canonically_ordered_semiring.pow_pos | |
0.000017 16305 ennreal.pow_pos | |
0.000018 16306 ennreal.coe_bit0 | |
0.000017 16307 ennreal.coe_two | |
0.000017 16308 ennreal.two_ne_top | |
0.000017 16309 uniformity_basis_edist_inv_two_pow | |
0.000017 16310 emetric.ball_mem_nhds | |
0.000017 16311 set.fintype_Union._proof_1 | |
0.000017 16312 set.fintype_Union | |
0.000017 16313 set.finite_Union | |
0.000017 16314 set.finite.bUnion | |
0.000017 16315 set.subsingleton | |
0.000016 16316 set.subsingleton.eq_singleton_of_mem | |
0.000017 16317 set.subsingleton.eq_empty_or_singleton | |
0.000017 16318 set.subsingleton.induction_on | |
0.000017 16319 set.subsingleton.finite | |
0.000017 16320 ennreal.inv_le_inv | |
0.000017 16321 ennreal.one_le_coe_iff | |
0.000016 16322 ennreal.pow_le_pow | |
0.000017 16323 ennreal.le_inv_iff_le_inv | |
0.000017 16324 ennreal.one_le_inv | |
0.000017 16325 ennreal.pow_le_pow_of_le_one | |
0.000017 16326 ennreal.inv_le_iff_inv_le | |
0.000017 16327 ennreal.inv_le_one | |
0.000017 16328 ennreal.one_lt_two | |
0.000017 16329 _private.1549444657.ne_from_not_eq | |
0.000018 16330 ennreal.mul_inv_cancel | |
0.000016 16331 bit0_zero | |
0.000017 16332 ennreal.bit0_inj | |
0.000017 16333 ennreal.bit0_eq_zero_iff | |
0.000018 16334 ennreal.bit0_eq_top_iff | |
0.000017 16335 ennreal.one_ne_top | |
0.000017 16336 bit1.equations._eqn_1 | |
0.000017 16337 ne.lt_or_lt | |
0.000017 16338 int.comm_semiring | |
0.000016 16339 add_neg_of_neg_of_nonpos | |
0.000017 16340 sub_nonpos_of_le | |
0.000017 16341 neg_nonpos_of_nonneg | |
0.000017 16342 int.add_one_le_iff | |
0.000017 16343 nat.cast_bit1 | |
0.000017 16344 ennreal.coe_nat_mono | |
0.000015 16345 ennreal.coe_nat_le_coe_nat | |
0.000016 16346 zero_lt_mul_left | |
0.000017 16347 one_lt_bit1 | |
0.000016 16348 norm_num.lt_one_bit1 | |
0.000017 16349 norm_num.le_one_bit1 | |
0.000017 16350 emetric.paracompact_space | |
0.000017 16351 emetric.normal_of_emetric | |
0.000017 16352 subspace | |
0.000016 16353 emetric.inf_edist | |
0.000017 16354 metric.inf_dist | |
0.000017 16355 lt_div_iff' | |
0.000017 16356 norm_num.inv_div_one | |
1.409910 16357 norm_num.div_eq | |
0.000076 16358 norm_num.clear_denom_mul | |
0.000022 16359 norm_num.clear_denom_simple_nat | |
0.000015 16360 norm_num.clear_denom_simple_div | |
0.000015 16361 metric.inf_dist.equations._eqn_1 | |
0.000014 16362 binfi_le | |
0.000014 16363 emetric.inf_edist_le_edist_of_mem | |
0.000014 16364 metric.inf_edist_ne_top | |
0.000014 16365 metric.inf_dist_le_dist_of_mem | |
0.000014 16366 emetric.inf_edist.equations._eqn_1 | |
0.000014 16367 emetric.exists_edist_lt_of_inf_edist_lt | |
0.000018 16368 ennreal.to_real_lt_to_real | |
0.000017 16369 ennreal.of_real_ne_top | |
0.000015 16370 nnreal.zero_le_coe | |
0.000017 16371 ennreal.to_real_nonneg | |
0.000015 16372 metric.inf_dist_nonneg | |
0.000014 16373 metric.exists_dist_lt_of_inf_dist_lt | |
0.000016 16374 le_mul_iff_one_le_right | |
0.000018 16375 mul_lt_iff_lt_one_right | |
0.000017 16376 infi_le_infi_of_subset | |
0.000014 16377 emetric.inf_edist_le_inf_edist_of_subset | |
0.000015 16378 ennreal.half_pos | |
0.000014 16379 emetric.mem_closure_iff | |
0.000013 16380 ennreal.div_self | |
0.000014 16381 ennreal.zero_lt_two | |
0.000017 16382 ennreal.two_ne_zero | |
0.000017 16383 ennreal.inv_two_add_inv_two | |
0.000015 16384 ennreal.add_halves | |
0.000014 16385 emetric.inf_edist_closure | |
0.000017 16386 emetric.inf_edist_zero_of_mem | |
0.000019 16387 emetric.mem_closure_iff_inf_edist_zero | |
0.000017 16388 metric.mem_closure_iff_inf_dist_zero | |
0.000017 16389 metric.mem_iff_inf_dist_zero_of_closed | |
0.000017 16390 norm_num.clear_denom_lt | |
0.000017 16391 norm_num.ne_zero_of_pos | |
0.000017 16392 riesz_lemma | |
0.000016 16393 zero_le_mul_left | |
0.000017 16394 zero_le_bit0 | |
0.000017 16395 nat.cast_two | |
0.000017 16396 two_ne_zero' | |
0.000016 16397 add_self_eq_zero | |
0.000017 16398 bit0_eq_zero | |
0.000017 16399 sub_eq_zero_of_eq | |
0.000017 16400 linear_map.continuous_iff_is_closed_ker | |
0.000017 16401 finite_dimensional.findim.equations._eqn_1 | |
0.000017 16402 cardinal.to_nat_apply_of_lt_omega | |
0.000017 16403 cardinal.cast_to_nat_of_lt_omega | |
0.000017 16404 finite_dimensional.dim_lt_omega | |
0.000017 16405 finite_dimensional.findim_eq_dim | |
0.000016 16406 set.card_range_of_injective | |
0.000017 16407 finite_dimensional.dim_eq_card_basis | |
0.000017 16408 finite_dimensional.findim_eq_card_basis | |
0.000017 16409 submodule.quotient_rel._proof_1 | |
0.000017 16410 submodule.quotient_rel | |
0.000016 16411 submodule.quotient | |
0.000017 16412 quotient.lift_on₂' | |
0.000017 16413 submodule.quotient.mk | |
0.000017 16414 quotient.eq' | |
0.000016 16415 submodule.quotient.eq | |
0.000017 16416 submodule.quotient.has_add._proof_1 | |
0.000017 16417 submodule.quotient.has_add | |
0.000017 16418 submodule.quotient.quot_mk_eq_mk | |
0.000017 16419 submodule.quotient.mk_add | |
0.000017 16420 submodule.quotient.add_comm_group._proof_1 | |
0.000017 16421 submodule.quotient.has_zero | |
0.000017 16422 submodule.quotient.mk_zero | |
0.000017 16423 submodule.quotient.add_comm_group._proof_2 | |
0.000017 16424 submodule.quotient.add_comm_group._proof_3 | |
0.000017 16425 quotient.lift_on' | |
0.000016 16426 add_comm_monoid.nat_is_scalar_tower | |
0.000017 16427 submodule.quotient.add_comm_group._proof_4 | |
0.000017 16428 submodule.quotient.add_comm_group._proof_5 | |
0.000017 16429 submodule.quotient.add_comm_group._proof_6 | |
0.000017 16430 submodule.quotient.has_neg._proof_1 | |
0.000017 16431 submodule.quotient.has_neg | |
0.000017 16432 submodule.quotient.has_sub._proof_1 | |
0.000017 16433 submodule.quotient.has_sub | |
0.000017 16434 submodule.quotient.mk_sub | |
0.000017 16435 submodule.quotient.mk_neg | |
0.000016 16436 submodule.quotient.add_comm_group._proof_7 | |
0.000017 16437 submodule.quotient.add_comm_group._proof_8 | |
0.000017 16438 submodule.quotient.add_comm_group._proof_9 | |
0.000017 16439 submodule.quotient.add_comm_group | |
0.000017 16440 semimodule.core | |
0.000016 16441 semimodule.core.to_has_scalar | |
0.000017 16442 semimodule.core.one_smul | |
0.000017 16443 semimodule.core.mul_smul | |
0.000016 16444 semimodule.core.smul_add | |
0.000017 16445 add_left_eq_self | |
0.000017 16446 add_monoid_hom.mk'._proof_1 | |
0.000017 16447 add_monoid_hom.mk' | |
0.000017 16448 semimodule.of_core._proof_1 | |
0.000016 16449 semimodule.core.add_smul | |
0.000017 16450 semimodule.of_core._proof_2 | |
0.000017 16451 semimodule.of_core | |
0.000017 16452 submodule.quotient.has_scalar._proof_1 | |
0.000017 16453 submodule.quotient.has_scalar | |
0.000015 16454 submodule.quotient.mk_smul | |
0.000016 16455 submodule.quotient.semimodule._proof_1 | |
0.000017 16456 submodule.quotient.semimodule._proof_2 | |
0.000017 16457 submodule.quotient.semimodule._proof_3 | |
0.000017 16458 submodule.quotient.semimodule._proof_4 | |
0.000017 16459 submodule.quotient.semimodule | |
0.000017 16460 linear_equiv.finite_dimensional | |
0.000017 16461 linear_equiv.findim_eq | |
0.000017 16462 submodule.liftq._proof_1 | |
0.000017 16463 submodule.liftq._proof_2 | |
0.000016 16464 submodule.liftq._proof_3 | |
0.000017 16465 submodule.liftq | |
0.000018 16466 linear_map.quot_ker_equiv_range._proof_1 | |
1.739999 16467 submodule.mkq._proof_1 | |
0.000078 16468 submodule.mkq._proof_2 | |
0.000023 16469 submodule.mkq | |
0.000015 16470 submodule.comap_comp | |
0.000014 16471 submodule.liftq_mkq | |
0.000014 16472 submodule.comap_liftq | |
0.000014 16473 submodule.ker_liftq | |
0.000014 16474 submodule.mkq_apply | |
0.000014 16475 submodule.quotient.mk_eq_zero | |
0.000014 16476 submodule.ker_mkq | |
0.000017 16477 submodule.mkq_map_self | |
0.000017 16478 submodule.ker_liftq_eq_bot | |
0.000015 16479 linear_map.quot_ker_equiv_range._proof_2 | |
0.000017 16480 linear_equiv.of_eq._proof_1 | |
0.000018 16481 linear_equiv.of_eq._proof_2 | |
0.000015 16482 linear_equiv.of_eq._proof_3 | |
0.000016 16483 linear_equiv.of_eq._proof_4 | |
0.000017 16484 linear_equiv.of_eq._proof_5 | |
0.000017 16485 linear_equiv.of_eq | |
0.000015 16486 submodule.map_liftq | |
0.000014 16487 submodule.range_liftq | |
0.000014 16488 linear_map.quot_ker_equiv_range._proof_3 | |
0.000014 16489 linear_map.quot_ker_equiv_range | |
0.000017 16490 add_submonoid.prod._proof_1 | |
0.000018 16491 add_submonoid.prod._proof_2 | |
0.000017 16492 add_submonoid.prod | |
0.000015 16493 submodule.prod._proof_1 | |
0.000014 16494 submodule.prod._proof_2 | |
0.000016 16495 submodule.prod._proof_3 | |
0.000016 16496 submodule.prod | |
0.000016 16497 submodule.mem_prod | |
0.000017 16498 prod.zero_eq_mk | |
0.000017 16499 submodule.prod_bot | |
0.000025 16500 submodule.prod_comap_inl | |
0.000018 16501 submodule.ker_inl | |
0.000015 16502 submodule.prod_comap_inr | |
0.000014 16503 submodule.ker_inr | |
0.000017 16504 set.image_subset_range | |
0.000018 16505 set.range_comp_subset_range | |
0.000017 16506 linear_map.is_compl_range_inl_inr | |
0.000017 16507 linear_independent_inl_union_inr' | |
0.000017 16508 linear_map.sup_range_inl_inr | |
0.000016 16509 is_basis_inl_union_inr | |
0.000017 16510 cardinal.lift_mk | |
0.000017 16511 cardinal.add_def | |
0.000016 16512 dim_prod | |
0.000017 16513 linear_equiv.map_add | |
0.000016 16514 linear_equiv.prod._proof_1 | |
0.000017 16515 linear_equiv.map_smul | |
0.000017 16516 linear_equiv.prod._proof_2 | |
0.000017 16517 linear_equiv.prod._proof_3 | |
0.000016 16518 linear_equiv.prod._proof_4 | |
0.000018 16519 linear_equiv.prod | |
0.000016 16520 submodule.le_comap_map | |
0.000017 16521 submodule.comap_mono | |
0.000016 16522 linear_map.comap_map_eq | |
0.000017 16523 linear_map.map_le_map_iff | |
0.000017 16524 linear_map.map_le_map_iff' | |
0.000017 16525 submodule.ker_subtype | |
0.000016 16526 submodule.disjoint_iff_comap_eq_bot | |
0.000017 16527 submodule.quotient_equiv_of_is_compl._proof_1 | |
0.000017 16528 submodule.map_coe | |
0.000016 16529 submodule.map_comp | |
0.000017 16530 linear_map.range_comp | |
0.000017 16531 linear_map.map_eq_top_iff | |
0.000017 16532 submodule.range_mkq | |
0.000017 16533 submodule.map_mkq_eq_top | |
0.000017 16534 submodule.quotient_equiv_of_is_compl._proof_2 | |
0.000017 16535 submodule.quotient_equiv_of_is_compl | |
0.000017 16536 linear_equiv.refl._proof_1 | |
0.000016 16537 linear_equiv.refl._proof_2 | |
0.000017 16538 linear_equiv.refl._proof_3 | |
0.000017 16539 linear_equiv.refl._proof_4 | |
0.000016 16540 linear_equiv.refl | |
0.000017 16541 prod.mk_eq_zero | |
0.000016 16542 submodule.mk_eq_zero | |
0.000017 16543 add_subgroup.neg_mem_iff | |
0.000017 16544 submodule.neg_mem_iff | |
0.000017 16545 submodule.prod_equiv_of_is_compl._proof_1 | |
0.000017 16546 set_like.exists | |
0.000014 16547 submodule.sup_eq_range | |
0.000015 16548 submodule.prod_equiv_of_is_compl._proof_2 | |
0.000017 16549 submodule.prod_equiv_of_is_compl | |
0.000017 16550 submodule.mem_sup' | |
0.000017 16551 linear_map.is_compl_of_proj | |
0.000017 16552 linear_map.ext_iff | |
0.000017 16553 linear_independent.image_subtype | |
0.000016 16554 is_basis.constr | |
0.000017 16555 linear_map.ext_on | |
0.000017 16556 linear_map.ext_on_range | |
0.000017 16557 is_basis.ext | |
0.000017 16558 is_basis.constr_apply | |
0.000016 16559 constr_basis | |
0.000017 16560 linear_map.exists_left_inverse_of_injective | |
0.000017 16561 submodule.exists_is_compl | |
0.000017 16562 quotient_prod_linear_equiv | |
0.000017 16563 dim_quotient_add_dim | |
0.000017 16564 self_le_add_right | |
0.000016 16565 dim_quotient_le | |
0.000017 16566 finite_dimensional.finite_dimensional_quotient | |
0.000017 16567 self_le_add_left | |
0.000016 16568 dim_submodule_le | |
0.000017 16569 finite_dimensional.finite_dimensional_submodule | |
0.000017 16570 submodule.findim_quotient_add_findim | |
0.000016 16571 linear_map.findim_range_add_findim_ker | |
0.000017 16572 exists_eq | |
0.000017 16573 is_basis_singleton_one | |
0.000017 16574 punit.unique._proof_1 | |
0.000017 16575 punit.unique | |
0.000016 16576 cardinal.mk_punit | |
0.000017 16577 dim_of_field | |
0.000017 16578 finite_dimensional.findim_of_field | |
0.000016 16579 submodule.findim_le | |
0.000017 16580 finite_dimensional.finite_dimensional_self | |
0.000017 16581 zero_lt_iff | |
0.000017 16582 cauchy.mono' | |
0.000017 16583 tendsto_nhds_unique' | |
0.000017 16584 is_complete.is_closed | |
0.000017 16585 uniform_inducing | |
0.000016 16586 complete_univ | |
0.000017 16587 complete_space_of_is_complete_univ | |
0.000017 16588 complete_space_iff_is_complete_univ | |
4.092511 16589 cauchy.map | |
0.000086 16590 uniform_inducing.comap_uniformity | |
0.000022 16591 uniform_inducing.uniform_continuous | |
0.000015 16592 uniform_inducing.inducing | |
0.000014 16593 is_complete_of_complete_image | |
0.000014 16594 uniform_embedding | |
0.000014 16595 uniform_embedding.to_uniform_inducing | |
0.000015 16596 uniform_embedding_subtype_val | |
0.000014 16597 uniform_embedding_subtype_coe | |
0.000014 16598 is_complete.complete_space_coe | |
0.000018 16599 filter.prod_comap_comap_eq | |
0.000017 16600 cauchy.comap | |
0.000015 16601 cauchy.comap' | |
0.000018 16602 uniform_inducing.comp | |
0.000015 16603 filter.comap_ne_bot_iff | |
0.000015 16604 filter.comap_ne_bot_iff_frequently | |
0.000017 16605 filter.ne_bot.comap_of_range_mem | |
0.000015 16606 filter.comap_le_comap_iff | |
0.000015 16607 is_complete_image_iff | |
0.000014 16608 complete_space_iff_is_complete_range | |
0.000016 16609 complete_space_coe_iff_is_complete | |
0.000018 16610 complete_space_congr | |
0.000015 16611 antilipschitz_with | |
0.000014 16612 ennreal.mul_pos | |
0.000017 16613 antilipschitz_with.comap_uniformity_le | |
0.000015 16614 filter.tendsto.le_comap | |
0.000014 16615 antilipschitz_with.uniform_inducing | |
0.000018 16616 antilipschitz_with.injective | |
0.000017 16617 antilipschitz_with.uniform_embedding | |
0.000015 16618 lipschitz_with.to_right_inverse | |
0.000014 16619 continuous_linear_equiv.lipschitz | |
0.000014 16620 continuous_linear_equiv.antilipschitz | |
0.000014 16621 continuous_linear_equiv.uniform_embedding | |
0.000017 16622 linear_equiv.uniform_embedding | |
0.000017 16623 submodule.semi_normed_group._proof_1 | |
0.000015 16624 submodule.semi_normed_group | |
0.000016 16625 subtype.metric_space._proof_1 | |
0.000017 16626 subtype.metric_space | |
0.000017 16627 submodule.normed_group._proof_1 | |
0.000017 16628 submodule.normed_group | |
0.000017 16629 submodule.semi_normed_space._proof_1 | |
0.000017 16630 submodule.semi_normed_space | |
0.000017 16631 submodule.normed_space._proof_1 | |
0.000017 16632 submodule.normed_space | |
0.000017 16633 Pi.uniform_continuous_proj | |
0.000017 16634 nhds_pi | |
0.000017 16635 Pi.complete | |
0.000017 16636 fintype.subtype_card | |
0.000018 16637 fintype.card_of_finset | |
0.000017 16638 fintype.card_of_finset' | |
0.000017 16639 set.card_image_of_inj_on | |
0.000014 16640 set.card_image_of_injective | |
0.000015 16641 finite_dimensional.eq_top_of_findim_eq | |
0.000016 16642 continuous_equiv_fun_basis | |
0.000017 16643 linear_map.continuous_of_finite_dimensional | |
0.000017 16644 linear_equiv.to_continuous_linear_equiv._proof_5 | |
0.000017 16645 linear_equiv.to_continuous_linear_equiv._proof_6 | |
0.000017 16646 linear_equiv.to_continuous_linear_equiv | |
0.000017 16647 nonempty.map | |
0.000017 16648 linear_equiv_of_is_basis._proof_1 | |
0.000017 16649 linear_equiv_of_is_basis._proof_2 | |
0.000017 16650 linear_equiv_of_is_basis._proof_3 | |
0.000017 16651 linear_equiv_of_is_basis._proof_4 | |
0.000016 16652 linear_equiv_of_is_basis | |
0.000017 16653 nonempty_linear_equiv_of_lift_dim_eq | |
0.000017 16654 finite_dimensional.nonempty_linear_equiv_of_findim_eq | |
0.000017 16655 finite_dimensional.linear_equiv.of_findim_eq | |
0.000017 16656 continuous_linear_equiv.of_findim_eq | |
0.000017 16657 pi.single | |
0.000018 16658 pi.single_zero | |
0.000016 16659 zero_hom.single._proof_1 | |
0.000017 16660 zero_hom.single | |
0.000017 16661 add_monoid_hom.single._proof_1 | |
0.000017 16662 pi.single_eq_same | |
0.000017 16663 pi.single_eq_of_ne | |
0.000016 16664 pi.apply_single₂ | |
0.000017 16665 pi.single_op₂ | |
0.000017 16666 add_monoid_hom.single._proof_2 | |
0.000017 16667 add_monoid_hom.single | |
0.000017 16668 linear_map.single._proof_1 | |
0.000017 16669 pi.single.equations._eqn_1 | |
0.000016 16670 function.apply_update | |
0.000017 16671 pi.apply_single | |
0.000017 16672 pi.single_op | |
0.000016 16673 pi.single_smul | |
0.000017 16674 linear_map.single._proof_2 | |
0.000017 16675 linear_map.single | |
0.000017 16676 linear_map.std_basis | |
0.000017 16677 linear_independent.of_subtype_range | |
0.000017 16678 sigma.eq | |
0.000017 16679 linear_independent.ne_zero | |
0.000016 16680 supr_singleton | |
0.000017 16681 sigma.exists | |
0.000017 16682 set.range_sigma_eq_Union_range | |
0.000017 16683 supr_le_supr_const | |
0.000017 16684 set.Union_subset_Union_const | |
0.000017 16685 linear_independent_empty_type | |
0.000017 16686 not_nonempty_iff_imp_false | |
0.000017 16687 disjoint.mono_right | |
0.000017 16688 linear_independent_Union_finite_subtype | |
0.000016 16689 linear_independent_Union_finite | |
0.000017 16690 linear_map.std_basis_apply | |
0.000017 16691 linear_map.std_basis_same | |
0.000017 16692 linear_map.ker_std_basis | |
0.000017 16693 submodule.comap_infi | |
0.000017 16694 function.eval | |
0.000017 16695 linear_map.coe_proj | |
0.000017 16696 function.eval_apply | |
0.000017 16697 linear_map.std_basis_ne | |
0.000017 16698 linear_map.proj_std_basis_ne | |
0.000017 16699 linear_map.supr_range_std_basis_le_infi_ker_proj | |
0.000017 16700 linear_map.proj_apply | |
0.000017 16701 linear_map.disjoint_std_basis_std_basis | |
1.856240 16702 pi.has_bot | |
0.000076 16703 pi.semilattice_inf_bot._proof_1 | |
0.000024 16704 pi.semilattice_inf_bot._proof_2 | |
0.000015 16705 pi.semilattice_inf_bot._proof_3 | |
0.000014 16706 pi.semilattice_inf_bot._proof_4 | |
0.000014 16707 pi.semilattice_inf_bot._proof_5 | |
0.000016 16708 pi.semilattice_inf_bot._proof_6 | |
0.000014 16709 pi.semilattice_inf_bot._proof_7 | |
0.000014 16710 pi.semilattice_inf_bot._proof_8 | |
0.000014 16711 pi.semilattice_inf_bot._proof_9 | |
0.000017 16712 pi.has_inf | |
0.000017 16713 pi.semilattice_inf_bot._proof_10 | |
0.000015 16714 pi.semilattice_inf_bot._proof_11 | |
0.000017 16715 pi.semilattice_inf_bot._proof_12 | |
0.000018 16716 pi.semilattice_inf_bot | |
0.000015 16717 set.disjoint_iff | |
0.000016 16718 set.disjoint_singleton_left | |
0.000015 16719 pi.linear_independent_std_basis | |
0.000017 16720 eq_top_mono | |
0.000015 16721 supr_pos | |
0.000018 16722 submodule.mem_supr_of_mem | |
0.000017 16723 linear_map.infi_ker_proj_le_supr_range_std_basis | |
0.000016 16724 linear_map.supr_range_std_basis | |
0.000015 16725 pi.is_basis_std_basis | |
0.000017 16726 dim_pi | |
0.000015 16727 cardinal.mk_prod | |
0.000014 16728 cardinal.sum_const_eq_lift_mul | |
0.000016 16729 dim_fun_eq_lift_mul | |
0.000015 16730 dim_fun' | |
0.000019 16731 finite_dimensional.findim_fintype_fun_eq_card | |
0.000015 16732 finite_dimensional.findim_fin_fun | |
0.000014 16733 real.decidable_le | |
0.000014 16734 metric.closed_ball_subset_closed_ball | |
0.000016 16735 is_closed.mem_of_nhds_within_ne_bot | |
0.000017 16736 is_compact.inter_right | |
0.000015 16737 metric.is_closed_ball | |
0.000016 16738 proper_space_of_compact_closed_ball_of_le | |
0.000017 16739 set.image_preimage_eq | |
0.000017 16740 function.surjective.image_preimage | |
0.000017 16741 filter.comap_inf_principal_ne_bot_of_image_mem | |
0.000017 16742 filter.tendsto.ne_bot | |
0.000017 16743 filter.tendsto.inf | |
0.000016 16744 is_compact.image_of_continuous_on | |
0.000017 16745 is_compact.image | |
0.000017 16746 metric.bounded | |
0.000017 16747 diagonal_eq_range_diagonal_map | |
0.000017 16748 prod_subset_compl_diagonal_iff_disjoint | |
0.000017 16749 nhds_contain_boxes | |
0.000017 16750 set.bInter_empty | |
0.000017 16751 is_open_bInter | |
0.000017 16752 nhds_contain_boxes_of_compact | |
0.000017 16753 set.preimage_swap_prod | |
0.000017 16754 set.image_swap_prod | |
0.000017 16755 nhds_contain_boxes.symm | |
0.000017 16756 set.prod_singleton | |
0.000016 16757 nhds_contain_boxes_of_singleton | |
0.000017 16758 generalized_tube_lemma | |
0.000017 16759 compact_compact_separated | |
0.000017 16760 cluster_pt.of_le_nhds' | |
0.000017 16761 filter.principal_singleton | |
0.000016 16762 compact_singleton | |
0.000018 16763 is_compact.is_closed | |
0.000016 16764 metric.bounded.subset | |
0.000017 16765 metric.bounded_empty | |
0.000017 16766 supr_union | |
0.000017 16767 set.bUnion_union | |
0.000017 16768 set.bUnion_singleton | |
0.000017 16769 set.bUnion_insert | |
0.000017 16770 metric.bounded_iff_mem_bounded | |
0.000017 16771 dist_triangle_right | |
0.000016 16772 metric.bounded_closed_ball | |
0.000017 16773 metric.bounded_iff_subset_ball | |
0.000017 16774 metric.bounded_union | |
0.000017 16775 metric.bounded_bUnion | |
0.000017 16776 metric.ball_subset_closed_ball | |
0.000017 16777 metric.bounded_ball | |
0.000017 16778 set.Union_subtype | |
0.000016 16779 set.preimage_range | |
0.000017 16780 subtype.coe_preimage_self | |
0.000017 16781 finset.supr_coe | |
0.000017 16782 finset.supr_finset_image | |
0.000016 16783 finset.set_bUnion_finset_image | |
0.000017 16784 is_compact.elim_finite_subcover_image | |
0.000017 16785 finite_cover_balls_of_compact | |
0.000017 16786 metric.bounded_of_compact | |
0.000017 16787 is_compact.bounded | |
0.000017 16788 compact_empty | |
0.000017 16789 compact_of_is_closed_subset | |
0.000016 16790 metric.compact_iff_closed_bounded | |
0.000017 16791 emetric.diam | |
0.000017 16792 metric.diam | |
0.000017 16793 antilipschitz_with.equations._eqn_1 | |
0.000016 16794 antilipschitz_with_iff_le_mul_dist | |
0.000017 16795 antilipschitz_with.le_mul_dist | |
0.000017 16796 metric.diam.equations._eqn_1 | |
0.000017 16797 emetric.diam.equations._eqn_1 | |
0.000016 16798 emetric.diam_le_iff | |
0.000017 16799 emetric.edist_le_of_diam_le | |
0.000017 16800 emetric.edist_le_diam_of_mem | |
0.000017 16801 metric.dist_le_diam_of_mem' | |
0.000017 16802 ne_top_of_le_ne_top | |
0.000015 16803 emetric.diam_le | |
0.000016 16804 metric.ediam_le_of_forall_dist_le | |
0.000017 16805 metric.bounded_iff_ediam_ne_top | |
0.000017 16806 metric.bounded.ediam_ne_top | |
0.000017 16807 metric.dist_le_diam_of_mem | |
0.000017 16808 antilipschitz_with.bounded_preimage | |
0.000017 16809 antilipschitz_with.proper_space | |
0.000017 16810 closed_ball_pi | |
0.000016 16811 ultrafilter.of_compl_not_mem_iff._proof_1 | |
0.000017 16812 ultrafilter.of_compl_not_mem_iff._proof_2 | |
0.000017 16813 ultrafilter.of_compl_not_mem_iff | |
0.000017 16814 ultrafilter.map._proof_1 | |
0.000017 16815 ultrafilter.map | |
0.000016 16816 compact_pi_infinite | |
0.000017 16817 pi_proper_space | |
0.000017 16818 continuous_linear_equiv.continuous | |
3.799286 16819 continuous_linear_equiv.surjective | |
0.000076 16820 finite_dimensional.proper | |
0.000024 16821 sub_le | |
0.000015 16822 closed_ball_Icc | |
0.000014 16823 set.Icc.equations._eqn_1 | |
0.000014 16824 set.Icc_self | |
0.000014 16825 Ioc_mem_nhds_within_Iic | |
0.000014 16826 ultrafilter.diff_mem_iff | |
0.000014 16827 set.Icc_subset_Icc_union_Ioc | |
0.000014 16828 set.Ioc_subset_Ioc | |
0.000014 16829 set.Ioc_subset_Ioc_left | |
0.000014 16830 set.mem_Ioc | |
0.000016 16831 mem_nhds_within_Ici_iff_exists_mem_Ioc_Ico_subset | |
0.000017 16832 and.right_comm | |
0.000017 16833 set.Icc_diff_left | |
0.000015 16834 set.union_eq_self_of_subset_right | |
0.000014 16835 set.Ioc_union_left | |
0.000015 16836 set.Ico_union_right | |
0.000014 16837 set.union_subset_union_right | |
0.000016 16838 set.Ioc_subset_Icc_self | |
0.000017 16839 set.Icc_subset_Icc_union_Icc | |
0.000016 16840 set.Icc_eq_empty | |
0.000015 16841 compact_Icc | |
0.000015 16842 real.proper_space | |
0.000017 16843 finite_dimensional.proper_real | |
0.000015 16844 finite_dimensional.proper_is_R_or_C | |
0.000016 16845 real.is_R_or_C._proof_1 | |
0.000017 16846 or.intro_left | |
0.000017 16847 real.is_R_or_C._proof_2 | |
0.000017 16848 add_monoid_hom.to_fun_eq_coe | |
0.000017 16849 add_monoid_hom.id_apply | |
0.000017 16850 real.is_R_or_C._proof_3 | |
0.000017 16851 real.is_R_or_C._proof_4 | |
0.000017 16852 real.is_R_or_C._proof_5 | |
0.000017 16853 real.is_R_or_C._proof_6 | |
0.000017 16854 real.is_R_or_C._proof_7 | |
0.000016 16855 real.is_R_or_C._proof_8 | |
0.000017 16856 real.is_R_or_C._proof_9 | |
0.000017 16857 real.is_R_or_C._proof_10 | |
0.000017 16858 pow_two | |
0.000017 16859 real.is_R_or_C._proof_11 | |
0.000017 16860 real.is_R_or_C._proof_12 | |
0.000017 16861 real.is_R_or_C._proof_13 | |
0.000017 16862 real.is_R_or_C._proof_14 | |
0.000016 16863 real.is_R_or_C | |
0.000017 16864 fin.tail | |
0.000017 16865 fin_succ_equiv._proof_1 | |
0.000017 16866 fin_succ_equiv._proof_2 | |
0.000017 16867 option.cases_on'_none | |
0.000016 16868 option.cases_on'_some | |
0.000017 16869 nat.lt.step | |
0.000017 16870 fin.cast_succ_mk | |
0.000017 16871 subtype.mk_lt_mk | |
0.000017 16872 fin.pred._main._proof_1 | |
0.000016 16873 fin.pred._main.equations._eqn_1 | |
0.000017 16874 fin.pred.equations._eqn_1 | |
0.000017 16875 fin.succ_above_pred_above | |
0.000017 16876 fin_succ_equiv'._proof_1 | |
0.000016 16877 fin.pred_above_succ_above | |
0.000017 16878 fin_succ_equiv'._proof_2 | |
0.000017 16879 fin_succ_equiv' | |
0.000017 16880 fin_succ_equiv | |
0.000018 16881 equiv.option_equiv_sum_punit._match_1 | |
0.000017 16882 equiv.option_equiv_sum_punit._match_2 | |
0.000017 16883 equiv.option_equiv_sum_punit._proof_1 | |
0.000016 16884 equiv.option_equiv_sum_punit._proof_2 | |
0.000017 16885 equiv.option_equiv_sum_punit | |
0.000017 16886 set.range_unique | |
0.000017 16887 linear_independent_option' | |
0.000017 16888 option.cases_on'_none_coe | |
0.000017 16889 linear_independent_option | |
0.000017 16890 fin_succ_equiv'.equations._eqn_1 | |
0.000016 16891 fin_succ_equiv_symm'_some_above | |
0.000017 16892 fin_succ_equiv_symm_some | |
0.000017 16893 fin_succ_equiv_symm_coe | |
0.000017 16894 fin_succ_equiv_symm_none | |
0.000017 16895 linear_independent_fin_cons | |
0.000017 16896 fin.tail.equations._eqn_1 | |
0.000016 16897 fin.cons_self_tail | |
0.000017 16898 linear_independent_fin_succ | |
0.000017 16899 linear_independent_fin2 | |
0.000017 16900 complex.I_ne_zero | |
0.000018 16901 matrix.vec_head | |
0.000016 16902 matrix.cons_val_one | |
0.000017 16903 matrix.head_cons | |
0.000017 16904 fin.exists_fin_succ | |
0.000016 16905 set.singleton_union | |
0.000017 16906 matrix.range_cons | |
0.000017 16907 set.range_eq_empty | |
0.000017 16908 matrix.range_empty | |
0.000017 16909 set.is_lawful_singleton | |
0.000017 16910 complex.is_basis_one_I | |
0.000017 16911 complex.finite_dimensional | |
0.000017 16912 complex.is_R_or_C._proof_1 | |
0.000017 16913 complex.is_R_or_C._proof_2 | |
0.000017 16914 complex.I_mul_I | |
0.000017 16915 complex.is_R_or_C._proof_3 | |
0.000016 16916 complex.is_R_or_C._proof_4 | |
0.000017 16917 complex.is_R_or_C._proof_5 | |
0.000017 16918 complex.is_R_or_C._proof_6 | |
0.000017 16919 complex.is_R_or_C._proof_7 | |
0.000017 16920 complex.is_R_or_C._proof_8 | |
0.000017 16921 complex.is_R_or_C._proof_9 | |
0.000017 16922 complex.is_R_or_C._proof_10 | |
0.000016 16923 complex.conj_I | |
0.000016 16924 complex.is_R_or_C._proof_11 | |
0.000016 16925 complex.norm_sq_eq_abs | |
0.000017 16926 complex.norm_sq_apply | |
0.000017 16927 complex.is_R_or_C._proof_12 | |
0.000016 16928 complex.is_R_or_C._proof_13 | |
0.000017 16929 complex.is_R_or_C._proof_14 | |
0.000017 16930 complex.div_I | |
0.000017 16931 complex.is_R_or_C | |
0.000017 16932 has_ftaylor_series_up_to | |
0.000017 16933 times_cont_diff | |
0.000017 16934 times_cont_diff_on | |
0.000017 16935 continuous_linear_map.uncurry_left._proof_1 | |
0.000016 16936 continuous_linear_map.uncurry_left._proof_2 | |
0.000017 16937 linear_map.uncurry_left._proof_1 | |
0.000017 16938 linear_map.uncurry_left._proof_2 | |
0.000017 16939 fin.tail_update_zero | |
0.000016 16940 fin.tail_update_succ | |
0.000018 16941 linear_map.uncurry_left._proof_3 | |
0.000017 16942 multilinear_map.smul_apply | |
2.184410 16943 linear_map.uncurry_left._proof_4 | |
0.000078 16944 linear_map.uncurry_left | |
0.000081 16945 continuous_linear_map.uncurry_left._proof_3 | |
0.000016 16946 continuous_linear_map.uncurry_left._proof_4 | |
0.000014 16947 continuous_linear_map.uncurry_left._proof_5 | |
0.000014 16948 continuous_linear_map.uncurry_left._proof_6 | |
0.000015 16949 continuous_multilinear_map.to_multilinear_map_linear._proof_1 | |
0.000017 16950 continuous_multilinear_map.to_multilinear_map_linear._proof_2 | |
0.000017 16951 continuous_multilinear_map.to_multilinear_map_linear | |
0.000017 16952 continuous_linear_map.uncurry_left._proof_7 | |
0.000016 16953 continuous_linear_map.uncurry_left._proof_8 | |
0.000015 16954 continuous_linear_map.norm_map_tail_le | |
0.000015 16955 continuous_linear_map.uncurry_left._proof_9 | |
0.000017 16956 continuous_linear_map.uncurry_left | |
0.000020 16957 fderiv_within | |
0.000017 16958 iterated_fderiv_within._proof_1 | |
0.000017 16959 iterated_fderiv_within | |
0.000014 16960 ftaylor_series_within | |
0.000014 16961 has_ftaylor_series_up_to.zero_eq | |
0.000018 16962 has_ftaylor_series_up_to.fderiv | |
0.000015 16963 has_ftaylor_series_up_to.cont | |
0.000018 16964 has_ftaylor_series_up_to_on_univ_iff | |
0.000017 16965 unique_diff_on | |
0.000015 16966 ftaylor_series_within.equations._eqn_1 | |
0.000014 16967 iterated_fderiv_within_zero_apply | |
0.000017 16968 with_top.add_one_le_of_lt | |
0.000015 16969 iterated_fderiv_within_succ_apply_left | |
0.000016 16970 differentiable_within_at | |
0.000018 16971 differentiable_within_at.has_fderiv_within_at | |
0.000017 16972 has_fderiv_within_at.differentiable_within_at | |
0.000017 16973 has_fderiv_within_at.fderiv_within | |
0.000016 16974 has_fderiv_within_at.congr_of_eventually_eq | |
0.000017 16975 fderiv_within.equations._eqn_1 | |
0.000017 16976 fderiv_within_zero_of_not_differentiable_within_at | |
0.000017 16977 differentiable_within_at.congr_of_eventually_eq | |
0.000016 16978 filter.eventually_eq.fderiv_within_eq | |
0.000017 16979 fderiv_within_congr | |
0.000017 16980 fderiv_within_subset | |
0.000017 16981 dense.mono | |
0.000017 16982 tangent_cone_mono_nhds | |
0.000016 16983 unique_diff_within_at.mono_nhds | |
0.000017 16984 unique_diff_within_at_congr | |
0.000017 16985 unique_diff_within_at_inter | |
0.000017 16986 unique_diff_within_at.inter | |
0.000017 16987 differentiable_within_at.equations._eqn_1 | |
0.000017 16988 differentiable_within_at_inter | |
0.000017 16989 fderiv_within_inter | |
0.000018 16990 iterated_fderiv_within_inter_open | |
0.000016 16991 unique_diff_on.inter | |
0.000017 16992 iterated_fderiv_within_inter' | |
0.000017 16993 iterated_fderiv_within_inter | |
0.000017 16994 has_ftaylor_series_up_to_on.zero_eq' | |
0.000016 16995 iterated_fderiv_within_zero_eq_comp | |
0.000017 16996 continuous_multilinear_curry_left_equiv._proof_1 | |
0.000017 16997 continuous_multilinear_curry_left_equiv._proof_2 | |
0.000017 16998 continuous_multilinear_curry_left_equiv._proof_3 | |
0.000017 16999 continuous_multilinear_curry_left_equiv._proof_4 | |
0.000017 17000 continuous_multilinear_curry_left_equiv._proof_5 | |
0.000017 17001 continuous_multilinear_curry_left_equiv._proof_6 | |
0.000017 17002 continuous_multilinear_curry_left_equiv._proof_7 | |
0.000017 17003 continuous_multilinear_curry_left_equiv._proof_8 | |
0.000015 17004 continuous_multilinear_map.curry_left_apply | |
0.000014 17005 continuous_linear_map.uncurry_left_apply | |
0.000016 17006 fin.tail_cons | |
0.000017 17007 continuous_linear_map.curry_uncurry_left | |
0.000017 17008 linear_map.uncurry_left_apply | |
0.000017 17009 multilinear_map.curry_left_apply | |
0.000017 17010 multilinear_map.uncurry_curry_left | |
0.000017 17011 continuous_multilinear_map.uncurry_curry_left | |
0.000017 17012 continuous_multilinear_curry_left_equiv._proof_9 | |
0.000017 17013 continuous_multilinear_curry_left_equiv._proof_10 | |
0.000017 17014 continuous_multilinear_curry_left_equiv._proof_11 | |
0.000017 17015 continuous_multilinear_curry_left_equiv | |
0.000017 17016 iterated_fderiv_within_succ_eq_comp_left | |
0.000017 17017 function.comp_apply | |
0.000017 17018 has_ftaylor_series_up_to_on.eq_ftaylor_series_of_unique_diff_on | |
0.000017 17019 has_ftaylor_series_up_to_on.mono | |
0.000018 17020 continuous_on_of_locally_continuous_on | |
0.000017 17021 filter.eventually_eq.symm | |
0.000016 17022 eventually_eq_nhds_within_of_eq_on | |
0.000018 17023 set.eq_on.eventually_eq_nhds_within | |
0.000017 17024 continuous_on.congr_mono | |
0.000017 17025 continuous_on.congr | |
0.000017 17026 times_cont_diff_on.ftaylor_series_within | |
0.000017 17027 unique_diff_on_univ | |
0.000017 17028 has_ftaylor_series_up_to_on.of_le | |
0.000017 17029 has_ftaylor_series_up_to.has_ftaylor_series_up_to_on | |
0.000017 17030 times_cont_diff_on_univ | |
0.000017 17031 times_cont_diff_on.equations._eqn_1 | |
0.000017 17032 times_cont_diff_at.equations._eqn_1 | |
7.648075 17033 times_cont_diff_iff_times_cont_diff_at | |
0.000082 17034 times_cont_diff.times_cont_diff_at | |
0.000023 17035 times_cont_diff_within_at.of_le | |
0.000014 17036 times_cont_diff_on.of_le | |
0.000015 17037 times_cont_diff_on_iff_forall_nat_le | |
0.000014 17038 times_cont_diff_on_top | |
0.000015 17039 times_cont_diff_on_all_iff_nat | |
0.000014 17040 times_cont_diff_all_iff_nat | |
0.000014 17041 continuous_within_at.mono_of_mem | |
0.000015 17042 continuous_on.continuous_within_at | |
0.000014 17043 inducing.tendsto_nhds_iff | |
0.000017 17044 inducing.continuous_iff | |
0.000017 17045 inducing.continuous_on_iff | |
0.000017 17046 isometry.antilipschitz | |
0.000015 17047 isometry.uniform_inducing | |
0.000014 17048 isometry.comp_continuous_on_iff | |
0.000014 17049 linear_isometry_equiv.comp_continuous_on_iff | |
0.000015 17050 has_ftaylor_series_up_to_on.continuous_on | |
0.000016 17051 nhds_within_singleton | |
0.000017 17052 nhds_within_insert | |
0.000015 17053 mem_nhds_within_insert | |
0.000014 17054 times_cont_diff_within_at.continuous_within_at | |
0.000014 17055 times_cont_diff_on.continuous_on | |
0.000014 17056 set.eq_on.symm | |
0.000017 17057 continuous_on_congr | |
0.000015 17058 has_ftaylor_series_up_to_on_zero_iff | |
0.000017 17059 times_cont_diff_on_zero | |
0.000017 17060 times_cont_diff_zero | |
0.000015 17061 homeomorph.surjective | |
0.000014 17062 homeomorph.range_coe | |
0.000014 17063 homeomorph.map_nhds_eq | |
0.000014 17064 add_units.neg_add_cancel_left | |
0.000016 17065 add_units.add_neg_cancel_left | |
0.000015 17066 add_units.add_left | |
0.000016 17067 equiv.add_left | |
0.000017 17068 homeomorph.add_left._proof_1 | |
0.000017 17069 homeomorph.add_left._proof_2 | |
0.000017 17070 homeomorph.add_left._proof_3 | |
0.000017 17071 homeomorph.add_left._proof_4 | |
0.000017 17072 homeomorph.add_left | |
0.000017 17073 map_add_left_nhds | |
0.000017 17074 map_add_left_nhds_zero | |
0.000017 17075 asymptotics.is_O_with_map | |
0.000017 17076 asymptotics.is_o_map | |
0.000018 17077 has_fderiv_at_iff_is_o_nhds_zero | |
0.000017 17078 has_deriv_at_iff_is_o_nhds_zero | |
0.000016 17079 cau_seq.const_lim_zero | |
0.000017 17080 cau_seq.const_equiv | |
0.000017 17081 cau_seq.eq_lim_of_const_equiv | |
0.000017 17082 mul_lt_mul'' | |
0.000017 17083 cau_seq.mul_lim_zero_left | |
0.000017 17084 cau_seq.lim_mul_lim | |
0.000017 17085 cau_seq.lim_eq_of_equiv_const | |
0.000017 17086 cau_seq.lim_eq_lim_of_equiv | |
0.000017 17087 cau_seq.cauchy₂ | |
0.000015 17088 abv_sum_le_sum_abv | |
0.000014 17089 sum_range_sub_sum_range | |
0.000018 17090 mul_lt_mul_right | |
0.000017 17091 lt_add_of_pos_left | |
0.000016 17092 norm_num.bit0_mul | |
0.000017 17093 norm_num.mul_bit0' | |
0.000017 17094 norm_num.mul_bit0_bit0 | |
0.000017 17095 finset.sum_sigma' | |
0.000017 17096 nat.sub_lt_sub_right_iff | |
0.000017 17097 nat.lt_sub_right_of_add_lt | |
0.000017 17098 nat.lt_sub_left_of_add_lt | |
0.000017 17099 nat.lt_sub_left_iff_add_lt | |
0.000017 17100 nat.lt_sub_right_iff_add_lt | |
0.000017 17101 sum_range_diag_flip | |
0.000017 17102 cauchy_product | |
0.000017 17103 nat.choose._main | |
0.000017 17104 nat.choose | |
0.000016 17105 finset.sum_range_succ | |
0.000017 17106 nat.choose._main.equations._eqn_1 | |
0.000017 17107 nat.choose.equations._eqn_1 | |
0.000017 17108 nat.choose._main.equations._eqn_4 | |
0.000017 17109 nat.choose.equations._eqn_4 | |
0.000017 17110 nat.choose_zero_succ | |
0.000017 17111 nat.choose_succ_succ | |
0.000017 17112 nat.choose_eq_zero_of_lt | |
0.000016 17113 nat.choose_self | |
0.000017 17114 nat.choose_zero_right | |
0.000017 17115 nat.choose_succ_self | |
0.000017 17116 commute.add_pow | |
0.000017 17117 add_pow | |
0.000016 17118 nat.factorial_zero | |
0.000017 17119 nat.factorial_one | |
0.000017 17120 nat.choose_mul_factorial_mul_factorial | |
0.000017 17121 char_zero_of_inj_zero | |
0.000017 17122 complex.char_zero_complex | |
0.000018 17123 nat.choose_pos | |
0.000016 17124 complex.exp_add | |
0.000017 17125 norm_num.add_pos_neg_neg | |
0.000017 17126 norm_num.add_neg_pos_neg | |
0.000017 17127 finset.range_one | |
0.000016 17128 cau_seq.lim_const | |
0.000017 17129 complex.exp.equations._eqn_1 | |
0.000017 17130 cau_seq.lim_neg | |
0.000017 17131 cau_seq.lim_add | |
0.000017 17132 is_absolute_value.sub_abv_le_abv_sub | |
0.000016 17133 is_absolute_value.abs_abv_sub_le_abv_sub | |
0.000017 17134 complex.abs_abs_sub_le_abs_sub | |
0.000017 17135 complex.is_cau_seq_abs | |
0.000017 17136 complex.cau_seq_abs._proof_1 | |
0.000017 17137 complex.cau_seq_abs | |
0.000017 17138 complex.lim_abs | |
0.000016 17139 cau_seq.const_le | |
0.000017 17140 cau_seq.le_of_eq_of_le | |
0.000018 17141 cau_seq.lim_le | |
0.000016 17142 cau_seq.le_of_exists | |
0.000017 17143 div_le_div_right | |
0.000017 17144 nat.factorial_pos | |
0.000017 17145 mul_le_one | |
0.000016 17146 pow_le_one | |
0.000017 17147 nat.factorial_mul_pow_le_factorial | |
0.000017 17148 geom_sum_def | |
0.000017 17149 geom_sum_inv | |
0.000017 17150 complex.sum_div_factorial_le | |
0.000017 17151 complex.exp_bound | |
0.000017 17152 norm_num.nat_succ_eq | |
0.000017 17153 norm_num.bit0_succ | |
0.000016 17154 norm_num.nat_cast_bit1 | |
0.000017 17155 norm_num.nat_cast_one | |
0.000017 17156 norm_num.nat_cast_bit0 | |
0.000017 17157 le_of_mul_le_mul_right | |
2.106818 17158 norm_num.clear_denom_le | |
0.000077 17159 norm_num.lt_bit1_bit0 | |
0.000024 17160 norm_num.le_bit1_bit0 | |
0.000014 17161 norm_num.sle_one_bit0 | |
0.000015 17162 pow_bit0 | |
0.000014 17163 pow_bit0_nonneg | |
0.000014 17164 pow_two_nonneg | |
0.000014 17165 complex.abs_exp_sub_one_sub_id_le | |
0.000014 17166 continuous_pow | |
0.000014 17167 asymptotics.is_o_pow_pow | |
0.000018 17168 asymptotics.is_o_pow_id | |
0.000017 17169 complex.has_deriv_at_exp | |
0.000018 17170 complex.differentiable_exp | |
0.000015 17171 complex.continuous_exp | |
0.000014 17172 fderiv | |
0.000017 17173 deriv | |
0.000020 17174 differentiable_on | |
0.000018 17175 deriv_within | |
0.000017 17176 differentiable_within_at.mono | |
0.000017 17177 has_ftaylor_series_up_to_on.differentiable_on | |
0.000015 17178 times_cont_diff_within_at.differentiable_within_at' | |
0.000014 17179 times_cont_diff_within_at.differentiable_within_at | |
0.000016 17180 times_cont_diff_on.differentiable_on | |
0.000019 17181 formal_multilinear_series.shift._proof_1 | |
0.000017 17182 formal_multilinear_series.shift | |
0.000017 17183 continuous_multilinear_curry_right_equiv'._proof_1 | |
0.000015 17184 continuous_multilinear_curry_right_equiv'._proof_3 | |
0.000014 17185 continuous_multilinear_curry_right_equiv'._proof_2 | |
0.000018 17186 continuous_multilinear_curry_right_equiv' | |
0.000015 17187 fin.cast_succ_fin_succ | |
0.000014 17188 fin.succ_last | |
0.000014 17189 fin.cons_snoc_eq_snoc_cons | |
0.000017 17190 nat.sub_le_left_iff_le_add | |
0.000015 17191 nat.sub_le_right_iff_le_add | |
0.000016 17192 nat.pred_le_iff | |
0.000018 17193 differentiable_within_at.continuous_within_at | |
0.000017 17194 differentiable_on.continuous_on | |
0.000017 17195 has_ftaylor_series_up_to_on_succ_iff_right | |
0.000017 17196 times_cont_diff_within_at_nat | |
0.000017 17197 formal_multilinear_series.unshift._proof_1 | |
0.000017 17198 formal_multilinear_series.unshift._proof_2 | |
0.000017 17199 formal_multilinear_series.unshift._main | |
0.000017 17200 formal_multilinear_series.unshift | |
0.000017 17201 has_ftaylor_series_up_to_on.congr | |
0.000017 17202 times_cont_diff_within_at_succ_iff_has_fderiv_within_at | |
0.000017 17203 times_cont_diff_within_at.congr_of_eventually_eq | |
0.000016 17204 times_cont_diff_within_at.congr_of_eventually_eq' | |
0.000018 17205 insert_mem_nhds_within_insert | |
0.000017 17206 times_cont_diff_within_at.mono_of_mem | |
0.000017 17207 times_cont_diff_within_at.congr_nhds | |
0.000016 17208 times_cont_diff_within_at_congr_nhds | |
0.000017 17209 times_cont_diff_within_at_inter' | |
0.000017 17210 times_cont_diff_within_at.mono | |
0.000017 17211 filter.eventually_of_mem | |
0.000017 17212 filter.eventually_eq_of_mem | |
0.000017 17213 times_cont_diff_on_succ_iff_fderiv_within | |
0.000017 17214 linear_map.comp_multilinear_map._proof_1 | |
0.000017 17215 linear_map.comp_multilinear_map._proof_2 | |
0.000017 17216 linear_map.comp_multilinear_map | |
0.000017 17217 continuous_linear_map.comp_continuous_multilinear_map._proof_1 | |
0.000017 17218 continuous_linear_map.comp_continuous_multilinear_map._proof_2 | |
0.000017 17219 continuous_linear_map.comp_continuous_multilinear_map._proof_3 | |
0.000017 17220 continuous_linear_map.comp_continuous_multilinear_map | |
0.000017 17221 continuous_linear_map.comp_continuous_multilinear_mapL._proof_1 | |
0.000016 17222 continuous_linear_map.comp_continuous_multilinear_mapL._proof_2 | |
0.000017 17223 continuous_linear_map.comp_continuous_multilinear_mapL._proof_3 | |
0.000017 17224 continuous_linear_map.comp_continuous_multilinear_mapL._proof_4 | |
0.000017 17225 linear_map.mk_continuous₂._proof_1 | |
0.000017 17226 linear_map.mk_continuous₂._proof_2 | |
0.000017 17227 linear_map.mk_continuous₂._proof_3 | |
0.000017 17228 linear_map.mk_continuous₂._proof_4 | |
0.000017 17229 linear_map.mk_continuous₂._proof_5 | |
0.000017 17230 linear_map.mk_continuous₂._proof_6 | |
0.000017 17231 linear_map.mk_continuous₂._proof_7 | |
0.000016 17232 linear_map.mk_continuous_apply | |
0.000018 17233 linear_map.mk_continuous₂._proof_8 | |
0.000017 17234 linear_map.mk_continuous₂._proof_9 | |
0.000016 17235 linear_map.mk_continuous_norm_le' | |
0.000017 17236 monotone_mul_right_of_nonneg | |
0.000017 17237 max_mul_of_nonneg | |
0.000017 17238 linear_map.mk_continuous₂._proof_10 | |
0.000017 17239 linear_map.mk_continuous₂ | |
0.000017 17240 continuous_linear_map.comp_continuous_multilinear_mapL._proof_5 | |
0.000017 17241 continuous_linear_map.comp_continuous_multilinear_mapL._proof_6 | |
0.000017 17242 continuous_linear_map.comp_continuous_multilinear_mapL._proof_7 | |
0.000017 17243 linear_map.mk₂._proof_1 | |
0.000040 17244 linear_map.mk₂'._proof_1 | |
0.000021 17245 linear_map.mk₂'._proof_2 | |
0.000019 17246 linear_map.mk₂'._proof_3 | |
0.000019 17247 linear_map.mk₂' | |
0.000015 17248 linear_map.mk₂._proof_2 | |
0.000017 17249 linear_map.mk₂ | |
2.224829 17250 continuous_linear_map.comp_continuous_multilinear_mapL._proof_8 | |
0.000082 17251 continuous_linear_map.comp_continuous_multilinear_mapL._proof_9 | |
0.000022 17252 continuous_linear_map.comp_continuous_multilinear_mapL._proof_10 | |
0.000015 17253 continuous_linear_map.comp_continuous_multilinear_map_coe | |
0.000014 17254 continuous_multilinear_map.smul_apply | |
0.000014 17255 continuous_linear_map.comp_continuous_multilinear_mapL._proof_11 | |
0.000014 17256 continuous_linear_map.le_op_norm_of_le | |
0.000014 17257 continuous_linear_map.norm_comp_continuous_multilinear_map_le | |
0.000015 17258 continuous_linear_map.comp_continuous_multilinear_mapL._proof_12 | |
0.000014 17259 continuous_linear_map.comp_continuous_multilinear_mapL | |
0.000014 17260 has_ftaylor_series_up_to_on.continuous_linear_map_comp | |
0.000014 17261 times_cont_diff_within_at.continuous_linear_map_comp | |
0.000019 17262 continuous_linear_equiv.comp_times_cont_diff_within_at_iff | |
0.000017 17263 continuous_linear_equiv.comp_times_cont_diff_on_iff | |
0.000015 17264 continuous_linear_equiv.self_comp_symm | |
0.000014 17265 continuous_within_at.preimage_mem_nhds_within' | |
0.000019 17266 multilinear_map.comp_linear_map._proof_1 | |
0.000019 17267 multilinear_map.comp_linear_map._proof_2 | |
0.000015 17268 multilinear_map.comp_linear_map | |
0.000016 17269 continuous_multilinear_map.comp_continuous_linear_map._proof_1 | |
0.000015 17270 continuous_multilinear_map.comp_continuous_linear_map._proof_2 | |
0.000015 17271 continuous_infi_rng | |
0.000018 17272 continuous_pi | |
0.000018 17273 continuous_multilinear_map.comp_continuous_linear_map._proof_3 | |
0.000015 17274 continuous_multilinear_map.comp_continuous_linear_map | |
0.000017 17275 is_linear_map.map_add | |
0.000017 17276 is_linear_map.map_smul | |
0.000015 17277 is_linear_map.mk' | |
0.000014 17278 is_bounded_linear_map.to_is_linear_map | |
0.000015 17279 is_bounded_linear_map.to_linear_map._proof_1 | |
0.000017 17280 is_bounded_linear_map.to_linear_map | |
0.000017 17281 is_bounded_linear_map.to_continuous_linear_map._proof_1 | |
0.000017 17282 is_bounded_linear_map.to_continuous_linear_map._proof_2 | |
0.000015 17283 is_bounded_linear_map.to_continuous_linear_map._match_1 | |
0.000014 17284 is_bounded_linear_map.to_continuous_linear_map._proof_3 | |
0.000018 17285 is_bounded_linear_map.to_continuous_linear_map | |
0.000015 17286 is_bounded_linear_map_continuous_multilinear_map_comp_linear | |
0.000017 17287 fin.comp_cons | |
0.000017 17288 is_bounded_linear_map.has_fderiv_at_filter | |
0.000017 17289 is_bounded_linear_map.has_fderiv_at | |
0.000017 17290 is_bounded_linear_map.dcases_on | |
0.000017 17291 tendsto_norm_sub_self | |
0.000017 17292 is_bounded_linear_map.tendsto | |
0.000017 17293 is_bounded_linear_map.continuous | |
0.000017 17294 has_ftaylor_series_up_to_on.comp_continuous_linear_map | |
0.000017 17295 times_cont_diff_within_at.comp_continuous_linear_map | |
0.000017 17296 times_cont_diff_on.comp_continuous_linear_map | |
0.000018 17297 continuous_linear_equiv.times_cont_diff_on_comp_iff | |
0.000017 17298 with_top.nat_induction | |
0.000017 17299 times_cont_diff_on_succ_iff_has_fderiv_within_at | |
0.000016 17300 continuous_within_at_inter' | |
0.000018 17301 times_cont_diff_on.mono | |
0.000017 17302 times_cont_diff.times_cont_diff_on | |
0.000016 17303 times_cont_diff.of_le | |
0.000017 17304 differentiable_on.equations._eqn_1 | |
0.000017 17305 differentiable_at.equations._eqn_1 | |
0.000017 17306 differentiable_within_at_univ | |
0.000017 17307 differentiable_on_univ | |
0.000017 17308 differentiable_at.has_fderiv_at | |
0.000016 17309 fderiv.equations._eqn_1 | |
0.000017 17310 fderiv_zero_of_not_differentiable_at | |
0.000017 17311 fderiv_within_univ | |
0.000017 17312 times_cont_diff_on_top_iff_fderiv_within | |
0.000017 17313 times_cont_diff_top_iff_fderiv | |
0.000017 17314 is_bounded_bilinear_map.differentiable_at | |
0.000017 17315 is_bounded_bilinear_map.differentiable | |
0.000017 17316 has_fderiv_at.fderiv | |
0.000017 17317 is_bounded_bilinear_map.fderiv | |
0.000017 17318 is_bounded_linear_map.differentiable_at | |
0.000017 17319 is_bounded_linear_map.differentiable | |
0.000017 17320 is_bounded_linear_map.fderiv | |
0.000016 17321 has_fderiv_at_const | |
0.000017 17322 differentiable_at_const | |
0.000018 17323 differentiable_const | |
0.000016 17324 fderiv_const_apply | |
0.000017 17325 fderiv_const | |
0.000017 17326 iterated_fderiv._proof_1 | |
0.000017 17327 iterated_fderiv | |
0.000017 17328 times_cont_diff_on.continuous_on_iterated_fderiv_within | |
0.000017 17329 times_cont_diff_on.differentiable_on_iterated_fderiv_within | |
0.000016 17330 times_cont_diff_on_of_continuous_on_differentiable_on | |
0.000016 17331 times_cont_diff_on_iff_continuous_on_differentiable_on | |
0.000016 17332 iterated_fderiv_zero_apply | |
0.000017 17333 iterated_fderiv_succ_apply_left | |
8.974520 17334 iterated_fderiv_within_univ | |
0.000079 17335 times_cont_diff_iff_continuous_differentiable | |
0.000024 17336 times_cont_diff_of_differentiable_iterated_fderiv | |
0.000015 17337 iterated_fderiv_within_zero_fun | |
0.000014 17338 times_cont_diff_zero_fun | |
0.000015 17339 times_cont_diff_const | |
0.000014 17340 is_bounded_linear_map.times_cont_diff | |
0.000014 17341 is_bounded_bilinear_map.times_cont_diff | |
0.000014 17342 continuous_linear_map.op_norm_comp_le | |
0.000014 17343 is_bounded_bilinear_map_comp | |
0.000014 17344 multilinear_map.prod._proof_1 | |
0.000017 17345 multilinear_map.prod._proof_2 | |
0.000017 17346 multilinear_map.prod | |
0.000017 17347 continuous_multilinear_map.prod._proof_1 | |
0.000015 17348 continuous_multilinear_map.prod._proof_2 | |
0.000014 17349 continuous_multilinear_map.prod._proof_3 | |
0.000016 17350 continuous_multilinear_map.prod | |
0.000015 17351 continuous_multilinear_map.prodL._proof_1 | |
0.000014 17352 continuous_multilinear_map.prodL._proof_2 | |
0.000017 17353 continuous_multilinear_map.prodL._proof_3 | |
0.000015 17354 continuous_multilinear_map.prodL._proof_4 | |
0.000018 17355 continuous_multilinear_map.prodL._proof_5 | |
0.000017 17356 continuous_multilinear_map.prodL._proof_6 | |
0.000015 17357 continuous_multilinear_map.prodL._proof_7 | |
0.000014 17358 continuous_multilinear_map.prodL._proof_8 | |
0.000014 17359 continuous_linear_map.fst | |
0.000014 17360 continuous_linear_map.snd | |
0.000016 17361 continuous_multilinear_map.prodL._proof_9 | |
0.000015 17362 continuous_multilinear_map.prodL._proof_10 | |
0.000017 17363 continuous_multilinear_map.prod_apply | |
0.000017 17364 prod.norm_def | |
0.000017 17365 continuous_multilinear_map.op_norm_prod | |
0.000017 17366 continuous_multilinear_map.prodL._proof_11 | |
0.000017 17367 continuous_multilinear_map.prodL | |
0.000017 17368 linear_isometry_equiv.has_fderiv_at | |
0.000017 17369 has_ftaylor_series_up_to_on.prod | |
0.000016 17370 times_cont_diff_within_at.prod | |
0.000017 17371 times_cont_diff_on.prod | |
0.000017 17372 _private.1808125485.times_cont_diff_on.comp_same_univ | |
0.000017 17373 times_cont_diff_on.comp | |
0.000017 17374 times_cont_diff.comp_times_cont_diff_on | |
0.000017 17375 is_bounded_bilinear_map.is_bounded_linear_map_left | |
0.000017 17376 deriv_within.equations._eqn_1 | |
0.000017 17377 is_bounded_bilinear_map.is_bounded_linear_map_right | |
0.000017 17378 has_continuous_mul.has_continuous_smul | |
0.000017 17379 continuous_linear_map.norm_smul_right_apply | |
0.000017 17380 is_bounded_bilinear_map_smul_right | |
0.000017 17381 times_cont_diff_on_succ_iff_deriv_within | |
0.000017 17382 unique_diff_within_at_of_mem_nhds | |
0.000017 17383 is_open.unique_diff_within_at | |
0.000017 17384 is_open.unique_diff_on | |
0.000017 17385 times_cont_diff_within_at.congr | |
0.000017 17386 times_cont_diff_on.congr | |
0.000017 17387 times_cont_diff_on_congr | |
0.000017 17388 fderiv_within_of_mem_nhds | |
0.000017 17389 fderiv_within_of_open | |
0.000016 17390 deriv_within_of_open | |
0.000018 17391 times_cont_diff_on_succ_iff_deriv_of_open | |
0.000017 17392 times_cont_diff_succ_iff_deriv | |
0.000016 17393 continuous_linear_map.ext_ring_iff | |
0.000017 17394 continuous_linear_map.smul_right_one_eq_iff | |
0.000017 17395 has_deriv_at.unique | |
0.000017 17396 deriv.equations._eqn_1 | |
0.000017 17397 differentiable_at.has_deriv_at | |
0.000017 17398 has_deriv_at.deriv | |
0.000017 17399 complex.deriv_exp | |
0.000017 17400 complex.times_cont_diff_exp | |
0.000016 17401 complex.has_strict_deriv_at_exp | |
0.000018 17402 has_strict_deriv_at.cexp | |
0.000017 17403 has_strict_fderiv_at_id | |
0.000016 17404 has_strict_deriv_at_id | |
0.000017 17405 continuous_linear_map.has_strict_fderiv_at | |
0.000017 17406 has_strict_fderiv_at.neg | |
0.000017 17407 has_strict_deriv_at.neg | |
0.000015 17408 complex.has_strict_deriv_at_cos | |
0.000014 17409 complex.has_deriv_at_cos | |
0.000017 17410 real.has_deriv_at_cos | |
0.000017 17411 real.differentiable_cos | |
0.000016 17412 real.continuous_cos | |
0.000017 17413 real.continuous_on_cos | |
0.000017 17414 eq_zero_of_neg_eq | |
0.000016 17415 complex.conj.equations._eqn_1 | |
0.000017 17416 ring_hom.coe_mk | |
0.000017 17417 complex.conj_of_real | |
0.000017 17418 complex.eq_conj_iff_real | |
0.000016 17419 complex.eq_conj_iff_re | |
0.000017 17420 complex.cosh | |
0.000017 17421 complex.two_cosh | |
0.000016 17422 complex.two_cos | |
0.000017 17423 complex.cosh_mul_I | |
0.000016 17424 complex.conj_neg_I | |
0.000017 17425 complex.cosh.equations._eqn_1 | |
0.000017 17426 ring_hom.map_sub | |
0.000016 17427 complex.is_cau_seq_conj | |
0.000017 17428 complex.cau_seq_conj | |
0.000017 17429 cau_seq.mk_to_fun | |
0.000016 17430 complex.cau_seq_conj.equations._eqn_1 | |
0.000017 17431 complex.lim_aux.equations._eqn_1 | |
0.000017 17432 complex.cau_seq_re.equations._eqn_1 | |
0.000016 17433 complex.cau_seq_im.equations._eqn_1 | |
0.000017 17434 complex.lim_eq_lim_im_add_lim_re | |
0.000017 17435 complex.lim_re | |
0.000016 17436 complex.lim_im | |
0.000017 17437 complex.lim_conj | |
5.566353 17438 complex.exp_conj | |
0.000075 17439 complex.conj_bit0 | |
0.000023 17440 complex.cosh_conj | |
0.000015 17441 complex.abs_zero | |
0.000015 17442 complex.exp_zero | |
0.000014 17443 complex.exp_ne_zero | |
0.000014 17444 complex.exp_neg | |
0.000014 17445 complex.cosh_neg | |
0.000014 17446 complex.cos_conj | |
0.000014 17447 complex.of_real_cos_of_real_re | |
0.000015 17448 complex.of_real_cos | |
0.000018 17449 complex.sinh | |
0.000016 17450 complex.two_sinh | |
0.000017 17451 _private.256401115.cosh_add_aux | |
0.000015 17452 complex.cosh_add | |
0.000014 17453 complex.two_sin | |
0.000014 17454 mul_neg_one | |
0.000014 17455 complex.sinh_mul_I | |
0.000016 17456 complex.cos_add | |
0.000015 17457 complex.cos_two_mul' | |
0.000014 17458 complex.I_sq | |
0.000018 17459 sq_sub_sq | |
0.000017 17460 add_add_sub_cancel | |
0.000014 17461 complex.cosh_add_sinh | |
0.000015 17462 add_sub_sub_cancel | |
0.000014 17463 complex.cosh_sub_sinh | |
0.000014 17464 complex.cosh_sq_sub_sinh_sq | |
0.000016 17465 complex.sin_sq_add_cos_sq | |
0.000017 17466 sub_add_eq_add_sub | |
0.000015 17467 complex.cos_two_mul | |
0.000014 17468 complex.of_real_sub | |
0.000015 17469 complex.of_real_pow | |
0.000013 17470 real.cos_two_mul | |
0.000017 17471 sub_le_sub_right | |
0.000016 17472 bit1_pos | |
0.000015 17473 bit1_pos' | |
0.000014 17474 norm_num.add_bit1_bit0 | |
0.000014 17475 norm_num.add_bit0_bit0 | |
0.000014 17476 norm_num.one_add | |
0.000016 17477 norm_num.sle_bit0_bit0 | |
0.000015 17478 norm_num.bit1_succ | |
0.000017 17479 norm_num.sle_bit1_bit0 | |
0.000018 17480 norm_num.lt_bit0_bit1 | |
0.000017 17481 norm_num.le_bit0_bit1 | |
0.000018 17482 norm_num.sle_one_bit1 | |
0.000017 17483 complex.of_real_div | |
0.000017 17484 complex.cos.equations._eqn_1 | |
0.000017 17485 add_div | |
0.000017 17486 div_sub_div_same | |
0.000017 17487 sub_div | |
0.000017 17488 complex.bit0_re | |
0.000017 17489 complex.bit0_im | |
0.000017 17490 norm_num.mul_bit1_bit1 | |
0.000017 17491 tactic.ring.horner_add_horner_lt | |
0.000015 17492 even | |
0.000016 17493 abs_hom._proof_1 | |
0.000017 17494 linear_ordered_ring.to_nontrivial | |
0.000017 17495 abs_one | |
0.000017 17496 abs_hom | |
0.000017 17497 abs_pow | |
0.000017 17498 max_eq_left_iff | |
0.000017 17499 neg_le_iff_add_nonneg | |
0.000017 17500 neg_le_self_iff | |
0.000017 17501 abs_eq_self | |
0.000016 17502 pow_even_nonneg | |
0.000018 17503 pow_even_abs | |
0.000016 17504 even_bit0 | |
0.000017 17505 pow_bit0_abs | |
0.000017 17506 half_add_self | |
0.000017 17507 add_halves' | |
0.000017 17508 decidable.le_iff_le_iff_lt_iff_lt | |
0.000017 17509 decidable.mul_le_mul_right | |
0.000017 17510 real.cos_bound | |
0.000017 17511 real.cos_pos_of_le_one | |
0.000017 17512 real.cos_one_pos | |
0.000017 17513 norm_num.pow_bit0 | |
0.000017 17514 real.cos_one_le | |
0.000017 17515 real.cos_two_neg | |
0.000017 17516 real.exists_cos_eq_zero | |
0.000015 17517 real.pi | |
0.000014 17518 complex.exp_nat_mul | |
0.000014 17519 real.exp | |
0.000017 17520 complex.cos_add_sin_I | |
0.000017 17521 complex.exp_mul_I | |
0.000017 17522 complex.exp_add_mul_I | |
0.000017 17523 complex.exp_eq_exp_re_mul_sin_add_cos | |
0.000017 17524 complex.exp_of_real_re | |
0.000017 17525 complex.cos_of_real_re | |
0.000017 17526 complex.sin_of_real_re | |
0.000017 17527 complex.sinh.equations._eqn_1 | |
0.000017 17528 complex.sinh_conj | |
0.000017 17529 complex.sinh_neg | |
0.000017 17530 complex.sin_conj | |
0.000016 17531 complex.of_real_sin_of_real_re | |
0.000017 17532 complex.sin_of_real_im | |
0.000017 17533 complex.of_real_exp_of_real_re | |
0.000017 17534 complex.exp_of_real_im | |
0.000017 17535 complex.cos_of_real_im | |
0.000017 17536 real.exp.equations._eqn_1 | |
0.000017 17537 real.exp_ne_zero | |
0.000017 17538 real.integral_domain | |
0.000017 17539 mul_self_eq_one_iff | |
0.000017 17540 complex.of_real_sin | |
0.000017 17541 real.sin_sq_add_cos_sq | |
0.000016 17542 eq_zero_of_mul_self_eq_zero | |
0.000017 17543 real.sin_eq_zero_iff_cos_eq | |
0.000017 17544 real.exp_zero | |
0.000017 17545 real.exp_add | |
0.000017 17546 lt_mul_iff_one_lt_left | |
0.000017 17547 add_neg_of_nonpos_of_neg | |
0.000017 17548 add_nonpos | |
0.000016 17549 cau_seq.le_of_le_of_eq | |
0.000017 17550 cau_seq.le_lim | |
0.000017 17551 real.add_semigroup | |
0.000017 17552 is_add_group_hom | |
0.000016 17553 add_cancel_monoid.to_add_left_cancel_monoid | |
0.000017 17554 is_add_monoid_hom.of_add | |
0.000017 17555 is_add_group_hom.to_is_add_hom | |
0.000016 17556 is_add_group_hom.to_is_add_monoid_hom | |
0.000017 17557 complex.re.is_add_group_hom | |
0.000017 17558 real.add_one_le_exp_of_nonneg | |
0.000017 17559 sub_neg_of_lt | |
0.000017 17560 real.one_le_exp | |
0.000017 17561 complex.of_real_neg | |
0.000017 17562 complex.of_real_exp | |
0.000017 17563 real.exp_neg | |
0.000016 17564 real.exp_pos | |
0.000017 17565 add_neg | |
0.000017 17566 real.exp_strict_mono | |
0.000017 17567 real.exp_injective | |
0.000017 17568 real.exp_eq_one_iff | |
0.000016 17569 sub_floor_div_mul_nonneg | |
0.000017 17570 real.pi.equations._eqn_1 | |
0.000017 17571 real.one_le_pi_div_two | |
0.000016 17572 real.two_le_pi | |
0.000017 17573 real.pi_pos | |
0.000017 17574 _private.1076498285.pow_le_pow_of_le_one_aux | |
0.000017 17575 nat.exists_eq_add_of_le | |
0.000017 17576 pow_le_pow_of_le_one | |
0.000016 17577 norm_num.mul_pos_neg | |
0.000017 17578 norm_num.add_bit1_bit1 | |
4.832578 17579 norm_num.adc_bit1_bit0 | |
0.000123 17580 norm_num.adc_bit0_bit1 | |
0.000027 17581 norm_num.adc_bit0_one | |
0.000015 17582 neg_of_neg_pos | |
0.000014 17583 linarith.mul_neg | |
0.000014 17584 cancel_factors.sub_subst | |
0.000014 17585 cancel_factors.add_subst | |
0.000014 17586 cancel_factors.mul_subst | |
0.000014 17587 mul_div_comm | |
0.000014 17588 cancel_factors.div_subst | |
0.000014 17589 linarith.mul_nonpos | |
0.000014 17590 nat_mul_inj | |
0.000014 17591 nat_mul_inj' | |
0.000014 17592 bit0_injective | |
0.000016 17593 bit0_eq_bit0 | |
0.000014 17594 complex.of_real_bit1 | |
0.000013 17595 complex.bit1_re | |
0.000013 17596 complex.bit1_im | |
0.000014 17597 real.sin_bound | |
0.000013 17598 real.sin_pos_of_pos_of_le_one | |
0.000013 17599 _private.3518407937.sinh_add_aux | |
0.000014 17600 complex.sinh_add | |
0.000013 17601 complex.sin_add | |
0.000013 17602 complex.sin_two_mul | |
0.000014 17603 real.sin_two_mul | |
0.000013 17604 real.sin_pos_of_pos_of_le_two | |
0.000013 17605 real.sin.equations._eqn_1 | |
0.000014 17606 real.sin_add | |
0.000013 17607 real.cos_pi_div_two | |
0.000013 17608 real.sin_pi | |
0.000014 17609 real.cos.equations._eqn_1 | |
0.000013 17610 complex.cos_neg | |
0.000013 17611 real.cos_neg | |
0.000013 17612 zero_pow' | |
0.000014 17613 real.cos_pi | |
0.000013 17614 complex.sin_neg | |
0.000013 17615 real.sin_neg | |
0.000014 17616 real.sin_pi_sub | |
0.000013 17617 real.pi_div_two_le_two | |
0.000013 17618 real.pi_le_four | |
0.000014 17619 le_of_not_ge | |
0.000013 17620 real.sin_pos_of_pos_of_lt_pi | |
0.000013 17621 sub_floor_div_mul_lt | |
0.000014 17622 complex.sin_zero | |
0.000013 17623 real.sin_zero | |
0.000013 17624 real.sin_nat_mul_pi | |
0.000013 17625 real.sin_int_mul_pi | |
0.000014 17626 real.sin_eq_zero_iff | |
0.000013 17627 int.mod_two_eq_zero_or_one | |
0.000013 17628 int.cast_bit0 | |
0.000014 17629 int.cast_two | |
0.000013 17630 real.cos_add | |
0.000013 17631 complex.cos_zero | |
0.000013 17632 real.cos_zero | |
0.000013 17633 real.cos_two_pi | |
0.000014 17634 real.sin_two_pi | |
0.000013 17635 real.cos_nat_mul_two_pi | |
0.000013 17636 real.cos_int_mul_two_pi | |
0.000014 17637 real.cos_int_mul_two_pi_add_pi | |
0.000013 17638 norm_num.lt_neg_pos | |
0.000013 17639 real.cos_eq_one_iff | |
0.000014 17640 complex.of_real_int_cast | |
0.000013 17641 complex.int_cast_re | |
0.000013 17642 complex.int_cast_im | |
0.000013 17643 not_lt_of_gt | |
0.000014 17644 complex.exp_eq_one_iff | |
0.000013 17645 mul_div_assoc' | |
0.000013 17646 real.pi_ne_zero | |
0.000014 17647 complex.two_pi_I_ne_zero | |
0.000013 17648 complex.is_primitive_root_exp_of_coprime | |
0.000013 17649 nat.coprime_one_left | |
0.000014 17650 complex.is_primitive_root_exp | |
0.000013 17651 complex.card_primitive_roots | |
0.000014 17652 pow_bit0_pos | |
0.000013 17653 bex.imp_right | |
0.000013 17654 intermediate_value_univ₂_eventually₁ | |
0.000014 17655 filter.comap_coe_ne_bot_of_le_principal | |
0.000013 17656 filter.eventually_comap' | |
0.000013 17657 is_preconnected.intermediate_value₂_eventually₁ | |
0.000014 17658 eventually_le_of_tendsto_lt | |
0.000013 17659 is_preconnected.intermediate_value_Ioc | |
0.000014 17660 set.ord_connected.inter | |
0.000013 17661 set.ord_connected_Ioi | |
0.000014 17662 set.ord_connected_Iic | |
0.000013 17663 set.ord_connected_Ioc | |
0.000013 17664 is_preconnected_Ioc | |
0.000014 17665 is_glb.nhds_within_ne_bot | |
0.000013 17666 lower_bounds_mono_set | |
0.000014 17667 is_lub.of_subset_of_superset | |
0.000013 17668 is_glb.of_subset_of_superset | |
0.000014 17669 is_glb_Ioo | |
0.000013 17670 is_least_Icc | |
0.000014 17671 is_glb_Icc | |
0.000013 17672 is_glb_Ioc | |
0.000013 17673 set.right_mem_Ioc | |
0.000014 17674 set.nonempty_Ioc | |
0.000013 17675 left_nhds_within_Ioc_ne_bot | |
0.000014 17676 intermediate_value_Ioc | |
0.000013 17677 category_theory.bundled | |
0.000014 17678 Top | |
0.000013 17679 topological_space.opens | |
0.000014 17680 category_theory.bundled.α | |
0.000013 17681 category_theory.bundled.has_coe_to_sort | |
0.000014 17682 Top.has_coe_to_sort | |
0.000013 17683 category_theory.bundled.str | |
0.000013 17684 Top.topological_space | |
0.000014 17685 subtype.partial_order | |
0.000013 17686 topological_space.opens.partial_order | |
0.000014 17687 Top.presheaf.sheaf_condition.opens_le_cover | |
0.000013 17688 category_theory.has_hom | |
0.000019 17689 category_theory.has_hom.hom | |
0.000014 17690 category_theory.category_struct | |
0.000013 17691 category_theory.category_struct.to_has_hom | |
0.000014 17692 category_theory.category_struct.comp | |
0.000013 17693 category_theory.category_struct.id | |
0.000013 17694 category_theory.category | |
0.000014 17695 category_theory.category.to_category_struct | |
0.000013 17696 category_theory.functor | |
0.000014 17697 category_theory.functor.obj | |
0.000013 17698 category_theory.comma | |
0.000014 17699 category_theory.discrete | |
0.000013 17700 category_theory.small_category | |
0.000013 17701 category_theory.discrete_category._proof_1 | |
0.000014 17702 ulift.decidable_eq | |
0.000013 17703 decidable_eq_of_subsingleton._main | |
0.000014 17704 decidable_eq_of_subsingleton | |
0.000013 17705 subsingleton_prop | |
0.000014 17706 category_theory.discrete_category._proof_2 | |
0.000013 17707 category_theory.discrete_category._proof_3 | |
0.699157 17708 category_theory.discrete_category._proof_4 | |
0.000076 17709 category_theory.discrete_category | |
0.000024 17710 category_theory.functor.map | |
0.000015 17711 category_theory.nat_trans | |
0.000014 17712 category_theory.category.comp_id | |
0.000014 17713 category_theory.category.id_comp | |
0.000014 17714 category_theory.nat_trans.id._proof_1 | |
0.000014 17715 category_theory.nat_trans.id | |
0.000014 17716 category_theory.nat_trans.app | |
0.000014 17717 category_theory.category.assoc | |
0.000014 17718 category_theory.nat_trans.naturality | |
0.000014 17719 category_theory.nat_trans.naturality_assoc | |
0.000017 17720 category_theory.nat_trans.vcomp._proof_1 | |
0.000017 17721 category_theory.nat_trans.vcomp | |
0.000015 17722 category_theory.nat_trans.cases_on | |
0.000016 17723 category_theory.nat_trans.ext | |
0.000017 17724 category_theory.functor.category._proof_1 | |
0.000015 17725 category_theory.functor.category._proof_2 | |
0.000014 17726 category_theory.functor.category._proof_3 | |
0.000016 17727 category_theory.functor.category | |
0.000019 17728 category_theory.functor.const._proof_1 | |
0.000016 17729 category_theory.functor.const._proof_2 | |
0.000017 17730 category_theory.functor.const._proof_3 | |
0.000015 17731 category_theory.functor.const._proof_4 | |
0.000014 17732 category_theory.functor.const._proof_5 | |
0.000017 17733 category_theory.functor.const._proof_6 | |
0.000015 17734 category_theory.functor.const._proof_7 | |
0.000017 17735 category_theory.functor.const._proof_8 | |
0.000017 17736 category_theory.functor.const._proof_9 | |
0.000015 17737 category_theory.functor.const | |
0.000014 17738 category_theory.functor.from_punit | |
0.000017 17739 category_theory.structured_arrow | |
0.000015 17740 category_theory.pairwise | |
0.000017 17741 category_theory.pairwise.hom | |
0.000017 17742 category_theory.pairwise.cases_on | |
0.000014 17743 category_theory.pairwise.id._main | |
0.000015 17744 category_theory.pairwise.id | |
0.000017 17745 category_theory.pairwise.hom.cases_on | |
0.000015 17746 category_theory.pairwise.no_confusion_type | |
0.000016 17747 category_theory.pairwise.no_confusion | |
0.000018 17748 category_theory.pairwise.comp._main | |
0.000016 17749 category_theory.pairwise.comp | |
0.000017 17750 category_theory.pairwise.category_theory.category._proof_1 | |
0.000017 17751 category_theory.pairwise.category_theory.category._proof_2 | |
0.000017 17752 category_theory.pairwise.category_theory.category._proof_3 | |
0.000017 17753 category_theory.pairwise.category_theory.category | |
0.000017 17754 category_theory.induced_category | |
0.000017 17755 category_theory.induced_category.category._proof_1 | |
0.000017 17756 category_theory.induced_category.category._proof_2 | |
0.000016 17757 category_theory.induced_category.category._proof_3 | |
0.000017 17758 category_theory.induced_category.category | |
0.000017 17759 category_theory.full_subcategory | |
0.000017 17760 preorder.small_category._proof_1 | |
0.000016 17761 preorder.small_category._proof_2 | |
0.000017 17762 preorder.small_category._proof_3 | |
0.000017 17763 preorder.small_category._proof_4 | |
0.000017 17764 preorder.small_category | |
0.000017 17765 Top.presheaf.sheaf_condition.opens_le_cover.category_theory.category | |
0.000016 17766 topological_space.opens.interior | |
0.000017 17767 topological_space.opens.gi._proof_1 | |
0.000017 17768 topological_space.opens.set.has_coe | |
0.000017 17769 galois_connection.dual | |
0.000017 17770 topological_space.opens.gc | |
0.000017 17771 topological_space.opens.gi._proof_2 | |
0.000016 17772 topological_space.opens.gi._proof_3 | |
0.000017 17773 topological_space.opens.gi._proof_4 | |
0.000017 17774 topological_space.opens.gi | |
0.000017 17775 topological_space.opens.has_subset | |
0.000016 17776 topological_space.opens.complete_lattice._proof_1 | |
0.000017 17777 interior_univ | |
0.000017 17778 topological_space.opens.complete_lattice._proof_2 | |
0.000017 17779 topological_space.opens.complete_lattice._proof_3 | |
0.000017 17780 topological_space.opens.complete_lattice._proof_4 | |
0.000016 17781 topological_space.opens.complete_lattice._proof_5 | |
0.000017 17782 topological_space.opens.complete_lattice._proof_6 | |
0.000017 17783 topological_space.opens.complete_lattice._proof_7 | |
0.000017 17784 topological_space.opens.complete_lattice._proof_8 | |
0.000016 17785 topological_space.opens.complete_lattice._proof_9 | |
0.000017 17786 topological_space.opens.complete_lattice._proof_10 | |
0.000017 17787 topological_space.opens.complete_lattice | |
0.000017 17788 Top.presheaf.sheaf_condition.pairwise_to_opens_le_cover_obj._main | |
0.000015 17789 Top.presheaf.sheaf_condition.pairwise_to_opens_le_cover_obj | |
0.000016 17790 category_theory.hom_of_le | |
0.000017 17791 Top.presheaf.sheaf_condition.pairwise_to_opens_le_cover_map._main | |
0.118903 17792 Top.presheaf.sheaf_condition.pairwise_to_opens_le_cover_map | |
0.000074 17793 Top.presheaf.sheaf_condition.pairwise_to_opens_le_cover._proof_1 | |
0.000024 17794 Top.presheaf.sheaf_condition.pairwise_to_opens_le_cover._proof_2 | |
0.000015 17795 Top.presheaf.sheaf_condition.pairwise_to_opens_le_cover | |
0.000014 17796 Top.presheaf.sheaf_condition.opens_le_cover.index._proof_1 | |
0.000015 17797 Top.presheaf.sheaf_condition.opens_le_cover.index | |
0.000014 17798 Top.presheaf.sheaf_condition.opens_le_cover.hom_to_index._proof_1 | |
0.000014 17799 Top.presheaf.sheaf_condition.opens_le_cover.hom_to_index | |
0.000014 17800 Top.presheaf.sheaf_condition.category_theory.structured_arrow.nonempty | |
0.000015 17801 category_theory.limits.has_zero_morphisms | |
0.000014 17802 category_theory.limits.has_zero_morphisms.has_zero | |
0.000017 17803 category_theory.limits.binary_bicone | |
0.000017 17804 category_theory.limits.cone | |
0.000018 17805 category_theory.limits.cone.X | |
0.000017 17806 category_theory.limits.cone.π | |
0.000015 17807 category_theory.limits.is_limit | |
0.000014 17808 category_theory.limits.walking_pair | |
0.000017 17809 category_theory.discrete.functor._proof_1 | |
0.000015 17810 category_theory.discrete.functor._proof_2 | |
0.000014 17811 category_theory.discrete.functor._proof_3 | |
0.000018 17812 category_theory.discrete.functor._proof_4 | |
0.000017 17813 category_theory.discrete.functor._proof_5 | |
0.000015 17814 category_theory.discrete.functor._proof_6 | |
0.000014 17815 category_theory.discrete.functor._proof_7 | |
0.000017 17816 category_theory.discrete.functor | |
0.000019 17817 category_theory.limits.walking_pair.cases_on | |
0.000017 17818 category_theory.limits.pair | |
0.000017 17819 category_theory.limits.binary_fan | |
0.000017 17820 ulift.ext | |
0.000017 17821 plift.ext | |
0.000017 17822 category_theory.functor.map_id | |
0.000017 17823 category_theory.discrete.functor_map_id | |
0.000017 17824 category_theory.limits.binary_fan.mk._proof_1 | |
0.000017 17825 category_theory.limits.binary_fan.mk | |
0.000017 17826 category_theory.limits.binary_bicone.X | |
0.000017 17827 category_theory.limits.binary_bicone.fst | |
0.000017 17828 category_theory.limits.binary_bicone.snd | |
0.000017 17829 category_theory.limits.binary_bicone.to_cone | |
0.000017 17830 category_theory.limits.cocone | |
0.000017 17831 category_theory.limits.cocone.X | |
0.000017 17832 category_theory.limits.cocone.ι | |
0.000017 17833 category_theory.limits.is_colimit | |
0.000017 17834 category_theory.limits.binary_cofan | |
0.000017 17835 category_theory.limits.binary_cofan.mk._proof_1 | |
0.000017 17836 category_theory.limits.binary_cofan.mk | |
0.000017 17837 category_theory.limits.binary_bicone.inl | |
0.000017 17838 category_theory.limits.binary_bicone.inr | |
0.000017 17839 category_theory.limits.binary_bicone.to_cocone | |
0.000017 17840 category_theory.limits.binary_biproduct_data | |
0.000017 17841 category_theory.limits.has_binary_biproduct | |
0.000016 17842 category_theory.limits.binary_biproduct_data.bicone | |
0.000017 17843 category_theory.limits.has_binary_biproduct.exists_binary_biproduct | |
0.000017 17844 category_theory.limits.get_binary_biproduct_data | |
0.000017 17845 category_theory.limits.binary_biproduct.bicone | |
0.000017 17846 category_theory.limits.biprod | |
0.000017 17847 category_theory.limits.is_limit.lift | |
0.000017 17848 category_theory.limits.binary_biproduct_data.is_limit | |
0.000017 17849 category_theory.limits.binary_biproduct.is_limit | |
0.000017 17850 category_theory.limits.biprod.lift | |
0.000017 17851 category_theory.limits.biprod.fst | |
0.000017 17852 category_theory.limits.is_limit.fac | |
0.000017 17853 category_theory.limits.biprod.lift_fst | |
0.000017 17854 is_locally_constant | |
0.000017 17855 locally_constant | |
0.000017 17856 locally_constant.to_fun | |
0.000015 17857 locally_constant.has_coe_to_fun | |
0.000014 17858 is_locally_constant.comp | |
0.000014 17859 is_locally_constant.tfae | |
0.000014 17860 is_locally_constant.iff_eventually_eq | |
0.000017 17861 is_locally_constant.eventually_eq | |
0.000016 17862 is_locally_constant.prod_mk | |
0.000018 17863 is_locally_constant.comp₂ | |
0.000017 17864 is_locally_constant.add | |
0.000017 17865 locally_constant.is_locally_constant | |
0.000017 17866 locally_constant.has_add._proof_1 | |
0.000017 17867 locally_constant.has_add | |
0.000017 17868 locally_constant.cases_on | |
0.000017 17869 locally_constant.coe_injective | |
0.000016 17870 locally_constant.ext | |
0.000017 17871 locally_constant.add_apply | |
0.000017 17872 locally_constant.add_semigroup._proof_1 | |
0.000017 17873 locally_constant.add_semigroup | |
0.000017 17874 locally_constant.add_monoid._proof_1 | |
0.000017 17875 is_locally_constant.of_constant | |
0.000017 17876 is_locally_constant.const | |
0.000017 17877 locally_constant.const | |
0.000017 17878 locally_constant.has_zero | |
0.000017 17879 locally_constant.zero_apply | |
0.202738 17880 locally_constant.add_zero_class._proof_1 | |
0.000076 17881 locally_constant.add_zero_class._proof_2 | |
0.000023 17882 locally_constant.add_zero_class | |
0.000015 17883 locally_constant.add_monoid._proof_2 | |
0.000014 17884 locally_constant.add_monoid._proof_3 | |
0.000014 17885 locally_constant.add_monoid._proof_4 | |
0.000014 17886 locally_constant.add_monoid._proof_5 | |
0.000015 17887 locally_constant.add_monoid._proof_6 | |
0.000014 17888 locally_constant.add_monoid._proof_7 | |
0.000014 17889 locally_constant.add_monoid | |
0.000016 17890 locally_constant.add_comm_monoid._proof_2 | |
0.000018 17891 is_extensional.cases_on | |
0.000018 17892 measurable_space.generate_measurable | |
0.000017 17893 measurable_space.generate_from | |
0.000017 17894 borel | |
0.000015 17895 borel_space | |
0.000014 17896 topological_space.second_countable_topology | |
0.000018 17897 measurable | |
0.000015 17898 measure_theory.measure.ae._proof_1 | |
0.000019 17899 measure_theory.measure_mono_null | |
0.000016 17900 measure_theory.measure.ae._proof_2 | |
0.000015 17901 measure_theory.outer_measure.union_null | |
0.000015 17902 measure_theory.measure_union_null | |
0.000016 17903 measure_theory.measure.ae._proof_3 | |
0.000015 17904 measure_theory.measure.ae | |
0.000018 17905 ae_measurable | |
0.000017 17906 filter.eventually_eq.refl | |
0.000015 17907 filter.eventually_eq.rfl | |
0.000014 17908 measure_theory.ae_eq_refl | |
0.000018 17909 measure_theory.ae_eq_symm | |
0.000015 17910 filter.eventually_eq.rw | |
0.000016 17911 filter.eventually_eq.trans | |
0.000018 17912 measure_theory.ae_eq_trans | |
0.000017 17913 measure_theory.measure.ae_eq_setoid._proof_1 | |
0.000017 17914 measure_theory.measure.ae_eq_setoid | |
0.000017 17915 measure_theory.ae_eq_fun | |
0.000016 17916 filter.germ_setoid._proof_1 | |
0.000017 17917 filter.germ_setoid | |
0.000017 17918 filter.germ | |
0.000017 17919 measurable_space.mk_of_closure._proof_1 | |
0.000017 17920 measurable_space.mk_of_closure._proof_2 | |
0.000016 17921 measurable_space.mk_of_closure._proof_3 | |
0.000017 17922 measurable_space.mk_of_closure | |
0.000017 17923 measurable_space.measurable_set_generate_from | |
0.000017 17924 measurable_space.generate_measurable.rec_on | |
0.000016 17925 measurable_space.generate_from_le | |
0.000017 17926 measurable_space.generate_from_le_iff | |
0.000017 17927 measurable_space.gi_generate_from._proof_1 | |
0.000016 17928 measurable_space.gi_generate_from._proof_2 | |
0.000017 17929 measurable_space.gi_generate_from._proof_3 | |
0.000017 17930 measurable_space.mk_of_closure_sets | |
0.000016 17931 measurable_space.gi_generate_from._proof_4 | |
0.000017 17932 measurable_space.gi_generate_from | |
0.000017 17933 measurable_space.complete_lattice | |
0.000017 17934 measurable_space.comap._proof_1 | |
0.000017 17935 measurable_space.comap._match_1 | |
0.000017 17936 measurable_space.comap._proof_2 | |
0.000016 17937 measurable_space.comap._match_2 | |
0.000017 17938 measurable_space.comap._proof_3 | |
0.000017 17939 measurable_space.comap | |
0.000014 17940 prod.measurable_space | |
0.000015 17941 function.uncurry | |
0.000014 17942 measure_theory.ae_eq_fun.mk | |
0.000016 17943 ae_measurable.mk | |
0.000017 17944 measurable.comp | |
0.000017 17945 ae_measurable.measurable_mk | |
0.000017 17946 filter.eventually_eq.fun_comp | |
0.000017 17947 ae_measurable.ae_eq_mk | |
0.000017 17948 measurable.comp_ae_measurable | |
0.000016 17949 measure_theory.ae_eq_fun.comp._proof_1 | |
0.000017 17950 measure_theory.ae_eq_fun.mk_eq_mk | |
0.000017 17951 measure_theory.ae_eq_fun.comp._proof_2 | |
0.000016 17952 measure_theory.ae_eq_fun.comp | |
0.000018 17953 measurable_space.map._proof_1 | |
0.000017 17954 measurable_space.map._proof_2 | |
0.000016 17955 measurable_space.map | |
0.000017 17956 measurable_iff_le_map | |
0.000017 17957 measurable.of_le_map | |
0.000017 17958 measurable_space.comap_le_iff_le_map | |
0.000017 17959 measurable_space.map_comp | |
0.000017 17960 measurable.prod | |
0.000017 17961 measurable.prod_mk | |
0.000016 17962 filter.eventually_eq.prod_mk | |
0.000017 17963 ae_measurable.prod_mk | |
0.000017 17964 measure_theory.ae_eq_fun.pair._proof_1 | |
0.000017 17965 measure_theory.ae_eq_fun.pair._proof_2 | |
0.000017 17966 measure_theory.ae_eq_fun.pair | |
0.000016 17967 measure_theory.ae_eq_fun.comp₂ | |
0.000017 17968 has_measurable_add₂ | |
0.000017 17969 has_measurable_add₂.measurable_add | |
0.000017 17970 opens_measurable_space | |
0.000017 17971 measurable.mono | |
0.000016 17972 continuous.borel_measurable | |
0.000017 17973 opens_measurable_space.borel_le | |
0.000016 17974 borel_space.measurable_eq | |
0.000017 17975 continuous.measurable | |
0.000016 17976 topological_space.is_topological_basis | |
0.000017 17977 set.bUnion_eq_univ_iff | |
0.000017 17978 Inf_insert | |
0.000017 17979 set.sInter_insert | |
0.000017 17980 is_open_sInter | |
0.000017 17981 topological_space.is_topological_basis_of_subbasis | |
0.000017 17982 topological_space.second_countable_topology.is_open_generated_countable | |
0.399005 17983 topological_space.exists_countable_basis | |
0.000076 17984 topological_space.countable_basis | |
0.000026 17985 topological_space.countable_countable_basis | |
0.000015 17986 topological_space.is_topological_basis.eq_generate_from | |
0.000014 17987 filter.binfi_sets_eq | |
0.000015 17988 topological_space.is_topological_basis.exists_subset_inter | |
0.000014 17989 topological_space.is_topological_basis.sUnion_eq | |
0.000014 17990 set.mem_bUnion_iff | |
0.000014 17991 topological_space.is_topological_basis.mem_nhds_iff | |
0.000015 17992 topological_space.is_topological_basis.exists_subset_of_mem_open | |
0.000016 17993 topological_space.is_basis_countable_basis | |
0.000017 17994 topological_space.is_open_Union_countable | |
0.000017 17995 topological_space.is_open_sUnion_countable | |
0.000017 17996 measurable_set.bUnion | |
0.000015 17997 measurable_set.sUnion | |
0.000014 17998 borel_eq_generate_from_of_subbasis | |
0.000019 17999 topological_space.is_topological_basis.borel_eq_generate_from | |
0.000015 18000 topological_space.is_topological_basis.second_countable_topology | |
0.000014 18001 set.mem_sUnion | |
0.000018 18002 set.sUnion_eq_univ_iff | |
0.000016 18003 binfi_le_of_le | |
0.000015 18004 topological_space.is_topological_basis_of_open_of_nhds | |
0.000015 18005 topological_space.is_topological_basis.is_open | |
0.000016 18006 topological_space.is_topological_basis.nhds_has_basis | |
0.000018 18007 set.mem_image2_of_mem | |
0.000017 18008 topological_space.is_topological_basis.prod | |
0.000017 18009 set.image_prod | |
0.000015 18010 set.prod_range_range_eq | |
0.000014 18011 set.range_prod_map | |
0.000014 18012 encodable.encode_sigma._main | |
0.000015 18013 encodable.encode_sigma | |
0.000016 18014 encodable.decode_sigma._match_1 | |
0.000018 18015 encodable.decode_sigma | |
0.000016 18016 encodable.encode_sigma._main.equations._eqn_1 | |
0.000017 18017 encodable.encode_sigma.equations._eqn_1 | |
0.000017 18018 encodable.decode_sigma.equations._eqn_1 | |
0.000017 18019 encodable.decode_sigma._match_1.equations._eqn_1 | |
0.000017 18020 encodable.sigma._match_1 | |
0.000014 18021 encodable.sigma._proof_1 | |
0.000014 18022 encodable.sigma | |
0.000016 18023 encodable.prod | |
0.000017 18024 set.countable.prod | |
0.000017 18025 set.countable.image2 | |
0.000017 18026 topological_space.prod.second_countable_topology | |
0.000016 18027 measurable_iff_comap_le | |
0.000017 18028 measurable.of_comap_le | |
0.000017 18029 measurable_fst | |
0.000016 18030 measurable_snd | |
0.000017 18031 measurable_set.prod | |
0.000017 18032 is_open.measurable_set | |
0.000017 18033 topological_space.is_open_of_mem_countable_basis | |
0.000017 18034 prod.opens_measurable_space | |
0.000017 18035 borel_space.opens_measurable | |
0.000017 18036 has_continuous_add.has_measurable_mul₂ | |
0.000017 18037 measure_theory.ae_eq_fun.has_add._proof_1 | |
0.000017 18038 measure_theory.ae_eq_fun.has_add | |
0.000017 18039 measurable.ae_measurable | |
0.000017 18040 measurable_set.const | |
0.000017 18041 measurable_const | |
0.000017 18042 ae_measurable_const | |
0.000017 18043 measure_theory.ae_eq_fun.const | |
0.000016 18044 measure_theory.ae_eq_fun.has_zero | |
0.000017 18045 has_measurable_neg | |
0.000017 18046 has_measurable_neg.measurable_neg | |
0.000017 18047 topological_add_group.has_measurable_neg | |
0.000017 18048 measure_theory.ae_eq_fun.has_neg._proof_1 | |
0.000017 18049 measure_theory.ae_eq_fun.has_neg | |
0.000016 18050 has_measurable_sub₂ | |
0.000017 18051 has_measurable_sub₂.measurable_sub | |
0.000017 18052 measurable.add | |
0.000016 18053 measurable.neg | |
0.000017 18054 has_measurable_div₂_of_add_neg | |
0.000017 18055 measure_theory.ae_eq_fun.has_sub._proof_1 | |
0.000017 18056 measure_theory.ae_eq_fun.has_sub | |
0.000017 18057 relator.lift_fun | |
0.000016 18058 quotient.map₂._proof_1 | |
0.000017 18059 quotient.map₂ | |
0.000017 18060 quotient.map₂' | |
0.000017 18061 filter.germ.map₂._proof_1 | |
0.000016 18062 filter.germ.map₂ | |
0.000017 18063 filter.germ.has_add | |
0.000018 18064 filter.germ.has_coe_t | |
0.000017 18065 filter.germ.quot_mk_eq_coe | |
0.000016 18066 filter.germ.coe_add | |
0.000017 18067 pi.add_semigroup._proof_1 | |
0.000017 18068 pi.add_semigroup | |
0.000017 18069 filter.germ.add_semigroup._proof_1 | |
0.000017 18070 filter.germ.add_semigroup | |
0.000017 18071 filter.germ.add_monoid._proof_1 | |
0.000017 18072 filter.germ.has_lift_t | |
0.000016 18073 filter.germ.has_zero | |
0.000017 18074 filter.germ.induction_on | |
0.000017 18075 filter.germ.coe_zero | |
0.000017 18076 filter.germ.coe_eq | |
0.000017 18077 filter.germ.add_monoid._proof_2 | |
0.000017 18078 filter.germ.add_monoid._proof_3 | |
0.000016 18079 filter.germ.add_monoid._proof_4 | |
0.000017 18080 filter.germ.add_monoid._proof_5 | |
0.000017 18081 filter.germ.add_monoid._proof_6 | |
0.000017 18082 filter.germ.add_monoid._proof_7 | |
0.000017 18083 filter.germ.add_monoid | |
0.000016 18084 filter.germ.sub_neg_add_monoid._proof_1 | |
0.000017 18085 filter.germ.sub_neg_add_monoid._proof_2 | |
1.491528 18086 filter.germ.sub_neg_add_monoid._proof_3 | |
0.000081 18087 filter.germ.sub_neg_add_monoid._proof_4 | |
0.000020 18088 filter.germ.sub_neg_add_monoid._proof_5 | |
0.000015 18089 quot.map._proof_1 | |
0.000014 18090 quot.map | |
0.000015 18091 quotient.map' | |
0.000014 18092 filter.germ.map' | |
0.000014 18093 filter.germ.map._proof_1 | |
0.000014 18094 filter.germ.map | |
0.000014 18095 filter.germ.has_neg | |
0.000016 18096 filter.germ.has_sub | |
0.000018 18097 pi.sub_neg_add_monoid._proof_1 | |
0.000015 18098 pi.sub_neg_add_monoid._proof_2 | |
0.000014 18099 pi.sub_neg_add_monoid._proof_3 | |
0.000014 18100 pi.sub_neg_add_monoid._proof_4 | |
0.000014 18101 pi.sub_neg_add_monoid._proof_5 | |
0.000016 18102 pi.sub_neg_add_monoid._proof_6 | |
0.000018 18103 pi.sub_neg_add_monoid | |
0.000015 18104 filter.germ.sub_neg_add_monoid._proof_6 | |
0.000014 18105 filter.germ.sub_neg_add_monoid | |
0.000016 18106 filter.germ.add_group._proof_1 | |
0.000019 18107 filter.germ.add_group._proof_2 | |
0.000015 18108 filter.germ.add_group._proof_3 | |
0.000014 18109 filter.germ.add_group._proof_4 | |
0.000018 18110 filter.germ.add_group._proof_5 | |
0.000017 18111 filter.germ.add_group._proof_6 | |
0.000015 18112 filter.germ.add_group._proof_7 | |
0.000014 18113 filter.germ.add_group | |
0.000029 18114 measure_theory.ae_eq_fun.to_germ._proof_1 | |
0.000015 18115 measure_theory.ae_eq_fun.to_germ | |
0.000014 18116 quotient.out' | |
0.000019 18117 measure_theory.ae_eq_fun.has_coe_to_fun._proof_1 | |
0.000017 18118 measure_theory.ae_eq_fun.has_coe_to_fun | |
0.000015 18119 measure_theory.ae_eq_fun.measurable | |
0.000015 18120 measure_theory.ae_eq_fun.ae_measurable | |
0.000017 18121 quotient.out_eq' | |
0.000018 18122 measure_theory.ae_eq_fun.mk.equations._eqn_1 | |
0.000015 18123 measure_theory.ae_eq_fun.mk_coe_fn | |
0.000015 18124 measure_theory.ae_eq_fun.ext | |
0.000016 18125 measure_theory.ae_eq_fun.mk_to_germ | |
0.000017 18126 measure_theory.ae_eq_fun.to_germ_eq | |
0.000017 18127 measure_theory.ae_eq_fun.to_germ_injective | |
0.000017 18128 measure_theory.ae_eq_fun.zero_to_germ | |
0.000017 18129 measure_theory.ae_eq_fun.add_group._proof_1 | |
0.000016 18130 measure_theory.ae_eq_fun.induction_on | |
0.000017 18131 measure_theory.ae_eq_fun.induction_on₂ | |
0.000017 18132 measure_theory.ae_eq_fun.comp₂_mk_mk | |
0.000017 18133 filter.germ.map₂_coe | |
0.000016 18134 measure_theory.ae_eq_fun.comp₂_to_germ | |
0.000017 18135 measure_theory.ae_eq_fun.add_to_germ | |
0.000017 18136 measure_theory.ae_eq_fun.add_group._proof_2 | |
0.000017 18137 measure_theory.ae_eq_fun.comp_mk | |
0.000017 18138 filter.germ.map_coe | |
0.000017 18139 measure_theory.ae_eq_fun.comp_to_germ | |
0.000016 18140 measure_theory.ae_eq_fun.neg_to_germ | |
0.000017 18141 measure_theory.ae_eq_fun.sub_to_germ | |
0.000017 18142 measure_theory.ae_eq_fun.add_group | |
0.000017 18143 measure_theory.Lp._proof_1 | |
0.000017 18144 measure_theory.Lp._proof_2 | |
0.000016 18145 filter.Limsup | |
0.000017 18146 filter.limsup | |
0.000017 18147 ess_sup | |
0.000017 18148 measure_theory.snorm_ess_sup | |
0.000016 18149 real.decidable_lt | |
0.000017 18150 complex.decidable_eq | |
0.000017 18151 set.cod_restrict | |
0.000017 18152 strict_mono.cod_restrict | |
0.000016 18153 real.exp_order_iso._proof_1 | |
0.000017 18154 real.has_deriv_at_exp | |
0.000017 18155 real.differentiable_exp | |
0.000017 18156 real.continuous_exp | |
0.000017 18157 real.semilattice_sup | |
0.000017 18158 nontrivial.dcases_on | |
0.000017 18159 by_contra | |
0.000016 18160 filter.nontrivial_iff_nonempty | |
0.000017 18161 filter.map_infi_le | |
0.000017 18162 filter.map_infi_eq | |
0.000017 18163 subtype.coe_le_coe | |
0.000016 18164 filter.map_coe_at_top_of_Ici_subset | |
0.000017 18165 set.Ici_subset_Ioi | |
0.000017 18166 filter.le_comap_map | |
0.000017 18167 filter.comap_map | |
0.000017 18168 filter.at_top_Ioi_eq | |
0.000016 18169 filter.tendsto_Ioi_at_top | |
0.000017 18170 filter.tendsto_at_top_of_add_const_right | |
0.000017 18171 filter.tendsto_at_top_of_add_bdd_above_right' | |
0.000016 18172 filter.tendsto_at_top_add_right_of_le' | |
0.000017 18173 filter.tendsto_at_top_add_const_right | |
0.000017 18174 real.tendsto_exp_at_top | |
0.000017 18175 set.dual_Ioo | |
0.000016 18176 tfae_mem_nhds_within_Iio | |
0.000017 18177 mem_nhds_within_Iio_iff_exists_mem_Ico_Ioo_subset | |
0.000017 18178 Ioo_mem_nhds_within_Iio | |
0.000017 18179 comap_coe_nhds_within_Iio_of_Ioo_subset | |
0.000016 18180 comap_coe_nhds_within_Ioi_of_Ioo_subset | |
0.000017 18181 comap_coe_Ioi_nhds_within_Ioi | |
0.000017 18182 tendsto_Ioi_at_bot | |
0.000017 18183 real.tendsto_exp_neg_at_top_nhds_0 | |
0.000017 18184 filter.tendsto_at_bot | |
0.000016 18185 filter.tendsto_neg_at_top_at_bot | |
0.000017 18186 order_dual.ordered_add_comm_monoid._proof_1 | |
0.000017 18187 order_dual.ordered_add_comm_monoid._proof_2 | |
0.000017 18188 order_dual.ordered_add_comm_monoid._proof_3 | |
0.000016 18189 order_dual.ordered_add_comm_monoid._proof_4 | |
0.000017 18190 order_dual.ordered_add_comm_monoid._proof_5 | |
0.000017 18191 order_dual.ordered_add_comm_monoid._proof_6 | |
3.812279 18192 order_dual.ordered_add_comm_monoid._proof_7 | |
0.000084 18193 order_dual.ordered_add_comm_monoid._proof_8 | |
0.000027 18194 order_dual.ordered_add_comm_monoid._proof_9 | |
0.000020 18195 order_dual.ordered_add_comm_monoid._proof_10 | |
0.000014 18196 order_dual.ordered_add_comm_monoid._proof_11 | |
0.000014 18197 order_dual.ordered_add_comm_monoid._proof_12 | |
0.000015 18198 order_dual.ordered_add_comm_monoid | |
0.000014 18199 order_dual.ordered_add_comm_group._proof_1 | |
0.000014 18200 order_dual.ordered_add_comm_group._proof_2 | |
0.000014 18201 order_dual.ordered_add_comm_group._proof_3 | |
0.000020 18202 order_dual.ordered_add_comm_group._proof_4 | |
0.000017 18203 order_dual.ordered_add_comm_group._proof_5 | |
0.000015 18204 order_dual.ordered_add_comm_group._proof_6 | |
0.000014 18205 order_dual.ordered_add_comm_group._proof_7 | |
0.000018 18206 order_dual.ordered_add_comm_group._proof_8 | |
0.000020 18207 order_dual.ordered_add_comm_group._proof_9 | |
0.000015 18208 order_dual.ordered_add_comm_group._proof_10 | |
0.000016 18209 order_dual.ordered_add_comm_group._proof_11 | |
0.000015 18210 order_dual.ordered_add_comm_group._proof_12 | |
0.000014 18211 order_dual.ordered_add_comm_group._proof_13 | |
0.000016 18212 order_dual.ordered_add_comm_group | |
0.000019 18213 filter.tendsto_neg_at_bot_at_top | |
0.000015 18214 real.tendsto_exp_at_bot | |
0.000017 18215 real.tendsto_exp_at_bot_nhds_within | |
0.000017 18216 real.exp_order_iso._proof_2 | |
0.000015 18217 real.exp_order_iso | |
0.000014 18218 real.log._proof_1 | |
0.000016 18219 real.log | |
0.000019 18220 set.proj_Icc._proof_1 | |
0.000015 18221 set.proj_Icc | |
0.000018 18222 set.Icc_extend | |
0.000017 18223 neg_le_self | |
0.000014 18224 real.arcsin._proof_1 | |
0.000015 18225 set.surj_on | |
0.000016 18226 set.bij_on | |
0.000015 18227 set.bij_on.maps_to | |
0.000016 18228 subtype.val_prop | |
0.000017 18229 set.bij_on.equiv._proof_1 | |
0.000017 18230 set.bij_on.inj_on | |
0.000017 18231 set.bij_on.surj_on | |
0.000017 18232 set.bij_on.bijective | |
0.000017 18233 set.bij_on.equiv | |
0.000017 18234 set.bij_on.mk | |
0.000018 18235 set.inj_on.bij_on_image | |
0.000017 18236 strict_mono_incr_on.inj_on | |
0.000016 18237 strict_mono_incr_on.order_iso._proof_1 | |
0.000017 18238 strict_mono_incr_on.order_iso._proof_2 | |
0.000017 18239 strict_mono_incr_on.order_iso | |
0.000017 18240 real.pi_div_two_pos | |
0.000017 18241 real.sin_pi_div_two | |
0.000017 18242 real.cos_sub_pi_div_two | |
0.000017 18243 complex.cos_sub | |
0.000017 18244 complex.cos_sub_cos | |
0.000017 18245 real.cos_sub_cos | |
0.000017 18246 real.cos_lt_cos_of_nonneg_of_le_pi_div_two | |
0.000017 18247 real.cos_sub | |
0.000017 18248 real.cos_pi_sub | |
0.000018 18249 real.sin_add_pi_div_two | |
0.000016 18250 has_strict_fderiv_at.restrict_scalars | |
0.000017 18251 has_strict_deriv_at_iff_has_strict_fderiv_at | |
0.000018 18252 has_strict_deriv_at.has_strict_fderiv_at | |
0.000017 18253 has_strict_deriv_at.real_of_complex | |
0.000017 18254 has_strict_deriv_at.sub | |
0.000017 18255 complex.has_strict_deriv_at_sin | |
0.000017 18256 real.has_strict_deriv_at_sin | |
0.000017 18257 real.has_deriv_at_sin | |
0.000017 18258 real.differentiable_sin | |
0.000017 18259 real.continuous_sin | |
0.000017 18260 real.sin_pos_of_mem_Ioo | |
0.000017 18261 set.diff_diff | |
0.000017 18262 set.mem_Ioo | |
0.000017 18263 set.Ioc_diff_right | |
0.000017 18264 set.Icc_diff_both | |
0.000017 18265 set.Icc_diff_Ioo_same | |
0.000017 18266 set.nonempty_Ioo | |
0.000017 18267 is_lub_Ioo | |
0.000017 18268 closure_Ioo | |
0.000017 18269 real.sin_nonneg_of_mem_Icc | |
0.000016 18270 cancel_factors.neg_subst | |
0.000017 18271 real.cos_nonneg_of_mem_Icc | |
0.000017 18272 real.cos_nonpos_of_pi_div_two_le_of_le | |
0.000017 18273 real.cos_pos_of_mem_Ioo | |
0.000017 18274 real.cos_neg_of_pi_div_two_lt_of_lt | |
0.000017 18275 linarith.lt_of_lt_of_eq | |
0.000017 18276 linarith.mul_eq | |
0.000016 18277 real.cos_lt_cos_of_nonneg_of_le_pi | |
0.000018 18278 real.sin_lt_sin_of_lt_of_le_pi_div_two | |
0.000017 18279 real.strict_mono_incr_on_sin | |
0.000017 18280 set.eq_of_subset_of_subset | |
0.000016 18281 set.maps_to.image_subset | |
0.000017 18282 set.surj_on.image_eq_of_maps_to | |
0.000017 18283 set.bij_on.image_eq | |
0.000017 18284 abs_le_iff_mul_self_le | |
0.000015 18285 abs_le_one_iff_mul_self_le_one | |
0.000016 18286 real.sin_sq_le_one | |
0.000017 18287 real.abs_sin_le_one | |
0.000017 18288 real.neg_one_le_sin | |
0.000017 18289 real.sin_le_one | |
0.000017 18290 real.sin_mem_Icc | |
0.000017 18291 real.maps_to_sin | |
0.000016 18292 real.inj_on_sin | |
0.000017 18293 intermediate_value_Icc | |
0.000017 18294 real.surj_on_sin | |
0.000017 18295 real.bij_on_sin | |
0.000017 18296 real.sin_order_iso._proof_1 | |
0.000017 18297 real.sin_order_iso | |
0.000017 18298 real.arcsin | |
0.000017 18299 complex.arg | |
0.000017 18300 complex.log | |
0.000017 18301 complex.cpow | |
0.000017 18302 complex.has_pow | |
0.000017 18303 real.rpow | |
0.000017 18304 real.has_pow | |
0.000017 18305 real.rpow_def | |
0.000017 18306 complex.cpow_def | |
0.000017 18307 complex.log.equations._eqn_1 | |
0.000016 18308 complex.log_re | |
0.000018 18309 complex.log_im | |
0.292636 18310 complex.arg.equations._eqn_1 | |
0.000075 18311 real.arcsin_mem_Icc | |
0.000023 18312 real.arcsin.equations._eqn_1 | |
0.000016 18313 set.proj_Icc.equations._eqn_1 | |
0.000014 18314 set.proj_Icc_of_mem | |
0.000015 18315 set.Icc_extend_of_mem | |
0.000014 18316 real.coe_sin_order_iso_apply | |
0.000014 18317 order_iso.apply_symm_apply | |
0.000014 18318 real.sin_arcsin' | |
0.000014 18319 real.arcsin_eq_of_sin_eq | |
0.000017 18320 real.arcsin_zero | |
0.000017 18321 complex.arg_of_real_of_nonneg | |
0.000015 18322 complex.of_real_log | |
0.000015 18323 real.exp_eq_exp | |
0.000014 18324 real.rpow_def_of_nonneg | |
0.000014 18325 real.rpow_nonneg_of_nonneg | |
0.000016 18326 nnreal.rpow._proof_1 | |
0.000017 18327 nnreal.rpow | |
0.000017 18328 nnreal.real.has_pow | |
0.000015 18329 ennreal.rpow._main | |
0.000014 18330 ennreal.rpow | |
0.000017 18331 ennreal.real.has_pow | |
0.000015 18332 measure_theory.simple_func | |
0.000016 18333 measure_theory.simple_func.to_fun | |
0.000018 18334 measure_theory.simple_func.has_coe_to_fun | |
0.000016 18335 measure_theory.simple_func.finite_range' | |
0.000017 18336 measure_theory.simple_func.finite_range | |
0.000017 18337 measure_theory.simple_func.range | |
0.000017 18338 measure_theory.simple_func.lintegral | |
0.000016 18339 measure_theory.lintegral | |
0.000017 18340 measure_theory.snorm' | |
0.000017 18341 measure_theory.snorm | |
0.000017 18342 measure_theory.snorm.equations._eqn_1 | |
0.000016 18343 filter.is_cobounded | |
0.000017 18344 filter.is_cobounded_under | |
0.000017 18345 filter.is_bounded | |
0.000017 18346 filter.is_bounded_under | |
0.000017 18347 cInf_le_cInf | |
0.000017 18348 filter.Limsup_le_Limsup | |
0.000017 18349 filter.eventually_le.trans | |
0.000017 18350 filter.limsup_le_limsup | |
0.000017 18351 filter.is_cobounded_le_of_bot | |
0.000017 18352 filter.is_bounded_le_of_top | |
0.000017 18353 ess_sup_mono_ae | |
0.000016 18354 measure_theory.snorm'.equations._eqn_1 | |
0.000017 18355 nnreal.rpow_eq_pow | |
0.000017 18356 complex.cpow_zero | |
0.000017 18357 real.rpow_zero | |
0.000017 18358 nnreal.rpow_zero | |
0.000016 18359 ennreal.rpow_zero | |
0.000017 18360 ennreal.top_rpow_def | |
0.000017 18361 ennreal.top_rpow_of_pos | |
0.000016 18362 real.log_zero | |
0.000017 18363 complex.arg_zero | |
0.000017 18364 complex.log_zero | |
0.000017 18365 complex.zero_cpow | |
0.000017 18366 real.zero_rpow | |
0.000016 18367 nnreal.zero_rpow | |
0.000017 18368 ennreal.zero_rpow_of_pos | |
0.000016 18369 ennreal.coe_rpow_of_ne_zero | |
0.000017 18370 ennreal.coe_rpow_of_nonneg | |
0.000017 18371 real.rpow_def_of_pos | |
0.000017 18372 real.rpow_pos_of_pos | |
0.000016 18373 real.exp_lt_exp | |
0.000017 18374 real.log_of_ne_zero | |
0.000017 18375 real.coe_exp_order_iso_apply | |
0.000017 18376 real.exp_log_eq_abs | |
0.000016 18377 real.exp_log | |
0.000017 18378 real.log_lt_log | |
0.000017 18379 real.rpow_lt_rpow | |
0.000017 18380 real.rpow_le_rpow | |
0.000017 18381 nnreal.rpow_le_rpow | |
0.000017 18382 ennreal.rpow_le_rpow | |
0.000017 18383 measure_theory.outer_measure.exists_measurable_superset_of_trim_eq_zero | |
0.000016 18384 measure_theory.exists_measurable_superset_of_null | |
0.000017 18385 set.ite | |
0.000017 18386 set.ite.equations._eqn_1 | |
0.000015 18387 set.piecewise_preimage | |
0.000014 18388 measurable_set.ite | |
0.000016 18389 measurable.piecewise | |
0.000017 18390 measure_theory.simple_func.measurable_set_fiber' | |
0.000017 18391 measure_theory.simple_func.measurable_set_fiber | |
0.000017 18392 measure_theory.simple_func.measurable_set_cut | |
0.000017 18393 measure_theory.simple_func.measurable_set_preimage | |
0.000017 18394 measure_theory.simple_func.measurable | |
0.000016 18395 measure_theory.simple_func.piecewise._proof_1 | |
0.000017 18396 set.range_ite_subset | |
0.000017 18397 measure_theory.simple_func.piecewise._proof_2 | |
0.000017 18398 measure_theory.simple_func.piecewise | |
0.000016 18399 measure_theory.simple_func.const._proof_1 | |
0.000017 18400 set.finite_range_const | |
0.000017 18401 measure_theory.simple_func.const | |
0.000017 18402 measure_theory.simple_func.has_zero | |
0.000016 18403 measure_theory.simple_func.restrict | |
0.000017 18404 measure_theory.simple_func.restrict.equations._eqn_1 | |
0.000017 18405 measure_theory.simple_func.coe_restrict | |
0.000017 18406 measure_theory.simple_func.restrict_apply | |
0.000017 18407 measure_theory.simple_func.lintegral.equations._eqn_1 | |
0.000017 18408 finset.sum_bij_ne_zero | |
0.000017 18409 measure_theory.simple_func.mem_range | |
0.000017 18410 measure_theory.simple_func.forall_range_iff | |
0.000016 18411 set.preimage_singleton_nonempty | |
0.000017 18412 measure_theory.nonempty_of_measure_ne_zero | |
0.000017 18413 measure_theory.simple_func.lintegral_eq_of_subset | |
0.000017 18414 measure_theory.simple_func.mem_range_of_measure_ne_zero | |
0.000017 18415 measure_theory.simple_func.lintegral_eq_of_measure_preimage | |
0.000017 18416 set.union_diff_self | |
0.000016 18417 measure_theory.measure_union_le | |
0.000017 18418 measure_theory.ae_iff | |
0.000017 18419 measure_theory.ae_le_set | |
0.323640 18420 measure_theory.measure_mono_ae | |
0.000075 18421 filter.eventually_le.measure_le | |
0.000024 18422 filter.eventually_eq.le | |
0.000015 18423 measure_theory.measure_congr | |
0.000014 18424 filter.eventually_eq_set | |
0.000014 18425 filter.eventually.set_eq | |
0.000014 18426 measure_theory.simple_func.lintegral_congr | |
0.000014 18427 measure_theory.mem_ae_iff | |
0.000015 18428 measure_theory.compl_mem_ae_iff | |
0.000017 18429 measure_theory.measure_zero_iff_ae_nmem | |
0.000018 18430 measure_theory.lintegral_mono_ae | |
0.000017 18431 measure_theory.snorm'_mono_ae | |
0.000016 18432 measure_theory.snorm_mono_ae | |
0.000016 18433 measure_theory.snorm_congr_norm_ae | |
0.000014 18434 measure_theory.snorm_congr_ae | |
0.000018 18435 quotient.mk_out' | |
0.000019 18436 measure_theory.ae_eq_fun.coe_fn_mk | |
0.000015 18437 measure_theory.ae_eq_fun.coe_fn_const | |
0.000014 18438 measure_theory.ae_eq_fun.coe_fn_zero | |
0.000017 18439 measure_theory.snorm'_exponent_zero | |
0.000018 18440 measure_theory.snorm_exponent_zero | |
0.000017 18441 ennreal.top_to_real | |
0.000016 18442 measure_theory.snorm_exponent_top | |
0.000015 18443 measure_theory.snorm_ess_sup.equations._eqn_1 | |
0.000014 18444 nnnorm_zero | |
0.000018 18445 filter.limsup_eq | |
0.000019 18446 filter.limsup_const_bot | |
0.000015 18447 ess_sup_const_bot | |
0.000016 18448 measure_theory.snorm_ess_sup_zero | |
0.000015 18449 measure_theory.snorm_eq_snorm' | |
0.000014 18450 finset.coe_injective | |
0.000014 18451 measure_theory.simple_func.coe_range | |
0.000018 18452 measure_theory.simple_func.coe_const | |
0.000015 18453 eq_iff_eq_cancel_left | |
0.000017 18454 set.singleton_eq_singleton_iff | |
0.000017 18455 measure_theory.simple_func.range_const | |
0.000017 18456 set.preimage_const_of_mem | |
0.000016 18457 set.eq_empty_of_not_nonempty | |
0.000017 18458 measure_theory.measure.eq_zero_of_not_nonempty | |
0.000017 18459 measure_theory.measure.coe_zero | |
0.000018 18460 measure_theory.simple_func.const_lintegral | |
0.000017 18461 bsupr_le | |
0.000016 18462 measure_theory.simple_func.has_le | |
0.000017 18463 measure_theory.measure.partial_order._proof_1 | |
0.000017 18464 measure_theory.measure.partial_order._proof_2 | |
0.000017 18465 measure_theory.measure.partial_order._proof_3 | |
0.000014 18466 measure_theory.measure.partial_order._proof_4 | |
0.000015 18467 measure_theory.measure.partial_order | |
0.000016 18468 measure_theory.simple_func.bind._proof_1 | |
0.000017 18469 measure_theory.simple_func.bind._proof_2 | |
0.000017 18470 measure_theory.simple_func.bind | |
0.000017 18471 measure_theory.simple_func.map | |
0.000016 18472 measure_theory.simple_func.seq | |
0.000017 18473 measure_theory.simple_func.has_sup | |
0.000017 18474 measure_theory.simple_func.pair | |
0.000016 18475 measure_theory.simple_func.coe_map | |
0.000017 18476 measure_theory.simple_func.range_map | |
0.000017 18477 exists_eq_right_right' | |
0.000017 18478 finset.bUnion_filter_eq_of_maps_to | |
0.000017 18479 finset.sum_fiberwise_of_maps_to | |
0.000017 18480 finset.sum_image' | |
0.000017 18481 set.preimage_inter_range | |
0.000017 18482 measure_theory.simple_func.map_preimage | |
0.000017 18483 measure_theory.simple_func.map_preimage_singleton | |
0.000016 18484 set.pairwise_on_disjoint_fiber | |
0.000017 18485 set.preimage_bUnion | |
0.000017 18486 set.bUnion_preimage_singleton | |
0.000017 18487 finset.set_bUnion_preimage_singleton | |
0.000017 18488 measure_theory.sum_measure_preimage_singleton | |
0.000016 18489 measure_theory.simple_func.sum_measure_preimage_singleton | |
0.000017 18490 measure_theory.simple_func.map_lintegral | |
0.000017 18491 measure_theory.simple_func.sup_eq_map₂ | |
0.000017 18492 measure_theory.simple_func.le_sup_lintegral | |
0.000016 18493 measure_theory.simple_func.preorder._proof_1 | |
0.000017 18494 measure_theory.simple_func.preorder._proof_2 | |
0.000017 18495 measure_theory.simple_func.preorder._proof_3 | |
0.000017 18496 measure_theory.simple_func.preorder | |
0.000017 18497 measure_theory.simple_func.partial_order._proof_1 | |
0.000016 18498 measure_theory.simple_func.partial_order._proof_2 | |
0.000017 18499 measure_theory.simple_func.partial_order._proof_3 | |
0.000017 18500 measure_theory.simple_func.cases_on | |
0.000016 18501 measure_theory.simple_func.coe_injective | |
0.000017 18502 measure_theory.simple_func.ext | |
0.000017 18503 measure_theory.simple_func.partial_order._proof_4 | |
0.000017 18504 measure_theory.simple_func.partial_order | |
0.000017 18505 measure_theory.simple_func.semilattice_sup._proof_1 | |
0.000016 18506 measure_theory.simple_func.semilattice_sup._proof_2 | |
0.000017 18507 measure_theory.simple_func.semilattice_sup._proof_3 | |
0.000017 18508 measure_theory.simple_func.semilattice_sup._proof_4 | |
0.000017 18509 measure_theory.simple_func.semilattice_sup._proof_5 | |
0.000017 18510 measure_theory.simple_func.semilattice_sup._proof_6 | |
2.380625 18511 measure_theory.simple_func.semilattice_sup._proof_7 | |
0.000077 18512 measure_theory.simple_func.semilattice_sup | |
0.000077 18513 measure_theory.simple_func.lintegral_mono | |
0.000016 18514 measure_theory.simple_func.lintegral_eq_lintegral | |
0.000014 18515 measure_theory.lintegral_const | |
0.000014 18516 measure_theory.snorm'_zero | |
0.000017 18517 nnreal.coe_pos | |
0.000017 18518 not_lt_zero' | |
0.000017 18519 with_top.zero_lt_top | |
0.000015 18520 ennreal.to_nnreal_pos_iff | |
0.000014 18521 ennreal.to_real_pos_iff | |
0.000018 18522 measure_theory.snorm_zero | |
0.000015 18523 measure_theory.Lp._proof_3 | |
0.000018 18524 measure_theory.ae_eq_fun.comp₂_eq_pair | |
0.000017 18525 measure_theory.ae_eq_fun.pair_mk_mk | |
0.000015 18526 measure_theory.ae_eq_fun.pair_eq_mk | |
0.000014 18527 measure_theory.ae_eq_fun.comp₂_eq_mk | |
0.000017 18528 measure_theory.ae_eq_fun.coe_fn_comp₂ | |
0.000015 18529 measure_theory.ae_eq_fun.coe_fn_add | |
0.000017 18530 measure_theory.mem_ℒp | |
0.000017 18531 nnnorm_add_le | |
0.000015 18532 countable_Inter_filter | |
0.000014 18533 set.set_of_forall | |
0.000017 18534 set.sInter_range | |
0.000015 18535 countable_Inter_filter.countable_sInter_mem_sets' | |
0.000018 18536 countable_sInter_mem_sets | |
0.000017 18537 countable_Inter_mem_sets | |
0.000015 18538 eventually_countable_forall | |
0.000014 18539 filter.Liminf | |
0.000016 18540 filter.liminf | |
0.000015 18541 filter.eventually_lt_of_lt_liminf | |
0.000015 18542 order_dual.conditionally_complete_lattice._proof_1 | |
0.000014 18543 order_dual.conditionally_complete_lattice._proof_2 | |
0.000016 18544 order_dual.conditionally_complete_lattice._proof_3 | |
0.000017 18545 order_dual.conditionally_complete_lattice._proof_4 | |
0.000015 18546 order_dual.conditionally_complete_lattice._proof_5 | |
0.000014 18547 order_dual.conditionally_complete_lattice._proof_6 | |
0.000018 18548 order_dual.conditionally_complete_lattice._proof_7 | |
0.000015 18549 order_dual.conditionally_complete_lattice._proof_8 | |
0.000016 18550 order_dual.conditionally_complete_lattice._proof_9 | |
0.000018 18551 order_dual.conditionally_complete_lattice._proof_10 | |
0.000017 18552 order_dual.conditionally_complete_lattice | |
0.000017 18553 order_dual.conditionally_complete_linear_order._proof_1 | |
0.000018 18554 order_dual.conditionally_complete_linear_order._proof_2 | |
0.000017 18555 order_dual.conditionally_complete_linear_order._proof_3 | |
0.000017 18556 order_dual.conditionally_complete_linear_order._proof_4 | |
0.000017 18557 order_dual.conditionally_complete_linear_order._proof_5 | |
0.000017 18558 order_dual.conditionally_complete_linear_order._proof_6 | |
0.000016 18559 order_dual.conditionally_complete_linear_order._proof_7 | |
0.000017 18560 order_dual.conditionally_complete_linear_order._proof_8 | |
0.000017 18561 order_dual.conditionally_complete_linear_order._proof_9 | |
0.000017 18562 order_dual.conditionally_complete_linear_order._proof_10 | |
0.000017 18563 order_dual.conditionally_complete_linear_order._proof_11 | |
0.000017 18564 order_dual.conditionally_complete_linear_order._proof_12 | |
0.000017 18565 order_dual.conditionally_complete_linear_order._proof_13 | |
0.000017 18566 order_dual.conditionally_complete_linear_order._proof_14 | |
0.000017 18567 order_dual.conditionally_complete_linear_order._proof_15 | |
0.000017 18568 order_dual.conditionally_complete_linear_order | |
0.000017 18569 filter.eventually_lt_of_limsup_lt | |
0.000017 18570 ennreal.eventually_le_limsup | |
0.000017 18571 ennreal.limsup_add_le | |
0.000017 18572 measure_theory.outer_measure.Union_null | |
0.000017 18573 measure_theory.measure_Union_null | |
0.000017 18574 measure_theory.measure.ae.countable_Inter_filter | |
0.000017 18575 ennreal.ess_sup_add_le | |
0.000017 18576 measure_theory.snorm_ess_sup_add_le | |
0.000017 18577 measure_theory.lintegral_mono' | |
0.000017 18578 measure_theory.lintegral_mono | |
0.000017 18579 ennreal.measurable_space | |
0.000017 18580 one_div_one | |
0.000016 18581 real.sin_arcsin | |
0.000017 18582 abs_div | |
0.000017 18583 complex.abs_pos | |
0.000017 18584 complex.abs_im_div_abs_le_one | |
0.000017 18585 set.proj_Icc_coe | |
0.000017 18586 set.Icc_extend_coe | |
0.000016 18587 set.Icc_extend.equations._eqn_1 | |
0.000017 18588 real.arcsin_proj_Icc | |
0.000018 18589 set.proj_Icc_of_le_left | |
0.000016 18590 real.arcsin_neg_one | |
0.000017 18591 real.arcsin_of_le_neg_one | |
0.000017 18592 set.proj_Icc_of_right_le | |
0.000017 18593 real.arcsin_one | |
0.000017 18594 real.arcsin_of_one_le | |
0.000017 18595 real.arcsin_le_pi_div_two | |
0.000017 18596 real.neg_pi_div_two_le_arcsin | |
0.000017 18597 real.arcsin_neg | |
0.000017 18598 complex.sin_arg | |
0.000017 18599 real.cos_arcsin_nonneg | |
0.000017 18600 eq_sub_iff_add_eq' | |
0.000017 18601 real.cos_arcsin | |
0.000017 18602 div_pow | |
0.000017 18603 _private.1468964069.cos_arg_of_re_nonneg | |
0.000016 18604 complex.arg_eq_arg_neg_add_pi_of_im_nonneg_of_re_neg | |
0.000017 18605 real.cos_add_pi | |
0.000017 18606 neg_ne_zero | |
0.397184 18607 complex.arg_eq_arg_neg_sub_pi_of_im_neg_of_re_neg | |
0.000077 18608 complex.cos_arg | |
0.000024 18609 complex.of_real_ne_zero | |
0.000015 18610 complex.exp_log | |
0.000014 18611 complex.cpow_one | |
0.000014 18612 real.rpow_one | |
0.000015 18613 nnreal.rpow_one | |
0.000014 18614 ennreal.rpow_one | |
0.000014 18615 measure_theory.lintegral_congr_ae | |
0.000014 18616 filter.eventually_eq.comp₂ | |
0.000015 18617 filter.eventually_eq.add | |
0.000017 18618 measure_theory.simple_func.order_bot._proof_1 | |
0.000017 18619 measure_theory.simple_func.order_bot._proof_2 | |
0.000015 18620 measure_theory.simple_func.order_bot._proof_3 | |
0.000014 18621 measure_theory.simple_func.order_bot._proof_4 | |
0.000014 18622 measure_theory.simple_func.order_bot._proof_5 | |
0.000014 18623 measure_theory.simple_func.order_bot | |
0.000018 18624 measure_theory.simple_func.semilattice_sup_bot._proof_1 | |
0.000017 18625 measure_theory.simple_func.semilattice_sup_bot._proof_2 | |
0.000015 18626 measure_theory.simple_func.semilattice_sup_bot._proof_3 | |
0.000014 18627 measure_theory.simple_func.semilattice_sup_bot._proof_4 | |
0.000017 18628 measure_theory.simple_func.semilattice_sup_bot._proof_5 | |
0.000019 18629 measure_theory.simple_func.semilattice_sup_bot._proof_6 | |
0.000015 18630 measure_theory.simple_func.semilattice_sup_bot._proof_7 | |
0.000015 18631 measure_theory.simple_func.semilattice_sup_bot._proof_8 | |
0.000017 18632 measure_theory.simple_func.semilattice_sup_bot | |
0.000017 18633 measure_theory.simple_func.approx | |
0.000015 18634 equiv.int_equiv_nat_sum_nat._proof_1 | |
0.000014 18635 equiv.int_equiv_nat_sum_nat._proof_2 | |
0.000016 18636 equiv.int_equiv_nat_sum_nat | |
0.000018 18637 equiv.bool_prod_equiv_sum | |
0.000017 18638 equiv.bool_prod_nat_equiv_nat._match_1 | |
0.000017 18639 equiv.bool_prod_nat_equiv_nat._match_1.equations._eqn_1 | |
0.000018 18640 equiv.bool_prod_nat_equiv_nat._match_2 | |
0.000017 18641 equiv.bool_prod_nat_equiv_nat._proof_1 | |
0.000016 18642 equiv.bool_prod_nat_equiv_nat._proof_2 | |
0.000017 18643 equiv.bool_prod_nat_equiv_nat | |
0.000017 18644 equiv.nat_sum_nat_equiv_nat | |
0.000017 18645 equiv.int_equiv_nat | |
0.000017 18646 encodable.int | |
0.000017 18647 rat.encodable._match_1 | |
0.000016 18648 rat.encodable._match_2 | |
0.000017 18649 rat.encodable._match_3 | |
0.000017 18650 rat.encodable._proof_1 | |
0.000017 18651 rat.encodable._match_4 | |
0.000017 18652 rat.encodable._proof_2 | |
0.000017 18653 rat.encodable | |
0.000017 18654 measure_theory.simple_func.ennreal_rat_embed | |
0.000017 18655 measure_theory.simple_func.eapprox | |
0.000017 18656 measure_theory.simple_func.eapprox.equations._eqn_1 | |
0.000017 18657 measure_theory.simple_func.sup_apply | |
0.000017 18658 measure_theory.simple_func.finset_sup_apply | |
0.000017 18659 is_closed.measurable_set | |
0.000016 18660 measurable_set_Ici | |
0.000017 18661 measure_theory.simple_func.approx_apply | |
0.000017 18662 measure_theory.simple_func.supr_approx_apply | |
0.000017 18663 ennreal.borel_space | |
0.000017 18664 measure_theory.simple_func.ennreal_rat_embed.equations._eqn_1 | |
0.000017 18665 measure_theory.simple_func.ennreal_rat_embed_encode | |
0.000017 18666 measure_theory.simple_func.supr_eapprox_apply | |
0.000017 18667 ennreal.add_supr | |
0.000017 18668 supr_eq_bot | |
0.000017 18669 ennreal.supr_eq_zero | |
0.000017 18670 ennreal.supr_add_supr | |
0.000017 18671 ennreal.supr_add_supr_of_monotone | |
0.000017 18672 measure_theory.simple_func.monotone_approx | |
0.000017 18673 measure_theory.simple_func.monotone_eapprox | |
0.000017 18674 ennreal.coe_to_nnreal_le_self | |
0.000016 18675 lt_Sup_iff | |
0.000017 18676 Sup_eq_top | |
0.000038 18677 supr_eq_top | |
0.000019 18678 ennreal.div_lt_iff | |
0.000015 18679 with_top.can_lift._proof_1 | |
0.000018 18680 with_top.can_lift | |
0.000017 18681 with_top.mul_lt_top | |
0.000017 18682 ennreal.mul_lt_top | |
0.000017 18683 ennreal.mul_ne_top | |
0.000017 18684 ennreal.exists_nat_pos_mul_gt | |
0.000017 18685 ennreal.exists_nat_mul_gt | |
0.000016 18686 set.indicator_comp_of_zero | |
0.000017 18687 measure_theory.simple_func.restrict_of_not_measurable | |
0.000017 18688 measure_theory.simple_func.coe_zero | |
0.000017 18689 pi.comp_zero | |
0.000017 18690 pi.const_zero | |
0.000018 18691 measure_theory.simple_func.map_restrict_of_zero | |
0.000016 18692 measure_theory.simple_func.map_coe_ennreal_restrict | |
0.000017 18693 measure_theory.simple_func.map_const | |
0.000017 18694 measure_theory.simple_func.mem_range_self | |
0.000017 18695 set.indicator_preimage | |
0.000017 18696 pi.zero_def | |
0.000017 18697 set.preimage_const_of_not_mem | |
0.000017 18698 bot_sdiff | |
0.000015 18699 set.empty_diff | |
0.000016 18700 set.ite_empty_right | |
0.000017 18701 set.indicator_preimage_of_not_mem | |
0.000017 18702 measure_theory.simple_func.restrict_preimage | |
0.000017 18703 measure_theory.simple_func.restrict_preimage_singleton | |
0.000016 18704 measure_theory.simple_func.restrict_lintegral | |
0.774963 18705 measure_theory.simple_func.lintegral_restrict | |
0.000076 18706 measure_theory.simple_func.restrict_lintegral_eq_lintegral_restrict | |
0.000024 18707 measure_theory.simple_func.const_lintegral_restrict | |
0.000015 18708 measure_theory.simple_func.restrict_const_lintegral | |
0.000014 18709 lt_supr_iff | |
0.000014 18710 add_monoid_hom.map_indicator | |
0.000015 18711 ennreal.coe_indicator | |
0.000015 18712 set.indicator_apply_le' | |
0.000014 18713 set.indicator_le' | |
0.000014 18714 set.indicator_le | |
0.000014 18715 measure_theory.lintegral_eq_nnreal | |
0.000017 18716 closure_Iio' | |
0.000017 18717 nhds_within_Iio_ne_bot' | |
0.000017 18718 nhds_within_Iio_self_ne_bot' | |
0.000015 18719 ennreal.tendsto.mul_const | |
0.000014 18720 ennreal.continuous_at_mul_const | |
0.000014 18721 filter.eventually_inf_principal | |
0.000014 18722 eventually_nhds_within_iff | |
0.000016 18723 ennreal.le_of_forall_lt_one_mul_le | |
0.000017 18724 measure_theory.simple_func.has_mul | |
0.000018 18725 measure_theory.simple_func.const_mul_lintegral | |
0.000014 18726 ennreal.mul_Sup | |
0.000014 18727 ennreal.mul_supr | |
0.000017 18728 ennreal.supr_zero_eq_zero | |
0.000015 18729 ennreal.finset_sum_supr_nat | |
0.000018 18730 measurable_set_le' | |
0.000016 18731 measurable_set_le | |
0.000015 18732 set.Union_eq_range_sigma | |
0.000015 18733 set.countable_Union | |
0.000018 18734 set.countable.bUnion | |
0.000015 18735 set.countable.union | |
0.000016 18736 set.countable_singleton | |
0.000028 18737 set.countable.insert | |
0.000017 18738 ennreal.topological_space.second_countable_topology | |
0.000014 18739 measure_theory.simple_func.map_apply | |
0.000017 18740 set.indicator_apply_le | |
0.000019 18741 pi.has_Sup | |
0.000019 18742 pi.has_Inf | |
0.000017 18743 Inf_apply | |
0.000017 18744 set.image_eq_range | |
0.000017 18745 infi_apply | |
0.000017 18746 supr_apply | |
0.000017 18747 monotone.le_map_supr | |
0.000018 18748 pi.has_top | |
0.000016 18749 pi.semilattice_sup_top._proof_1 | |
0.000017 18750 pi.semilattice_sup_top._proof_2 | |
0.000017 18751 pi.semilattice_sup_top._proof_3 | |
0.000016 18752 pi.semilattice_sup_top._proof_4 | |
0.000017 18753 pi.semilattice_sup_top._proof_5 | |
0.000017 18754 pi.semilattice_sup_top._proof_6 | |
0.000016 18755 pi.semilattice_sup_top._proof_7 | |
0.000017 18756 pi.semilattice_sup_top._proof_8 | |
0.000017 18757 pi.semilattice_sup_top._proof_9 | |
0.000017 18758 pi.has_sup | |
0.000017 18759 pi.semilattice_sup_top._proof_10 | |
0.000017 18760 pi.semilattice_sup_top._proof_11 | |
0.000017 18761 pi.semilattice_sup_top._proof_12 | |
0.000017 18762 pi.semilattice_sup_top | |
0.000016 18763 pi.bounded_lattice._proof_1 | |
0.000017 18764 pi.bounded_lattice._proof_2 | |
0.000017 18765 pi.bounded_lattice._proof_3 | |
0.000017 18766 pi.bounded_lattice._proof_4 | |
0.000017 18767 pi.bounded_lattice._proof_5 | |
0.000017 18768 pi.bounded_lattice._proof_6 | |
0.000017 18769 pi.bounded_lattice._proof_7 | |
0.000017 18770 pi.bounded_lattice._proof_8 | |
0.000017 18771 pi.bounded_lattice._proof_9 | |
0.000017 18772 pi.bounded_lattice._proof_10 | |
0.000017 18773 pi.bounded_lattice._proof_11 | |
0.000017 18774 pi.bounded_lattice._proof_12 | |
0.000017 18775 pi.bounded_lattice | |
0.000017 18776 pi.complete_lattice._proof_1 | |
0.000017 18777 pi.complete_lattice._proof_2 | |
0.000017 18778 pi.complete_lattice._proof_3 | |
0.000017 18779 pi.complete_lattice._proof_4 | |
0.000017 18780 pi.complete_lattice._proof_5 | |
0.000017 18781 pi.complete_lattice._proof_6 | |
0.000017 18782 pi.complete_lattice._proof_7 | |
0.000016 18783 pi.complete_lattice._proof_8 | |
0.000017 18784 pi.complete_lattice._proof_9 | |
0.000017 18785 pi.complete_lattice._proof_10 | |
0.000017 18786 pi.complete_lattice._proof_11 | |
0.000016 18787 pi.complete_lattice._proof_12 | |
0.000015 18788 pi.complete_lattice._proof_13 | |
0.000015 18789 pi.complete_lattice._proof_14 | |
0.000014 18790 pi.complete_lattice._proof_15 | |
0.000016 18791 pi.complete_lattice._proof_16 | |
0.000017 18792 pi.complete_lattice | |
0.000017 18793 measure_theory.monotone_lintegral | |
0.000017 18794 measure_theory.supr_lintegral_le | |
0.000016 18795 measure_theory.lintegral_supr | |
0.000017 18796 measure_theory.simple_func.has_add | |
0.000017 18797 measure_theory.simple_func.add_eq_map₂ | |
0.000017 18798 measure_theory.simple_func.add_lintegral | |
0.000017 18799 measure_theory.lintegral_eq_supr_eapprox_lintegral | |
0.000017 18800 measure_theory.lintegral_add | |
0.000017 18801 measure_theory.lintegral_add' | |
0.000017 18802 real.is_conjugate_exponent | |
0.000016 18803 real.rpow_add | |
0.000017 18804 nnreal.rpow_add | |
0.000017 18805 ennreal.rpow_add | |
0.000017 18806 ennreal.top_rpow_of_neg | |
0.000016 18807 ennreal.zero_rpow_of_neg | |
0.000017 18808 nnreal.coe_rpow | |
0.000017 18809 real.rpow_eq_zero_iff_of_nonneg | |
0.000016 18810 nnreal.rpow_eq_zero_iff | |
0.000017 18811 ennreal.rpow_eq_zero_iff | |
0.000017 18812 ennreal.rpow_eq_top_iff | |
0.000017 18813 ennreal.rpow_eq_top_of_nonneg | |
0.000017 18814 real.is_conjugate_exponent.one_lt | |
0.000017 18815 real.is_conjugate_exponent.pos | |
0.194491 18816 real.is_conjugate_exponent.nonneg | |
0.000076 18817 ennreal.mul_le_mul_right | |
0.000024 18818 real.is_conjugate_exponent.inv_add_inv_conj | |
0.000015 18819 tactic.ring.unfold_div | |
0.000014 18820 real.is_conjugate_exponent.sub_one_pos | |
0.000014 18821 has_measurable_mul₂ | |
0.000015 18822 has_measurable_mul₂.measurable_mul | |
0.000014 18823 ae_measurable.mul | |
0.000025 18824 subtype.measurable_space | |
0.000016 18825 real.measurable_space | |
0.000015 18826 nnreal.measurable_space | |
0.000014 18827 measurable_equiv | |
0.000014 18828 sum.measurable_space | |
0.000017 18829 punit.measurable_space | |
0.000018 18830 measurable_equiv.to_equiv | |
0.000015 18831 measurable_equiv.measurable_to_fun | |
0.000017 18832 measurable_equiv.trans._proof_1 | |
0.000017 18833 measurable_equiv.measurable_inv_fun | |
0.000018 18834 measurable_equiv.trans._proof_2 | |
0.000018 18835 measurable_equiv.trans | |
0.000017 18836 measurable.fst | |
0.000018 18837 measurable_id | |
0.000017 18838 measurable.snd | |
0.000018 18839 measurable_equiv.prod_congr._proof_1 | |
0.000017 18840 measurable_equiv.prod_congr._proof_2 | |
0.000015 18841 measurable_equiv.prod_congr | |
0.000017 18842 ennreal.ennreal_equiv_sum._proof_1 | |
0.000017 18843 ennreal.ennreal_equiv_sum._proof_2 | |
0.000018 18844 measurable_singleton_class | |
0.000017 18845 set.inter_distrib_left | |
0.000018 18846 measurable_set.subtype_image | |
0.000017 18847 measurable_of_measurable_union_cover | |
0.000018 18848 measurable_singleton_class.measurable_set_singleton | |
0.000018 18849 measurable_set_eq | |
0.000017 18850 subsingleton.eq_univ_of_nonempty | |
0.000018 18851 subsingleton.set_cases | |
0.000017 18852 subsingleton.measurable_set | |
0.000018 18853 subsingleton.measurable | |
0.000017 18854 measurable_of_measurable_on_compl_singleton | |
0.000018 18855 opens_measurable_space.to_measurable_singleton_class | |
0.000017 18856 measurable_equiv.has_coe_to_fun | |
0.000018 18857 measurable_equiv.symm | |
0.000017 18858 homeomorph.to_measurable_equiv._proof_1 | |
0.000018 18859 homeomorph.to_measurable_equiv._proof_2 | |
0.000018 18860 homeomorph.to_measurable_equiv | |
0.000017 18861 subtype.measurable_space.equations._eqn_1 | |
0.000017 18862 measurable_space.comap_generate_from | |
0.000018 18863 borel_comap | |
0.000018 18864 subtype.borel_space | |
0.000017 18865 measurable_equiv.ennreal_equiv_nnreal._proof_1 | |
0.000018 18866 real.borel_space | |
0.000017 18867 nnreal.borel_space | |
0.000018 18868 ennreal.ne_top_homeomorph_nnreal._proof_1 | |
0.000017 18869 ennreal.ne_top_homeomorph_nnreal._proof_2 | |
0.000018 18870 ennreal.nhds_coe | |
0.000018 18871 ennreal.tendsto_to_nnreal | |
0.000017 18872 ennreal.continuous_on_to_nnreal | |
0.000018 18873 ennreal.ne_top_homeomorph_nnreal._proof_3 | |
0.000017 18874 inducing.continuous | |
0.000015 18875 embedding.continuous | |
0.000014 18876 ennreal.continuous_coe | |
0.000014 18877 ennreal.ne_top_homeomorph_nnreal._proof_4 | |
0.000014 18878 ennreal.ne_top_homeomorph_nnreal | |
0.000016 18879 measurable_equiv.ennreal_equiv_nnreal | |
0.000017 18880 measurable_equiv.symm_to_equiv | |
0.000015 18881 measurable_equiv.trans_to_equiv | |
0.000015 18882 measurable_equiv.measurable | |
0.000017 18883 measurable_equiv.measurable_coe_iff | |
0.000015 18884 ennreal.measurable_of_measurable_nnreal | |
0.000017 18885 measurable_inl | |
0.000017 18886 ennreal.ennreal_equiv_sum._proof_3 | |
0.000015 18887 measurable_sum | |
0.000014 18888 measurable.ennreal_coe | |
0.000017 18889 ennreal.measurable_coe | |
0.000015 18890 ennreal.ennreal_equiv_sum._proof_4 | |
0.000016 18891 ennreal.ennreal_equiv_sum | |
0.000017 18892 measurable_equiv.refl | |
0.000015 18893 measurable_set.inl_image | |
0.000014 18894 measurable_set_range_inl | |
0.000017 18895 measurable_set_inr_image | |
0.000019 18896 measurable_set_range_inr | |
0.000017 18897 set.prod_eq | |
0.000017 18898 measurable.subtype_mk | |
0.000015 18899 measurable_space.gc_comap_map | |
0.000014 18900 measurable_space.le_map_comap | |
0.000017 18901 measurable_subtype_coe | |
0.000015 18902 measurable.subtype_coe | |
0.000015 18903 measurable_equiv.set.prod._proof_1 | |
0.000018 18904 measurable_equiv.set.prod._proof_2 | |
0.000016 18905 measurable_equiv.set.prod | |
0.000015 18906 measurable_equiv.set.range_inl._match_1 | |
0.000014 18907 measurable_equiv.set.range_inl._proof_1 | |
0.000017 18908 measurable_equiv.set.range_inl._proof_2 | |
0.000015 18909 measurable_equiv.set.range_inl._proof_3 | |
0.000017 18910 measurable_equiv.set.range_inl._match_1.equations._eqn_1 | |
0.000015 18911 measurable_equiv.set.range_inl._proof_4 | |
0.000016 18912 measurable_equiv.set.range_inl._proof_5 | |
0.000017 18913 measurable_equiv.set.range_inl | |
0.000017 18914 measurable_equiv.set.univ._proof_1 | |
0.000017 18915 measurable_equiv.set.univ._proof_2 | |
0.000017 18916 measurable_equiv.set.univ | |
0.000017 18917 measurable_equiv.set.range_inr._match_1 | |
0.000017 18918 measurable_equiv.set.range_inr._proof_1 | |
0.000017 18919 measurable_equiv.set.range_inr._proof_2 | |
1.900946 18920 measurable_equiv.set.range_inr._proof_3 | |
0.000080 18921 measurable_equiv.set.range_inr._match_1.equations._eqn_2 | |
0.000023 18922 measurable_equiv.set.range_inr._proof_4 | |
0.000015 18923 measurable_inr | |
0.000014 18924 measurable_equiv.set.range_inr._proof_5 | |
0.000015 18925 measurable_equiv.set.range_inr | |
0.000015 18926 measurable_equiv.sum_prod_distrib._proof_1 | |
0.000014 18927 measurable_equiv.sum_prod_distrib._proof_2 | |
0.000015 18928 measurable_equiv.sum_prod_distrib | |
0.000014 18929 ennreal.measurable_of_measurable_nnreal_prod | |
0.000019 18930 measurable_swap | |
0.000017 18931 measurable_swap_iff | |
0.000017 18932 ennreal.measurable_of_measurable_nnreal_nnreal | |
0.000015 18933 has_continuous_mul.has_measurable_mul₂ | |
0.000014 18934 induced_generate_from_eq | |
0.000017 18935 topological_space.second_countable_topology_induced | |
0.000019 18936 topological_space.subtype.second_countable_topology | |
0.000015 18937 sigma_compact_space | |
0.000017 18938 topological_space.separable_space | |
0.000016 18939 topological_space.separable_space.exists_countable_dense | |
0.000016 18940 topological_space.exists_countable_dense | |
0.000014 18941 filter.has_basis.restrict | |
0.000016 18942 nhdset_of_mem_uniformity | |
0.000019 18943 subset_interior_iff_subset_of_open | |
0.000015 18944 filter.lift_mono' | |
0.000017 18945 filter.lift_lift'_assoc | |
0.000017 18946 uniformity_lift_le_comp | |
0.000015 18947 comp_le_uniformity3 | |
0.000014 18948 filter.mem_lift' | |
0.000016 18949 uniformity_eq_uniformity_interior | |
0.000015 18950 interior_mem_uniformity | |
0.000017 18951 uniformity_has_basis_open | |
0.000017 18952 uniformity_has_basis_open_symmetric | |
0.000017 18953 uniform_space.is_open_ball | |
0.000017 18954 mem_closure_iff | |
0.000017 18955 dense_iff_closure_eq | |
0.000017 18956 dense.closure_eq | |
0.000015 18957 dense_iff_inter_open | |
0.000014 18958 dense.inter_open_nonempty | |
0.000016 18959 uniform_space.mem_ball_self | |
0.000017 18960 mem_ball_comp | |
0.000017 18961 ball_subset_of_comp_subset | |
0.000016 18962 uniform_space.second_countable_of_separable | |
0.000018 18963 emetric.second_countable_of_separable | |
0.000017 18964 set.accumulate | |
0.000017 18965 sigma_compact_space.exists_compact_covering | |
0.000017 18966 compact_covering | |
0.000016 18967 emetric.closed_ball | |
0.000017 18968 set.countable_empty | |
0.000017 18969 edist_triangle_right | |
0.000017 18970 emetric.subset_countable_closure_of_almost_dense_set | |
0.000017 18971 totally_bounded_iff_subset | |
0.000017 18972 emetric.totally_bounded_iff' | |
0.000017 18973 is_compact.totally_bounded | |
0.000017 18974 emetric.mem_closed_ball | |
0.000017 18975 emetric.ball_subset_closed_ball | |
0.000017 18976 emetric.subset_countable_closure_of_compact | |
0.000017 18977 filter.bInter_finset_mem_sets | |
0.000017 18978 finset.Inter_mem_sets | |
0.000016 18979 compact_of_finite_subfamily_closed | |
0.000018 18980 compact_of_finite_subcover | |
0.000017 18981 set.finite.compact_bUnion | |
0.000017 18982 compact_accumulate | |
0.000017 18983 is_compact_compact_covering | |
0.000017 18984 compact_covering.equations._eqn_1 | |
0.000017 18985 set.mem_accumulate | |
0.000018 18986 set.subset_accumulate | |
0.000017 18987 set.Union_accumulate | |
0.000017 18988 Union_compact_covering | |
0.000017 18989 emetric.second_countable_of_sigma_compact | |
0.000017 18990 subsingleton.le | |
0.000017 18991 exists_nat_ge | |
0.000017 18992 second_countable_of_proper | |
0.000017 18993 real.topological_space.second_countable_topology | |
0.000017 18994 nnreal.topological_space.second_countable_topology | |
0.000017 18995 nnreal.metric_space | |
0.000017 18996 ennreal.has_measurable_mul₂ | |
0.000017 18997 has_measurable_pow | |
0.000017 18998 has_measurable_pow.measurable_pow | |
0.000017 18999 ae_measurable.pow | |
0.000017 19000 ae_measurable.pow_const | |
0.000017 19001 ennreal.coe_rpow_def | |
0.000017 19002 measurable.ite | |
0.000017 19003 measurable_set_Iio | |
0.000017 19004 measurable.pow | |
0.000027 19005 complex.measurable_space | |
0.000016 19006 complex.borel_space | |
0.000015 19007 complex.continuous_re | |
0.000016 19008 complex.measurable_re | |
0.000019 19009 measurable_one | |
0.000017 19010 measurable_zero | |
0.000017 19011 complex.measurable_exp | |
0.000017 19012 measurable.cexp | |
0.000017 19013 measurable.mul | |
0.000016 19014 complex.isometry_of_real | |
0.000017 19015 complex.continuous_of_real | |
0.000017 19016 complex.measurable_of_real | |
0.000017 19017 measurable_space.comap_mono | |
0.000017 19018 subtype.opens_measurable_space | |
0.000017 19019 continuous_generated_from | |
0.000016 19020 order_iso.to_order_embedding | |
0.000017 19021 order_iso.lt_iff_lt | |
0.000017 19022 order_iso.preimage_Ioi | |
0.000017 19023 order_iso.preimage_Iio | |
0.000016 19024 order_iso.continuous | |
0.000017 19025 continuous.norm | |
0.000017 19026 continuous_subtype_coe | |
0.000017 19027 real.continuous_on_log | |
0.000016 19028 real.measurable_log | |
0.000017 19029 measurable_norm | |
0.000018 19030 has_measurable_mul | |
0.000016 19031 has_measurable_mul.measurable_mul_const | |
0.000017 19032 measurable.mul_const | |
3.917940 19033 has_continuous_mul.has_measurable_mul | |
0.000078 19034 complex.im_lm._proof_1 | |
0.000023 19035 complex.im_lm | |
0.000015 19036 complex.im_lm_coe | |
0.000014 19037 complex.im_clm._proof_1 | |
0.000014 19038 complex.im_clm | |
0.000015 19039 complex.continuous_im | |
0.000014 19040 has_measurable_add | |
0.000014 19041 has_measurable_add.measurable_add_const | |
0.000015 19042 measurable.add_const | |
0.000018 19043 has_continuous_add.has_measurable_add | |
0.000017 19044 has_measurable_sub | |
0.000015 19045 has_measurable_sub.measurable_sub_const | |
0.000014 19046 measurable.sub_const | |
0.000014 19047 has_continuous_sub.has_measurable_sub | |
0.000014 19048 continuous_proj_Icc | |
0.000017 19049 continuous.Icc_extend | |
0.000017 19050 set.ord_connected_Icc | |
0.000015 19051 real.continuous_arcsin | |
0.000014 19052 real.measurable_arcsin | |
0.000014 19053 has_measurable_div₂ | |
0.000014 19054 has_measurable_div₂.measurable_div | |
0.000017 19055 measurable.div | |
0.000017 19056 has_measurable_inv | |
0.000015 19057 has_measurable_inv.measurable_inv | |
0.000018 19058 measurable.inv | |
0.000019 19059 has_measurable_div₂_of_mul_inv | |
0.000017 19060 has_continuous_inv' | |
0.000015 19061 measurable_of_continuous_on_compl_singleton | |
0.000016 19062 has_continuous_inv'.continuous_at_inv' | |
0.000017 19063 continuous_on_inv' | |
0.000015 19064 has_continuous_inv'.has_measurable_inv | |
0.000014 19065 is_open.eventually_mem | |
0.000018 19066 continuous.tendsto' | |
0.000015 19067 continuous.div_const | |
0.000016 19068 normed_field.has_continuous_inv'._proof_1 | |
0.000018 19069 normed_field.has_continuous_inv' | |
0.000017 19070 complex.measurable_im | |
0.000016 19071 complex.measurable_arg | |
0.000017 19072 complex.measurable_log | |
0.000018 19073 measurable.clog | |
0.000017 19074 complex.has_measurable_pow._proof_1 | |
0.000017 19075 complex.has_measurable_pow | |
0.000017 19076 real.has_measurable_pow._proof_1 | |
0.000017 19077 real.has_measurable_pow | |
0.000017 19078 nnreal.continuous_coe | |
0.000018 19079 nnreal.measurable_coe | |
0.000016 19080 measurable.nnreal_coe | |
0.000017 19081 nnreal.real.has_measurable_pow._proof_1 | |
0.000017 19082 nnreal.real.has_measurable_pow | |
0.000017 19083 measurable_set_Ioi | |
0.000017 19084 ennreal.real.has_measurable_pow._proof_1 | |
0.000017 19085 ennreal.real.has_measurable_pow | |
0.000017 19086 ae_measurable.add | |
0.000017 19087 measure_theory.lintegral_zero_fun | |
0.000017 19088 pi.mul_zero_class._proof_1 | |
0.000018 19089 pi.mul_zero_class._proof_2 | |
0.000017 19090 pi.mul_zero_class | |
0.000017 19091 filter.eventually_eq.mul | |
0.000017 19092 measure_theory.ae_all_iff | |
0.000017 19093 ennreal.coe_nat_ne_top | |
0.000017 19094 measure_theory.mul_meas_ge_le_lintegral | |
0.000017 19095 measure_theory.lintegral_zero | |
0.000017 19096 measure_theory.lintegral_eq_zero_iff | |
0.000017 19097 measure_theory.lintegral_eq_zero_iff' | |
0.000017 19098 ennreal.ae_eq_zero_of_lintegral_rpow_eq_zero | |
0.000017 19099 ennreal.lintegral_mul_eq_zero_of_lintegral_rpow_eq_zero | |
0.000017 19100 pi.comm_semigroup._proof_1 | |
0.000017 19101 pi.comm_semigroup._proof_2 | |
0.000017 19102 pi.comm_semigroup | |
0.000017 19103 sub_div' | |
0.000017 19104 real.is_conjugate_exponent.ne_zero | |
0.000017 19105 div_div_eq_mul_div | |
0.000017 19106 real.is_conjugate_exponent.conj_eq | |
0.000017 19107 one_lt_div | |
0.000017 19108 sub_one_lt | |
0.000017 19109 real.is_conjugate_exponent.symm | |
0.000017 19110 ennreal.lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_eq_top | |
0.000017 19111 ennreal.fun_mul_inv_snorm | |
0.000017 19112 measure_theory.lintegral_congr | |
0.000016 19113 pi.mul_apply | |
0.000017 19114 ennreal.fun_mul_inv_snorm.equations._eqn_1 | |
0.000017 19115 ennreal.inv_mul_cancel | |
0.000017 19116 ennreal.fun_eq_fun_mul_inv_snorm_mul_snorm | |
0.000017 19117 measure_theory.lintegral.equations._eqn_1 | |
0.000017 19118 measure_theory.lintegral_const_mul_le | |
0.000017 19119 measure_theory.lintegral_const_mul' | |
0.000017 19120 measure_theory.lintegral_mul_const' | |
0.000017 19121 ennreal.coe_div | |
0.000016 19122 complex.of_real_cpow | |
0.000017 19123 complex.norm_sq_one | |
0.000017 19124 complex.abs_one | |
0.000018 19125 real.log_one | |
0.000042 19126 complex.arg_one | |
0.000017 19127 complex.log_one | |
0.000017 19128 complex.abs_exp_of_real | |
0.000019 19129 complex.abs_cos_add_sin_mul_I | |
0.000017 19130 div_eq_div_iff | |
0.000016 19131 complex.arg_eq_arg_iff | |
0.000017 19132 complex.arg_real_mul | |
0.000017 19133 real.arcsin_sin' | |
0.000017 19134 real.arcsin_sin | |
0.000017 19135 real.sin_add_pi | |
0.000017 19136 real.sin_neg_of_neg_of_neg_pi_lt | |
0.000017 19137 real.sin_nonneg_of_nonneg_of_le_pi | |
0.000017 19138 complex.arg_cos_add_sin_mul_I | |
0.000017 19139 complex.exp_inj_of_neg_pi_lt_of_le_pi | |
0.000016 19140 strict_mono.comp_strict_mono_incr_on | |
0.000017 19141 subtype.strict_mono_coe | |
0.000015 19142 set.strict_mono_incr_on_proj_Icc | |
0.000016 19143 strict_mono.strict_mono_incr_on_Icc_extend | |
0.000017 19144 order_iso.strict_mono | |
0.000017 19145 real.strict_mono_incr_on_arcsin | |
6.897275 19146 real.arcsin_le_iff_le_sin | |
0.000083 19147 set.mem_Icc_of_Ico | |
0.000022 19148 real.arcsin_le_iff_le_sin' | |
0.000015 19149 real.le_arcsin_iff_sin_le' | |
0.000014 19150 neg_lt_zero | |
0.000014 19151 real.arcsin_nonneg | |
0.000015 19152 real.arcsin_nonpos | |
0.000014 19153 real.arcsin_pos | |
0.000014 19154 complex.neg_pi_lt_arg | |
0.000014 19155 complex.arg_le_pi | |
0.000017 19156 complex.log_exp | |
0.000017 19157 complex.cpow_mul | |
0.000015 19158 real.rpow_mul | |
0.000017 19159 fin.sum_univ_succ_above | |
0.000018 19160 fin.sum_univ_succ | |
0.000019 19161 fin.sum_univ_zero | |
0.000015 19162 ring_hom.map_prod | |
0.000017 19163 nnreal.coe_prod | |
0.000016 19164 multiset.decidable_dexists_multiset._proof_1 | |
0.000017 19165 multiset.decidable_exists_multiset._proof_1 | |
0.000015 19166 multiset.decidable_exists_multiset | |
0.000015 19167 multiset.decidable_dexists_multiset._proof_2 | |
0.000016 19168 multiset.decidable_dexists_multiset._match_1 | |
0.000019 19169 multiset.decidable_dexists_multiset._match_2 | |
0.000017 19170 multiset.decidable_dexists_multiset._proof_3 | |
0.000016 19171 multiset.decidable_dexists_multiset | |
0.000014 19172 finset.decidable_dexists_finset | |
0.000016 19173 real.exp_sum | |
0.000017 19174 finset.center_mass | |
0.000017 19175 finset.center_mass.equations._eqn_1 | |
0.000016 19176 add_monoid_hom.fst._proof_1 | |
0.000016 19177 add_monoid_hom.fst._proof_2 | |
0.000017 19178 add_monoid_hom.fst | |
0.000017 19179 prod.fst_sum | |
0.000017 19180 add_monoid_hom.snd._proof_1 | |
0.000017 19181 add_monoid_hom.snd._proof_2 | |
0.000018 19182 add_monoid_hom.snd | |
0.000017 19183 prod.snd_sum | |
0.000017 19184 finset.sum_eq_zero_iff_of_nonneg | |
0.000017 19185 finset.center_mass_insert | |
0.000017 19186 convex_iff_div | |
0.000017 19187 convex.center_mass_mem | |
0.000017 19188 convex_on.convex_epigraph | |
0.000017 19189 convex_on.map_center_mass_le | |
0.000017 19190 convex_on.map_sum_le | |
0.000018 19191 linear_order.convex_on_of_lt | |
0.000017 19192 div_le_div_iff | |
0.000017 19193 convex_on_real_of_slope_mono_adjacent | |
0.000017 19194 is_min_filter | |
0.000017 19195 is_max_filter | |
0.000017 19196 is_extr_filter | |
0.000017 19197 is_local_extr | |
0.000017 19198 is_local_min | |
0.000017 19199 is_local_max | |
0.000017 19200 is_local_extr.elim | |
0.000018 19201 continuous_linear_map.ext_iff | |
0.000017 19202 is_local_min_on | |
0.000017 19203 pos_tangent_cone_at | |
0.000017 19204 is_local_max_on | |
0.000017 19205 filter.tendsto_at_top_mono | |
0.000017 19206 is_local_max_on.has_fderiv_within_at_nonpos | |
0.000017 19207 linear_map.map_neg | |
0.000017 19208 continuous_linear_map.map_neg | |
0.000017 19209 is_local_max_on.has_fderiv_within_at_eq_zero | |
0.000018 19210 is_max_filter.comp_mono | |
0.000016 19211 is_max_filter_dual_iff | |
0.000018 19212 is_min_filter.dual | |
0.000017 19213 is_min_filter.comp_antimono | |
0.000017 19214 is_min_filter.neg | |
0.000017 19215 is_local_min_on.neg | |
0.000017 19216 has_fderiv_within_at.neg | |
0.000017 19217 is_local_min_on.has_fderiv_within_at_eq_zero | |
0.000017 19218 is_min_filter.filter_mono | |
0.000017 19219 is_min_filter.filter_inf | |
0.000017 19220 is_local_min.on | |
0.000018 19221 one_le_two | |
0.000017 19222 mem_pos_tangent_cone_at_of_segment_subset | |
0.000018 19223 mem_pos_tangent_cone_at_of_segment_subset' | |
0.000017 19224 pos_tangent_cone_at_univ | |
0.000017 19225 is_local_min.has_fderiv_at_eq_zero | |
0.000017 19226 is_local_min.has_deriv_at_eq_zero | |
0.000017 19227 is_min_filter.comp_mono | |
0.000017 19228 is_min_filter_dual_iff | |
0.000017 19229 is_max_filter.dual | |
0.000017 19230 is_max_filter.comp_antimono | |
0.000018 19231 is_max_filter.neg | |
0.000017 19232 is_local_max.neg | |
0.000017 19233 has_deriv_at.neg | |
0.000017 19234 is_local_max.has_deriv_at_eq_zero | |
0.000017 19235 is_local_extr.has_deriv_at_eq_zero | |
0.000018 19236 is_extr_on | |
0.000014 19237 is_local_extr_on | |
0.000015 19238 is_local_extr_on.elim | |
0.000016 19239 is_min_filter.is_extr | |
0.000017 19240 is_local_min_on.is_local_min | |
0.000017 19241 is_max_filter.is_extr | |
0.000017 19242 is_max_filter.filter_mono | |
0.000017 19243 is_local_max_on.is_local_max | |
0.000017 19244 is_local_extr_on.is_local_extr | |
0.000017 19245 is_extr_filter.filter_mono | |
0.000017 19246 is_extr_on.localize | |
0.000017 19247 is_extr_on.is_local_extr | |
0.000017 19248 is_open_Ioo | |
0.000017 19249 Ioo_mem_nhds | |
0.000017 19250 Icc_mem_nhds | |
0.000017 19251 is_glb.mem_of_is_closed | |
0.000017 19252 is_closed.cInf_mem | |
0.000018 19253 not.imp | |
0.000017 19254 set.univ_nonempty | |
0.000017 19255 bdd_above_empty | |
0.000017 19256 bdd_above.mono | |
0.000017 19257 bdd_above.union | |
0.000017 19258 bdd_above_union | |
0.000015 19259 is_lub.bdd_above | |
0.000017 19260 bdd_above_singleton | |
0.000017 19261 bdd_above_insert | |
0.000017 19262 bdd_above.insert | |
0.000016 19263 set.finite.bdd_above | |
0.000018 19264 set.finite.bdd_below | |
0.000017 19265 is_compact.bdd_below | |
0.000017 19266 is_compact.Inf_mem | |
0.000017 19267 is_compact.exists_Inf_image_eq | |
0.000017 19268 is_compact.is_glb_Inf | |
0.000017 19269 is_compact.exists_forall_le | |
0.000018 19270 set.nonempty_Icc | |
0.000017 19271 is_compact.exists_forall_ge | |
5.033907 19272 exists_Ioo_extr_on_Icc | |
0.000077 19273 exists_local_extr_Ioo | |
0.000024 19274 exists_has_deriv_at_eq_zero | |
0.000014 19275 has_deriv_at.const_mul | |
0.000014 19276 exists_ratio_has_deriv_at_eq_ratio_slope | |
0.000014 19277 pi.one_apply | |
0.000014 19278 exists_has_deriv_at_eq_slope | |
0.000014 19279 differentiable_within_at.differentiable_at | |
0.000014 19280 exists_deriv_eq_slope | |
0.000014 19281 set.nonempty.image_const | |
0.000017 19282 units.mul_right._proof_1 | |
0.000017 19283 units.inv_mul_cancel_right | |
0.000017 19284 units.mul_right._proof_2 | |
0.000015 19285 units.mul_right | |
0.000016 19286 set.mem_image_iff_of_inverse | |
0.000019 19287 equiv.image_eq_preimage | |
0.000015 19288 units.mul_right_symm | |
0.000017 19289 units.coe_mul_right | |
0.000017 19290 set.Ici_inter_Iic | |
0.000015 19291 set.preimage_mul_const_Ici | |
0.000015 19292 set.preimage_mul_const_Iic | |
0.000016 19293 set.preimage_mul_const_Icc | |
0.000020 19294 set.image_mul_right_Icc' | |
0.000017 19295 set.image_mul_right_Icc | |
0.000016 19296 set.image_add_left | |
0.000017 19297 set.preimage_add_const_Ici | |
0.000017 19298 set.preimage_add_const_Iic | |
0.000017 19299 set.preimage_add_const_Icc | |
0.000017 19300 set.image_const_add_Icc | |
0.000017 19301 segment_eq_Icc | |
0.000017 19302 segment_symm | |
0.000017 19303 segment_eq_Icc' | |
0.000017 19304 segment_eq_interval | |
0.000017 19305 set.ord_connected_def | |
0.000016 19306 set.ord_connected_iff | |
0.000017 19307 set.ord_connected_iff_interval_subset | |
0.000017 19308 real.convex_iff_ord_connected | |
0.000017 19309 convex.ord_connected | |
0.000017 19310 differentiable_on.mono | |
0.000017 19311 set.Icc_subset_Icc_left | |
0.000017 19312 convex_on_of_deriv_mono | |
0.000017 19313 convex.mul_sub_le_image_sub_of_le_deriv | |
0.000017 19314 convex.mono_of_deriv_nonneg | |
0.000017 19315 set.has_add | |
0.000017 19316 set.has_scalar_set | |
0.000017 19317 set.add_mem_add | |
0.000018 19318 convex_iff_pointwise_add_subset | |
0.000017 19319 set.image_smul | |
0.000017 19320 set.image2_subset | |
0.000017 19321 set.add_subset_add | |
0.000016 19322 set.Union_image_left | |
0.000018 19323 set.Union_add_left_image | |
0.000017 19324 homeomorph.preimage_symm | |
0.000016 19325 quotient_map | |
0.000017 19326 topological_space_eq_iff | |
0.000018 19327 quotient_map_iff | |
0.000017 19328 quotient_map.is_open_preimage | |
0.000016 19329 continuous_coinduced_rng | |
0.000017 19330 quotient_map.of_quotient_map_compose | |
0.000018 19331 homeomorph.self_comp_symm | |
0.000017 19332 coinduced_id | |
0.000017 19333 quotient_map.id | |
0.000017 19334 homeomorph.quotient_map | |
0.000017 19335 homeomorph.is_open_preimage | |
0.000017 19336 homeomorph.is_open_image | |
0.000015 19337 homeomorph.is_open_map | |
0.000014 19338 is_open_map_add_left | |
0.000015 19339 is_open.add_left | |
0.000016 19340 units.smul_inv_smul | |
0.000017 19341 units.smul_perm | |
0.000017 19342 units.smul_perm_hom._proof_1 | |
0.000017 19343 units.smul_perm_hom._proof_2 | |
0.000017 19344 units.smul_perm_hom | |
0.000017 19345 continuous.const_smul | |
0.000017 19346 homeomorph.smul_of_unit._proof_1 | |
0.000017 19347 homeomorph.smul_of_unit._proof_2 | |
0.000017 19348 homeomorph.smul_of_unit | |
0.000018 19349 is_unit.is_open_map_smul | |
0.000016 19350 is_open_map_smul' | |
0.000017 19351 set.Union_image_right | |
0.000017 19352 set.Union_add_right_image | |
0.000017 19353 is_open_map_add_right | |
0.000017 19354 is_open.add_right | |
0.000017 19355 convex.interior | |
0.000017 19356 interior_interior | |
0.000017 19357 convex_on_of_deriv2_nonneg | |
0.000018 19358 function.iterate_one | |
0.000017 19359 convex_on_open_of_deriv2_nonneg | |
0.000015 19360 differentiable.differentiable_on | |
0.000016 19361 convex_on_univ_of_deriv2_nonneg | |
0.000017 19362 real.deriv_exp | |
0.000017 19363 has_deriv_at_filter.comp_has_fderiv_at_filter | |
0.000017 19364 has_deriv_at_filter.mono | |
0.000016 19365 has_deriv_at.comp_has_fderiv_at | |
0.000017 19366 has_fderiv_at.exp | |
0.000017 19367 differentiable_at.exp | |
0.000017 19368 differentiable.exp | |
0.000018 19369 has_fderiv_at_id | |
0.000017 19370 differentiable_at_id | |
0.000017 19371 differentiable_id' | |
0.000017 19372 function.iterate_succ_apply | |
0.000015 19373 real.iter_deriv_exp | |
0.000017 19374 convex_on_exp | |
0.000017 19375 real.geom_mean_le_arith_mean_weighted | |
0.000017 19376 nnreal.geom_mean_le_arith_mean_weighted | |
0.000017 19377 nnreal.geom_mean_le_arith_mean2_weighted | |
0.000016 19378 real.geom_mean_le_arith_mean2_weighted | |
0.000017 19379 real.is_conjugate_exponent.one_div_pos | |
0.000017 19380 real.is_conjugate_exponent.one_div_nonneg | |
0.000018 19381 real.young_inequality_of_nonneg | |
0.000017 19382 nnreal.young_inequality | |
0.000017 19383 real.is_conjugate_exponent.one_lt_nnreal | |
0.000017 19384 nnreal.coe_inv | |
0.000017 19385 nnreal.of_real_inv | |
0.000017 19386 nnreal.of_real_div' | |
0.000017 19387 real.is_conjugate_exponent.inv_add_inv_conj_nnreal | |
0.000017 19388 nnreal.young_inequality_real | |
0.000017 19389 ennreal.young_inequality | |
0.000017 19390 ae_measurable.mul_const | |
0.000017 19391 has_measurable_mul₂.to_has_measurable_mul | |
4.437508 19392 measure_theory.lintegral_const_mul | |
0.000076 19393 measure_theory.lintegral_const_mul'' | |
0.000024 19394 measure_theory.lintegral_mul_const'' | |
0.000015 19395 ennreal.of_real_one | |
0.000014 19396 ennreal.of_real_mul | |
0.000014 19397 ennreal.of_real_inv_of_pos | |
0.000015 19398 ennreal.of_real_div_of_pos | |
0.000014 19399 real.is_conjugate_exponent.inv_add_inv_conj_ennreal | |
0.000014 19400 ennreal.lintegral_mul_le_one_of_lintegral_rpow_eq_one | |
0.000014 19401 real.log_mul | |
0.000016 19402 real.mul_rpow | |
0.000017 19403 nnreal.mul_rpow | |
0.000015 19404 ennreal.mul_rpow_of_ne_zero | |
0.000018 19405 ennreal.mul_rpow_of_nonneg | |
0.000016 19406 abs_inv | |
0.000019 19407 real.log_inv | |
0.000016 19408 real.inv_rpow | |
0.000014 19409 nnreal.inv_rpow | |
0.000014 19410 ennreal.inv_rpow_of_pos | |
0.000017 19411 complex.one_cpow | |
0.000017 19412 real.one_rpow | |
0.000016 19413 nnreal.one_rpow | |
0.000014 19414 ennreal.one_rpow | |
0.000014 19415 zero_lt_mul_right | |
0.000014 19416 nnreal.rpow_mul | |
0.000017 19417 ennreal.rpow_mul | |
0.000018 19418 ennreal.fun_mul_inv_snorm_rpow | |
0.000015 19419 ennreal.lintegral_rpow_fun_mul_inv_snorm_eq_one | |
0.000014 19420 ennreal.lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_ne_top | |
0.000014 19421 ennreal.lintegral_mul_le_Lp_mul_Lq | |
0.000014 19422 eq_div_iff | |
0.000017 19423 real.is_conjugate_exponent.sub_one_ne_zero | |
0.000015 19424 real.is_conjugate_exponent.sub_one_mul_conj | |
0.000016 19425 ennreal.lintegral_mul_rpow_le_lintegral_rpow_mul_lintegral_rpow | |
0.000017 19426 ennreal.lintegral_rpow_add_le_add_snorm_mul_lintegral_rpow_add | |
0.000015 19427 _private.112011995.lintegral_Lp_add_le_aux | |
0.000014 19428 real.conjugate_exponent | |
0.000014 19429 real.is_conjugate_exponent_iff | |
0.000014 19430 real.is_conjugate_exponent_conjugate_exponent | |
0.000015 19431 nnreal.rpow_lt_rpow | |
0.000016 19432 ennreal.rpow_lt_rpow | |
0.000015 19433 ennreal.rpow_ne_top_of_nonneg | |
0.000016 19434 ennreal.rpow_lt_top_of_nonneg | |
0.000017 19435 real.rpow_neg | |
0.000017 19436 nnreal.rpow_neg | |
0.000017 19437 ennreal.rpow_neg | |
0.000017 19438 ennreal.rpow_neg_one | |
0.000017 19439 univ_unique | |
0.000017 19440 fin.default_eq_zero | |
0.000017 19441 ennreal.le_of_top_imp_top_of_to_nnreal_le | |
0.000016 19442 multiset.sum_eq_foldr | |
0.000017 19443 multiset.sum_induction | |
0.000017 19444 finset.sum_induction | |
0.000017 19445 with_top.sum_lt_top | |
0.000017 19446 with_top.sum_lt_top_iff | |
0.000017 19447 with_top.sum_eq_top_iff | |
0.000017 19448 ennreal.sum_eq_top_iff | |
0.000017 19449 ennreal.sum_lt_top | |
0.000017 19450 ennreal.to_nnreal_sum | |
0.000017 19451 ennreal.sum_lt_top_iff | |
0.000016 19452 ennreal.one_to_nnreal | |
0.000017 19453 ennreal.to_nnreal_rpow | |
0.000017 19454 ennreal.to_nnreal_hom._proof_1 | |
0.000017 19455 ennreal.to_nnreal_mul_top | |
0.000017 19456 ennreal.to_nnreal_top_mul | |
0.000017 19457 ennreal.to_nnreal_hom._proof_2 | |
0.000016 19458 ennreal.to_nnreal_hom | |
0.000017 19459 ennreal.to_nnreal_mul | |
0.000016 19460 set.ord_connected.convex | |
0.000017 19461 convex_Ici | |
0.000017 19462 real.continuous_log' | |
0.000018 19463 real.continuous_rpow_aux1 | |
0.000016 19464 complex.arg_neg_one | |
0.000017 19465 complex.of_real_def | |
0.000017 19466 max_eq_right_iff | |
0.000017 19467 le_neg_self_iff | |
0.000017 19468 abs_eq_neg_self | |
0.000017 19469 complex.arg_eq_pi_iff | |
0.000017 19470 complex.arg_of_real_of_neg | |
0.000016 19471 abs_abs | |
0.000017 19472 real.log_abs | |
0.000017 19473 real.log_neg_eq_log | |
0.000017 19474 real.rpow_def_of_neg | |
0.000017 19475 real.continuous_rpow_aux2 | |
0.000017 19476 real.continuous_at_rpow_of_ne_zero | |
0.000017 19477 rat.cast_pos | |
0.000017 19478 exists_pos_rat_lt | |
0.000017 19479 subtype.dist_eq | |
0.000017 19480 mul_le_of_le_one_right | |
0.000017 19481 real.cos_sq_le_one | |
0.000017 19482 real.abs_cos_le_one | |
0.000017 19483 real.abs_rpow_le_abs_rpow | |
0.000017 19484 mul_lt_mul_of_neg_left | |
0.000017 19485 real.log_lt_log_iff | |
0.000017 19486 real.log_neg_iff | |
0.000017 19487 real.log_neg | |
0.000017 19488 real.rpow_lt_rpow_of_exponent_gt | |
0.000017 19489 sub_half | |
0.000017 19490 sub_lt_of_abs_sub_lt_left | |
0.000016 19491 real.continuous_rpow_aux3 | |
0.000017 19492 real.continuous_at_rpow_of_pos | |
0.000017 19493 real.continuous_rpow | |
0.000017 19494 real.continuous_rpow_of_pos | |
0.000017 19495 has_deriv_at_filter.scomp | |
0.000017 19496 has_deriv_within_at.scomp | |
0.000017 19497 has_deriv_within_at.comp | |
0.000016 19498 has_deriv_at.comp_has_deriv_within_at | |
0.000018 19499 set.Iic_union_Ici | |
0.000017 19500 asymptotics.is_O_with.join | |
0.000017 19501 asymptotics.is_o.join | |
0.000017 19502 has_deriv_within_at.union | |
0.000017 19503 filter.eventually_bot | |
0.000017 19504 has_fderiv_within_at_of_not_mem_closure | |
0.000017 19505 closure_closure | |
0.000016 19506 metric.nhds_within_basis_ball | |
0.000017 19507 metric.tendsto_nhds_within_nhds_within | |
0.000017 19508 metric.tendsto_nhds_within_nhds | |
0.000017 19509 metric.mem_nhds_within_iff | |
0.000017 19510 nhds_within_prod_eq | |
0.000018 19511 pi.sub_apply | |
0.000017 19512 tendsto_nhds_within_of_tendsto_nhds | |
4.207900 19513 convex.norm_image_sub_le_of_norm_fderiv_within_le' | |
0.000080 19514 differentiable_at.fderiv_within | |
0.000024 19515 convex.inter | |
0.000015 19516 has_fderiv_at_boundary_of_tendsto_fderiv | |
0.000014 19517 set.ord_connected_Iio | |
0.000015 19518 set.ord_connected_Ioo | |
0.000014 19519 convex_Ioo | |
0.000014 19520 deriv_fderiv | |
0.000014 19521 is_bounded_bilinear_map.continuous | |
0.000014 19522 is_bounded_bilinear_map.continuous_right | |
0.000017 19523 set.Ioo_subset_Iio_self | |
0.000017 19524 no_bot_order | |
0.000018 19525 no_bot_order.no_bot | |
0.000016 19526 no_bot | |
0.000015 19527 mem_nhds_within_Iic_iff_exists_Ioc_subset | |
0.000015 19528 mem_nhds_within_Iic_iff_exists_Icc_subset | |
0.000017 19529 exists_zero_lt | |
0.000018 19530 linear_ordered_add_comm_group.to_no_bot_order | |
0.000017 19531 order_dual.no_top_order | |
0.000017 19532 mem_nhds_within_Iio_iff_exists_Ico_subset | |
0.000015 19533 has_deriv_at_interval_right_endpoint_of_tendsto_deriv | |
0.000015 19534 differentiable_at.differentiable_within_at | |
0.000014 19535 mem_nhds_within_Ici_iff_exists_Ico_subset' | |
0.000017 19536 mem_nhds_within_Ici_iff_exists_Ico_subset | |
0.000017 19537 mem_nhds_within_Ici_iff_exists_Icc_subset | |
0.000017 19538 has_deriv_at_interval_left_endpoint_of_tendsto_deriv | |
0.000015 19539 has_deriv_at_of_has_deriv_at_of_ne | |
0.000014 19540 filter.eventually_eq.has_deriv_at_filter_iff | |
0.000014 19541 has_deriv_at_filter.congr_of_eventually_eq | |
0.000015 19542 has_deriv_at.congr_of_eventually_eq | |
0.000014 19543 real.exp_sub | |
0.000016 19544 real.exp_log_of_neg | |
0.000018 19545 mul_eq_mul_right_iff | |
0.000017 19546 has_deriv_within_at.mul_const | |
0.000017 19547 has_deriv_at.mul_const | |
0.000017 19548 has_deriv_at_filter.comp | |
0.000017 19549 has_deriv_at.comp | |
0.000017 19550 continuous_linear_equiv.map_sub | |
0.000017 19551 continuous_linear_equiv.coe_coe | |
0.000017 19552 filter.eventually.prod_inl_nhds | |
0.000017 19553 filter.eventually.prod_inr_nhds | |
0.000017 19554 filter.eventually.prod_mk_nhds | |
0.000017 19555 asymptotics.is_o.symm | |
0.000016 19556 continuous_linear_equiv.is_O_comp | |
0.000017 19557 continuous_linear_equiv.is_O_comp_rev | |
0.000017 19558 asymptotics.is_O_with.of_neg_left | |
0.000029 19559 asymptotics.is_O_with_neg_right | |
0.000017 19560 asymptotics.is_O_with.neg_right | |
0.000016 19561 asymptotics.is_O_with.right_le_sub_of_lt_1 | |
0.000018 19562 asymptotics.is_O_with.right_le_add_of_lt_1 | |
0.000019 19563 asymptotics.is_o.right_is_O_add | |
0.000015 19564 has_strict_fderiv_at.is_O_sub_rev | |
0.000017 19565 has_strict_fderiv_at.of_local_left_inverse | |
0.000017 19566 continuous_linear_equiv.equiv_of_inverse._proof_1 | |
0.000017 19567 continuous_linear_equiv.equiv_of_inverse._proof_2 | |
0.000017 19568 continuous_linear_equiv.equiv_of_inverse | |
0.000017 19569 continuous_linear_equiv.units_equiv_aut._proof_1 | |
0.000017 19570 continuous_linear_equiv.units_equiv_aut._proof_2 | |
0.000017 19571 continuous_linear_equiv.units_equiv_aut._proof_3 | |
0.000017 19572 continuous_linear_equiv.units_equiv_aut._proof_4 | |
0.000015 19573 continuous_linear_equiv.units_equiv_aut._proof_5 | |
0.000014 19574 continuous_linear_equiv.units_equiv_aut._proof_6 | |
0.000014 19575 continuous_linear_equiv.map_smul | |
0.000015 19576 continuous_linear_equiv.units_equiv_aut._proof_7 | |
0.000016 19577 continuous_linear_equiv.units_equiv_aut._proof_8 | |
0.000015 19578 continuous_linear_equiv.symm_equiv_of_inverse | |
0.000016 19579 continuous_linear_equiv.equiv_of_inverse_apply | |
0.000018 19580 units.mk_coe | |
0.000017 19581 continuous_linear_equiv.units_equiv_aut._proof_9 | |
0.000017 19582 continuous_linear_equiv.cases_on | |
0.000017 19583 continuous_linear_equiv.to_linear_equiv_injective | |
0.000017 19584 linear_equiv.cases_on | |
0.000017 19585 linear_equiv.no_confusion_type | |
0.000017 19586 linear_equiv.no_confusion | |
0.000018 19587 linear_equiv.mk.inj | |
0.000017 19588 linear_equiv.mk.inj_eq | |
0.000017 19589 linear_equiv.to_equiv_injective | |
0.000017 19590 linear_equiv.ext | |
0.000017 19591 continuous_linear_equiv.ext | |
0.000017 19592 continuous_linear_equiv.ext₁ | |
0.000017 19593 units.inv_mk | |
0.000017 19594 continuous_linear_equiv.units_equiv_aut._proof_10 | |
0.000017 19595 continuous_linear_equiv.units_equiv_aut | |
0.000016 19596 has_strict_deriv_at.has_strict_fderiv_at_equiv | |
0.000017 19597 has_strict_deriv_at.of_local_left_inverse | |
0.000017 19598 real.continuous_at_log | |
0.000017 19599 real.has_strict_deriv_at_exp | |
0.000017 19600 real.has_strict_deriv_at_log_of_pos | |
0.000018 19601 has_strict_deriv_at_neg | |
0.000016 19602 real.has_strict_deriv_at_log | |
0.000017 19603 real.has_deriv_at_log | |
0.000015 19604 real.has_deriv_at_rpow_of_neg | |
0.000016 19605 real.has_deriv_at_rpow_of_pos | |
0.000017 19606 real.has_deriv_at_rpow | |
0.000017 19607 real.has_deriv_at_rpow_zero_of_one_le | |
0.000017 19608 real.has_deriv_at_rpow_of_one_le | |
3.487716 19609 has_deriv_within_at.rpow_of_one_le | |
0.000075 19610 has_deriv_at.rpow_of_one_le | |
0.000024 19611 differentiable_at.rpow_of_one_le | |
0.000015 19612 differentiable.rpow_of_one_le | |
0.000015 19613 deriv_rpow_of_one_le | |
0.000014 19614 differentiable_at_id' | |
0.000016 19615 deriv_id | |
0.000014 19616 deriv_id'' | |
0.000014 19617 set.compl_Iio | |
0.000013 19618 interior_compl | |
0.000014 19619 closure_Iio | |
0.000014 19620 set.compl_Iic | |
0.000014 19621 interior_Ici | |
0.000017 19622 algebra.smul_mul_assoc | |
0.000017 19623 is_scalar_tower.right | |
0.000015 19624 has_fderiv_at.prod | |
0.000015 19625 has_fderiv_at.smul | |
0.000016 19626 has_fderiv_at.mul | |
0.000017 19627 differentiable_at.mul | |
0.000015 19628 has_deriv_within_at.rpow | |
0.000014 19629 has_deriv_at.rpow | |
0.000017 19630 differentiable_at.rpow | |
0.000014 19631 deriv_mul | |
0.000015 19632 deriv_const | |
0.000018 19633 deriv_const' | |
0.000017 19634 deriv_rpow | |
0.000017 19635 convex_on_rpow | |
0.000017 19636 real.rpow_arith_mean_le_arith_mean_rpow | |
0.000015 19637 nnreal.rpow_arith_mean_le_arith_mean_rpow | |
0.000014 19638 ennreal.one_lt_top | |
0.000016 19639 ennreal.rpow_arith_mean_le_arith_mean_rpow | |
0.000015 19640 ennreal.rpow_arith_mean_le_arith_mean2_rpow | |
0.000017 19641 ennreal.div_add_div_same | |
0.000017 19642 has_measurable_mul.measurable_const_mul | |
0.000017 19643 ae_measurable.const_mul | |
0.000017 19644 ennreal.ne_top_of_mul_ne_top_left | |
0.000017 19645 ennreal.lt_top_of_mul_lt_top_left | |
0.000017 19646 ennreal.lt_top_of_mul_lt_top_right | |
0.000016 19647 ennreal.mul_lt_top_iff | |
0.000018 19648 ennreal.lintegral_rpow_add_lt_top_of_lintegral_rpow_lt_top | |
0.000017 19649 ennreal.lintegral_Lp_add_le | |
0.000017 19650 continuous_nnnorm | |
0.000017 19651 measurable_nnnorm | |
0.000017 19652 measurable_ennnorm | |
0.000017 19653 ae_measurable.ennnorm | |
0.000016 19654 measure_theory.snorm'_add_le | |
0.000017 19655 ennreal.one_to_real | |
0.000017 19656 measure_theory.snorm_add_le | |
0.000017 19657 measure_theory.snorm_add_lt_top_of_one_le | |
0.000017 19658 ennreal.rpow_le_rpow_iff | |
0.000017 19659 ennreal.le_rpow_one_div_iff | |
0.000017 19660 one_div_one_div | |
0.000017 19661 ennreal.rpow_eq_top_iff_of_pos | |
0.000017 19662 ennreal.add_ne_top | |
0.000018 19663 ennreal.div_one | |
0.000016 19664 ennreal.div_rpow_of_nonneg | |
0.000017 19665 linarith.le_of_le_of_eq | |
0.000017 19666 real.exp_le_exp | |
0.000017 19667 mul_le_mul_of_nonpos_left | |
0.000017 19668 real.log_pos_iff | |
0.000017 19669 real.log_nonpos_iff | |
0.000017 19670 real.log_nonpos_iff' | |
0.000017 19671 real.log_nonpos | |
0.000017 19672 real.rpow_le_rpow_of_exponent_ge | |
0.000017 19673 nnreal.rpow_le_rpow_of_exponent_ge | |
0.000017 19674 ennreal.coe_le_one_iff | |
0.000017 19675 ennreal.rpow_le_rpow_of_exponent_ge | |
0.000017 19676 ennreal.rpow_le_self_of_le_one | |
0.000017 19677 _private.71664787.add_rpow_le_one_of_add_le_one | |
0.000017 19678 ennreal.add_rpow_le_rpow_add | |
0.000017 19679 ennreal.rpow_add_rpow_le_add | |
0.000017 19680 one_le_div | |
0.000017 19681 ennreal.rpow_add_rpow_le | |
0.000017 19682 ennreal.rpow_add_le_add_rpow | |
0.000015 19683 measure_theory.lintegral_rpow_nnnorm_eq_rpow_snorm' | |
0.000017 19684 measure_theory.lintegral_rpow_nnnorm_lt_top_of_snorm'_lt_top | |
0.000017 19685 measure_theory.snorm'_add_lt_top_of_le_one | |
0.000016 19686 measure_theory.mem_ℒp.equations._eqn_1 | |
0.000017 19687 measure_theory.snorm_add_lt_top | |
0.000017 19688 measure_theory.Lp._proof_4 | |
0.000017 19689 measure_theory.ae_eq_fun.comp_eq_mk | |
0.000017 19690 measure_theory.ae_eq_fun.coe_fn_comp | |
0.000017 19691 measure_theory.ae_eq_fun.coe_fn_neg | |
0.000017 19692 pi.neg_apply | |
0.000017 19693 nnnorm_neg | |
0.000017 19694 measure_theory.snorm'_neg | |
0.000017 19695 measure_theory.snorm_neg | |
0.000015 19696 measure_theory.Lp._proof_5 | |
0.000014 19697 measure_theory.Lp | |
0.000016 19698 measure_theory.Lp.mem_Lp_iff_snorm_lt_top | |
0.000017 19699 measure_theory.Lp.mem_Lp_iff_mem_ℒp | |
0.000017 19700 nat.smul_one_eq_coe | |
0.000017 19701 units.is_unit_mul_units | |
0.000017 19702 opposite | |
0.000017 19703 opposite.unop | |
0.000017 19704 category_theory.has_hom.opposite | |
0.000017 19705 category_theory.large_category | |
0.000017 19706 category_theory.bundled_hom | |
0.000017 19707 category_theory.bundled_hom.id | |
0.000017 19708 category_theory.bundled_hom.comp | |
0.000017 19709 category_theory.bundled_hom.to_fun | |
0.000016 19710 category_theory.bundled_hom.hom_ext | |
0.000017 19711 category_theory.bundled_hom.comp_to_fun | |
0.000017 19712 category_theory.bundled_hom.id_to_fun | |
0.000017 19713 function.right_id | |
0.000017 19714 category_theory.bundled_hom.category._proof_1 | |
0.000017 19715 function.left_id | |
0.000017 19716 category_theory.bundled_hom.category._proof_2 | |
0.000017 19717 category_theory.bundled_hom.category._proof_3 | |
0.000017 19718 category_theory.bundled_hom.category | |
0.000017 19719 continuous_map | |
0.000017 19720 continuous_map.to_fun | |
0.000016 19721 continuous_map.id | |
0.000017 19722 continuous_map.has_coe_to_fun | |
0.178555 19723 continuous_map.continuous_to_fun | |
0.000077 19724 continuous_map.coe_continuous | |
0.000024 19725 continuous_map.comp._proof_1 | |
0.000015 19726 continuous_map.comp | |
0.000014 19727 continuous_map.cases_on | |
0.000014 19728 continuous_map.coe_inj | |
0.000015 19729 Top.bundled_hom._proof_1 | |
0.000015 19730 Top.bundled_hom._proof_2 | |
0.000014 19731 Top.bundled_hom | |
0.000019 19732 Top.large_category | |
0.000017 19733 TopCommRing | |
0.000017 19734 CommRing | |
0.000015 19735 category_theory.bundled.of | |
0.000017 19736 CommRing.of | |
0.000015 19737 TopCommRing.α | |
0.000014 19738 TopCommRing.has_coe_to_sort | |
0.000017 19739 TopCommRing.is_comm_ring | |
0.000017 19740 TopCommRing.is_topological_space | |
0.000015 19741 TopCommRing.category_theory.category._proof_1 | |
0.000014 19742 TopCommRing.category_theory.category._proof_2 | |
0.000017 19743 ring_hom.cases_on | |
0.000019 19744 ring_hom.coe_inj | |
0.000015 19745 ring_hom.ext | |
0.000017 19746 ring_hom.comp_id | |
0.000017 19747 TopCommRing.category_theory.category._proof_3 | |
0.000015 19748 ring_hom.id_comp | |
0.000014 19749 TopCommRing.category_theory.category._proof_4 | |
0.000016 19750 TopCommRing.category_theory.category._proof_5 | |
0.000016 19751 TopCommRing.category_theory.category | |
0.000016 19752 category_theory.types._proof_1 | |
0.000017 19753 category_theory.types._proof_2 | |
0.000017 19754 category_theory.types._proof_3 | |
0.000017 19755 category_theory.types | |
0.000016 19756 category_theory.faithful | |
0.000018 19757 category_theory.concrete_category | |
0.000016 19758 category_theory.functor.comp._proof_1 | |
0.000017 19759 category_theory.functor.map_comp | |
0.000017 19760 category_theory.functor.comp._proof_2 | |
0.000017 19761 category_theory.functor.comp | |
0.000017 19762 category_theory.concrete_category.forget | |
0.000017 19763 category_theory.forget | |
0.000017 19764 category_theory.has_forget₂ | |
0.000016 19765 category_theory.has_forget₂.forget₂ | |
0.000017 19766 category_theory.forget₂ | |
0.000017 19767 TopCommRing.category_theory.concrete_category._proof_1 | |
0.000017 19768 TopCommRing.category_theory.concrete_category._proof_2 | |
0.000017 19769 TopCommRing.category_theory.concrete_category._proof_3 | |
0.000017 19770 TopCommRing.category_theory.concrete_category | |
0.000017 19771 category_theory.bundled_hom.category_theory.bundled.category_theory.concrete_category._proof_1 | |
0.000017 19772 category_theory.bundled_hom.category_theory.bundled.category_theory.concrete_category._proof_2 | |
0.000017 19773 category_theory.bundled_hom.category_theory.bundled.category_theory.concrete_category._proof_3 | |
0.000017 19774 category_theory.bundled_hom.category_theory.bundled.category_theory.concrete_category | |
0.000017 19775 Top.concrete_category | |
0.000017 19776 category_theory.faithful.map_injective | |
0.000015 19777 category_theory.functor.map_injective | |
0.000014 19778 heq.subst | |
0.000017 19779 heq.trans | |
0.000017 19780 category_theory.faithful.div._proof_1 | |
0.000017 19781 heq.symm | |
0.000017 19782 category_theory.faithful.div._proof_2 | |
0.000017 19783 category_theory.faithful.div | |
0.000016 19784 category_theory.concrete_category.forget_faithful | |
0.000017 19785 category_theory.functor.cases_on | |
0.000017 19786 category_theory.faithful.div.equations._eqn_1 | |
0.000017 19787 category_theory.functor.comp.equations._eqn_1 | |
0.000017 19788 category_theory.faithful.div_comp | |
0.000017 19789 category_theory.has_forget₂.mk'._proof_1 | |
0.000016 19790 category_theory.has_forget₂.mk' | |
0.000017 19791 Top.of | |
0.000016 19792 TopCommRing.forget_topological_space | |
0.000017 19793 TopCommRing.has_forget_to_Top._proof_1 | |
0.000017 19794 TopCommRing.has_forget_to_Top._proof_2 | |
0.000016 19795 heq.rfl | |
0.000017 19796 TopCommRing.has_forget_to_Top._proof_3 | |
0.000017 19797 TopCommRing.has_forget_to_Top | |
0.000017 19798 continuous_map.continuous | |
0.000016 19799 continuous_map.has_add._proof_1 | |
0.000017 19800 continuous_map.has_add | |
0.000017 19801 continuous_map.ext | |
0.000017 19802 continuous_map_add_semigroup._proof_1 | |
0.000016 19803 continuous_map_add_semigroup | |
0.000017 19804 continuous_map_add_comm_monoid._proof_1 | |
0.000018 19805 continuous_map.const | |
0.000017 19806 continuous_map.has_zero | |
0.000016 19807 continuous_map_add_comm_monoid._proof_2 | |
0.000017 19808 continuous_map_add_comm_monoid._proof_3 | |
0.000017 19809 continuous_map_add_comm_monoid._proof_4 | |
0.000017 19810 continuous_map_add_comm_monoid._proof_5 | |
0.000017 19811 continuous_map_add_comm_monoid._proof_6 | |
0.000016 19812 continuous_map_add_comm_monoid._proof_7 | |
0.000017 19813 continuous_map_add_comm_monoid._proof_8 | |
0.000017 19814 continuous_map_add_comm_monoid | |
0.000017 19815 continuous_map_semiring._proof_1 | |
0.000017 19816 continuous_map_semiring._proof_2 | |
0.000017 19817 continuous_map_semiring._proof_3 | |
0.000016 19818 continuous_map_semiring._proof_4 | |
0.000017 19819 continuous_map_semiring._proof_5 | |
0.169816 19820 continuous_map_semiring._proof_6 | |
0.000081 19821 continuous_map.has_mul._proof_1 | |
0.000020 19822 continuous_map.has_mul | |
0.000015 19823 continuous_map_semigroup._proof_1 | |
0.000014 19824 continuous_map_semigroup | |
0.000014 19825 continuous_map_monoid._proof_1 | |
0.000014 19826 continuous_map.has_one | |
0.000015 19827 continuous_map_monoid._proof_2 | |
0.000014 19828 continuous_map_monoid._proof_3 | |
0.000018 19829 continuous_map_monoid._proof_4 | |
0.000018 19830 continuous_map_monoid._proof_5 | |
0.000017 19831 continuous_map_monoid._proof_6 | |
0.000015 19832 continuous_map_monoid._proof_7 | |
0.000015 19833 continuous_map_monoid | |
0.000014 19834 continuous_map_semiring._proof_7 | |
0.000014 19835 continuous_map_semiring._proof_8 | |
0.000018 19836 continuous_map_semiring._proof_9 | |
0.000017 19837 continuous_map_semiring._proof_10 | |
0.000015 19838 continuous_map_semiring._proof_11 | |
0.000014 19839 continuous_map_semiring._proof_12 | |
0.000018 19840 continuous_map_semiring._proof_13 | |
0.000015 19841 continuous_map_semiring._proof_14 | |
0.000017 19842 continuous_map_semiring._proof_15 | |
0.000017 19843 continuous_map_semiring | |
0.000015 19844 continuous_map_comm_ring._proof_1 | |
0.000014 19845 continuous_map_comm_ring._proof_2 | |
0.000018 19846 continuous_map_comm_ring._proof_3 | |
0.000015 19847 continuous_map_comm_ring._proof_4 | |
0.000018 19848 continuous_map_comm_ring._proof_5 | |
0.000016 19849 continuous_map_comm_ring._proof_6 | |
0.000016 19850 continuous_map_add_monoid._proof_1 | |
0.000014 19851 continuous_map_add_monoid._proof_2 | |
0.000017 19852 continuous_map_add_monoid._proof_3 | |
0.000014 19853 continuous_map_add_monoid._proof_4 | |
0.000019 19854 continuous_map_add_monoid._proof_5 | |
0.000016 19855 continuous_map_add_monoid._proof_6 | |
0.000015 19856 continuous_map_add_monoid._proof_7 | |
0.000015 19857 continuous_map_add_monoid | |
0.000017 19858 continuous_map_add_group._proof_1 | |
0.000015 19859 continuous_map_add_group._proof_2 | |
0.000014 19860 continuous_map_add_group._proof_3 | |
0.000014 19861 continuous_map_add_group._proof_4 | |
0.000018 19862 continuous_map_add_group._proof_5 | |
0.000016 19863 continuous_map_add_group._proof_6 | |
0.000017 19864 continuous_map_add_group._proof_7 | |
0.000017 19865 continuous_map_add_group._proof_8 | |
0.000017 19866 continuous_map_add_group._proof_9 | |
0.000017 19867 continuous_map_add_group._proof_10 | |
0.000017 19868 continuous_map_add_group._proof_11 | |
0.000017 19869 continuous_map_add_group._proof_12 | |
0.000017 19870 continuous_map_add_group._proof_13 | |
0.000017 19871 continuous_map_add_group | |
0.000017 19872 continuous_map_add_comm_group._proof_1 | |
0.000017 19873 continuous_map_add_comm_group._proof_2 | |
0.000017 19874 continuous_map_add_comm_group._proof_3 | |
0.000016 19875 continuous_map_add_comm_group._proof_4 | |
0.000017 19876 continuous_map_add_comm_group._proof_5 | |
0.000017 19877 continuous_map_add_comm_group._proof_6 | |
0.000017 19878 continuous_map_add_comm_group._proof_7 | |
0.000017 19879 continuous_map_add_comm_group._proof_8 | |
0.000017 19880 continuous_map_add_comm_group | |
0.000017 19881 topological_ring.continuous_neg | |
0.000017 19882 topological_ring.to_topological_add_group | |
0.000017 19883 continuous_map_comm_ring._proof_7 | |
0.000017 19884 continuous_map_comm_ring._proof_8 | |
0.000016 19885 continuous_map_comm_ring._proof_9 | |
0.000017 19886 continuous_map_comm_ring._proof_10 | |
0.000017 19887 continuous_map_comm_ring._proof_11 | |
0.000017 19888 continuous_map_comm_ring._proof_12 | |
0.000017 19889 continuous_map_comm_ring._proof_13 | |
0.000017 19890 continuous_map_comm_ring._proof_14 | |
0.000017 19891 continuous_map_comm_ring._proof_15 | |
0.000017 19892 continuous_map_comm_ring._proof_16 | |
0.000017 19893 continuous_map_comm_ring._proof_17 | |
0.000016 19894 continuous_map_comm_monoid._proof_1 | |
0.000017 19895 continuous_map_comm_monoid._proof_2 | |
0.000017 19896 continuous_map_comm_monoid._proof_3 | |
0.000017 19897 continuous_map_comm_monoid._proof_4 | |
0.000017 19898 continuous_map_comm_monoid._proof_5 | |
0.000016 19899 continuous_map_comm_monoid._proof_6 | |
0.000017 19900 continuous_map_comm_monoid._proof_7 | |
0.000017 19901 continuous_map_comm_monoid._proof_8 | |
0.000017 19902 continuous_map_comm_monoid | |
0.000017 19903 continuous_map_comm_ring._proof_18 | |
0.000017 19904 continuous_map_comm_ring | |
0.000017 19905 TopCommRing.forget_to_Top_comm_ring | |
0.000017 19906 TopCommRing.is_topological_ring | |
0.000017 19907 TopCommRing.forget_to_Top_topological_ring | |
0.000017 19908 Top.continuous_functions | |
0.000016 19909 category_theory.has_hom.hom.unop | |
0.000017 19910 Top.continuous_functions.pullback._proof_4 | |
0.000017 19911 complete_lattice_of_complete_semilattice_Inf._proof_1 | |
0.000017 19912 complete_lattice_of_complete_semilattice_Inf | |
0.000017 19913 measure_theory.measure.complete_semilattice_Inf._proof_1 | |
0.562125 19914 measure_theory.measure.complete_semilattice_Inf._proof_2 | |
0.000077 19915 measure_theory.measure.complete_semilattice_Inf._proof_3 | |
0.000020 19916 measure_theory.measure.complete_semilattice_Inf._proof_4 | |
0.000015 19917 complete_lattice_of_Sup._proof_1 | |
0.000015 19918 complete_lattice_of_Sup._proof_2 | |
0.000014 19919 upper_bounds_singleton | |
0.000014 19920 upper_bounds_insert | |
0.000013 19921 complete_lattice_of_Sup._proof_3 | |
0.000017 19922 complete_lattice_of_Sup._proof_4 | |
0.000017 19923 complete_lattice_of_Sup._proof_5 | |
0.000017 19924 complete_lattice_of_Sup._proof_6 | |
0.000017 19925 complete_lattice_of_Sup._proof_7 | |
0.000014 19926 complete_lattice_of_Sup._proof_8 | |
0.000015 19927 complete_lattice_of_Sup._proof_9 | |
0.000016 19928 complete_lattice_of_Sup._proof_10 | |
0.000018 19929 complete_lattice_of_Sup._proof_11 | |
0.000016 19930 complete_lattice_of_Sup._proof_12 | |
0.000015 19931 complete_lattice_of_Sup | |
0.000014 19932 measure_theory.outer_measure.outer_measure.order_bot._proof_1 | |
0.000014 19933 measure_theory.outer_measure.outer_measure.order_bot._proof_2 | |
0.000014 19934 measure_theory.outer_measure.outer_measure.order_bot._proof_3 | |
0.000014 19935 measure_theory.outer_measure.outer_measure.order_bot._proof_4 | |
0.000014 19936 measure_theory.outer_measure.outer_measure.order_bot._proof_5 | |
0.000014 19937 measure_theory.outer_measure.outer_measure.order_bot | |
0.000016 19938 measure_theory.outer_measure.has_Sup._proof_1 | |
0.000017 19939 le_bsupr | |
0.000017 19940 bsupr_le_bsupr | |
0.000017 19941 measure_theory.outer_measure.has_Sup._proof_2 | |
0.000017 19942 measure_theory.outer_measure.has_Sup._proof_3 | |
0.000016 19943 measure_theory.outer_measure.has_Sup | |
0.000017 19944 measure_theory.outer_measure.complete_lattice._proof_1 | |
0.000017 19945 measure_theory.outer_measure.complete_lattice._proof_2 | |
0.000016 19946 measure_theory.outer_measure.complete_lattice._proof_3 | |
0.000017 19947 measure_theory.outer_measure.complete_lattice._proof_4 | |
0.000017 19948 measure_theory.outer_measure.complete_lattice._proof_5 | |
0.000017 19949 measure_theory.outer_measure.complete_lattice._proof_6 | |
0.000016 19950 measure_theory.outer_measure.complete_lattice._proof_7 | |
0.000017 19951 measure_theory.outer_measure.complete_lattice._proof_8 | |
0.000016 19952 measure_theory.outer_measure.complete_lattice._proof_9 | |
0.000018 19953 measure_theory.outer_measure.complete_lattice._proof_10 | |
0.000016 19954 measure_theory.outer_measure.complete_lattice._proof_11 | |
0.000017 19955 measure_theory.outer_measure.complete_lattice._proof_12 | |
0.000017 19956 measure_theory.outer_measure.complete_lattice._proof_13 | |
0.000017 19957 measure_theory.outer_measure.complete_lattice._proof_14 | |
0.000017 19958 measure_theory.outer_measure.complete_lattice._proof_15 | |
0.000017 19959 measure_theory.outer_measure.complete_lattice._proof_16 | |
0.000017 19960 measure_theory.outer_measure.complete_lattice._proof_17 | |
0.000017 19961 measure_theory.outer_measure.complete_lattice | |
0.000017 19962 measure_theory.outer_measure.bounded_by._proof_1 | |
0.000016 19963 measure_theory.outer_measure.bounded_by | |
0.000017 19964 measure_theory.outer_measure.Inf_gen | |
0.000017 19965 measure_theory.outer_measure.bounded_by.equations._eqn_1 | |
0.000017 19966 measure_theory.outer_measure.le_of_function | |
0.000017 19967 is_lub.cSup_eq | |
0.000017 19968 is_greatest.nonempty | |
0.000016 19969 is_greatest.cSup_eq | |
0.000017 19970 cSup_singleton | |
0.000017 19971 csupr_const | |
0.000017 19972 measure_theory.outer_measure.le_bounded_by | |
0.000017 19973 supr_const_le | |
0.000016 19974 measure_theory.outer_measure.bounded_by_le | |
0.000017 19975 measure_theory.outer_measure.Inf_eq_bounded_by_Inf_gen | |
0.000017 19976 set.empty_inter | |
0.000016 19977 measure_theory.outer_measure.bounded_by_caratheodory | |
0.000017 19978 measure_theory.outer_measure.Inf_gen.equations._eqn_1 | |
0.000017 19979 measure_theory.measure_eq_infi | |
0.000017 19980 measure_theory.measure_eq_inter_diff | |
0.000016 19981 measure_theory.outer_measure.Inf_gen_def | |
0.000017 19982 measure_theory.to_outer_measure_apply | |
0.000017 19983 measure_theory.measure.Inf_caratheodory | |
0.000017 19984 measure_theory.measure.has_Inf | |
0.000017 19985 measure_theory.measure.Inf_apply | |
0.000017 19986 _private.2803293247.measure_Inf_le | |
0.000017 19987 measure_theory.measure.complete_semilattice_Inf._proof_5 | |
0.000016 19988 measure_theory.outer_measure.le_trim_iff | |
0.000017 19989 measure_theory.measure.to_outer_measure_le | |
0.000017 19990 _private.3982149971.measure_le_Inf | |
0.000017 19991 measure_theory.measure.complete_semilattice_Inf._proof_6 | |
0.000017 19992 measure_theory.measure.complete_semilattice_Inf | |
0.000017 19993 measure_theory.measure.complete_lattice._proof_1 | |
0.173850 19994 measure_theory.measure.complete_lattice._proof_2 | |
0.000084 19995 measure_theory.measure.complete_lattice._proof_3 | |
0.000022 19996 measure_theory.measure.complete_lattice._proof_4 | |
0.000015 19997 measure_theory.measure.complete_lattice._proof_5 | |
0.000014 19998 measure_theory.measure.complete_lattice._proof_6 | |
0.000014 19999 measure_theory.measure.complete_lattice._proof_7 | |
0.000014 20000 measure_theory.measure.complete_lattice._proof_8 | |
0.000014 20001 measure_theory.measure.complete_lattice._proof_9 | |
0.000014 20002 measure_theory.measure.complete_lattice._proof_10 | |
0.000015 20003 measure_theory.measure.complete_lattice._proof_11 | |
0.000017 20004 measure_theory.measure.complete_lattice._proof_12 | |
0.000017 20005 measure_theory.measure.complete_lattice._proof_13 | |
0.000015 20006 measure_theory.measure.complete_lattice._proof_14 | |
0.000016 20007 measure_theory.measure.complete_lattice._proof_15 | |
0.000018 20008 measure_theory.measure.complete_lattice._proof_16 | |
0.000017 20009 measure_theory.measure.complete_lattice | |
0.000017 20010 onote | |
0.000016 20011 onote.sizeof | |
0.000014 20012 onote.zero.sizeof_spec | |
0.000018 20013 linear_ordered_add_comm_monoid.add | |
0.000018 20014 linear_ordered_add_comm_monoid.add_assoc | |
0.000017 20015 linear_ordered_add_comm_monoid.zero | |
0.000015 20016 linear_ordered_add_comm_monoid.zero_add | |
0.000015 20017 linear_ordered_add_comm_monoid.add_zero | |
0.000016 20018 linear_ordered_add_comm_monoid.nsmul | |
0.000020 20019 linear_ordered_add_comm_monoid.nsmul_zero' | |
0.000017 20020 linear_ordered_add_comm_monoid.nsmul_succ' | |
0.000017 20021 linear_ordered_add_comm_monoid.add_comm | |
0.000017 20022 linear_ordered_add_comm_monoid.add_le_add_left | |
0.000015 20023 linear_ordered_add_comm_monoid.lt_of_add_lt_add_left | |
0.000015 20024 linear_ordered_add_comm_monoid.to_ordered_add_comm_monoid | |
0.000016 20025 linear_ordered_add_comm_monoid_with_top | |
0.000038 20026 valuation | |
0.000019 20027 multiplicative.ordered_comm_monoid._proof_1 | |
0.000018 20028 multiplicative.ordered_comm_monoid._proof_2 | |
0.000015 20029 multiplicative.ordered_comm_monoid._proof_3 | |
0.000014 20030 multiplicative.ordered_comm_monoid._proof_4 | |
0.000015 20031 multiplicative.ordered_comm_monoid._proof_5 | |
0.000017 20032 multiplicative.ordered_comm_monoid._proof_6 | |
0.000017 20033 multiplicative.partial_order | |
0.000017 20034 multiplicative.ordered_comm_monoid._proof_7 | |
0.000017 20035 multiplicative.ordered_comm_monoid._proof_8 | |
0.000017 20036 multiplicative.ordered_comm_monoid._proof_9 | |
0.000017 20037 multiplicative.ordered_comm_monoid._proof_10 | |
0.000017 20038 multiplicative.ordered_comm_monoid | |
0.000015 20039 linear_ordered_add_comm_monoid_with_top.le | |
0.000015 20040 linear_ordered_add_comm_monoid_with_top.lt | |
0.000014 20041 linear_ordered_add_comm_monoid_with_top.le_refl | |
0.000014 20042 linear_ordered_add_comm_monoid_with_top.le_trans | |
0.000014 20043 linear_ordered_add_comm_monoid_with_top.lt_iff_le_not_le | |
0.000014 20044 linear_ordered_add_comm_monoid_with_top.le_antisymm | |
0.000017 20045 linear_ordered_add_comm_monoid_with_top.le_total | |
0.000017 20046 linear_ordered_add_comm_monoid_with_top.decidable_le | |
0.000018 20047 linear_ordered_add_comm_monoid_with_top.decidable_eq | |
0.000017 20048 linear_ordered_add_comm_monoid_with_top.decidable_lt | |
0.000017 20049 linear_ordered_add_comm_monoid_with_top.add | |
0.000017 20050 linear_ordered_add_comm_monoid_with_top.add_assoc | |
0.000017 20051 linear_ordered_add_comm_monoid_with_top.zero | |
0.000017 20052 linear_ordered_add_comm_monoid_with_top.zero_add | |
0.000017 20053 linear_ordered_add_comm_monoid_with_top.add_zero | |
0.000017 20054 linear_ordered_add_comm_monoid_with_top.nsmul | |
0.000015 20055 linear_ordered_add_comm_monoid_with_top.nsmul_zero' | |
0.000016 20056 linear_ordered_add_comm_monoid_with_top.nsmul_succ' | |
0.000017 20057 linear_ordered_add_comm_monoid_with_top.add_comm | |
0.000018 20058 linear_ordered_add_comm_monoid_with_top.add_le_add_left | |
0.000016 20059 linear_ordered_add_comm_monoid_with_top.lt_of_add_lt_add_left | |
0.000017 20060 linear_ordered_add_comm_monoid_with_top.to_linear_ordered_add_comm_monoid | |
0.000018 20061 multiplicative.linear_ordered_comm_monoid_with_zero._proof_1 | |
0.000017 20062 multiplicative.linear_ordered_comm_monoid_with_zero._proof_2 | |
0.000017 20063 multiplicative.linear_ordered_comm_monoid_with_zero._proof_3 | |
0.000017 20064 multiplicative.linear_ordered_comm_monoid_with_zero._proof_4 | |
0.000015 20065 multiplicative.linear_order | |
0.000016 20066 multiplicative.linear_ordered_comm_monoid_with_zero._proof_5 | |
0.000017 20067 multiplicative.linear_ordered_comm_monoid_with_zero._proof_6 | |
0.196740 20068 multiplicative.linear_ordered_comm_monoid_with_zero._proof_7 | |
0.000078 20069 multiplicative.linear_ordered_comm_monoid_with_zero._proof_8 | |
0.000024 20070 multiplicative.linear_ordered_comm_monoid_with_zero._proof_9 | |
0.000015 20071 multiplicative.linear_ordered_comm_monoid_with_zero._proof_10 | |
0.000014 20072 multiplicative.linear_ordered_comm_monoid_with_zero._proof_11 | |
0.000014 20073 multiplicative.linear_ordered_comm_monoid_with_zero._proof_12 | |
0.000014 20074 multiplicative.linear_ordered_comm_monoid_with_zero._proof_13 | |
0.000014 20075 linear_ordered_add_comm_monoid_with_top.top | |
0.000015 20076 linear_ordered_add_comm_monoid_with_top.le_top | |
0.000014 20077 linear_ordered_add_comm_monoid_with_top.to_order_top | |
0.000014 20078 linear_ordered_add_comm_monoid_with_top.top_add' | |
0.000014 20079 top_add | |
0.000014 20080 multiplicative.linear_ordered_comm_monoid_with_zero._proof_14 | |
0.000014 20081 add_top | |
0.000015 20082 multiplicative.linear_ordered_comm_monoid_with_zero._proof_15 | |
0.000014 20083 multiplicative.linear_ordered_comm_monoid_with_zero._proof_16 | |
0.000017 20084 multiplicative.linear_ordered_comm_monoid_with_zero | |
0.000017 20085 add_valuation | |
0.000019 20086 valuation.to_fun | |
0.000014 20087 add_valuation.has_coe_to_fun | |
0.000017 20088 valuation.has_coe_to_fun | |
0.000017 20089 valuation.map_add' | |
0.000017 20090 valuation.map_add | |
0.000017 20091 valuation.map_add_le | |
0.000017 20092 add_valuation.map_le_add | |
0.000017 20093 rbnode | |
0.000015 20094 rbnode.color | |
0.000014 20095 rbnode.color.cases_on | |
0.000016 20096 rbnode.cases_on | |
0.000015 20097 rbnode.mk_insert_result._main | |
0.000014 20098 rbnode.mk_insert_result | |
0.000016 20099 rbnode.get_color._main | |
0.000015 20100 rbnode.get_color | |
0.000015 20101 rbnode.below | |
0.000016 20102 rbnode.brec_on | |
0.000015 20103 rbnode.ins._match_1 | |
0.000016 20104 cmp_using | |
0.000015 20105 rbnode.color.no_confusion_type | |
0.000016 20106 rbnode.color.no_confusion | |
0.000016 20107 rbnode.color.decidable_eq._proof_1 | |
0.000014 20108 rbnode.color.decidable_eq._proof_2 | |
0.000017 20109 rbnode.color.decidable_eq | |
0.000015 20110 rbnode.balance1._main | |
0.000016 20111 rbnode.balance1 | |
0.000016 20112 rbnode.balance1_node._main | |
0.000014 20113 rbnode.balance1_node | |
0.000016 20114 rbnode.balance2._main | |
0.000016 20115 rbnode.balance2 | |
0.000014 20116 rbnode.balance2_node._main | |
0.000016 20117 rbnode.balance2_node | |
0.000016 20118 rbnode.ins._match_2 | |
0.000014 20119 rbnode.ins._main | |
0.000016 20120 rbnode.ins | |
0.000015 20121 rbnode.insert | |
0.000016 20122 rbnode.well_formed | |
0.000016 20123 rbtree | |
0.000016 20124 rbmap_lt | |
0.000015 20125 rbmap | |
0.000016 20126 rbnode.find._match_1 | |
0.000015 20127 rbnode.find._match_2 | |
0.000017 20128 rbnode.find._main | |
0.000015 20129 rbnode.find | |
0.000015 20130 rbtree.find._main | |
0.000016 20131 rbtree.find | |
0.000015 20132 rbmap.rbmap_lt_dec | |
0.000016 20133 rbmap.find_entry._match_1 | |
0.000016 20134 rbmap.find_entry | |
0.000014 20135 rbmap.contains | |
0.000016 20136 rbmap.contains.equations._eqn_1 | |
0.000015 20137 omega.int.preterm | |
0.000016 20138 omega.int.preform | |
0.000016 20139 omega.int.preform.below | |
0.000014 20140 omega.int.preform.brec_on | |
0.000016 20141 omega.int.preform.cases_on | |
0.000015 20142 omega.int.push_neg._main | |
0.000016 20143 omega.int.push_neg | |
0.000016 20144 omega.int.nnf._main | |
0.000014 20145 omega.int.nnf | |
0.000016 20146 omega.int.nnf._main.equations._eqn_3 | |
0.000015 20147 omega.int.nnf.equations._eqn_3 | |
0.000016 20148 filter.germ.has_sup | |
0.000015 20149 filter.germ.lift_rel._proof_1 | |
0.000017 20150 filter.germ.lift_rel | |
0.000015 20151 filter.germ.has_le | |
0.000015 20152 filter.eventually_le.refl | |
0.000014 20153 filter.germ.preorder._proof_1 | |
0.000015 20154 quotient.induction_on₃' | |
0.000014 20155 filter.germ.induction_on₃ | |
0.000016 20156 filter.germ.preorder._proof_2 | |
0.000015 20157 filter.germ.preorder._proof_3 | |
0.000017 20158 filter.germ.preorder | |
0.000017 20159 filter.germ.partial_order._proof_1 | |
0.000015 20160 filter.germ.partial_order._proof_2 | |
0.000016 20161 filter.germ.partial_order._proof_3 | |
0.000015 20162 quotient.induction_on₂' | |
0.000018 20163 filter.germ.induction_on₂ | |
0.000015 20164 filter.eventually_eq.germ_eq | |
0.000016 20165 filter.eventually_le.antisymm | |
0.000015 20166 filter.germ.partial_order._proof_4 | |
0.000014 20167 filter.germ.partial_order | |
0.000017 20168 filter.germ.semilattice_sup._proof_1 | |
0.000015 20169 filter.germ.semilattice_sup._proof_2 | |
0.000016 20170 filter.germ.semilattice_sup._proof_3 | |
0.000015 20171 filter.germ.semilattice_sup._proof_4 | |
0.000014 20172 filter.germ.semilattice_sup._proof_5 | |
0.000017 20173 filter.germ.semilattice_sup._proof_6 | |
0.000016 20174 filter.germ.semilattice_sup._proof_7 | |
0.000014 20175 filter.germ.semilattice_sup | |
0.000017 20176 filter.germ.semilattice_sup_top._proof_8 | |
0.000015 20177 has_strict_deriv_at.sin | |
0.000016 20178 category_theory.bundled_hom.map_hom | |
0.102312 20179 category_theory.bundled_hom.parent_projection | |
0.000076 20180 category_theory.bundled_hom.map._proof_1 | |
0.000024 20181 category_theory.bundled_hom.map._proof_2 | |
0.000014 20182 category_theory.bundled_hom.map._proof_3 | |
0.000015 20183 category_theory.bundled_hom.map | |
0.000014 20184 category_theory.bundled_hom.bundled_hom_of_parent_projection | |
0.000014 20185 SemiRing.bundled_hom._proof_1 | |
0.000014 20186 SemiRing.bundled_hom._proof_2 | |
0.000014 20187 SemiRing.bundled_hom | |
0.000015 20188 Ring.ring.to_semiring.category_theory.bundled_hom.parent_projection | |
0.000014 20189 CommRing.comm_ring.to_ring.category_theory.bundled_hom.parent_projection | |
0.000014 20190 CommRing.large_category | |
0.000014 20191 CommRing.concrete_category | |
0.000014 20192 TopCommRing.forget_comm_ring | |
0.000014 20193 TopCommRing.has_forget_to_CommRing._proof_1 | |
0.000017 20194 TopCommRing.has_forget_to_CommRing._proof_2 | |
0.000017 20195 TopCommRing.has_forget_to_CommRing | |
0.000018 20196 equiv.equiv_subsingleton_cod | |
0.000016 20197 equiv.perm_subsingleton | |
0.000015 20198 equiv.perm.subsingleton_eq_refl | |
0.000017 20199 equiv.perm.coe_subsingleton | |
0.000017 20200 measurable_equiv.prod_comm._proof_1 | |
0.000017 20201 measurable_equiv.prod_comm._proof_2 | |
0.000018 20202 measurable_equiv.prod_comm | |
0.000017 20203 measurable_equiv.cases_on | |
0.000017 20204 measurable_equiv.sum_congr._proof_1 | |
0.000017 20205 measurable_equiv.sum_congr._proof_2 | |
0.000015 20206 measurable_equiv.sum_congr | |
0.000014 20207 measurable_equiv.prod_sum_distrib | |
0.000017 20208 measurable_equiv.prod_sum_distrib.equations._eqn_1 | |
0.000017 20209 is_submonoid | |
0.000014 20210 is_subgroup | |
0.000017 20211 normal_subgroup | |
0.000014 20212 ulift.has_one | |
0.000017 20213 ulift.has_mul | |
0.000015 20214 ulift.comm_group._proof_5 | |
0.000017 20215 alg_equiv | |
0.000015 20216 opposite.op | |
0.000018 20217 opposite.has_add | |
0.000015 20218 opposite.unop_injective | |
0.000017 20219 opposite.add_semigroup._proof_1 | |
0.000015 20220 opposite.add_semigroup | |
0.000014 20221 opposite.add_monoid._proof_1 | |
0.000016 20222 opposite.has_zero | |
0.000015 20223 opposite.add_zero_class._proof_1 | |
0.000017 20224 opposite.add_zero_class._proof_2 | |
0.000015 20225 opposite.add_zero_class | |
0.000016 20226 opposite.add_monoid._proof_2 | |
0.000015 20227 opposite.add_monoid._proof_3 | |
0.000014 20228 opposite.add_monoid._proof_4 | |
0.000016 20229 opposite.add_monoid._proof_5 | |
0.000015 20230 opposite.add_monoid._proof_6 | |
0.000016 20231 opposite.add_monoid._proof_7 | |
0.000016 20232 opposite.add_monoid | |
0.000014 20233 opposite.add_comm_monoid._proof_1 | |
0.000016 20234 opposite.add_comm_monoid._proof_2 | |
0.000016 20235 opposite.add_comm_monoid._proof_3 | |
0.000014 20236 opposite.add_comm_monoid._proof_4 | |
0.000014 20237 opposite.add_comm_monoid._proof_5 | |
0.000015 20238 opposite.add_comm_semigroup._proof_1 | |
0.000014 20239 opposite.add_comm_semigroup._proof_2 | |
0.000014 20240 opposite.add_comm_semigroup | |
0.000017 20241 opposite.add_comm_monoid._proof_6 | |
0.000015 20242 opposite.add_comm_monoid | |
0.000016 20243 opposite.semiring._proof_1 | |
0.000015 20244 opposite.semiring._proof_2 | |
0.000017 20245 opposite.semiring._proof_3 | |
0.000017 20246 opposite.semiring._proof_4 | |
0.000015 20247 opposite.semiring._proof_5 | |
0.000016 20248 opposite.semiring._proof_6 | |
0.000015 20249 opposite.has_mul | |
0.000015 20250 opposite.semigroup._proof_1 | |
0.000016 20251 opposite.semigroup | |
0.000015 20252 opposite.monoid._proof_1 | |
0.000015 20253 opposite.has_one | |
0.000016 20254 opposite.mul_one_class._proof_1 | |
0.000015 20255 opposite.mul_one_class._proof_2 | |
0.000016 20256 opposite.mul_one_class | |
0.000015 20257 opposite.monoid._proof_2 | |
0.000016 20258 opposite.monoid._proof_3 | |
0.000015 20259 opposite.monoid._proof_4 | |
0.000016 20260 opposite.monoid._proof_5 | |
0.000015 20261 opposite.monoid._proof_6 | |
0.000016 20262 opposite.monoid._proof_7 | |
0.000015 20263 opposite.monoid | |
0.000014 20264 opposite.semiring._proof_7 | |
0.000017 20265 opposite.semiring._proof_8 | |
0.000015 20266 opposite.semiring._proof_9 | |
0.000014 20267 opposite.semiring._proof_10 | |
0.000017 20268 opposite.semiring._proof_11 | |
0.000014 20269 opposite.semiring._proof_12 | |
0.000017 20270 opposite.semiring._proof_13 | |
0.000015 20271 opposite.distrib._proof_1 | |
0.000016 20272 opposite.distrib._proof_2 | |
0.000015 20273 opposite.distrib | |
0.000016 20274 opposite.semiring._proof_14 | |
0.000015 20275 opposite.semiring._proof_15 | |
0.000016 20276 opposite.semiring | |
0.000015 20277 quaternion_algebra.has_coe_t | |
0.000016 20278 quaternion_algebra.algebra._proof_1 | |
0.000015 20279 quaternion_algebra.coe_re | |
0.000016 20280 quaternion_algebra.coe_im_i | |
0.000015 20281 quaternion_algebra.coe_im_j | |
0.000016 20282 quaternion_algebra.coe_im_k | |
0.000015 20283 quaternion_algebra.algebra._proof_2 | |
0.000016 20284 quaternion_algebra.algebra._proof_3 | |
0.000015 20285 quaternion_algebra.algebra._proof_4 | |
0.737064 20286 quaternion_algebra.algebra._proof_5 | |
0.000078 20287 quaternion_algebra.algebra._proof_6 | |
0.000024 20288 quaternion_algebra.algebra | |
0.000014 20289 opposite.has_scalar | |
0.000014 20290 add_equiv.symm._proof_1 | |
0.000014 20291 add_equiv.symm._proof_2 | |
0.000014 20292 add_hom | |
0.000014 20293 add_hom.to_fun | |
0.000014 20294 add_hom.has_coe_to_fun | |
0.000014 20295 add_hom.map_add' | |
0.000014 20296 add_hom.map_add | |
0.000014 20297 add_hom.inverse._proof_1 | |
0.000014 20298 add_hom.inverse | |
0.000014 20299 add_equiv.map_add' | |
0.000013 20300 add_equiv.to_add_hom | |
0.000014 20301 add_equiv.symm._proof_3 | |
0.000014 20302 add_equiv.symm | |
0.000014 20303 add_equiv.apply_symm_apply | |
0.000019 20304 add_equiv.map_add | |
0.000015 20305 add_equiv.map_zero | |
0.000014 20306 add_equiv.to_add_monoid_hom._proof_1 | |
0.000017 20307 add_equiv.to_add_monoid_hom | |
0.000017 20308 opposite.unop_op | |
0.000018 20309 opposite.op_unop | |
0.000017 20310 opposite.equiv_to_opposite | |
0.000015 20311 opposite.op_add_equiv._proof_1 | |
0.000015 20312 opposite.op_add_equiv._proof_2 | |
0.000014 20313 opposite.op_add_equiv._proof_3 | |
0.000015 20314 opposite.op_add_equiv | |
0.000014 20315 ring_hom.to_opposite._proof_1 | |
0.000014 20316 add_equiv.coe_to_add_monoid_hom | |
0.000014 20317 opposite.coe_op_add_equiv | |
0.000017 20318 opposite.op_mul | |
0.000017 20319 ring_hom.to_opposite._proof_2 | |
0.000017 20320 ring_hom.to_opposite._proof_3 | |
0.000015 20321 ring_hom.to_opposite._proof_4 | |
0.000014 20322 ring_hom.to_opposite | |
0.000014 20323 opposite.algebra._proof_1 | |
0.000014 20324 opposite.op_induction | |
0.000014 20325 opposite.algebra._proof_2 | |
0.000014 20326 opposite.algebra._proof_3 | |
0.000014 20327 opposite.algebra | |
0.000016 20328 alg_equiv.to_fun | |
0.000018 20329 alg_equiv.has_coe_to_fun | |
0.000017 20330 function.involutive.right_inverse | |
0.000015 20331 function.involutive.to_equiv | |
0.000014 20332 linear_equiv.of_involutive._proof_1 | |
0.000017 20333 linear_equiv.of_involutive._proof_2 | |
0.000017 20334 linear_equiv.of_involutive | |
0.000017 20335 quaternion_algebra.mk_add_mk | |
0.000017 20336 quaternion_algebra.conj._proof_1 | |
0.000015 20337 quaternion_algebra.smul_re | |
0.000016 20338 quaternion_algebra.smul_im_i | |
0.000017 20339 quaternion_algebra.smul_im_j | |
0.000017 20340 quaternion_algebra.smul_im_k | |
0.000015 20341 quaternion_algebra.conj._proof_2 | |
0.000014 20342 quaternion_algebra.mk.eta | |
0.000016 20343 quaternion_algebra.conj._proof_3 | |
0.000015 20344 quaternion_algebra.conj | |
0.000016 20345 add_equiv.trans._proof_1 | |
0.000016 20346 add_equiv.trans._proof_2 | |
0.000014 20347 add_equiv.trans._proof_3 | |
0.000016 20348 add_equiv.trans | |
0.000016 20349 quaternion_algebra.conj_alg_equiv._proof_1 | |
0.000015 20350 quaternion_algebra.conj_alg_equiv._proof_2 | |
0.000016 20351 quaternion_algebra.re_conj | |
0.000016 20352 quaternion_algebra.im_i_conj | |
0.000014 20353 quaternion_algebra.im_j_conj | |
0.000016 20354 quaternion_algebra.im_k_conj | |
0.000015 20355 quaternion_algebra.conj_mul | |
0.000017 20356 quaternion_algebra.conj_alg_equiv._proof_3 | |
0.000015 20357 quaternion_algebra.conj_alg_equiv._proof_4 | |
0.000014 20358 quaternion_algebra.coe_algebra_map | |
0.000016 20359 quaternion_algebra.conj_coe | |
0.000015 20360 opposite.algebra_map_apply | |
0.000017 20361 opposite.op_inj_iff | |
0.000015 20362 quaternion_algebra.coe_injective | |
0.000015 20363 quaternion_algebra.coe_inj | |
0.000016 20364 quaternion_algebra.conj_alg_equiv._proof_5 | |
0.000015 20365 quaternion_algebra.conj_alg_equiv | |
0.000015 20366 quaternion_algebra.coe_conj_alg_equiv | |
0.000016 20367 pgame.cases_on | |
0.000015 20368 pgame.left_moves._main | |
0.000015 20369 pgame.left_moves._main.equations._eqn_1 | |
0.000016 20370 prod.lattice._proof_6 | |
0.000015 20371 equiv.trans_apply | |
0.000016 20372 equiv.perm.mul_apply | |
0.000015 20373 equiv.perm.apply_inv_self | |
0.000015 20374 equiv.perm.eq_inv_iff_eq | |
0.000016 20375 equiv.swap_mul_eq_mul_swap | |
0.000015 20376 nonunits | |
0.000015 20377 local_ring.is_local | |
0.000016 20378 local_ring.is_unit_one_sub_self_of_mem_nonunits | |
0.000015 20379 monoid_hom.cod_mrestrict._proof_1 | |
0.000015 20380 monoid_hom.cod_mrestrict._proof_2 | |
0.000016 20381 monoid_hom.cod_mrestrict | |
0.000015 20382 monoid_hom.cod_mrestrict.equations._eqn_1 | |
0.000014 20383 multilinear_map.dom_coprod'._proof_4 | |
0.000017 20384 alg_hom | |
0.000015 20385 subalgebra | |
0.000014 20386 subsemiring.mk'._proof_1 | |
0.000016 20387 subsemiring.mk'._proof_2 | |
0.000015 20388 subsemiring.mk'._proof_3 | |
0.000017 20389 subsemiring.mk'._proof_4 | |
0.000015 20390 subsemiring.mk' | |
0.000016 20391 subsemiring.cases_on | |
0.000015 20392 subsemiring.set_like._proof_1 | |
0.000014 20393 subsemiring.set_like | |
0.000017 20394 submonoid.has_Inf._proof_1 | |
0.000015 20395 submonoid.has_Inf._proof_2 | |
0.000014 20396 submonoid.has_Inf | |
0.000017 20397 submonoid.coe_Inf | |
0.000015 20398 submonoid.coe_infi | |
0.000014 20399 subsemiring.coe_to_submonoid | |
0.000016 20400 subsemiring.has_Inf._proof_1 | |
0.000015 20401 subsemiring.zero_mem' | |
0.000017 20402 subsemiring.add_mem' | |
0.460456 20403 subsemiring.to_add_submonoid | |
0.000076 20404 add_submonoid.coe_Inf | |
0.000024 20405 add_submonoid.coe_infi | |
0.000015 20406 subsemiring.coe_to_add_submonoid | |
0.000014 20407 subsemiring.has_Inf._proof_2 | |
0.000014 20408 subsemiring.has_Inf | |
0.000015 20409 subsemiring.closure | |
0.000014 20410 algebra.adjoin._proof_1 | |
0.000014 20411 algebra.adjoin._proof_2 | |
0.000014 20412 algebra.adjoin._proof_3 | |
0.000014 20413 algebra.adjoin._proof_4 | |
0.000014 20414 subsemiring.mem_Inf | |
0.000014 20415 subsemiring.mem_closure | |
0.000014 20416 subsemiring.subset_closure | |
0.000014 20417 algebra.adjoin._proof_5 | |
0.000014 20418 algebra.adjoin | |
0.000019 20419 subalgebra.fg | |
0.000018 20420 subalgebra.carrier | |
0.000017 20421 subalgebra.cases_on | |
0.000015 20422 subalgebra.set_like._proof_1 | |
0.000014 20423 subalgebra.set_like | |
0.000014 20424 subalgebra.one_mem' | |
0.000016 20425 subalgebra.mul_mem' | |
0.000017 20426 subalgebra.zero_mem' | |
0.000017 20427 subalgebra.add_mem' | |
0.000017 20428 subalgebra.to_subsemiring | |
0.000017 20429 subsemiring.complete_lattice._proof_1 | |
0.000015 20430 subsemiring.complete_lattice._proof_2 | |
0.000016 20431 subsemiring.complete_lattice._proof_3 | |
0.000017 20432 subsemiring.complete_lattice._proof_4 | |
0.000017 20433 subsemiring.complete_lattice._proof_5 | |
0.000018 20434 subsemiring.complete_lattice._proof_6 | |
0.000017 20435 subsemiring.complete_lattice._proof_7 | |
0.000017 20436 subsemiring.complete_lattice._proof_8 | |
0.000017 20437 submonoid.has_inf._proof_1 | |
0.000017 20438 submonoid.has_inf._match_1 | |
0.000016 20439 submonoid.has_inf._match_2 | |
0.000016 20440 submonoid.has_inf._proof_2 | |
0.000017 20441 submonoid.has_inf | |
0.000015 20442 subsemiring.has_inf._proof_1 | |
0.000014 20443 subsemiring.has_inf._proof_2 | |
0.000017 20444 subsemiring.has_inf._proof_3 | |
0.000015 20445 subsemiring.has_inf._proof_4 | |
0.000016 20446 subsemiring.has_inf | |
0.000015 20447 subsemiring.complete_lattice._proof_9 | |
0.000016 20448 subsemiring.complete_lattice._proof_10 | |
0.000015 20449 subsemiring.complete_lattice._proof_11 | |
0.000016 20450 subsemiring.has_top._proof_1 | |
0.000015 20451 subsemiring.has_top._proof_2 | |
0.000016 20452 subsemiring.has_top._proof_3 | |
0.000015 20453 subsemiring.has_top._proof_4 | |
0.000016 20454 subsemiring.has_top | |
0.000015 20455 subsemiring.complete_lattice._proof_12 | |
0.000015 20456 subsemiring.map._proof_1 | |
0.000016 20457 subsemiring.map._proof_2 | |
0.000015 20458 subsemiring.map._proof_3 | |
0.000014 20459 subsemiring.map._proof_4 | |
0.000016 20460 subsemiring.map | |
0.000015 20461 ring_hom.srange | |
0.000017 20462 subsemiring.has_bot | |
0.000014 20463 add_submonoid.nsmul_mem | |
0.000016 20464 subsemiring.nsmul_mem | |
0.000015 20465 subsemiring.one_mem | |
0.000017 20466 subsemiring.coe_nat_mem | |
0.000014 20467 subsemiring.complete_lattice._match_1 | |
0.000017 20468 ring_hom.srange.equations._eqn_1 | |
0.000015 20469 subsemiring.mem_map | |
0.000016 20470 subsemiring.mem_top | |
0.000015 20471 ring_hom.mem_srange | |
0.000016 20472 subsemiring.mem_bot | |
0.000015 20473 subsemiring.complete_lattice._proof_13 | |
0.000016 20474 subsemiring.complete_lattice._proof_14 | |
0.000017 20475 subsemiring.complete_lattice._proof_15 | |
0.000015 20476 subsemiring.complete_lattice._proof_16 | |
0.000016 20477 subsemiring.complete_lattice._proof_17 | |
0.000015 20478 subsemiring.complete_lattice | |
0.000016 20479 subsemiring.closure_le | |
0.000015 20480 subalgebra.algebra_map_mem' | |
0.000014 20481 subalgebra.algebra_map_mem | |
0.000017 20482 subalgebra.range_subset | |
0.000015 20483 algebra.gc | |
0.000014 20484 algebra.gi._proof_1 | |
0.000017 20485 algebra.gi._proof_2 | |
0.000015 20486 algebra.gi | |
0.000014 20487 algebra.subalgebra.complete_lattice | |
0.000017 20488 algebra.finite_type | |
0.000027 20489 ring_hom.finite_type | |
0.000016 20490 alg_hom.to_fun | |
0.000015 20491 alg_hom.map_one' | |
0.000018 20492 alg_hom.map_mul' | |
0.000015 20493 alg_hom.map_zero' | |
0.000018 20494 alg_hom.map_add' | |
0.000015 20495 alg_hom.to_ring_hom | |
0.000014 20496 alg_hom.finite_type | |
0.000016 20497 times_cont_diff_within_at.times_cont_diff_on | |
0.000015 20498 tendsto_pure_nhds | |
0.000014 20499 continuous_within_at_singleton | |
0.000016 20500 continuous_within_at_insert_self | |
0.000015 20501 continuous_within_at.insert_self | |
0.000017 20502 times_cont_diff_on.times_cont_diff_within_at | |
0.000015 20503 times_cont_diff_within_at.comp | |
0.000016 20504 times_cont_diff_at.times_cont_diff_within_at | |
0.000015 20505 times_cont_diff.comp_times_cont_diff_within_at | |
0.000016 20506 times_cont_diff.comp_times_cont_diff_at | |
0.000016 20507 nhds_bot_order | |
0.000014 20508 add_submonoid.copy._proof_1 | |
0.000016 20509 add_submonoid.copy._proof_2 | |
0.000015 20510 add_submonoid.copy | |
0.000017 20511 add_subgroup.coe_to_add_submonoid | |
0.000015 20512 add_subgroup.has_Inf._proof_1 | |
0.000014 20513 add_subgroup.has_Inf._proof_2 | |
0.000018 20514 add_subgroup.has_Inf._proof_3 | |
0.000015 20515 add_subgroup.has_Inf._proof_4 | |
0.000017 20516 add_subgroup.has_Inf | |
0.152993 20517 add_subgroup.complete_lattice._proof_1 | |
0.000074 20518 add_subgroup.complete_lattice._proof_2 | |
0.000024 20519 add_subgroup.complete_lattice._proof_3 | |
0.000014 20520 add_subgroup.complete_lattice._proof_4 | |
0.000015 20521 add_subgroup.complete_lattice._proof_5 | |
0.000014 20522 add_subgroup.complete_lattice._proof_6 | |
0.000014 20523 add_subgroup.complete_lattice._proof_7 | |
0.000014 20524 add_subgroup.complete_lattice._proof_8 | |
0.000014 20525 add_subgroup.has_inf._proof_1 | |
0.000014 20526 add_subgroup.has_inf._proof_2 | |
0.000014 20527 add_subgroup.has_inf._match_1 | |
0.000014 20528 add_subgroup.has_inf._proof_3 | |
0.000015 20529 add_subgroup.has_inf | |
0.000014 20530 add_subgroup.complete_lattice._proof_9 | |
0.000015 20531 add_subgroup.complete_lattice._proof_10 | |
0.000014 20532 add_subgroup.complete_lattice._proof_11 | |
0.000017 20533 add_subgroup.has_top._proof_1 | |
0.000017 20534 add_subgroup.has_top._proof_2 | |
0.000015 20535 add_subgroup.has_top._proof_3 | |
0.000017 20536 add_subgroup.has_top | |
0.000016 20537 add_subgroup.mem_top | |
0.000015 20538 add_subgroup.complete_lattice._proof_12 | |
0.000016 20539 add_subgroup.mem_bot | |
0.000018 20540 add_subgroup.zero_mem | |
0.000017 20541 add_subgroup.complete_lattice._proof_13 | |
0.000017 20542 add_subgroup.complete_lattice._proof_14 | |
0.000017 20543 add_subgroup.complete_lattice._proof_15 | |
0.000015 20544 add_subgroup.complete_lattice._proof_16 | |
0.000016 20545 add_subgroup.complete_lattice._proof_17 | |
0.000019 20546 add_subgroup.complete_lattice | |
0.000017 20547 preorder_hom | |
0.000017 20548 omega_complete_partial_order.chain | |
0.000015 20549 preorder_hom.to_fun | |
0.000014 20550 preorder_hom.has_coe_to_fun | |
0.000016 20551 omega_complete_partial_order.chain.has_coe_to_fun | |
0.000015 20552 omega_complete_partial_order | |
0.000017 20553 omega_complete_partial_order.to_partial_order | |
0.000014 20554 omega_complete_partial_order.ωSup | |
0.000016 20555 preorder_hom.monotone' | |
0.000015 20556 preorder_hom.monotone | |
0.000017 20557 preorder_hom.comp._proof_1 | |
0.000015 20558 preorder_hom.comp | |
0.000017 20559 omega_complete_partial_order.chain.map | |
0.000015 20560 preorder_hom.prod.fst._match_1 | |
0.000015 20561 preorder_hom.prod.fst._match_2 | |
0.000016 20562 preorder_hom.prod.fst._match_3 | |
0.000015 20563 preorder_hom.prod.fst._proof_1 | |
0.000016 20564 preorder_hom.prod.fst | |
0.000015 20565 preorder_hom.prod.snd._match_1 | |
0.000016 20566 preorder_hom.prod.snd._match_2 | |
0.000015 20567 preorder_hom.prod.snd._match_3 | |
0.000015 20568 preorder_hom.prod.snd._proof_1 | |
0.000016 20569 preorder_hom.prod.snd | |
0.000016 20570 prod.ωSup | |
0.000016 20571 omega_complete_partial_order.le_ωSup | |
0.000015 20572 prod.omega_complete_partial_order._proof_1 | |
0.000014 20573 omega_complete_partial_order.ωSup_le | |
0.000017 20574 prod.omega_complete_partial_order._match_1 | |
0.000015 20575 prod.omega_complete_partial_order._proof_2 | |
0.000015 20576 prod.omega_complete_partial_order | |
0.000016 20577 compact_space | |
0.000015 20578 bounded_continuous_function | |
0.000014 20579 metric.bounded_range_iff | |
0.000016 20580 compact_space.compact_univ | |
0.000015 20581 compact_univ | |
0.000015 20582 compact_range | |
0.000016 20583 bounded_continuous_function.mk_of_compact._proof_1 | |
0.000015 20584 bounded_continuous_function.mk_of_compact | |
0.000014 20585 bounded_continuous_function.to_continuous_map | |
0.000017 20586 bounded_continuous_function.forget_boundedness | |
0.000015 20587 continuous_map.equiv_bounded_of_compact._proof_1 | |
0.000014 20588 bounded_continuous_function.has_coe_to_fun | |
0.000016 20589 bounded_continuous_function.cases_on | |
0.000015 20590 bounded_continuous_function.ext | |
0.000017 20591 continuous_map.equiv_bounded_of_compact._proof_2 | |
0.000015 20592 continuous_map.equiv_bounded_of_compact | |
0.000014 20593 continuous_map.metric_space._proof_1 | |
0.000014 20594 bounded_continuous_function.has_dist | |
0.000014 20595 bounded_continuous_function.bounded' | |
0.000014 20596 bounded_continuous_function.bounded | |
0.000014 20597 dist_triangle4 | |
0.000017 20598 dist_triangle4_left | |
0.000015 20599 bounded_continuous_function.dist_set_exists | |
0.000016 20600 bounded_continuous_function.dist_coe_le_dist | |
0.000016 20601 bounded_continuous_function.dist_le | |
0.000014 20602 _private.1298497857.dist_nonneg' | |
0.000016 20603 bounded_continuous_function.metric_space._proof_1 | |
0.000015 20604 bounded_continuous_function.dist_eq | |
0.000016 20605 bounded_continuous_function.metric_space._proof_2 | |
0.000015 20606 bounded_continuous_function.metric_space._proof_3 | |
0.000017 20607 bounded_continuous_function.metric_space._proof_4 | |
0.000015 20608 bounded_continuous_function.metric_space._proof_5 | |
0.000017 20609 bounded_continuous_function.metric_space._proof_6 | |
0.000015 20610 bounded_continuous_function.metric_space._proof_7 | |
34.599374 20611 bounded_continuous_function.metric_space._proof_8 | |
0.000077 20612 bounded_continuous_function.metric_space._proof_9 | |
0.000024 20613 bounded_continuous_function.metric_space | |
0.000015 20614 continuous_map.metric_space | |
0.000015 20615 continuous_map.to_fun_eq_coe | |
0.000014 20616 continuous_map.const_coe | |
0.000014 20617 bounded_continuous_function.const._proof_1 | |
0.000014 20618 bounded_continuous_function.const | |
0.000014 20619 bounded_continuous_function.has_zero | |
0.000015 20620 bounded_continuous_function.has_norm | |
0.000014 20621 norm_sub_le | |
0.000014 20622 dist_le_norm_add_norm | |
0.000014 20623 bounded_continuous_function.dist_le_two_norm' | |
0.000014 20624 bounded_continuous_function.of_normed_group._proof_1 | |
0.000014 20625 bounded_continuous_function.of_normed_group | |
0.000014 20626 bounded_continuous_function.continuous | |
0.000015 20627 bounded_continuous_function.has_add._proof_1 | |
0.000014 20628 bounded_continuous_function.coe_zero | |
0.000014 20629 bounded_continuous_function.norm_coe_le_norm | |
0.000014 20630 bounded_continuous_function.has_add._proof_2 | |
0.000014 20631 bounded_continuous_function.has_add | |
0.000015 20632 bounded_continuous_function.coe_add | |
0.000014 20633 bounded_continuous_function.add_comm_group._proof_1 | |
0.000014 20634 bounded_continuous_function.add_comm_group._proof_2 | |
0.000014 20635 bounded_continuous_function.add_comm_group._proof_3 | |
0.000015 20636 bounded_continuous_function.add_comm_group._proof_4 | |
0.000014 20637 bounded_continuous_function.add_comm_group._proof_5 | |
0.000014 20638 bounded_continuous_function.add_comm_group._proof_6 | |
0.000018 20639 bounded_continuous_function.add_comm_group._proof_7 | |
0.000017 20640 bounded_continuous_function.has_neg._proof_1 | |
0.000017 20641 bounded_continuous_function.has_neg._proof_2 | |
0.000015 20642 bounded_continuous_function.has_neg | |
0.000014 20643 bounded_continuous_function.has_sub._proof_1 | |
0.000017 20644 bounded_continuous_function.has_sub._proof_2 | |
0.000017 20645 bounded_continuous_function.has_sub | |
0.000017 20646 bounded_continuous_function.add_comm_group._proof_8 | |
0.000015 20647 bounded_continuous_function.coe_neg | |
0.000017 20648 bounded_continuous_function.add_comm_group._proof_9 | |
0.000017 20649 pi.add_comm_semigroup._proof_1 | |
0.000017 20650 pi.add_comm_semigroup._proof_2 | |
0.000017 20651 pi.add_comm_semigroup | |
0.000017 20652 bounded_continuous_function.add_comm_group._proof_10 | |
0.000017 20653 bounded_continuous_function.add_comm_group | |
0.000017 20654 bounded_continuous_function.norm_def | |
0.000016 20655 bounded_continuous_function.norm_eq | |
0.000017 20656 bounded_continuous_function.sub_apply | |
0.000017 20657 bounded_continuous_function.normed_group._proof_1 | |
0.000018 20658 bounded_continuous_function.normed_group | |
0.000017 20659 continuous_map.isometric_bounded_of_compact._proof_1 | |
0.000018 20660 continuous_map.isometric_bounded_of_compact | |
0.000016 20661 continuous_map.isometric_bounded_of_compact_to_equiv | |
0.000014 20662 intermediate_field | |
0.000014 20663 intermediate_field.carrier | |
0.000016 20664 intermediate_field.cases_on | |
0.000015 20665 intermediate_field.set_like._proof_1 | |
0.000017 20666 intermediate_field.set_like | |
0.000015 20667 function.injective.ring._proof_1 | |
0.000016 20668 function.injective.ring._proof_2 | |
0.000015 20669 function.injective.ring._proof_3 | |
0.000016 20670 function.injective.ring._proof_4 | |
0.000015 20671 function.injective.ring._proof_5 | |
0.000016 20672 function.injective.ring._proof_6 | |
0.000015 20673 function.injective.ring._proof_7 | |
0.000015 20674 function.injective.ring._proof_8 | |
0.000016 20675 function.injective.ring._proof_9 | |
0.000015 20676 function.injective.ring._proof_10 | |
0.000016 20677 function.injective.ring._proof_11 | |
0.000015 20678 function.injective.ring._proof_12 | |
0.000016 20679 function.injective.ring._proof_13 | |
0.000015 20680 function.injective.ring._proof_14 | |
0.000016 20681 function.injective.ring._proof_15 | |
0.000015 20682 function.injective.ring | |
0.000015 20683 function.injective.comm_ring._proof_1 | |
0.000016 20684 function.injective.comm_ring._proof_2 | |
0.000015 20685 function.injective.comm_ring._proof_3 | |
0.000016 20686 function.injective.comm_ring._proof_4 | |
0.000015 20687 function.injective.comm_ring._proof_5 | |
0.000016 20688 function.injective.comm_ring._proof_6 | |
0.000015 20689 function.injective.comm_ring._proof_7 | |
0.000016 20690 function.injective.comm_ring._proof_8 | |
0.000015 20691 function.injective.comm_ring._proof_9 | |
0.000014 20692 function.injective.comm_ring._proof_10 | |
0.000017 20693 function.injective.comm_ring._proof_11 | |
0.000015 20694 function.injective.comm_ring._proof_12 | |
0.000015 20695 function.injective.comm_ring._proof_13 | |
0.000016 20696 function.injective.comm_ring._proof_14 | |
2.244525 20697 function.injective.comm_ring._proof_15 | |
0.000075 20698 function.injective.comm_ring._proof_16 | |
0.000026 20699 function.injective.comm_ring | |
0.000014 20700 function.injective.field._proof_1 | |
0.000014 20701 function.injective.field._proof_2 | |
0.000015 20702 function.injective.field._proof_3 | |
0.000014 20703 function.injective.field._proof_4 | |
0.000014 20704 function.injective.field._proof_5 | |
0.000014 20705 function.injective.field._proof_6 | |
0.000014 20706 function.injective.field._proof_7 | |
0.000014 20707 function.injective.field._proof_8 | |
0.000014 20708 function.injective.field._proof_9 | |
0.000014 20709 function.injective.field._proof_10 | |
0.000015 20710 function.injective.field._proof_11 | |
0.000018 20711 function.injective.field._proof_12 | |
0.000017 20712 function.injective.field._proof_13 | |
0.000018 20713 function.injective.field._proof_14 | |
0.000015 20714 function.injective.field._proof_15 | |
0.000016 20715 function.injective.field._proof_16 | |
0.000017 20716 function.injective.field._proof_17 | |
0.000017 20717 function.injective.field._proof_18 | |
0.000017 20718 function.injective.field._proof_19 | |
0.000017 20719 function.injective.field._proof_20 | |
0.000017 20720 function.injective.field | |
0.000016 20721 subring.cases_on | |
0.000017 20722 subring.set_like._proof_1 | |
0.000017 20723 subring.set_like | |
0.000017 20724 subring.to_ring._proof_1 | |
0.000017 20725 subring.to_ring._proof_2 | |
0.000015 20726 subring.to_ring._proof_3 | |
0.000014 20727 subring.to_ring._proof_4 | |
0.000016 20728 subring.to_ring._proof_5 | |
0.000015 20729 subring.to_ring._proof_6 | |
0.000015 20730 subring.to_ring._proof_7 | |
0.000016 20731 subring.to_ring._proof_8 | |
0.000015 20732 subring.to_ring._proof_9 | |
0.000016 20733 subring.to_ring._proof_10 | |
0.000015 20734 subring.to_ring._proof_11 | |
0.000016 20735 subring.to_ring._proof_12 | |
0.000016 20736 subring.to_ring._proof_13 | |
0.000016 20737 subring.to_ring._proof_14 | |
0.000015 20738 subring.to_ring._proof_15 | |
0.000016 20739 subring.to_ring | |
0.000015 20740 subfield.ring | |
0.000016 20741 subfield.has_inv._proof_1 | |
0.000014 20742 subfield.has_inv | |
0.000017 20743 subfield.mul_mem | |
0.000014 20744 subfield.div_mem | |
0.000015 20745 subfield.has_div._proof_1 | |
0.000014 20746 subfield.has_div | |
0.000014 20747 subfield.to_field._proof_1 | |
0.000016 20748 subfield.to_field._proof_2 | |
0.000015 20749 subfield.to_field._proof_3 | |
0.000017 20750 subfield.to_field._proof_4 | |
0.000014 20751 subfield.to_field._proof_5 | |
0.000017 20752 subfield.to_field._proof_6 | |
0.000014 20753 subfield.to_field._proof_7 | |
0.000017 20754 subfield.to_field._proof_8 | |
0.000015 20755 subfield.to_field._proof_9 | |
0.000016 20756 subfield.to_field | |
0.000015 20757 intermediate_field.one_mem' | |
0.000016 20758 intermediate_field.mul_mem' | |
0.000015 20759 intermediate_field.zero_mem' | |
0.000016 20760 intermediate_field.add_mem' | |
0.000015 20761 intermediate_field.neg_mem' | |
0.000016 20762 intermediate_field.inv_mem' | |
0.000015 20763 intermediate_field.to_subfield | |
0.000016 20764 intermediate_field.to_field | |
0.000017 20765 subsemiring.to_semiring._proof_1 | |
0.000015 20766 subsemiring.to_semiring._proof_2 | |
0.000016 20767 subsemiring.to_semiring._proof_3 | |
0.000015 20768 subsemiring.to_semiring._proof_4 | |
0.000016 20769 subsemiring.to_semiring._proof_5 | |
0.000015 20770 subsemiring.to_semiring._proof_6 | |
0.000016 20771 subsemiring.to_semiring._proof_7 | |
0.000015 20772 subsemiring.to_semiring._proof_8 | |
0.000015 20773 subsemiring.to_semiring._proof_9 | |
0.000016 20774 subsemiring.to_semiring._proof_10 | |
0.000015 20775 subsemiring.to_semiring._proof_11 | |
0.000016 20776 subsemiring.to_semiring._proof_12 | |
0.000015 20777 subsemiring.to_semiring._proof_13 | |
0.000015 20778 subsemiring.to_semiring._proof_14 | |
0.000016 20779 subsemiring.to_semiring._proof_15 | |
0.000015 20780 subsemiring.to_semiring | |
0.000016 20781 subalgebra.to_semiring | |
0.000014 20782 subsemiring.mul_mem | |
0.000016 20783 subalgebra.mul_mem | |
0.000015 20784 subalgebra.smul_mem | |
0.000016 20785 subalgebra.algebra._proof_1 | |
0.000015 20786 ring_hom.cod_srestrict._proof_1 | |
0.000017 20787 ring_hom.cod_srestrict._proof_2 | |
0.000015 20788 add_submonoid.to_add_zero_class._proof_1 | |
0.000016 20789 add_submonoid.to_add_zero_class._proof_2 | |
0.000015 20790 add_submonoid.to_add_zero_class._proof_3 | |
0.000016 20791 add_submonoid.to_add_zero_class | |
0.000015 20792 add_monoid_hom.cod_mrestrict._proof_1 | |
0.000016 20793 add_monoid_hom.cod_mrestrict._proof_2 | |
0.000015 20794 add_monoid_hom.cod_mrestrict | |
0.000016 20795 ring_hom.cod_srestrict._proof_3 | |
0.000015 20796 ring_hom.cod_srestrict._proof_4 | |
0.000016 20797 ring_hom.cod_srestrict | |
0.000015 20798 subalgebra.range_le | |
0.000016 20799 subalgebra.algebra._proof_2 | |
0.000016 20800 subalgebra.algebra._proof_3 | |
0.000014 20801 subalgebra.algebra._proof_4 | |
0.000016 20802 subalgebra.algebra._proof_5 | |
0.000015 20803 subalgebra.algebra._proof_6 | |
0.000016 20804 subalgebra.algebra._proof_7 | |
0.468351 20805 subalgebra.algebra._proof_8 | |
0.000077 20806 subalgebra.algebra | |
0.000024 20807 intermediate_field.algebra_map_mem' | |
0.000015 20808 intermediate_field.to_subalgebra | |
0.000014 20809 intermediate_field.algebra | |
0.000014 20810 intermediate_field.lifts | |
0.000014 20811 subring.mk'._proof_1 | |
0.000014 20812 subring.mk'._proof_2 | |
0.000014 20813 subring.mk'._proof_3 | |
0.000014 20814 add_subgroup.add_mem | |
0.000014 20815 subring.mk'._proof_4 | |
0.000014 20816 subring.mk'._proof_5 | |
0.000014 20817 subring.mk' | |
0.000014 20818 subring.coe_to_submonoid | |
0.000014 20819 subring.has_Inf._proof_1 | |
0.000014 20820 add_subgroup.coe_Inf | |
0.000016 20821 add_subgroup.coe_infi | |
0.000018 20822 subring.coe_to_add_subgroup | |
0.000017 20823 subring.has_Inf._proof_2 | |
0.000015 20824 subring.has_Inf | |
0.000016 20825 subring.closure | |
0.000017 20826 subring.one_mem | |
0.000017 20827 subfield.closure._proof_1 | |
0.000017 20828 subring.mul_mem | |
0.000017 20829 subfield.closure._proof_2 | |
0.000017 20830 subring.zero_mem | |
0.000017 20831 subfield.closure._proof_3 | |
0.000017 20832 subring.add_mem | |
0.000016 20833 subfield.closure._proof_4 | |
0.000016 20834 subring.neg_m |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment