Skip to content

Instantly share code, notes, and snippets.

👨‍🔬
Researching 'em microbes...

Christian Diener cdiener

👨‍🔬
Researching 'em microbes...
Block or report user

Report or block cdiener

Hide content and notifications from this user.

Learn more about blocking users

Contact Support about this user’s behavior.

Learn more about reporting abuse

Report abuse
View GitHub Profile
@cdiener
cdiener / asciinator.py
Last active Aug 14, 2019
Convert image to ascii art
View asciinator.py
import sys; from PIL import Image; import numpy as np
chars = np.asarray(list(' .,:;irsXA253hMHGS#9B&@'))
if len(sys.argv) != 4: print( 'Usage: ./asciinator.py image scale factor' ); sys.exit()
f, SC, GCF, WCF = sys.argv[1], float(sys.argv[2]), float(sys.argv[3]), 7/4
img = Image.open(f)
S = ( round(img.size[0]*SC*WCF), round(img.size[1]*SC) )
img = np.sum( np.asarray( img.resize(S) ), axis=2)
@cdiener
cdiener / asciinator.py
Created Apr 13, 2014
asciinator.py now with documentation
View asciinator.py
# This line imports the modules we will need. The first is the sys module used
# to read the command line arguments. Second the Python Imaging Library to read
# the image and third numpy, a linear algebra/vector/matrix module.
import sys; from PIL import Image; import numpy as np
# This is a list of characters from low to high "blackness" in order to map the
# intensities of the image to ascii characters
chars = np.asarray(list(' .,:;irsXA253hMHGS#9B&@'))
# Check whether all necessary command line arguments were given, if not exit and show a
@cdiener
cdiener / topics.md
Last active Aug 29, 2015
Learning Topics
View topics.md

Learning List

Next topics to learn:

  • webservers
  • node.js
  • Django or Pyramid [maybe Jinja2+Tornado a better option for smaller projects]
  • Plone plugins [too complex, substituded by FormGen]
  • D3
  • Python testing frameworks
@cdiener
cdiener / overload.R
Last active Aug 23, 2019
R operator overloading
View overload.R
a = "bla"
b = "so on"
class(a) = append("my_class", class(a))
'+.my_class' = function(x,y) paste(x,y,sep=" and ")
print(a+b)
@cdiener
cdiener / points
Last active Aug 29, 2015
ggplot2 grouped points with horizontal means
View points
library(scales)
library(Hmisc)
emsa_plot = ggplot(emsa, aes(x=Name, y=intensity, shape=charge_ratio, col=charge_ratio, width=0.8)) +
geom_point(size=3, position=position_dodge(width=0.8)) +
stat_summary(fun.data=mean_sdl, mult=0, color="black", geom="errorbar", size=1, position=position_dodge(width=0.8)) +
scale_color_grey(start=0, end=0.5,name="charge ratio") +
scale_shape(name="charge ratio") +
scale_y_continuous(limits=c(-0.05,1), breaks=seq(0,1,by=0.2), label=percent) +
@cdiener
cdiener / cache.R
Last active Aug 29, 2015
cache operator for R
View cache.R
# Caching operator executes command if there is no saved version of the data
# just delete the saved file and code will be run again
'%c%' = function(ex, file) if(file.exists(file), env=parent.frame(4)) load(file) else evalq(ex))
# Example
# first execution
{ x <- rnorm(1e6); save(x, file="cache.Rd") } %c% "cache.Rd" # executes the sampling
@cdiener
cdiener / eset_reduce.R
Last active Feb 3, 2016
ExpressionSet reducer - allows you to reduce the features of an expression set from an nxn grouping, for instance probesets to genes/transcripts etc.
View eset_reduce.R
Rcpp::sourceCpp("matrix_reduce.cpp")
#' Reduces an ExpressionSet by an n-to-n map of features to groups. All entries
#' in \code{features} must exist in \code{eset}. \code{features} and
#' \code{groups} must have the same length.
#'
#' @param eset An ExpressionSet object.
#' @param features A character vector of features to be grouped.
#' @param groups A factor or character vector mapping the entries in
#' \code{features} to groups.
View bug245.py
#/usr/bin/env python
from cobra.test import create_test_model
from cobra.flux_analysis import single_gene_deletion
cobra_model = create_test_model("textbook")
dels = {"b0008": 0.87, "b0114": 0.71, "b0116": 0.56, "b2276": 0.11, "b1779": 0.00}
rates, statuses = single_gene_deletion(cobra_model, gene_list=dels.keys(),
method="moma", solver="mosek")
@cdiener
cdiener / enrichment.R
Created May 4, 2016
Small GSEA implementation
View enrichment.R
ES <- function(p, w, pws, both=FALSE) {
n <- length(pws)
nr <- sum(abs(w[pws == p]))
nh <- sum(pws == p)
scores <- vector(length=n)
scores[pws == p] <- abs(w[pws == p])/nr
scores[pws != p] <- -1/(n - nh)
r <- range(cumsum(scores))
i <- which.max(abs(r))
@cdiener
cdiener / compare.py
Last active Mar 6, 2017
Compare pytest benchmarks
View compare.py
import json
import pandas as pd
from sys import argv, exit
def benchmark_to_df(json_file):
with open(json_file) as jf:
content = json.load(jf)
df = pd.DataFrame(columns=("test", "time [ms]"))
for b in content["benchmarks"]:
You can’t perform that action at this time.