- Claudia Engel, Department of Anthropology & Center for Interdisciplinary Digital Research
- Desktop GIS - ArcGIS Desktop. Install from here to take advantage of the Stanford Campus License (Stanford affiliated only). New: ArcGIS Pro
######################################## | |
### Intro to R NCCU, Aug 12-14, 2020 ### | |
######################################## | |
# this is the workshop script | |
# get working directory: | |
getwd() # ctrl + enter to execute this line | |
# just a test shift + ctrl + c > make a comment (more shortcuts under Tools > shortcuts) |
# Original Idea and code by Jules Beley | |
# https://github.com/julesbeley/Erasmusmap/blob/master/Erasmus.R | |
# https://medium.com/@jules.beley/making-a-map-with-eu-data-on-r-erasmus-exchanges-by-country-3f5734dcd4ff | |
library(tidyverse) | |
library(maps) | |
library(countrycode) | |
download.file("http://data.europa.eu/euodp/data/uploads/EAC/SM_2012_13_20141103_01.csv", "erasmus.csv") # this may take a little while |
## | |
## this snippet loops through a directory with rasters and crates polygons | |
## using a call to gdal_polygonize.py | |
## (for Mac, with kynchaos GDAL framework) | |
## | |
# make sure to not mess up the paths here! | |
setwd("root/dir") | |
indir <- "rasterdir-ending-with-slash/" | |
outdir <- "polydir-ending-with-slash/" |
# May have to install xckd fonts through FontBook. | |
library(xkcd) | |
# the data to make the bars | |
df <- data.frame(x=c(1, 3), y=c(20, 2)) | |
# the figures | |
ratioxy <- diff(range(df$x)) / diff(range(df$y)) | |
mapping <- aes(x, y, | |
scale, |
library(shiny) | |
library(datasets) | |
library(ggplot2) # load ggplot | |
# Define server logic required to plot various variables against mpg | |
shinyServer(function(input, output) { | |
# Compute the forumla text in a reactive function since it is | |
# shared by the output$caption and output$mpgPlot functions | |
formulaText <- reactive(function() { |
import pandas | |
import rpy2.robjects as robjects | |
from rpy2.robjects.packages import importr | |
from rpy2.robjects.lib import grid | |
from rpy2.robjects.lib import ggplot2 | |
## read in the distances to railroad (we calculated) | |
neardist = pandas.read_csv('data/NearDistance.csv') | |
## convert to R dataframe, via Python Dictionary data type |
library(maps) | |
library(geosphere) | |
library(plyr) | |
library(ggplot2) | |
library(sp) | |
airports <- read.csv("http://www.stanford.edu/~cengel/cgi-bin/anthrospace/wp-content/uploads/2012/03/airports.csv", as.is=TRUE, header=TRUE) | |
flights <- read.csv("http://www.stanford.edu/~cengel/cgi-bin/anthrospace/wp-content/uploads/2012/03/PEK-openflights-export-2012-03-19.csv", as.is=TRUE, header=TRUE) | |
# aggregate nunber of flights |