Skip to content

Instantly share code, notes, and snippets.

# Discussion Figure 2 - Pressure audiograms for Elasmobranchs
setwd("H:/1. Shark Project/9. Data analysis/Behavioral Audiogram Analysis")
#getwd()
library(ggplot2)
library(ggpubr)
library(magrittr)
d <- read.table("Elasmo_audiogramms.txt",header=T,na.strings=c("NA","NaN",""),sep="\t")
FBlikeNumber <-
function(url) {
require(magrittr)
require(rvest)
x <- read_html(url, encoding = "UTF-8") %>% as.character
re <- regexpr("[,0-9]+(?= 人說這讚)", x, perl = T)
substr(x, re, re + attr(re, "match.length")) %>%
gsub(",", "", .) %>%
as.integer
}
TEST_GUI = function() {
library(tcltk2)
win1 <- tktoplevel()
win1$env$rb1 <- tk2radiobutton(win1)
win1$env$rb2 <- tk2radiobutton(win1)
win1$env$rb3 <- tk2radiobutton(win1)
rbValue <- tclVar("PANDA")
tkconfigure(win1$env$rb1, variable = rbValue, value = 1)
tkconfigure(win1$env$rb2, variable = rbValue, value = 2)
# see https://www.ptt.cc/bbs/R_Language/M.1540859231.A.848.html
theta <- 8 # 本例以 theta = 8 為例
n.delta <- 500 # 設定方格在 x 和 y 的格數
x.sim <- seq(-theta, theta, length = n.delta)
y.sim <- seq(-14, 14, length = n.delta) # 太窄或太寬可以調整
f.xy <-
function(x, y, th) {
1 / (2 * th * sqrt(2 * pi)) * exp(-1 / 2 * (y - x) ^ 2)
}
library(data.table)
library(ggplot2)
library(magrittr)
# raw data
set.seed(123)
d <-
data.table(
Week = gl(2, 12, labels = c("48", "49")),
Factory = gl(3, 4, labels = c("Factory1", "Factory2", "Factory3")),
@chenpanliao
chenpanliao / 八卦板地震文.R
Created March 6, 2016 04:09
八卦板地震文
rm(dat)
library(httr)
library(xml2)
library(RCurl)
library(XML)
library(dplyr)
library(data.table)
## 抓八卦板的資料
@chenpanliao
chenpanliao / data.csv
Last active January 14, 2016 21:50
CPU & POWER comparisons: browsers rendering Youtube H.264 video on OSX 10.11
Browser resolution fps seqnum var val
1 Firefox 43.0.4 0480p 30fps 2 Total CPU usage (%) 65.6
2 Firefox 43.0.4 0480p 30fps 3 Total CPU usage (%) 70.5
3 Firefox 43.0.4 0480p 30fps 4 Total CPU usage (%) 69.9
4 Firefox 43.0.4 0480p 30fps 5 Total CPU usage (%) 71
5 Firefox 43.0.4 0480p 30fps 6 Total CPU usage (%) 67.8
6 Firefox 43.0.4 0480p 30fps 7 Total CPU usage (%) 64.5
7 Firefox 43.0.4 0480p 30fps 8 Total CPU usage (%) 67.1
8 Firefox 43.0.4 0480p 30fps 9 Total CPU usage (%) 67.6
9 Firefox 43.0.4 0480p 30fps 10 Total CPU usage (%) 67.5
# dat 為輸入的二因子資料
set.seed(1234)
dat <- data.frame(
y = rnorm(80, 5, 2),
x1 = gl(2, 40, labels = c("A","B")),
x2 = gl(4, 10, labels = c("1","2","3","4"))
)
# 利用 tapply 求出各組之 mean 和 sd
y.mean <- with(dat, tapply(y, paste(x1, x2, sep="."), mean))
# 第一題
# 已知 x 如下
x <- c(23,52,63,2,34,6,45,67,73,24,63,75,35,23,7,45,7,34)
# 以抽出且放回的方法隨機抽出 x 中的數,
# 抽出的量和 x 一樣多(也就是 18 個)。
# 求出這 18 個數的平均。
# 把上述的過程重複 10000 次,並把每次的平均記錄在一個 vector 「假的平均」裡。
# 最後,試著看懂 ?quantile,求出「假的平均」的 2.5% 和 97.5% 分位數。
# 以下是提示,試著把 ??? 填上適當的 R code。
重覆次數 <- 10000
## string to class Date
dates <- c("01/27/92", "03/27/92")
x <- as.Date(dates, "%m/%d/%y") # see ?strptime to learn more
## class Date to string
format(x, "%x")
format(x, "%F")
format(x, "%c")
format(x, "%b %D %Y")