本步骤能实现用Intel核芯显卡来进行显示, 用NVIDIA GPU进行计算。
安装开发所需要的一些基本包
sudo apt-get install build-essential
sudo apt-get install vim cmake git
sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libboost-all-dev libhdf5-serial-dev| library(foreach) | |
| library(iterators) | |
| library(doParallel) | |
| library(tcltk) | |
| # Choose number of iterations | |
| n <- 1000 | |
| cl <- makeCluster(8) |
| 1. Install Environment (All Hosts) | |
| 1.1. Install CentOS-6.5-x86_64-minimal 1 master and 3 slave (static ip: 192.168.10.100 - 192.168.10.103) | |
| # yum install wget -y | |
| 1.2. Setup hosts | |
| # vi /etc/hosts | |
| 192.168.10.100 master.kxlab.org | |
| 192.168.10.101 slave1.kxlab.org | |
| 192.168.10.102 slave2.kxlab.org | |
| 192.168.10.103 slave3.kxlab.org | |
| # hostname -f |
##VGG16 model for Keras
This is the Keras model of the 16-layer network used by the VGG team in the ILSVRC-2014 competition.
It has been obtained by directly converting the Caffe model provived by the authors.
Details about the network architecture can be found in the following arXiv paper:
Very Deep Convolutional Networks for Large-Scale Image Recognition
K. Simonyan, A. Zisserman
| date | num_customers | distinct_customers | total_bananas | total_revenue | revenue_per_sale | |
|---|---|---|---|---|---|---|
| 2016-01-01 | 345 | 287 | 564 | 3689 | 6.54 | |
| 2016-01-02 | 364 | 299 | 582 | 4080 | 7.01 | |
| ... | ... | ... | ... | ... | ... |
| class AdjacencyListGraph(object): | |
| def __init__(self): | |
| self.node = {} | |
| self.adj = {} | |
| def add_node(self, node, **attrs): | |
| if node not in self.adj: | |
| self.adj[node] = {} | |
| self.node[node] = attrs |
| import cntk | |
| import cntk.ops as C | |
| import numpy as np | |
| from sklearn.preprocessing import OneHotEncoder | |
| from cntk.blocks import default_options, Input # Building blocks | |
| from cntk.initializer import glorot_uniform | |
| from cntk.layers import Dense # Layers | |
| from cntk.learner import sgd, learning_rate_schedule, UnitType |
| import dshelper as dsh | |
| import instrumentdb as idb | |
| import logging | |
| import numpy as np | |
| import os | |
| import pandas as pd | |
| import psutil | |
| import sys | |
| import tensorflow as tf | |
| import time |
| import dshelper as dsh | |
| import numpy as np | |
| import os | |
| import pandas as pd | |
| import sys | |
| import time | |
| from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis as QDA | |
| from sqlalchemy import create_engine, MetaData |