Skip to content

Instantly share code, notes, and snippets.

View cosmic-cortex's full-sized avatar
😎

Tivadar Danka cosmic-cortex

😎
View GitHub Profile
@cosmic-cortex
cosmic-cortex / predict_skeleton.py
Last active January 29, 2020 12:37
Skeleton of the predict endpoint
@app.post("/predict", response_model=PredictResponse)
def predict(input: PredictRequest):
return PredictResponse(data=[0.0])
@cosmic-cortex
cosmic-cortex / docker-compose.test.yaml
Created January 29, 2020 11:39
Docker compose config for unit testing
version: "3"
services:
fastapi-ml-quickstart:
build: .
ports:
- 8000:8000
entrypoint: ["pytest"]
@cosmic-cortex
cosmic-cortex / ci.yaml
Created January 29, 2020 11:25
Automated testing using GitHub actions
# This GitHub action describes the continuous integration workflow for pull requests to master.
name: ci
on:
pull_request:
branches:
- master
push:
branches:
@cosmic-cortex
cosmic-cortex / docker-compose.yaml
Last active January 29, 2020 09:38
docker-compose file for the FastAPI app
version: "3"
services:
fastapi-ml-quickstart:
build: .
ports:
- 8000:8000
@cosmic-cortex
cosmic-cortex / Dockerfile
Created January 28, 2020 14:15
Dockerfile for our FastAPI application
FROM ubuntu:19.10
COPY ./api /api/api
COPY requirements.txt /requirements.txt
RUN apt-get update \
&& apt-get install python3-dev python3-pip -y \
&& pip3 install -r requirements.txt
ENV PYTHONPATH=/api
@cosmic-cortex
cosmic-cortex / predict_csv.py
Last active January 28, 2020 10:47
predict_csv endpoint
import pandas as pd
from fastapi import File, UploadFile, HTTPException
from starlette.status import HTTP_422_UNPROCESSABLE_ENTITY
@app.post("/predict_csv")
def predict_csv(csv_file: UploadFile = File(...), model: Model = Depends(get_model)):
try:
df = pd.read_csv(csv_file.file).astype(float)
@cosmic-cortex
cosmic-cortex / test_predict_with_wrong_input.py
Created January 27, 2020 18:02
Testing the API endpoint with invalid user data
from itertools import product
from starlette.status import HTTP_422_UNPROCESSABLE_ENTITY
@pytest.mark.parametrize(
"n_instances, test_data_n_features",
product(range(1, 10), [n for n in range(1, 20) if n != n_features]),
)
def test_predict_with_wrong_input(
@cosmic-cortex
cosmic-cortex / test_predict.py
Created January 27, 2020 18:00
Testing the API endpoint
import pytest
import random
from starlette.testclient import TestClient
from starlette.status import HTTP_200_OK
from api.ml.model import n_features
@pytest.mark.parametrize("n_instances", range(1, 10))
@cosmic-cortex
cosmic-cortex / conftest.py
Created January 27, 2020 17:36
Configurations and fixtures for API testing
import pytest
from starlette.testclient import TestClient
from ..main import app
from ..ml.model import get_model
from .mocks import MockModel
def get_model_override():
@cosmic-cortex
cosmic-cortex / mocks.py
Created January 27, 2020 17:27
Mock for unit testing the API
import numpy as np
class MockModel:
def __init__(self, model_path: str = None):
self._model_path = None
self._model = None
def predict(self, X: np.ndarray) -> np.ndarray:
n_instances = len(X)