Skip to content

Instantly share code, notes, and snippets.

View csrsen's full-sized avatar

Craig Srsen csrsen

View GitHub Profile
@csrsen
csrsen / vector_L2_Norm.py
Created September 23, 2018 20:43
Vector L2 Norm
# l2 norm of a vector
# = sqrt(a1^2 + a2^2 + a3^2)
from numpy import array
from numpy.linalg import norm
a = array([1, 2, 3])
print(a)
l2 = norm(a)
print(l2) # 3.7416573867
@csrsen
csrsen / coordinate_distance.py
Created September 23, 2018 20:44
Calculate surface distance between coordinates
"""
DISTANCE BETWEEN COORDINATES
"""
import math
lat1 = 40.813078
lat2 = 55.340000
lon1 = -73.046388
lon2 = -131.640000
@csrsen
csrsen / SQLAlchemy.py
Created September 23, 2018 23:54
SQL Alchemy template
from datetime import datetime
from sqlalchemy import (MetaData, Table, Column, Integer, Numeric, String,
DateTime, ForeignKey, create_engine)
metadata = MetaData()
cookies = Table('cookies', metadata,
Column('cookie_id', Integer(), primary_key=True),
Column('cookie_name', String(50), index=True),
@csrsen
csrsen / autoregression.py
Last active September 25, 2018 05:09
Autoregression
# AR example
from statsmodels.tsa.ar_model import AR
from random import random
# contrived dataset
data = [x + random() for x in range(1, 100)]
# fit model
model = AR(data)
model_fit = model.fit()
# make prediction
yhat = model_fit.predict(len(data), len(data))
@csrsen
csrsen / moving_average.py
Last active September 25, 2018 05:09
Moving Average
# MA example
from statsmodels.tsa.arima_model import ARMA
from random import random
# contrived dataset
data = [x + random() for x in range(1, 100)]
# fit model
model = ARMA(data, order=(0, 1))
model_fit = model.fit(disp=False)
# make prediction
yhat = model_fit.predict(len(data), len(data))
@csrsen
csrsen / ARMA.py
Last active September 25, 2018 05:08
Autoregressive Moving Average
# ARMA example
from statsmodels.tsa.arima_model import ARMA
from random import random
# contrived dataset
data = [random() for x in range(1, 100)]
# fit model
model = ARMA(data, order=(2, 1))
model_fit = model.fit(disp=False)
# make prediction
yhat = model_fit.predict(len(data), len(data))
@csrsen
csrsen / SES.py
Created September 25, 2018 05:11
Simple Exponential Smoothing
# SES example
from statsmodels.tsa.holtwinters import SimpleExpSmoothing
from random import random
# contrived dataset
data = [x + random() for x in range(1, 100)]
# fit model
model = SimpleExpSmoothing(data)
model_fit = model.fit()
# make prediction
yhat = model_fit.predict(len(data), len(data))
@csrsen
csrsen / HWES.py
Created September 25, 2018 05:13
Holt Winters Exponential Smoothing
# HWES example
from statsmodels.tsa.holtwinters import ExponentialSmoothing
from random import random
# contrived dataset
data = [x + random() for x in range(1, 100)]
# fit model
model = ExponentialSmoothing(data)
model_fit = model.fit()
# make prediction
yhat = model_fit.predict(len(data), len(data))
@csrsen
csrsen / concurrent_preprocessing.py
Created September 26, 2018 16:26
Concurrent preprocessing
import glob
import os
import cv2
import concurrent.futures
def load_and_resize(image_filename):
### Read in the image data
img = cv2.imread(image_filename)
@csrsen
csrsen / geopy_sample.py
Created September 26, 2018 20:36
Geopy geocoding
from geopy import GoogleV3
place = "221b Baker Street, London"
location = GoogleV3().geocode(place)
print(location.address)
print(location.location)