Skip to content

Instantly share code, notes, and snippets.

Show Gist options
  • Save anonymous/d07812903f6d00282c4679d8c4cc956e to your computer and use it in GitHub Desktop.
Save anonymous/d07812903f6d00282c4679d8c4cc956e to your computer and use it in GitHub Desktop.
Вихревой насос своими руками

Вихревой насос своими руками


= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
Файл: >>>>>> Скачать ТУТ!
= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =


Устройство и принцип работы вихревого насоса
Кавитационный теплогенератор систем отопления
Вихревой теплогенератор – новый источник тепла в доме


























Некоторым людям не хватает денежных средств на приобретение готового теплогенератора. В таком случае есть смысл попробовать сделать его самостоятельно. Существует 2 конструкции подобных устройств: В первом случае главным элементом устройства будет сопло. Во втором для создания кавитации будет служить ротор. Чтобы выбрать один из вариантов исполнения, есть смысл сравнить обе вихревые конструкции. Список элементов, которые будут нужны, для того чтобы изготовить вихревой теплогенератор своими руками:. Данная гидродинамическая конструкция являет собой несколько измененный центробежный насос. Говоря другими словами, имеется корпус насоса в данном случае он является статором с выходным и входным патрубками и рабочей камерой. Внутри корпуса находится ротор, который выполняет роль рабочего колеса. Основное отличие от обыкновенного насоса заключается в роторе. Известно большое количество конструктивных роторных исполнений вихревых теплонегераторов, все описывать не имеет смысла. Наиболее простой из них является диском. На его цилиндрической поверхности просверлено немалое количество глухих отверстий определенного диаметра и глубины. Данные отверстия называются ячейками Григгса американский изобретатель, который первым испытал данную конструкцию. Размеры и количество этих ячеек должны определяться исходя из размеров роторного диска и частоты вращения электрического двигателя, который приводит его во вращение. Статор корпус теплогенератора в большинстве случаев выполняется в виде полого цилиндра, то есть трубы, которая заглушена фланцами с обеих сторон. Зазор между внутренней стеной статора и ротором при этом весьма мал и составляет приблизительно ,5 мм. В зазоре между статором и ротором будет происходить нагрев воды. Ему способствует трение жидкости о поверхности ротора и статора, при быстро вращении первого. Большое значение для нагрева воды имеют и кавитационные процессы, завихрения воды в роторных ячейках. С уменьшением диаметра ротора частота вращения должна увеличиваться. При всей простоте данная конструкция нуждается в большой точности изготовления. Помимо того, понадобится балансировка ротора. Необходимо будет решить и вопрос уплотнения вала ротора. Следует знать, что уплотнительные элементы нуждаются в регулярной замене. Из того, что было сказано выше, следует, что ресурс данных установок не очень большой. Стоит заметить, что работа роторных теплогенераторов создает повышенный шум. Устройства роторного типа могут даже вырабатывать пар. Данный тип теплогенератора лишь условно называется статическим. Это обусловливается отсутствием вращающихся частей в кавитаторной вихревой конструкции. Для того чтобы создавать кавитационные процессы, используются различные виды сопел. Чтобы возникла кавитация, понадобится обеспечить большую скорость движения в кавитаторе жидкости. Для этого следует использовать обыкновенный центробежный насос. Насос будет нагнетать давление жидкости перед соплом. Она устремится в отверстие сопла, которое имеет гораздо меньшее сечение, чем подводящий трубопровод. Это обеспечивает большую скорость на выходе из сопла. При помощи резкого расширения жидкости возникает кавитация. Этому будет способствовать и трение жидкости о поверхность канала и завихрения воды, которые возникают в случае резкого выравнивания струи из сопла. Вода нагревается по тем же причинам, что и в роторной вихревой конструкции, однако с несколько меньшей эффективностью. Устройство статического теплогенератора не нуждается в высокой точности изготовления деталей. При изготовлении данных деталей механическая обработка сводится к минимуму по сравнению с роторной конструкцией. В связи с отсутствием вращающихся частей может легко решиться вопрос уплотнения деталей и сопрягаемых узлов. Балансировка здесь тоже не нужна. Период службы кавитатора гораздо больше. Даже в случае выработки ресурса соплом изготовление и замена его потребует гораздо меньшие материальные затраты. В данном случае роторный кавитационный теплогенератор понадобится изготавливать заново. Недостатком статического устройства является стоимость насоса. Однако себестоимость выполнения теплогенератора данного устройства практически не отличается от роторной вихревой конструкции. В случае если же вспомнить о ресурсе обеих установок, данный недостаток превратится в преимущество, потому как в случае замены кавитатора не нужно менять насос. Начинать следует с выбора насоса для изготавливаемого устройства. Для этого понадобится определиться с его рабочими параметрами. Не имеет принципиального значения, будет это циркуляционный насос либо повышающий давление. Значение имеет производительность насоса, рабочее давление, максимальная температура перекачиваемой жидкости. Не все конструкции могут использоваться для перекачивания жидкости высоких температур. В случае если не придать значения данному параметру в процессе выбора насоса, срок его эксплуатации может оказаться значительно меньшим чем тот, который заявлен производителем. От величины напора, который может развивать насос, зависит эффективность работы теплогенератора. Чем больше напор, тем большим будет перепад давления. Следовательно, эффективнее будет происходить нагрев жидкости, которая прокачивается через кавитатор. Однако вовсе не стоит гнаться за максимальными цифрами в характеристиках насосов. Мощность насоса теплогенератора определяет коэффициент преобразования электрической энергии в тепловую. Существует большое количество конструкций статических кавитаторов, однако практически во всех случаях они выполняются в виде сопла. За основу чаще всего берется сопло и модифицируется конструктором. Первое, на что необходимо обратить внимание — сечение канала между конфузором и диффузором. Не следует сильно зауживать его сечение, стараясь тем самым обеспечить максимальный перепад давления. Объем воды, которая перекачивается через сопло, будет слишком мал. При смешении с холодной водой, она передаст ей недостаточное количество теплоты. Значит, общий объем воды не сможет нагреваться быстро. Помимо того, малое сечение канала поспособствует завоздушиванию воды, которая поступает во входной патрубок рабочего насоса. Вследствие данный насос будет работать шумно, и может возникать кавитация в самом устройстве. Для изготовления гидродинамического контура предварительно необходимо изобразить схему контура. Устройство контура представляет собой трубопровод, вход которого соединен с выходным патрубком насоса, а выход — с входным. В трубопровод нужно вварить сопло, патрубки для подключения манометра, гильзы для установки термометра, штуцер под вентиль, для того чтобы сбрасывать воздух, штуцер для подключения контура отопления. На данной схеме вода будет двигаться против часовой стрелки. Подача в контур воды осуществляется через нижний патрубок, а выдача из него воды — через верхний. Регулирование перепада давления будет осуществляться вентилем, который находится между выходным и входным патрубками. После того как вихревой теплогенератор, который сделан своими руками, будет подключен, есть возможность приступить к испытаниям его. Необходимо запустить электрический двигатель насоса и наблюдать за показаниями манометров. В процессе устанавливается необходимый перепад давления. Для этой цели в контуре предусматривается вентиль, который находится между выходным и входным патрубками. Следует повернуть рукоятку вентиля и установить давление после сопла в трубопроводе в диапазоне 1,,5 атм. Между выходом насоса и входом сопла оптимальным давлением является диапазон атм. Когда давление на выходе из сопла будет установлено, следует пустить по кругу воду закрывая выходной вентиль и засечь время. Потребляемая электроэнергия может быть вычислена путем измерения тока. Исходя из подобных данных, есть возможность вычислить коэффициент преобразования энергии. Данные следует подставить в формулу и получить: Соответственно, есть смысл утверждать о состоятельности данной идеи создания теплогенератора. В данной формуле не учитывался КПД двигателя, в связи с чем реальный коэффициент трансформации может быть еще выше. При расчете тепловой мощности нужно исходить из упрощенной формулы. Согласно ей понадобится ориентировочно 1 кВт тепловой мощности на каждые 10 кв. То есть, для кв. Роторный вихревой теплогенератор Статический кавитационный теплогенератор Изготовление теплогенератора своими руками Выбор насоса для устройства Изготовление и разработка кавитатора Изготовление гидродинамического контура Процесс испытания теплогенератора. Схема механизма работы теплового насоса. Схема принципа работы воздушного отопления теплогенератора. Схема принципа работы стационарного теплогенератора. Схема котла на отработке своими руками. Схема устройства стационарного теплогенератора. Схема обогревателя на отработанном масле. Неполадки в работе газовых котлов. Газовый котел в многоквартирном доме. Отопление Камины Котлы Обогреватели Радиаторы Системы отопления Печи Утепление Монтаж Утеплители.


Вихревой теплогенератор своими руками. Вихревые теплогенераторы


Для обеспечения максимально экономного отопления, домашние хозяева используют различные системы. Предлагаем рассмотреть, как работает кавитационный теплогенератор, как сделать прибор своим руками, а также его устройство и схема. Кавитационные нагреватели — это простые устройства, которые преобразуют механическую энергию рабочей жидкости в тепловую. По сути, данный прибор состоит из центробежного насоса для ванной, скважин, систем водоснабжения частных домов , который имеет низкий показатель эффективности. Преобразование энергии в кавитационном нагревателе широко используется в промышленных предприятиях, где нагревательные элементы могут быть повреждены при контакте с рабочей жидкостью, у которой серьезная разность в температурах. Насосы, как правило, не предназначены для смешанной фазы потока их работа уничтожает пузыри, из-за чего кавитационный генератор теряет эффективность. Данные термические приспособления предназначены, чтобы вызывать смешанный поток фаз как часть перемешивания жидкости, что приводит к термической конверсии. В коммерческих кавитационных обогревателях, механическая энергия приводит в действие нагреватель входной энергии например, двигатель, блок управления , в результате чего жидкость, которая отвечает за образование выходной энергии, возвращается к источнику. Немного по иному работает суперкавитационный реактивный генератор энергии. Такой нагреватель используется на мощных предприятиях, когда тепловая энергия выхода передается на жидкость в определенном устройстве, её мощность значительно превышает количество механической энергии, необходимой для приведения в действие нагревателя. Эти приборы более энергетически продуктивны, чем возвратные механизмы, в частности тем, что они не требуют регулярной проверки и настройки. Существуют разные типы таких генераторов. Самый распространенный вид — это роторно-гидродинамический механизм Григгса. Его принцип действия основан на работе центробежного насоса. Состоит он из патрубков, статора, корпуса и рабочей камеры. На данный момент существует множество модернизаций, самый простой — приводной или дисковый сферический водяной насос ротационного действия. Он представляет собой дисковую поверхность, в которой просверлено много различных отверстий глухого типа без выхода , данные конструктивные элементы называются ячейки Григгса. Их размерные параметры, число напрямую зависят от мощности ротора, конструкции теплогенератора и частоты вращения привода. Между ротором и статором находится определенный зазор, который необходим для нагрева воды. Данный процесс осуществляется при помощи быстрого движения жидкости по поверхности диска, что способствует повышению температуры. В среднем, ротор движется приблизительно со скоростью оборотов в минуту, чего достаточно для повышения температуры до 90 градусов. Второй вид кавитационного генератора принято называть статическим. Он не имеет, в отличие от роторного, никаких вращающихся частей, для того, чтобы осуществлялась кавитация, ему необходимы сопла. В частности, это детали известного Лаваля, которые подключены к рабочей камере. Для работы, подключается обычный насос, как в роторном виде генератора, он нагнетает в рабочей камере давление, чем обеспечивает большую скорость движения воды, соответственно, повышение её температуры. Скорость жидкости на выходе из сопла обеспечена разностью диаметров поступательного и выходного патрубков. Его недостатком является то, что эффективность значительно ниже, чем в роторном, тем более, он более габаритный, тяжелый. Первым трубчатый агрегат был разработанный Потаповым. На данный момент принято работать по чертежам Ларионова, Федоскина, Петракова, Николая Жука. Перед началом работы нужно выбрать вакуумный или бесконтактный насос подойдет даже для скважин по своим параметрам. Для этого необходимо учесть следующие факторы:. Несмотря на огромное разнообразие форм и видов кавитаторов, практически все промышленные и бытовые устройства выполнены в виде сопла, такая форма является наиболее простой и практичной. Кроме того, её легко модернизировать, благодаря чему значительно повышается мощность генератора. Перед началом работы обратите свое внимание на сечение отверстия между конфузором и диффузором. Его необходимо сделать не слишком узким, но и не широким, приблизительно от 8 до 15 см. В первом случае Вы повысите давление в рабочей камере, но мощность будет не высокой, так как объем нагретой воды будет относительно мал, по отношению к холодной. Помимо этих проблем, небольшая разность сечений способствует насыщению кислородом входящей воды из рабочего патрубка, этот показатель влияет на уровень шума насоса и возникновение кавитационных явлений в самом устройстве, что в принципе, негативно сказывается на его работе. Кавитационные теплогенераторы систем отопления обязательно имеют камеры расширения. У них может быть различный профиль в зависимости от требований и необходимой мощности. В зависимости от этого показателя может меняться конструкция генератора. В принципе, работа проста и основана на похожем принципе, как и у вихревого устройства, даже формулы для расчета производимого тепла идентичны. Конечно, кавитационный теплогенератор — это практически аномальный прибор, он почти идеальный генератор, купить его сложно, цена завышена. Предлагаем рассмотреть, сколько стоит кавитационный прибор отопления в разных городах России и Украины:. Кавитационные вихревые теплогенераторы имеют более простые чертежи, но по эффективности несколько уступают. На данный момент существует несколько компаний-лидеров рынка: Продажа производится в диллерских центрах и в магазинах-партнерах в России, Кыргизстане, Беларуси и прочих странах СНГ. Где и как можно купить такой генератор для отопления дома площадью в м. Электрика в квартире Ремонт Электрооборудование Датчики Электродвигатель Трансформаторы Генератор Узо Автоматизация производства Eplan Технологии производств Освещение Кабель и провод Основы электротехники Электрические измерения. Содержание 1 Плюсы и минусы кавитационных источников энергии 2 Принцип работы 3 Как самому сделать генератор 4 Рассмотрим конструкцию генератора: Фото — Конструкция кавитационного теплогенератора. Фото — Чертеж теплогенератора. Фото — Гидродинамический механизм Григгса. Фото — Вихревой кавитационных генератор потапова. Фото — Кавитационный теплогенератор. Фото — Теплогенератор торнадо. Facebook Vk Odnoklassniki Twitter Pinterest. Ветряной генератор для дома своими руками Как сделать бестопливный генератор своими руками Принцип работы синхронного генератора переменного тока Газовый генератор с автозапуском, 5 квт и 10 квт — green power, generac, reg Дизель генератор 5 квт, 10 и квт, катерпиллер, азимут, вепрь, хонда Бензиновые и газовые генераторы с автозапуском для дома. Автоматизация и электрика Контакты Содержание сайта Политика конфиденциальности Каталог.


Как выбрать люстру в гостиную
Pm значение времени
Наукаи глобальные проблемы человечества
Где заработать фотографу
Инструкция лего ниндзя го зейн
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment