Created
July 2, 2015 02:32
-
-
Save jrk/d64823d754a732106a60 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// This algorithm is meant to be equivalent to CV_TM_CCOEFF_NORMED in OpenCV, and normxcorr2 in MATLAB: | |
// via http://stackoverflow.com/q/31060974/3815 | |
#include <Halide.h> | |
typedef uint8_t pixel_t; | |
void normxcorr( Halide::ImageParam input, | |
Halide::ImageParam kernel, | |
Halide::Param<pixel_t> kernel_mean, | |
Halide::Param<pixel_t> kernel_var, | |
Halide::Func& output ) | |
{ | |
Halide::Var x, y; | |
Halide::RDom rk( kernel ); | |
// reduction domain for cumulative sums | |
Halide::RDom ri( 1, input.width() - kernel.width() - 1, | |
1, input.height() - kernel.height() - 1 ); | |
Halide::Func input_32, | |
bounded_input, | |
kernel_32, | |
knorm, | |
conv, | |
normxcorr_internal, | |
sq_sum_x, | |
sq_sum_x_local, | |
sq_sum_y, | |
sq_sum_y_local, | |
sum_x, | |
sum_x_local, | |
sum_y, | |
sum_y_local, | |
win_var, | |
win_mean; | |
Halide::Expr ksize = kernel.width() * kernel.height(); | |
// accessing outside the input image always returns 0 | |
bounded_input( x, y ) = Halide::BoundaryConditions::constant_exterior( input, 0 )( x, y ); | |
// cast to 32-bit to make room for multiplication | |
input_32( x, y ) = Halide::cast<int32_t>( bounded_input( x, y ) ); | |
kernel_32( x, y ) = Halide::cast<int32_t>( kernel( x, y ) ); | |
// cumulative sum along each row | |
sum_x( x, y ) = input_32( x, y ); | |
sum_x( ri.x, ri.y ) += sum_x( ri.x - 1, ri.y ); | |
// sum of 1 x W strips | |
// (W is the width of the kernel) | |
sum_x_local( x, y ) = sum_x( x + kernel.width() - 1, y ) - sum_x( x - 1, y ); | |
// cumulative sums of the 1 x W strips along each column | |
sum_y( x, y ) = sum_x_local( x, y ); | |
sum_y( ri.x, ri.y ) += sum_y( ri.x, ri.y - 1); | |
// sums up H strips (as above) to get the sum of an H x W rectangle | |
// (H is the height of the kernel) | |
sum_y_local( x, y ) = sum_y( x, y + kernel.height() - 1 ) - sum_y( x, y - 1 ); | |
// same as above, just with squared image values | |
sq_sum_x( x, y ) = input_32( x, y ) * input_32( x, y ); | |
sq_sum_x( ri.x, ri.y ) += sq_sum_x( ri.x - 1, ri.y ); | |
sq_sum_x_local( x, y ) = sq_sum_x( x + kernel.width() - 1, y ) - sq_sum_x( x - 1, y ); | |
sq_sum_y( x, y ) = sq_sum_x_local( x, y ); | |
sq_sum_y( ri.x, ri.y ) += sq_sum_y( ri.x, ri.y - 1); | |
sq_sum_y_local( x, y ) = sq_sum_y( x, y + kernel.height() - 1 ) - sq_sum_y( x, y - 1 ); | |
// the mean value of each window | |
win_mean( x, y ) = sum_y_local( x, y ) / ksize; | |
// the variance of each window | |
win_var( x, y ) = sq_sum_y_local( x, y ) / ksize; | |
win_var( x, y) -= win_mean( x, y ) * win_mean( x, y ); | |
// partially normalize the kernel | |
// (we'll divide by std. dev. at the end) | |
knorm( x, y ) = kernel_32( x, y ) - kernel_mean; | |
// convolve kernel and the input | |
conv( x, y ) = Halide::sum( knorm( rk.x, rk.y ) * input_32( x + rk.x, y + rk.y ) ); | |
// calculate normxcorr, except scaled to 0 to 254 (for an 8-bit image) | |
normxcorr_internal( x, y ) = conv( x, y ) * 127 / Halide::sqrt( kernel_var * win_var( x, y ) ) + 127; | |
// after scaling pixel values, it's safe to cast down to 8-bit | |
output( x, y ) = Halide::cast<pixel_t>( normxcorr_internal( x, y ) ); | |
knorm.compute_root(); | |
input_32.compute_root(); | |
sum_x.compute_root(); | |
sum_y.compute_root(); | |
sq_sum_x.compute_root(); | |
sq_sum_y.compute_root(); | |
#if 0 | |
sum_x.trace_realizations(); | |
sum_y.trace_realizations(); | |
sq_sum_x.trace_realizations(); | |
sq_sum_y.trace_realizations(); | |
#endif | |
#if 0 | |
sum_x.vectorize(x, 32).parallel(y); | |
sum_y.vectorize(x, 32).parallel(y); | |
sq_sum_x.vectorize(x, 32).parallel(y); | |
sq_sum_y.vectorize(x, 32).parallel(y); | |
#endif | |
} | |
int main (int argc, char const *argv[]) | |
{ | |
Halide::Func gen; | |
Halide::ImageParam in(Halide::UInt(8), 2), k(Halide::UInt(8), 2); | |
Halide::Param<pixel_t> kMean, kVar; | |
normxcorr(in, k, kMean, kVar, gen); | |
gen.compile_to_file("normxcorr", {in, k, kMean, kVar}); | |
return 0; | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment