Skip to content

Instantly share code, notes, and snippets.

Created September 14, 2017 16:47
Show Gist options
  • Save anonymous/d7eae6cadf74339a8750e4ad81d0aa07 to your computer and use it in GitHub Desktop.
Save anonymous/d7eae6cadf74339a8750e4ad81d0aa07 to your computer and use it in GitHub Desktop.
Основные свойства ядра ос

Основные свойства ядра ос



Виды и характеристики ядра различных видов операционных систем
Ядро операционной системы. Состав и функции ядра операционной системы.
Основные подходы к построению ядра ОС

ООП появился в результате развития модульного принципа и структурного подхода к проектированию программного обеспечения. При ООП каждый программный компонент является функционально-изолированным от других программных компонентов. Основное понятие ООП - объект см. Объекты могут описать сущности с разной степенью детализации. Внутренняя структура объекта от нас. Разработчик может строить новые объекты путем наследования свойств других объектов, не зная внутреннюю структуру объекта их инкапсуляция. Объект обычно представляют как черный ящик. Использование ООП наиболее ф-но при разработке развивающего программного обеспечения. Полностью объектно-ориентированные ОС привлекательны для системных программистов. Большие перспективы ООП в реализации распределительных вычислительных систем. Концепция построения ОС с монолитным ядром. Преимущества и недостатки монолитного ядра. Монолитное ядро — классическая и, на сегодняшний день, наиболее распространённая архитектура ядер операционных систем. Монолитные ядра предоставляют богатый набор абстракций оборудования. Все части монолитного ядра работают в одном адресном пространстве. Монолитные ядра имеют долгую историю развития и усовершенствования и, на данный момент, являются наиболее архитектурно зрелыми и пригодными к эксплуатации. Это делает монолитные ядерные архитектуры мало пригодными к эксплуатации в системах, сильно ограниченных по объёму ОЗУ, например, встраиваемых системах, производственных микроконтроллерах и т. Монолитное ядро представляет собой набор процедур, каждая из которых может вызвать каждую. Все компоненты этого ядра являются не самостоятельными модулями, а составной частью одной большой программы. Все процедуры работают в привелигированном режиме, используют общие структуры данных и взаимодействуют друг с другом путем непосредственного вызова. Таким образом, для монолитной ОС ядро совпадает со всей системой. Старые монолитные ядра требовали перекомпиляции при любом изменении состава оборудования. Большинство современных ядер позволяют во время работы динамически подгружать модули, выполняющие части функции ядра. Такие ядра называются модульными ядрами. Возможность динамической подгрузки модулей не нарушает монолитности архитектуры ядра, так как динамически подгружаемые модули загружаются в адресное пространство ядра и в дальнейшем работают как интегральная часть ядра. Не следует путать модульность ядра с гибридной или микроядерной архитектурой. Во многих ОС с монолитным ядром сборка ядра, то есть его компиляция осуществляется отдельно для каждого компьютера, так как ядро является единой программой, то перекомпиляция - это единственный способ добавить в него новые компоненты или исключить неиспользуемые. Присутствие в ядре лишних компонентов крайне нежелательно, потому что ядро ОС полностью загружается в ОП, поэтому отсутствие в ядре неиспользуемых компонентов крайне важно. Кроме того исключение ненужных компонентов повышает надежность ОС в целом. Главная программа вызывает требуемую служебную процедуру. Набор служебных процедур выполняет системные вызовы, которые выполняются в привелигированном режиме. Набор утилит помогает выполнить сервисные процедуры. Преимущества и недостатки микроядерной архитектуры. Микроядерная архитектура является альтернативой классическому способу построения операционной системы. Под классической архитектурой в данном случае понимается рассмотренная выше структурная организация ОС, в соответствии с которой все основные функции операционной системы, составляющие многослойное ядро, выполняются в привилегированном режиме. При этом некоторые вспомогательные функции ОС оформляются в виде приложений и выполняются в пользовательском режиме наряду с обычными пользовательскими программами становясь системными утилитами или обрабатывающими программами. Каждое приложение пользовательского режима работает в собственном адресном пространстве и защищено тем самым от какого-либо вмешательства других приложений. Код ядра, выполняемый в привилегированном режиме, имеет доступ к областям памяти всех приложений, но сам полностью от них защищен. Приложения обращаются к ядру с запросами на выполнение системных функций. Суть микроядерной архитектуры состоит в следующем. В привилегированном режиме остается работать только очень небольшая часть ОС, называемая микроядром рис. Микроядро защищено от остальных частей ОС и приложений. В состав микроядра обычно входят машинно-зависимые модули, а также модули, выполняющие базовые но не все! Набор функций микроядра обычно соответствует функциям слоя базовых механизмов обычного ядра. Такие функции операционной системы трудно, если не невозможно, выполнить в пространстве пользователя. Перенос основного объема функций ядра в пользовательское пространство. Все остальные более высокоуровневые функции ядра оформляются в виде приложений, работающих в пользовательском режиме. Однозначного решения о том, какие из системных функций нужно оставить в привилегированном режиме, а какие перенести в пользовательский, не существует. В общем случае многие менеджеры ресурсов, являющиеся неотъемлемыми частями обычного ядра — файловая система, подсистемы управления виртуальной памятью и процессами, менеджер безопасности и т. Работающие в пользовательском режиме менеджеры ресурсов имеют принципиальные отличия от традиционных утилит и обрабатывающих программ операционной системы, хотя при микроядерной архитектуре все эти программные компоненты также оформлены в виде приложений. Утилиты и обрабатывающие программы вызываются в основном пользователями. Ситуации, когда одному приложению требуется выполнение функции процедуры другого приложения, возникают крайне редко. Поэтому в операционных системах с классической архитектурой отсутствует механизм, с помощью которого одно приложение могло бы вызвать функции другого. Совсем другая ситуация возникает, когда в форме приложения оформляется часть операционной системы. По определению, основным назначением такого приложения является обслуживание запросов других приложений, например создание процесса, выделение памяти, проверка прав доступа к ресурсу и т. Именно поэтому менеджеры ресурсов, вынесенные в пользовательский режим, называются серверами ОС, то есть модулями, основным назначением которых является обслуживание запросов локальных приложений и других модулей ОС. Очевидно, что для реализации микроядерной архитектуры необходимым условием является наличие в операционной системе удобного и эффективного способа вызова процедур одного процесса из другого. Поддержка такого механизма и является одной из главных задач микроядра. Схематично механизм обращения к функциям ОС, оформленным в виде серверов, выглядит следующим образом рис. Клиент, которым может быть либо прикладная программа, либо другой компонент ОС, запрашивает выполнение некоторой функции у соответствующего сервера, посылая ему сообщение. Непосредственная передача сообщений между приложениями невозможна, так как их адресные пространства изолированы друг от друга. Микроядро, выполняющееся в привилегированном режиме, имеет доступ к адресным пространствам каждого из этих приложений и поэтому может работать в качестве посредника. Микроядро сначала передает сообщение, содержащее имя и параметры вызываемой процедуры нужному серверу, затем сервер выполняет запрошенную операцию, после чего ядро возвращает результаты клиенту с помощью другого сообщения. Таким образом, работа микроядерной операционной системы соответствует известной модели клиент-сервер, в которой роль транспортных средств выполняет микроядро. Операционные системы, основанные на концепции микроядра, в высокой степени удовлетворяют большинству требований, предъявляемых к современным ОС, обладая переносимостью, расширяемостью, надежностью и создавая хорошие предпосылки для поддержки распределенных приложений. За эти достоинства приходится платить снижением производительности, и это является основным недостатком микроядерной архитектуры. Высокая степень переносимости обусловлена тем, что весь машинно-зависимый код изолирован в микроядре, поэтому для переноса системы на новый процессор требуется меньше изменений и все они логически сгруппированы вместе. Расширяемость присуща микроядерной ОС в очень высокой степени. В традиционных системах даже при наличии многослойной структуры нелегко удалить один слой и поменять его на другой по причине множественности и размытости интерфейсов между слоями. Добавление новых функций и изменение существующих требует хорошего знания операционной системы и больших затрат времени. В то же время ограниченный набор четко определенных интерфейсов микроядра открывает путь к упорядоченному росту и эволюции ОС. Добавление новой подсистемы требует разработки нового приложения, что никак не затрагивает целостность микроядра. Микроядерная структура позволяет не только добавлять, но и сокращать число компонентов операционной системы, что также бывает очень полезно. Например, не всем пользователям нужны средства безопасности или поддержки распределенных вычислений, а удаление их из традиционного ядра чаще всего невозможно. При микроядерном подходе конфигурируемость ОС не вызывает никаких проблем и не требует особых мер — достаточно изменить файл с настройками начальной конфигурации системы или же остановить не нужные больше серверы в ходе работы обычными для остановки приложений средствами. Использование микроядерной модели повышает надежность ОС. Каждый сервер выполняется в виде отдельного процесса в своей собственной области памяти и таким образом защищен от других серверов операционной системы, что не наблюдается в традиционной ОС, где все модули ядра могут влиять друг на друга. И если отдельный сервер терпит крах, то он может быть перезапущен без останова или повреждения остальных серверов ОС. Более того, поскольку серверы выполняются в пользовательском режиме, они не имеют непосредственного доступа к аппаратуре и не могут модифицировать память, в которой хранится и работает микроядро. Другим потенциальным источником повышения надежности ОС является уменьшенный объем кода микроядра по сравнению с традиционным ядром — это снижает вероятность появления ошибок программирования. Модель с микроядром хорошо подходит для поддержки распределенных вычислений, так как использует механизмы, аналогичные сетевым: Серверы микроядерной ОС могут работать как на одном, так и на разных компьютерах. В этом случае при получении сообщения от приложения микроядро может обработать его самостоятельно и передать локальному серверу или же переслать по сети микроядру, работающему на другом компьютере. Переход к распределенной обработке требует минимальных изменений в работе операционной системы — просто локальный транспорт заменяется на сетевой. При классической организации ОС рис. Таким образом, операционная система на основе микроядра при прочих равных условиях всегда будет менее производительной, чем ОС с классическим ядром. Именно по этой причине микроядерный подход не получил такого широкого распространения, которое ему предрекали. Серьезность этого недостатка хорошо иллюстрирует история развития Windows NT. Однако очень скоро разработчики Windows NT поняли, что такой механизм обращений к часто используемым функциям графического интерфейса существенно замедляет работу приложений и делает данную операционную систему уязвимой в условиях острой конкуренции. В результате в версию Windows NT 4. Этот пример иллюстрирует главную проблему, с которой сталкиваются разработчики операционной системы, решившие применить микроядерный подход, — что включать в микроядро, а что выносить в пользовательское пространство. В идеальном случае микроядро может состоять только из средств передачи сообщений, средств взаимодействия с аппаратурой, в том числе средств доступа к механизмам привилегированной защиты. Однако многие разработчики не всегда жестко придерживаются принципа минимизации функций ядра, часто жертвуя этим ради повышения производительности. В результате реализации ОС образуют некоторый спектр, на одном краю которого находятся системы с минимально возможным микроядром, а на другом — системы, подобные Windows NT, в которых микроядро выполняет достаточно большой объем функций. Мультипрограммирование, или многозадачность multitasking , — это способ организации вычислительного процесса, при котором на одном процессоре попеременно выполняются сразу несколько программ. Эти программы совместно используют не только процессор, но и другие ресурсы компьютера: Мультипрограммирование призвано повысить эффективность использования вычислительной системы, однако эффективность может пониматься по-разному. Наиболее характерными критериями эффективности вычислительных систем являются:. В зависимости от выбранного критерия эффективности ОС делятся на системы пакетной обработки, системы разделения времени и системы реального времени. Каждый тип ОС имеет специфические внутренние механизмы и особые области применения. Некоторые операционные системы могут поддерживать одновременно несколько режимов, например часть задач может выполняться в режиме пакетной обработки, а часть — в режиме реального времени или в режиме разделения времени. При использовании мультипрограммирования для повышения пропускной способности компьютера главной целью является минимизация простоев всех устройств компьютера, и прежде всего центрального процессора. Данные могут храниться на диске или же поступать от пользователя, работающего за терминалом, а также от измерительной аппаратуры, установленной на внешних технических объектах. При возникновении такого рода блокировки выполняемой задачи естественным решением, ведущим к повышению эффективности использования процессора, является переключение процессора на выполнение другой задачи, у которой есть данные для обработки. Такая концепция мультипрограммирования положена в основу так называемых пакетных систем. Системы пакетной обработки предназначались для решения задач в основном вычислительного характера, не требующих быстрого получения результатов. Главной целью и критерием эффективности систем пакетной обработки является максимальная пропускная способность, то есть решение максимального числа задач в единицу времени. Для достижения этой цели в системах пакетной обработки используется следующая схема функционирования: Для одновременного выполнения выбираются задачи, предъявляющие разные требования к ресурсам, так, чтобы обеспечивалась сбалансированная загрузка всех устройств вычислительной машины. Например, в мультипрограммной смеси желательно одновременное присутствие вычислительных задач и задач с интенсивным вводом-выводом. Следовательно, в вычислительных системах, работающих под управлением пакетных ОС, невозможно гарантировать выполнение того или иного задания в течение определенного периода времени. Такое совмещение может достигаться разными способами. Один из них характерен для компьютеров, имеющих специализированный процессор ввода-вывода. В компьютерах класса мэйнфреймов такие процессоры называют каналами. Обычно канал имеет систему команд, отличающуюся от системы команд центрального процессора. Канальные программы могут храниться в той же оперативной памяти, что и программы центрального процессора. В системе команд центрального процессора предусматривается специальная инструкция, с помощью которой каналу передаются параметры и указания на то, какую программу ввода-вывода он должен выполнить. Начиная с этого момента центральный процессор и канал могут работать параллельно рис. Другой способ совмещения вычислений с операциями ввода-вывода реализуется в компьютерах, в которых внешние устройства управляются не процессором ввода-вывода, а контроллерами. Каждое внешнее устройство или группа внешних устройств одного типа имеет свой собственный контроллер, который автономно отрабатывает команды, поступающие от центрального процессора. При этом контроллер и центральный процессор работают асинхронно. Поскольку многие внешние устройства включают электромеханические узлы, контроллер выполняет свои команды управления устройствами существенно медленнее, чем центральный процессор — свои. Это обстоятельство используется для организации параллельного выполнения вычислений и операций ввода-вывода: Контроллер может сообщить центральному процессору о том, что он готов принять следующую команду, сигналом прерывания либо центральный процессор узнает об этом, периодически опрашивая состояние контроллера. Максимальный эффект ускорения достигается при наиболее полном перекрытии вычислений и ввода-вывода. Рассмотрим случай, когда процессор выполняет только одну задачу. В этой ситуации степень ускорения зависит от природы данной задачи и от того, насколько тщательно был выявлен возможный параллелизм при ее программировании. В задачах, в которых преобладают либо вычисления, либо ввод-вывод, ускорение почти отсутствует. Параллелизм в рамках одной задачи невозможен также, когда для продолжения вычислений необходимо полное завершение операции ввода-вывода, например, когда дальнейшие вычисления зависят от вводимых данных. В таких случаях неизбежны простои центрального процессора или канала. Если же в системе выполняются одновременно несколько задач, появляется возможность совмещения вычислений одной задачи с вводом-выводом другой. Пока одна задача ожидает какого-либо события заметим, что таким событием в мультипрограммной системе может быть не только завершение ввода-вывода, но и, например, наступление определенного момента времени, разблокирование файла или загрузка с диска недостающей страницы программы , процессор не простаивает, как это происходит при последовательном выполнении программ, а выполняет другую задачу. Общее время выполнения смеси задач часто оказывается меньше, чем их суммарное время последовательного выполнения рис. Однако выполнение отдельной задачи в мультипрограммном режиме может занять больше времени, чем при монопольном выделении процессора этой задаче. Действительно, при совместном использовании процессора в системе могут возникать ситуации, когда задача готова выполняться, но процессор занят выполнением другой задачи. В таких случаях задача, завершившая ввод-вывод, готова выполняться, но вынуждена ждать освобождения процессора, и это удлиняет срок ее выполнения. Задача В также вместо 5 единиц времени выполняется за 6. Но зато время выполнения обеих задач в мультипрограммном режиме составляет всего 8 единиц, что на 3 единицы меньше, чем при последовательном выполнении. В системах пакетной обработки переключение процессора с выполнения одной задачи на выполнение другой происходит по инициативе самой активной задачи, например, когда она отказывается от процессора из-за необходимости выполнить операцию ввода-вывода. Поэтому существует высокая вероятность того, что одна задача может надолго занять процессор и выполнение интерактивных задач станет невозможным. Взаимодействие пользователя с вычислительной машиной, на которой установлена система пакетной обработки, сводится к тому, что он приносит задание, отдает его диспетчеру-оператору, а в конце дня после выполнения всего пакета заданий получает результат. Очевидно, что такой порядок повышает эффективность функционирования аппаратуры, но снижает эффективность работы пользователя. Время выполнения двух задач: Повышение удобства и эффективности работы пользователя является целью другого способа мультипрограммирования — разделения времени. В системах разделения времени пользователям или одному пользователю предоставляется возможность интерактивной работы сразу с несколькими приложениями. Понятно, что в пакетных системах возможности диалога пользователя с приложением весьма ограничены. В системах разделения времени эта проблема решается за счет того, что ОС принудительно периодически приостанавливает приложения, не дожидаясь, когда они добровольно освободят процессор. Всем приложениям попеременно выделяется квант процессорного времени, таким образом пользователи, запустившие программы на выполнение, получают возможность поддерживать с ними диалог. Системы разделения времени призваны исправить основной недостаток систем пакетной обработки — изоляцию пользователя-программиста от процесса выполнения его задач. Каждому пользователю в этом случае предоставляется терминал, с которого он может вести диалог со своей программой. Так как в системах разделения времени каждой задаче выделяется только квант процессорного времени, ни одна задача не занимает процессор надолго и время ответа оказывается приемлемым. Если квант выбран достаточно небольшим, то у всех пользователей, одновременно работающих на одной и той же машине, складывается впечатление, что каждый из них единолично использует машину. Кроме того, производительность системы снижается из-за возросших накладных расходов вычислительной мощности на более частое переключение процессора с задачи на задачу. Это вполне соответствует тому, что критерием эффективности систем разделения времени является не максимальная пропускная способность, а удобство и эффективность работы пользователя. Вместе с тем мультипрограммное выполнение интерактивных приложений повышает и пропускную способность компьютера пусть и не в такой степени, как пакетные системы. Аппаратура загружается лучше, поскольку в то время, пока одно приложение ждет сообщения пользователя, другие приложения могут обрабатываться процессором. Еще одна разновидность мультипрограммирования используется в системах реального времени, предназначенных для управления от компьютера различными техническими объектами например, станком, спутником, научной экспериментальной установкой и т. Во всех этих случаях существует предельно допустимое время, в течение которого должна быть выполнена та или иная управляющая объектом программа. В противном случае может произойти авария: Таким образом, критерием эффективности здесь является способность выдерживать заранее заданные интервалы времени между запуском программы и получением результата управляющего воздействия. Это время называется временем реакции системы, а соответствующее свойство системы — реактивностью. Требования ко времени реакции зависят от специфики управляемого процесса. Контроллер робота может требовать от встроенного компьютера ответ в течение менее 1 мс, в то время как при моделировании полета может быть приемлем ответ в 40 мс. В системах реального времени мультипрограммная смесь представляет собой фиксированный набор заранее разработанных программ, а выбор программы на выполнение осуществляется по прерываниям исходя из текущего состояния объекта или в соответствии с расписанием плановых работ. Способность аппаратуры компьютера и ОС к быстрому ответу зависит в основном от скорости переключения с одной задачи на другую и, в частности, от скорости обработки сигналов прерывания. Если при возникновении прерывания процессор должен опросить сотни потенциальных источников прерывания, то реакция системы будет слишком медленной. Время обработки прерывания в системах реального времени часто определяет требования к классу процессора даже при небольшой его загрузке. Статистические аргументы о низкой вероятности возникновения пиковой нагрузки, основанные на том, что вероятность одновременного возникновения большого количества независимых событий очень мала, не применимы ко многим ситуациям в системах управления. Например, в системе управления атомной электростанцией в случае возникновения крупной аварии атомного реактора многие аварийные датчики сработают одновременно и создадут коррелированную нагрузку. Если система реального времени не спроектирована для поддержки пиковой нагрузки, то может случиться так, что система не справится с работой именно тогда, когда она нужна в наибольшей степени. Мультипроцессорная обработка — это способ организации вычислительного процесса в системах с несколькими процессорами, при котором несколько задач процессов, потоков могут одновременно выполняться на разных процессорах системы. Концепция мультипроцессирования ненова, она известна с х годов, но до середины х доступных многопроцессорных систем не существовало. Однако к настоящему времени стало обычным включение нескольких процессоров в архитектуру даже персонального компьютера. Более того, многопроцессорность теперь является одним из необходимых требований, которые предъявляются к компьютерам, используемым в качестве центрального сервера более-менее крупной сети. Не следует путать мультипроцессорную обработку с мультипрограммной обработкой. В мультипрограммных системах параллельная работа разных устройств позволяет одновременно вести обработку нескольких программ, но при этом в процессоре в каждый момент времени выполняется только одна программа. То есть в этом случае несколько задач выполняются попеременно на одном процессоре, создавая лишь видимость параллельного выполнения. А в мультипроцессорных системах несколько задач выполняются действительно одновременно, так как имеется несколько обрабатывающих устройств — процессоров. Конечно, мульипроцессирование вовсе не исключает мультипрограммирования: Мультипроцессорная организация системы приводит к усложнению всех алгоритмов управления ресурсами, например требуется планировать процессы не для одного, а для нескольких процессоров, что гораздо сложнее. Сложности заключаются и в возрастании числа конфликтов по обращению к устройствам ввода-вывода, данным, общей памяти и совместно используемым программам. Необходимо предусмотреть эффективные средства блокировки при доступе к разделяемым информационным структурам ядра. Все эти проблемы должна решать операционная система путем синхронизации процессов, ведения очередей и планирования ресурсов. Более того, сама операционная система должна быть спроектирована так, чтобы уменьшить существующие взаимозависимости между собственными компонентами. Мультипроцессорные системы часто характеризуют либо как симметричные, либо как несимметричные. При этом следует четко определять, к какому аспекту мультипроцессорной системы относится эта характеристика — к типу архитектуры или к способу организации вычислительного процесса. Симметричная архитектура мультипроцессорной системы предполагает однородность всех процессоров и единообразие включения процессоров в общую схему мультипроцессорной системы. Традиционные симметричные мультипроцессорные конфигурации разделяют одну большую память между всеми процессорами. Масштабируемость, или возможность наращивания числа процессоров, в симметричных системах ограничена вследствие того, что все они пользуются одной и той же оперативной памятью и, следовательно, должны располагаться в одном корпусе. Такая конструкция, называемая масштабируемой по вертикали, практически ограничивает число процессоров до четырех или восьми. В симметричных архитектурах все процессы пользуются одной и той же схемой отображения памяти. Они могут очень быстро обмениваться данными, так что обеспечивается достаточно высокая производительность. В асимметричной архитектуре разные процессоры могут отличаться как своими характеристиками производительностью, надежностью, системой команд и т. Например, одни процессоры могут предназначаться для работы в качестве основных вычислителей, другие — для управления подсистемой ввода-вывода, третьи — еще для каких-то особых целей. Функциональная неоднородность в асимметричных архитектурах влечет за собой структурные отличия во фрагментах системы, содержащих разные процессоры системы. Например, они могут отличаться схемами подключения процессоров к системной шине, набором периферийных устройств и способами взаимодействия процессоров с устройствами. Масштабирование в асимметричной архитектуре реализуется иначе, чем в симметричной. Так как требование единого корпуса отсутствует, система может состоять из нескольких устройств, каждое из которых содержит один или несколько процессоров. Это масштабирование по горизонтали. Каждое такое устройство называется кластером, а вся мультипроцессорная система — кластерной. Другим аспектом мультипроцессорных систем, который может характеризоваться симметрией или ее отсутствием, является способ организации вычислительного процесса. Последний, как известно, определяется и реализуется операционной системой. Асимметричное мультипроцессирование является наиболее простым способом организации вычислительного процесса в системах с несколькими процессорами. То есть ведущий процессор берет на себя функции распределения задач и ресурсов, а ведомые процессоры работают только как обрабатывающие устройства и никаких действий по организации работы вычислительной системы не выполняют. Так как операционная система работает только на одном процессоре и функции управления полностью централизованы, то такая операционная система оказывается не намного сложнее ОС однопроцессорной системы. Асимметричная организация вычислительного процесса может быть реализована как для симметричной мультипроцессорной архитектуры, в которой все процессоры аппаратно неразличимы, так и для несимметричной, для которой характерна неоднородность процессоров, их специализация на аппаратном уровне. В архитектурно-асимметричных системах на роль ведущего процессора может быть назначен наиболее надежный и производительный процессор. Если в наборе процессоров имеется специализированный процессор, ориентированный, например, на матричные вычисления, то при планировании процессов операционная система, реализующая асимметричное мультипроцессирование, должна учитывать специфику этого процессора. Такая специализация снижает надежность системы в целом, так как процессоры не являются взаимозаменяемыми. Симметричное мультипроцессирование как способ организации вычислительного процесса может быть реализовано в системах только с симметричной мультипроцессорной архитектурой. Напомним, что в таких системах процессоры работают с общими устройствами и разделяемой основной памятью. Симметричное мультипроцессирование реализуется общей для всех процессоров операционной системой. При симметричной организации все процессоры равноправно участвуют и в управлении вычислительным процессом, и в выполнении прикладных задач. Например, сигнал прерывания от принтера, который распечатывает данные прикладного процесса, выполняемого на некотором процессоре, может быть обработан совсем другим процессором. Разные процессоры могут в какой-то момент одновременно обслуживать как разные, так и одинаковые модули общей операционной системы. Для этого программы операционной системы должны обладать свойством повторной входимости реентерабельностью. Операционная система полностью децентрализована. Модули ОС выполняются на любом доступном процессоре. Как только процессор завершает выполнение очередной задачи, он передает управление планировщику задач, который выбирает из общей для всех процессоров системной очереди задачу, которая будет выполняться на данном процессоре следующей. Все ресурсы выделяются для каждой выполняемой задачи по мере возникновения в них потребностей и никак не закрепляются за процессором. При таком подходе все процессоры работают с одной и той же динамически выравниваемой нагрузкой. В решении одной задачи могут участвовать сразу несколько процессоров, если она допускает такое распараллеливание, например путем представления в виде нескольких потоков. В случае отказа одного из процессоров симметричные системы, как правило, сравнительно просто реконфигурируются, что является их большим преимуществом перед плохо реконфигурируемыми асимметричными системами. Симметричная и асимметричная организация вычислительного процесса в мультипроцессорной системе не связана напрямую с симметричной или асимметричной архитектурой, она определяется типом операционной системы. Так, в симметричных архитектурах вычислительный процесс может быть организован как симметричным образом, так и асимметричным. Однако асимметричная архитектура непременно влечет за собой и асимметричный способ организации вычислений. Аппаратная поддержка мультипрограммирования на примере микропроцессоров семейства Intel Pentium. Системные и управляющие регистры. Механизм вызова при переключении между задачами отличается от механизма вызова процедур. В этом случае селектор команды CALL должен указывать на дескриптор системного сегмента TSS. Сегмент TSS хранит контекст задачи, то есть информацию, которая нужна для восстановления выполнения прерванной в произвольный момент времени задачи. Контекст задачи включает значения регистров процессора, указатели на открытые файлы и некоторые другие, зависящие от операционной системы, переменные. Скорость переключения контекста в значительной степени влияет на производительность многозадачной операционной системы. Процессор Pentium производит аппаратное переключение контекстов задач, используя для этого сегменты специального типа TSS. Структура сегмента TSS задачи приведена на рис. Как видно из рисунка, сегмент TSS имеет фиксированные поля, отведенные для содержимого регистров процессора, как универсальных, так и некоторых управляющих например, LDTR и CR3. Для получения возможности безусловно выполнять команды ввода-вывода текущий код должен иметь уровень прав CPL не ниже, чем уровень привилегий операций ввода-вывода, задаваемый значением поля IOPL в регистре EFLAGS. Если же это условие не соблюдается, то возможность доступа к порту с конкретным адресом определяется значением соответствующего бита в карте ввода-вывода сегмента TSS карта состоит из 64 Кбит для описания доступа к 65 портам — значение 0 разрешает операцию ввода-ввода с данным номером порта. Кроме этого, сегмент TSS может включать дополнительную информацию, необходимую для работы задачи и зависящую от конкретной операционной системы например, указатели открытых файлов или указатели на именованные конвейеры сетевого обмена. Информация сегмента TSS автоматически заменяется процессором при выполнении команды CALL, селектор которой указывает на дескриптор сегмента TSS в таблице GDT дескрипторы этого типа могут быть расположены только в этой таблице. Формат дескриптора сегмента TSS аналогичен формату дескриптора сегмента данных за исключением, естественно, поля типа сегмента, в котором указывается, что это дескриптор сегмента TSS. Как и в случае вызова процедуры, имеются два способа вызова задачи — непосредственный вызов путем указания селектора дескриптора сегмента TSS нужной задачи в поле команды CALL и косвенный вызов через шлюз вызова задачи. Однако условие, разрешающее непосредственный вызов задачи, отличается от условия непосредственного вызова процедуры: Здесь применяется то же правило, что и при доступе к данным. Действительно, операционная система, работающая с высоким уровнем привилегий, должна иметь возможность запускать на выполнение пользовательские задачи, работающие с низким уровнем привилегий. В этом случае ОС не поручает ненадежному низкоуровневому коду выполнять некоторые свои функции, как это происходило бы при вызове низкоуровневых процедур, а просто выполняет переключение между пользовательскими процессами. При вызове через шлюз который может располагаться и в таблице LDT вызывающему коду достаточно иметь права доступа к шлюзу, а шлюз может указывать на дескриптор TSS в таблице GDT с равным или более высоким уровнем привилегий. Поэтому через шлюз вызова задачи можно выполнить переключение на более привилегированную задачу. Непосредственный вызов задачи показан на рис. При переключении задач процессор выполняет следующие действия:. Выполняется команда CALL, селектор которой указывает на дескриптор сегмента типа TSS. В TSS текущей задачи сохраняются значения регистров процессора. На текущий сегмент TSS указывает регистр процессора TR, содержащий селектор сегмента. Восстанавливаются значения регистров процессора из соответствующих полей нового сегмента TSS. В поле селектора возврата нового сегмента TSS заносится селектор сегмента TSS снимаемой с выполнения задачи для организации возврата к ней в будущем. Вызов задачи через шлюз происходит аналогично, добавляется только этап поиска дескриптора сегмента TSS по значению селектора дескриптора шлюза вызова. Использование всех возможностей, предоставляемых процессорами Intel , и Pentium, позволяет организовать операционной системе высоконадежную многозадачную среду. Создание процессов и потоков. Планирование процессов и потоков. Чтобы поддерживать мультипрограммирование, ОС должна определить и оформить для себя те внутренние единицы работы, между которыми будет разделяться процессор и другие ресурсы компьютера. В настоящее время в большинстве операционных систем определены два типа единиц работы. Очевидно, что любая работа вычислительной системы заключается в выполнении некоторой программы. Поэтому и с процессом, и с потоком связывается определенный программный код, который для этих целей оформляется в виде исполняемого модуля. Чтобы этот программный код мог быть выполнен, его необходимо загрузить в оперативную память, возможно, выделить некоторое место на диске для хранения данных, предоставить доступ к устройствам ввода-вывода, например к последовательному порту для получения данных по подключенному к этому порту модему; и т. И, конечно же, невозможно выполнение программы без предоставления ей процессорного времени, то есть времени, в течение которого процессор выполняет коды данной программы. В операционных системах, где существуют и процессы, и потоки, процесс рассматривается операционной системой как заявка на потребление всех видов ресурсов, кроме одного — процессорного времени. Этот последний важнейший ресурс распределяется операционной системой между другими единицами работы — потоками, которые и получили свое название благодаря тому, что они представляют собой последовательности потоки выполнения команд. Мультипрограммирование осуществляется в таких ОС на уровне процессов. Для того чтобы процессы не могли вмешаться в распределение ресурсов, а также не могли повредить коды и данные друг друга, важнейшей задачей ОС является изоляция одного процесса от другого. Для этого операционная система обеспечивает каждый процесс отдельным виртуальным адресным пространством, так что ни один процесс не может получить прямого достуца к командам и данным другого процесса. При необходимости взаимодействия процессы обращаются к операционной системе, которая, выполняя функции посредника, предоставляет им средства межпроцессной связи — конвейеры, почтовые ящики, разделяемые секции памяти и некоторые другие. Однако в системах, в которых отсутствует понятие потока, возникают проблемы при организации параллельных вычислений в рамках процесса. А такая необходимость может возникать. Действительно, при мультипрограммировании повышается пропускная способность системы, но отдельный процесс никогда не может быть выполнен быстрее, чем в однопрограммном режиме всякое разделение ресурсов только замедляет работу одного из участников за счет дополнительных затрат времени на ожидание освобождения ресурса. Однако приложение, выполняемое в рамках одного процесса, может обладать внутренним параллелизмом, который в принципе мог бы позволить ускорить его решение. Если, например, в программе предусмотрено обращение к внешнему устройству, то на время этой операции можно не блокировать выполнение всего процесса, а продолжить вычисления по другой ветви программы. Параллельное выполнение нескольких работ в рамках одного интерактивного приложения повышает эффективность работы пользователя. Так, при работе с текстовым редактором желательно иметь возможность совмещать набор нового текста с такими продолжительными по времени операциями, как переформатирование значительной части текста, печать документа или его сохранение на локальном или удаленном диске. Еще одним примером необходимости распараллеливания является сетевой сервер баз данных. В этом случае параллелизм желателен как для обслуживания различных запросов к базе данных, так и для более быстрого выполнения отдельного запроса за счет одновременного просмотра различных записей базы. Потоки возникли в операционных системах как средство распараллеливания вычислений. Конечно, задача распараллеливания вычислений в рамках одного приложения может быть решена и традиционными способами. Во-первых, прикладной программист может взять на себя сложную задачу организации параллелизма, выделив в приложении некоторую подпрограмму- диспетчер, которая периодически передает управление той или иной ветви вычислений. При этом программа получается логически весьма запутанной, с многочисленными передачами управления, что существенно затрудняет ее отладку и модификацию. Во-вторых, решением является создание для одного приложения нескольких процессов для каждой из параллельных работ. Однако использование для создания процессов стандартных средств ОС не позволяет учесть тот факт, что эти процессы решают единую задачу, а значит, имеют много общего между собой — они могут работать с одними и теми же данными, использовать один и тот же кодовый сегмент, наделяться одними и теми же правами доступа к ресурсам вычислительной системы. Так, если в примере с сервером баз данных создавать отдельные процессы для каждого запроса, поступающего из сети, то все процессы будут выполнять один и тот же программный код и выполнять поиск в записях, общих для всех процессов файлов данных. А операционная система при таком подходе будет рассматривать эти процессы наравне со всеми остальными процессами и с помощью универсальных механизмов обеспечивать их изоляцию друг от друга. В данном случае все эти достаточно громоздкие механизмы используются явно не по назначению, выполняя не только бесполезную, но и вредную работу, затрудняющую обмен данными между различными частями приложения. Кроме того, на создание каждого процесса ОС тратит определенные системные ресурсы, которые в данном случае неоправданно дублируются — каждому процессу выделяются собственное виртуальное адресное пространство, физическая память, закрепляются устройства ввода-вывода и т. Из всего вышеизложенного, следует, что в операционной системе наряду с процессами нужен другой механизм распараллеливания вычислений, который учитывал бы тесные связи между отдельными ветвями вычислений одного и того же приложения. Для этих целей современные ОС предлагают механизм многопоточной обработки multithreading. ОС распределяет процессорное время между потоками. Процессу ОС назначает адресное пространство и набор ресурсов, которые совместно используются всеми его потоками. Создание потоков требует от ОС меньших накладных расходов, чем процессов. В отличие от процессов, которые принадлежат разным, вообще говоря, конкурирующим приложениям, все потоки одного процесса всегда принадлежат одному приложению, поэтому ОС изолирует потоки в гораздо меньшей степени, нежели процессы в традиционной мультипрограммной системе. Все потоки одного процесса используют общие файлы, таймеры, устройства, одну и ту же область оперативной памяти, одно и то же адресное пространство. Это означает, что они разделяют одни и те же глобальные переменные. Поскольку каждый поток может иметь доступ к любому виртуальному адресу процесса, один поток может использовать стек другого потока. Между потоками одного процесса нет полной защиты, потому что, во-первых, это невозможно, а во-вторых, не нужно. Чтобы организовать взаимодействие и обмен данными, потокам вовсе не требуется обращаться к ОС, им достаточно использовать общую память — один поток записывает данные, а другой читает их. С другой стороны, потоки разных процессов по-прежнему хорошо защищены друг от друга. Итак, мультипрограммирование более эффективно на уровне потоков, а не процессов. Каждый поток имеет собственный счетчик команд и стек. Задача, оформленная в виде нескольких потоков в рамках одного процесса, может быть выполнена быстрее за счет псевдопараллельного или параллельного в мультипроцессорной системе выполнения ее отдельных частей. Например, если электронная таблица была разработана с учетом возможностей многопоточной обработки, то пользователь может запросить пересчет своего рабочего листа и одновременно продолжать заполнять таблицу. Особенно эффективно можно использовать многопоточность для выполнения распределенных приложений, например многопоточный сервер может параллельно выполнять запросы сразу нескольких клиентов. Использование потоков связано не только со стремлением повысить производительность системы за счет параллельных вычислений, но и с целью создания более читабельных, логичных программ. Введение нескольких потоков выполнения упрощает программирование. Поскольку они разделяют общий буфер, не стоит их делать отдельными процессами. Другой пример использования потоков — управление сигналами, такими как прерывание с клавиатуры del или break. Вместо обработки сигнала прерывания один поток назначается для постоянного ожидания поступления сигналов. Таким образом, использование потоков может сократить необходимость в прерываниях пользовательского уровня. В этих примерах не столь важно параллельное выполнение, сколь важна ясность программы. Наибольший эффект от введения многопоточной обработки достигается в мультипроцессорных системах, в которых потоки, в том числе и принадлежащие одному процессу, могут выполняться на разных процессорах действительно параллельно а не псевдопараллельно. Создать процесс — это прежде всего означает создать описатель процесса, в качестве которого выступает одна или несколько информационных структур, содержащих все сведения о процессе,, необходимые операционной системе для управления им. В число таких сведений могут входить, например, идентификатор процесса, данные о расположении в памяти исполняемого модуля, степень привилегированности процесса приоритет и права доступа и т. Создание описателя процесса знаменует собой появление в системе еще одного претендента на вычислительные ресурсы. Начиная с этого момента при распределении ресурсов ОС должна принимать во внимание потребности нового процесса. Создание процесса включает загрузку кодов и данных исполняемой программы данного процесса с диска в оперативную память. Для этого ОС должна обнаружить местоположение такой программы на диске, перераспределить оперативную память и выделить память исполняемой программе нового процесса. Затем необходимо считать программу в выделенные для нее участки памяти и, возможно, изменить параметры программы в зависимости от размещения в памяти. Существуют системы, в которых на этапе создания процесса не требуется непременно загружать коды и данные в оперативную память, вместо этого исполняемый модуль копируется из того каталога файловой системы, в котором он изначально находился, в область подкачки — специальную область диска, отведенную для хранения кодов и данных процессов. При выполнении всех этих действий подсистема управления процессами тесно взаимодействует с подсистемой управления памятью и файловой системой. В многопоточной системе при создании процесса ОС создает для каждого процесса как минимум один поток выполнения. При создании потока так же, как и при создании процесса, операционная система генерирует специальную информационную структуру — описатель потока, который содержит идентификатор потока, данные о правах доступа и приоритете, о состоянии потока и другую информацию. Момент выборки потока на выполнение осуществляется в соответствии с принятым в данной системе правилом предоставления процессорного времени и с учетом всех существующих в данный момент потоков и процессов. В случае если коды и данные процесса находятся в области подкачки, необходимым условием активизации потока процесса является также наличие места в оперативной памяти для загрузки его исполняемого модуля. Во многих системах поток может обратиться к ОС с запросом на создание так называемых потоков-потомков. В разных ОС по-разному строятся отношения между потоками-потомками и их родителями. Например, в одних ОС выполнение родительского потока синхронизируется с его потомками, в частности после завершения родительского потока ОС может снимать с выполнения всех его потомков. В других системах потоки-потомки могут выполняться асинхронно по отношению к родительскому потоку. Потомки, как правило, наследуют многие свойства родительских потоков. Во многих системах порождение потомков является основным механизмом создания процессов и потоков. При управлении процессами операционная система использует два основных типа информационных структур: Дескриптор процесса содержит такую информацию о процессе, которая необходима ядру в течение всего жизненного цикла процесса независимо от того, находится он в активном или пассивном состоянии, находится образ процесса в оперативной памяти или выгружен на диск. Образом процесса называется совокупность его кодов и данных. Дескрипторы отдельных процессов объединены в список, образующий таблицу процессов. Память для таблицы процессов отводится динамически в области ядра. На основании информации, содержащейся в таблице процессов, операционная система осуществляет планирование и синхронизацию процессов. В дескрипторе прямо или косвенно через указатели, на связанные с процессом структуры содержится информация о состоянии процесса, о расположении образа процесса в оперативной памяти и на диске, о значении отдельных составляющих приоритета, а также о его итоговом значении — глобальном приоритете, об идентификаторе пользователя, создавшего процесс, о родственных процессах, о событиях, осуществления которых ожидает данный процесс, и некоторая другая информация. Контекст процесса содержит менее оперативную, но более объемную часть информации о процессе, необходимую для возобновления выполнения процесса с прерванного места: Контекст, так же как и дескриптор процесса, доступен только программам ядра, то есть находится в виртуальном адресном пространстве операционной системы, однако он хранится не в области ядра, а непосредственно примыкает к образу процесса и перемещается вместе с ним, если это необходимо, из оперативной памяти на диск. ОС выполняет планирование потоков, принимая во внимание их состояние. В мультипрограммной системе поток может находиться в одном из трех основных состояний:. В течение своей жизни каждый поток переходит из одного состояния в другое в соответствии с алгоритмом планирования потоков, принятым в данной операционной системе. Рассмотрим типичный граф состояния потока рис. Только что созданный поток находится в состоянии готовности, он готов к выполнению и. В последнем случае поток возвращается в состояние готовности. В это же состояние поток переходит из состояния ожидания, после того как ожидаемое событие произойдет. В состоянии выполнения в однопроцессорной системе может находиться не более одного потока, а в каждом из состояний ожидания и готовности — несколько потоков. Эти потоки образуют очереди соответственно ожидающих и готовых потоков. Очереди потоков организуются путем объединения в списки описателей отдельных потоков. Таким образом, каждый описатель потока, кроме всего прочего, содержит по крайней мере один указатель на другой описатель, соседствующий с ним в очереди. Такая организация очередей позволяет легко их переупорядочивать, включать и исключать потоки, переводить потоки из одного состояния в другое. Если предположить, что на рис. Вытесняющие и невытесняющие алгоритмы планирования. Алгоритмы планирования, основанные на квантовании. Алгоритмы планирования, основанные на приоритетах. Планирование в системах реального времени. На протяжении существования процесса выполнение его потоков может быть многократно прервано и продолжено. В системе, не поддерживающей потоки, все сказанное ниже о планировании и диспетчеризации относится к процессу в целом. Переход от выполнения одного потока к другому осуществляется в результате планирования и диспетчеризации. Работа по определению того, в какой момент необходимо прервать выполнение текущего активного потока и какому потоку предоставить возможность выполняться, называется планированием. Планирование потоков осуществляется на основе информации, хранящейся в описателях процессов и потоков. При планировании могут приниматься во внимание приоритет потоков, время их ожидания в очереди, накопленное время выполнения, интенсивность обращений к вводу-выводу и другие факторы. ОС планирует выполнение потоков независимо от того, принадлежат ли они одному или разным процессам. Так, например, после выполнения потока некоторого процесса ОС может выбрать для выполнения другой поток того же процесса или же назначить к выполнению поток другого процесса. Существует множество различных алгоритмов планирования потоков, по-своему решающих каждую из приведенных выше задач. Алгоритмы планирования могут преследовать различные цели и обеспечивать разное качество мультипрограммирования. Как то на паре, один преподаватель сказал, когда лекция заканчивалась - это был конец пары: Назовите основные признаки права: Кислотно-основные свойства органических соединений I. Кислотно-основные свойства органических соединений. Реакционная способность органических соединений I. Основные категории страхования I. Основные подходы к управлению реализаций стратегических изменений I. Основные черты русской истории к началу XI в I. ОСНОВНЫЕ ЭТАПЫ ВЕТХОГО ЗАВЕТА I. Сущность и основные функции перестрахования I. Цели и основные этапы портфельного анализа I. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Объектно-ориентированный подход к проектированию ОС ООП появился в результате развития модульного принципа и структурного подхода к проектированию программного обеспечения.


Ios beta 3
Четвертичная система счисления таблица
Рацион ребенка до года по месяцам таблица
Скачет пульсчто делать
Причины гражданской войны в сирии
Трансформаторы напряжения методика поверки
Технология производства самогона в домашних условиях
Инженерная доска дешево москва
Что значит сердечная недостаточность
Сколько детей лучше заводить
Знак зодиака телец мужчина характеристика любовная
Расписание игр бурана 2015 воронеж
Челябинск сосиски в тесте
Мебель на промышленной 5 1 оренбург каталог
Трц мари в марьино кинотеатр расписание
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment