Skip to content

Instantly share code, notes, and snippets.

View danielsc's full-sized avatar

Daniel Schneider danielsc

  • Microsoft
  • Seattle, WA
View GitHub Profile
Package Version
---------------------------- ------------
adal 1.2.7
aiohttp 3.8.1
aiosignal 1.2.0
alembic 1.7.7
anyio 3.5.0
argcomplete 2.0.0
argon2-cffi 21.3.0
argon2-cffi-bindings 21.2.0
name: dask
channels:
- defaults
- conda-forge
dependencies:
- python=3.8
- dask==2022.2.1
- distributed==2022.2.1
- pip==21.3.1
- jupyterlab
from azureml.train.estimator import Estimator
est = Estimator(source_directory='.',
compute_target=target,
entry_script='test.py',
script_params={'--data': ws.get_default_datastore()})
run = experiment.submit(est)
from __future__ import print_function
import argparse
import os
import sys
import subprocess
import time
def run_test(path):
@danielsc
danielsc / train.py
Created November 1, 2018 04:15
Test Gist
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--fake_data', nargs='?', const=True, type=bool,
default=False,
help='If true, uses fake data for unit testing.')
parser.add_argument('--max_steps', type=int, default=1000,
help='Number of steps to run trainer.')
parser.add_argument('--learning_rate', type=float, default=0.001,
help='Initial learning rate')
parser.add_argument('--dropout', type=float, default=0.9,