Computer Languages darkf Claims To Know
Main Programming Languages
- C
- C++
- C#
- Java
#include <functional> | |
#include <map> | |
#include <typeinfo> | |
#include <iostream> | |
struct Event { | |
virtual ~Event() {} | |
}; | |
struct TestEvent : Event { | |
std::string msg; |
import mmap | |
import cffi | |
ffi = cffi.FFI() | |
ffi.cdef("struct test { int x; };") | |
ref = None | |
def alloc(): |
#lang racket | |
(define (op? e) | |
(member e '(+ *))) | |
(define (op->procedure op) | |
(case op | |
[(+) +] | |
[(*) *])) |
/* | |
* Easing Functions - inspired from http://gizma.com/easing/ | |
* only considering the t value for the range [0, 1] => [0, 1] | |
*/ | |
EasingFunctions = { | |
// no easing, no acceleration | |
linear: function (t) { return t }, | |
// accelerating from zero velocity | |
easeInQuad: function (t) { return t*t }, | |
// decelerating to zero velocity |
# Let's define a hypothetical Entity-Component System for a one-dimensional text-based game. | |
# Copyright (c) 2013 darkf | |
# First authored 5/14/2013 | |
# Licensed under the terms of the WTFPL | |
from magic import Game, Entity, Component, system, query | |
# Components are pure-data models | |
PositionC = Component(x=0) |
#include <stdio.h> | |
#include <assert.h> | |
#include <string.h> | |
// unfortunately there does not exist a magical computer with unbounded memory for an infinite tape | |
#define TAPE_SIZE 64 | |
typedef struct { | |
char symbol; // input symbol | |
char write; // output symbol |
from github import Github | |
from collections import Counter | |
import sys | |
USER = None | |
PASSWORD = None | |
def get_repo(repo_name): | |
contribs = list(g.get_repo(repo_name).get_contributors()) |
import random | |
# types are first class | |
List :: Type | |
List[Int] :: Type # just List indexed by another type ;) | |
xs = [1, 2, 3] # inferred type: xs :: List[Int] | |
for(xs, print) |
import Data.Numbers.Primes (primes, primeFactors) | |
import Data.List (elemIndex) | |
import Control.Monad (forM_) | |
data N = P N | Z | Prod [N] deriving (Eq, Show) | |
primes' = 1 : primes | |
primeIndex n = let Just idx = elemIndex n primes' in idx | |
encode :: Int -> N |