{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"using Distributions, Random" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Suppose we have a distribution $\\nu = \\mathrm{Unif}([0,1])$. We want to find out the standard error of the sample mean of 10 observations from this distribution with 1/10 mass on each of the observations." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"10-element Array{Float64,1}:\n", | |
" 0.7684476751965699\n", | |
" 0.940515000715187\n", | |
" 0.6739586945680673\n", | |
" 0.3954531123351086\n", | |
" 0.3132439558075186\n", | |
" 0.6625548164736534\n", | |
" 0.5860221243068029\n", | |
" 0.05213316316865657\n", | |
" 0.26863956854495097\n", | |
" 0.10887074134844155" | |
] | |
}, | |
"execution_count": 2, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"Random.seed!(123)\n", | |
"observations = rand(10)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Using our knowledge of standard error of sample mean above, we can calculate the standard error of the sample mean. We have $\\sqrt{\\frac{10(1/12)}{10^2}} = \\sqrt{1/120}$ " | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 3, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"0.09128709291752768" | |
] | |
}, | |
"execution_count": 3, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"true_std = sqrt(1/120)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 4, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"0.08818705818316087" | |
] | |
}, | |
"execution_count": 4, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"bootstrapping_std = std([mean(sample(observations, 10)) for i in 1:2000000])" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Notice that in this case, the standard error of the sample mean we get is far from the true standard error. This is because we are estimation $T(\\hat{\\nu})$ instead of $T(\\nu)$. These two values might not be close to each other." | |
] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Julia 1.5.1", | |
"language": "julia", | |
"name": "julia-1.5" | |
}, | |
"language_info": { | |
"file_extension": ".jl", | |
"mimetype": "application/julia", | |
"name": "julia", | |
"version": "1.5.1" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 4 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment