Skip to content

Instantly share code, notes, and snippets.

View devqueue's full-sized avatar
:octocat:
coding from home

devqueue devqueue

:octocat:
coding from home
  • VS-code
View GitHub Profile

Assaydashboard

A Dashboard application built using django and chart.js

Data requirements

  1. The uploaded CSV files must contain be in the following format.
Assay January November December Year AssayID MachineID
Sick panel (MS/MS) 279 219 220 2020 SICKPANEL_20 FI-MSMS
# Force http to https
server {
server_name genelookup.research.cgm.genetics.kfshrc.edu.sa www.genelookup.research.cgm.genetics.kfshrc.edu.sa;
return 301 https://genelookup.research.cgm.genetics.kfshrc.edu.sa$request_uri;
}
# NGINX server block
server {
server_name genelookup.research.cgm.genetics.kfshrc.edu.sa www.genelookup.research.cgm.genetics.kfshrc.edu.sa;
<div class="gmail_quote">
<div dir="auto">
<div>
<div class="gmail_quote">
<div class="adM"><br></div><u></u>
<div style="background-color:transparent;margin:0;padding:0">
<table border="0" cellpadding="0" cellspacing="0" role="presentation"
style="background-color:transparent" width="100%">
<tbody>
<tr>
import requests
import os
import pandas as pd
import traceback
import time
import ntpath
import warnings
warnings.simplefilter(action='ignore', category=pd.errors.PerformanceWarning)
def recognize_plate(img, coords):
plate_num = ""
# separate plate from image
xmin, ymin, xmax, ymax = coords
box = img[int(ymin)-5:int(ymax)+5, int(xmin)-5:int(xmax)+5]
# grayscale and rezise
grayimg = cv2.cvtColor(box, cv2.COLOR_RGB2GRAY)
grayimg = cv2.resize(grayimg, None, fx = 3, fy = 3, interpolation = cv2.INTER_CUBIC)
# threshold the image using Otsus method to preprocess for tesseract
import cv2
import mediapipe as mp
import numpy as np
import math
mphands = mp.solutions.hands
hands = mphands.Hands()
mpDraw = mp.solutions.drawing_utils
lmlist = []
{
"image": "/9j/4AAQSkZJRgABAQEAlgCWAAD/2wCEAAwJCQsJCAwLCgsODQwPEx8UExEREyYbHRcfLSgwLywoLCsyOEg9MjVENissPlU/REpMUFFQMDxYXldOXkhPUE0BDQ4OExATJRQUJU0zLDNNTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTU1NTf/CABEIAUQCBAMBIQACEQEDEQH/xAAwAAACAwEBAQAAAAAAAAAAAAAAAQIDBAUGBwEBAQEBAAAAAAAAAAAAAAAAAAECA//aAAwDAQACEAMQAAAA+iLUQgUyBA0QMUBgMEAAg1GJgCAAAYgbUAAEAGArRFUBS2Uky6ZCFtrITlz6hxqDTO5L3a2MUAQhGgYgk1QAIEIAwBQGxABIaAwaWUJ53oY51Y4u0W8j0UmMt289rN1WcmeTTlOvo3u9XQBx5nzfsM8tb32ELkzPSqasxpvi1glMQ6VDusFWcaqFjpFrusE5ncb1G6aYvP0soTNz850xQxydWet87Ljmq5Ovq6dMBIVyV9i3QtbQPi5nB9bnnsOnVoq4GcEcZqnZbUujoXXMrmZqKdtm/iXVlkkM6bOld7pb3j2TUy3n3XLkgodZk2W2xgzSTtoRYKCRKsjKCCXl9SZkXTQoWEpYyRQK7yhxg6EjqrWXURCQnROMO2bmVz7rkkkZQqTzXqrbVByM5olMa429J62hIvVsM1BRy84x9HON93ToAQ1bXmpFOHOZV2aHGToGYNF+tSajKzUkpMe/O5lvOvuRySV0RmaNFsnCLVCSMktLoUyirIystXHxjn9bPPpPp2EKNlqlC2HOxirRc21y3y1rHDOK3HZOnQlJWtJmWPc3MOFfnkCMVCCJMUlQgDLXGBoSWLpKBJMVoTRihanIgbE7aHMq5Zq0cgU5Lj6jcy3naKnBGyMgiTQpkWSgSIjKkiUYJEJU4QldRYlUoxOczCRUrqSFIi0shMzEjISHEzdKamW
void getRecognisedText() async {
// final inputImage = InputImage.fromFilePath(image.path);
String getPrettyJSONString(jsonObject) {
var encoder = new JsonEncoder.withIndent(" ");
return encoder.convert(jsonObject);
}
textScanning = true;
setState(() {});
const url = 'https://ocrapi-5l4bm6okaa-uc.a.run.app/api';
import cv2
import mediapipe as mp
import numpy as np
import math
mphands = mp.solutions.hands
hands = mphands.Hands()
mpDraw = mp.solutions.drawing_utils
lmlist = []
import cv2
import time
def Facedetect():
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_alt2.xml')
cap = cv2.VideoCapture(0)
while(True):
# Capture frame-by-frame