Skip to content

Instantly share code, notes, and snippets.

@monajalal
Created October 25, 2016 03:45
Show Gist options
  • Star 0 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
  • Save monajalal/eba1a5a6373b688b1b5d36624c897b90 to your computer and use it in GitHub Desktop.
Save monajalal/eba1a5a6373b688b1b5d36624c897b90 to your computer and use it in GitHub Desktop.
#include "image.h"
#include "utils.h"
#include "blas.h"
#include "cuda.h"
#include <stdio.h>
#include <math.h>
#define STB_IMAGE_IMPLEMENTATION
#include "stb_image.h"
#define STB_IMAGE_WRITE_IMPLEMENTATION
#include "stb_image_write.h"
int windows = 0;
float colors[6][3] = { {1,0,1}, {0,0,1},{0,1,1},{0,1,0},{1,1,0},{1,0,0} };
float get_color(int c, int x, int max)
{
float ratio = ((float)x/max)*5;
int i = floor(ratio);
int j = ceil(ratio);
ratio -= i;
float r = (1-ratio) * colors[i][c] + ratio*colors[j][c];
//printf("%f\n", r);
return r;
}
void draw_label(image a, int r, int c, image label, const float *rgb)
{
float ratio = (float) label.w / label.h;
int h = label.h;
int w = ratio * h;
image rl = resize_image(label, w, h);
if (r - h >= 0) r = r - h;
int i, j, k;
for(j = 0; j < h && j + r < a.h; ++j){
for(i = 0; i < w && i + c < a.w; ++i){
for(k = 0; k < label.c; ++k){
float val = get_pixel(rl, i, j, k);
set_pixel(a, i+c, j+r, k, rgb[k] * val);
}
}
}
free_image(rl);
}
void draw_box(image a, int x1, int y1, int x2, int y2, float r, float g, float b)
{
//normalize_image(a);
int i;
if(x1 < 0) x1 = 0;
if(x1 >= a.w) x1 = a.w-1;
if(x2 < 0) x2 = 0;
if(x2 >= a.w) x2 = a.w-1;
if(y1 < 0) y1 = 0;
if(y1 >= a.h) y1 = a.h-1;
if(y2 < 0) y2 = 0;
if(y2 >= a.h) y2 = a.h-1;
for(i = x1; i <= x2; ++i){
a.data[i + y1*a.w + 0*a.w*a.h] = r;
a.data[i + y2*a.w + 0*a.w*a.h] = r;
a.data[i + y1*a.w + 1*a.w*a.h] = g;
a.data[i + y2*a.w + 1*a.w*a.h] = g;
a.data[i + y1*a.w + 2*a.w*a.h] = b;
a.data[i + y2*a.w + 2*a.w*a.h] = b;
}
for(i = y1; i <= y2; ++i){
a.data[x1 + i*a.w + 0*a.w*a.h] = r;
a.data[x2 + i*a.w + 0*a.w*a.h] = r;
a.data[x1 + i*a.w + 1*a.w*a.h] = g;
a.data[x2 + i*a.w + 1*a.w*a.h] = g;
a.data[x1 + i*a.w + 2*a.w*a.h] = b;
a.data[x2 + i*a.w + 2*a.w*a.h] = b;
}
}
void draw_box_width(image a, int x1, int y1, int x2, int y2, int w, float r, float g, float b)
{
int i;
for(i = 0; i < w; ++i){
draw_box(a, x1+i, y1+i, x2-i, y2-i, r, g, b);
}
}
void draw_bbox(image a, box bbox, int w, float r, float g, float b)
{
int left = (bbox.x-bbox.w/2)*a.w;
int right = (bbox.x+bbox.w/2)*a.w;
int top = (bbox.y-bbox.h/2)*a.h;
int bot = (bbox.y+bbox.h/2)*a.h;
int i;
for(i = 0; i < w; ++i){
draw_box(a, left+i, top+i, right-i, bot-i, r, g, b);
}
}
void draw_detections(char * image_file_name, image im, int num, float thresh, box *boxes, float **probs, char **names, image *labels, int classes)
{
int i;
FILE * fptr;
char filename[100];
strcpy(filename,"output/");
strcpy(filename,image_file_name);
strcpy(filename, ".txt");
printf(filename);
printf("\n");
fptr = fopen (filename, "wb");
printf(fptr);
printf("\n");
if (fptr == NULL) {
fprintf(stderr, "Can't open input file in.list!\n");
exit(1);
}
for(i = 0; i < num; ++i){
int class = max_index(probs[i], classes);
float prob = probs[i][class];
if(prob > thresh){
//int width = pow(prob, 1./2.)*30+1;
int width = 8;
printf("%s: %.0f%%\n", names[class], prob*100);
fprintf(fptr, "%s,%.0f%%\n", names[class], prob*100);
int offset = class*1 % classes;
float red = get_color(2,offset,classes);
float green = get_color(1,offset,classes);
float blue = get_color(0,offset,classes);
float rgb[3];
//width = prob*20+2;
rgb[0] = red;
rgb[1] = green;
rgb[2] = blue;
box b = boxes[i];
int left = (b.x-b.w/2.)*im.w;
int right = (b.x+b.w/2.)*im.w;
int top = (b.y-b.h/2.)*im.h;
int bot = (b.y+b.h/2.)*im.h;
if(left < 0) left = 0;
if(right > im.w-1) right = im.w-1;
if(top < 0) top = 0;
if(bot > im.h-1) bot = im.h-1;
draw_box_width(im, left, top, right, bot, width, red, green, blue);
if (labels) draw_label(im, top + width, left, labels[class], rgb);
}
}
fclose(fptr);
}
void transpose_image(image im)
{
assert(im.w == im.h);
int n, m;
int c;
for(c = 0; c < im.c; ++c){
for(n = 0; n < im.w-1; ++n){
for(m = n + 1; m < im.w; ++m){
float swap = im.data[m + im.w*(n + im.h*c)];
im.data[m + im.w*(n + im.h*c)] = im.data[n + im.w*(m + im.h*c)];
im.data[n + im.w*(m + im.h*c)] = swap;
}
}
}
}
void rotate_image_cw(image im, int times)
{
assert(im.w == im.h);
times = (times + 400) % 4;
int i, x, y, c;
int n = im.w;
for(i = 0; i < times; ++i){
for(c = 0; c < im.c; ++c){
for(x = 0; x < n/2; ++x){
for(y = 0; y < (n-1)/2 + 1; ++y){
float temp = im.data[y + im.w*(x + im.h*c)];
im.data[y + im.w*(x + im.h*c)] = im.data[n-1-x + im.w*(y + im.h*c)];
im.data[n-1-x + im.w*(y + im.h*c)] = im.data[n-1-y + im.w*(n-1-x + im.h*c)];
im.data[n-1-y + im.w*(n-1-x + im.h*c)] = im.data[x + im.w*(n-1-y + im.h*c)];
im.data[x + im.w*(n-1-y + im.h*c)] = temp;
}
}
}
}
}
void flip_image(image a)
{
int i,j,k;
for(k = 0; k < a.c; ++k){
for(i = 0; i < a.h; ++i){
for(j = 0; j < a.w/2; ++j){
int index = j + a.w*(i + a.h*(k));
int flip = (a.w - j - 1) + a.w*(i + a.h*(k));
float swap = a.data[flip];
a.data[flip] = a.data[index];
a.data[index] = swap;
}
}
}
}
image image_distance(image a, image b)
{
int i,j;
image dist = make_image(a.w, a.h, 1);
for(i = 0; i < a.c; ++i){
for(j = 0; j < a.h*a.w; ++j){
dist.data[j] += pow(a.data[i*a.h*a.w+j]-b.data[i*a.h*a.w+j],2);
}
}
for(j = 0; j < a.h*a.w; ++j){
dist.data[j] = sqrt(dist.data[j]);
}
return dist;
}
void embed_image(image source, image dest, int dx, int dy)
{
int x,y,k;
for(k = 0; k < source.c; ++k){
for(y = 0; y < source.h; ++y){
for(x = 0; x < source.w; ++x){
float val = get_pixel(source, x,y,k);
set_pixel(dest, dx+x, dy+y, k, val);
}
}
}
}
image collapse_image_layers(image source, int border)
{
int h = source.h;
h = (h+border)*source.c - border;
image dest = make_image(source.w, h, 1);
int i;
for(i = 0; i < source.c; ++i){
image layer = get_image_layer(source, i);
int h_offset = i*(source.h+border);
embed_image(layer, dest, 0, h_offset);
free_image(layer);
}
return dest;
}
void constrain_image(image im)
{
int i;
for(i = 0; i < im.w*im.h*im.c; ++i){
if(im.data[i] < 0) im.data[i] = 0;
if(im.data[i] > 1) im.data[i] = 1;
}
}
void normalize_image(image p)
{
int i;
float min = 9999999;
float max = -999999;
for(i = 0; i < p.h*p.w*p.c; ++i){
float v = p.data[i];
if(v < min) min = v;
if(v > max) max = v;
}
if(max - min < .000000001){
min = 0;
max = 1;
}
for(i = 0; i < p.c*p.w*p.h; ++i){
p.data[i] = (p.data[i] - min)/(max-min);
}
}
void normalize_image2(image p)
{
float *min = calloc(p.c, sizeof(float));
float *max = calloc(p.c, sizeof(float));
int i,j;
for(i = 0; i < p.c; ++i) min[i] = max[i] = p.data[i*p.h*p.w];
for(j = 0; j < p.c; ++j){
for(i = 0; i < p.h*p.w; ++i){
float v = p.data[i+j*p.h*p.w];
if(v < min[j]) min[j] = v;
if(v > max[j]) max[j] = v;
}
}
for(i = 0; i < p.c; ++i){
if(max[i] - min[i] < .000000001){
min[i] = 0;
max[i] = 1;
}
}
for(j = 0; j < p.c; ++j){
for(i = 0; i < p.w*p.h; ++i){
p.data[i+j*p.h*p.w] = (p.data[i+j*p.h*p.w] - min[j])/(max[j]-min[j]);
}
}
free(min);
free(max);
}
image copy_image(image p)
{
image copy = p;
copy.data = calloc(p.h*p.w*p.c, sizeof(float));
memcpy(copy.data, p.data, p.h*p.w*p.c*sizeof(float));
return copy;
}
void rgbgr_image(image im)
{
int i;
for(i = 0; i < im.w*im.h; ++i){
float swap = im.data[i];
im.data[i] = im.data[i+im.w*im.h*2];
im.data[i+im.w*im.h*2] = swap;
}
}
#ifdef OPENCV
void show_image_cv(image p, const char *name)
{
int x,y,k;
image copy = copy_image(p);
constrain_image(copy);
if(p.c == 3) rgbgr_image(copy);
//normalize_image(copy);
char buff[256];
//sprintf(buff, "%s (%d)", name, windows);
sprintf(buff, "%s", name);
IplImage *disp = cvCreateImage(cvSize(p.w,p.h), IPL_DEPTH_8U, p.c);
int step = disp->widthStep;
cvNamedWindow(buff, CV_WINDOW_NORMAL);
//cvMoveWindow(buff, 100*(windows%10) + 200*(windows/10), 100*(windows%10));
++windows;
for(y = 0; y < p.h; ++y){
for(x = 0; x < p.w; ++x){
for(k= 0; k < p.c; ++k){
disp->imageData[y*step + x*p.c + k] = (unsigned char)(get_pixel(copy,x,y,k)*255);
}
}
}
free_image(copy);
if(0){
int w = 448;
int h = w*p.h/p.w;
if(h > 1000){
h = 1000;
w = h*p.w/p.h;
}
IplImage *buffer = disp;
disp = cvCreateImage(cvSize(w, h), buffer->depth, buffer->nChannels);
cvResize(buffer, disp, CV_INTER_LINEAR);
cvReleaseImage(&buffer);
}
cvShowImage(buff, disp);
cvReleaseImage(&disp);
}
#endif
void show_image(image p, const char *name)
{
#ifdef OPENCV
show_image_cv(p, name);
#else
fprintf(stderr, "Not compiled with OpenCV, saving to %s.png instead\n", name);
save_image(p, name);
#endif
}
#ifdef OPENCV
image get_image_from_stream(CvCapture *cap)
{
IplImage* src = cvQueryFrame(cap);
if (!src) return make_empty_image(0,0,0);
image im = ipl_to_image(src);
rgbgr_image(im);
return im;
}
#endif
#ifdef OPENCV
void save_image_jpg(image p, const char *name)
{
image copy = copy_image(p);
if(p.c == 3) rgbgr_image(copy);
int x,y,k;
char buff[256];
sprintf(buff, "%s.jpg", name);
IplImage *disp = cvCreateImage(cvSize(p.w,p.h), IPL_DEPTH_8U, p.c);
int step = disp->widthStep;
for(y = 0; y < p.h; ++y){
for(x = 0; x < p.w; ++x){
for(k= 0; k < p.c; ++k){
disp->imageData[y*step + x*p.c + k] = (unsigned char)(get_pixel(copy,x,y,k)*255);
}
}
}
cvSaveImage(buff, disp,0);
cvReleaseImage(&disp);
free_image(copy);
}
#endif
void save_image(image im, const char *name)
{
#ifdef OPENCV
save_image_jpg(im, name);
#else
char buff[256];
//sprintf(buff, "%s (%d)", name, windows);
sprintf(buff, "%s.png", name);
unsigned char *data = calloc(im.w*im.h*im.c, sizeof(char));
int i,k;
for(k = 0; k < im.c; ++k){
for(i = 0; i < im.w*im.h; ++i){
data[i*im.c+k] = (unsigned char) (255*im.data[i + k*im.w*im.h]);
}
}
int success = stbi_write_png(buff, im.w, im.h, im.c, data, im.w*im.c);
free(data);
if(!success) fprintf(stderr, "Failed to write image %s\n", buff);
#endif
}
void show_image_layers(image p, char *name)
{
int i;
char buff[256];
for(i = 0; i < p.c; ++i){
sprintf(buff, "%s - Layer %d", name, i);
image layer = get_image_layer(p, i);
show_image(layer, buff);
free_image(layer);
}
}
void show_image_collapsed(image p, char *name)
{
image c = collapse_image_layers(p, 1);
show_image(c, name);
free_image(c);
}
image make_empty_image(int w, int h, int c)
{
image out;
out.data = 0;
out.h = h;
out.w = w;
out.c = c;
return out;
}
image make_image(int w, int h, int c)
{
image out = make_empty_image(w,h,c);
out.data = calloc(h*w*c, sizeof(float));
return out;
}
image make_random_image(int w, int h, int c)
{
image out = make_empty_image(w,h,c);
out.data = calloc(h*w*c, sizeof(float));
int i;
for(i = 0; i < w*h*c; ++i){
out.data[i] = (rand_normal() * .25) + .5;
}
return out;
}
image float_to_image(int w, int h, int c, float *data)
{
image out = make_empty_image(w,h,c);
out.data = data;
return out;
}
image rotate_crop_image(image im, float rad, float s, int w, int h, float dx, float dy, float aspect)
{
int x, y, c;
float cx = im.w/2.;
float cy = im.h/2.;
image rot = make_image(w, h, im.c);
for(c = 0; c < im.c; ++c){
for(y = 0; y < h; ++y){
for(x = 0; x < w; ++x){
float rx = cos(rad)*((x - w/2.)/s*aspect + dx/s*aspect) - sin(rad)*((y - h/2.)/s + dy/s) + cx;
float ry = sin(rad)*((x - w/2.)/s*aspect + dx/s*aspect) + cos(rad)*((y - h/2.)/s + dy/s) + cy;
float val = bilinear_interpolate(im, rx, ry, c);
set_pixel(rot, x, y, c, val);
}
}
}
return rot;
}
image rotate_image(image im, float rad)
{
int x, y, c;
float cx = im.w/2.;
float cy = im.h/2.;
image rot = make_image(im.w, im.h, im.c);
for(c = 0; c < im.c; ++c){
for(y = 0; y < im.h; ++y){
for(x = 0; x < im.w; ++x){
float rx = cos(rad)*(x-cx) - sin(rad)*(y-cy) + cx;
float ry = sin(rad)*(x-cx) + cos(rad)*(y-cy) + cy;
float val = bilinear_interpolate(im, rx, ry, c);
set_pixel(rot, x, y, c, val);
}
}
}
return rot;
}
void translate_image(image m, float s)
{
int i;
for(i = 0; i < m.h*m.w*m.c; ++i) m.data[i] += s;
}
void scale_image(image m, float s)
{
int i;
for(i = 0; i < m.h*m.w*m.c; ++i) m.data[i] *= s;
}
image crop_image(image im, int dx, int dy, int w, int h)
{
image cropped = make_image(w, h, im.c);
int i, j, k;
for(k = 0; k < im.c; ++k){
for(j = 0; j < h; ++j){
for(i = 0; i < w; ++i){
int r = j + dy;
int c = i + dx;
float val = 0;
r = constrain_int(r, 0, im.h-1);
c = constrain_int(c, 0, im.w-1);
if (r >= 0 && r < im.h && c >= 0 && c < im.w) {
val = get_pixel(im, c, r, k);
}
set_pixel(cropped, i, j, k, val);
}
}
}
return cropped;
}
int best_3d_shift_r(image a, image b, int min, int max)
{
if(min == max) return min;
int mid = floor((min + max) / 2.);
image c1 = crop_image(b, 0, mid, b.w, b.h);
image c2 = crop_image(b, 0, mid+1, b.w, b.h);
float d1 = dist_array(c1.data, a.data, a.w*a.h*a.c, 10);
float d2 = dist_array(c2.data, a.data, a.w*a.h*a.c, 10);
free_image(c1);
free_image(c2);
if(d1 < d2) return best_3d_shift_r(a, b, min, mid);
else return best_3d_shift_r(a, b, mid+1, max);
}
int best_3d_shift(image a, image b, int min, int max)
{
int i;
int best = 0;
float best_distance = FLT_MAX;
for(i = min; i <= max; i += 2){
image c = crop_image(b, 0, i, b.w, b.h);
float d = dist_array(c.data, a.data, a.w*a.h*a.c, 100);
if(d < best_distance){
best_distance = d;
best = i;
}
printf("%d %f\n", i, d);
free_image(c);
}
return best;
}
void composite_3d(char *f1, char *f2, char *out, int delta)
{
if(!out) out = "out";
image a = load_image(f1, 0,0,0);
image b = load_image(f2, 0,0,0);
int shift = best_3d_shift_r(a, b, -a.h/100, a.h/100);
image c1 = crop_image(b, 10, shift, b.w, b.h);
float d1 = dist_array(c1.data, a.data, a.w*a.h*a.c, 100);
image c2 = crop_image(b, -10, shift, b.w, b.h);
float d2 = dist_array(c2.data, a.data, a.w*a.h*a.c, 100);
if(d2 < d1 && 0){
image swap = a;
a = b;
b = swap;
shift = -shift;
printf("swapped, %d\n", shift);
}
else{
printf("%d\n", shift);
}
image c = crop_image(b, delta, shift, a.w, a.h);
int i;
for(i = 0; i < c.w*c.h; ++i){
c.data[i] = a.data[i];
}
#ifdef OPENCV
save_image_jpg(c, out);
#else
save_image(c, out);
#endif
}
image resize_min(image im, int min)
{
int w = im.w;
int h = im.h;
if(w < h){
h = (h * min) / w;
w = min;
} else {
w = (w * min) / h;
h = min;
}
if(w == im.w && h == im.h) return im;
image resized = resize_image(im, w, h);
return resized;
}
image random_crop_image(image im, int w, int h)
{
int dx = rand_int(0, im.w - w);
int dy = rand_int(0, im.h - h);
image crop = crop_image(im, dx, dy, w, h);
return crop;
}
image random_augment_image(image im, float angle, float aspect, int low, int high, int size)
{
aspect = rand_scale(aspect);
int r = rand_int(low, high);
int min = (im.h < im.w*aspect) ? im.h : im.w*aspect;
float scale = (float)r / min;
float rad = rand_uniform(-angle, angle) * TWO_PI / 360.;
float dx = (im.w*scale/aspect - size) / 2.;
float dy = (im.h*scale - size) / 2.;
if(dx < 0) dx = 0;
if(dy < 0) dy = 0;
dx = rand_uniform(-dx, dx);
dy = rand_uniform(-dy, dy);
image crop = rotate_crop_image(im, rad, scale, size, size, dx, dy, aspect);
return crop;
}
float three_way_max(float a, float b, float c)
{
return (a > b) ? ( (a > c) ? a : c) : ( (b > c) ? b : c) ;
}
float three_way_min(float a, float b, float c)
{
return (a < b) ? ( (a < c) ? a : c) : ( (b < c) ? b : c) ;
}
// http://www.cs.rit.edu/~ncs/color/t_convert.html
void rgb_to_hsv(image im)
{
assert(im.c == 3);
int i, j;
float r, g, b;
float h, s, v;
for(j = 0; j < im.h; ++j){
for(i = 0; i < im.w; ++i){
r = get_pixel(im, i , j, 0);
g = get_pixel(im, i , j, 1);
b = get_pixel(im, i , j, 2);
float max = three_way_max(r,g,b);
float min = three_way_min(r,g,b);
float delta = max - min;
v = max;
if(max == 0){
s = 0;
h = 0;
}else{
s = delta/max;
if(r == max){
h = (g - b) / delta;
} else if (g == max) {
h = 2 + (b - r) / delta;
} else {
h = 4 + (r - g) / delta;
}
if (h < 0) h += 6;
h = h/6.;
}
set_pixel(im, i, j, 0, h);
set_pixel(im, i, j, 1, s);
set_pixel(im, i, j, 2, v);
}
}
}
void hsv_to_rgb(image im)
{
assert(im.c == 3);
int i, j;
float r, g, b;
float h, s, v;
float f, p, q, t;
for(j = 0; j < im.h; ++j){
for(i = 0; i < im.w; ++i){
h = 6 * get_pixel(im, i , j, 0);
s = get_pixel(im, i , j, 1);
v = get_pixel(im, i , j, 2);
if (s == 0) {
r = g = b = v;
} else {
int index = floor(h);
f = h - index;
p = v*(1-s);
q = v*(1-s*f);
t = v*(1-s*(1-f));
if(index == 0){
r = v; g = t; b = p;
} else if(index == 1){
r = q; g = v; b = p;
} else if(index == 2){
r = p; g = v; b = t;
} else if(index == 3){
r = p; g = q; b = v;
} else if(index == 4){
r = t; g = p; b = v;
} else {
r = v; g = p; b = q;
}
}
set_pixel(im, i, j, 0, r);
set_pixel(im, i, j, 1, g);
set_pixel(im, i, j, 2, b);
}
}
}
image grayscale_image(image im)
{
assert(im.c == 3);
int i, j, k;
image gray = make_image(im.w, im.h, 1);
float scale[] = {0.587, 0.299, 0.114};
for(k = 0; k < im.c; ++k){
for(j = 0; j < im.h; ++j){
for(i = 0; i < im.w; ++i){
gray.data[i+im.w*j] += scale[k]*get_pixel(im, i, j, k);
}
}
}
return gray;
}
image threshold_image(image im, float thresh)
{
int i;
image t = make_image(im.w, im.h, im.c);
for(i = 0; i < im.w*im.h*im.c; ++i){
t.data[i] = im.data[i]>thresh ? 1 : 0;
}
return t;
}
image blend_image(image fore, image back, float alpha)
{
assert(fore.w == back.w && fore.h == back.h && fore.c == back.c);
image blend = make_image(fore.w, fore.h, fore.c);
int i, j, k;
for(k = 0; k < fore.c; ++k){
for(j = 0; j < fore.h; ++j){
for(i = 0; i < fore.w; ++i){
float val = alpha * get_pixel(fore, i, j, k) +
(1 - alpha)* get_pixel(back, i, j, k);
set_pixel(blend, i, j, k, val);
}
}
}
return blend;
}
void scale_image_channel(image im, int c, float v)
{
int i, j;
for(j = 0; j < im.h; ++j){
for(i = 0; i < im.w; ++i){
float pix = get_pixel(im, i, j, c);
pix = pix*v;
set_pixel(im, i, j, c, pix);
}
}
}
void translate_image_channel(image im, int c, float v)
{
int i, j;
for(j = 0; j < im.h; ++j){
for(i = 0; i < im.w; ++i){
float pix = get_pixel(im, i, j, c);
pix = pix+v;
set_pixel(im, i, j, c, pix);
}
}
}
image binarize_image(image im)
{
image c = copy_image(im);
int i;
for(i = 0; i < im.w * im.h * im.c; ++i){
if(c.data[i] > .5) c.data[i] = 1;
else c.data[i] = 0;
}
return c;
}
void saturate_image(image im, float sat)
{
rgb_to_hsv(im);
scale_image_channel(im, 1, sat);
hsv_to_rgb(im);
constrain_image(im);
}
void hue_image(image im, float hue)
{
rgb_to_hsv(im);
int i;
for(i = 0; i < im.w*im.h; ++i){
im.data[i] = im.data[i] + hue;
if (im.data[i] > 1) im.data[i] -= 1;
if (im.data[i] < 0) im.data[i] += 1;
}
hsv_to_rgb(im);
constrain_image(im);
}
void exposure_image(image im, float sat)
{
rgb_to_hsv(im);
scale_image_channel(im, 2, sat);
hsv_to_rgb(im);
constrain_image(im);
}
void distort_image(image im, float hue, float sat, float val)
{
rgb_to_hsv(im);
scale_image_channel(im, 1, sat);
scale_image_channel(im, 2, val);
int i;
for(i = 0; i < im.w*im.h; ++i){
im.data[i] = im.data[i] + hue;
if (im.data[i] > 1) im.data[i] -= 1;
if (im.data[i] < 0) im.data[i] += 1;
}
hsv_to_rgb(im);
constrain_image(im);
}
void random_distort_image(image im, float hue, float saturation, float exposure)
{
float dhue = rand_uniform(-hue, hue);
float dsat = rand_scale(saturation);
float dexp = rand_scale(exposure);
distort_image(im, dhue, dsat, dexp);
}
void saturate_exposure_image(image im, float sat, float exposure)
{
rgb_to_hsv(im);
scale_image_channel(im, 1, sat);
scale_image_channel(im, 2, exposure);
hsv_to_rgb(im);
constrain_image(im);
}
float bilinear_interpolate(image im, float x, float y, int c)
{
int ix = (int) floorf(x);
int iy = (int) floorf(y);
float dx = x - ix;
float dy = y - iy;
float val = (1-dy) * (1-dx) * get_pixel_extend(im, ix, iy, c) +
dy * (1-dx) * get_pixel_extend(im, ix, iy+1, c) +
(1-dy) * dx * get_pixel_extend(im, ix+1, iy, c) +
dy * dx * get_pixel_extend(im, ix+1, iy+1, c);
return val;
}
image resize_image(image im, int w, int h)
{
image resized = make_image(w, h, im.c);
image part = make_image(w, im.h, im.c);
int r, c, k;
float w_scale = (float)(im.w - 1) / (w - 1);
float h_scale = (float)(im.h - 1) / (h - 1);
for(k = 0; k < im.c; ++k){
for(r = 0; r < im.h; ++r){
for(c = 0; c < w; ++c){
float val = 0;
if(c == w-1 || im.w == 1){
val = get_pixel(im, im.w-1, r, k);
} else {
float sx = c*w_scale;
int ix = (int) sx;
float dx = sx - ix;
val = (1 - dx) * get_pixel(im, ix, r, k) + dx * get_pixel(im, ix+1, r, k);
}
set_pixel(part, c, r, k, val);
}
}
}
for(k = 0; k < im.c; ++k){
for(r = 0; r < h; ++r){
float sy = r*h_scale;
int iy = (int) sy;
float dy = sy - iy;
for(c = 0; c < w; ++c){
float val = (1-dy) * get_pixel(part, c, iy, k);
set_pixel(resized, c, r, k, val);
}
if(r == h-1 || im.h == 1) continue;
for(c = 0; c < w; ++c){
float val = dy * get_pixel(part, c, iy+1, k);
add_pixel(resized, c, r, k, val);
}
}
}
free_image(part);
return resized;
}
void test_resize(char *filename)
{
image im = load_image(filename, 0,0, 3);
float mag = mag_array(im.data, im.w*im.h*im.c);
printf("L2 Norm: %f\n", mag);
image gray = grayscale_image(im);
image c1 = copy_image(im);
image c2 = copy_image(im);
image c3 = copy_image(im);
image c4 = copy_image(im);
distort_image(c1, .1, 1.5, 1.5);
distort_image(c2, -.1, .66666, .66666);
distort_image(c3, .1, 1.5, .66666);
distort_image(c4, .1, .66666, 1.5);
show_image(im, "Original");
show_image(gray, "Gray");
show_image(c1, "C1");
show_image(c2, "C2");
show_image(c3, "C3");
show_image(c4, "C4");
#ifdef OPENCV
while(1){
image aug = random_augment_image(im, 0, 320, 448, 320, .75);
show_image(aug, "aug");
free_image(aug);
float exposure = 1.15;
float saturation = 1.15;
float hue = .05;
image c = copy_image(im);
float dexp = rand_scale(exposure);
float dsat = rand_scale(saturation);
float dhue = rand_uniform(-hue, hue);
distort_image(c, dhue, dsat, dexp);
show_image(c, "rand");
printf("%f %f %f\n", dhue, dsat, dexp);
free_image(c);
cvWaitKey(0);
}
#endif
}
#ifdef OPENCV
image ipl_to_image(IplImage* src)
{
unsigned char *data = (unsigned char *)src->imageData;
int h = src->height;
int w = src->width;
int c = src->nChannels;
int step = src->widthStep;
image out = make_image(w, h, c);
int i, j, k, count=0;;
for(k= 0; k < c; ++k){
for(i = 0; i < h; ++i){
for(j = 0; j < w; ++j){
out.data[count++] = data[i*step + j*c + k]/255.;
}
}
}
return out;
}
image load_image_cv(char *filename, int channels)
{
IplImage* src = 0;
int flag = -1;
if (channels == 0) flag = -1;
else if (channels == 1) flag = 0;
else if (channels == 3) flag = 1;
else {
fprintf(stderr, "OpenCV can't force load with %d channels\n", channels);
}
if( (src = cvLoadImage(filename, flag)) == 0 )
{
fprintf(stderr, "Cannot load image \"%s\"\n", filename);
char buff[256];
sprintf(buff, "echo %s >> bad.list", filename);
system(buff);
return make_image(10,10,3);
//exit(0);
}
image out = ipl_to_image(src);
cvReleaseImage(&src);
rgbgr_image(out);
return out;
}
#endif
image load_image_stb(char *filename, int channels)
{
int w, h, c;
unsigned char *data = stbi_load(filename, &w, &h, &c, channels);
if (!data) {
fprintf(stderr, "Cannot load image \"%s\"\nSTB Reason: %s\n", filename, stbi_failure_reason());
exit(0);
}
if(channels) c = channels;
int i,j,k;
image im = make_image(w, h, c);
for(k = 0; k < c; ++k){
for(j = 0; j < h; ++j){
for(i = 0; i < w; ++i){
int dst_index = i + w*j + w*h*k;
int src_index = k + c*i + c*w*j;
im.data[dst_index] = (float)data[src_index]/255.;
}
}
}
free(data);
return im;
}
image load_image(char *filename, int w, int h, int c)
{
#ifdef OPENCV
image out = load_image_cv(filename, c);
#else
image out = load_image_stb(filename, c);
#endif
if((h && w) && (h != out.h || w != out.w)){
image resized = resize_image(out, w, h);
free_image(out);
out = resized;
}
return out;
}
image load_image_color(char *filename, int w, int h)
{
return load_image(filename, w, h, 3);
}
image get_image_layer(image m, int l)
{
image out = make_image(m.w, m.h, 1);
int i;
for(i = 0; i < m.h*m.w; ++i){
out.data[i] = m.data[i+l*m.h*m.w];
}
return out;
}
float get_pixel(image m, int x, int y, int c)
{
assert(x < m.w && y < m.h && c < m.c);
return m.data[c*m.h*m.w + y*m.w + x];
}
float get_pixel_extend(image m, int x, int y, int c)
{
if(x < 0) x = 0;
if(x >= m.w) x = m.w-1;
if(y < 0) y = 0;
if(y >= m.h) y = m.h-1;
if(c < 0 || c >= m.c) return 0;
return get_pixel(m, x, y, c);
}
void set_pixel(image m, int x, int y, int c, float val)
{
assert(x < m.w && y < m.h && c < m.c);
m.data[c*m.h*m.w + y*m.w + x] = val;
}
void add_pixel(image m, int x, int y, int c, float val)
{
assert(x < m.w && y < m.h && c < m.c);
m.data[c*m.h*m.w + y*m.w + x] += val;
}
void print_image(image m)
{
int i, j, k;
for(i =0 ; i < m.c; ++i){
for(j =0 ; j < m.h; ++j){
for(k = 0; k < m.w; ++k){
printf("%.2lf, ", m.data[i*m.h*m.w + j*m.w + k]);
if(k > 30) break;
}
printf("\n");
if(j > 30) break;
}
printf("\n");
}
printf("\n");
}
image collapse_images_vert(image *ims, int n)
{
int color = 1;
int border = 1;
int h,w,c;
w = ims[0].w;
h = (ims[0].h + border) * n - border;
c = ims[0].c;
if(c != 3 || !color){
w = (w+border)*c - border;
c = 1;
}
image filters = make_image(w, h, c);
int i,j;
for(i = 0; i < n; ++i){
int h_offset = i*(ims[0].h+border);
image copy = copy_image(ims[i]);
//normalize_image(copy);
if(c == 3 && color){
embed_image(copy, filters, 0, h_offset);
}
else{
for(j = 0; j < copy.c; ++j){
int w_offset = j*(ims[0].w+border);
image layer = get_image_layer(copy, j);
embed_image(layer, filters, w_offset, h_offset);
free_image(layer);
}
}
free_image(copy);
}
return filters;
}
image collapse_images_horz(image *ims, int n)
{
int color = 1;
int border = 1;
int h,w,c;
int size = ims[0].h;
h = size;
w = (ims[0].w + border) * n - border;
c = ims[0].c;
if(c != 3 || !color){
h = (h+border)*c - border;
c = 1;
}
image filters = make_image(w, h, c);
int i,j;
for(i = 0; i < n; ++i){
int w_offset = i*(size+border);
image copy = copy_image(ims[i]);
//normalize_image(copy);
if(c == 3 && color){
embed_image(copy, filters, w_offset, 0);
}
else{
for(j = 0; j < copy.c; ++j){
int h_offset = j*(size+border);
image layer = get_image_layer(copy, j);
embed_image(layer, filters, w_offset, h_offset);
free_image(layer);
}
}
free_image(copy);
}
return filters;
}
void show_image_normalized(image im, const char *name)
{
image c = copy_image(im);
normalize_image(c);
show_image(c, name);
free_image(c);
}
void show_images(image *ims, int n, char *window)
{
image m = collapse_images_vert(ims, n);
/*
int w = 448;
int h = ((float)m.h/m.w) * 448;
if(h > 896){
h = 896;
w = ((float)m.w/m.h) * 896;
}
image sized = resize_image(m, w, h);
*/
normalize_image(m);
save_image(m, window);
show_image(m, window);
free_image(m);
}
void free_image(image m)
{
free(m.data);
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment