Skip to content

Instantly share code, notes, and snippets.

Enigmatic Ape enigmaticape

Block or report user

Report or block enigmaticape

Hide content and notifications from this user.

Learn more about blocking users

Contact Support about this user’s behavior.

Learn more about reporting abuse

Report abuse
View GitHub Profile
View sesslist.php
<?php
if( ($dir = session_save_path() ) == null ) {
$dir = sys_get_temp_dir();
}
var_dump( $dir );
if( $dir ) {
@enigmaticape
enigmaticape / sicp_ex_1.13.scm
Created Nov 4, 2012
Some code to go with an exploration of SICP exercise 1.13, a proof of closed form of Fibonacci function.
View sicp_ex_1.13.scm
;; expt is three characters too long on the REPL
;; I use on my iPhone
(define (^ x n) (expt x n))
;; Golden Ratio, phi and the conjugate, psi
(define psi (/ (- 1 (sqrt 5)) 2))
(define phi (/ (+ 1 (sqrt 5)) 2))
;; Linear recursive Fib
(define (fib n)
@enigmaticape
enigmaticape / sicp_1_13_pyfib.py
Created Nov 4, 2012
Various python code to do Fibonacci related computations
View sicp_1_13_pyfib.py
#!/usr/bin/python
# This is the python script I used to generate
# the table that illustrates my rambling answer
# to SICP exercise 1.13
import math
# Golden ratio and conjugate
phi = (1 + math.sqrt( 5 ) ) / 2
@enigmaticape
enigmaticape / pascal-element.scm
Created Nov 4, 2012
Recursivley compute the elements of Pascal's triangle in Scheme. Answer to SICP exercise 1.12
View pascal-element.scm
;; Recursive function to compute the elements
;; of Pascal's triangle. Note the complete lack
;; of any sanity checks on the input. GIGO.
(define (pelem row col)
(cond((= col 0) 1)
((= col row) 1)
(else(+(pelem(- row 1)(- col 1))
(pelem(- row 1) col) ) )))
@enigmaticape
enigmaticape / sicp_ex_1.11.scm
Created Nov 4, 2012
Iterative function f(n) from SICP exercise 1.11
View sicp_ex_1.11.scm
; f(n) = n if n < 3,
; f(n) = f(n - 1) + 2f(n - 2) + 3f(n - 3) if n > 3
;
; iterative (via tail recursion optimisation)
(define (F-iter a b c count)
(if (= count 0)
c
(F-iter (+ a (* 2 b) (* 3 c))
a
@enigmaticape
enigmaticape / recfib.scm
Created Nov 4, 2012
Recursive Fibonacci in Scheme, a snippet from SICP
View recfib.scm
(define (fib n)
(cond ((= n 0) 0)
((= n 1) 1)
(else (+ (fib (- n 1))
(fib (- n 2))))))
@enigmaticape
enigmaticape / iterfib.scm
Created Nov 4, 2012
Iterative (tail recursive) Fibonacci in Scheme (a snippet from SICP)
View iterfib.scm
(define (fib n)
(fib-iter 1 0 n))
(define (fib-iter a b count)
(if (= count 0)
b
(fib-iter (+ a b) a (- count 1))))
@enigmaticape
enigmaticape / recf.scm
Created Nov 4, 2012
Recursive function f(n), for completeness, from SICP exercise 1.11
View recf.scm
(define (F n)
(cond ( (< n 3) n)
( else (+ (F (- n 1))
(* (F (- n 2)) 2)
(* (F (- n 3)) 3)))))
@enigmaticape
enigmaticape / ackermann.scm
Created Nov 4, 2012
Ackermann's function, as given in SICP.
View ackermann.scm
(define (A x y)
(cond ((= y 0) 0)
((= x 0) (* 2 y))
((= y 1) 2)
(else (A (- x 1)
(A x (- y 1))))))
@enigmaticape
enigmaticape / sicp_ex_1.10a.scm
Created Nov 5, 2012
(h)n = 2^(h-1) SICP Exercise 1.10
View sicp_ex_1.10a.scm
;; Recursively defined analogue of (h n) = (A 2 n)
(define (h-rec n)
(cond ((= n 0) 0)
((= n 1) 2)
(else (expt 2 (h-rec (- n 1))))))
You can’t perform that action at this time.