This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import org.apache.spark.SparkContext | |
val sqlContext = new org.apache.spark.sql.hive.HiveContext(sc) | |
val namenode = "" | |
val dataFrame1 = sqlContext.read.load(namenode + "/share/SampleData/AirlineDemoSmallParquet") | |
dataFrame1.registerTempTable("AirlineDemoSmallTempTable") | |
sqlContext.sql("create table AirlineDemoSmallHive as select * from AirlineDemoSmallTempTable"); | |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# create an xdf file which has a different column name for 'age' than original sample | |
colInfo <- list( | |
RowNum=list(type="integer"), | |
age = list(newName = "person.age", type = "factor", levels = c("17-20", "21-24", "25-29", "30-34", "35-39", "40-49", "50-59", "60+")), | |
car.age = list(type = "factor", levels = c("0-3", "4-7", "8-9", "10+")), | |
type = list(type="factor", levels=c("A", "B", "C", "D")), | |
cost= list(newName= "cost", type="float32"), | |
number = list(newName = "number", type="float32") | |
) |
NewerOlder