Skip to content

Instantly share code, notes, and snippets.

Show Gist options
  • Save anonymous/f0a81746c88e45670562bb9fb7b50f98 to your computer and use it in GitHub Desktop.
Save anonymous/f0a81746c88e45670562bb9fb7b50f98 to your computer and use it in GitHub Desktop.
Качественный унч d класса схема

Качественный унч d класса схема


Качественный унч d класса схема



Усилители НЧ D-класса
Портал радиоэлектроники
Усилитель класса D 100 Вт


























Популярность усилителей класса D, предложенных еще в году, заметно выросла в последние годы. Что они собой представляют? Как соотносятся с другими типами усилителей? Почему класс D представляет интерес для аудиотехники? Каковы особенности усилителей класса D от Analog Devices? Ответы на эти вопросы следуют далее. Функция звукового усилителя заключается в воспроизведении входного сигнала элементами выходной цепи, с необходимой громкостью и мощностью, точно, с минимальным рассеянием энергии и малыми искажениями. Усилитель должен обладать хорошими характеристиками в диапазоне звуковых частот, который находится в области 20—20 Гц для узкополосных динамиков, например сабвуфера или высокочастотной головки, диапазон меньше. Выходная мощность варьируется в широких пределах в зависимости от назначения усилителя — от милливатт в головных телефонах до нескольких ватт в телевизоре и персональном компьютере ПК , десятки ватт в домашней или автомобильной стереосистеме; наконец, сотни ватт в наиболее мощных домашних или коммерческих аудиосистемах для театров и концертных залов. Простейший вариант реализации усилителя звука — использование транзисторов в линейном режиме, что позволяет получить на выходе увеличенное входное напряжение. Усиление в данном случае обычно велико по меньшей мере, 40 дБ. Часто используется отрицательная обратная связь, так как она улучшает качество усиления, снижая вызванные нелинейностью усилительных каскадов искажения и подавляя помехи от источника питания. В обычном усилителе выходной каскад содержит транзисторы, обеспечивающие необходимое мгновенное значение выходного тока. Во многих аудиосистемах выходные каскады работают в классах A, B и AB. В сравнении с выходным каскадом, работающим в D классе, мощность рассеяния в линейных каскадах велика даже в случае их идеальной реализации. Это обеспечивает D классу значимое преимущество во многих приложениях вследствие меньшего тепловыделения, уменьшения размеров и соответственно стоимости изделий, увеличения времени работы автономных устройств. Выходные каскады линейных усилителей соединяются непосредственно с громкоговорителем в некоторых случаях через емкости. Биполярные транзисторы в выходном каскаде обычно работают в линейном активном режиме при достаточно больших напряжениях между коллектором и эмиттером. Выходной каскад может также строиться на полевых транзисторах рис. Энергия рассеивается во всех линейных выходных каскадах, поскольку при обеспечении выходного напряжения V out , по крайней мере, в одном транзисторе каскада неизбежно возникает отличный от нуля ток I т и напряжение V т. Мощность рассеяния сильно зависит от начального смещения выходных транзисторов. В выходном каскаде, выполненном в классе A, один транзистор служит источником постоянного тока, протекающего через громкоговоритель даже в отсутствие сигнала. Необходим запас как по увеличению тока [положительная фаза колебания], так и по уменьшению [отрицательная фаза]. В данном классе можно получить хорошее качество звука, однако мощность рассеяния очень велика из-за большого постоянного тока, протекающего через выходные транзисторы там, где ток нежелателен , даже в отсутствие тока в громкоговорителе там, где ток собственно и нужен. Построение выходного каскада в классе B практически исключает постоянный ток через транзисторы и существенно уменьшает мощность рассеяния. Выходные транзисторы в этом случае работают по двухтактной схеме, верхнее плечо обеспечивает положительные токи через громкоговоритель, нижнее плечо — отрицательные. Мощность рассеяния уменьшается потому, что через транзисторы протекает только связанный с сигналом ток, постоянная составляющая практически отсутствует. В классе AB, являющемся компромиссом между A и B классами, постоянный ток смещения существует, однако гораздо меньший, чем в классе A. Небольшого постоянного тока смещения оказывается достаточно для устранения переходных искажений и обеспечения тем самым хорошего качества звучания. Мощность рассеяния в данном случае оказывается больше, чем в классе B, и меньше, чем в A классе, но все же количественно ближе к классу B. В этом случае, как и в классе B, необходимо управление выходными транзисторами для обеспечения больших положительных и отрицательных выходных токов. Тем не менее, даже хорошо спроектированный усилитель класса AB характеризуется значительной мощностью рассеяния, так как средние значения выходных напряжений обычно далеки от напряжений на шинах питания. Большое падение напряжения между стоком и истоком приводит, таким образом, к рассеянию энергии. Мгновенная мощность рассеяния равна I т xV т. Благодаря совершенно иному принципу, мощность рассеяния усилителя класса D рис. Ключи выходного каскада такого усилителя коммутируют выход с отрицательной и положительной шиной питания, создавая тем самым серии положительных и отрицательных импульсов. Мгновенная мощность рассеяния, I т xV т , в этом случае минимальна. Блок-схема усилителя класса D без обратной связи. Поскольку звуковые сигналы заметно отличаются от последовательности импульсов, для преобразования входного сигнала в набор импульсов необходим модулятор. Частотный спектр сигнала модулятора содержит как звуковую составляющую, так и высокочастотную компоненту, которая появляется в процессе модуляции. Поэтому для уменьшения высокочастотной составляющей между выходным каскадом и громкоговорителем часто включается фильтр низких частот. Фильтр обычно строится из емкостных и индуктивных элементов. Мостовое построение выходного каскада с фильтром нижних частот. Мощность рассеяния выходных каскадов классов A, B и D. Заметное различие в мощности рассеяния наблюдается во всем диапазоне выходных мощностей, особенно при низких и средних значениях. Заметим, что выходной каскад класса A рассеивает больше энергии, чем доходит до громкоговорителя — следствие большой постоянной составляющей тока смещения. Предельные значения КПД усилителей класса A и B часто приводятся в различного рода руководствах. Разность в мощности рассеивания увеличивается при умеренных уровнях мощности на нагрузке. Это существенно, поскольку даже при высоком уровне громкости преобладающие мгновенные значения мощности заметно меньше пиковых значений, P load max в 5—20 раз, в зависимости от типа звука. При таком уровне выходной мощности усилитель класса D рассеивает в 9 раз меньше, чем усилитель класса B, и в раз меньше, чем усилитель A класса. При этих условиях выходной каскад класса D будет рассеивать мВт, класса B— 2,53 Вт и A класса — 30,2 Вт. Это различие имеет важные последствия для конструкции системы. При уровне мощности более 1 Вт, во избежание перегрева, линейные выходные каскады требуют специальных средств охлаждения — обычно это массивные металлические радиаторы или вентиляторы. Если усилитель выполнен в виде микросхемы, для обеспечения отвода тепла может потребоваться специальный корпус, повышающий стоимость устройства. Это особенно критично, например, в плоских телевизионных приемниках, где пространство ограничено, или в автомобильной аудиотехнике, где налицо тенденция к увеличению числа каналов при сохранении того же объема. При мощностях ниже 1 Вт основной проблемой является не разогрев, а собственно перерасход энергии. При автономном питании линейный выходной каскад опустошит батарею гораздо быстрее, чем усилитель класса D. В приведенном выше примере выходной каскад D класса потребляет в 2,8 раза меньше, чем выходной каскад класса B, и в 23,3 раза меньше, чем выходной каскад класса A, что позволяет существенно увеличить срок работы источников питания сотовых телефонов, портативных ПК, mp3-проигрывателей. Для упрощения анализ был сосредоточен на выходных каскадах усилителя. Однако, если учесть все потери усилительной системы, при низких мощностях линейные усилители могут оказаться более предпочтительны. Причина в том, что при низком уровне мощности доля рассеиваемой при модуляции и генерации энергии может оказаться значительной. Таким образом, хорошо спроектированные усилители класса AB с малой мощностью рассеяния покоя могут конкурировать с усилителем класса D в разряде усилителей малой и средней мощности. Среди усилителей большой мощности устройства класса D являются непревзойденными по экономичности. Мост имеет два плеча, выдающих импульсы противоположной полярности на фильтр, состоящий из двух индуктивностей и двух емкостей. Каждое плечо моста содержит два выходных транзистора: Верхнее плечо на рис. Для этой цели часто используют nМОП-транзистор, что позволяет уменьшить площадь и емкость, однако в этом случае необходима особая техника управления затворами транзисторов [1]. В мостовых схемах нередко используется однополярное питание VDD, при этом вместо отрицательной шины питания VSS транзисторы подключаются к общему выводу. При данном напряжении питания мостовая схема включения, являясь по сути дифференциальной, может давать вдвое больший выходной сигнал и вчетверо большую мощность в сравнении с обычной схемой. Напряжение шин питания может колебаться относительно среднего значения за счет индуктивных токов LC-фильтра. Пониженное энергопотребление делает усилитель класса D весьма привлекательным решением, при этом разработчик должен учесть ряд аспектов. Выход по мощности усилителей классов A, B и D. Типоразмер выходных транзисторов выбирается для оптимизации теплорассеяния во всех режимах работы. Для того чтобы напряжение на транзисторе V т было малым при большом токе I т , транзистор должен иметь маленькое сопротивление во включенном состоянии, R on обычно 0,1 или 0,2 Ом. Для этого требуются большие транзисторы, с большой емкостью затвора CG. Потребляемая цепями управления затворами мощность — CU 2 f, где C — емкость, U — изменение напряжения при переключении транзисторов, f — частота переключения. Потери на переключение становятся большими, если емкость или частота велики, поэтому существует практический верхний предел. Выбор типоразмера транзистора — компромисс между потерями V т x I т и потерями на переключение. Резистивные потери будут преобладать при высокой выходной мощности, потери на переключение — при низкой. Производители силовых транзисторов стараются минимизиро- вать произведение Ron x CG для уменьшения общей мощности рассеяния транзисторных ключей и обеспечения гибкости при выборе частоты переключения. Выходной каскад должен быть защищен от случаев, которые могут привести его к выходу из строя. Хотя усилители класса D рассеивают меньше тепла, чем линейные, опасность перегрева все еще остается, если усилитель долго работает при повышенной мощности. Чтобы избежать этого, необходимы цепи температурного контроля. В простых схемах защиты выходной каскад выключается, если его температура, измеренная встроенным датчиком, превысит температурный порог отключения, и не включается, пока температура не придет в норму. Можно использовать и более сложные схемы контроля. Измеряя температуру, цепи управления могут плавно снижать громкость, уменьшая тепловыделение и удерживая температуру в заданных рамках — вместо периодического отключения звука. Превышение абсолютной величины тока выходных транзисторов. Низкое сопротивление выходных транзисторов во включенном состоянии не является проблемой, если выходные цепи подключены правильно. Большие токи могут возникнуть в случае короткого замыкания выходной цепи либо при ее замыкании с положительной или отрицательной шиной питания. При отсутствии защиты такие токи могут привести к выходу из строя транзисторов или других цепей. Следовательно, необходимы защитные цепи по выходному току. В простых схемах защиты выходной каскад отключается при превышении порогового значения выходного тока. В более сложных схемах выход сенсора тока вносит свой вклад в обратную связь усилителя, обеспечивая достаточно продолжительную работу усилителя без отключения. В таких схемах отключение производится только тогда, когда остальные меры защиты оказываются неэффективными. Качественные схемы обеспечивают защиту усилителя и от больших пиковых токов, возникающих вследствие резонанса в громкоговорителях. Большинство выходных ключевых каскадов работает нормально, если напряжение питания достаточно велико. Проблема обычно решается при помощи введения цепей блокировки, которые разрешают работу выходного каскада только если превышен определенный порог напряжения питания. Синхронизация включения выходных транзисторов. Транзисторы верхнего и нижнего плеча имеют очень низкое сопротивление во включенном состоянии рис. Поэтому важно избегать ситуаций, когда оба транзистора включены одновременно, и большой сквозной ток протекает между положительной и отрицательной шинами питания. В лучшем случае транзисторы будут просто нагреваться и тратить лишнюю энергию, в худшем — они могут выйти из строя. Для получения хорошего качества звучания усилителя D класса необходимо учесть ряд факторов. Щелчки и треск , которые возникают при включении и выключении усилителя, могут раздражать пользователя. Они возникают в усилителях D класса, если не уделить самого пристального внимания состоянию модулятора, синхронизации выходного каскада и состоянию LC-фильтра в моменты включения и выключения. Информация об уровне сигнала обычно кодируется шириной импульса модулятора. Детальное описание метода оптимизации выходных каскадов для уменьшения искажений можно найти в [2]. Другими источниками искажений являются: Подавление помехи от источника питания. В схеме на рис. Это происходит потому, что выходные ключи коммутируют выход усилителя с шинами источников питания через очень низкие сопротивления. Фильтр подавляет высокочастотную составляющую шумов, но пропускает сигналы звуковой частоты, включая шумы. В [3] дается хорошее описание эффекта шумов источника питания в мостовых и обычных двухтактных схемах выходных каскадов. К счастью, решение этих проблем существует. Хорошо помогает глубокая обратная связь исправно работающая во многих линейных усилителях. Обратная связь ОС , взятая с входа LC-фильтра, значительно уменьшит влияние источника питания и ослабит все искажения, не относящиеся к самому LC-фильтру. Нелинейности LC-фильтра можно ослабить включением громкоговорителя в контур обратной связи. Введение обратной связи несколько усложняет конструкцию усилителя. Необходимо учитывать проблему стабильности цепи обратной связи — это усложняет процесс проектирования системы. Для непрерывной обработки сигнала обратной связи необходимо включение специальных аналоговых цепей, что в итоге приводит к увеличению стоимости кристалла в случае интегрального исполнения усилителя. Для уменьшения стоимости ИМС некоторые производители предпочитают минимизировать или вообще убирать цепи обработки сигнала обратной связи. В некоторых решениях используется модулятор без обратной связи плюс аналого-цифровой преобразователь АЦП для контроля источника питания — для коррекции работы модулятора [3]. Это может улучшить подавление помехи источника питания, но практически не уменьшает общие искажения сигнала. В других цифровых модуляторах используется предкомпенсация ожидаемых ошибок тактирования выходного каскада, или коррекция ошибки модулятора. Это может хотя бы частично учесть некоторые типы искажений, но не все. Усилители класса D без обратной связи могут использоваться в тех случаях, когда к качеству звучания не предъявляется серьезных требований, в остальных случаях обратная связь представляется весьма желательной. Модуляторы в усилителях D класса могут выполняться многими способами, что отражает большое количество соответствующих разработок. В данной статье будут представлены основные концепции построения модуляторов. Все способы модуляции в классе D кодируют аудиосигнал в поток импульсов. Обычно ширина импульсов связана с амплитудой звукового сигнала, спектр импульсов при этом включает полезный звуковой сигнал и нежелательную но неизбежную высокочастотную ВЧ составляющую. Общая мощность высокочастотной составляющей во всех схемах примерно одинакова, так как практически одинакова мощность импульсов, а согласно теореме полноты суммарная мощность сигнала во временной области равна таковой в частотной области. Однако распределение энергии по частоте варьируется широко: Наиболее общим способом модуляции является широтно-импульсная модуляция ШИМ. Суть ее заключается в том, что звуковой сигнал сравнивается с сигналом треугольной или пилообразной формы фиксированной частоты несущей. Получается поток импульсов той же частоты, при этом длительность каждого импульса пропорциональна величине звукового сигнала. В примере на рис. Способ ШИМ предпочтительнее потому, что может обеспечить до дБ и выше подавление помехи источника питания при достаточно низкой частоте несущей — в несколько сотен килогерц, что дает возможность ограничения потерь при переключении выходного каскада. Тем не менее, ШИМ имеет и некоторые минусы. Во-первых, вследствие своей собственной природы, искажения вносит сам процесс ШИМ [4], во-вторых, гармоники несущей ШИМ дают помехи в радиодиапазоне длинных и средних волн, наконец, ширина импульсов ШИМ становится очень малой вблизи полной модуляции. Это в большинстве случаев вызывает проблемы в цепях управления выходным каскадом — из-за естественных ограничений процесс переключения не может быть настолько быстрым, чтобы получать импульсы длительностью в единицы наносекунд. Поэтому полная модуляция часто недостижима в усилителях с ШИМ, что ограничивает максимальную мощность значениями ниже теоретических, учитывающих лишь мощность источника питания, сопротивление включенного транзистора и эквивалентное сопротивление громкоговорителя. Альтернативой ШИМ является модуляция плотностью импульсов МПИ , когда число импульсов за определенный отрезок времени пропорционально среднему значению звукового сигнала. Одной из разновидностей МПИ является 1-битный сигма-дельта модулятор. Значительная часть ВЧ составляющей мощности сигма-дельта модулятора распределена в широком диапазоне частот без концентрации в отдельные тоны с частотами, кратными несущей, как это происходит в ШИМ. Это дает преимущество сигма-дельта модуляции по сравнению с ШИМ в плане электромагнитных помех. Некоторая составляющая на частоте дискретизации в методе МПИ все же имеется, однако, учитывая, что типичные значения частоты составляют от 3 до 6 МГц, что значительно выше звукового диапазона, эти тоны сильно подавляются LC-фильтром нижних частот. Другим преимуществом сигма-дельта модулятора является то, что минимальная длительность импульса составляет один период дискретизации даже при больших сигналах, близких к условию полной модуляции. Это упрощает конструкцию цепей управления выходным каскадом и обеспечивает их надежную работу вплоть до теоретически максимального уровня мощности. В последнее время были предложены усилители на основе автогенератора [5]. В этих усилителях всегда используется обратная связь, определяющая частоту переключения модулятора, при этом внешний задающий генератор не применяется. Спектр ВЧ составляющей, как правило, более равномерен, чем в ШИМ. Благодаря обратной связи в данном случае возможно высокое качество звука, однако контур является автоколебательным, поэтому его трудно синхронизировать с какой-либо другой колебательной системой или соединить с цифровым источником звука без предварительного преобразования в аналоговый. В мостовой схеме рис. При работе мостового усилителя в обычном дифференциальном режиме плечо A должно находиться в противофазе с плечом B. Используется два состояния моста: В общем случае существует еще два состояния, в которых оба плеча моста находятся в одинаковых состояниях оба подключены к положительной шине или оба к отрицательной. Одно из этих синфазных состояний может быть использовано наряду с дифференциальными для 3-ступенчатой модуляции, когда на дифференциальном входе LC-фильтра может быть положительный сигнал, нулевой или отрицательный. Нулевое состояние может использоваться как соответствующее низкому уровню мощности вместо переключения между положительными и отрицательными уровнями в 2-ступенчатой схеме. При нулевом состоянии снижается дифференциальная электромагнитная помеха на LC-фильтре, хотя, в то же время, увеличивается синфазная составляющая. Этот режим возможен только при малых выходных мощностях, так как лишь дифференциальные выходные сигналы способны обеспечить работу такой схемы на максимальной мощности. Схемы с переменным уровнем синфазного напряжения в 3-ступенчатой модуляции представляют в некоторой степени альтернативу усилителям с замкнутой обратной связью. При недостаточном понимании процессов и отсутствии адекватных мер эти части системы могут давать сильные ЭМП и мешать работе остального оборудования. Необходимо учесть два вида ЭМП: Спектры излучаемых ЭМП и тех, которые распространяются по проводам, определяет схема модуляции усилителя класса D. Однако существуют схемотехнические решения, позволяющие значительно снизить уровень ЭМП усилителя. Весьма полезное правило заключается в минимизации размеров петли обратной связи, по которой протекают высокочастотные токи, так как воздействие ЭМП на другие цепи определяется площадью петли и расстоянием до них. Например, весь LC-фильтр, включая проводку громкоговорителя, должен размещаться как можно более компактно и близко к усилителю. Для уменьшения площади петель провода каждой из цепей должны размещаться ближе друг к другу не лишней будет витая пара для проводки громкоговорителя. Следует обратить внимание и на большие зарядные токи, возникающие при переключении выходных каскадов. Это происходит из-за наличия выходных емкостей, образующих петлю тока, содержащую обе емкости. ЭМП в данном случае зависят от уменьшения площади этой петли, что означает минимальные расстояния от емкостей до транзисторов, которые их заряжают. В некоторых случаях бывают полезны ВЧ-дроссели, включенные последовательно с питанием усилителя. Если время простоя схемы управления затворами выходных транзисторов достаточно велико, индуктивные токи громкоговорителя или LC-фильтра могут сместить в прямом направлении паразитные диоды у выводов выходных транзисторов. При включении управления смещение на диодах сменится на обратное. При смене смещения диодов на обратное могут иметь место большие выбросы тока, что создает дополнительный источник ЭМП. Для ослабления этого типа помех нужно минимизировать время простоя выходного каскада это полезно и для уменьшения искажений. Если же этого недостаточно, необходимо включать диоды Шоттки параллельно паразитным диодам для отвода токов и предотвращения включения паразитных диодов. Это помогает благодаря специфическим свойствам, присущим диодам Шоттки. LC-фильтры с тороидальными сердечниками, хорошо концентрирующими магнитное поле, также способствуют уменьшению электромагнитного излучения. Излучение от более дешевых, цилиндрических сердечников может быть снижено при помощи экранирования — разумного компромисса между ценой и ЭМ-помехами. В этом случае должны быть приняты меры для того, чтобы экранирование не ухудшило линейность индуктивности и таким образом снизило качество звука до неприемлемого уровня. Для уменьшения габаритов и стоимости системы большинство LC-фильтров для усилителей класса D представляют собой фильтры низких частот второго порядка. Громкоговоритель позволяет предотвратить внутренний резонанс выходной цепи. Хотя импеданс громкоговорителя часто аппроксимируется простым резистором, его структура более сложна и содержит существенную реактивную составляющую. Чтобы грамотно спроектировать фильтр, необходимо использовать точную модель громкоговорителя. При конструировании фильтра основной проблемой является наиболее узкая полоса пропускания с минимальным спадом в области верхних звуковых частот. Типичный фильтр имеет характеристику Баттерворта в 40 кГц для достижения максимальной равномерности характеристики в полосе пропускания. Данные таблицы 1 дают возможность построения фильтров с характеристикой Баттерворта для громкоговорителей с типичными импедансами и стандартных значений L и C. Если отсутствует обратная связь с громкоговорителем, величина искажений будет зависеть от линейности составляющих фильтра. Факторы, определяющие конструкцию индуктивности. Важными факторами являются величина и форма сигнала тока, а также сопротивление обмотки. Выбранная индуктивность должна иметь номинальные токи выше, чем максимальные токи усилителя. Причина в том, что сердечники индуктивностей испытывают магнитное насыщение, если величина тока становится слишком большой, а плотность магнитного потока — слишком высокой. Это приводит к значительному снижению индуктивности. Чтобы получить индуктивность, необходимо намотать провод на сердечник. Если витков много, сопротивление, пропорциональное длине провода, становится значительным. Так как это сопротивление включается последовательно между плечом моста и громкоговорителем, часть выходной мощности будет рассеиваться на нем. Если сопротивление получается слишком большим, необходимо использовать провод большего диаметра или другой материал сердечника, чтобы снизить число витков без уменьшения индуктивности. И, как уже отмечалось выше, не следует забывать, что геометрия индуктивности также влияет на уровень ЭМП. Каковы наиболее важные факторы, определяющие общую стоимость аудиосистемы на основе усилителя D класса? Активные компоненты усилителя класса D состоят из выходного ключевого каскада и модулятора. Стоимость их приблизительно такая же, что и линейного усилителя. Вопросы выбора возникают при рассмотрении остальных компонентов системы. Пониженное тепловыделение усилителей класса D позволяет экономить на теплоотводах и вентиляторах. Усилитель класса D, построенный на интегральной схеме, может быть выполнен по той же причине в более компактном и дешевом корпусе, чем линейный усилитель той же мощности. При использовании цифрового источника звука для линейного усилителя, кроме того, нужен цифро-аналоговый преобразователь ЦАП. Это, конечно, необходимо и для усилителя D класса, требующего аналогового входного сигнала, однако варианты усилителей с цифровым входом исключают необходимость использования ЦАП. С другой стороны, принципиальным недостатком усилителей D класса является необходимость включения LC-фильтра. Его части, в особенности индуктивность, требуют места и увеличивают стоимость. В усилителях большой мощности цена LC-фильтра компенсируется большой стоимостью системы охлаждения. Однако в недорогих устройствах малой мощности стоимость индуктивности становится заметной. Например, стоимость микросхемы усилителя для мобильного телефона может быть меньше, чем общая стоимость LC-фильтра. И даже если пренебречь ценой, остается проблема занимаемого места для компактных устройств. При таком решении экономится место и снижается стоимость, хотя и теряется преимущество низкочастотной фильтрации. В отсутствие фильтра уровень ЭМП может возрасти до неприемлемого уровня — если громкоговоритель не индуктивный и находится на удалении от усилителя, токовый контур и мощность усилителя достаточно велики. Нереальная для мощных усилителей, например, домашней стереосистемы, такая ситуация типична для мобильного телефона. Существует и другой подход для уменьшения числа компонентов LC-фильтра. Можно использовать не мостовую, а обычную двухтактную схему выходного каскада, что позволяет вдвое сократить число емкостей и индуктивностей. Однако такая схема требует двухполярного питания, и дополнительная стоимость, связанная с созданием отрицательного источника питания, может оказаться критической, если, конечно, отрицательное плечо уже не используется для других целей, или усилитель имеет достаточное число каналов. Двухтактный выходной каскад может питаться и однополярным источником, но это несколько снижает выходную мощность и зачастую требует блокирующего конденсатора большой емкости. Затронутые выше проблемы свидетельствуют, что разработка усилителя D класса — дело достаточно сложное. Для экономии времени разработчиков компания Analog Devices предлагает разнообразные усилители D класса на интегральных схемах, включающих усилители с программируемым коэффициентом усиления, модуляторы и выходные каскады. Для каждого типа усилителя имеются специальные демонстрационные отладочные платы. Конструкция плат позволяет эффективно, без изобретения очередного велосипеда, решить все проблемы, стоящие перед разработчиками усилителей класса D. Рассмотрим, например, AD, AD, AD и AD — семейство интегральных схем ИС , представляющих собой сдвоенные усилители средней мощности для двухканальных устройств, с выходной мощностью 5, 10, 25 и 40 Вт на канал соответственно. Технические характеристики звуковых усилителей класса D от Analog Devices содержатся в таблице 2. Эрик ГААЛАС Eric GAALAAS Перевод: ARM PIC AVR MSP , DSP , RF компоненты , Преобразование и коммутация речевых сигналов , Аналоговая техника, ADC, DAC , PLD, FPGA , MOSFET, IGBT , Дискретные полупрoводниковые приборы. Sensor , Проектирование и технология , LCD, LCM, LED. Оптоэлектроника и ВОЛС , Дистрибуция электронных компонентов , Оборудование и измерительная техника , Пассивные элементы и коммутационные устройства , Системы идентификации и защиты информации , Корпуса , Печатные платы. Звуковые усилители класса D: Немного о звуковых усилителях Функция звукового усилителя заключается в воспроизведении входного сигнала элементами выходной цепи, с необходимой громкостью и мощностью, точно, с минимальным рассеянием энергии и малыми искажениями. Преимущество усилителей класса D В обычном усилителе выходной каскад содержит транзисторы, обеспечивающие необходимое мгновенное значение выходного тока. Линейные усилители, усилители класса D и мощность рассеяния Выходные каскады линейных усилителей соединяются непосредственно с громкоговорителем в некоторых случаях через емкости. Линейный выходной КМОП-каскад Энергия рассеивается во всех линейных выходных каскадах, поскольку при обеспечении выходного напряжения V out , по крайней мере, в одном транзисторе каскада неизбежно возникает отличный от нуля ток I т и напряжение V т. Блок-схема усилителя класса D без обратной связи Поскольку звуковые сигналы заметно отличаются от последовательности импульсов, для преобразования входного сигнала в набор импульсов необходим модулятор. Мостовое построение выходного каскада с фильтром нижних частот На рис. КПД выходного каскада, Eff efficiency , определяется следующим образом: Мостовое построение выходного каскада с фильтром нижних частот В мостовых схемах нередко используется однополярное питание VDD, при этом вместо отрицательной шины питания VSS транзисторы подключаются к общему выводу. Факторы, определяющие конструкцию аудиоусилителя класса D Пониженное энергопотребление делает усилитель класса D весьма привлекательным решением, при этом разработчик должен учесть ряд аспектов. Мощность рассеяния выходных каскадов классов A, B и D Рис. Выход по мощности усилителей классов A, B и D Выбор типоразмера выходных транзисторов Типоразмер выходных транзисторов выбирается для оптимизации теплорассеяния во всех режимах работы. Защита выходного каскада Выходной каскад должен быть защищен от случаев, которые могут привести его к выходу из строя. Качество звучания Для получения хорошего качества звучания усилителя D класса необходимо учесть ряд факторов. Способы модуляции Модуляторы в усилителях D класса могут выполняться многими способами, что отражает большое количество соответствующих разработок. Широтно-импульсная модуляция Способ ШИМ предпочтительнее потому, что может обеспечить до дБ и выше подавление помехи источника питания при достаточно низкой частоте несущей — в несколько сотен килогерц, что дает возможность ограничения потерь при переключении выходного каскада. Уменьшение электромагнитных помех ЭМП ВЧ-компоненты выхода усилителя класса D заслуживают отдельного рассмотрения. Конструкция LC-фильтра Для уменьшения габаритов и стоимости системы большинство LC-фильтров для усилителей класса D представляют собой фильтры низких частот второго порядка. Стандартные значения L и C для построения фильтров Индуктивность L мкГн.


Классы усилителей мощности общие теоретические сведения


Обычно, высококачественные усилители мощности Hi-Fi усиливают сигнал аудио систем в выходных каскадах для управления нагрузкой динамика. Последний, как правило, имеет сопротивление 4 или 8 ом, поэтому, УНЧ должен уметь работать с высокими пиковыми токами, требуемыми для управления низким импедансом акустических систем. Для различия электрических параметров УНЧ их классифицируют в соответствии с их схемотехникой и способами работы. Классы усилителей — это термин в электронике и звукотехнике, используется для дифференциации между типами различных усилителей. Классы усилителей представляют собой сумму выходного сигнала, который изменяется в зависимости от схемы усилителя в течение одного цикла работы при возбуждении синусоидальным сигналом следующим на вход УНЧ. Классы усилителей лежат в основном в двух группах. Первые в классическом исполнении усилители мощности, образуют более общие классы усилителей A, B, AB и C. В основном строятся на транзисторной, ламповой и гибридной схемотехнике. Второй основной класс усилителей это новые УНЧ класса D, E, F, G, S, T и т. Наиболее широко распространенный тип УНЧ в основном благодаря своей схемотехнической простоте. Кроме того усилитель класса А имеет максимальную линейность и поэтому работает в линейном участке кривой характеристик. Основным минусом УНЧ класса А является их низкий КПД: По этой причине усилители класса А обычно разрабатывают с мощностью не выше 10 Вт на канал. Выходной каскад, работающий в классе А, содержит только один активный элемент. Поэтому такой выходной каскад обычно называют однотактным. В отдельных случаях, когда требуется большая выходной мощности в однотактных УНЧ используют 2 или 3 одинаковых активных компонента, соединенных параллельно. В УНЧ с выходным каскадом, работающим в классе А, через выходной транзистор постоянно идет максимальный ток. При поступление на вход полезного сигнала на вход этого каскада база или затвор транзистора, сетка лампы электрические характеристики активного радиокомпонента изменяются. Это вызывает перераспределению тока, потребляемого от блока питания, между выходным каскадом и подключенным к нему акустической системы. УНЧ класса B были созданы решения эффективности и проблем с нагревом у выше описанного типа. Усилитель мощности класса В использует два биполярных либо полевых транзистора для каждой половины сигнал, один из активных элементов усиливает только положительную, а второй — только отрицательную полуволну входного сигнала. В таком усилительном каскаде при отсутствии полезного сигнала ток через выходные активные элементы совсем не протекает. Двухтактный каскад проще всего собрать с помощью комплементарных транзисторов с разным типом проводимости электронного и дырочного типа. В ламповых вариантах все намного сложнее, т. Поэтому реализация двухтактного каскада в ламповом исполнении требует использования специальных выходных трансформаторов. УНЧ класса B более эффективный, чем А, но при этом может создать искажения в точке пересечения нулевого уровня. Чтобы частично преодолеть это искажение при пересечении нуля искажения были разработаны УНЧ следующего вида:. К этому виду относится основная масса всех промышленных транзисторных и ламповых УНЧ мощностью более 20 Вт. То есть, в момент появления сигнала УНЧ, отдающий в нагрузку 50 Вт мощности, потребляет Вт от источника питания. Поэтому, двухтактные усилители В и АВ оказываются существенно экономичнее УНЧ типа А. Огромным плюсом этого небольшого напряжения смещения, созданного диодами или резисторами, заключается в том, что искажение кроссовера УНЧ в классе В будет преодолено. Работа усилителя класса C задается выбором рабочей точки на характеристике прямой передачи таким образом, чтобы транзистор был закрыт, и для его открытия сигнал на входе должен превысить заданный уровень. Как видно из графика выше, в данном случае усиливается только небольшая часть периода синусоиды, что приводит к сильным нелинейным искажениям и поэтому такой режим работы активного компонента подходит для усиления не всех видов сигнала. В роли УНЧ такую схему использовать нельзя. Хотя их и нельзя использовать в роли усилителей мощности звуковой частоты, они очень эффективны для сигналов, в которых информация заложена в изменение фазы несущего колебания. Существуют и другие классы УНЧ, используемые для усиления звука с максимальным КПД. Они обозначаются буквами латинского алфавита D, G, Н, Т. В высококачественной звуковой технике такие типы УНЧ не применяют. Так УНЧ класса Н в интегральном исполнении часто используются в схемах автомобильных сабвуферов. УНЧ класса D при усилении используют широтно-импульсную модуляцию ШИМ , т. Однако их звучание нормальным назвать нельзя, а при прослушивании формируется ощущение, что кроме музыки где-то неподалеку работает распылительный аэрозольный баллончик. Данная схема класса D состоит из входного усилителя, обеспечивающего нужное сопротивление на входе, компаратора напряжения, на второй вход которого следует пилообразное напряжение и выходного каскада на комплементарных полевых транзисторах. Именно они и задают необходимую выходную мощность. Мануалы Справочник Программы Радиосамоделки Медтехника Библиотека. Классы усилителей мощности общие теоретические сведения Не все усилители звуковой одинаковы и имеется четкое различие между тем, как работают их выходные каскады. Основными рабочими характеристики идеального УНЧ являются:


Роза перестала растичто делать
Подключить новую розетку
Числовое значение линейной величины
Яндекс такси азов работать
Дексаметазон инструкция по применению внутривенно капельно
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment