Skip to content

Instantly share code, notes, and snippets.

Show Gist options
  • Save anonymous/f7681090135109fa1263c48aa2629d1a to your computer and use it in GitHub Desktop.
Save anonymous/f7681090135109fa1263c48aa2629d1a to your computer and use it in GitHub Desktop.
Правило присоединения галогеноводородов

Правило присоединения галогеноводородов



Другой реакцией электрофильного присоединения к алкенам является присоединение галогеноводородов к алкенам давно известное гидрогалогенирование алкенов. Ниже приведены типичные примеры присоединения HCl, HBr и HI к различным алкенам: Такие реакции лишь на первый взгляд кажутся простыми. На самом деле они имеют очень сложный механизм, детали которого остаются неясными до сих пор. Влияние алкильных заместителей у двойной связи на скорость присоединения описывается следующей последовательностью: Это согласуется с таким механизмом, в котором в определяющей скорость стадии реакции происходит образование карбокатиона, поскольку стабильность алкильных катионов возрастает в ряду: Таким образом, механизм присоединения должен включать промежуточное образование или свободного карбокатиона, что наблюдается очень редко, или интермедиата с карбокатионным характером. Последний случай наиболее распространен. Однако, гидрогалогенирование, как правило, протекает стереоселективно, причем в зависимости от типа алкена может наблюдаться: Для алкенов, у которых двойная связь не сопряжена с ароматическим кольцом, характерно анти-присоединие галогеноводорода. Анти-присоединение хлористого и бромистого водорода, хлористого и бромистого дейтерия наблюдается для циклогексена, циклопентена, 1,2-диметилциклогексена, 1,2-диметилциклопентена, цис- и транс-бутена-2, гексена-3 и многих других простых алкенов и циклоалкенов. Анти-присоединение несовместимо с механизмом, в котором предполагается образование дискретного карбокатиона. Для плоского карбокатиона нуклеофильная атака галогенид-иона равновероятна с обеих сторон плоскости, что должно привести к образованию смеси продуктов анти- и син-присоединения. Кинетика гидрогалогенирования алкенов также указывает на более сложный механизм присоединения. Для несопряженных алкенов скорость реакции, как правило, описывается уравнением третьего порядка со вторым порядком по галогеноводороду, то есть соответствует AdE3-механизму: Анти-присоединение и второй порядок реакции по галогеноводороду согласуется с механизмом, в котором алкен взаимодействует с двумя молекулами галогеноводорода, одна из которых выполняет функцию электрофильного, а другая — нуклеофильного агента: Приемлемы объяснением образования анти-продукта в тримолекулярной реакции AdE3 является также предположение, что сначала образуется молекулярный комплекс алкена с HHal, который затем атакуется с анти-стороны вторым галогенид-ионом: Такой тримолекулярный механизм включает образование комплекса алкена с одной молекулой галогеноводорода с последующей нуклеофильной атакой второй молекулы HX на этот комплекс без образования дискретного карбокатиона. Следует особо отметить, что любой тримолекулярный механизм должен состоять из двух последовательных стадий, поскольку одновременное столкновение трех молекул крайне маловероятно. Анти-присоединение свидетельствует о предпочтительной нуклеофильной атаке галогеноводорода со стороны, противоположной той, откуда происходит протонирование алкена. Вместо галогеноводорода функцию нуклеофильного агента может выполнять и галогенид-ион. В этом случае наблюдается стереоспецифическое анти-присоединение. Для алканов, у которых двойная связь сопряжена с ароматическим кольцом характерно син-присоединение или смешанное син-анти-присоединение галогеноводорода: Син-присоединение является доминирующим процессом для цис- и транс-изомеров 1-фенилпропена, 1-фенилалкилциклогексенов, аценафтилена, индена. При протонировании таких алкенов образуются карбокатионы бензильного типа, которые стабильнее чисто алкильных катионов, возникающих при протонировании обычных алкенов и циклоалкенов см. Кинетика реакции в этом случае обычно описывается более простым уравнением второго порядка: Нельзя ожидать, что механизм присоединения с участием ионных пар будет отличаться высокой стереоселективностью. Если ионная пара превращается в конечный продукт быстрее, чем происходит вращение вокруг простой углерод-углеродной связи, конечным результатом будет син-присоединение, где протон и галогенид-ион присоединяются с одной и той же стороны двойной связи. В противном случае наблюдается образование продуктов как син-, так и анти-присоединения HX. Наблюдаемая здесь закономерность заключается в том, что син-присоединение характерно лишь для тех олефинов, которые при протонировании дают относительно стабильный карбокатион. Для реакций гидрогалогенирования, протекающих по AdE2-механизму, характерна конкуренция процессов сопряженного присоединения и перегруппировок, поскольку в качестве интермедиата образуется карбокатион или ионная пара: В качестве примера перегруппировок с 1,2-миграцией алкильной группы и гидрид-иона приведем реакции гидрогалогенирования соответственно трет-бутилэтилена и изопропилена: Для реакций присоединения галогеноводородов к напряженной двойной связи характерны скелетные перегруппировки с участием карбокатионов в качестве интермедиатов. Движущей силой такого рода перегруппировок является образование более стабильного или близкого по стабильности карбокатиона. В качестве классического примера скелетных перегруппировок можно привести присоединение к норборнену бицикло[2. Присоединение DCl к норборнену дает экзо-норборнилхлорид; при этом около половины продукта образуется в результате скелетной перегруппировки норборнилкатиона. Экзо-положение хлора также находится в соответствии с ионным механизмом присоединения. Преобладание неперегруппированного экзо-норборнилхлорида указывает на то, что большая часть ионных пар дает ковалентный продукт, прежде чем образуется совершенно симметричная ионная пара. Перегруппировки, часто наблюдающиеся при присоединении галогеноводородов к алкенам и циклоалкенам, снижают синтетические возможности и ценность этой реакции. Более удобный способ получения вторичных и третичных алкилгалогенидов заключается во взаимодействии спиртов с галогеноводородом, тионилхлоридом или комплексом трифенилфосфина с галогеном или четыреххлористым углеродом. Главная О факультете Абитуриентам Учебные материалы Преподаватели Энциклопедия Статьи Помощь по химии.


Как пользоваться айфоном без кнопки домой
Правило Марковникова
Математика 5 класс дроби решать примеры
Навигация записи
Позитроника липецк каталог товаров
Справочник химика 21
Крючки для штор своими руками
Справочник химика 21
К центральным органам иммунной системы относят
Навигация записи
Кино золотой вавилон проспект мира
Справочник химика 21
Ставрополь новопавловск расписание
Навигация записи
Sony vaio sve1712s1rw схема
Правило Марковникова
Как сделать таблицу на всю страницу html
Справочник химика 21
Сколько живет морской котик
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment