Skip to content

Instantly share code, notes, and snippets.

Below I collected relevant links and papers more or less pertaining to the subject of tetrahedral meshes.
It's an ever-growing list.
------------------------------
Relevant links:
http://en.wikipedia.org/wiki/Types_of_mesh
http://en.wikipedia.org/wiki/Tetrahedron
http://en.wikipedia.org/wiki/Simplicial_complex
@fsm256
fsm256 / every-vm-tutorial-you-ever-studied-is-wrong.md
Created June 8, 2024 01:13 — forked from o11c/every-vm-tutorial-you-ever-studied-is-wrong.md
Every VM tutorial you ever studied is wrong (and other compiler/interpreter-related knowledge)

Note: this was originally several Reddit posts, chained and linked. But now that Reddit is dying I've finally moved them out. Sorry about the mess.


URL: https://www.reddit.com/r/ProgrammingLanguages/comments/up206c/stack_machines_for_compilers/i8ikupw/ Summary: stack-based vs register-based in general.

There are a wide variety of machines that can be described as "stack-based" or "register-based", but not all of them are practical. And there are a lot of other decisions that affect that practicality (do variables have names or only address/indexes? fixed-width or variable-width instructions? are you interpreting the bytecode (and if so, are you using machine stack frames?) or turning it into machine code? how many registers are there, and how many are special? how do you represent multiple types of variable? how many scopes are there(various kinds of global, local, member, ...)? how much effort/complexity can you afford to put into your machine? etc.)

  • a pure stack VM can only access the top elemen