Skip to content

Instantly share code, notes, and snippets.

void testLockFloatAdd() {
int n = 1;
int nBytes = n * sizeof(float);
float* ha = (float*)malloc(nBytes);
*ha = 0;
float *da = nullptr;
CHECK(cudaMalloc((float **)&da, nBytes));
CHECK(cudaMemcpy(da, ha, nBytes, cudaMemcpyHostToDevice));
/*
* ex10.cu
*
* Created on: Aug 23, 2022
* Author:
*/
#include <stdlib.h>
#include <string.h>
@fulltopic
fulltopic / RNN_new.cpp
Created December 29, 2019 21:25
pytorch/aten/src/ATen/native/RNN.cpp
output_type operator()(
const Tensor& inputs,
const hidden_type& input_hidden,
const cell_params& params) const override {
if (inputs.device().is_cpu()) {
const auto inputs_w = params.linear_ih(inputs);
auto hidden = cell_(inputs_w, input_hidden, params, true);
return {hidden_as_output(hidden), hidden};
}
auto unstacked_output = (*this)(inputs.unbind(0), input_hidden, params);
@fulltopic
fulltopic / RNN.cpp
Created December 29, 2019 21:23
pytorch/aten/src/ATen/native/RNN.cpp
unstacked_output_type operator()(
const std::vector<Tensor>& step_inputs,
const hidden_type& input_hidden,
const cell_params& params,
bool pre_compute_input = false) const {
std::vector<Tensor> step_outputs;
auto hidden = input_hidden;
for (const auto& input : step_inputs) {
std::cout << "step input " << std::endl;
package rl.dqn.reinforcement.dqn.nn
import java.util
import org.deeplearning4j.rl4j.learning.Learning
import org.deeplearning4j.rl4j.learning.sync.Transition
import org.deeplearning4j.rl4j.learning.sync.qlearning.QLearning
import org.deeplearning4j.rl4j.learning.sync.qlearning.QLearning.{QLConfiguration, QLStepReturn}
import org.deeplearning4j.rl4j.mdp.MDP
import org.deeplearning4j.rl4j.network.dqn.{DQN, IDQN}