State-of-the-art diffusion models for image and audio generation in MindSpore. We've tried to provide a completely consistent interface and usage with the huggingface/diffusers. Only necessary changes are made to the huggingface/diffusers to make it seamless for users from torch.
🤗 Diffusers provides many scheduler functions for the diffusion process. A scheduler takes a model's output (the sample which the diffusion process is iterating on) and a timestep to return a denoised sample. The timestep is important because it dictates where in the diffusion process the step is; data is generated by iterating forward n timesteps and inference occurs by propagating backward through the timesteps. Based on the timestep, a scheduler may be discrete in which case the timestep is an int
or continuous in which case the timestep is a float
.