Skip to content

Instantly share code, notes, and snippets.

@golobor
Created June 22, 2020 20:26
Show Gist options
  • Save golobor/b69a75a7264b30cbe146021e2ac65d8d to your computer and use it in GitHub Desktop.
Save golobor/b69a75a7264b30cbe146021e2ac65d8d to your computer and use it in GitHub Desktop.
Bottle Brush P(s) theory for Gibcus et at 2018
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"toc": "true"
},
"source": [
"# Table of Contents\n",
" <p><div class=\"lev1\"><a href=\"#Bottle-brush-with-RW-angular-loop-orientation\"><span class=\"toc-item-num\">1&nbsp;&nbsp;</span>Bottle brush with RW angular loop orientation</a></div><div class=\"lev2\"><a href=\"#No-drift\"><span class=\"toc-item-num\">1.1&nbsp;&nbsp;</span>No drift</a></div><div class=\"lev2\"><a href=\"#With-drift\"><span class=\"toc-item-num\">1.2&nbsp;&nbsp;</span>With drift</a></div><div class=\"lev1\"><a href=\"#Bottle-brush-with-OU-angular-loop-orientation-(approximate)\"><span class=\"toc-item-num\">2&nbsp;&nbsp;</span>Bottle brush with OU angular loop orientation (approximate)</a></div><div class=\"lev1\"><a href=\"#Experimental\"><span class=\"toc-item-num\">3&nbsp;&nbsp;</span>Experimental</a></div><div class=\"lev1\"><a href=\"#Bottle-brush-with-random-angular-loop-orientation\"><span class=\"toc-item-num\">4&nbsp;&nbsp;</span>Bottle brush with random angular loop orientation</a></div>"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"ExecuteTime": {
"end_time": "2020-06-22T20:20:39.452901Z",
"start_time": "2020-06-22T20:20:36.333899Z"
}
},
"outputs": [],
"source": [
"#import glob, os, sys, shelve, itertools\n",
"#from collections import OrderedDict\n",
"import matplotlib.pyplot as plt\n",
"\n",
"%matplotlib notebook\n",
"%config InlineBackend.figure_format = 'svg'\n",
"\n",
"import numpy as np\n",
"from ipywidgets.widgets.interaction import interact\n",
"import ipywidgets.widgets as widgets\n",
"\n",
"import scipy\n",
"import scipy.stats as st\n",
"\n",
"# from matplotlib import gridspec\n",
"# from mirnylib import plotting\n",
"\n",
"# import seaborn as sns\n",
"# sns.set_style('white')\n",
"# sns.set_palette('deep')\n",
"# sns.set_context('talk')\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"ExecuteTime": {
"end_time": "2020-06-22T20:20:39.460179Z",
"start_time": "2020-06-22T20:20:39.455595Z"
}
},
"outputs": [],
"source": [
"MIN_LOG10_S = -1\n",
"MAX_LOG10_S = 4\n",
"GLUE_AT = 2\n",
"EXP_LOOP_SIZE = 80000\n",
"IN_LOOP_SLOPE = -1.0"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"ExecuteTime": {
"end_time": "2020-06-22T20:20:47.694519Z",
"start_time": "2020-06-22T20:20:47.672684Z"
}
},
"outputs": [],
"source": [
"# REFSC_7m = smcviz.scalings['WT-20151009-7m-R1']\n",
"\n",
"REFSC_7m = np.array([[ 1.06010000e+03, 1.18810000e+03, 1.33210000e+03,\n",
" 1.49310000e+03, 1.67360000e+03, 1.87610000e+03,\n",
" 2.10310000e+03, 2.35760000e+03, 2.64310000e+03,\n",
" 2.96310000e+03, 3.32160000e+03, 3.72310000e+03,\n",
" 4.17310000e+03, 4.67810000e+03, 5.24410000e+03,\n",
" 5.87860000e+03, 6.58960000e+03, 7.38660000e+03,\n",
" 8.28010000e+03, 9.28160000e+03, 1.04046000e+04,\n",
" 1.16631000e+04, 1.30736000e+04, 1.46551000e+04,\n",
" 1.64276000e+04, 1.84146000e+04, 2.06421000e+04,\n",
" 2.31386000e+04, 2.59371000e+04, 2.90741000e+04,\n",
" 3.25911000e+04, 3.65331000e+04, 4.09516000e+04,\n",
" 4.59051000e+04, 5.14576000e+04, 5.76816000e+04,\n",
" 6.46581000e+04, 7.24786000e+04, 8.12451000e+04,\n",
" 9.10716000e+04, 1.02087100e+05, 1.14434600e+05,\n",
" 1.28275600e+05, 1.43791100e+05, 1.61182600e+05,\n",
" 1.80677600e+05, 2.02531100e+05, 2.27027600e+05,\n",
" 2.54486600e+05, 2.85267100e+05, 3.19770600e+05,\n",
" 3.58447600e+05, 4.01802600e+05, 4.50401100e+05,\n",
" 5.04877600e+05, 5.65943600e+05, 6.34395600e+05,\n",
" 7.11126600e+05, 7.97138100e+05, 8.93553100e+05,\n",
" 1.00162960e+06, 1.12277810e+06, 1.25858010e+06,\n",
" 1.41080710e+06, 1.58144610e+06, 1.77272410e+06,\n",
" 1.98713760e+06, 2.22748460e+06, 2.49690160e+06,\n",
" 2.79890560e+06, 3.13743760e+06, 3.51691460e+06,\n",
" 3.94229010e+06, 4.41911560e+06, 4.95361410e+06,\n",
" 5.55276110e+06, 6.22437510e+06, 6.97722160e+06,\n",
" 7.82112610e+06, 8.76710210e+06, 9.82749510e+06,\n",
" 1.10161446e+07, 1.23485626e+07, 1.38421381e+07,\n",
" 1.55163641e+07, 1.73930901e+07, 1.94968086e+07,\n",
" 2.18549741e+07, 2.44983631e+07, 2.74614741e+07,\n",
" 3.07829776e+07, 3.45062216e+07, 3.86797966e+07,\n",
" 4.33581716e+07, 4.86024026e+07, 5.44809301e+07,\n",
" 6.10704741e+07, 6.84570326e+07, 7.67370056e+07,\n",
" 8.60184526e+07, 9.64225031e+07, 1.08084938e+08,\n",
" 1.21157961e+08, 1.35812184e+08, 1.52238855e+08,\n",
" 1.70652355e+08, 1.91292994e+08, 2.14430146e+08,\n",
" 2.40365768e+08, 2.69438340e+08, 3.02027280e+08,\n",
" 3.38557897e+08, 3.79506943e+08, 4.25408832e+08,\n",
" 4.76862619e+08, 5.34539812e+08, 5.99193141e+08,\n",
" 6.71666379e+08, 7.52905356e+08, 8.43970300e+08,\n",
" 9.46049675e+08],\n",
" [ 1.36025607e-05, 1.34046188e-05, 1.36574460e-05,\n",
" 1.32345444e-05, 1.29639579e-05, 1.25128973e-05,\n",
" 1.19243258e-05, 1.13629686e-05, 1.05735869e-05,\n",
" 9.77219368e-06, 8.84240339e-06, 8.06609568e-06,\n",
" 7.14465216e-06, 6.31499827e-06, 5.51226795e-06,\n",
" 4.76879398e-06, 4.18247063e-06, 3.59360570e-06,\n",
" 3.13764287e-06, 2.75338562e-06, 2.45340402e-06,\n",
" 2.18181840e-06, 1.94339264e-06, 1.77000763e-06,\n",
" 1.60003804e-06, 1.45911904e-06, 1.34797427e-06,\n",
" 1.22491760e-06, 1.13661127e-06, 1.05464027e-06,\n",
" 9.74862144e-07, 9.07692404e-07, 8.52651873e-07,\n",
" 7.98028535e-07, 7.45706359e-07, 7.00864258e-07,\n",
" 6.58708816e-07, 6.24673757e-07, 5.86377722e-07,\n",
" 5.54947671e-07, 5.26503076e-07, 4.98313350e-07,\n",
" 4.72124666e-07, 4.45941670e-07, 4.24237778e-07,\n",
" 3.99209011e-07, 3.77865371e-07, 3.54132789e-07,\n",
" 3.35382423e-07, 3.13948076e-07, 2.94289478e-07,\n",
" 2.74606656e-07, 2.58023724e-07, 2.39221238e-07,\n",
" 2.22871782e-07, 2.06780001e-07, 1.91610943e-07,\n",
" 1.77610080e-07, 1.64602895e-07, 1.52824997e-07,\n",
" 1.41911209e-07, 1.31598674e-07, 1.21713280e-07,\n",
" 1.12660971e-07, 1.03716735e-07, 9.49234670e-08,\n",
" 8.53526672e-08, 7.54735421e-08, 6.50218799e-08,\n",
" 5.39394069e-08, 4.37518502e-08, 3.52473806e-08,\n",
" 2.90136753e-08, 2.41306659e-08, 2.01100335e-08,\n",
" 1.69164445e-08, 1.45610547e-08, 1.27782927e-08,\n",
" 1.15661752e-08, 1.05925240e-08, 9.75479526e-09,\n",
" 8.97489348e-09, 8.23350430e-09, 7.44221577e-09,\n",
" 6.66177792e-09, 5.95105691e-09, 5.34956968e-09,\n",
" 4.80811488e-09, 4.37376310e-09, 3.93143736e-09,\n",
" 3.59289091e-09, 3.28204473e-09, 3.05535485e-09,\n",
" 2.87612295e-09, 2.73886018e-09, 2.63728473e-09,\n",
" 2.57426311e-09, 2.50288251e-09, 2.38974135e-09,\n",
" 2.27761691e-09, 2.12083309e-09, 1.95334581e-09,\n",
" 1.75004353e-09, np.nan, np.nan,\n",
" np.nan, np.nan, np.nan,\n",
" np.nan, np.nan, np.nan,\n",
" np.nan, np.nan, np.nan,\n",
" np.nan, np.nan, np.nan,\n",
" np.nan, np.nan, np.nan,\n",
" np.nan]])"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"ExecuteTime": {
"end_time": "2020-06-22T20:20:48.870549Z",
"start_time": "2020-06-22T20:20:48.849338Z"
}
},
"outputs": [],
"source": [
"# REFSC_10m = smcviz.scalings['WT-92Pphase-10m-R1']\n",
"\n",
"REFSC_10m =np.array([[ 1.06010000e+03, 1.18810000e+03, 1.33210000e+03,\n",
" 1.49310000e+03, 1.67360000e+03, 1.87610000e+03,\n",
" 2.10310000e+03, 2.35760000e+03, 2.64310000e+03,\n",
" 2.96310000e+03, 3.32160000e+03, 3.72310000e+03,\n",
" 4.17310000e+03, 4.67810000e+03, 5.24410000e+03,\n",
" 5.87860000e+03, 6.58960000e+03, 7.38660000e+03,\n",
" 8.28010000e+03, 9.28160000e+03, 1.04046000e+04,\n",
" 1.16631000e+04, 1.30736000e+04, 1.46551000e+04,\n",
" 1.64276000e+04, 1.84146000e+04, 2.06421000e+04,\n",
" 2.31386000e+04, 2.59371000e+04, 2.90741000e+04,\n",
" 3.25911000e+04, 3.65331000e+04, 4.09516000e+04,\n",
" 4.59051000e+04, 5.14576000e+04, 5.76816000e+04,\n",
" 6.46581000e+04, 7.24786000e+04, 8.12451000e+04,\n",
" 9.10716000e+04, 1.02087100e+05, 1.14434600e+05,\n",
" 1.28275600e+05, 1.43791100e+05, 1.61182600e+05,\n",
" 1.80677600e+05, 2.02531100e+05, 2.27027600e+05,\n",
" 2.54486600e+05, 2.85267100e+05, 3.19770600e+05,\n",
" 3.58447600e+05, 4.01802600e+05, 4.50401100e+05,\n",
" 5.04877600e+05, 5.65943600e+05, 6.34395600e+05,\n",
" 7.11126600e+05, 7.97138100e+05, 8.93553100e+05,\n",
" 1.00162960e+06, 1.12277810e+06, 1.25858010e+06,\n",
" 1.41080710e+06, 1.58144610e+06, 1.77272410e+06,\n",
" 1.98713760e+06, 2.22748460e+06, 2.49690160e+06,\n",
" 2.79890560e+06, 3.13743760e+06, 3.51691460e+06,\n",
" 3.94229010e+06, 4.41911560e+06, 4.95361410e+06,\n",
" 5.55276110e+06, 6.22437510e+06, 6.97722160e+06,\n",
" 7.82112610e+06, 8.76710210e+06, 9.82749510e+06,\n",
" 1.10161446e+07, 1.23485626e+07, 1.38421381e+07,\n",
" 1.55163641e+07, 1.73930901e+07, 1.94968086e+07,\n",
" 2.18549741e+07, 2.44983631e+07, 2.74614741e+07,\n",
" 3.07829776e+07, 3.45062216e+07, 3.86797966e+07,\n",
" 4.33581716e+07, 4.86024026e+07, 5.44809301e+07,\n",
" 6.10704741e+07, 6.84570326e+07, 7.67370056e+07,\n",
" 8.60184526e+07, 9.64225031e+07, 1.08084938e+08,\n",
" 1.21157961e+08, 1.35812184e+08, 1.52238855e+08,\n",
" 1.70652355e+08, 1.91292994e+08, 2.14430146e+08,\n",
" 2.40365768e+08, 2.69438340e+08, 3.02027280e+08,\n",
" 3.38557897e+08, 3.79506943e+08, 4.25408832e+08,\n",
" 4.76862619e+08, 5.34539812e+08, 5.99193141e+08,\n",
" 6.71666379e+08, 7.52905356e+08, 8.43970300e+08,\n",
" 9.46049675e+08],\n",
" [ 5.12401928e-06, 5.21053010e-06, 5.43670420e-06,\n",
" 5.51432327e-06, 5.80338727e-06, 5.74049234e-06,\n",
" 5.81727055e-06, 5.86260055e-06, 5.73426592e-06,\n",
" 5.67409064e-06, 5.51083511e-06, 5.34948672e-06,\n",
" 5.15669658e-06, 4.94856413e-06, 4.69226356e-06,\n",
" 4.42405745e-06, 4.17199337e-06, 3.90491288e-06,\n",
" 3.61900127e-06, 3.39410568e-06, 3.12408496e-06,\n",
" 2.89812736e-06, 2.69193214e-06, 2.45217645e-06,\n",
" 2.27232962e-06, 2.09816377e-06, 1.93096590e-06,\n",
" 1.78977445e-06, 1.64921804e-06, 1.52646390e-06,\n",
" 1.41841330e-06, 1.32360411e-06, 1.22847270e-06,\n",
" 1.15095084e-06, 1.08174275e-06, 1.01408849e-06,\n",
" 9.55430430e-07, 8.98691236e-07, 8.58129012e-07,\n",
" 8.08875083e-07, 7.64637589e-07, 7.31114664e-07,\n",
" 6.92200849e-07, 6.60665470e-07, 6.31291407e-07,\n",
" 5.97896042e-07, 5.68835030e-07, 5.42300591e-07,\n",
" 5.15300288e-07, 4.88965839e-07, 4.61142954e-07,\n",
" 4.36771896e-07, 4.13572974e-07, 3.90778564e-07,\n",
" 3.69347980e-07, 3.48814164e-07, 3.28971645e-07,\n",
" 3.11824481e-07, 2.93789418e-07, 2.76521240e-07,\n",
" 2.59964798e-07, 2.43863255e-07, 2.27076162e-07,\n",
" 2.08273698e-07, 1.87344523e-07, 1.63703500e-07,\n",
" 1.37869309e-07, 1.11120277e-07, 8.64569185e-08,\n",
" 6.59059683e-08, 4.95332916e-08, 3.70433346e-08,\n",
" 2.74404981e-08, 2.04434070e-08, 1.54896441e-08,\n",
" 1.21378868e-08, 9.97291256e-09, 8.51308568e-09,\n",
" 7.41821013e-09, 6.61411826e-09, 5.95786854e-09,\n",
" 5.33640193e-09, 4.72705901e-09, 4.18209989e-09,\n",
" 3.59923398e-09, 3.03972761e-09, 2.54110466e-09,\n",
" 2.11420249e-09, 1.73818067e-09, 1.44410727e-09,\n",
" 1.16081550e-09, 9.36761032e-10, 7.76385942e-10,\n",
" 6.58526750e-10, 5.62581388e-10, 4.95524509e-10,\n",
" 4.62136925e-10, 4.14579522e-10, 4.02640302e-10,\n",
" 3.91300897e-10, 3.52900340e-10, 3.59177371e-10,\n",
" 4.74865558e-10, np.nan, np.nan,\n",
" np.nan, np.nan, np.nan,\n",
" np.nan, np.nan, np.nan,\n",
" np.nan, np.nan, np.nan,\n",
" np.nan, np.nan, np.nan,\n",
" np.nan, np.nan, np.nan,\n",
" np.nan]])"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"ExecuteTime": {
"end_time": "2020-06-22T20:20:50.001895Z",
"start_time": "2020-06-22T20:20:49.980182Z"
}
},
"outputs": [],
"source": [
"# REFSC_30m = smcviz.scalings['WT-20150609-30m-R1']\n",
"\n",
"REFSC_30m = (\n",
" np.array([1060.0999999999999, 1188.0999999999999, 1332.0999999999999, 1493.0999999999999, 1673.5999999999999, 1876.0999999999999, 2103.0999999999999, 2357.5999999999999, 2643.0999999999999, 2963.0999999999999, 3321.5999999999999, 3723.0999999999999, 4173.1000000000004, 4678.1000000000004, 5244.1000000000004, 5878.6000000000004, 6589.6000000000004, 7386.6000000000004, 8280.1000000000004, 9281.6000000000004, 10404.6, 11663.1, 13073.6, 14655.1, 16427.599999999999, 18414.599999999999, 20642.099999999999, 23138.599999999999, 25937.099999999999, 29074.099999999999, 32591.099999999999, 36533.099999999999, 40951.599999999999, 45905.099999999999, 51457.599999999999, 57681.599999999999, 64658.100000000006, 72478.600000000006, 81245.100000000006, 91071.600000000006, 102087.10000000001, 114434.60000000001, 128275.60000000001, 143791.10000000001, 161182.60000000001, 180677.60000000001, 202531.10000000001, 227027.60000000001, 254486.59999999998, 285267.09999999998, 319770.59999999998, 358447.59999999998, 401802.59999999998, 450401.09999999998, 504877.59999999998, 565943.59999999998, 634395.59999999998, 711126.59999999998, 797138.09999999998, 893553.09999999998, 1001629.6000000001, 1122778.1000000001, 1258580.1000000001, 1410807.1000000001, 1581446.1000000001, 1772724.1000000001, 1987137.6000000001, 2227484.6000000001, 2496901.6000000001, 2798905.6000000001, 3137437.6000000001, 3516914.6000000001, 3942290.1000000001, 4419115.5999999996, 4953614.0999999996, 5552761.0999999996, 6224375.0999999996, 6977221.5999999996, 7821126.0999999996, 8767102.0999999996, 9827495.0999999996, 11016144.6, 12348562.6, 13842138.1, 15516364.1, 17393090.100000001, 19496808.600000001, 21854974.100000001, 24498363.100000001, 27461474.100000001, 30782977.600000001, 34506221.600000001, 38679796.600000001, 43358171.600000001, 48602402.600000001, 54480930.100000001, 61070474.100000001, 68457032.599999994, 76737005.599999994, 86018452.599999994, 96422503.099999994, 108084938.09999999, 121157961.09999999, 135812184.09999999, 152238855.09999999, 170652355.09999999, 191292993.59999999, 214430145.59999999, 240365768.09999999, 269438340.10000002, 302027280.10000002, 338557897.10000002, 379506942.60000002, 425408832.10000002, 476862618.60000002, 534539811.60000002, 599193140.60000002, 671666379.10000002, 752905356.10000002, 843970299.60000002, 946049674.60000002]),\n",
" np.array([23.675955871271874, 23.236626555421729, 23.066863635884847, 22.154452714571342, 21.467480284981807, 20.487367494245994, 19.160454706435878, 17.949003170166357, 16.415234568857386, 14.890233181524469, 13.327493418288194, 11.976836612759442, 10.512942407898162, 9.1349005029935775, 7.9085956321347277, 6.7569424618369842, 5.8690989848720863, 5.0640546842705909, 4.4052025303940123, 3.8904891247104438, 3.4631642433279706, 3.1253142884925431, 2.8047821378746551, 2.5578439264424477, 2.3630871716158621, 2.1790466537117612, 2.0246085517256325, 1.8838032175167119, 1.76475211641389, 1.6462896440262906, 1.5525393513441721, 1.4588544928495353, 1.3721372555187086, 1.3008301278520282, 1.2287831641991491, 1.1669889062227117, 1.1058944331413405, 1.0500554482960165, 1.0, 0.9626059154858434, 0.91474919296378132, 0.87982050546965485, 0.84226404486894413, 0.8089168077811949, 0.7769503867285813, 0.74647710200195516, 0.71588134711832496, 0.68697410529290193, 0.65871989693983068, 0.62731464238829537, 0.60027613270236702, 0.57514705963705059, 0.54615107057834789, 0.51976930440691971, 0.49090114734707713, 0.46307744679980578, 0.43447665458306117, 0.40687844130045864, 0.37938086283748018, 0.35114034378259634, 0.32291674469674325, 0.29463998972017813, 0.26751258897884228, 0.23995520669188192, 0.21396083423648307, 0.19011344601583471, 0.16718835632995099, 0.14709446687242295, 0.13021253723330545, 0.1160188918882349, 0.10670497929090897, 0.10111587113542761, 0.099641938724001289, 0.10259190796296001, 0.10912502769018932, 0.11637930652079441, 0.11998296048899362, 0.11298928603359318, 0.094577549712040562, 0.069578032765169537, 0.048057204280106222, 0.035223246097696274, 0.029000513382554206, 0.024373415309400931, 0.019243673691066811, 0.01462752889253496, 0.011302196219838108, 0.0091482940278357575, 0.0074610556191346883, 0.0061577877928047694, 0.0052151024960781353, 0.0044258888621608412, 0.0038571980326946318, 0.0033870834338773342, 0.0030387264655687874, 0.002745753811241077, 0.002526358711246568, 0.0023551346707166173, 0.002179804846088893, 0.0019746189904878185, 0.0017948425263511838, 0.0015583471819714605, 0.0012250967415409282, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan])\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"ExecuteTime": {
"end_time": "2020-06-22T20:20:50.683058Z",
"start_time": "2020-06-22T20:20:50.662665Z"
}
},
"outputs": [],
"source": [
"REFSC_60m = np.array([\n",
" [1.06010000e+03, 1.18810000e+03, 1.33210000e+03, 1.49310000e+03, 1.67360000e+03, 1.87610000e+03, 2.10310000e+03, 2.35760000e+03, 2.64310000e+03, 2.96310000e+03, 3.32160000e+03, 3.72310000e+03, 4.17310000e+03, 4.67810000e+03, 5.24410000e+03, 5.87860000e+03, 6.58960000e+03, 7.38660000e+03, 8.28010000e+03, 9.28160000e+03, 1.04046000e+04, 1.16631000e+04, 1.30736000e+04, 1.46551000e+04, 1.64276000e+04, 1.84146000e+04, 2.06421000e+04, 2.31386000e+04, 2.59371000e+04, 2.90741000e+04, 3.25911000e+04, 3.65331000e+04, 4.09516000e+04, 4.59051000e+04, 5.14576000e+04, 5.76816000e+04, 6.46581000e+04, 7.24786000e+04, 8.12451000e+04, 9.10716000e+04, 1.02087100e+05, 1.14434600e+05, 1.28275600e+05, 1.43791100e+05, 1.61182600e+05, 1.80677600e+05, 2.02531100e+05, 2.27027600e+05, 2.54486600e+05, 2.85267100e+05, 3.19770600e+05, 3.58447600e+05, 4.01802600e+05, 4.50401100e+05, 5.04877600e+05, 5.65943600e+05, 6.34395600e+05, 7.11126600e+05, 7.97138100e+05, 8.93553100e+05, 1.00162960e+06, 1.12277810e+06, 1.25858010e+06, 1.41080710e+06, 1.58144610e+06, 1.77272410e+06, 1.98713760e+06, 2.22748460e+06, 2.49690160e+06, 2.79890560e+06, 3.13743760e+06, 3.51691460e+06, 3.94229010e+06, 4.41911560e+06, 4.95361410e+06, 5.55276110e+06, 6.22437510e+06, 6.97722160e+06, 7.82112610e+06, 8.76710210e+06, 9.82749510e+06, 1.10161446e+07, 1.23485626e+07, 1.38421381e+07, 1.55163641e+07, 1.73930901e+07, 1.94968086e+07, 2.18549741e+07, 2.44983631e+07, 2.74614741e+07, 3.07829776e+07, 3.45062216e+07, 3.86797966e+07, 4.33581716e+07, 4.86024026e+07, 5.44809301e+07, 6.10704741e+07, 6.84570326e+07, 7.67370056e+07, 8.60184526e+07, 9.64225031e+07, 1.08084938e+08, 1.21157961e+08, 1.35812184e+08, 1.52238855e+08, 1.70652355e+08, 1.91292994e+08, 2.14430146e+08, 2.40365768e+08, 2.69438340e+08, 3.02027280e+08, 3.38557897e+08, 3.79506943e+08, 4.25408832e+08, 4.76862619e+08, 5.34539812e+08, 5.99193141e+08, 6.71666379e+08, 7.52905356e+08, 8.43970300e+08, 9.46049675e+08],\n",
" [1.11674528e-05, 1.10282684e-05, 1.09980203e-05, 1.06884880e-05, 1.03712325e-05, 9.95821573e-06, 9.47413900e-06, 8.87913543e-06, 8.21672193e-06, 7.45318538e-06, 6.82834626e-06, 6.14048613e-06, 5.37048964e-06, 4.71935343e-06, 4.06989925e-06, 3.51089326e-06, 3.02076909e-06, 2.57435245e-06, 2.21909132e-06, 1.91879215e-06, 1.68308009e-06, 1.46757533e-06, 1.30174005e-06, 1.17126648e-06, 1.04734768e-06, 9.51688382e-07, 8.62266245e-07, 7.93401224e-07, 7.25596116e-07, 6.76413802e-07, 6.24958572e-07, 5.84692670e-07, 5.43564296e-07, 5.05236306e-07, 4.71761588e-07, 4.41920715e-07, 4.15568895e-07, 3.92503100e-07, 3.70347541e-07, 3.50564659e-07, 3.33628688e-07, 3.17393189e-07, 3.03657569e-07, 2.90687400e-07, 2.78146055e-07, 2.66326586e-07, 2.55340097e-07, 2.45048634e-07, 2.35155466e-07, 2.25754918e-07, 2.15531712e-07, 2.06851814e-07, 1.97710816e-07, 1.89624627e-07, 1.80552323e-07, 1.71415055e-07, 1.62620001e-07, 1.53768791e-07, 1.44083593e-07, 1.35276642e-07, 1.26636339e-07, 1.17637592e-07, 1.08375348e-07, 9.94187099e-08, 9.04282429e-08, 8.17490821e-08, 7.35160607e-08, 6.52278835e-08, 5.76475407e-08, 5.06953599e-08, 4.44968908e-08, 3.94321523e-08, 3.47959158e-08, 3.12136029e-08, 2.85296416e-08, 2.67930020e-08, 2.59793418e-08, 2.59996532e-08, 2.65096650e-08, 2.68270629e-08, 2.62755234e-08, 2.43076446e-08, 2.07729648e-08, 1.64369050e-08, 1.22358304e-08, 8.92005709e-09, 6.91674313e-09, 5.68891892e-09, 4.89137781e-09, 4.16687997e-09, 3.59501755e-09, 3.15501512e-09, 2.85019840e-09, 2.60398008e-09, 2.42504006e-09, 2.27515440e-09, 2.16693084e-09, 2.04621298e-09, 1.86925166e-09, 1.73855477e-09, 1.57095274e-09, 1.31108423e-09, 9.11974699e-10, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan]])"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"ExecuteTime": {
"end_time": "2020-06-22T20:20:51.553533Z",
"start_time": "2020-06-22T20:20:51.533565Z"
}
},
"outputs": [],
"source": [
"def prepare_canvas(refsc = REFSC_10m, \n",
" exp_loop_size=EXP_LOOP_SIZE):\n",
" \n",
" fig, ax = plt.subplots(1,2, figsize=(8,3.5))\n",
" plt.subplots_adjust(bottom=0.15, wspace=0.3)\n",
" ln1 = ax[0].plot([], [], label='test')\n",
"\n",
" ax[0].set_xlim(MIN_LOG10_S,MAX_LOG10_S)\n",
" ax[0].set_ylim(-3,1)\n",
" ax[0].set_xticks(np.arange(MIN_LOG10_S,MAX_LOG10_S+0.01))\n",
" ax[0].axvline(0.0, ls='--', c='gray',lw=0.5)\n",
" ax[0].set_aspect(1.0)\n",
" ax[0].set_xlabel('log10 separation/avg loop length')\n",
" ax[0].set_ylabel('log10 contact frequency')\n",
"\n",
" if refsc is not None:\n",
" x = refsc[0] / exp_loop_size\n",
" y = refsc[1]\n",
" y /= y[np.argmin(np.abs(np.log10(x/GLUE_AT)))]\n",
"\n",
" ax[0].plot(\n",
" np.log10(x),\n",
" np.log10(y)\n",
" )\n",
" \n",
" ax[1].plot(\n",
" np.log10(x[1:]*x[:-1]),\n",
" np.diff(np.log10(y)) / np.diff(np.log10(x))\n",
" )\n",
" else:\n",
" ax[0].plot(\n",
" [],\n",
" []\n",
" )\n",
" ax[1].plot(\n",
" [],\n",
" []\n",
" )\n",
" \n",
" \n",
" ln2 = ax[1].plot([], [], label='test')\n",
" ax[1].set_xlim(MIN_LOG10_S,MAX_LOG10_S)\n",
" ax[1].set_ylim(-3,1)\n",
" ax[1].set_aspect(1.0)\n",
" ax[1].axvline(0.0, ls='--', c='gray',lw=0.5)\n",
" ax[1].axhline(0.0, ls='--', c='gray',lw=0.5)\n",
" ax[1].axhline(-0.5, ls='--', c='gray',lw=0.5)\n",
" ax[1].axhline(-1.0, ls='--', c='gray',lw=0.5)\n",
" ax[1].axhline(-1.5, ls='--', c='gray',lw=0.5)\n",
" ax[1].set_xlabel('log10 separation/avg loop length')\n",
" ax[1].set_ylabel('log-log derivative')\n",
" \n",
" return fig, ax"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"ExecuteTime": {
"end_time": "2020-06-22T20:20:54.004699Z",
"start_time": "2020-06-22T20:20:53.625861Z"
}
},
"outputs": [
{
"data": {
"application/javascript": [
"/* Put everything inside the global mpl namespace */\n",
"window.mpl = {};\n",
"\n",
"\n",
"mpl.get_websocket_type = function() {\n",
" if (typeof(WebSocket) !== 'undefined') {\n",
" return WebSocket;\n",
" } else if (typeof(MozWebSocket) !== 'undefined') {\n",
" return MozWebSocket;\n",
" } else {\n",
" alert('Your browser does not have WebSocket support. ' +\n",
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
" 'Firefox 4 and 5 are also supported but you ' +\n",
" 'have to enable WebSockets in about:config.');\n",
" };\n",
"}\n",
"\n",
"mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
" this.id = figure_id;\n",
"\n",
" this.ws = websocket;\n",
"\n",
" this.supports_binary = (this.ws.binaryType != undefined);\n",
"\n",
" if (!this.supports_binary) {\n",
" var warnings = document.getElementById(\"mpl-warnings\");\n",
" if (warnings) {\n",
" warnings.style.display = 'block';\n",
" warnings.textContent = (\n",
" \"This browser does not support binary websocket messages. \" +\n",
" \"Performance may be slow.\");\n",
" }\n",
" }\n",
"\n",
" this.imageObj = new Image();\n",
"\n",
" this.context = undefined;\n",
" this.message = undefined;\n",
" this.canvas = undefined;\n",
" this.rubberband_canvas = undefined;\n",
" this.rubberband_context = undefined;\n",
" this.format_dropdown = undefined;\n",
"\n",
" this.image_mode = 'full';\n",
"\n",
" this.root = $('<div/>');\n",
" this._root_extra_style(this.root)\n",
" this.root.attr('style', 'display: inline-block');\n",
"\n",
" $(parent_element).append(this.root);\n",
"\n",
" this._init_header(this);\n",
" this._init_canvas(this);\n",
" this._init_toolbar(this);\n",
"\n",
" var fig = this;\n",
"\n",
" this.waiting = false;\n",
"\n",
" this.ws.onopen = function () {\n",
" fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
" fig.send_message(\"send_image_mode\", {});\n",
" if (mpl.ratio != 1) {\n",
" fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
" }\n",
" fig.send_message(\"refresh\", {});\n",
" }\n",
"\n",
" this.imageObj.onload = function() {\n",
" if (fig.image_mode == 'full') {\n",
" // Full images could contain transparency (where diff images\n",
" // almost always do), so we need to clear the canvas so that\n",
" // there is no ghosting.\n",
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
" }\n",
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
" };\n",
"\n",
" this.imageObj.onunload = function() {\n",
" fig.ws.close();\n",
" }\n",
"\n",
" this.ws.onmessage = this._make_on_message_function(this);\n",
"\n",
" this.ondownload = ondownload;\n",
"}\n",
"\n",
"mpl.figure.prototype._init_header = function() {\n",
" var titlebar = $(\n",
" '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
" 'ui-helper-clearfix\"/>');\n",
" var titletext = $(\n",
" '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
" 'text-align: center; padding: 3px;\"/>');\n",
" titlebar.append(titletext)\n",
" this.root.append(titlebar);\n",
" this.header = titletext[0];\n",
"}\n",
"\n",
"\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._init_canvas = function() {\n",
" var fig = this;\n",
"\n",
" var canvas_div = $('<div/>');\n",
"\n",
" canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
"\n",
" function canvas_keyboard_event(event) {\n",
" return fig.key_event(event, event['data']);\n",
" }\n",
"\n",
" canvas_div.keydown('key_press', canvas_keyboard_event);\n",
" canvas_div.keyup('key_release', canvas_keyboard_event);\n",
" this.canvas_div = canvas_div\n",
" this._canvas_extra_style(canvas_div)\n",
" this.root.append(canvas_div);\n",
"\n",
" var canvas = $('<canvas/>');\n",
" canvas.addClass('mpl-canvas');\n",
" canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
"\n",
" this.canvas = canvas[0];\n",
" this.context = canvas[0].getContext(\"2d\");\n",
"\n",
" var backingStore = this.context.backingStorePixelRatio ||\n",
"\tthis.context.webkitBackingStorePixelRatio ||\n",
"\tthis.context.mozBackingStorePixelRatio ||\n",
"\tthis.context.msBackingStorePixelRatio ||\n",
"\tthis.context.oBackingStorePixelRatio ||\n",
"\tthis.context.backingStorePixelRatio || 1;\n",
"\n",
" mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
"\n",
" var rubberband = $('<canvas/>');\n",
" rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
"\n",
" var pass_mouse_events = true;\n",
"\n",
" canvas_div.resizable({\n",
" start: function(event, ui) {\n",
" pass_mouse_events = false;\n",
" },\n",
" resize: function(event, ui) {\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" stop: function(event, ui) {\n",
" pass_mouse_events = true;\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" });\n",
"\n",
" function mouse_event_fn(event) {\n",
" if (pass_mouse_events)\n",
" return fig.mouse_event(event, event['data']);\n",
" }\n",
"\n",
" rubberband.mousedown('button_press', mouse_event_fn);\n",
" rubberband.mouseup('button_release', mouse_event_fn);\n",
" // Throttle sequential mouse events to 1 every 20ms.\n",
" rubberband.mousemove('motion_notify', mouse_event_fn);\n",
"\n",
" rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
" rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
"\n",
" canvas_div.on(\"wheel\", function (event) {\n",
" event = event.originalEvent;\n",
" event['data'] = 'scroll'\n",
" if (event.deltaY < 0) {\n",
" event.step = 1;\n",
" } else {\n",
" event.step = -1;\n",
" }\n",
" mouse_event_fn(event);\n",
" });\n",
"\n",
" canvas_div.append(canvas);\n",
" canvas_div.append(rubberband);\n",
"\n",
" this.rubberband = rubberband;\n",
" this.rubberband_canvas = rubberband[0];\n",
" this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
" this.rubberband_context.strokeStyle = \"#000000\";\n",
"\n",
" this._resize_canvas = function(width, height) {\n",
" // Keep the size of the canvas, canvas container, and rubber band\n",
" // canvas in synch.\n",
" canvas_div.css('width', width)\n",
" canvas_div.css('height', height)\n",
"\n",
" canvas.attr('width', width * mpl.ratio);\n",
" canvas.attr('height', height * mpl.ratio);\n",
" canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
"\n",
" rubberband.attr('width', width);\n",
" rubberband.attr('height', height);\n",
" }\n",
"\n",
" // Set the figure to an initial 600x600px, this will subsequently be updated\n",
" // upon first draw.\n",
" this._resize_canvas(600, 600);\n",
"\n",
" // Disable right mouse context menu.\n",
" $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
" return false;\n",
" });\n",
"\n",
" function set_focus () {\n",
" canvas.focus();\n",
" canvas_div.focus();\n",
" }\n",
"\n",
" window.setTimeout(set_focus, 100);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>');\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items) {\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) {\n",
" // put a spacer in here.\n",
" continue;\n",
" }\n",
" var button = $('<button/>');\n",
" button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
" 'ui-button-icon-only');\n",
" button.attr('role', 'button');\n",
" button.attr('aria-disabled', 'false');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
"\n",
" var icon_img = $('<span/>');\n",
" icon_img.addClass('ui-button-icon-primary ui-icon');\n",
" icon_img.addClass(image);\n",
" icon_img.addClass('ui-corner-all');\n",
"\n",
" var tooltip_span = $('<span/>');\n",
" tooltip_span.addClass('ui-button-text');\n",
" tooltip_span.html(tooltip);\n",
"\n",
" button.append(icon_img);\n",
" button.append(tooltip_span);\n",
"\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" var fmt_picker_span = $('<span/>');\n",
"\n",
" var fmt_picker = $('<select/>');\n",
" fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
" fmt_picker_span.append(fmt_picker);\n",
" nav_element.append(fmt_picker_span);\n",
" this.format_dropdown = fmt_picker[0];\n",
"\n",
" for (var ind in mpl.extensions) {\n",
" var fmt = mpl.extensions[ind];\n",
" var option = $(\n",
" '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
" fmt_picker.append(option);\n",
" }\n",
"\n",
" // Add hover states to the ui-buttons\n",
" $( \".ui-button\" ).hover(\n",
" function() { $(this).addClass(\"ui-state-hover\");},\n",
" function() { $(this).removeClass(\"ui-state-hover\");}\n",
" );\n",
"\n",
" var status_bar = $('<span class=\"mpl-message\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"}\n",
"\n",
"mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
" // which will in turn request a refresh of the image.\n",
" this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
"}\n",
"\n",
"mpl.figure.prototype.send_message = function(type, properties) {\n",
" properties['type'] = type;\n",
" properties['figure_id'] = this.id;\n",
" this.ws.send(JSON.stringify(properties));\n",
"}\n",
"\n",
"mpl.figure.prototype.send_draw_message = function() {\n",
" if (!this.waiting) {\n",
" this.waiting = true;\n",
" this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
" }\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" var format_dropdown = fig.format_dropdown;\n",
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
" fig.ondownload(fig, format);\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
" var size = msg['size'];\n",
" if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
" fig._resize_canvas(size[0], size[1]);\n",
" fig.send_message(\"refresh\", {});\n",
" };\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
" var x0 = msg['x0'] / mpl.ratio;\n",
" var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
" var x1 = msg['x1'] / mpl.ratio;\n",
" var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
" x0 = Math.floor(x0) + 0.5;\n",
" y0 = Math.floor(y0) + 0.5;\n",
" x1 = Math.floor(x1) + 0.5;\n",
" y1 = Math.floor(y1) + 0.5;\n",
" var min_x = Math.min(x0, x1);\n",
" var min_y = Math.min(y0, y1);\n",
" var width = Math.abs(x1 - x0);\n",
" var height = Math.abs(y1 - y0);\n",
"\n",
" fig.rubberband_context.clearRect(\n",
" 0, 0, fig.canvas.width / mpl.ratio, fig.canvas.height / mpl.ratio);\n",
"\n",
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
" // Updates the figure title.\n",
" fig.header.textContent = msg['label'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
" var cursor = msg['cursor'];\n",
" switch(cursor)\n",
" {\n",
" case 0:\n",
" cursor = 'pointer';\n",
" break;\n",
" case 1:\n",
" cursor = 'default';\n",
" break;\n",
" case 2:\n",
" cursor = 'crosshair';\n",
" break;\n",
" case 3:\n",
" cursor = 'move';\n",
" break;\n",
" }\n",
" fig.rubberband_canvas.style.cursor = cursor;\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_message = function(fig, msg) {\n",
" fig.message.textContent = msg['message'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
" // Request the server to send over a new figure.\n",
" fig.send_draw_message();\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
" fig.image_mode = msg['mode'];\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Called whenever the canvas gets updated.\n",
" this.send_message(\"ack\", {});\n",
"}\n",
"\n",
"// A function to construct a web socket function for onmessage handling.\n",
"// Called in the figure constructor.\n",
"mpl.figure.prototype._make_on_message_function = function(fig) {\n",
" return function socket_on_message(evt) {\n",
" if (evt.data instanceof Blob) {\n",
" /* FIXME: We get \"Resource interpreted as Image but\n",
" * transferred with MIME type text/plain:\" errors on\n",
" * Chrome. But how to set the MIME type? It doesn't seem\n",
" * to be part of the websocket stream */\n",
" evt.data.type = \"image/png\";\n",
"\n",
" /* Free the memory for the previous frames */\n",
" if (fig.imageObj.src) {\n",
" (window.URL || window.webkitURL).revokeObjectURL(\n",
" fig.imageObj.src);\n",
" }\n",
"\n",
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
" evt.data);\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
" else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
" fig.imageObj.src = evt.data;\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
"\n",
" var msg = JSON.parse(evt.data);\n",
" var msg_type = msg['type'];\n",
"\n",
" // Call the \"handle_{type}\" callback, which takes\n",
" // the figure and JSON message as its only arguments.\n",
" try {\n",
" var callback = fig[\"handle_\" + msg_type];\n",
" } catch (e) {\n",
" console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
" return;\n",
" }\n",
"\n",
" if (callback) {\n",
" try {\n",
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
" callback(fig, msg);\n",
" } catch (e) {\n",
" console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
" }\n",
" }\n",
" };\n",
"}\n",
"\n",
"// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
"mpl.findpos = function(e) {\n",
" //this section is from http://www.quirksmode.org/js/events_properties.html\n",
" var targ;\n",
" if (!e)\n",
" e = window.event;\n",
" if (e.target)\n",
" targ = e.target;\n",
" else if (e.srcElement)\n",
" targ = e.srcElement;\n",
" if (targ.nodeType == 3) // defeat Safari bug\n",
" targ = targ.parentNode;\n",
"\n",
" // jQuery normalizes the pageX and pageY\n",
" // pageX,Y are the mouse positions relative to the document\n",
" // offset() returns the position of the element relative to the document\n",
" var x = e.pageX - $(targ).offset().left;\n",
" var y = e.pageY - $(targ).offset().top;\n",
"\n",
" return {\"x\": x, \"y\": y};\n",
"};\n",
"\n",
"/*\n",
" * return a copy of an object with only non-object keys\n",
" * we need this to avoid circular references\n",
" * http://stackoverflow.com/a/24161582/3208463\n",
" */\n",
"function simpleKeys (original) {\n",
" return Object.keys(original).reduce(function (obj, key) {\n",
" if (typeof original[key] !== 'object')\n",
" obj[key] = original[key]\n",
" return obj;\n",
" }, {});\n",
"}\n",
"\n",
"mpl.figure.prototype.mouse_event = function(event, name) {\n",
" var canvas_pos = mpl.findpos(event)\n",
"\n",
" if (name === 'button_press')\n",
" {\n",
" this.canvas.focus();\n",
" this.canvas_div.focus();\n",
" }\n",
"\n",
" var x = canvas_pos.x * mpl.ratio;\n",
" var y = canvas_pos.y * mpl.ratio;\n",
"\n",
" this.send_message(name, {x: x, y: y, button: event.button,\n",
" step: event.step,\n",
" guiEvent: simpleKeys(event)});\n",
"\n",
" /* This prevents the web browser from automatically changing to\n",
" * the text insertion cursor when the button is pressed. We want\n",
" * to control all of the cursor setting manually through the\n",
" * 'cursor' event from matplotlib */\n",
" event.preventDefault();\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" // Handle any extra behaviour associated with a key event\n",
"}\n",
"\n",
"mpl.figure.prototype.key_event = function(event, name) {\n",
"\n",
" // Prevent repeat events\n",
" if (name == 'key_press')\n",
" {\n",
" if (event.which === this._key)\n",
" return;\n",
" else\n",
" this._key = event.which;\n",
" }\n",
" if (name == 'key_release')\n",
" this._key = null;\n",
"\n",
" var value = '';\n",
" if (event.ctrlKey && event.which != 17)\n",
" value += \"ctrl+\";\n",
" if (event.altKey && event.which != 18)\n",
" value += \"alt+\";\n",
" if (event.shiftKey && event.which != 16)\n",
" value += \"shift+\";\n",
"\n",
" value += 'k';\n",
" value += event.which.toString();\n",
"\n",
" this._key_event_extra(event, name);\n",
"\n",
" this.send_message(name, {key: value,\n",
" guiEvent: simpleKeys(event)});\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
" if (name == 'download') {\n",
" this.handle_save(this, null);\n",
" } else {\n",
" this.send_message(\"toolbar_button\", {name: name});\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
" this.message.textContent = tooltip;\n",
"};\n",
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
"\n",
"mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
"\n",
"mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
" // Create a \"websocket\"-like object which calls the given IPython comm\n",
" // object with the appropriate methods. Currently this is a non binary\n",
" // socket, so there is still some room for performance tuning.\n",
" var ws = {};\n",
"\n",
" ws.close = function() {\n",
" comm.close()\n",
" };\n",
" ws.send = function(m) {\n",
" //console.log('sending', m);\n",
" comm.send(m);\n",
" };\n",
" // Register the callback with on_msg.\n",
" comm.on_msg(function(msg) {\n",
" //console.log('receiving', msg['content']['data'], msg);\n",
" // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
" ws.onmessage(msg['content']['data'])\n",
" });\n",
" return ws;\n",
"}\n",
"\n",
"mpl.mpl_figure_comm = function(comm, msg) {\n",
" // This is the function which gets called when the mpl process\n",
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
"\n",
" var id = msg.content.data.id;\n",
" // Get hold of the div created by the display call when the Comm\n",
" // socket was opened in Python.\n",
" var element = $(\"#\" + id);\n",
" var ws_proxy = comm_websocket_adapter(comm)\n",
"\n",
" function ondownload(figure, format) {\n",
" window.open(figure.imageObj.src);\n",
" }\n",
"\n",
" var fig = new mpl.figure(id, ws_proxy,\n",
" ondownload,\n",
" element.get(0));\n",
"\n",
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
" // web socket which is closed, not our websocket->open comm proxy.\n",
" ws_proxy.onopen();\n",
"\n",
" fig.parent_element = element.get(0);\n",
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
" if (!fig.cell_info) {\n",
" console.error(\"Failed to find cell for figure\", id, fig);\n",
" return;\n",
" }\n",
"\n",
" var output_index = fig.cell_info[2]\n",
" var cell = fig.cell_info[0];\n",
"\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_close = function(fig, msg) {\n",
" var width = fig.canvas.width/mpl.ratio\n",
" fig.root.unbind('remove')\n",
"\n",
" // Update the output cell to use the data from the current canvas.\n",
" fig.push_to_output();\n",
" var dataURL = fig.canvas.toDataURL();\n",
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
" // the notebook keyboard shortcuts fail.\n",
" IPython.keyboard_manager.enable()\n",
" $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
" fig.close_ws(fig, msg);\n",
"}\n",
"\n",
"mpl.figure.prototype.close_ws = function(fig, msg){\n",
" fig.send_message('closing', msg);\n",
" // fig.ws.close()\n",
"}\n",
"\n",
"mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
" // Turn the data on the canvas into data in the output cell.\n",
" var width = this.canvas.width/mpl.ratio\n",
" var dataURL = this.canvas.toDataURL();\n",
" this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Tell IPython that the notebook contents must change.\n",
" IPython.notebook.set_dirty(true);\n",
" this.send_message(\"ack\", {});\n",
" var fig = this;\n",
" // Wait a second, then push the new image to the DOM so\n",
" // that it is saved nicely (might be nice to debounce this).\n",
" setTimeout(function () { fig.push_to_output() }, 1000);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>');\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items){\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) { continue; };\n",
"\n",
" var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" // Add the status bar.\n",
" var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"\n",
" // Add the close button to the window.\n",
" var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
" var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
" button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
" button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
" buttongrp.append(button);\n",
" var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
" titlebar.prepend(buttongrp);\n",
"}\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(el){\n",
" var fig = this\n",
" el.on(\"remove\", function(){\n",
"\tfig.close_ws(fig, {});\n",
" });\n",
"}\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(el){\n",
" // this is important to make the div 'focusable\n",
" el.attr('tabindex', 0)\n",
" // reach out to IPython and tell the keyboard manager to turn it's self\n",
" // off when our div gets focus\n",
"\n",
" // location in version 3\n",
" if (IPython.notebook.keyboard_manager) {\n",
" IPython.notebook.keyboard_manager.register_events(el);\n",
" }\n",
" else {\n",
" // location in version 2\n",
" IPython.keyboard_manager.register_events(el);\n",
" }\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" var manager = IPython.notebook.keyboard_manager;\n",
" if (!manager)\n",
" manager = IPython.keyboard_manager;\n",
"\n",
" // Check for shift+enter\n",
" if (event.shiftKey && event.which == 13) {\n",
" this.canvas_div.blur();\n",
" event.shiftKey = false;\n",
" // Send a \"J\" for go to next cell\n",
" event.which = 74;\n",
" event.keyCode = 74;\n",
" manager.command_mode();\n",
" manager.handle_keydown(event);\n",
" }\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" fig.ondownload(fig, null);\n",
"}\n",
"\n",
"\n",
"mpl.find_output_cell = function(html_output) {\n",
" // Return the cell and output element which can be found *uniquely* in the notebook.\n",
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
" // IPython event is triggered only after the cells have been serialised, which for\n",
" // our purposes (turning an active figure into a static one), is too late.\n",
" var cells = IPython.notebook.get_cells();\n",
" var ncells = cells.length;\n",
" for (var i=0; i<ncells; i++) {\n",
" var cell = cells[i];\n",
" if (cell.cell_type === 'code'){\n",
" for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
" var data = cell.output_area.outputs[j];\n",
" if (data.data) {\n",
" // IPython >= 3 moved mimebundle to data attribute of output\n",
" data = data.data;\n",
" }\n",
" if (data['text/html'] == html_output) {\n",
" return [cell, data, j];\n",
" }\n",
" }\n",
" }\n",
" }\n",
"}\n",
"\n",
"// Register the function which deals with the matplotlib target/channel.\n",
"// The kernel may be null if the page has been refreshed.\n",
"if (IPython.notebook.kernel != null) {\n",
" IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
"}\n"
],
"text/plain": [
"<IPython.core.display.Javascript object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<img src=\"\" width=\"800\">"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "1aa87994300a4ea29a4596a7e00529da",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"interactive(children=(FloatSlider(value=1.6, description='log10(z_loop_spread/step)', layout=Layout(height='80…"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"fig, ax = prepare_canvas(REFSC_7m)\n",
"\n",
"def get_simple_bb_scaling(\n",
" z_loop_width_step_log10_ratio,\n",
" min_log10_s=MIN_LOG10_S, \n",
" max_log10_s=MAX_LOG10_S,\n",
" in_loop_slope=IN_LOOP_SLOPE):\n",
" \n",
" s = 10**np.linspace(MIN_LOG10_S,MAX_LOG10_S,1000)\n",
"\n",
" in_loop_scaling = s**(in_loop_slope)\n",
" \n",
" between_loop_scaling_z = (\n",
" st.norm.pdf(s, loc=0, scale=np.sqrt(2)*(10**z_loop_width_step_log10_ratio)) )\n",
" \n",
" between_loop_scaling = between_loop_scaling_z\n",
" \n",
" in_loop_scaling /= in_loop_scaling[np.argmin(np.abs(np.log10(s/GLUE_AT)))]\n",
" between_loop_scaling /= between_loop_scaling[np.argmin(np.abs(np.log10(s/GLUE_AT)))]\n",
"\n",
" cp = np.exp(-s) * in_loop_scaling + (1-np.exp(-s))* between_loop_scaling\n",
" \n",
" return s, cp\n",
"\n",
"def plot_interactive():\n",
" \n",
" def update_scalings(z_loop_width_step_log10_ratio):\n",
" s,cp = get_simple_bb_scaling(\n",
" z_loop_width_step_log10_ratio,\n",
" )\n",
" ax[0].lines[0].set_data(np.log10(s), np.log10(cp))\n",
"\n",
" ax[1].lines[0].set_data(\n",
" (np.log10(s)[1:] + np.log10(s)[:-1])/2,\n",
" np.diff(np.log10(cp)) / np.diff(np.log10(s))\n",
" )\n",
" \n",
" \n",
" widget_z_loop_width_step_log10_ratio = widgets.FloatSlider(\n",
" description='log10(z_loop_spread/step)',\n",
" layout=widgets.Layout(width='50%', height='80px'),\n",
" value=1.6,\n",
" min=-1, \n",
" max=4)\n",
" interact(update_scalings, z_loop_width_step_log10_ratio=widget_z_loop_width_step_log10_ratio)\n",
" \n",
"plot_interactive()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Bottle brush with RW angular loop orientation"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## No drift"
]
},
{
"cell_type": "markdown",
"metadata": {
"ExecuteTime": {
"end_time": "2017-05-26T20:56:05.048759",
"start_time": "2017-05-26T20:56:05.029247"
}
},
"source": [
"A bottlebrush with angular correlations of loops.\n",
"- Below the loop size the scaling is calculated as s^-3/2.\n",
"- Above the loop size, contact probability is the probability for two particles to have the same z-component and same angle.\n",
" - The probability of an overlap in z is calculated as in (1).\n",
" - The angular orientations of loops perform a RW, the probability of an overlap == the return probability.\n",
" - The 2nd slider sets $log10 (RW\\_step\\_in\\_radians / 2 \\pi ) $\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"ExecuteTime": {
"end_time": "2019-04-25T15:22:19.110110Z",
"start_time": "2019-04-25T15:22:19.101796Z"
}
},
"outputs": [],
"source": [
"%matplotlib notebook"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"ExecuteTime": {
"end_time": "2020-06-22T20:21:51.263905Z",
"start_time": "2020-06-22T20:21:51.115571Z"
}
},
"outputs": [
{
"data": {
"application/javascript": [
"/* Put everything inside the global mpl namespace */\n",
"window.mpl = {};\n",
"\n",
"\n",
"mpl.get_websocket_type = function() {\n",
" if (typeof(WebSocket) !== 'undefined') {\n",
" return WebSocket;\n",
" } else if (typeof(MozWebSocket) !== 'undefined') {\n",
" return MozWebSocket;\n",
" } else {\n",
" alert('Your browser does not have WebSocket support. ' +\n",
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
" 'Firefox 4 and 5 are also supported but you ' +\n",
" 'have to enable WebSockets in about:config.');\n",
" };\n",
"}\n",
"\n",
"mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
" this.id = figure_id;\n",
"\n",
" this.ws = websocket;\n",
"\n",
" this.supports_binary = (this.ws.binaryType != undefined);\n",
"\n",
" if (!this.supports_binary) {\n",
" var warnings = document.getElementById(\"mpl-warnings\");\n",
" if (warnings) {\n",
" warnings.style.display = 'block';\n",
" warnings.textContent = (\n",
" \"This browser does not support binary websocket messages. \" +\n",
" \"Performance may be slow.\");\n",
" }\n",
" }\n",
"\n",
" this.imageObj = new Image();\n",
"\n",
" this.context = undefined;\n",
" this.message = undefined;\n",
" this.canvas = undefined;\n",
" this.rubberband_canvas = undefined;\n",
" this.rubberband_context = undefined;\n",
" this.format_dropdown = undefined;\n",
"\n",
" this.image_mode = 'full';\n",
"\n",
" this.root = $('<div/>');\n",
" this._root_extra_style(this.root)\n",
" this.root.attr('style', 'display: inline-block');\n",
"\n",
" $(parent_element).append(this.root);\n",
"\n",
" this._init_header(this);\n",
" this._init_canvas(this);\n",
" this._init_toolbar(this);\n",
"\n",
" var fig = this;\n",
"\n",
" this.waiting = false;\n",
"\n",
" this.ws.onopen = function () {\n",
" fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
" fig.send_message(\"send_image_mode\", {});\n",
" if (mpl.ratio != 1) {\n",
" fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
" }\n",
" fig.send_message(\"refresh\", {});\n",
" }\n",
"\n",
" this.imageObj.onload = function() {\n",
" if (fig.image_mode == 'full') {\n",
" // Full images could contain transparency (where diff images\n",
" // almost always do), so we need to clear the canvas so that\n",
" // there is no ghosting.\n",
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
" }\n",
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
" };\n",
"\n",
" this.imageObj.onunload = function() {\n",
" fig.ws.close();\n",
" }\n",
"\n",
" this.ws.onmessage = this._make_on_message_function(this);\n",
"\n",
" this.ondownload = ondownload;\n",
"}\n",
"\n",
"mpl.figure.prototype._init_header = function() {\n",
" var titlebar = $(\n",
" '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
" 'ui-helper-clearfix\"/>');\n",
" var titletext = $(\n",
" '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
" 'text-align: center; padding: 3px;\"/>');\n",
" titlebar.append(titletext)\n",
" this.root.append(titlebar);\n",
" this.header = titletext[0];\n",
"}\n",
"\n",
"\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._init_canvas = function() {\n",
" var fig = this;\n",
"\n",
" var canvas_div = $('<div/>');\n",
"\n",
" canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
"\n",
" function canvas_keyboard_event(event) {\n",
" return fig.key_event(event, event['data']);\n",
" }\n",
"\n",
" canvas_div.keydown('key_press', canvas_keyboard_event);\n",
" canvas_div.keyup('key_release', canvas_keyboard_event);\n",
" this.canvas_div = canvas_div\n",
" this._canvas_extra_style(canvas_div)\n",
" this.root.append(canvas_div);\n",
"\n",
" var canvas = $('<canvas/>');\n",
" canvas.addClass('mpl-canvas');\n",
" canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
"\n",
" this.canvas = canvas[0];\n",
" this.context = canvas[0].getContext(\"2d\");\n",
"\n",
" var backingStore = this.context.backingStorePixelRatio ||\n",
"\tthis.context.webkitBackingStorePixelRatio ||\n",
"\tthis.context.mozBackingStorePixelRatio ||\n",
"\tthis.context.msBackingStorePixelRatio ||\n",
"\tthis.context.oBackingStorePixelRatio ||\n",
"\tthis.context.backingStorePixelRatio || 1;\n",
"\n",
" mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
"\n",
" var rubberband = $('<canvas/>');\n",
" rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
"\n",
" var pass_mouse_events = true;\n",
"\n",
" canvas_div.resizable({\n",
" start: function(event, ui) {\n",
" pass_mouse_events = false;\n",
" },\n",
" resize: function(event, ui) {\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" stop: function(event, ui) {\n",
" pass_mouse_events = true;\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" });\n",
"\n",
" function mouse_event_fn(event) {\n",
" if (pass_mouse_events)\n",
" return fig.mouse_event(event, event['data']);\n",
" }\n",
"\n",
" rubberband.mousedown('button_press', mouse_event_fn);\n",
" rubberband.mouseup('button_release', mouse_event_fn);\n",
" // Throttle sequential mouse events to 1 every 20ms.\n",
" rubberband.mousemove('motion_notify', mouse_event_fn);\n",
"\n",
" rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
" rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
"\n",
" canvas_div.on(\"wheel\", function (event) {\n",
" event = event.originalEvent;\n",
" event['data'] = 'scroll'\n",
" if (event.deltaY < 0) {\n",
" event.step = 1;\n",
" } else {\n",
" event.step = -1;\n",
" }\n",
" mouse_event_fn(event);\n",
" });\n",
"\n",
" canvas_div.append(canvas);\n",
" canvas_div.append(rubberband);\n",
"\n",
" this.rubberband = rubberband;\n",
" this.rubberband_canvas = rubberband[0];\n",
" this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
" this.rubberband_context.strokeStyle = \"#000000\";\n",
"\n",
" this._resize_canvas = function(width, height) {\n",
" // Keep the size of the canvas, canvas container, and rubber band\n",
" // canvas in synch.\n",
" canvas_div.css('width', width)\n",
" canvas_div.css('height', height)\n",
"\n",
" canvas.attr('width', width * mpl.ratio);\n",
" canvas.attr('height', height * mpl.ratio);\n",
" canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
"\n",
" rubberband.attr('width', width);\n",
" rubberband.attr('height', height);\n",
" }\n",
"\n",
" // Set the figure to an initial 600x600px, this will subsequently be updated\n",
" // upon first draw.\n",
" this._resize_canvas(600, 600);\n",
"\n",
" // Disable right mouse context menu.\n",
" $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
" return false;\n",
" });\n",
"\n",
" function set_focus () {\n",
" canvas.focus();\n",
" canvas_div.focus();\n",
" }\n",
"\n",
" window.setTimeout(set_focus, 100);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>');\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items) {\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) {\n",
" // put a spacer in here.\n",
" continue;\n",
" }\n",
" var button = $('<button/>');\n",
" button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
" 'ui-button-icon-only');\n",
" button.attr('role', 'button');\n",
" button.attr('aria-disabled', 'false');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
"\n",
" var icon_img = $('<span/>');\n",
" icon_img.addClass('ui-button-icon-primary ui-icon');\n",
" icon_img.addClass(image);\n",
" icon_img.addClass('ui-corner-all');\n",
"\n",
" var tooltip_span = $('<span/>');\n",
" tooltip_span.addClass('ui-button-text');\n",
" tooltip_span.html(tooltip);\n",
"\n",
" button.append(icon_img);\n",
" button.append(tooltip_span);\n",
"\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" var fmt_picker_span = $('<span/>');\n",
"\n",
" var fmt_picker = $('<select/>');\n",
" fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
" fmt_picker_span.append(fmt_picker);\n",
" nav_element.append(fmt_picker_span);\n",
" this.format_dropdown = fmt_picker[0];\n",
"\n",
" for (var ind in mpl.extensions) {\n",
" var fmt = mpl.extensions[ind];\n",
" var option = $(\n",
" '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
" fmt_picker.append(option);\n",
" }\n",
"\n",
" // Add hover states to the ui-buttons\n",
" $( \".ui-button\" ).hover(\n",
" function() { $(this).addClass(\"ui-state-hover\");},\n",
" function() { $(this).removeClass(\"ui-state-hover\");}\n",
" );\n",
"\n",
" var status_bar = $('<span class=\"mpl-message\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"}\n",
"\n",
"mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
" // which will in turn request a refresh of the image.\n",
" this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
"}\n",
"\n",
"mpl.figure.prototype.send_message = function(type, properties) {\n",
" properties['type'] = type;\n",
" properties['figure_id'] = this.id;\n",
" this.ws.send(JSON.stringify(properties));\n",
"}\n",
"\n",
"mpl.figure.prototype.send_draw_message = function() {\n",
" if (!this.waiting) {\n",
" this.waiting = true;\n",
" this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
" }\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" var format_dropdown = fig.format_dropdown;\n",
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
" fig.ondownload(fig, format);\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
" var size = msg['size'];\n",
" if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
" fig._resize_canvas(size[0], size[1]);\n",
" fig.send_message(\"refresh\", {});\n",
" };\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
" var x0 = msg['x0'] / mpl.ratio;\n",
" var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
" var x1 = msg['x1'] / mpl.ratio;\n",
" var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
" x0 = Math.floor(x0) + 0.5;\n",
" y0 = Math.floor(y0) + 0.5;\n",
" x1 = Math.floor(x1) + 0.5;\n",
" y1 = Math.floor(y1) + 0.5;\n",
" var min_x = Math.min(x0, x1);\n",
" var min_y = Math.min(y0, y1);\n",
" var width = Math.abs(x1 - x0);\n",
" var height = Math.abs(y1 - y0);\n",
"\n",
" fig.rubberband_context.clearRect(\n",
" 0, 0, fig.canvas.width / mpl.ratio, fig.canvas.height / mpl.ratio);\n",
"\n",
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
" // Updates the figure title.\n",
" fig.header.textContent = msg['label'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
" var cursor = msg['cursor'];\n",
" switch(cursor)\n",
" {\n",
" case 0:\n",
" cursor = 'pointer';\n",
" break;\n",
" case 1:\n",
" cursor = 'default';\n",
" break;\n",
" case 2:\n",
" cursor = 'crosshair';\n",
" break;\n",
" case 3:\n",
" cursor = 'move';\n",
" break;\n",
" }\n",
" fig.rubberband_canvas.style.cursor = cursor;\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_message = function(fig, msg) {\n",
" fig.message.textContent = msg['message'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
" // Request the server to send over a new figure.\n",
" fig.send_draw_message();\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
" fig.image_mode = msg['mode'];\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Called whenever the canvas gets updated.\n",
" this.send_message(\"ack\", {});\n",
"}\n",
"\n",
"// A function to construct a web socket function for onmessage handling.\n",
"// Called in the figure constructor.\n",
"mpl.figure.prototype._make_on_message_function = function(fig) {\n",
" return function socket_on_message(evt) {\n",
" if (evt.data instanceof Blob) {\n",
" /* FIXME: We get \"Resource interpreted as Image but\n",
" * transferred with MIME type text/plain:\" errors on\n",
" * Chrome. But how to set the MIME type? It doesn't seem\n",
" * to be part of the websocket stream */\n",
" evt.data.type = \"image/png\";\n",
"\n",
" /* Free the memory for the previous frames */\n",
" if (fig.imageObj.src) {\n",
" (window.URL || window.webkitURL).revokeObjectURL(\n",
" fig.imageObj.src);\n",
" }\n",
"\n",
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
" evt.data);\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
" else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
" fig.imageObj.src = evt.data;\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
"\n",
" var msg = JSON.parse(evt.data);\n",
" var msg_type = msg['type'];\n",
"\n",
" // Call the \"handle_{type}\" callback, which takes\n",
" // the figure and JSON message as its only arguments.\n",
" try {\n",
" var callback = fig[\"handle_\" + msg_type];\n",
" } catch (e) {\n",
" console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
" return;\n",
" }\n",
"\n",
" if (callback) {\n",
" try {\n",
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
" callback(fig, msg);\n",
" } catch (e) {\n",
" console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
" }\n",
" }\n",
" };\n",
"}\n",
"\n",
"// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
"mpl.findpos = function(e) {\n",
" //this section is from http://www.quirksmode.org/js/events_properties.html\n",
" var targ;\n",
" if (!e)\n",
" e = window.event;\n",
" if (e.target)\n",
" targ = e.target;\n",
" else if (e.srcElement)\n",
" targ = e.srcElement;\n",
" if (targ.nodeType == 3) // defeat Safari bug\n",
" targ = targ.parentNode;\n",
"\n",
" // jQuery normalizes the pageX and pageY\n",
" // pageX,Y are the mouse positions relative to the document\n",
" // offset() returns the position of the element relative to the document\n",
" var x = e.pageX - $(targ).offset().left;\n",
" var y = e.pageY - $(targ).offset().top;\n",
"\n",
" return {\"x\": x, \"y\": y};\n",
"};\n",
"\n",
"/*\n",
" * return a copy of an object with only non-object keys\n",
" * we need this to avoid circular references\n",
" * http://stackoverflow.com/a/24161582/3208463\n",
" */\n",
"function simpleKeys (original) {\n",
" return Object.keys(original).reduce(function (obj, key) {\n",
" if (typeof original[key] !== 'object')\n",
" obj[key] = original[key]\n",
" return obj;\n",
" }, {});\n",
"}\n",
"\n",
"mpl.figure.prototype.mouse_event = function(event, name) {\n",
" var canvas_pos = mpl.findpos(event)\n",
"\n",
" if (name === 'button_press')\n",
" {\n",
" this.canvas.focus();\n",
" this.canvas_div.focus();\n",
" }\n",
"\n",
" var x = canvas_pos.x * mpl.ratio;\n",
" var y = canvas_pos.y * mpl.ratio;\n",
"\n",
" this.send_message(name, {x: x, y: y, button: event.button,\n",
" step: event.step,\n",
" guiEvent: simpleKeys(event)});\n",
"\n",
" /* This prevents the web browser from automatically changing to\n",
" * the text insertion cursor when the button is pressed. We want\n",
" * to control all of the cursor setting manually through the\n",
" * 'cursor' event from matplotlib */\n",
" event.preventDefault();\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" // Handle any extra behaviour associated with a key event\n",
"}\n",
"\n",
"mpl.figure.prototype.key_event = function(event, name) {\n",
"\n",
" // Prevent repeat events\n",
" if (name == 'key_press')\n",
" {\n",
" if (event.which === this._key)\n",
" return;\n",
" else\n",
" this._key = event.which;\n",
" }\n",
" if (name == 'key_release')\n",
" this._key = null;\n",
"\n",
" var value = '';\n",
" if (event.ctrlKey && event.which != 17)\n",
" value += \"ctrl+\";\n",
" if (event.altKey && event.which != 18)\n",
" value += \"alt+\";\n",
" if (event.shiftKey && event.which != 16)\n",
" value += \"shift+\";\n",
"\n",
" value += 'k';\n",
" value += event.which.toString();\n",
"\n",
" this._key_event_extra(event, name);\n",
"\n",
" this.send_message(name, {key: value,\n",
" guiEvent: simpleKeys(event)});\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
" if (name == 'download') {\n",
" this.handle_save(this, null);\n",
" } else {\n",
" this.send_message(\"toolbar_button\", {name: name});\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
" this.message.textContent = tooltip;\n",
"};\n",
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
"\n",
"mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
"\n",
"mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
" // Create a \"websocket\"-like object which calls the given IPython comm\n",
" // object with the appropriate methods. Currently this is a non binary\n",
" // socket, so there is still some room for performance tuning.\n",
" var ws = {};\n",
"\n",
" ws.close = function() {\n",
" comm.close()\n",
" };\n",
" ws.send = function(m) {\n",
" //console.log('sending', m);\n",
" comm.send(m);\n",
" };\n",
" // Register the callback with on_msg.\n",
" comm.on_msg(function(msg) {\n",
" //console.log('receiving', msg['content']['data'], msg);\n",
" // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
" ws.onmessage(msg['content']['data'])\n",
" });\n",
" return ws;\n",
"}\n",
"\n",
"mpl.mpl_figure_comm = function(comm, msg) {\n",
" // This is the function which gets called when the mpl process\n",
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
"\n",
" var id = msg.content.data.id;\n",
" // Get hold of the div created by the display call when the Comm\n",
" // socket was opened in Python.\n",
" var element = $(\"#\" + id);\n",
" var ws_proxy = comm_websocket_adapter(comm)\n",
"\n",
" function ondownload(figure, format) {\n",
" window.open(figure.imageObj.src);\n",
" }\n",
"\n",
" var fig = new mpl.figure(id, ws_proxy,\n",
" ondownload,\n",
" element.get(0));\n",
"\n",
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
" // web socket which is closed, not our websocket->open comm proxy.\n",
" ws_proxy.onopen();\n",
"\n",
" fig.parent_element = element.get(0);\n",
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
" if (!fig.cell_info) {\n",
" console.error(\"Failed to find cell for figure\", id, fig);\n",
" return;\n",
" }\n",
"\n",
" var output_index = fig.cell_info[2]\n",
" var cell = fig.cell_info[0];\n",
"\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_close = function(fig, msg) {\n",
" var width = fig.canvas.width/mpl.ratio\n",
" fig.root.unbind('remove')\n",
"\n",
" // Update the output cell to use the data from the current canvas.\n",
" fig.push_to_output();\n",
" var dataURL = fig.canvas.toDataURL();\n",
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
" // the notebook keyboard shortcuts fail.\n",
" IPython.keyboard_manager.enable()\n",
" $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
" fig.close_ws(fig, msg);\n",
"}\n",
"\n",
"mpl.figure.prototype.close_ws = function(fig, msg){\n",
" fig.send_message('closing', msg);\n",
" // fig.ws.close()\n",
"}\n",
"\n",
"mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
" // Turn the data on the canvas into data in the output cell.\n",
" var width = this.canvas.width/mpl.ratio\n",
" var dataURL = this.canvas.toDataURL();\n",
" this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Tell IPython that the notebook contents must change.\n",
" IPython.notebook.set_dirty(true);\n",
" this.send_message(\"ack\", {});\n",
" var fig = this;\n",
" // Wait a second, then push the new image to the DOM so\n",
" // that it is saved nicely (might be nice to debounce this).\n",
" setTimeout(function () { fig.push_to_output() }, 1000);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>');\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items){\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) { continue; };\n",
"\n",
" var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" // Add the status bar.\n",
" var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"\n",
" // Add the close button to the window.\n",
" var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
" var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
" button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
" button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
" buttongrp.append(button);\n",
" var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
" titlebar.prepend(buttongrp);\n",
"}\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(el){\n",
" var fig = this\n",
" el.on(\"remove\", function(){\n",
"\tfig.close_ws(fig, {});\n",
" });\n",
"}\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(el){\n",
" // this is important to make the div 'focusable\n",
" el.attr('tabindex', 0)\n",
" // reach out to IPython and tell the keyboard manager to turn it's self\n",
" // off when our div gets focus\n",
"\n",
" // location in version 3\n",
" if (IPython.notebook.keyboard_manager) {\n",
" IPython.notebook.keyboard_manager.register_events(el);\n",
" }\n",
" else {\n",
" // location in version 2\n",
" IPython.keyboard_manager.register_events(el);\n",
" }\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" var manager = IPython.notebook.keyboard_manager;\n",
" if (!manager)\n",
" manager = IPython.keyboard_manager;\n",
"\n",
" // Check for shift+enter\n",
" if (event.shiftKey && event.which == 13) {\n",
" this.canvas_div.blur();\n",
" event.shiftKey = false;\n",
" // Send a \"J\" for go to next cell\n",
" event.which = 74;\n",
" event.keyCode = 74;\n",
" manager.command_mode();\n",
" manager.handle_keydown(event);\n",
" }\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" fig.ondownload(fig, null);\n",
"}\n",
"\n",
"\n",
"mpl.find_output_cell = function(html_output) {\n",
" // Return the cell and output element which can be found *uniquely* in the notebook.\n",
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
" // IPython event is triggered only after the cells have been serialised, which for\n",
" // our purposes (turning an active figure into a static one), is too late.\n",
" var cells = IPython.notebook.get_cells();\n",
" var ncells = cells.length;\n",
" for (var i=0; i<ncells; i++) {\n",
" var cell = cells[i];\n",
" if (cell.cell_type === 'code'){\n",
" for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
" var data = cell.output_area.outputs[j];\n",
" if (data.data) {\n",
" // IPython >= 3 moved mimebundle to data attribute of output\n",
" data = data.data;\n",
" }\n",
" if (data['text/html'] == html_output) {\n",
" return [cell, data, j];\n",
" }\n",
" }\n",
" }\n",
" }\n",
"}\n",
"\n",
"// Register the function which deals with the matplotlib target/channel.\n",
"// The kernel may be null if the page has been refreshed.\n",
"if (IPython.notebook.kernel != null) {\n",
" IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
"}\n"
],
"text/plain": [
"<IPython.core.display.Javascript object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<img src=\"\" width=\"800\">"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "2480274491754c0f9285f535ad21f69e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"interactive(children=(FloatSlider(value=1.4, description='log10(z_loop_spread/step)', layout=Layout(height='80…"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"fig, ax =prepare_canvas(REFSC_60m,80000)\n",
"#fig, ax =prepare_canvas(REFSC_7m,60000)\n",
"\n",
"def get_simple_bb_scaling(\n",
" z_loop_width_step_log10_ratio,\n",
" ang_rw_step,\n",
" ang_loop_spread,\n",
" min_log10_s=MIN_LOG10_S, \n",
" max_log10_s=MAX_LOG10_S):\n",
" \n",
" s = 10**np.linspace(MIN_LOG10_S,MAX_LOG10_S,1000)\n",
"\n",
" in_loop_scaling = s**(-3/2)\n",
"\n",
" between_loop_scaling_z = (\n",
" st.norm.pdf(s, loc=0, scale=np.sqrt(2)*(10**z_loop_width_step_log10_ratio)) )\n",
" \n",
" between_loop_scaling_ang = np.vstack(\n",