https://github.com/adaptlearning/adapt_authoring/wiki/Installing-FFmpeg
ffmpeg -i videofile.mp4 audiofile.wav
https://github.com/adaptlearning/adapt_authoring/wiki/Installing-FFmpeg
ffmpeg -i videofile.mp4 audiofile.wav
from sympy import * | |
init_printing(use_unicode=False, wrap_line=False, no_global=True) | |
x = Symbol('x', positive=True) | |
xmax = Symbol('xmax', positive=True) | |
sigma = Symbol('sigma', positive=True) | |
mu = Symbol('mu') | |
lx = log(x)-log(xmax-x) |
import subprocess | |
import os | |
import glob | |
for filename in glob.iglob(os.path.join(".", "**", "*.nc"), recursive=True): | |
if os.stat(filename).st_size < 50: | |
continue | |
result = subprocess.run(["gdalinfo.exe", filename], stdout=subprocess.PIPE) | |
if result.stdout.rfind(b"COMPRESSION=") > 0: |
# This file contains code to save 64 samples as a syx file for Novation Circuit | |
# | |
# * It reads a single long wave file. | |
# * splits it into 64 equal chunks | |
# * crops the sound | |
# * adds a super fast fadein and "an appropriate fadeout". To remove clicks | |
# * normalizes every sample | |
# * Saves the whole thing as a syx file. | |
# |
import numpy as np | |
import heapq | |
import scipy.ndimage | |
# lebrocq et al. | |
# https://www.sciencedirect.com/science/article/pii/S0098300406000781?via%3Dihub | |
def balanceflux(Z, P, n=1): | |
""" |
# -*- coding: utf-8 -*- | |
""" | |
Created on Thu Feb 6 15:01:40 2020 | |
@author: aslak grinsted | |
""" | |
import numpy as np | |
import matplotlib.pyplot as plt | |
from numpy import nan |
# | |
# Snippet to empirically determine credible intervals for return period plots | |
# | |
# aslak grinsted 2021 | |
# | |
import numpy as np | |
from scipy.stats import beta |
figure.facecolor: white | |
figure.dpi: 200 | |
savefig.dpi: 600 | |
figure.figsize: 3.3,2.2 | |
axes.facecolor: white | |
figure.subplot.bottom: 0.01 | |
figure.subplot.left: 0.01 | |
figure.subplot.right: 0.99 | |
figure.subplot.wspace: 0.2 |
import rioxarray as rio | |
from rasterio.enums import Resampling | |
import xarray as xr | |
import numpy as np | |
ds = rio.open_rasterio('BedMachineGreenland-v5.nc') | |
props_to_save = ["thickness", "surface", "bed", "errbed"] | |
ds.thickness.rio.write_nodata(0, inplace=True) |
import numpy as np | |
import pandas as pd | |
import geopandas as gpd | |
from shapely.geometry import Point, Polygon | |
zwally = np.loadtxt('grndrainagesystems_ekholm.txt',skiprows=7) | |
regions = np.unique(zwally[:,0]) | |
for region in regions: | |
z = zwally[np.abs(zwally[:,0]-region)<0.001,1:] |