View rosenbrock.r
rosen_height <- function(x,y) { | |
100 * (y-x^2)^2 + (1-x)^2 | |
} | |
gradient <- function(x,y) { | |
val_x <- -400*x*(y-x^2)-2*(1-x) | |
val_y <- 200*(y-x^2) | |
return( c(val_x, val_y) ) | |
} |
View get-cognito-cfd-target.yaml
--- | |
# | |
# This template example assumes a UserPool and UserPoolDomain exist. | |
# The function of this is to produce a custom resource with an attribute | |
# that can be referenced for DNSName of an Route53::RecordSet AliasTarget. | |
# | |
# AliasTarget: | |
# HostedZone: Z2FDTNDATAQYW2 | |
# DNSNAME: !GetAtt UPDomain.CloudFrontDistribution |
View .Rprofile
options( | |
repos = c(CRAN = "https://cran.rstudio.com/"), | |
browserNLdisabled = TRUE, | |
deparse.max.lines = 2) | |
# Set lib path | |
.libPaths( "~/R/x86_64-pc-linux-gnu-library/dev/" ) | |
if (interactive()) { | |
suppressMessages(require(devtools)) |
View pnorm_explore.R
# regarding: https://www.reddit.com/r/Rlanguage/comments/d0ytw7/issues_of_bias_with_rnorm/ | |
# set the RNG seed so the results are reporducible | |
set.seed(12345) | |
# Generate 100 target means beteen 0 and 100 from the uniform distribution | |
generated_means <- runif(100, 0, 100) | |
# Generate 100 standard deviation values also from uniform distribution | |
generated_sdev <- runif(100, 1, 20) |
View target.sh
#!/bin/bash | |
# Consider the following structure where this script is target.sh | |
# /tmp/ | |
# ├── target.sh | |
# └── l1 | |
# ├── one.sh -> ../target.sh | |
# └── l2 | |
# └── two.sh -> ../one.sh | |
# From your home directory run: |
View performance_dimension.json
{ | |
"MAPT_data_points":[ | |
{ "performer": "Alice", | |
"time": "2019-01-01", | |
"measure": "Documentation Rate", | |
"performance": "0.90" | |
}, | |
{ "performer": "Alice", | |
"time": "2019-02-01", | |
"measure": "Documentation Rate", |
View str_combinations.R
library(gtools) | |
demo_input <- c("fname midname lname","doe john e") #only 2 'names' in this example list. | |
split_list <- strsplit(demo_input, " |-") | |
make_combinations <- function(x){ | |
# Use permutations from the gtools package | |
name_grid <- permutations(3,3,x) | |
apply(X=name_grid, MARGIN=1, FUN=paste0, collapse=' ') |
View draw_shape.R
# DrawShape | |
#' @title Draw Shape | |
#' @param n height of shape in number of rows | |
#' @description If n is odd, draw a diamond pattern. | |
#' If n is even, draw an hourglass pattern. | |
#' @note e.g. n = 6 | |
#' ##### | |
#' ### | |
#' # |
View munge_mapt_obs.r
library(readr) | |
library(dplyr) | |
library(tibble) | |
# Input CSV | |
input_path <- '/tmp/dahee_coding.csv' | |
input_df <- read_csv(input_path) | |
# Veena's observations are row 1 |
View bkgd_ave.R
library(tibble) | |
library(dplyr) | |
count_data <- tibble::tribble( | |
~id, ~numerator, ~denominator, | |
"Aly", 14, 20, | |
"Aly", 13, 20, | |
"Aly", 12, 20, | |
"Bob", 11, 20, | |
"Bob", 12, 20, |
NewerOlder