Skip to content

Instantly share code, notes, and snippets.

@habakan
Created February 4, 2022 12:59
Show Gist options
  • Save habakan/943ec48cf4e6b27043e5f4c4562a7e2e to your computer and use it in GitHub Desktop.
Save habakan/943ec48cf4e6b27043e5f4c4562a7e2e to your computer and use it in GitHub Desktop.
Partial Staking.ipynb
Display the source blob
Display the rendered blob
Raw
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"name": "Partial Staking.ipynb",
"provenance": [],
"collapsed_sections": [],
"authorship_tag": "ABX9TyOIyNuuX0jMl5JlQOSgvV0N",
"include_colab_link": true
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"language_info": {
"name": "python"
}
},
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "view-in-github",
"colab_type": "text"
},
"source": [
"<a href=\"https://colab.research.google.com/gist/habakan/943ec48cf4e6b27043e5f4c4562a7e2e/partial-staking.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
]
},
{
"cell_type": "markdown",
"source": [
"# Partial Staking Script"
],
"metadata": {
"id": "ARmskyF2yqDy"
}
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "llN3c8HbrCTg"
},
"outputs": [],
"source": [
"!pip install numerapi"
]
},
{
"cell_type": "code",
"source": [
"import numerapi\n",
"from tqdm.auto import tqdm\n",
"\n",
"\n",
"public_id = \"NUMERAI_PUBLIC_ID\"\n",
"secret_key = \"NUMERAI_SECRET_KEY\"\n",
"napi = numerapi.NumerAPI(public_id=public_id, secret_key=secret_key)\n",
"signals_napi = numerapi.SignalsAPI(public_id=public_id, secret_key=secret_key)\n",
"stake_weight = 0.5"
],
"metadata": {
"id": "xGDhuVsDrLKy"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"class Perfetcher:\n",
" def __init__(self, napi, signals=False):\n",
" self.napi = napi\n",
" self.signals = signals\n",
" self.round_resolved_name = 'roundResolved'\n",
" if signals:\n",
" self.fetch = self.fetch_signals_round_performances\n",
" self.payout_name = 'payout'\n",
" else:\n",
" self.fetch = self.fetch_round_performances\n",
" self.payout_name = 'payoutSettled'\n",
"\n",
" def fetch_models(self):\n",
" self.models = self.napi.get_models()\n",
"\n",
" def fetch_round_performances(self, username):\n",
" query = \"\"\"\n",
" query($username: String!) {\n",
" v2UserProfile(username: $username) {\n",
" latestRoundPerformances {\n",
" changeRequestActualAmount\n",
" changeRequestAmount\n",
" changeRequestType\n",
" correlation\n",
" correlationWithMetamodel\n",
" date\n",
" leaderboardBonus\n",
" mmc\n",
" payoutPending\n",
" payoutPendingDelta\n",
" payoutSettled\n",
" roundNumber\n",
" roundOpenTime\n",
" roundResolveTime\n",
" roundResolved\n",
" selectedStakeValue\n",
" tournamentName\n",
" weekPayoutSelection\n",
" }\n",
" }\n",
" }\n",
" \"\"\"\n",
" arguments = {'username': username}\n",
" data = self.napi.raw_query(query, arguments)['data']['v2UserProfile']['latestRoundPerformances']\n",
" return data\n",
"\n",
" def fetch_signals_round_performances(self, username):\n",
" query = \"\"\"\n",
" query($modelName: String!) {\n",
" v2SignalsProfile(modelName: $modelName) {\n",
" roundModelPerformances {\n",
" payout\n",
" roundNumber\n",
" roundOpenTime\n",
" roundResolveTime\n",
" roundResolved\n",
" selectedStakeValue\n",
" }\n",
" }\n",
" }\n",
" \"\"\"\n",
" arguments = {'modelName': username}\n",
" data = self.napi.raw_query(query, arguments)['data']['v2SignalsProfile']['roundModelPerformances']\n",
" return data\n",
"\n",
" def get_latest_resolved_round(self, pfs):\n",
" if not self.signals:\n",
" pfs = pfs[::-1]\n",
" for round_pf in pfs:\n",
" if round_pf[self.round_resolved_name]:\n",
" return round_pf\n",
"\n",
" def get_payout(self, round_pf):\n",
" return float(round_pf[self.payout_name]) if round_pf[self.payout_name] else 0\n",
" \n",
" def get_latest_payout(self, pfs):\n",
" return self.get_payout(self.get_latest_resolved_round(pfs))\n",
"\n",
" def fetch_all_performances(self):\n",
" self.fetch_models()\n",
" pfs = {}\n",
" for model_name in tqdm(self.models.keys()):\n",
" try:\n",
" pfs[model_name] = self.fetch(model_name)\n",
" except Exception as e:\n",
" print(f'error models is {model_name}')\n",
" print(e)\n",
" return pfs\n",
"\n",
" def fetch_latest_payouts(self):\n",
" self.fetch_models()\n",
" payouts = {}\n",
" for model_name in tqdm(self.models.keys()):\n",
" try:\n",
" payouts[model_name] = self.get_latest_payout(self.fetch(model_name))\n",
" except Exception as e:\n",
" print(f'error models is {model_name}')\n",
" print(e)\n",
" return payouts"
],
"metadata": {
"id": "USdfnMj-ruin"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"def calc_weighted_stake(payouts, stake_weight):\n",
" return {key: value * stake_weight for (key, value) in payouts.items()}"
],
"metadata": {
"id": "agry7GJHWj7X"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"## Classic Staking"
],
"metadata": {
"id": "aDycHTCxyl-a"
}
},
{
"cell_type": "code",
"source": [
"classic_fetcher = Perfetcher(napi)\n",
"classic_latest_payouts = classic_fetcher.fetch_latest_payouts()\n",
"print(classic_latest_payouts)"
],
"metadata": {
"id": "gRnAwa4rvKaC"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"classic_stake = calc_weighted_stake(classic_latest_payouts, stake_weight)\n",
"print(classic_stake)"
],
"metadata": {
"id": "i-YNkhicyX7B"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"# Caution: This staking script can not interrupt.\n",
"\n",
"for model_name, stake in tqdm(classic_stake.items()):\n",
" if stake <= 0:\n",
" continue\n",
" try:\n",
" napi.stake_increase(stake, classic_fetcher.models[model_name])\n",
" except Exception as e:\n",
" print(f'error models is {model_name}')\n",
" print(e)"
],
"metadata": {
"id": "2sMq5kNvC0Yt"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"## Signals Staking"
],
"metadata": {
"id": "ApzJ2zTJyj0U"
}
},
{
"cell_type": "code",
"source": [
"signals_fetcher = Perfetcher(signals_napi, True)\n",
"signals_latest_payouts = signals_fetcher.fetch_latest_payouts()\n",
"print(signals_latest_payouts)"
],
"metadata": {
"id": "5a34MNxhuaEg"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"signals_stake = calc_weighted_stake(signals_latest_payouts, stake_weight)\n",
"print(signals_stake)"
],
"metadata": {
"id": "TZokqBAXCbxH"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"def signals_stake_increase(nmr, model_id, signals_napi):\n",
" query = '''\n",
" mutation($value: String!\n",
" $type: String!\n",
" $tournamentNumber: Int!\n",
" $modelId: String) {\n",
" v2ChangeStake(value: $value\n",
" type: $type\n",
" modelId: $modelId\n",
" tournamentNumber: $tournamentNumber) {\n",
" dueDate\n",
" requestedAmount\n",
" status\n",
" type\n",
" }\n",
" }\n",
" '''\n",
"\n",
" arguments = {\n",
" 'value': str(nmr),\n",
" 'type': 'increase',\n",
" 'modelId': model_id,\n",
" 'tournamentNumber': 11,\n",
" }\n",
" result = signals_napi.raw_query(query, arguments, authorization=True)"
],
"metadata": {
"id": "h0VAtNO77rdf"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"# Caution: This staking script can not interrupt.\n",
"\n",
"for model_name, stake in tqdm(signals_stake.items()):\n",
" if stake <= 0:\n",
" continue\n",
" try:\n",
" signals_stake_increase(stake, signals_fetcher.models[model_name], signals_napi)\n",
" except Exception as e:\n",
" print(f'error models is {model_name}')\n",
" print(e)"
],
"metadata": {
"id": "Rdj0pv42Fh-B"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
""
],
"metadata": {
"id": "VYUywSle7GrM"
},
"execution_count": null,
"outputs": []
}
]
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment