Skip to content

Instantly share code, notes, and snippets.

@hecomi
Last active December 18, 2015 01:48
Show Gist options
  • Star 0 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
  • Save hecomi/5705985 to your computer and use it in GitHub Desktop.
Save hecomi/5705985 to your computer and use it in GitHub Desktop.
C のコード: "int main() { return 0; } " と "#include <stdio.h> int main() { puts("hello, world!"); return 0; } " を em++ で JS に変換した結果の比較です。
// Note: Some Emscripten settings will significantly limit the speed of the generated code.
// Note: Some Emscripten settings may limit the speed of the generated code.
try {
this['Module'] = Module;
} catch(e) {
this['Module'] = Module = {};
}
// The environment setup code below is customized to use Module.
// *** Environment setup code ***
var ENVIRONMENT_IS_NODE = typeof process === 'object' && typeof require === 'function';
var ENVIRONMENT_IS_WEB = typeof window === 'object';
var ENVIRONMENT_IS_WORKER = typeof importScripts === 'function';
var ENVIRONMENT_IS_SHELL = !ENVIRONMENT_IS_WEB && !ENVIRONMENT_IS_NODE && !ENVIRONMENT_IS_WORKER;
if (ENVIRONMENT_IS_NODE) {
// Expose functionality in the same simple way that the shells work
// Note that we pollute the global namespace here, otherwise we break in node
Module['print'] = function(x) {
process['stdout'].write(x + '\n');
};
Module['printErr'] = function(x) {
process['stderr'].write(x + '\n');
};
var nodeFS = require('fs');
var nodePath = require('path');
Module['read'] = function(filename, binary) {
filename = nodePath['normalize'](filename);
var ret = nodeFS['readFileSync'](filename);
// The path is absolute if the normalized version is the same as the resolved.
if (!ret && filename != nodePath['resolve'](filename)) {
filename = path.join(__dirname, '..', 'src', filename);
ret = nodeFS['readFileSync'](filename);
}
if (ret && !binary) ret = ret.toString();
return ret;
};
Module['readBinary'] = function(filename) { return Module['read'](filename, true) };
Module['load'] = function(f) {
globalEval(read(f));
};
if (!Module['arguments']) {
Module['arguments'] = process['argv'].slice(2);
}
}
if (ENVIRONMENT_IS_SHELL) {
Module['print'] = print;
if (typeof printErr != 'undefined') Module['printErr'] = printErr; // not present in v8 or older sm
Module['read'] = read;
Module['readBinary'] = function(f) {
return read(f, 'binary');
};
if (!Module['arguments']) {
if (typeof scriptArgs != 'undefined') {
Module['arguments'] = scriptArgs;
} else if (typeof arguments != 'undefined') {
Module['arguments'] = arguments;
}
}
}
if (ENVIRONMENT_IS_WEB && !ENVIRONMENT_IS_WORKER) {
if (!Module['print']) {
Module['print'] = function(x) {
console.log(x);
};
}
if (!Module['printErr']) {
Module['printErr'] = function(x) {
console.log(x);
};
}
}
if (ENVIRONMENT_IS_WEB || ENVIRONMENT_IS_WORKER) {
Module['read'] = function(url) {
var xhr = new XMLHttpRequest();
xhr.open('GET', url, false);
xhr.send(null);
return xhr.responseText;
};
if (!Module['arguments']) {
if (typeof arguments != 'undefined') {
Module['arguments'] = arguments;
}
}
}
if (ENVIRONMENT_IS_WORKER) {
// We can do very little here...
var TRY_USE_DUMP = false;
if (!Module['print']) {
Module['print'] = (TRY_USE_DUMP && (typeof(dump) !== "undefined") ? (function(x) {
dump(x);
}) : (function(x) {
// self.postMessage(x); // enable this if you want stdout to be sent as messages
}));
}
Module['load'] = importScripts;
}
if (!ENVIRONMENT_IS_WORKER && !ENVIRONMENT_IS_WEB && !ENVIRONMENT_IS_NODE && !ENVIRONMENT_IS_SHELL) {
// Unreachable because SHELL is dependant on the others
throw 'Unknown runtime environment. Where are we?';
}
function globalEval(x) {
eval.call(null, x);
}
if (!Module['load'] == 'undefined' && Module['read']) {
Module['load'] = function(f) {
globalEval(Module['read'](f));
};
}
if (!Module['print']) {
Module['print'] = function(){};
}
if (!Module['printErr']) {
Module['printErr'] = Module['print'];
}
if (!Module['arguments']) {
Module['arguments'] = [];
}
// *** Environment setup code ***
// Closure helpers
Module.print = Module['print'];
Module.printErr = Module['printErr'];
// Callbacks
if (!Module['preRun']) Module['preRun'] = [];
if (!Module['postRun']) Module['postRun'] = [];
// === Auto-generated preamble library stuff ===
//========================================
// Runtime code shared with compiler
//========================================
var Runtime = {
stackSave: function () {
return STACKTOP;
},
stackRestore: function (stackTop) {
STACKTOP = stackTop;
},
forceAlign: function (target, quantum) {
quantum = quantum || 4;
if (quantum == 1) return target;
if (isNumber(target) && isNumber(quantum)) {
return Math.ceil(target/quantum)*quantum;
} else if (isNumber(quantum) && isPowerOfTwo(quantum)) {
var logg = log2(quantum);
return '((((' +target + ')+' + (quantum-1) + ')>>' + logg + ')<<' + logg + ')';
}
return 'Math.ceil((' + target + ')/' + quantum + ')*' + quantum;
},
isNumberType: function (type) {
return type in Runtime.INT_TYPES || type in Runtime.FLOAT_TYPES;
},
isPointerType: function isPointerType(type) {
return type[type.length-1] == '*';
},
isStructType: function isStructType(type) {
if (isPointerType(type)) return false;
if (/^\[\d+\ x\ (.*)\]/.test(type)) return true; // [15 x ?] blocks. Like structs
if (/<?{ ?[^}]* ?}>?/.test(type)) return true; // { i32, i8 } etc. - anonymous struct types
// See comment in isStructPointerType()
return type[0] == '%';
},
INT_TYPES: {"i1":0,"i8":0,"i16":0,"i32":0,"i64":0},
FLOAT_TYPES: {"float":0,"double":0},
or64: function (x, y) {
var l = (x | 0) | (y | 0);
var h = (Math.round(x / 4294967296) | Math.round(y / 4294967296)) * 4294967296;
return l + h;
},
and64: function (x, y) {
var l = (x | 0) & (y | 0);
var h = (Math.round(x / 4294967296) & Math.round(y / 4294967296)) * 4294967296;
return l + h;
},
xor64: function (x, y) {
var l = (x | 0) ^ (y | 0);
var h = (Math.round(x / 4294967296) ^ Math.round(y / 4294967296)) * 4294967296;
return l + h;
},
getNativeTypeSize: function (type, quantumSize) {
if (Runtime.QUANTUM_SIZE == 1) return 1;
var size = {
'%i1': 1,
'%i8': 1,
'%i16': 2,
'%i32': 4,
'%i64': 8,
"%float": 4,
"%double": 8
}['%'+type]; // add '%' since float and double confuse Closure compiler as keys, and also spidermonkey as a compiler will remove 's from '_i8' etc
if (!size) {
if (type.charAt(type.length-1) == '*') {
size = Runtime.QUANTUM_SIZE; // A pointer
} else if (type[0] == 'i') {
var bits = parseInt(type.substr(1));
assert(bits % 8 == 0);
size = bits/8;
}
}
return size;
},
getNativeFieldSize: function (type) {
return Math.max(Runtime.getNativeTypeSize(type), Runtime.QUANTUM_SIZE);
},
dedup: function dedup(items, ident) {
var seen = {};
if (ident) {
return items.filter(function(item) {
if (seen[item[ident]]) return false;
seen[item[ident]] = true;
return true;
});
} else {
return items.filter(function(item) {
if (seen[item]) return false;
seen[item] = true;
return true;
});
}
},
set: function set() {
var args = typeof arguments[0] === 'object' ? arguments[0] : arguments;
var ret = {};
for (var i = 0; i < args.length; i++) {
ret[args[i]] = 0;
}
return ret;
},
calculateStructAlignment: function calculateStructAlignment(type) {
type.flatSize = 0;
type.alignSize = 0;
var diffs = [];
var prev = -1;
type.flatIndexes = type.fields.map(function(field) {
var size, alignSize;
if (Runtime.isNumberType(field) || Runtime.isPointerType(field)) {
size = Runtime.getNativeTypeSize(field); // pack char; char; in structs, also char[X]s.
alignSize = size;
} else if (Runtime.isStructType(field)) {
size = Types.types[field].flatSize;
alignSize = Types.types[field].alignSize;
} else if (field[0] == 'b') {
// bN, large number field, like a [N x i8]
size = field.substr(1)|0;
alignSize = 1;
} else {
throw 'Unclear type in struct: ' + field + ', in ' + type.name_ + ' :: ' + dump(Types.types[type.name_]);
}
alignSize = type.packed ? 1 : Math.min(alignSize, Runtime.QUANTUM_SIZE);
type.alignSize = Math.max(type.alignSize, alignSize);
var curr = Runtime.alignMemory(type.flatSize, alignSize); // if necessary, place this on aligned memory
type.flatSize = curr + size;
if (prev >= 0) {
diffs.push(curr-prev);
}
prev = curr;
return curr;
});
type.flatSize = Runtime.alignMemory(type.flatSize, type.alignSize);
if (diffs.length == 0) {
type.flatFactor = type.flatSize;
} else if (Runtime.dedup(diffs).length == 1) {
type.flatFactor = diffs[0];
}
type.needsFlattening = (type.flatFactor != 1);
return type.flatIndexes;
},
generateStructInfo: function (struct, typeName, offset) {
var type, alignment;
if (typeName) {
offset = offset || 0;
type = (typeof Types === 'undefined' ? Runtime.typeInfo : Types.types)[typeName];
if (!type) return null;
if (type.fields.length != struct.length) {
printErr('Number of named fields must match the type for ' + typeName + ': possibly duplicate struct names. Cannot return structInfo');
return null;
}
alignment = type.flatIndexes;
} else {
var type = { fields: struct.map(function(item) { return item[0] }) };
alignment = Runtime.calculateStructAlignment(type);
}
var ret = {
__size__: type.flatSize
};
if (typeName) {
struct.forEach(function(item, i) {
if (typeof item === 'string') {
ret[item] = alignment[i] + offset;
} else {
// embedded struct
var key;
for (var k in item) key = k;
ret[key] = Runtime.generateStructInfo(item[key], type.fields[i], alignment[i]);
}
});
} else {
struct.forEach(function(item, i) {
ret[item[1]] = alignment[i];
});
}
return ret;
},
dynCall: function (sig, ptr, args) {
if (args && args.length) {
assert(args.length == sig.length-1);
return FUNCTION_TABLE[ptr].apply(null, args);
} else {
assert(sig.length == 1);
return FUNCTION_TABLE[ptr]();
}
},
addFunction: function (func, sig) {
//assert(sig); // TODO: support asm
var table = FUNCTION_TABLE; // TODO: support asm
var ret = table.length;
table.push(func);
table.push(0);
return ret;
},
removeFunction: function (index) {
var table = FUNCTION_TABLE; // TODO: support asm
table[index] = null;
},
warnOnce: function (text) {
if (!Runtime.warnOnce.shown) Runtime.warnOnce.shown = {};
if (!Runtime.warnOnce.shown[text]) {
Runtime.warnOnce.shown[text] = 1;
Module.printErr(text);
}
},
funcWrappers: {},
getFuncWrapper: function (func, sig) {
assert(sig);
if (!Runtime.funcWrappers[func]) {
Runtime.funcWrappers[func] = function() {
Runtime.dynCall(sig, func, arguments);
};
}
return Runtime.funcWrappers[func];
},
UTF8Processor: function () {
var buffer = [];
var needed = 0;
this.processCChar = function (code) {
code = code & 0xff;
if (needed) {
buffer.push(code);
needed--;
}
if (buffer.length == 0) {
if (code < 128) return String.fromCharCode(code);
buffer.push(code);
if (code > 191 && code < 224) {
needed = 1;
} else {
needed = 2;
}
return '';
}
if (needed > 0) return '';
var c1 = buffer[0];
var c2 = buffer[1];
var c3 = buffer[2];
var ret;
if (c1 > 191 && c1 < 224) {
ret = String.fromCharCode(((c1 & 31) << 6) | (c2 & 63));
} else {
ret = String.fromCharCode(((c1 & 15) << 12) | ((c2 & 63) << 6) | (c3 & 63));
}
buffer.length = 0;
return ret;
}
this.processJSString = function(string) {
string = unescape(encodeURIComponent(string));
var ret = [];
for (var i = 0; i < string.length; i++) {
ret.push(string.charCodeAt(i));
}
return ret;
}
},
stackAlloc: function (size) { var ret = STACKTOP;STACKTOP = (STACKTOP + size)|0;STACKTOP = ((((STACKTOP)+3)>>2)<<2);assert((STACKTOP|0) < (STACK_MAX|0)); return ret; },
staticAlloc: function (size) { var ret = STATICTOP;STATICTOP = (STATICTOP + size)|0;STATICTOP = ((((STATICTOP)+3)>>2)<<2); if (STATICTOP >= TOTAL_MEMORY) enlargeMemory();; return ret; },
alignMemory: function (size,quantum) { var ret = size = Math.ceil((size)/(quantum ? quantum : 4))*(quantum ? quantum : 4); return ret; },
makeBigInt: function (low,high,unsigned) { var ret = (unsigned ? (((low)>>>(0))+(((high)>>>(0))*4294967296)) : (((low)>>>(0))+(((high)|(0))*4294967296))); return ret; },
QUANTUM_SIZE: 4,
__dummy__: 0
}
//========================================
// Runtime essentials
//========================================
var __THREW__ = 0; // Used in checking for thrown exceptions.
var setjmpId = 1; // Used in setjmp/longjmp
var setjmpLabels = {};
var ABORT = false;
var undef = 0;
// tempInt is used for 32-bit signed values or smaller. tempBigInt is used
// for 32-bit unsigned values or more than 32 bits. TODO: audit all uses of tempInt
var tempValue, tempInt, tempBigInt, tempInt2, tempBigInt2, tempPair, tempBigIntI, tempBigIntR, tempBigIntS, tempBigIntP, tempBigIntD;
var tempI64, tempI64b;
var tempRet0, tempRet1, tempRet2, tempRet3, tempRet4, tempRet5, tempRet6, tempRet7, tempRet8, tempRet9;
function abort(text) {
Module.print(text + ':\n' + (new Error).stack);
ABORT = true;
throw "Assertion: " + text;
}
function assert(condition, text) {
if (!condition) {
abort('Assertion failed: ' + text);
}
}
var globalScope = this;
// C calling interface. A convenient way to call C functions (in C files, or
// defined with extern "C").
//
// Note: LLVM optimizations can inline and remove functions, after which you will not be
// able to call them. Closure can also do so. To avoid that, add your function to
// the exports using something like
//
// -s EXPORTED_FUNCTIONS='["_main", "_myfunc"]'
//
// @param ident The name of the C function (note that C++ functions will be name-mangled - use extern "C")
// @param returnType The return type of the function, one of the JS types 'number', 'string' or 'array' (use 'number' for any C pointer, and
// 'array' for JavaScript arrays and typed arrays).
// @param argTypes An array of the types of arguments for the function (if there are no arguments, this can be ommitted). Types are as in returnType,
// except that 'array' is not possible (there is no way for us to know the length of the array)
// @param args An array of the arguments to the function, as native JS values (as in returnType)
// Note that string arguments will be stored on the stack (the JS string will become a C string on the stack).
// @return The return value, as a native JS value (as in returnType)
function ccall(ident, returnType, argTypes, args) {
return ccallFunc(getCFunc(ident), returnType, argTypes, args);
}
Module["ccall"] = ccall;
// Returns the C function with a specified identifier (for C++, you need to do manual name mangling)
function getCFunc(ident) {
try {
var func = globalScope['Module']['_' + ident]; // closure exported function
if (!func) func = eval('_' + ident); // explicit lookup
} catch(e) {
}
assert(func, 'Cannot call unknown function ' + ident + ' (perhaps LLVM optimizations or closure removed it?)');
return func;
}
// Internal function that does a C call using a function, not an identifier
function ccallFunc(func, returnType, argTypes, args) {
var stack = 0;
function toC(value, type) {
if (type == 'string') {
if (value === null || value === undefined || value === 0) return 0; // null string
if (!stack) stack = Runtime.stackSave();
var ret = Runtime.stackAlloc(value.length+1);
writeStringToMemory(value, ret);
return ret;
} else if (type == 'array') {
if (!stack) stack = Runtime.stackSave();
var ret = Runtime.stackAlloc(value.length);
writeArrayToMemory(value, ret);
return ret;
}
return value;
}
function fromC(value, type) {
if (type == 'string') {
return Pointer_stringify(value);
}
assert(type != 'array');
return value;
}
var i = 0;
var cArgs = args ? args.map(function(arg) {
return toC(arg, argTypes[i++]);
}) : [];
var ret = fromC(func.apply(null, cArgs), returnType);
if (stack) Runtime.stackRestore(stack);
return ret;
}
// Returns a native JS wrapper for a C function. This is similar to ccall, but
// returns a function you can call repeatedly in a normal way. For example:
//
// var my_function = cwrap('my_c_function', 'number', ['number', 'number']);
// alert(my_function(5, 22));
// alert(my_function(99, 12));
//
function cwrap(ident, returnType, argTypes) {
var func = getCFunc(ident);
return function() {
return ccallFunc(func, returnType, argTypes, Array.prototype.slice.call(arguments));
}
}
Module["cwrap"] = cwrap;
// Sets a value in memory in a dynamic way at run-time. Uses the
// type data. This is the same as makeSetValue, except that
// makeSetValue is done at compile-time and generates the needed
// code then, whereas this function picks the right code at
// run-time.
// Note that setValue and getValue only do *aligned* writes and reads!
// Note that ccall uses JS types as for defining types, while setValue and
// getValue need LLVM types ('i8', 'i32') - this is a lower-level operation
function setValue(ptr, value, type, noSafe) {
type = type || 'i8';
if (type.charAt(type.length-1) === '*') type = 'i32'; // pointers are 32-bit
switch(type) {
case 'i1': HEAP8[(ptr)]=value; break;
case 'i8': HEAP8[(ptr)]=value; break;
case 'i16': HEAP16[((ptr)>>1)]=value; break;
case 'i32': HEAP32[((ptr)>>2)]=value; break;
case 'i64': (tempI64 = [value>>>0,Math.min(Math.floor((value)/4294967296), 4294967295)>>>0],HEAP32[((ptr)>>2)]=tempI64[0],HEAP32[(((ptr)+(4))>>2)]=tempI64[1]); break;
case 'float': HEAPF32[((ptr)>>2)]=value; break;
case 'double': (HEAPF64[(tempDoublePtr)>>3]=value,HEAP32[((ptr)>>2)]=HEAP32[((tempDoublePtr)>>2)],HEAP32[(((ptr)+(4))>>2)]=HEAP32[(((tempDoublePtr)+(4))>>2)]); break;
default: abort('invalid type for setValue: ' + type);
}
}
Module['setValue'] = setValue;
// Parallel to setValue.
function getValue(ptr, type, noSafe) {
type = type || 'i8';
if (type.charAt(type.length-1) === '*') type = 'i32'; // pointers are 32-bit
switch(type) {
case 'i1': return HEAP8[(ptr)];
case 'i8': return HEAP8[(ptr)];
case 'i16': return HEAP16[((ptr)>>1)];
case 'i32': return HEAP32[((ptr)>>2)];
case 'i64': return HEAP32[((ptr)>>2)];
case 'float': return HEAPF32[((ptr)>>2)];
case 'double': return (HEAP32[((tempDoublePtr)>>2)]=HEAP32[((ptr)>>2)],HEAP32[(((tempDoublePtr)+(4))>>2)]=HEAP32[(((ptr)+(4))>>2)],HEAPF64[(tempDoublePtr)>>3]);
default: abort('invalid type for setValue: ' + type);
}
return null;
}
Module['getValue'] = getValue;
var ALLOC_NORMAL = 0; // Tries to use _malloc()
var ALLOC_STACK = 1; // Lives for the duration of the current function call
var ALLOC_STATIC = 2; // Cannot be freed
var ALLOC_NONE = 3; // Do not allocate
Module['ALLOC_NORMAL'] = ALLOC_NORMAL;
Module['ALLOC_STACK'] = ALLOC_STACK;
Module['ALLOC_STATIC'] = ALLOC_STATIC;
Module['ALLOC_NONE'] = ALLOC_NONE;
// allocate(): This is for internal use. You can use it yourself as well, but the interface
// is a little tricky (see docs right below). The reason is that it is optimized
// for multiple syntaxes to save space in generated code. So you should
// normally not use allocate(), and instead allocate memory using _malloc(),
// initialize it with setValue(), and so forth.
// @slab: An array of data, or a number. If a number, then the size of the block to allocate,
// in *bytes* (note that this is sometimes confusing: the next parameter does not
// affect this!)
// @types: Either an array of types, one for each byte (or 0 if no type at that position),
// or a single type which is used for the entire block. This only matters if there
// is initial data - if @slab is a number, then this does not matter at all and is
// ignored.
// @allocator: How to allocate memory, see ALLOC_*
function allocate(slab, types, allocator, ptr) {
var zeroinit, size;
if (typeof slab === 'number') {
zeroinit = true;
size = slab;
} else {
zeroinit = false;
size = slab.length;
}
var singleType = typeof types === 'string' ? types : null;
var ret;
if (allocator == ALLOC_NONE) {
ret = ptr;
} else {
ret = [_malloc, Runtime.stackAlloc, Runtime.staticAlloc][allocator === undefined ? ALLOC_STATIC : allocator](Math.max(size, singleType ? 1 : types.length));
}
if (zeroinit) {
var ptr = ret, stop;
assert((ret & 3) == 0);
stop = ret + (size & ~3);
for (; ptr < stop; ptr += 4) {
HEAP32[((ptr)>>2)]=0;
}
stop = ret + size;
while (ptr < stop) {
HEAP8[((ptr++)|0)]=0;
}
return ret;
}
if (singleType === 'i8') {
HEAPU8.set(new Uint8Array(slab), ret);
return ret;
}
var i = 0, type, typeSize, previousType;
while (i < size) {
var curr = slab[i];
if (typeof curr === 'function') {
curr = Runtime.getFunctionIndex(curr);
}
type = singleType || types[i];
if (type === 0) {
i++;
continue;
}
assert(type, 'Must know what type to store in allocate!');
if (type == 'i64') type = 'i32'; // special case: we have one i32 here, and one i32 later
setValue(ret+i, curr, type);
// no need to look up size unless type changes, so cache it
if (previousType !== type) {
typeSize = Runtime.getNativeTypeSize(type);
previousType = type;
}
i += typeSize;
}
return ret;
}
Module['allocate'] = allocate;
function Pointer_stringify(ptr, /* optional */ length) {
// Find the length, and check for UTF while doing so
var hasUtf = false;
var t;
var i = 0;
while (1) {
t = HEAPU8[(((ptr)+(i))|0)];
if (t >= 128) hasUtf = true;
else if (t == 0 && !length) break;
i++;
if (length && i == length) break;
}
if (!length) length = i;
var ret = '';
if (!hasUtf) {
var MAX_CHUNK = 1024; // split up into chunks, because .apply on a huge string can overflow the stack
var curr;
while (length > 0) {
curr = String.fromCharCode.apply(String, HEAPU8.subarray(ptr, ptr + Math.min(length, MAX_CHUNK)));
ret = ret ? ret + curr : curr;
ptr += MAX_CHUNK;
length -= MAX_CHUNK;
}
return ret;
}
var utf8 = new Runtime.UTF8Processor();
for (i = 0; i < length; i++) {
assert(ptr + i < TOTAL_MEMORY);
t = HEAPU8[(((ptr)+(i))|0)];
ret += utf8.processCChar(t);
}
return ret;
}
Module['Pointer_stringify'] = Pointer_stringify;
// Memory management
var PAGE_SIZE = 4096;
function alignMemoryPage(x) {
return ((x+4095)>>12)<<12;
}
var HEAP;
var HEAP8, HEAPU8, HEAP16, HEAPU16, HEAP32, HEAPU32, HEAPF32, HEAPF64;
var STACK_ROOT, STACKTOP, STACK_MAX;
var STATICTOP;
function enlargeMemory() {
abort('Cannot enlarge memory arrays. Either (1) compile with -s TOTAL_MEMORY=X with X higher than the current value, (2) compile with ALLOW_MEMORY_GROWTH which adjusts the size at runtime but prevents some optimizations, or (3) set Module.TOTAL_MEMORY before the program runs.');
}
var TOTAL_STACK = Module['TOTAL_STACK'] || 5242880;
var TOTAL_MEMORY = Module['TOTAL_MEMORY'] || 16777216;
var FAST_MEMORY = Module['FAST_MEMORY'] || 2097152;
// Initialize the runtime's memory
// check for full engine support (use string 'subarray' to avoid closure compiler confusion)
assert(!!Int32Array && !!Float64Array && !!(new Int32Array(1)['subarray']) && !!(new Int32Array(1)['set']),
'Cannot fallback to non-typed array case: Code is too specialized');
var buffer = new ArrayBuffer(TOTAL_MEMORY);
HEAP8 = new Int8Array(buffer);
HEAP16 = new Int16Array(buffer);
HEAP32 = new Int32Array(buffer);
HEAPU8 = new Uint8Array(buffer);
HEAPU16 = new Uint16Array(buffer);
HEAPU32 = new Uint32Array(buffer);
HEAPF32 = new Float32Array(buffer);
HEAPF64 = new Float64Array(buffer);
// Endianness check (note: assumes compiler arch was little-endian)
HEAP32[0] = 255;
assert(HEAPU8[0] === 255 && HEAPU8[3] === 0, 'Typed arrays 2 must be run on a little-endian system');
Module['HEAP'] = HEAP;
Module['HEAP8'] = HEAP8;
Module['HEAP16'] = HEAP16;
Module['HEAP32'] = HEAP32;
Module['HEAPU8'] = HEAPU8;
Module['HEAPU16'] = HEAPU16;
Module['HEAPU32'] = HEAPU32;
Module['HEAPF32'] = HEAPF32;
Module['HEAPF64'] = HEAPF64;
STACK_ROOT = STACKTOP = Runtime.alignMemory(1);
STACK_MAX = TOTAL_STACK; // we lose a little stack here, but TOTAL_STACK is nice and round so use that as the max
var tempDoublePtr = Runtime.alignMemory(allocate(12, 'i8', ALLOC_STACK), 8);
assert(tempDoublePtr % 8 == 0);
function copyTempFloat(ptr) { // functions, because inlining this code increases code size too much
HEAP8[tempDoublePtr] = HEAP8[ptr];
HEAP8[tempDoublePtr+1] = HEAP8[ptr+1];
HEAP8[tempDoublePtr+2] = HEAP8[ptr+2];
HEAP8[tempDoublePtr+3] = HEAP8[ptr+3];
}
function copyTempDouble(ptr) {
HEAP8[tempDoublePtr] = HEAP8[ptr];
HEAP8[tempDoublePtr+1] = HEAP8[ptr+1];
HEAP8[tempDoublePtr+2] = HEAP8[ptr+2];
HEAP8[tempDoublePtr+3] = HEAP8[ptr+3];
HEAP8[tempDoublePtr+4] = HEAP8[ptr+4];
HEAP8[tempDoublePtr+5] = HEAP8[ptr+5];
HEAP8[tempDoublePtr+6] = HEAP8[ptr+6];
HEAP8[tempDoublePtr+7] = HEAP8[ptr+7];
}
STATICTOP = STACK_MAX;
assert(STATICTOP < TOTAL_MEMORY); // Stack must fit in TOTAL_MEMORY; allocations from here on may enlarge TOTAL_MEMORY
var nullString = allocate(intArrayFromString('(null)'), 'i8', ALLOC_STACK);
function callRuntimeCallbacks(callbacks) {
while(callbacks.length > 0) {
var callback = callbacks.shift();
if (typeof callback == 'function') {
callback();
continue;
}
var func = callback.func;
if (typeof func === 'number') {
if (callback.arg === undefined) {
Runtime.dynCall('v', func);
} else {
Runtime.dynCall('vi', func, [callback.arg]);
}
} else {
func(callback.arg === undefined ? null : callback.arg);
}
}
}
var __ATINIT__ = []; // functions called during startup
var __ATMAIN__ = []; // functions called when main() is to be run
var __ATEXIT__ = []; // functions called during shutdown
var runtimeInitialized = false;
function ensureInitRuntime() {
if (runtimeInitialized) return;
runtimeInitialized = true;
callRuntimeCallbacks(__ATINIT__);
}
function preMain() {
callRuntimeCallbacks(__ATMAIN__);
}
function exitRuntime() {
callRuntimeCallbacks(__ATEXIT__);
}
// Tools
// This processes a JS string into a C-line array of numbers, 0-terminated.
// For LLVM-originating strings, see parser.js:parseLLVMString function
function intArrayFromString(stringy, dontAddNull, length /* optional */) {
var ret = (new Runtime.UTF8Processor()).processJSString(stringy);
if (length) {
ret.length = length;
}
if (!dontAddNull) {
ret.push(0);
}
return ret;
}
Module['intArrayFromString'] = intArrayFromString;
function intArrayToString(array) {
var ret = [];
for (var i = 0; i < array.length; i++) {
var chr = array[i];
if (chr > 0xFF) {
assert(false, 'Character code ' + chr + ' (' + String.fromCharCode(chr) + ') at offset ' + i + ' not in 0x00-0xFF.');
chr &= 0xFF;
}
ret.push(String.fromCharCode(chr));
}
return ret.join('');
}
Module['intArrayToString'] = intArrayToString;
// Write a Javascript array to somewhere in the heap
function writeStringToMemory(string, buffer, dontAddNull) {
var array = intArrayFromString(string, dontAddNull);
var i = 0;
while (i < array.length) {
var chr = array[i];
HEAP8[(((buffer)+(i))|0)]=chr
i = i + 1;
}
}
Module['writeStringToMemory'] = writeStringToMemory;
function writeArrayToMemory(array, buffer) {
for (var i = 0; i < array.length; i++) {
HEAP8[(((buffer)+(i))|0)]=array[i];
}
}
Module['writeArrayToMemory'] = writeArrayToMemory;
function unSign(value, bits, ignore, sig) {
if (value >= 0) {
return value;
}
return bits <= 32 ? 2*Math.abs(1 << (bits-1)) + value // Need some trickery, since if bits == 32, we are right at the limit of the bits JS uses in bitshifts
: Math.pow(2, bits) + value;
}
function reSign(value, bits, ignore, sig) {
if (value <= 0) {
return value;
}
var half = bits <= 32 ? Math.abs(1 << (bits-1)) // abs is needed if bits == 32
: Math.pow(2, bits-1);
if (value >= half && (bits <= 32 || value > half)) { // for huge values, we can hit the precision limit and always get true here. so don't do that
// but, in general there is no perfect solution here. With 64-bit ints, we get rounding and errors
// TODO: In i64 mode 1, resign the two parts separately and safely
value = -2*half + value; // Cannot bitshift half, as it may be at the limit of the bits JS uses in bitshifts
}
return value;
}
if (!Math.imul) Math.imul = function(a, b) {
var ah = a >>> 16;
var al = a & 0xffff;
var bh = b >>> 16;
var bl = b & 0xffff;
return (al*bl + ((ah*bl + al*bh) << 16))|0;
};
// A counter of dependencies for calling run(). If we need to
// do asynchronous work before running, increment this and
// decrement it. Incrementing must happen in a place like
// PRE_RUN_ADDITIONS (used by emcc to add file preloading).
// Note that you can add dependencies in preRun, even though
// it happens right before run - run will be postponed until
// the dependencies are met.
var runDependencies = 0;
var runDependencyTracking = {};
var calledInit = false, calledRun = false;
var runDependencyWatcher = null;
function addRunDependency(id) {
runDependencies++;
if (Module['monitorRunDependencies']) {
Module['monitorRunDependencies'](runDependencies);
}
if (id) {
assert(!runDependencyTracking[id]);
runDependencyTracking[id] = 1;
if (runDependencyWatcher === null && typeof setInterval !== 'undefined') {
// Check for missing dependencies every few seconds
runDependencyWatcher = setInterval(function() {
var shown = false;
for (var dep in runDependencyTracking) {
if (!shown) {
shown = true;
Module.printErr('still waiting on run dependencies:');
}
Module.printErr('dependency: ' + dep);
}
if (shown) {
Module.printErr('(end of list)');
}
}, 6000);
}
} else {
Module.printErr('warning: run dependency added without ID');
}
}
Module['addRunDependency'] = addRunDependency;
function removeRunDependency(id) {
runDependencies--;
if (Module['monitorRunDependencies']) {
Module['monitorRunDependencies'](runDependencies);
}
if (id) {
assert(runDependencyTracking[id]);
delete runDependencyTracking[id];
} else {
Module.printErr('warning: run dependency removed without ID');
}
if (runDependencies == 0) {
if (runDependencyWatcher !== null) {
clearInterval(runDependencyWatcher);
runDependencyWatcher = null;
}
// If run has never been called, and we should call run (INVOKE_RUN is true, and Module.noInitialRun is not false)
if (!calledRun && shouldRunNow) run();
}
}
Module['removeRunDependency'] = removeRunDependency;
Module["preloadedImages"] = {}; // maps url to image data
Module["preloadedAudios"] = {}; // maps url to audio data
function addPreRun(func) {
if (!Module['preRun']) Module['preRun'] = [];
else if (typeof Module['preRun'] == 'function') Module['preRun'] = [Module['preRun']];
Module['preRun'].push(func);
}
var awaitingMemoryInitializer = false;
function loadMemoryInitializer(filename) {
function applyData(data) {
HEAPU8.set(data, TOTAL_STACK);
runPostSets();
}
// always do this asynchronously, to keep shell and web as similar as possible
addPreRun(function() {
if (ENVIRONMENT_IS_NODE || ENVIRONMENT_IS_SHELL) {
applyData(Module['readBinary'](filename));
} else {
Browser.asyncLoad(filename, function(data) {
applyData(data);
}, function(data) {
throw 'could not load memory initializer ' + filename;
});
}
});
awaitingMemoryInitializer = false;
}
// === Body ===
/* no memory initializer */
function runPostSets() {
}
if (!awaitingMemoryInitializer) runPostSets();
function _memcpy(dest, src, num) {
dest = dest|0; src = src|0; num = num|0;
var ret = 0;
ret = dest|0;
if ((dest&3) == (src&3)) {
while (dest & 3) {
if ((num|0) == 0) return ret|0;
HEAP8[(dest)]=HEAP8[(src)];
dest = (dest+1)|0;
src = (src+1)|0;
num = (num-1)|0;
}
while ((num|0) >= 4) {
HEAP32[((dest)>>2)]=HEAP32[((src)>>2)];
dest = (dest+4)|0;
src = (src+4)|0;
num = (num-4)|0;
}
}
while ((num|0) > 0) {
HEAP8[(dest)]=HEAP8[(src)];
dest = (dest+1)|0;
src = (src+1)|0;
num = (num-1)|0;
}
return ret|0;
}
function _memset(ptr, value, num) {
ptr = ptr|0; value = value|0; num = num|0;
var stop = 0, value4 = 0, stop4 = 0, unaligned = 0;
stop = (ptr + num)|0;
if ((num|0) >= 20) {
// This is unaligned, but quite large, so work hard to get to aligned settings
value = value & 0xff;
unaligned = ptr & 3;
value4 = value | (value << 8) | (value << 16) | (value << 24);
stop4 = stop & ~3;
if (unaligned) {
unaligned = (ptr + 4 - unaligned)|0;
while ((ptr|0) < (unaligned|0)) { // no need to check for stop, since we have large num
HEAP8[(ptr)]=value;
ptr = (ptr+1)|0;
}
}
while ((ptr|0) < (stop4|0)) {
HEAP32[((ptr)>>2)]=value4;
ptr = (ptr+4)|0;
}
}
while ((ptr|0) < (stop|0)) {
HEAP8[(ptr)]=value;
ptr = (ptr+1)|0;
}
}
function _malloc(bytes) {
/* Over-allocate to make sure it is byte-aligned by 8.
* This will leak memory, but this is only the dummy
* implementation (replaced by dlmalloc normally) so
* not an issue.
*/
var ptr = Runtime.staticAlloc(bytes + 8);
return (ptr+8) & 0xFFFFFFF8;
}
function _free(){}
function _strlen(ptr) {
ptr = ptr|0;
var curr = 0;
curr = ptr;
while (HEAP8[(curr)]|0 != 0) {
curr = (curr + 1)|0;
}
return (curr - ptr)|0;
}
var Browser={mainLoop:{scheduler:null,shouldPause:false,paused:false,queue:[],pause:function () {
Browser.mainLoop.shouldPause = true;
},resume:function () {
if (Browser.mainLoop.paused) {
Browser.mainLoop.paused = false;
Browser.mainLoop.scheduler();
}
Browser.mainLoop.shouldPause = false;
},updateStatus:function () {
if (Module['setStatus']) {
var message = Module['statusMessage'] || 'Please wait...';
var remaining = Browser.mainLoop.remainingBlockers;
var expected = Browser.mainLoop.expectedBlockers;
if (remaining) {
if (remaining < expected) {
Module['setStatus'](message + ' (' + (expected - remaining) + '/' + expected + ')');
} else {
Module['setStatus'](message);
}
} else {
Module['setStatus']('');
}
}
}},isFullScreen:false,pointerLock:false,moduleContextCreatedCallbacks:[],workers:[],init:function () {
if (Browser.initted) return;
Browser.initted = true;
try {
new Blob();
Browser.hasBlobConstructor = true;
} catch(e) {
Browser.hasBlobConstructor = false;
console.log("warning: no blob constructor, cannot create blobs with mimetypes");
}
Browser.BlobBuilder = typeof MozBlobBuilder != "undefined" ? MozBlobBuilder : (typeof WebKitBlobBuilder != "undefined" ? WebKitBlobBuilder : (!Browser.hasBlobConstructor ? console.log("warning: no BlobBuilder") : null));
Browser.URLObject = typeof window != "undefined" ? (window.URL ? window.URL : window.webkitURL) : console.log("warning: cannot create object URLs");
// Support for plugins that can process preloaded files. You can add more of these to
// your app by creating and appending to Module.preloadPlugins.
//
// Each plugin is asked if it can handle a file based on the file's name. If it can,
// it is given the file's raw data. When it is done, it calls a callback with the file's
// (possibly modified) data. For example, a plugin might decompress a file, or it
// might create some side data structure for use later (like an Image element, etc.).
function getMimetype(name) {
return {
'jpg': 'image/jpeg',
'jpeg': 'image/jpeg',
'png': 'image/png',
'bmp': 'image/bmp',
'ogg': 'audio/ogg',
'wav': 'audio/wav',
'mp3': 'audio/mpeg'
}[name.substr(name.lastIndexOf('.')+1)];
}
if (!Module["preloadPlugins"]) Module["preloadPlugins"] = [];
var imagePlugin = {};
imagePlugin['canHandle'] = function(name) {
return !Module.noImageDecoding && /\.(jpg|jpeg|png|bmp)$/.exec(name);
};
imagePlugin['handle'] = function(byteArray, name, onload, onerror) {
var b = null;
if (Browser.hasBlobConstructor) {
try {
b = new Blob([byteArray], { type: getMimetype(name) });
} catch(e) {
Runtime.warnOnce('Blob constructor present but fails: ' + e + '; falling back to blob builder');
}
}
if (!b) {
var bb = new Browser.BlobBuilder();
bb.append((new Uint8Array(byteArray)).buffer); // we need to pass a buffer, and must copy the array to get the right data range
b = bb.getBlob();
}
var url = Browser.URLObject.createObjectURL(b);
assert(typeof url == 'string', 'createObjectURL must return a url as a string');
var img = new Image();
img.onload = function() {
assert(img.complete, 'Image ' + name + ' could not be decoded');
var canvas = document.createElement('canvas');
canvas.width = img.width;
canvas.height = img.height;
var ctx = canvas.getContext('2d');
ctx.drawImage(img, 0, 0);
Module["preloadedImages"][name] = canvas;
Browser.URLObject.revokeObjectURL(url);
if (onload) onload(byteArray);
};
img.onerror = function(event) {
console.log('Image ' + url + ' could not be decoded');
if (onerror) onerror();
};
img.src = url;
};
Module['preloadPlugins'].push(imagePlugin);
var audioPlugin = {};
audioPlugin['canHandle'] = function(name) {
return !Module.noAudioDecoding && name.substr(-4) in { '.ogg': 1, '.wav': 1, '.mp3': 1 };
};
audioPlugin['handle'] = function(byteArray, name, onload, onerror) {
var done = false;
function finish(audio) {
if (done) return;
done = true;
Module["preloadedAudios"][name] = audio;
if (onload) onload(byteArray);
}
function fail() {
if (done) return;
done = true;
Module["preloadedAudios"][name] = new Audio(); // empty shim
if (onerror) onerror();
}
if (Browser.hasBlobConstructor) {
try {
var b = new Blob([byteArray], { type: getMimetype(name) });
} catch(e) {
return fail();
}
var url = Browser.URLObject.createObjectURL(b); // XXX we never revoke this!
assert(typeof url == 'string', 'createObjectURL must return a url as a string');
var audio = new Audio();
audio.addEventListener('canplaythrough', function() { finish(audio) }, false); // use addEventListener due to chromium bug 124926
audio.onerror = function(event) {
if (done) return;
console.log('warning: browser could not fully decode audio ' + name + ', trying slower base64 approach');
function encode64(data) {
var BASE = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/';
var PAD = '=';
var ret = '';
var leftchar = 0;
var leftbits = 0;
for (var i = 0; i < data.length; i++) {
leftchar = (leftchar << 8) | data[i];
leftbits += 8;
while (leftbits >= 6) {
var curr = (leftchar >> (leftbits-6)) & 0x3f;
leftbits -= 6;
ret += BASE[curr];
}
}
if (leftbits == 2) {
ret += BASE[(leftchar&3) << 4];
ret += PAD + PAD;
} else if (leftbits == 4) {
ret += BASE[(leftchar&0xf) << 2];
ret += PAD;
}
return ret;
}
audio.src = 'data:audio/x-' + name.substr(-3) + ';base64,' + encode64(byteArray);
finish(audio); // we don't wait for confirmation this worked - but it's worth trying
};
audio.src = url;
// workaround for chrome bug 124926 - we do not always get oncanplaythrough or onerror
setTimeout(function() {
finish(audio); // try to use it even though it is not necessarily ready to play
}, 10000);
} else {
return fail();
}
};
Module['preloadPlugins'].push(audioPlugin);
// Canvas event setup
var canvas = Module['canvas'];
canvas.requestPointerLock = canvas['requestPointerLock'] ||
canvas['mozRequestPointerLock'] ||
canvas['webkitRequestPointerLock'];
canvas.exitPointerLock = document['exitPointerLock'] ||
document['mozExitPointerLock'] ||
document['webkitExitPointerLock'];
canvas.exitPointerLock = canvas.exitPointerLock.bind(document);
function pointerLockChange() {
Browser.pointerLock = document['pointerLockElement'] === canvas ||
document['mozPointerLockElement'] === canvas ||
document['webkitPointerLockElement'] === canvas;
}
document.addEventListener('pointerlockchange', pointerLockChange, false);
document.addEventListener('mozpointerlockchange', pointerLockChange, false);
document.addEventListener('webkitpointerlockchange', pointerLockChange, false);
if (Module['elementPointerLock']) {
canvas.addEventListener("click", function(ev) {
if (!Browser.pointerLock && canvas.requestPointerLock) {
canvas.requestPointerLock();
ev.preventDefault();
}
}, false);
}
},createContext:function (canvas, useWebGL, setInModule) {
var ctx;
try {
if (useWebGL) {
ctx = canvas.getContext('experimental-webgl', {
alpha: false
});
} else {
ctx = canvas.getContext('2d');
}
if (!ctx) throw ':(';
} catch (e) {
Module.print('Could not create canvas - ' + e);
return null;
}
if (useWebGL) {
// Set the background of the WebGL canvas to black
canvas.style.backgroundColor = "black";
// Warn on context loss
canvas.addEventListener('webglcontextlost', function(event) {
alert('WebGL context lost. You will need to reload the page.');
}, false);
}
if (setInModule) {
Module.ctx = ctx;
Module.useWebGL = useWebGL;
Browser.moduleContextCreatedCallbacks.forEach(function(callback) { callback() });
Browser.init();
}
return ctx;
},destroyContext:function (canvas, useWebGL, setInModule) {},fullScreenHandlersInstalled:false,lockPointer:undefined,resizeCanvas:undefined,requestFullScreen:function (lockPointer, resizeCanvas) {
this.lockPointer = lockPointer;
this.resizeCanvas = resizeCanvas;
if (typeof this.lockPointer === 'undefined') this.lockPointer = true;
if (typeof this.resizeCanvas === 'undefined') this.resizeCanvas = false;
var canvas = Module['canvas'];
function fullScreenChange() {
Browser.isFullScreen = false;
if ((document['webkitFullScreenElement'] || document['webkitFullscreenElement'] ||
document['mozFullScreenElement'] || document['mozFullscreenElement'] ||
document['fullScreenElement'] || document['fullscreenElement']) === canvas) {
canvas.cancelFullScreen = document['cancelFullScreen'] ||
document['mozCancelFullScreen'] ||
document['webkitCancelFullScreen'];
canvas.cancelFullScreen = canvas.cancelFullScreen.bind(document);
if (Browser.lockPointer) canvas.requestPointerLock();
Browser.isFullScreen = true;
if (Browser.resizeCanvas) Browser.setFullScreenCanvasSize();
} else if (Browser.resizeCanvas){
Browser.setWindowedCanvasSize();
}
if (Module['onFullScreen']) Module['onFullScreen'](Browser.isFullScreen);
}
if (!this.fullScreenHandlersInstalled) {
this.fullScreenHandlersInstalled = true;
document.addEventListener('fullscreenchange', fullScreenChange, false);
document.addEventListener('mozfullscreenchange', fullScreenChange, false);
document.addEventListener('webkitfullscreenchange', fullScreenChange, false);
}
canvas.requestFullScreen = canvas['requestFullScreen'] ||
canvas['mozRequestFullScreen'] ||
(canvas['webkitRequestFullScreen'] ? function() { canvas['webkitRequestFullScreen'](Element['ALLOW_KEYBOARD_INPUT']) } : null);
canvas.requestFullScreen();
},requestAnimationFrame:function (func) {
if (!window.requestAnimationFrame) {
window.requestAnimationFrame = window['requestAnimationFrame'] ||
window['mozRequestAnimationFrame'] ||
window['webkitRequestAnimationFrame'] ||
window['msRequestAnimationFrame'] ||
window['oRequestAnimationFrame'] ||
window['setTimeout'];
}
window.requestAnimationFrame(func);
},getMovementX:function (event) {
return event['movementX'] ||
event['mozMovementX'] ||
event['webkitMovementX'] ||
0;
},getMovementY:function (event) {
return event['movementY'] ||
event['mozMovementY'] ||
event['webkitMovementY'] ||
0;
},xhrLoad:function (url, onload, onerror) {
var xhr = new XMLHttpRequest();
xhr.open('GET', url, true);
xhr.responseType = 'arraybuffer';
xhr.onload = function() {
if (xhr.status == 200 || (xhr.status == 0 && xhr.response)) { // file URLs can return 0
onload(xhr.response);
} else {
onerror();
}
};
xhr.onerror = onerror;
xhr.send(null);
},asyncLoad:function (url, onload, onerror, noRunDep) {
Browser.xhrLoad(url, function(arrayBuffer) {
assert(arrayBuffer, 'Loading data file "' + url + '" failed (no arrayBuffer).');
onload(new Uint8Array(arrayBuffer));
if (!noRunDep) removeRunDependency('al ' + url);
}, function(event) {
if (onerror) {
onerror();
} else {
throw 'Loading data file "' + url + '" failed.';
}
});
if (!noRunDep) addRunDependency('al ' + url);
},resizeListeners:[],updateResizeListeners:function () {
var canvas = Module['canvas'];
Browser.resizeListeners.forEach(function(listener) {
listener(canvas.width, canvas.height);
});
},setCanvasSize:function (width, height, noUpdates) {
var canvas = Module['canvas'];
canvas.width = width;
canvas.height = height;
if (!noUpdates) Browser.updateResizeListeners();
},windowedWidth:0,windowedHeight:0,setFullScreenCanvasSize:function () {
var canvas = Module['canvas'];
this.windowedWidth = canvas.width;
this.windowedHeight = canvas.height;
canvas.width = screen.width;
canvas.height = screen.height;
var flags = HEAPU32[((SDL.screen+Runtime.QUANTUM_SIZE*0)>>2)];
flags = flags | 0x00800000; // set SDL_FULLSCREEN flag
HEAP32[((SDL.screen+Runtime.QUANTUM_SIZE*0)>>2)]=flags
Browser.updateResizeListeners();
},setWindowedCanvasSize:function () {
var canvas = Module['canvas'];
canvas.width = this.windowedWidth;
canvas.height = this.windowedHeight;
var flags = HEAPU32[((SDL.screen+Runtime.QUANTUM_SIZE*0)>>2)];
flags = flags & ~0x00800000; // clear SDL_FULLSCREEN flag
HEAP32[((SDL.screen+Runtime.QUANTUM_SIZE*0)>>2)]=flags
Browser.updateResizeListeners();
}};
Module["requestFullScreen"] = function(lockPointer, resizeCanvas) { Browser.requestFullScreen(lockPointer, resizeCanvas) };
Module["requestAnimationFrame"] = function(func) { Browser.requestAnimationFrame(func) };
Module["pauseMainLoop"] = function() { Browser.mainLoop.pause() };
Module["resumeMainLoop"] = function() { Browser.mainLoop.resume() };
var FUNCTION_TABLE = [0, 0];
// EMSCRIPTEN_START_FUNCS
function _main() {
var label = 0;
var $1;
$1=0;
return 0;
}
Module["_main"] = _main;
// EMSCRIPTEN_END_FUNCS
// EMSCRIPTEN_END_FUNCS
// Warning: printing of i64 values may be slightly rounded! No deep i64 math used, so precise i64 code not included
var i64Math = null;
// === Auto-generated postamble setup entry stuff ===
Module.callMain = function callMain(args) {
assert(runDependencies == 0, 'cannot call main when async dependencies remain! (listen on __ATMAIN__)');
assert(!Module['preRun'] || Module['preRun'].length == 0, 'cannot call main when preRun functions remain to be called');
args = args || [];
ensureInitRuntime();
var argc = args.length+1;
function pad() {
for (var i = 0; i < 4-1; i++) {
argv.push(0);
}
}
var argv = [allocate(intArrayFromString("/bin/this.program"), 'i8', ALLOC_STATIC) ];
pad();
for (var i = 0; i < argc-1; i = i + 1) {
argv.push(allocate(intArrayFromString(args[i]), 'i8', ALLOC_STATIC));
pad();
}
argv.push(0);
argv = allocate(argv, 'i32', ALLOC_STATIC);
var ret;
var initialStackTop = STACKTOP;
try {
ret = Module['_main'](argc, argv, 0);
}
catch(e) {
if (e.name == 'ExitStatus') {
return e.status;
} else if (e == 'SimulateInfiniteLoop') {
Module['noExitRuntime'] = true;
} else {
throw e;
}
} finally {
STACKTOP = initialStackTop;
}
return ret;
}
function run(args) {
args = args || Module['arguments'];
if (runDependencies > 0) {
Module.printErr('run() called, but dependencies remain, so not running');
return 0;
}
if (Module['preRun']) {
if (typeof Module['preRun'] == 'function') Module['preRun'] = [Module['preRun']];
var toRun = Module['preRun'];
Module['preRun'] = [];
for (var i = toRun.length-1; i >= 0; i--) {
toRun[i]();
}
if (runDependencies > 0) {
// a preRun added a dependency, run will be called later
return 0;
}
}
function doRun() {
ensureInitRuntime();
preMain();
var ret = 0;
calledRun = true;
if (Module['_main'] && shouldRunNow) {
ret = Module.callMain(args);
if (!Module['noExitRuntime']) {
exitRuntime();
}
}
if (Module['postRun']) {
if (typeof Module['postRun'] == 'function') Module['postRun'] = [Module['postRun']];
while (Module['postRun'].length > 0) {
Module['postRun'].pop()();
}
}
return ret;
}
if (Module['setStatus']) {
Module['setStatus']('Running...');
setTimeout(function() {
setTimeout(function() {
Module['setStatus']('');
}, 1);
doRun();
}, 1);
return 0;
} else {
return doRun();
}
}
Module['run'] = Module.run = run;
// {{PRE_RUN_ADDITIONS}}
if (Module['preInit']) {
if (typeof Module['preInit'] == 'function') Module['preInit'] = [Module['preInit']];
while (Module['preInit'].length > 0) {
Module['preInit'].pop()();
}
}
// shouldRunNow refers to calling main(), not run().
var shouldRunNow = true;
if (Module['noInitialRun']) {
shouldRunNow = false;
}
run();
// {{POST_RUN_ADDITIONS}}
// {{MODULE_ADDITIONS}}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment