Skip to content

Instantly share code, notes, and snippets.

View iwiwi's full-sized avatar
🏠
Working from home

Takuya Akiba iwiwi

🏠
Working from home
View GitHub Profile
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
@iwiwi
iwiwi / crawler.rb
Last active September 20, 2023 10:58
Lightweight parallel web graph crawler
#!/usr/bin/env ruby
#
# crawler.rb --- Lightweight parallel web graph crawler
#
# Usage:
# ./crawler.rb START_URL TARGET_REGEXP
#
# Output:
# stdout --- edge list (tab separated URLs)
@iwiwi
iwiwi / WebGraphDecoder.java
Last active September 17, 2021 09:32
Download and decode WebGraph format graphs
import it.unimi.dsi.fastutil.ints.IntArrayFIFOQueue;
import it.unimi.dsi.fastutil.ints.IntArrays;
import it.unimi.dsi.logging.ProgressLogger;
import it.unimi.dsi.webgraph.GraphClassParser;
import it.unimi.dsi.webgraph.ImmutableGraph;
import it.unimi.dsi.webgraph.LazyIntIterator;
import java.io.*;
import java.util.*;
use crate::*;
mod normal_distribution {
const S2PI: f64 = 2.50662827463100050242E0;
// https://github.com/scipy/scipy/blob/v1.5.4/scipy/special/cephes/ndtri.c
const P0: [f64; 5] = [
-5.99633501014107895267E1,
9.80010754185999661536E1,
-5.66762857469070293439E1,
#!/bin/bash
set -e
TARGET_DIR="$(dirname $(readlink -m $0))/.local"
WORKING_DIR="/tmp/"
LIBJPEG_VERSION="1.5.3"
OPENCV_VERSION="3.4.1"
eval "$(pyenv init -)"
PYENV_VERSION=$(pyenv version | cut -f 1 -d ' ')
import numpy as np
from sklearn.metrics import average_precision_score

def chance_level_ap(n_all, n_positive, trials=1000):
    return np.mean([
        average_precision_score([1] * n_positive + [0] * (n_all - n_positive), np.random.permutation(n_all))
 for _ in range(trials)])
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.