-
-
Save jaimergp/aa4f059c14e394c4089b320cb8b51b1a to your computer and use it in GitHub Desktop.
Comparing the stability of GHA as a benchmark platform
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"id": "107762b8-53c8-4046-a7e6-b71eb06a21d1", | |
"metadata": {}, | |
"source": [ | |
"# Is GH Actions reliable for continuous relative performance benchmarking?\n", | |
"\n", | |
"This notebook will compare the relative performance of two identical commits across several runs in different moments of the day. If GHA is stable enough, ratios should be close to 1.0 all the time. We will assess this by measuring the standard deviation of the measurement set.\n", | |
"\n", | |
"Measurements are available as GHA artifacts in [this fork](https://github.com/jaimergp/scikit-image/actions)." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 58, | |
"id": "f1b12fd2-64ac-472e-a5d3-2d05c261fa92", | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"from pathlib import Path\n", | |
"import json\n", | |
"import sys\n", | |
"from io import StringIO, BytesIO\n", | |
"from contextlib import redirect_stdout\n", | |
"from itertools import cycle\n", | |
"from datetime import datetime, timedelta\n", | |
"from time import sleep\n", | |
"import time\n", | |
"import zipfile\n", | |
"import asv\n", | |
"import pandas\n", | |
"import requests\n", | |
"from matplotlib import pyplot as plt\n", | |
"from matplotlib.ticker import FuncFormatter\n", | |
"import seaborn as sns\n", | |
"import numpy as np\n", | |
"\n", | |
"plt.rcParams['figure.facecolor'] = 'white'\n", | |
"plt.rcParams['font.size'] = 22" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"id": "c01358e9-acc3-4d18-90f4-ff648cc527a4", | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"template_conf = {\n", | |
" \"version\": 1,\n", | |
"\n", | |
" \"project\": \"scikit-image\",\n", | |
" \"project_url\": \"https://scikit-image.org/\",\n", | |
" \"repo\": \".\",\n", | |
"\n", | |
" \"branches\": [\"main\"],\n", | |
" \"dvcs\": \"git\",\n", | |
" \"environment_type\": \"conda\",\n", | |
" \"install_timeout\": 1200,\n", | |
" \"show_commit_url\": \"https://github.com/scikit-image/scikit-image/commit/\",\n", | |
"\n", | |
" \"pythons\": [\"3.7\"],\n", | |
" \"matrix\": {\n", | |
" \"cython\": [],\n", | |
" \"numpy\": [\"1.17\"],\n", | |
" \"scipy\": [],\n", | |
" \"pooch\": []\n", | |
" },\n", | |
"\n", | |
" \"env_dir\": \"asv-benchmark-results.zip_dir/env\",\n", | |
" \"results_dir\": \"REPLACE\",\n", | |
" \"html_dir\": \"asv-benchmark-results.zip_dir/html\"\n", | |
"}\n", | |
"\n", | |
"# Generate a PAT with `public_repo` scope\n", | |
"GHA_TOKEN = \"XXXXXXXXXXXXXXXXXXXXX\"\n", | |
"GHA_USERNAME = \"XXXXXXXXXXXX\"" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 3, | |
"id": "c73e60fc-d79a-478e-84f9-6c89972e37b1", | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"def download_artifacts(owner, repo, download_to=\"data\"):\n", | |
" url = f\"https://api.github.com/repos/{owner}/{repo}/actions/artifacts\"\n", | |
" r = requests.get(url, auth=(GHA_USERNAME, GHA_TOKEN), params={\"per_page\": 100})\n", | |
" r.raise_for_status()\n", | |
" data = r.json()\n", | |
" \n", | |
" out = Path(download_to)\n", | |
" for artifact in data[\"artifacts\"]:\n", | |
" if artifact[\"expired\"]:\n", | |
" continue\n", | |
" print(\"Obtaining artifact\", artifact[\"id\"], artifact[\"name\"], \"created on\", artifact[\"created_at\"], \"...\", end=\" \")\n", | |
" date = artifact[\"created_at\"].replace(\":\", \"-\")\n", | |
" if artifact[\"name\"] in (\"asv-benchmark-results\", \"asv-benchmark-results-default\"):\n", | |
" name = \"\"\n", | |
" else:\n", | |
" name = f'-{artifact[\"name\"].split(\"-\")[-1]}'\n", | |
" extract_to = out / f\"{date}{name}\"\n", | |
" extract_to.mkdir(exist_ok=True, parents=True)\n", | |
" \n", | |
" if (extract_to / \"info.json\").exists(): # already downloaded this one\n", | |
" print(\"[existing]\")\n", | |
" continue\n", | |
"\n", | |
" # Our artifacts are small enough to fit OK in memory\n", | |
" # Consider stream=True for larger files\n", | |
" dl = requests.get(artifact[\"archive_download_url\"], auth=(GHA_USERNAME, GHA_TOKEN))\n", | |
" dl.raise_for_status()\n", | |
"\n", | |
" z = zipfile.ZipFile(BytesIO(dl.content))\n", | |
" z.extractall(extract_to)\n", | |
" time.sleep(1)\n", | |
" with open(extract_to / \"info.json\", \"w\") as f:\n", | |
" json.dump(artifact, f)\n", | |
" print(\"[OK]\")" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 4, | |
"id": "d6125ea5-d629-4a1d-a2a6-07c0bb274980", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Obtaining artifact 73540846 asv-benchmark-results-processes_1 created on 2021-07-08T08:41:21Z ... [OK]\n", | |
"Obtaining artifact 73540845 asv-benchmark-results-no_interleave created on 2021-07-08T08:41:21Z ... [OK]\n", | |
"Obtaining artifact 73540844 asv-benchmark-results-default created on 2021-07-08T08:41:21Z ... [OK]\n", | |
"Obtaining artifact 73486579 asv-benchmark-results-processes_1 created on 2021-07-08T03:25:59Z ... [OK]\n", | |
"Obtaining artifact 73486578 asv-benchmark-results-no_interleave created on 2021-07-08T03:25:59Z ... [OK]\n", | |
"Obtaining artifact 73486577 asv-benchmark-results-default created on 2021-07-08T03:25:59Z ... [OK]\n", | |
"Obtaining artifact 73418865 asv-benchmark-results-processes_1 created on 2021-07-07T20:43:34Z ... [OK]\n", | |
"Obtaining artifact 73418864 asv-benchmark-results-no_interleave created on 2021-07-07T20:43:34Z ... [OK]\n", | |
"Obtaining artifact 73418863 asv-benchmark-results-default created on 2021-07-07T20:43:34Z ... [OK]\n", | |
"Obtaining artifact 73324968 asv-benchmark-results-processes_1 created on 2021-07-07T14:55:30Z ... [OK]\n", | |
"Obtaining artifact 73324967 asv-benchmark-results-no_interleave created on 2021-07-07T14:55:30Z ... [OK]\n", | |
"Obtaining artifact 73324966 asv-benchmark-results-default created on 2021-07-07T14:55:30Z ... [OK]\n", | |
"Obtaining artifact 73219883 asv-benchmark-results-processes_1 created on 2021-07-07T08:35:25Z ... [OK]\n", | |
"Obtaining artifact 73219882 asv-benchmark-results-no_interleave created on 2021-07-07T08:35:25Z ... [OK]\n", | |
"Obtaining artifact 73219881 asv-benchmark-results-default created on 2021-07-07T08:35:25Z ... [OK]\n", | |
"Obtaining artifact 73167970 asv-benchmark-results-processes_1 created on 2021-07-07T03:25:53Z ... [OK]\n", | |
"Obtaining artifact 73167969 asv-benchmark-results-no_interleave created on 2021-07-07T03:25:53Z ... [OK]\n", | |
"Obtaining artifact 73167968 asv-benchmark-results-default created on 2021-07-07T03:25:53Z ... [OK]\n", | |
"Obtaining artifact 73098980 asv-benchmark-results-processes_1 created on 2021-07-06T20:33:40Z ... [OK]\n", | |
"Obtaining artifact 73098979 asv-benchmark-results-no_interleave created on 2021-07-06T20:33:40Z ... [OK]\n", | |
"Obtaining artifact 73098978 asv-benchmark-results-default created on 2021-07-06T20:33:40Z ... [OK]\n", | |
"Obtaining artifact 73011411 asv-benchmark-results-processes_1 created on 2021-07-06T14:56:29Z ... [OK]\n", | |
"Obtaining artifact 73011410 asv-benchmark-results-no_interleave created on 2021-07-06T14:56:29Z ... [OK]\n", | |
"Obtaining artifact 73011409 asv-benchmark-results-default created on 2021-07-06T14:56:29Z ... [OK]\n", | |
"Obtaining artifact 72911498 asv-benchmark-results-processes_1 created on 2021-07-06T08:46:15Z ... [OK]\n", | |
"Obtaining artifact 72911497 asv-benchmark-results-no_interleave created on 2021-07-06T08:46:15Z ... [OK]\n", | |
"Obtaining artifact 72911496 asv-benchmark-results-default created on 2021-07-06T08:46:15Z ... [OK]\n", | |
"Obtaining artifact 72858532 asv-benchmark-results-processes_1 created on 2021-07-06T03:24:49Z ... [OK]\n", | |
"Obtaining artifact 72858531 asv-benchmark-results-no_interleave created on 2021-07-06T03:24:49Z ... [OK]\n", | |
"Obtaining artifact 72858530 asv-benchmark-results-default created on 2021-07-06T03:24:49Z ... [OK]\n", | |
"Obtaining artifact 72806684 asv-benchmark-results-processes_1 created on 2021-07-05T20:43:21Z ... [OK]\n", | |
"Obtaining artifact 72806683 asv-benchmark-results-no_interleave created on 2021-07-05T20:43:21Z ... [OK]\n", | |
"Obtaining artifact 72806682 asv-benchmark-results-default created on 2021-07-05T20:43:21Z ... [OK]\n", | |
"Obtaining artifact 72736961 asv-benchmark-results-processes_1 created on 2021-07-05T14:48:14Z ... [OK]\n", | |
"Obtaining artifact 72736960 asv-benchmark-results-no_interleave created on 2021-07-05T14:48:14Z ... [OK]\n", | |
"Obtaining artifact 72736959 asv-benchmark-results-default created on 2021-07-05T14:48:14Z ... [OK]\n", | |
"Obtaining artifact 72644932 asv-benchmark-results-processes_1 created on 2021-07-05T08:41:38Z ... [OK]\n", | |
"Obtaining artifact 72644931 asv-benchmark-results-no_interleave created on 2021-07-05T08:41:38Z ... [OK]\n", | |
"Obtaining artifact 72644930 asv-benchmark-results-default created on 2021-07-05T08:41:38Z ... [OK]\n", | |
"Obtaining artifact 72596351 asv-benchmark-results-processes_1 created on 2021-07-05T03:37:06Z ... [OK]\n", | |
"Obtaining artifact 72596350 asv-benchmark-results-no_interleave created on 2021-07-05T03:37:06Z ... [OK]\n", | |
"Obtaining artifact 72596349 asv-benchmark-results-default created on 2021-07-05T03:37:06Z ... [OK]\n", | |
"Obtaining artifact 72557771 asv-benchmark-results-processes_1 created on 2021-07-04T20:36:00Z ... [OK]\n", | |
"Obtaining artifact 72557770 asv-benchmark-results-no_interleave created on 2021-07-04T20:36:00Z ... [OK]\n", | |
"Obtaining artifact 72557769 asv-benchmark-results-default created on 2021-07-04T20:36:00Z ... [OK]\n", | |
"Obtaining artifact 72529046 asv-benchmark-results-processes_1 created on 2021-07-04T14:57:17Z ... [OK]\n", | |
"Obtaining artifact 72529045 asv-benchmark-results-no_interleave created on 2021-07-04T14:57:17Z ... [OK]\n", | |
"Obtaining artifact 72529044 asv-benchmark-results-default created on 2021-07-04T14:57:17Z ... [OK]\n", | |
"Obtaining artifact 72499451 asv-benchmark-results-processes_1 created on 2021-07-04T08:36:05Z ... [OK]\n", | |
"Obtaining artifact 72499450 asv-benchmark-results-no_interleave created on 2021-07-04T08:36:05Z ... [OK]\n", | |
"Obtaining artifact 72499449 asv-benchmark-results-default created on 2021-07-04T08:36:05Z ... [OK]\n", | |
"Obtaining artifact 72480307 asv-benchmark-results-processes_1 created on 2021-07-04T03:23:43Z ... [OK]\n", | |
"Obtaining artifact 72480306 asv-benchmark-results-no_interleave created on 2021-07-04T03:23:43Z ... [OK]\n", | |
"Obtaining artifact 72480305 asv-benchmark-results-default created on 2021-07-04T03:23:43Z ... [OK]\n", | |
"Obtaining artifact 72451380 asv-benchmark-results-processes_1 created on 2021-07-03T20:45:23Z ... [OK]\n", | |
"Obtaining artifact 72451379 asv-benchmark-results-no_interleave created on 2021-07-03T20:45:23Z ... [OK]\n", | |
"Obtaining artifact 72451378 asv-benchmark-results-default created on 2021-07-03T20:45:23Z ... [OK]\n", | |
"Obtaining artifact 72422445 asv-benchmark-results-processes_1 created on 2021-07-03T14:40:21Z ... [OK]\n", | |
"Obtaining artifact 72422444 asv-benchmark-results-no_interleave created on 2021-07-03T14:40:21Z ... [OK]\n", | |
"Obtaining artifact 72422443 asv-benchmark-results-default created on 2021-07-03T14:40:21Z ... [OK]\n", | |
"Obtaining artifact 72396588 asv-benchmark-results-processes_1 created on 2021-07-03T08:46:42Z ... [OK]\n", | |
"Obtaining artifact 72396587 asv-benchmark-results-no_interleave created on 2021-07-03T08:46:42Z ... [OK]\n", | |
"Obtaining artifact 72396586 asv-benchmark-results-default created on 2021-07-03T08:46:42Z ... [OK]\n", | |
"Obtaining artifact 72374063 asv-benchmark-results-processes_1 created on 2021-07-03T03:33:41Z ... [OK]\n", | |
"Obtaining artifact 72374062 asv-benchmark-results-no_interleave created on 2021-07-03T03:33:41Z ... [OK]\n", | |
"Obtaining artifact 72374061 asv-benchmark-results-default created on 2021-07-03T03:33:41Z ... [OK]\n", | |
"Obtaining artifact 72323234 asv-benchmark-results-processes_1 created on 2021-07-02T20:40:23Z ... [OK]\n", | |
"Obtaining artifact 72323233 asv-benchmark-results-no_interleave created on 2021-07-02T20:40:23Z ... [OK]\n", | |
"Obtaining artifact 72323232 asv-benchmark-results-default created on 2021-07-02T20:40:23Z ... [OK]\n", | |
"Obtaining artifact 72251288 asv-benchmark-results-processes_1 created on 2021-07-02T14:56:58Z ... [OK]\n", | |
"Obtaining artifact 72251287 asv-benchmark-results-no_interleave created on 2021-07-02T14:56:58Z ... [OK]\n", | |
"Obtaining artifact 72251286 asv-benchmark-results-default created on 2021-07-02T14:56:58Z ... [OK]\n", | |
"Obtaining artifact 72154572 asv-benchmark-results-processes_1 created on 2021-07-02T08:32:30Z ... [existing]\n", | |
"Obtaining artifact 72154571 asv-benchmark-results-no_interleave created on 2021-07-02T08:32:30Z ... [existing]\n", | |
"Obtaining artifact 72154570 asv-benchmark-results-default created on 2021-07-02T08:32:30Z ... [existing]\n", | |
"Obtaining artifact 72106918 asv-benchmark-results-processes_1 created on 2021-07-02T03:24:17Z ... [existing]\n", | |
"Obtaining artifact 72106917 asv-benchmark-results-no_interleave created on 2021-07-02T03:24:17Z ... [existing]\n", | |
"Obtaining artifact 72106916 asv-benchmark-results-default created on 2021-07-02T03:24:17Z ... [existing]\n", | |
"Obtaining artifact 72039270 asv-benchmark-results-processes_1 created on 2021-07-01T20:41:37Z ... [existing]\n", | |
"Obtaining artifact 72039269 asv-benchmark-results-no_interleave created on 2021-07-01T20:41:37Z ... [existing]\n", | |
"Obtaining artifact 72039268 asv-benchmark-results-default created on 2021-07-01T20:41:37Z ... [existing]\n", | |
"Obtaining artifact 71947782 asv-benchmark-results-processes_1 created on 2021-07-01T14:47:17Z ... [existing]\n", | |
"Obtaining artifact 71947781 asv-benchmark-results-no_interleave created on 2021-07-01T14:47:17Z ... [existing]\n", | |
"Obtaining artifact 71947780 asv-benchmark-results-default created on 2021-07-01T14:47:17Z ... [existing]\n", | |
"Obtaining artifact 71843564 asv-benchmark-results-processes_1 created on 2021-07-01T08:42:45Z ... [existing]\n", | |
"Obtaining artifact 71843563 asv-benchmark-results-no_interleave created on 2021-07-01T08:42:45Z ... [existing]\n", | |
"Obtaining artifact 71843562 asv-benchmark-results-default created on 2021-07-01T08:42:45Z ... [existing]\n", | |
"Obtaining artifact 71786203 asv-benchmark-results-processes_1 created on 2021-07-01T03:25:54Z ... [existing]\n", | |
"Obtaining artifact 71786202 asv-benchmark-results-no_interleave created on 2021-07-01T03:25:54Z ... [existing]\n", | |
"Obtaining artifact 71786201 asv-benchmark-results-default created on 2021-07-01T03:25:54Z ... [existing]\n", | |
"Obtaining artifact 71714828 asv-benchmark-results-processes_1 created on 2021-06-30T20:37:07Z ... [existing]\n", | |
"Obtaining artifact 71714827 asv-benchmark-results-no_interleave created on 2021-06-30T20:37:07Z ... [existing]\n", | |
"Obtaining artifact 71714826 asv-benchmark-results-default created on 2021-06-30T20:37:07Z ... [existing]\n", | |
"Obtaining artifact 71619920 asv-benchmark-results-processes_1 created on 2021-06-30T14:49:16Z ... [existing]\n", | |
"Obtaining artifact 71619919 asv-benchmark-results-no_interleave created on 2021-06-30T14:49:16Z ... [existing]\n", | |
"Obtaining artifact 71619918 asv-benchmark-results-default created on 2021-06-30T14:49:16Z ... [existing]\n", | |
"Obtaining artifact 71515944 asv-benchmark-results-processes_1 created on 2021-06-30T08:48:32Z ... [existing]\n", | |
"Obtaining artifact 71515943 asv-benchmark-results-no_interleave created on 2021-06-30T08:48:32Z ... [existing]\n", | |
"Obtaining artifact 71515942 asv-benchmark-results-default created on 2021-06-30T08:48:32Z ... [existing]\n", | |
"Obtaining artifact 71460903 asv-benchmark-results-processes_1 created on 2021-06-30T03:28:28Z ... [existing]\n" | |
] | |
} | |
], | |
"source": [ | |
"download_artifacts(\"jaimergp\", \"scikit-image\")" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 5, | |
"id": "39c92067-a205-4e3e-9e6e-efb0521c7263", | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"def parse_results_lines(text):\n", | |
" \"\"\"\n", | |
" `asv compare` prints the benchmark to stdout. We parse that output\n", | |
" and get the ratios for time measurements only (memory is not analyzed for now)\n", | |
" \"\"\"\n", | |
" lines = text.splitlines()\n", | |
" ratios = {}\n", | |
" for line in lines:\n", | |
" if \"benchmark_\" in line and \".time_\" in line:\n", | |
" before, after, ratio = line[1:].split()[:3]\n", | |
" name = line.split(\"benchmark_\")[1]\n", | |
" if ratio == \"n/a\":\n", | |
" ratios[name] = None\n", | |
" else:\n", | |
" ratios[name] = float(ratio.replace(\"~\", \"\"))\n", | |
" return ratios" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 54, | |
"id": "5c676557-03b9-4225-8ea9-7e4d3ef4f6c0", | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"def timeseries_compare(artifacts_directories, factor=1.5):\n", | |
" \"\"\"\n", | |
" Given a list of unzipped artifacts, run `asv compare` programmatically\n", | |
" and return the corresponding text output. We expect no significant\n", | |
" worsened or improved performance because they are essentially the same commit.\n", | |
" \"\"\"\n", | |
" text_results = {}\n", | |
" different = 0\n", | |
" for directory in sorted(artifacts_directories):\n", | |
" results_dir = directory.parent\n", | |
" date = results_dir.stem\n", | |
" machine = directory.stem\n", | |
" if machine in (\"benchmarks\", \".ipynb_checkpoints\"):\n", | |
" continue\n", | |
" conf = template_conf.copy()\n", | |
" conf[\"results_dir\"] = results_dir\n", | |
" config = asv.config.Config.from_json(conf)\n", | |
" hashes = []\n", | |
" for results in directory.glob(\"*conda*.json\"):\n", | |
" hashes.append(results.stem.split(\"-\")[0])\n", | |
" hashes.sort()\n", | |
" if not hashes:\n", | |
" continue\n", | |
" # assert tuple(hashes) == expected_commits, f\"Hashes do not match? {hashes}, {directory}\"\n", | |
" with StringIO() as buf, redirect_stdout(buf):\n", | |
" compare = asv.commands.compare.Compare()\n", | |
" worsened, improved = compare.print_table(config, *hashes, factor, True, machine=machine, only_changed=False)\n", | |
" text_results[str(date)] = buf.getvalue()\n", | |
" \n", | |
" if worsened or improved:\n", | |
" print(f\"!!! {date}: Worsened? {worsened} Improved? {improved}\")\n", | |
" different += 1\n", | |
" if different:\n", | |
" print(\"!!!\")\n", | |
" print(different, \"out of\", len(text_results), \"points showed discrepancies larger than\", factor)\n", | |
" print(\"!!!\")\n", | |
" return text_results" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "b4f000e0-7cbc-4ca5-b4cf-4c56d0d08288", | |
"metadata": {}, | |
"source": [ | |
"If some benchmarks show a difference (either worsened or improved), that would be a false positive. The default factor is 1.2 (20% difference across measurements):" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "9e449393-515f-4ca8-ac12-b895fe63eecd", | |
"metadata": {}, | |
"source": [ | |
"## Default configuration\n", | |
"\n", | |
"* Two processes, interleaves" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 55, | |
"id": "523d329b-275a-4224-93d8-b9f396766b3d", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"Skipping results: could not load data/2021-06-11T15-04-47Z/fv-az213-298/.ipynb_checkpoints/machine.json\n", | |
"Skipping results: could not load data/2021-06-11T15-04-47Z/fv-az213-298/.ipynb_checkpoints/machine.json\n", | |
"Skipping results: could not load data/2021-06-11T15-04-47Z/fv-az213-298/.ipynb_checkpoints/machine.json\n", | |
"Skipping results: could not load data/2021-06-11T15-04-47Z/fv-az213-298/.ipynb_checkpoints/machine.json\n" | |
] | |
}, | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"!!! 2021-06-18T08-47-20Z: Worsened? False Improved? True\n", | |
"!!! 2021-06-24T08-43-56Z: Worsened? True Improved? False\n", | |
"!!! 2021-06-25T20-46-41Z: Worsened? True Improved? False\n", | |
"!!! 2021-07-03T20-45-23Z: Worsened? False Improved? True\n", | |
"!!!\n", | |
"4 out of 108 points showed discrepancies larger than 1.5\n", | |
"!!!\n" | |
] | |
} | |
], | |
"source": [ | |
"text_results = timeseries_compare(Path().glob(\"data/*Z/fv-*/\"))\n", | |
"# Parse text and get time ratios only, grouped by benchmark test\n", | |
"ratios_per_run = {date: parse_results_lines(text) for date, text in text_results.items()}" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 8, | |
"id": "e3afb36c-367e-49f9-997a-fd35c5a5cc4b", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>exposure.ExposureSuite.time_equalize_adapthist</th>\n", | |
" <th>exposure.ExposureSuite.time_equalize_hist</th>\n", | |
" <th>exposure.ExposureSuite.time_gamma_adjust_u8</th>\n", | |
" <th>exposure.ExposureSuite.time_histogram</th>\n", | |
" <th>exposure.ExposureSuite.time_rescale_intensity</th>\n", | |
" <th>feature.FeatureSuite.time_canny</th>\n", | |
" <th>feature.FeatureSuite.time_glcm</th>\n", | |
" <th>filters.FiltersSobel3D.time_sobel_3d</th>\n", | |
" <th>filters.FiltersSuite.time_sobel</th>\n", | |
" <th>filters.MultiOtsu.time_threshold_multiotsu(3)</th>\n", | |
" <th>...</th>\n", | |
" <th>transform_warp.ResizeLocalMeanSuite.time_resize_local_mean(<class 'numpy.uint8'>, 512, 128, 3, 3, False)</th>\n", | |
" <th>transform_warp.ResizeLocalMeanSuite.time_resize_local_mean(<class 'numpy.uint8'>, 512, 128, 3, 3, True)</th>\n", | |
" <th>transform_warp.ResizeLocalMeanSuite.time_resize_local_mean(<class 'numpy.uint8'>, 512, 512, 2, 2, False)</th>\n", | |
" <th>transform_warp.ResizeLocalMeanSuite.time_resize_local_mean(<class 'numpy.uint8'>, 512, 512, 2, 2, True)</th>\n", | |
" <th>transform_warp.ResizeLocalMeanSuite.time_resize_local_mean(<class 'numpy.uint8'>, 512, 512, 2, 3, False)</th>\n", | |
" <th>transform_warp.ResizeLocalMeanSuite.time_resize_local_mean(<class 'numpy.uint8'>, 512, 512, 2, 3, True)</th>\n", | |
" <th>transform_warp.ResizeLocalMeanSuite.time_resize_local_mean(<class 'numpy.uint8'>, 512, 512, 3, 2, False)</th>\n", | |
" <th>transform_warp.ResizeLocalMeanSuite.time_resize_local_mean(<class 'numpy.uint8'>, 512, 512, 3, 2, True)</th>\n", | |
" <th>transform_warp.ResizeLocalMeanSuite.time_resize_local_mean(<class 'numpy.uint8'>, 512, 512, 3, 3, False)</th>\n", | |
" <th>transform_warp.ResizeLocalMeanSuite.time_resize_local_mean(<class 'numpy.uint8'>, 512, 512, 3, 3, True)</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>2021-06-11T15-04-47Z</th>\n", | |
" <td>0.99</td>\n", | |
" <td>1.00</td>\n", | |
" <td>1.00</td>\n", | |
" <td>1.00</td>\n", | |
" <td>0.98</td>\n", | |
" <td>1.00</td>\n", | |
" <td>1.00</td>\n", | |
" <td>1.00</td>\n", | |
" <td>1.00</td>\n", | |
" <td>0.99</td>\n", | |
" <td>...</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2021-06-11T15-14-34Z</th>\n", | |
" <td>0.93</td>\n", | |
" <td>1.00</td>\n", | |
" <td>0.94</td>\n", | |
" <td>1.00</td>\n", | |
" <td>0.91</td>\n", | |
" <td>0.99</td>\n", | |
" <td>1.03</td>\n", | |
" <td>0.98</td>\n", | |
" <td>0.99</td>\n", | |
" <td>0.96</td>\n", | |
" <td>...</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2021-06-11T15-49-47Z</th>\n", | |
" <td>0.98</td>\n", | |
" <td>1.00</td>\n", | |
" <td>0.99</td>\n", | |
" <td>0.99</td>\n", | |
" <td>1.00</td>\n", | |
" <td>0.98</td>\n", | |
" <td>1.02</td>\n", | |
" <td>0.99</td>\n", | |
" <td>1.00</td>\n", | |
" <td>1.00</td>\n", | |
" <td>...</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2021-06-11T15-54-20Z</th>\n", | |
" <td>0.93</td>\n", | |
" <td>0.99</td>\n", | |
" <td>0.99</td>\n", | |
" <td>1.01</td>\n", | |
" <td>1.00</td>\n", | |
" <td>1.02</td>\n", | |
" <td>0.98</td>\n", | |
" <td>1.00</td>\n", | |
" <td>1.00</td>\n", | |
" <td>1.00</td>\n", | |
" <td>...</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2021-06-11T20-39-49Z</th>\n", | |
" <td>0.98</td>\n", | |
" <td>0.99</td>\n", | |
" <td>0.96</td>\n", | |
" <td>0.95</td>\n", | |
" <td>0.94</td>\n", | |
" <td>1.00</td>\n", | |
" <td>0.92</td>\n", | |
" <td>0.99</td>\n", | |
" <td>0.99</td>\n", | |
" <td>0.97</td>\n", | |
" <td>...</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"<p>5 rows × 693 columns</p>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" exposure.ExposureSuite.time_equalize_adapthist \\\n", | |
"2021-06-11T15-04-47Z 0.99 \n", | |
"2021-06-11T15-14-34Z 0.93 \n", | |
"2021-06-11T15-49-47Z 0.98 \n", | |
"2021-06-11T15-54-20Z 0.93 \n", | |
"2021-06-11T20-39-49Z 0.98 \n", | |
"\n", | |
" exposure.ExposureSuite.time_equalize_hist \\\n", | |
"2021-06-11T15-04-47Z 1.00 \n", | |
"2021-06-11T15-14-34Z 1.00 \n", | |
"2021-06-11T15-49-47Z 1.00 \n", | |
"2021-06-11T15-54-20Z 0.99 \n", | |
"2021-06-11T20-39-49Z 0.99 \n", | |
"\n", | |
" exposure.ExposureSuite.time_gamma_adjust_u8 \\\n", | |
"2021-06-11T15-04-47Z 1.00 \n", | |
"2021-06-11T15-14-34Z 0.94 \n", | |
"2021-06-11T15-49-47Z 0.99 \n", | |
"2021-06-11T15-54-20Z 0.99 \n", | |
"2021-06-11T20-39-49Z 0.96 \n", | |
"\n", | |
" exposure.ExposureSuite.time_histogram \\\n", | |
"2021-06-11T15-04-47Z 1.00 \n", | |
"2021-06-11T15-14-34Z 1.00 \n", | |
"2021-06-11T15-49-47Z 0.99 \n", | |
"2021-06-11T15-54-20Z 1.01 \n", | |
"2021-06-11T20-39-49Z 0.95 \n", | |
"\n", | |
" exposure.ExposureSuite.time_rescale_intensity \\\n", | |
"2021-06-11T15-04-47Z 0.98 \n", | |
"2021-06-11T15-14-34Z 0.91 \n", | |
"2021-06-11T15-49-47Z 1.00 \n", | |
"2021-06-11T15-54-20Z 1.00 \n", | |
"2021-06-11T20-39-49Z 0.94 \n", | |
"\n", | |
" feature.FeatureSuite.time_canny \\\n", | |
"2021-06-11T15-04-47Z 1.00 \n", | |
"2021-06-11T15-14-34Z 0.99 \n", | |
"2021-06-11T15-49-47Z 0.98 \n", | |
"2021-06-11T15-54-20Z 1.02 \n", | |
"2021-06-11T20-39-49Z 1.00 \n", | |
"\n", | |
" feature.FeatureSuite.time_glcm \\\n", | |
"2021-06-11T15-04-47Z 1.00 \n", | |
"2021-06-11T15-14-34Z 1.03 \n", | |
"2021-06-11T15-49-47Z 1.02 \n", | |
"2021-06-11T15-54-20Z 0.98 \n", | |
"2021-06-11T20-39-49Z 0.92 \n", | |
"\n", | |
" filters.FiltersSobel3D.time_sobel_3d \\\n", | |
"2021-06-11T15-04-47Z 1.00 \n", | |
"2021-06-11T15-14-34Z 0.98 \n", | |
"2021-06-11T15-49-47Z 0.99 \n", | |
"2021-06-11T15-54-20Z 1.00 \n", | |
"2021-06-11T20-39-49Z 0.99 \n", | |
"\n", | |
" filters.FiltersSuite.time_sobel \\\n", | |
"2021-06-11T15-04-47Z 1.00 \n", | |
"2021-06-11T15-14-34Z 0.99 \n", | |
"2021-06-11T15-49-47Z 1.00 \n", | |
"2021-06-11T15-54-20Z 1.00 \n", | |
"2021-06-11T20-39-49Z 0.99 \n", | |
"\n", | |
" filters.MultiOtsu.time_threshold_multiotsu(3) ... \\\n", | |
"2021-06-11T15-04-47Z 0.99 ... \n", | |
"2021-06-11T15-14-34Z 0.96 ... \n", | |
"2021-06-11T15-49-47Z 1.00 ... \n", | |
"2021-06-11T15-54-20Z 1.00 ... \n", | |
"2021-06-11T20-39-49Z 0.97 ... \n", | |
"\n", | |
" transform_warp.ResizeLocalMeanSuite.time_resize_local_mean(<class 'numpy.uint8'>, 512, 128, 3, 3, False) \\\n", | |
"2021-06-11T15-04-47Z NaN \n", | |
"2021-06-11T15-14-34Z NaN \n", | |
"2021-06-11T15-49-47Z NaN \n", | |
"2021-06-11T15-54-20Z NaN \n", | |
"2021-06-11T20-39-49Z NaN \n", | |
"\n", | |
" transform_warp.ResizeLocalMeanSuite.time_resize_local_mean(<class 'numpy.uint8'>, 512, 128, 3, 3, True) \\\n", | |
"2021-06-11T15-04-47Z NaN \n", | |
"2021-06-11T15-14-34Z NaN \n", | |
"2021-06-11T15-49-47Z NaN \n", | |
"2021-06-11T15-54-20Z NaN \n", | |
"2021-06-11T20-39-49Z NaN \n", | |
"\n", | |
" transform_warp.ResizeLocalMeanSuite.time_resize_local_mean(<class 'numpy.uint8'>, 512, 512, 2, 2, False) \\\n", | |
"2021-06-11T15-04-47Z NaN \n", | |
"2021-06-11T15-14-34Z NaN \n", | |
"2021-06-11T15-49-47Z NaN \n", | |
"2021-06-11T15-54-20Z NaN \n", | |
"2021-06-11T20-39-49Z NaN \n", | |
"\n", | |
" transform_warp.ResizeLocalMeanSuite.time_resize_local_mean(<class 'numpy.uint8'>, 512, 512, 2, 2, True) \\\n", | |
"2021-06-11T15-04-47Z NaN \n", | |
"2021-06-11T15-14-34Z NaN \n", | |
"2021-06-11T15-49-47Z NaN \n", | |
"2021-06-11T15-54-20Z NaN \n", | |
"2021-06-11T20-39-49Z NaN \n", | |
"\n", | |
" transform_warp.ResizeLocalMeanSuite.time_resize_local_mean(<class 'numpy.uint8'>, 512, 512, 2, 3, False) \\\n", | |
"2021-06-11T15-04-47Z NaN \n", | |
"2021-06-11T15-14-34Z NaN \n", | |
"2021-06-11T15-49-47Z NaN \n", | |
"2021-06-11T15-54-20Z NaN \n", | |
"2021-06-11T20-39-49Z NaN \n", | |
"\n", | |
" transform_warp.ResizeLocalMeanSuite.time_resize_local_mean(<class 'numpy.uint8'>, 512, 512, 2, 3, True) \\\n", | |
"2021-06-11T15-04-47Z NaN \n", | |
"2021-06-11T15-14-34Z NaN \n", | |
"2021-06-11T15-49-47Z NaN \n", | |
"2021-06-11T15-54-20Z NaN \n", | |
"2021-06-11T20-39-49Z NaN \n", | |
"\n", | |
" transform_warp.ResizeLocalMeanSuite.time_resize_local_mean(<class 'numpy.uint8'>, 512, 512, 3, 2, False) \\\n", | |
"2021-06-11T15-04-47Z NaN \n", | |
"2021-06-11T15-14-34Z NaN \n", | |
"2021-06-11T15-49-47Z NaN \n", | |
"2021-06-11T15-54-20Z NaN \n", | |
"2021-06-11T20-39-49Z NaN \n", | |
"\n", | |
" transform_warp.ResizeLocalMeanSuite.time_resize_local_mean(<class 'numpy.uint8'>, 512, 512, 3, 2, True) \\\n", | |
"2021-06-11T15-04-47Z NaN \n", | |
"2021-06-11T15-14-34Z NaN \n", | |
"2021-06-11T15-49-47Z NaN \n", | |
"2021-06-11T15-54-20Z NaN \n", | |
"2021-06-11T20-39-49Z NaN \n", | |
"\n", | |
" transform_warp.ResizeLocalMeanSuite.time_resize_local_mean(<class 'numpy.uint8'>, 512, 512, 3, 3, False) \\\n", | |
"2021-06-11T15-04-47Z NaN \n", | |
"2021-06-11T15-14-34Z NaN \n", | |
"2021-06-11T15-49-47Z NaN \n", | |
"2021-06-11T15-54-20Z NaN \n", | |
"2021-06-11T20-39-49Z NaN \n", | |
"\n", | |
" transform_warp.ResizeLocalMeanSuite.time_resize_local_mean(<class 'numpy.uint8'>, 512, 512, 3, 3, True) \n", | |
"2021-06-11T15-04-47Z NaN \n", | |
"2021-06-11T15-14-34Z NaN \n", | |
"2021-06-11T15-49-47Z NaN \n", | |
"2021-06-11T15-54-20Z NaN \n", | |
"2021-06-11T20-39-49Z NaN \n", | |
"\n", | |
"[5 rows x 693 columns]" | |
] | |
}, | |
"execution_count": 8, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"ratios_df = pandas.DataFrame.from_dict(ratios_per_run).T\n", | |
"ratios_df.head()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 9, | |
"id": "3c470eda-6453-4500-b09b-62188cbdfdad", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"Index(['2021-06-11T15-04-47Z', '2021-06-11T15-14-34Z', '2021-06-11T15-49-47Z',\n", | |
" '2021-06-11T15-54-20Z', '2021-06-11T20-39-49Z', '2021-06-12T03-19-46Z',\n", | |
" '2021-06-12T08-26-15Z', '2021-06-12T14-34-32Z', '2021-06-12T20-36-38Z',\n", | |
" '2021-06-13T03-27-24Z',\n", | |
" ...\n", | |
" '2021-07-06T03-24-49Z', '2021-07-06T08-46-15Z', '2021-07-06T14-56-29Z',\n", | |
" '2021-07-06T20-33-40Z', '2021-07-07T03-25-53Z', '2021-07-07T08-35-25Z',\n", | |
" '2021-07-07T14-55-30Z', '2021-07-07T20-43-34Z', '2021-07-08T03-25-59Z',\n", | |
" '2021-07-08T08-41-21Z'],\n", | |
" dtype='object', length=108)" | |
] | |
}, | |
"execution_count": 9, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"ratios_df.index" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 10, | |
"id": "9290cf7e-921a-4db8-9de8-5ab13fd6f3d1", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"(0.51, 1.36)" | |
] | |
}, | |
"execution_count": 10, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"ratios_df.loc[\"2021-06-22T14-55-27Z\":].min().min(), ratios_df.loc[\"2021-06-22T14-55-27Z\":].max().max()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 11, | |
"id": "bc1bf89e-b297-4112-9426-caa2bb5cdb46", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"(1.003431790499391, 0.0475755816428732)" | |
] | |
}, | |
"execution_count": 11, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"np.nanmean(ratios_df.loc[\"2021-06-22T14-55-27Z\":]._values), np.nanstd(ratios_df.loc[\"2021-06-22T14-55-27Z\":]._values)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "dd3bce5f-c791-42bd-8f13-d0ab3b43138c", | |
"metadata": {}, | |
"source": [ | |
"We are going to plot all the ratios across attempts (X axis). Under idea conditions, we should see a line `y=1` for all of the tests, but there can be some deviations:" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 64, | |
"id": "07c3abf5-364c-4cdf-8262-b69906c137b6", | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"def plot(df, title=None):\n", | |
" fig, ax = plt.subplots()\n", | |
" ax.axhline(y=1, linewidth=2, linestyle=\"dashed\", color=\"black\")\n", | |
" sns.stripplot(data=df.T, ax=ax, jitter=True, edgecolor='none', alpha=.4, size=10)\n", | |
" ax.set(xlabel=\"Attempts\", ylabel=\"Performance ratio\")\n", | |
" ticks = df.index.tolist()\n", | |
" ax.set_xticks(range(0, len(ticks), 4))\n", | |
" ax.set_xticklabels(ticks[::4])\n", | |
" fig.autofmt_xdate(bottom=0.2, rotation=30, ha=\"right\")\n", | |
" ax.grid(axis=\"y\")\n", | |
" ax.set_ylim(0, 3)\n", | |
"\n", | |
" # add background info about days\n", | |
" # semitransparent color palette\n", | |
" seven_colors = cycle([c + (0.5,) for c in sns.color_palette(\"Pastel2\")[:7]])\n", | |
" ymin, ymax = ax.get_ylim()\n", | |
" xmax = len(ticks)\n", | |
" current_tick = 0\n", | |
" current_date = datetime.strptime(ticks[0], \"%Y-%m-%dT%H-%M-%SZ\")\n", | |
" for tick, timestamp in enumerate(ticks[1:], 1):\n", | |
" date = datetime.strptime(timestamp, \"%Y-%m-%dT%H-%M-%SZ\")\n", | |
" if current_date.weekday() == date.weekday():\n", | |
" continue\n", | |
" ax.axvspan(current_tick, tick, facecolor=next(seven_colors))\n", | |
" ax.text(current_tick, ymin+.01, current_date.strftime(\"%a\"))\n", | |
" current_date, current_tick = date, tick\n", | |
" if current_tick != tick:\n", | |
" ax.axvspan(current_tick, tick, facecolor=next(seven_colors))\n", | |
" ax.text(current_tick, ymin+.01, current_date.strftime(\"%a\"))\n", | |
"\n", | |
" fig.set_size_inches(25, 15)\n", | |
" \n", | |
" if title:\n", | |
" ax.set_title(title)\n", | |
" \n", | |
" return fig" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 65, | |
"id": "880372cb-9acc-4a0f-a95f-2e069c48d267", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAABigAAAO3CAYAAAC5k8wlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd3wVdb7/8ffMKamEUAKho4ICFlDQtdDVlb32VVd/6iqK5doWu+JeF1fdVde9rmuXqyv2XetaFgsiIKAoCNhQBKUn9PRy2nx/f8QcEnJOclKYw4mv5+ORB+TMd2Y+k1Mymfd8v1/LGGMEAAAAAAAAAADgIjvZBQAAAAAAAAAAgJ8fAgoAAAAAAAAAAOA6AgoAAAAAAAAAAOA6AgoAAAAAAAAAAOA6AgoAAAAAAAAAAOA6AgoAAAAAAAAAAOA6AgoAAIB2Zs2aNbIsq1Vfa9asSfZhAElT+z6YPn16sktxzfTp06PHjZap+9k7Z86cVm1r2bJlsm1b/fr1UzAYbNE2xo4dK8uyNHHixFbV0pglS5boN7/5jXr16iWfzxc9/uLi4t22z+bq37+/LMvSbbfd1uJtvPPOO7IsSyNGjJAxpu2KAwAABBQAAAAA4Ka2uGCK9u2GG26QMUa33HKL/H5/ssuJacmSJTrqqKP08ssvq6CgQOFwONklNdttt90my7LUv3//Rtv96le/0mGHHabPP/9cL774ojvFAQDwM0FAAQAA0M7069dPZWVlMb9mzJgRbffYY4/FbdevX78kHgEA/Hy9++67+uCDD9S3b19dcMEFyS4nrr/+9a+qrq5W9+7dNWvWLG3bti36OyQ3NzfZ5bW5qVOnSpJuueUWBQKBJFcDAED74U12AQAAAGhblmUpOzs75rKMjIzo/9PS0uK2A37OGMIFyXTnnXdKki677LI9tveEJH3xxReSpLPOOkvjx49PcjW733/9139pwIABWrVqlZ599llddNFFyS4JAIB2gR4UAAAAAADsAZYvX64FCxbIsiydffbZyS6nUZWVlZLULntLxFP7nEybNi3JlQAA0H4QUAAAAPzMVVZWKi0tTZZl6fnnn2+wPBgMKjMzU5ZlyePxaMeOHQ3azJw5Mzo56saNGxssdxxHzz77rCZMmKBu3brJ7/erW7dumjBhgp5//vlW3bE+ceJEWZalsWPHSpI++ugjnXLKKcrPz1d6eroGDBig66+/PmbdtXadE+CFF17QMccco+7du8u2bV199dX12m/dulW33HKLhg4dqpycHGVkZGifffbRxRdfrG+++Sahuj/66CNNnDhRAwYMUFZWlnJycjRkyBCdc845euONNxQKhWKuV1VVpfvvv19jxoxRXl6e/H6/8vPzdcopp9QbwiuWr7/+WpdccokGDRqkrKwspaenq3fv3hoxYoQmT56sWbNmxVxvxowZ+vWvf60+ffpEe97svffeGjNmjP74xz/q22+/jbvPgoIC3XzzzRo2bJhyc3OVnp6uvffeW5MmTdLy5csbrbc1+22NxibJ3nXi4Xnz5kVfb2lpadprr7101VVXafPmzQ3WrX2trl27VpL0xz/+scEE9bH2GQ6H9Y9//EMTJkxQfn6+/H6/8vLy9Mtf/rLR98+uE1+vX79ekydP1r777ht9Tzd3MuPvv/9eV111lYYMGaIOHTooMzNT++23n373u99p3bp1cderrq7WO++8o8suu0wHHXSQcnJy5PP51K1bNx1zzDH6v//7v5iTQRcVFSk9PV2WZemuu+5qsr599tlHlmXpnHPOibm8Na9HSVqwYIFOOeUU5eXlKSMjQwMHDtQNN9yg7du3N7luIh5//HFJ0qhRo9S3b99G227fvl3XXXedBgwYoPT09OjnwPz58xPeX3NfW3UnAl+zZo2khq/juq/hsrIyvfrqq5o4caIGDx6srKws+f1+9ejRQyeccIJeeumlRj//E5mvpSWTk8+ZM0eWZemPf/yjJGnt2rUN3ou1v1Pqqn1dLVq0SMuWLUtoXwAAoAkGAAAAPxuzZ882kowk89RTT0UfHzlypJFkJk2a1GCdjz76KLqOJPP66683aHPLLbcYSWbgwIENlhUVFZnRo0fX28auX+PHjzclJSUtOqbzzz/fSDJjxowxjz32mLFtO+Y+evbsab777ruY2+jXr5+RZP7whz+Ys88+u8G6kydPjrb98MMPTceOHeMei8fjMX/729/i1ltZWRlzH7t+LV26tMG6X3zxRbTWeF8XXHCBCYfDDdZ98cUXjdfrbXTd/fffv8F6V155ZZO1XnHFFTGP9cUXXzQZGRmN/qymTZsWc93W7Le1Yr1Hao0ZM8ZIMueff76577774r7e+vbtazZs2FBv3drXamNfu+5z7dq1ZujQoY2u86tf/cqUl5c3qPWpp56Ktvnkk09Mp06dGqxbVFTUoG08f/3rXxt9DWVmZpq33nor5rpXX311k8d++OGHR+up69e//rWRZIYMGRK3NmOM+fjjj6PbmjFjRoPlrXk9GmPM/fffbyzLirlunz59zIcffhj9fvbs2Y3WGk/Pnj2NJHPXXXc12u67774zPXr0iFmLbdvm8ccfr/dajaUlr63Vq1c36zV8yimnNNn+pJNOMoFAIGaNtZ93U6dOjfuzqFtTrJ97rG3U/V0Y72vMmDEx97f33nsbSeaWW26JWxMAAEgcPSgAAAAQvVN09uzZDZbVPubz+Zpss+sdp8YYnXnmmfroo48kSZMmTdKSJUu0fft2LVmyRBdeeKEk6cMPP2z1cCarVq3SVVddpeHDh+v999/X1q1btXLlSt12223y+XwqKCjQiSeeqOrq6rjbePLJJ/XCCy/oggsu0GeffaZt27Zp+fLl+s1vfiNJWrlypU488USVlJSoc+fOeuSRR7R27Vpt3rxZb775pvbff39FIhFdc801evnll2Pu45xzztELL7wgSTruuOM0Y8YMFRQUaNu2bVq6dKn+9re/6eCDD26w3rp16zRu3DitXbtWffv21eOPP65Vq1Zpx44d+vrrr3XjjTfK4/Hoqaeeik7mWqu4uFgXX3yxwuGwDjnkEL322mv68ccftX37dn3zzTd65513dOWVV6pbt2711ps1a5YeeughSdIZZ5yhOXPmaP369dqyZYuWLFmil156SWeccUa9uU1qvf322zr77LNVVVWlo446Sq+//ro2bNig7du3a/78+Tr55JMViUR06aWX6v3332+z/brlo48+0nXXXaeTTjpJ8+fP17Zt2/Tjjz/q1ltvlWVZWrdunW644YZ66zz++OMqKyuL3hk/ZcqUBhPUn3vuudH2paWlGj9+vL744gt16dJF//u//6tvv/1WRUVF+v7773XXXXcpIyND77zzji699NJG6z399NOVnZ2tp59+WuvXr9emTZv01ltvKT09PaHjffjhh3X99dcrHA7rhBNO0HvvvadNmzZp69atev/99zVq1ChVVlbqjDPO0FdffdVg/ezsbJ1xxhl6/vnntWjRIq1fv16bN2/W559/rj/84Q/q1KmTFi5cqMsuu6zBurU/k+XLl2vp0qVxa3zuueckSd26ddOxxx5bb1lrXo+S9MEHH+jqq6+WMUb77ruvXn/9dW3evFlr1qzR/fffr+LiYk2aNCmhn2U8q1atUkFBgSTp0EMPjduuqqpKJ5xwggoLC+X3+3X77bdr5cqV0efi4IMP1lVXXaVVq1bF3UZLX1v9+vWLvlbjvY7rvoa7dOmiiRMn6pVXXtGSJUtUUFCgjRs3auHChbrmmmuUkZGhN998s8Fn1u42atQolZWVacqUKZKkvn37NngvvvPOOzHXPeywwyQp+nsNAAC0UrITEgAAALgnXg+KWbNmRR9ft25dvXXGjRtnJJlLLrnESDIHHnhgveXl5eXG5/MZSeaFF16ot+z111+PbnfKlCkxa7rhhhuibd54441mH1Pdu9KHDh1qKioqGrR5+umno23++te/Nlhet1fCjTfeGHdfJ598spFk0tPTzbJlyxosLyoqMvvuu6+RZPLz8xvcFfziiy9G91O3V0Ysu/aCOPHEE40k06tXL7Nly5aY6zzxxBNGkvH7/Wbjxo3Rx998883oHeLbt29vdL91XXvttUaSOfjgg43jOAmvV1VVZbp162YkmQkTJphIJBKz3W9/+1sjyRxwwAFtst+2Eus9Uqv2rnRJ5uKLL465/lVXXRV9HmL1DErkrvC62+nQoUPc3j8zZ86M1rNo0aJ6y+r2iujSpYtZv3593H011oOioKDApKWlRT8HYgmFQmbs2LFGkjn++OMbPa5YvvzyS+PxeIxlWWbVqlX1lgUCAdO5c2cjyVx77bVx99+1a9eY763Wvh6NMeaAAw5o9P03e/bser0rWtKD4sknnzSSjGVZpri4OG67e++9N7qf559/vsHy8vLyaL2K04Oita8tYxJ/HTdmxowZRpLJzs42paWlLdpHS3pQ1Jo6daqRZPr165dwzX/729+MJJOWlmaqqqoSXg8AAMRGDwoAAADoyCOPVFpamqT6PSQCgYA++eQTSTV3yaanp+vrr7/W1q1bo23mz58fnS9h1x4UTzzxhCQpPz8/7hjid9xxR/TO/dr2LXX33XcrMzOzwePnnXeeRowYIUl66qmn4q7fqVOn6Jjku9qyZYveeustSdJll12moUOHNmiTm5uru+++W5K0adMmvf322/WW//3vf5dUM07+X//610aPxePxRP//448/Rrd1//33Ky8vL+Y6F154ofbZZx8Fg8F6PTjC4bAkKTMzs1kT2tau17Nnz+g8Bol48cUXtWXLFtm2renTp8u2Y//Z8ac//UlSzdwYX3zxRav366bMzEz95S9/ibnsggsukFQzf0vd42qOiooKPfnkk5KkP/zhD9pvv/1itjvmmGM0fvx4SYo5h0ytG264Qb17925RLY899pgCgYC6dOmiBx54IGYbr9er22+/XVLN3CHNndviwAMP1CGHHCJjTIO5UPx+v8444wxJNa8tx3EarP/uu+9q27ZtklTvDv7adVrzely8eLG+/vprSdL//M//xHz/jR07VqeddlqihxtT7RwYXbp0UceOHeO2q53j4Re/+EXMnmdZWVnRz6FY2vq11Rq/+tWvlJeXp/Ly8ujvmj3dPvvsI6nm92NjvVQAAEBiCCgAAACg9PR0/eIXv5CkepOMLly4UNXV1Ro8eLD69++vww8/XMYYzZ07N9qmtv1+++2nHj16RB83xmjBggWSpJNOOkl+vz/mvtPS0nTiiSdKUrMmd91VVlZWg2Fd6vr1r38tqeYiYLyLp+PHj4875M3HH38cvTBae7E0lhNOOCE69NC8efOij5eVlWnRokWSaoZ58nq98Q9mF7NmzZIxRrZt68gjj1R5eXnMr4qKimhwsnjx4uj6Q4cOlWVZKisr06RJk7Rhw4aE9ls71NQ777yjv/3tbyovL09ovQ8++CC636ysrLj1durUKXqxt269Ld2vmw4//PC4YU/dC76bNm1q0fY//vhjVVZWSpLGjBkT92dYXl6ugw46SFL9n+Gujj/++BbVIe18PkeNGqVQKBS3jkGDBkmqee9//vnnDbazY8cO3XPPPRo7dqy6d+8uv99fb1Li2vfHihUrGqz729/+VpJUWFioDz/8sMHy2gvo++23XzSM3LX+lr4e634unXLKKXF/TrWfMS1VG/x26tQpbpuioqJokHHqqafGbTdhwoSYYa3U9q+tpmzYsEG33nqrjjzySHXp0kU+n6/e81573LGe9z1R586do/+vDcUAAEDLJf5XEQAAANq1sWPH6qOPPqrXg6L2/+PGjYv+O2fOHM2ePVunn356vTa79p4oLS2NBgFDhgxpdN/777+/pJqLb6WlpcrJyWl2/QMHDqzX62BXgwcPllRz8XTdunUxLy7vvffecddfu3Zt9P+NHY/P59PAgQP15Zdf1ltnzZo1ikQikqRhw4bFXT+W2gt3juOoV69eCa1Tt5fL3nvvrcmTJ+v+++/X9OnT9fTTT+uggw7SqFGjNGrUKB1zzDH1LrrVOvfcc/XII49o0aJFuvbaazVlyhQdfvjhGjlypEaPHq2xY8fGDJ5q6126dKk6dOjQ7Hpbul839ezZM+6yuheGay8EN1fdi7W1Y943pe7PcFeNvbYTreXf//53i55PqSbsPOmkkxqtsVZJSUmDx4466ijttddeWr16tZ577jkdc8wx0WXl5eV68803JTXsPVG3/pa+HtesWSOppodUfn5+3HVqP2Naqnafsd6LtdauXStjjCRFA6FYPB6PBg4cGLMHT1u/thrzxhtv6Nxzz00oZIz1vO+J6j4/Lf25AACAnehBAQAAAEk7Q4g1a9ZEL8jtGj7sOpl2eXl59E7p2vVrlZWVRf+fnZ3d6L7rXjSsu15zNLWPusvj7SPeHce7rpPo8dRdp7S0tMHyRLXkwt2uk4Hfd999euKJJ3TggQfKGKMvvvhCDz30kM4880zl5+fr3HPPVWFhYb11vF6vPvzwQ/3P//yPevTooUAgoLlz5+pPf/qTjjvuOHXv3l1Tp05VMBhs03pbul83NRaG1VV7Mbm52uI5r6ux1/burqW0tFSnnHKKtm7dqry8PN1111365JNPtHHjRhUXF0cnJT7qqKMk7Rzia1e14cNrr72mqqqq6OOvvfaaKisrZVmWzjnnnDavv/bienM+Y3aXuhf6W1pPW7+24lmzZo3OOusslZeXq3///nrggQe0ePFiFRYWqqSkJPq81w49Fu95BwAA7RsBBQAAACRJRxxxRHR4ozlz5qi6ulqffvqpLMuKBhOHH364MjIy9O2332rTpk2aN29e9KLSrj0o6l6Eb+ru2brLm3vx3q19tOR46q7TmhCm9kJj165dZYxJ6KvuUF2SZFmWJk2apC+//FLr16/Xv/71L1155ZXq37+/QqGQnn/+eR1xxBENLl5mZ2frjjvu0MaNG/XVV19p2rRpOuecc5Sbm6vi4mLdfvvtOvPMM2PWe/rppydc765zlLRkv+3JroFaIj/D2mBxd9Vy/fXXJ/x8Tpw4Mbr+K6+8os2bN8u2bc2ePVs333yzDj/8cPXs2VMdO3ZUdna2srOzm3xf1AYUZWVleuONN6KPP/fcc5J29rKIV39LX4+16zfnM6YlaoeX2rFjR9w2dV8XLa3HrdfWP/7xD1VXVysnJ0cLFy7UVVddpeHDhys/P185OTnR571ueLurROagcTvYqPv8xJsPCAAAJI6AAgAAAJJq5oI4/PDDJdX0kPj4448VCAS0//77Ry/C+P1+HXnkkZIUHepJqhnapHv37vW2l5OTEx1LvXbM9Hi++eYbSTVDZ7RkeCdJWrlyZXQIpVi+/fZbSTUXvPr27dvs7ffv3z/6/8aOJxwO6/vvv2+wzl577RW9637ZsmXN2nft8Dzbtm1LeP6IxvTu3Vu/+c1v9OCDD+rHH3/UvffeK6lm+Jh4k4hblqUDDjhAF198sZ577jlt3LgxOszXv//973rHVFvv0qVLW11rc/bbntQdkinZx9ja57O2/oMOOig6nNuugsFg9H0Tz7777hsdkqh2zolNmzZF56SINbyT1Pr6a9/HxcXF2rx5c9x2tZ8xLZVIQNGvX7/oRfvvvvsubrtIJKKVK1fGXObWa6t22+PHj2/w+6HWunXrGg0oakPzuj1mdlVQUNDyIluAgAIAgLZFQAEAAICo2l4Qc+bMid6Bv+vQTbXfz549O9pm194TUs2F5dohW9566y2FQqGY+wwGg3rrrbckKdq+JSoqKjRz5sy4y1977TVJNfNHxJvcuDFHHHGEbLvm9PnVV1+N2+4///lP9GLayJEjo4936NAhOhH5Cy+80Ky7futO/h0vQGgpy7J0/fXXq2PHjpISv8iamZmpW265Jfp93fV++ctfSpJ++OGHehOFt4XG9psqfD6fJDUaqI0ZM0ZpaWmS2v45b67a53Pu3LlavXp1s9cPBAKSGj/el19+OaFhhGpDiPfee0/btm3Tiy++qEgkIr/fr9/85jcx12nt67Hu+/j111+P2672M6alasObHTt2qKioKGabTp06RefAaayWd999N+78J269thJ53p999tlGt9GjRw9JjU+g/e6777aguhqJvBd39cMPP0iqCfX32WefFu8bAADUIKAAAABAVG34sG7dOj3zzDOSGoYPtd/PmDFDS5YsqbferiZNmiRJKiws1O233x6zzdSpU6N3JV988cWtqv/mm2+OeVHumWee0eLFiyVJF1xwQYu23a1bN5144omSpEceeURff/11gzYlJSW66aabJEn5+fk64YQT6i3/3e9+J0latWpVtF08dS+YDRo0SP/1X/8lSbrrrrv08ccfN7ruli1b6l3gXL16daPzNWzevDk6vE6XLl2ijzd2UVDaeaFu1/XOPfdcdevWTZJ00UUXNXrXeaz9tHS/qaK25sbu/M7JyYm+f6ZPn95oKCbVzPOw6xwibeWKK65QWlqawuGwfvvb3zY5tNCuz1/tHfvffvttzF4SGzdubPL9UOuss86S1+tVKBTSv/71r2hPiuOPPz7aY2tXrX09jhgxIhoe3HnnnTEnRp4zZ06Tz1FTRo0aJalm3pJFixbFbVc7fNann36qF154ocHyiooK3XzzzXHXd+u1Vfu8L1iwQNu3b2+w/Ouvv9bdd9/d6DZqQ92ZM2fGrOG7777Tgw8+2OzaatW+F7du3ZpwaPzpp59Kkg499NBoDw8AANByBBQAAACIqp1jQqoZ7seyLI0ZM6Zem8MOO0xZWVnasGFD9CL6rm1qnXzyyTruuOMk1VzYu/TSS7Vs2TLt2LFDX3zxhS6++OLoBar/+q//igYALdGzZ08tX75cY8eO1QcffKDt27frhx9+0O23366LLrpIkjRw4EBdccUVLd7Hvffeq6ysLFVVVWncuHF6/PHHtX79em3dulVvv/22Ro4cGb24+fe//11+v7/e+meeeaZOOeUUSTWTVh9//PF69913tWnTJu3YsUNffvmlHnroIY0YMUJfffVVvXUfe+wxdevWLbrv6667TgsXLtS2bdu0fft2ffvtt3rhhRf0//7f/1O/fv3qXcR/+umn1bdvX02ePFn/+c9/tGbNGhUXF2vNmjV6+eWXdfTRR8txHNm2Xe8u9EsvvVQHHHCA7rzzTs2dO1cFBQUqKirSihUr9OCDD0YDpZ49e2r06NHR9bKysvTUU0/Jtm19//33GjZsmO677z598803Kioq0ubNm7V48WI98sgjOvroo3XooYfWO9aW7lequVBsWZYsy2owr8WeYvjw4ZJqhqh6//33VVJSonA4rHA4XG9S7T//+c/ab7/95DiOzjjjDE2aNElz587V5s2bVVRUpJUrV+rVV1/VRRddpD59+mjBggW7pd7evXvr/vvvl1RzsXnYsGF6/PHH9f3336u4uFiFhYX6+OOP9b//+7/6xS9+ER2Cq9Zpp50mj8ejcDis448/Xq+//roKCwu1YcMGTZ8+XYcffriKiorUr1+/JmvJy8uLfqb89a9/1eeffy4p/vBOUutfj5L0t7/9TVJNmDJy5Ej9+9//1tatW7Vu3To98MADOumkk+oN6dYSAwYMUM+ePSVJn332Wdx2V1xxhQYMGCCpJnC944479MMPP2j79u2aOXOmxo4dqxUrVkS3FYsbr63aOWJ27Nih4447TjNnztSWLVu0evVq/f3vf9fo0aOVnZ2tzp07x93G+eefL4/Ho8rKSk2YMEEffvihioqKtGbNGj3yyCMaNWpU3OGjElH7XgwEAvrDH/6ggoIChUIhhcPhuL0qap+bXT97AABACxkgjgceeMCcccYZZtCgQaZz587G6/Warl27mqOPPto8++yzxnGcFm33+eefNyNHjjQ5OTkmKyvLDB8+3Dz00EMmEom08REAAIBdzZ4920gyksxTTz0Vs8348eOjbYYOHRqzzS9/+ctom/3337/RfRYVFZnRo0dH28f6GjdunCkpKWnRMZ1//vlGkhkzZox59NFHjW3bMffRs2dP891338XcRr9+/YwkM3Xq1Cb39+GHH5qOHTvGPRaPx2Puv//+uOtXVlaa3/zmN43+PCSZpUuXNlj322+/NYMHD25yXcuyzLJly6LrTZ06tcl1PB6Pefjhh+vtb8yYMU2u16VLF/Pxxx/HPNY33njD5ObmNrmNzp07t9l+677GE3k+Y2nsPVJb2/nnn9/ibXz11VfG7/fHPK5d2xcUFJijjjqqyZ+HJPPGG2/UW/epp56KLmtKIm0ff/xxk5aW1mQdhxxySIN1//KXv8Rtn56ebl555ZWEf7b//Oc/662fm5trqqurmzzGlr4ea91///3GsqyY6/Tu3dt8+OGH0e9nz57dZD2x/O53vzOSzMiRIxtt991335kePXrErMW2bfPYY481+fNszWvLmMQ+Ny+//PK42+zUqZOZN29ek9v585//HHcbgwcPNp988kmjP/emtn/kkUfG3PaYMWMatF25cmV0+ZIlS+IeNwAASBw9KBDXPffco3//+9/KyMjQkUceqdNOO00DBgzQhx9+qN/+9rc69dRT5ThOs7Z5xRVX6JxzztHixYs1atQoHXvssfr+++915ZVX6vTTT2/W2J8AAGD3qDtcU6y5JRJtUys3N1ezZ8/WM888o1/+8pfKy8uT1+tVXl6efvnLX+rZZ5/VrFmzWjw5dl3//d//rQ8++EAnnHCCunXrFh0j/Nprr9VXX32l/fbbr9X7GDdunL7//ntNmTJFBx10kLKzs5Wenq69995bkyZN0rJlyzR58uS462dkZOhf//qX3n//fZ111lnq27ev0tLSlJubqyFDhujcc8/VW2+9pQMOOKDBuoMGDdKXX36pp59+WieeeKJ69uwpv9+vtLQ09enTRxMmTNADDzyg9evXa+jQodH1rr76ar388sv67//+b40YMUI9e/aUz+dTVlaW9t9/f11xxRX68ssvdfnll9fb39NPP63/+7//01lnnaUDDzxQXbt2lcfjUW5urn7xi1/oj3/8o1asWKEjjjgi5rGedNJJ+vHHH3XXXXdp9OjR6tq1q7xer7KysjRw4ECdddZZevHFF7VmzZo22+/69euj/6+d0H1Pc8ABB+ijjz7Sr3/96+hzEU+PHj00b948vf766zrjjDPUt29fpaeny+/3q0ePHho3bpzuvvturVy5UieddNJurfuSSy7Rjz/+qN///vc67LDD1LlzZ3k8HnXo0EFDhgzRxIkT9cYbb8S82/6GG27QW2+9pfHjxysnJ0dpaWnq37+/LrzwQi1atEinnXZawnWcdNJJ9T4vzjjjjOicCk2t15LXY63Jkyfro48+0kknnaSuXbtGP1+uvvpqLVmyRHvttVfCxxDPpZdeKqmmp0q8OiRpv/3201dffaVrr71We++9t/x+f3QYug8//DC6nca48dp6+OGHo71ksrKylJGRoQEDBuiqq67S0qVL683vEc+UKVP02muvaezYscrJyVFGRoYGDx6s2267TYsWLVJ+fn6Laqs1Y8YM3XDDDRoyZIgyMzMbbfvcc89Jqhn26+CDD27VfgEAQA3LmDp9iIE65s+fr4MPPlhZWVn1Hv/mm2909NFHa/PmzfrHP/6R8DjOr776qk4//XTl5+fro48+0sCBAyXVjHk8btw4ffvtt7r//vsb/YMeAABgVxMnTtTTTz+tMWPGRCftxs/Xeeedp2effVbHHnus3n///WSXAzTbqFGjNH/+fP3pT3+qNyE8km/ffffVypUrNW3atFbPmQQAAGrQgwJxjRw5skE4ISl6l51UM1lZou666y5JNT0zasMJSerevbseffRRSdLdd9/d7F4ZAAAAQK0PPvhAtm3rL3/5S7JLAVrk97//vSTp8ccfb3Rye7jrnXfe0cqVK9WvXz+dd955yS4HAIB2g4ACLeL1eiVJ6enpCbXfsGGDPv/8c/n9fp1xxhkNlo8ZM0a9evXSpk2btHDhwjatFQAAAD8PX331lQoLC3XOOedo2LBhyS4HaJEJEybomGOO0bp16/SPf/wj2eXgJ3/84x8lSX/6058SGlIMAAAkhoACzbZ69Wo99thjkqQTTzwxoXWWLl0qqab3RUZGRsw2hx56aL22AAAAQHMceOCBMsbomWeeSXYpQKvce++9sm1bd911F70o9gDvvvuuPv30Ux1yyCE6++yzk10OAADtijfZBWDP99RTT2nu3LkKhULasGGDPv74YzmOoylTpujUU09NaBurV6+WJPXr1y9um759+9ZrCwAAAAA/R8OGDVMkEkl2GfjJhAkTxPSdAADsHgQUaNKCBQv09NNPR7/3er264447dO211ya8jfLyckmKOadFrezsbElSWVlZCysFAAAAAAAAAKQKAgo06YknntATTzyhqqoqrV69Wk899ZRuu+02vfTSS5oxY4Z69uzZ5DZq7zaxLKvFdUybNk3Tpk2TJC1fvlx9+vRp8bbaC6M9+y4ea88ub49n1PL3C8RPr7V4AyPF7LvvQBUWFmi//fZNdil7BN7BrcfHYOtwHtM6/PRaiTcwkNJ4B7cOH4Gt19bnMa24HNpubN++Xdu2bYu5jIACCcvIyNCQIUN07733Kj8/X9dff72uvPJKvfbaa02u26FDB0k7e1LEUrustu2uLrnkEl1yySWSpBEjRmjx4sXNPYR2Z0VJQbJLaNTAiuJkl5DSCr19k11CSssLOckuIaUF8kqTXULK62DoEdga1dUdk11CSlub7ALaAc5jWofzmNbhPKZ1OI9pPc5jWofzmNbhPKZ1OIdpvbY+j+nVLbtNt5eKRowYEXcZk2SjRS644AJJ0ltvvaVQKNRk+/79+0uS1q6N/2tm/fr19doCAAAAAAAAANovAgq0SG5urrxer8LhsHbs2NFk+4MPPliS9M0336iqqipmm0WLFtVrCwAAAAAAAABovwgo0CIfffSRwuGwcnNz1bVr1ybb9+nTR4cccoiCwaBefvnlBsvnzp2rDRs2KD8/X0ccccTuKBkAAAAAAAAAsAchoEBM8+bN0/PPP69AINBg2YIFCzRp0iRJ0qRJk+TxeKLLpkyZokGDBmnKlCkN1qt97KabbtKqVauij2/ZskWXX365JOnmm2+WbfOyBAAAAAAAAID2jkmyEdMPP/ygCy64QFdeeaUOOeQQ5efnq6ysTD/88IOWL18uSTr++ON1xx131FuvsLBQK1asUGFhYYNtnn766brsssv06KOP6sADD9Qxxxwjn8+nWbNmqbS0VKeccoquvPJKV44PAAAAAAAAAJBcBBSIacyYMbr11ls1b948ff/99/r4449ljFF+fr5OO+00nXvuuTrllFOavd1HHnlEI0eO1MMPP6y5c+cqEolo0KBBuvDCC3XZZZfRewIAAAAAAAAAfiYsY4xJdhFAc40YMUKLFy9OdhlJt6KkINklNGpgRXGyS0hphd6+yS4hpeWFnGSXkNICeaXJLiHldTBlyS4hpVVXd0x2CSltbbILaAc4j2kdzmNah/OY1uE8pvU4j2kdzmNah/OY1uEcpvXa+jymV7fsNt1eKmrsWi63qwMAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUAAAAAAAAAAAANcRUCCmUCikWbNm6brrrtPhhx+uHj16yO/3q1evXjr99NM1Z86cZm9z4sSJsiwr7tegQYPa/kAAAAAAAAAAAHskb7ILwJ5p7ty5OvbYYyVJ+fn5Gj58uLKysrR8+XK9+uqrevXVV3Xrrbfq9ttvb/a2jzrqKA0YMKDB4z169Gh13QAAAAAAAACA1EBAgZhs29Zpp52myZMna9SoUfWW/etf/9I555yjO+64Q+PGjdO4ceOate2LLrpIEydObMNqAQAAAAAAAACphiGeENP48eP1yiuvNAgnJOnMM8+MBgzPPfecy5UBAAAAAAAAANoDAgq0yMEHHyxJ2rBhQ5IrAQAAAAAAAACkIoZ4QousXLlSUsvmjZg9e7a+/PJLlZeXq3v37ho5cqSOPfZY2TZ5GQAAAAAAAAD8XBBQoNk2bdqk6dOnS5JOO+20Zq//zDPPNHhsyJAh+uc//6kDDzywteUBAAAAAAAAAFIAAQWaJRwO69xzz1VJSYmOPvponXjiiQmvO2zYMA0fPlxHH320+vXrp9LSUi1ZskS///3v9cUXX+iYY47RkiVL1KtXr5jrT5s2TdOmTZNUM7TUnDlz2uKQUlogEkp2CY0qdCLJLiGlhaxNyS4hpXlNsitIbcbL+7e1bPEzbA3jeJJdQkoLJruAdoDzmNbhPKZ1OI9pHc5jWo/zmNbhPKZ1OI9pHc5hWq+tz2NWehk1pjGWMYZTHyTsoosu0pNPPqk+ffros88+U35+fqu3GQwGNWbMGC1cuFBXXHGFHnrooSbXGTFihBYvXtzqfae6FSUFyS6hUQMripNdQkor9PZNdgkpLS/kJLuElBbIK012CSmvgylLdgkprbq6Y7JLSGlrk11AO8B5TOtwHtM6nMe0Ducxrcd5TOtwHtM6nMe0DucwrdfW5zG9umW36fZSUWPXcolvkLDJkyfrySefVH5+vmbNmtUm4YQk+f1+TZkyRZI0Y8aMNtkmAAAAAAAAAGDPRkCBhFx33XV64IEHlJeXp1mzZmngwIFtuv1BgwZJkjZu3Nim2wUAAAAAAAAA7JkIKNCkG2+8Uffdd5+6dOmimTNnasiQIW2+j+3bt0uSsrPp8gQAAAAAAAAAPwcEFGjUzTffrHvvvVedOnXSzJkzNXTo0N2yn5deekmSdOihh+6W7QMAAAAAAAAA9iwEFIjr1ltv1T333KPc3FzNnDlTBx98cJPrTJkyRYMGDYrOKVFr2bJlevvttxWJROo9Hg6Hdd999+mBBx6QJF1zzTVtdwAAAAAAAAAAgD2WN9kFYM/05ptv6s4775QkDRgwQA8++GDMdoMGDdLNN98c/b6wsFArVqxQYWFhvXZr1qzRqaeeqs6dO2vfffdV7969VVZWpq+++koFBQWybVv33HOPjjvuuN13UAAAAAAAAACAPQYBBWLasWNH9P+LFy/W4sWLY7YbM2ZMvYAinqFDh2ry5Mn67LPPtHbtWi1dulSWZal379664IILdMUVV2j48OFtVj8AAAAAAAAAYM9mGWNMsosAmmvEiBFxQ5OfkxUlBckuoVEDK4qTXUJKK/T2TXYJKS0v5CS7hJQWyCtNdgkpr4MpS3YJKa26umOyS0hpa5NdQDvAeUzrcB7TOpzHtA7nMa3HeUzrcB7TOpzHtA7nMK3X1ucxvbplt+n2UlFj13KZgwIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIAAAAAAAAAALiOgAIxhUIhzZo1S9ddd50OP/xw9ejRQ36/X7169dLpp5+uOXPmtHjbL7zwgkaNGqWOHTsqOztbI0aM0MMPPyzHcdruAAAAAAAAAAAAezRvsgvAnmnu3Lk69thjJUn5+fkaPny4srKytHz5cr366qt69dVXdeutt+r2229v1navuOIKPfLII0pPT9fRRx8tn8+nWbNm6corr9SsWbP08ssvy+Px7I5DAgAAAAAAAADsQehBgZhs29Zpp52mjz76SIWFhXr77bf1r3/9S1999ZX++c9/yuPx6I477tDs2bMT3uarr76qRx55RPn5+fryyy/19ttv6/XXX9fKlSs1ePBgvf7663rooYd241EBAAAAAAAAAPYUBBSIafz48XrllVc0atSoBsvOPPNMTZw4UZL03HPPJbzNu+66S5J0zz33aODAgdHHu3fvrkcffVSSdPfddzPUEwAAAAAAAAD8DBBQoEUOPvhgSdKGDRsSar9hwwZ9/vnn8vv9OuOMMxosHzNmjHr16qVNmzZp4cKFbVorAAAAAAAAAGDPQ0CBFlm5cqUkqUePHgm1X7p0qSRp//33V0ZGRsw2hx56aL22AAAAAAAAAID2i4ACzbZp0yZNnz5dknTaaacltM7q1aslSf369Yvbpm/fvvXaAgAAAAAAAADaLwIKNEs4HNa5556rkpISHX300TrxxBMTWq+8vFySlJWVFbdNdna2JKmsrKz1hQIAAAAAAAAA9mjeZBeA1PLf//3fmjVrlvr06dOsCbKNMZIky7JavO9p06Zp2rRpkmrmtJgzZ06Lt9VeBCKhZJfQqEInkuwSUlrI2pTsElKa1yS7gtRmvLx/W8sWP8PWMI4n2SWktGCyC2gHOI9pHc5jWofzmNbhPKb1OI9pHc5jWofzmNbhHKb12vo8ZqWXPgKNIaBAwiZPnqwnn3xS+fn5mjVrlvLz8xNet0OHDpJ29qSIpXZZbdtdXXLJJbrkkkskSSNGjNDYsWMT3n97taKkINklNGpgRXGyS0hphd6+yS4hpeWFnGSXkNICeaXJLiHldTD0CGyN6uqOyS4hpa1NdgHtAOcxrcN5TOtwHtM6nMe0HucxrcN5TOtwHtM6nMO0Xlufx/Tqlt2m22tviG+QkOuuu04PPPCA8vLyNGvWLA0cOLBZ6/fv31+StHZt/F8z69evr9cWAAAAAAAAANB+EVCgSTfeeKPuu+8+denSRTNnztSQIUOavY2DDz5YkvTNN9+oqqoqZptFixbVawsAAAAAAAAAaL8IKNCom2++Wffee686deqkmTNnaujQoS3aTp8+fXTIIYcoGAzq5ZdfbrB87ty52rBhg/Lz83XEEUe0tmwAAAAAAAAAwB6OgAJx3XrrrbrnnnuUm5urmTNnJtSzYcqUKRo0aJCmTJkSc5kk3XTTTVq1alX08S1btujyyy+XVBOI2DYvSwAAAAAAAABo75gkGzG9+eabuvPOOyVJAwYM0IMPPhiz3aBBg3TzzTdHvy8sLNSKFStUWFjYoO3pp5+uyy67TI8++qgOPPBAHXPMMfL5fJo1a5ZKS0t1yimn6Morr9w9BwQAAAAAAAAA2KMQUCCmHTt2RP+/ePFiLV68OGa7MWPG1AsomvLII49o5MiRevjhhzV37lxFIhENGjRIF154oS677DJ6TwAAAAAAAADAz4RljDHJLgJorhEjRsQNTX5OVpQUJLuERg2sKE52CSmt0Ns32SWktLyQk+wSUlogrzTZJaS8DqYs2SWktOrqjskuIaWtTXYB7QDnMa3DeUzrcB7TOpzHtB7nMa3DeUzrcB7TOpzDtF5bn8f06pbdpttLRY1dy+V2dQAAAAAAAAAA4DoCCgAAAAAAAAAA4DoCCgAAAAAAAAAA4DoCCgAAAAAAAAAA4DoCCgAAAAAAAAAA4DoCCgAAAAAAAAAA4DoCCgAAAAAAAAAA4DoCCgAAAAAAAAAA4DoCCgAAAAAAAAAA4DoCCgAAAAAAAAAA4DoCCgAAAAAAAAAA4DoCCgAAAAAAAAAA4DoCCgAAAAAAAAAA4DoCCgAAAAAAAAAA4DoCCgAAAAAAAAAA4DoCCgAAAAAAAAAA4DpvsgtA2wgGg/r888+1ceNGSVKvXr00fPhw+f3+JFcGAAAAAAAAAEBDBBQpLhQK6bbbbtPDDz+ssrKyesuys7N11VVXaerUqfL5fEmqEAAAAAAAAACAhggoUlgkEtEJJ5ygDz74QMYY9ejRQ3vvvbeMMVq9erUKCwt11113adGiRZoxY4Y8Hk+ySwYAAAAAAAAAQBJzUKS0adOmaebMmRo4cKBmzJihjRs3at68eZo/f742btyod955R/vuu68++OAD/d///V+yywUAAAAAAAAAIIqAIoU988wzysrK0qxZszRhwoQGy4877jh98MEHyszM1NNPP52ECgEAAAAAAAAAiI2AIoUtX75c48aNU69eveK26dWrl8aNG6fly5e7WBkAAAAAAAAAAI0joEhhoVBImZmZTbbLzMxUKBRyoSIAAAAAAAAAABJDQJHC+vXrp3nz5ikYDMZtEwwGNX/+fPXr18/FygAAAAAAAAAAaBwBRQo76aSTVFhYqPPPP1/FxcUNlpeUlOjCCy9UYWGhTj75ZPcLBAAAAAAAAAAgDm+yC0DL3XjjjXrxxRf10ksv6Z133tGJJ56ovfbaS5Zl6ccff9Rbb72lsrIy9e7dWzfeeGOyywUAAAAAAAAAIIqAIoV16dJFH374oc4++2wtXrxYzz//vCzLkiQZYyRJhx56qF544QV17tw5maUCAAAAAAAAAFAPAUWKGzBggD777DPNnz9fc+fO1caNG2WMUe/evTVmzBiNHDky2SUCAAAAAAAAANAAAUU7MXLkSMIIAAAAAAAAAEDKYJJsAAAAAAAAAADgOgIKAAAAAAAAAADgOgKKFOLxeOT1evX9999Hv0/0y+tlNC8AAAAAAAAAwJ6Dq9YpxBgjY0y975uzLgAAAAAAAAAAewoCihTiOE6j3wMAAAAAAAAAkCoY4gkAAAAAAAAAALiOgCKFPfPMM/r444+bbLdw4UI988wzLlQEAAAAAAAAAEBiCChS2MSJE/XEE0802e7JJ5/UBRdc4EJFAAAAAAAAAAAkhoDiZ4AJsgEAAAAAAAAAexoCip+BDRs2KDs7O9llAAAAAAAAAAAQ5U12AWieXeeSWLVqVdz5JcLhsL799lvNmjVLhx56qBvlAQAAAAAAAACQEAKKFDNx4kRZlhX9fsGCBVqwYEHc9sYY2bat66+/3o3yAAAAAAAAAABICAFFijnvvPOiAcXTTz+tffbZR0cddVTMtn6/X7169dLJJ5+soUOHulkmAAAAAAAAAACNIqBIMdOnT4/+/+mnn9bIkSP1j3/8I3kFAQAAAAAAAADQAgQUKWz16tVMfg0AAAAAAAAASEkEFCmsX79+yS4BAAAAAAAAAIAWIaBoJyoqKrRq1SqVlpbKGBOzzejRo12uCgAAAAAAAACA2AgoUtyqVas0efJkvf/++3IcJ247y7IUDoddrAwAAAAAAAAAgPgIKFLYhg0bdOSRR2rbtm3q2bOnwuGwtmzZoiOOOEKrVq3S1q1bZVmWjjjiCPl8vmSXCwAAAAAAAABAlJ3sAtByd999t7Zt26Zbb71VGzZs0K9+9StZlqUFCxZo8+bNeu+997TXXnvJ7/fr/fffT3a5AAAAAAAAAABEEVCksPfee099+vTR1KlTYy4/9thj9d577+njjz/WX/7yF5erAwAAAAAAAAAgPgKKFLZhwwYNGzZMtl3zNNb+GwqFom322WcfjRkzRi+++GJSagQAAAAAAAAAIBYCihSWnp6utLS06PfZ2dmSpC1bttRr17lzZ61evdrV2gAAAAAAAAAAaAwBRQrr1auX1q1bF/1+wIABkqRPPvkk+pgxRkuXLlXHjh1drw8AAAAAAAAAgHi8yS4ALXfYYYfplVdeUXV1tdLT0zVhwgRJ0jXXXKOsrCz17t1bjz76qFauXKnjjz8+ydUCAAAAAAAAALATPShS2PHHH6+qqiq9/fbbkqSBAwdq0qRJ2rhxo0444QQNGzZMjz32mHw+n+68884kVwsAAAAAAAAAwE70oEhhp512Wr0JsSXp0Ucf1X777adXXnlFO3bs0KBBgzRlyhQddNBBSaoSAAAAAAAAAICGCCjaGY/Ho+uuu07XXXddsksBAAAAAAAAACAuhnhKYb/+9a91+eWXJ7sMAAAAAAAAAACajYAihf3nP//R9u3bk10GAAAAAAAAAADNRkCRwnr16tVgDgoAAAAAAAAAAFIBAUUKO+GEEzRv3jxVVlYmuxQAAAAAAAAAAJqFgCKF3XbbbcrJydHpp5+u9evXJ7scAAAAAAAAAAAS5k12AWi566+/Xvvvv7/efvttDRw4UIcccoj69eunjIyMBm0ty9KTTz6ZhCoBAAAAAAAAAGiIgCKFTZ8+XZZlSZKCwaAWLlyohQsXxmxLQAEAAAAAAAAA2JMQUKSwp556KtklAAAAAAAAAADQIgQUKez8889PdgkAAAAAAAAAALQIk2QDAAAAAAAAAADXEVAAAAAAAAAAAADXEVAAAAAAAAAAAADXEVAAAAAAAAAAAADXEVAAAAAAAAAAAADXEVAAAAAAAAAAAADXEVAAAAAAAAAAAADXEVAAAAAAAAAAAADXeZNdANrGN998o08++URbt27V/vvvr5NOOkmS5DiOwuGw/H5/kisEAAAAAAAAAGAnelCkuHXr1mn8+PE66KCDdOmll+p//ud/9O9//zu6/MEHH1RGRoZmzZqVvCIBAAAAAAAAANgFAUUK27Ztm0aPHq05c+bowAMP1GWXXSZjTL02v/nNb2RZlt54440kVQkAAAAAAAAAQEMEFCnsrrvu0rp163TTTTdp6dKleuihhxq06dGjhwYPHqz58+cnoUIAAAAAAAAAAGIjoEhhb731lvbaay/9+c9/lmVZcdv16dNHBQUFLlYGAAAAAAAAAEDjCChS2Pr163XIIYc0Gk5IUk5OjoqKilyqCgAAAAAAAACAphFQpLCMjAwVFxc32W7t2rXKzc3d7fUAAAAAAAAAAJAoAooUdsABB+jzzz9XSUlJ3DYbN27UF198oUMOOcTFygAAAAAAAAAAaBwBRQo7++yzVVxcrEsvvVTBYLDBcsdx9Lvf/U6BQEDnnntuEioEAAAAAAAAACA2AooUdtFFF+moo47SSy+9pMGDB+t3v/udJOnrr7/WTTfdpMGDB+v111/XmDFjdPbZZye5WgAAAAAAAAAAdvImuwC0nNfr1YwZM3TxxRfrpZde0kMPPSRJWrx4sRYvXixJOuWUU/T00083OZE2AAAAAAAAAABuIqBIcR06dNA///lPTZ06Ve+8845+/PFHRSIR9enTR7/61a908MEHJ7tEAAAAAAAAAAAaIKBoJwYPHqzBgwcnuwwAAAAAAAAAABLCHBQAAAAAAAAAAMB1BBQp7J133tH48eM1e/bsuG0+/PBDjR8/XjNnznSxMgAAAAAAAAAAGkdAkcKeeuopLV68WIcddljcNocddpgWLVqk6dOnu1cYAAAAAAAAAABNIKBIYZ9//rmGDh2qrKysuG2ys7M1bNgwffrppy5WBgAAAAAAAABA4wgoUlhhYaH69OnTZLs+ffpo06ZNLlQEAAAAAAAAAEBiCChSWFpamkpKSppsV1JSIo/H40JFAAAAAAAAAAAkhoAihQ0ePFjz589vNKQoLS3V/Pnzte+++7pYGQAAAAAAAAAAjSOgSGG//vWvVVZWpgsvvFCBQKDB8mAwqAsvvFDl5eU67bTTklAhAAAAAAAAAACxeZNdAFru8ssv1xNPPKF///vfGjJkiM455xwNGjRIkrRixQo999xzWrNmjQYMGKCrrroqydUCAAAAAAAAALATAUUKy8zM1Pvvv69TTjlFy5Yt05/+9Kd6y40xGjZsmF577TVlZWUlqUoAAAAAAAAAABoioEhxffv21eeff64333xT7777rtauXStJ6tevn4477jidfPLJsiwryVUCAAAAAAAAAFAfAUU7YFmWTj75ZJ188snJLgUAAAAAAAAAgIQwSTYAAAAAAAAAAHAdPSjaiUgkou3bt6u6ujpum759+7pYEQAAAAAAAAAA8RFQpLhPP/1Uf/jDHzRv3jwFAoG47SzLUjgcdrEyAAAAAAAAAADiI6BIYQsWLNAxxxwTDSY6deqknJycJFcFAAAAAAAAAEDTCChS2NSpUxUIBHTxxRfrzjvvVF5eXrJLAgAAAAAAAAAgIQQUKeyzzz7T4MGD9fjjjye7FAAAAAAAAAAAmsVOdgFoOWOMDjrooN22/RUrVujvf/+7zj33XA0aNEi2bcuyLL3yyist2t7EiRNlWVbcr0GDBrXxEQAAAAAAAAAA9lT0oEhhBx54oDZt2rTbtv/oo4/q73//e5tv96ijjtKAAQMaPN6jR4823xcAAAAAAAAAYM9EQJHCJk+erHPOOUfLli3TsGHD2nz7BxxwgG644QaNGDFCw4cP16RJkzR37txWb/eiiy7SxIkTW18gAAAAAAAAACBlEVCksDPPPFPLly/Xscceq9tvv13HH3+8+vbt22bbv+iii9psWwAAAAAAAAAA1EVAkcI8Hk/0/1deeaWuvPLKuG0ty1I4HHajLAAAAAAAAAAAmkRAkcKMMbul7e42e/ZsffnllyovL1f37t01cuRIHXvssbJt5mwHAAAAAAAAgJ8LAooU5jhOsktokWeeeabBY0OGDNE///lPHXjggUmoCAAAAAAAAADgNm5Zh2uGDRumBx54QN98843Ky8tVUFCgt99+W0OHDtXy5ct1zDHHaOPGjckuEwAAAAAAAADgAnpQwDVXX311ve+zsrJ0/PHH69hjj9WYMWO0cOFC3XXXXXrooYdirj9t2jRNmzZNkrRhwwbNmTNnN1e85wtEQskuoVGFTiTZJaS0kLUp2SWkNO+eM7JdSjJe3r+tZYufYWsYx9N0I8QVTHYB7QDnMa3DeUzrcB7TOpzHtB7nMa3DeUzrcB7TOpzDtF5bn8es9NJHoDEEFEg6v9+vKVOm6OSTT9aMGTPitrvkkkt0ySWXSJJGjBihsWPHulThnmtFSUGyS2jUwIriZJeQ0gq9fZNdQkrLC6XmMHh7ikBeabJLSHkdTFmyS0hp1dUdk11CSlub7ALaAc5jWofzmNbhPKZ1OI9pPc5jWofzmNbhPKZ1OIdpvbY+j+nVLbtNt9feEN+kuGAwqHvvvVe/+MUv1KlTJ3k8nphfXu+enUUNGjRIkhjiCQAAAAAAAAB+Jvbsq9ZoVHV1tcaNG6fPPvtMxjTeB7ip5cm2fft2SVJ2NokiAAAAAAAAAPwc0IMihd1333369NNPNWHCBH3//fc677zzZFmWAoGAvvnmG02ZMkXp6en6/e9/L8fZs7sIv/TSS5KkQw89NMmVAAAAAAAAAADcQECRwl555RXl5OToxRdf1IABA2RZliTJ5/Np8ODB+tOf/qTXXntNf/7zn/XPf/7TlZqmTJmiQYMGacqUKfUeX7Zsmd5++21FIvUn6gmHw7rvvvv0wAMPSJKuueYaV+oEAAAAAAAAACQXQzylsJUrV+rII49UTk6OJEUDikgkIo/HI0maMGGCDj30UD300EM666yzmrX9JUuW6PLLL49+v3z5cknSLbfcor/+9a/RxxcuXBj9f2FhoVasWKHCwsJ621qzZo1OPfVUde7cWfvuu6969+6tsrIyffXVVyooKJBt27rnnnt03HHHNatGAAAAAAAAAEBqIqBIYY7jqEuXLtHvMzIyJEnFxcX1Ht9nn330n//8p9nbLy0t1aefftrg8ZUrVzZ7W0OHDtXkyZP12Wefae3atVq6dKksy1Lv3r11wQUX6IorrtDw4cObvV0AAAAAAAAAQGoioEhhPXv2VEFBQfT73r17S5K+/PJLjRs3Lvr4mjVror0rmmPs2LHNnlx7+vTpmj59eoPH99prL91///3NrgEAAAAAAAAA0D4xB0UKO+CAA7RixYro96NHj5YxRrfddpvKysokSS+++KI++eQTDRkyJFllAgAAAAAAAADQAAFFCvvVr36lzZs3a86cOZKko446SkcccYTmzZunLl26qEuXLjr33HNlWZauv/765BYLAAAAAAAAAEAdBBQp7Oyzz9a8efM0cODA6GOvv/66jj/+eDmOo6KiIuXm5uree+/VqaeemsRKAQAAAAAAAACojzkoUlh2draOOuqoeo9169ZNb731liorK1VSUqLu3bvLtsmhAAAAAAAAAAB7FgKKdiozM1OZmZnJLgMAAAAAAAAAgJi4tR4AAAAAAAAAALiOHhTtwIIFCzR79mwVFBSouro6ZhvLsvTkk0+6XBkAAAAAAAAAALERUKSw8vJynXHGGXr//fclScaYuG0JKAAAAAAAAAAAexICihR2880367333lPnzp117rnnauDAgcrOzk52WQAAAAAAAAAANImAIoW9+uqr6tSpk5YtW6bevXsnuxwAAAAAAAAAABLGJNkprLS0VKNHjyacAAAAAAAAAACkHAKKFLbPPvsoHA4nuwwAAAAAAAAAAJqNgCKFXXDBBZozZ442bdqU7FIAAAAAAAAAAGgWAooUdvXVV2vChAkaP368Zs2aJcdxkl0SAAAAAAAAAAAJYZLsFGZZlh5//HGNHTtWv/zlL+Xz+ZSfny/bbpg7WZalH374IQlVAgAAAAAAAADQEAFFCluzZo1Gjx6tjRs3yhijYDCodevWxWxrWZbL1QEAAAAAAAAAEB8BRQq74YYbtGHDBo0ZM0ZXX321BgwYoOzs7GSXBQAAAAAAAABAkwgoUtjs2bO111576b333pPf7092OQAAAAAAAAAAJIxJslNYKBTSoYceSjgBAAAAAAAAAEg5BBQpbOjQodq8eXOyywAAAAAAAAAAoNkIKFLYDTfcoHnz5umTTz5JdikAAAAAAABAu2MFjPwFRhkrHWWsdOQvNLKCJtllAe0Gc1CksKFDh+q6667Tscceq2uuuUbHHXecevfuLduOnTv17dvX5QoBAAAAAACA1OTdbpS2sX4YYVcZ+bZKgT5SuJOVpMqA9oOAIoXttddekiRjjP785z/rz3/+c9y2lmUpHA67VRoAAAAAAACQsuyK+uGEFTKyg5KxJCdNSlsvOemSk0FIAbQGAUUK69OnjyyLD0EAAAAAAACgLfm31oQTVsjIWyzZgToLLcnJNApvlQJ9uTYHtAYBRQpbs2ZNsksAAAAAAAAA2h1PqWSFa4ZzspxdFhrJrpAyfjAK9DESNxADLUZAkcIeeOABZWZm6qKLLkp2KQAAAAAAAED7YGp6T3jL6oQTjpGnQrIrf3rMkiIZkneLo3B3T9JKBVJd7NmUkRKuvfZavfHGG8kuAwAAAAAAAGg/LEuOvyaMkCRFjHzbJG+pZIdrAgorInkqpdz5Rp4du3axAJAoAooUlpeXpw4dOiS7DAAAAAAAAKBdCedK+mmObF+xZAclOZIiP/1rJOOV7JDUYamRHBNnS6nNVDhydkTk7IjIBNvnMSK5GOIphY0cOVKLFi1KdhkAAAAAAABAuxLqKjlpkqfC1AzrFFE0sJBUc9t3pOYhOyD5C4yCvdvPXBSmypFTGJaCdR7bEpGVbcnK98rytp9jRXLRgyKFTZ06VRs2bNDUqVNlDAkmAAAAAAAA0Ca8tqr3lhTZJZywJGNLxiPZEcn66XH/tiTVuRuYgJGzvn44EV1WbmQ2hGVa0WOE65ioix4UKWzJkiX67W9/qzvvvFOvvPKKTj75ZPXr108ZGRkx25933nkuVwgAAAAAAACkplBOzTwTtSGFZWpyCssjmYhkfDXLFDGS0356FJjtkZphrOItrzayyhypY/MmBzelYZnisExVzcatDI+sTl5ZHZhk/OeMgCKFTZw4UZZlyRijb7/9Vt99912j7QkoAAAAAAAAgKbZ5UYZP5qaCbGdnT0lLCl68d44NcM72QEp1DlZlbYt4xiZsqYn/TYljqxmBBTOpqBMcbj+NiojMpURWZ29srv5m10r2gcCihR23nnnybLaTzoLAAAAAAAAJJ1jlLHWyFtSM5yT7J9GeKozzJOsmuBCkZqAItA7WcW2sV3n2ojDhBMfpqm250Tc5TvCMpkeWdn0pPg5IqBIYdOnT092CQAAAAAAAEC74i2WFDayqyUrJDn+mhCiHkc1QYUjhbrop2/aAY9qDqWJ/KE5k2Sb4kjTbYrCBBQ/U0ySDQAAAAAAAAA/8VRKVlg1vSQkyZacdMnscqu38UqRbCmUZ8lTlYRCdwPLtmRl2zKOkVMdUaQiJCcQkePUH/bJykn8srKpSiCgqGp6WCm0T/SgaEeMMdq+fbskqXPnzrJt8icAAAAAAACgRSxLjt/IE/rp+117FZiakML42knvCUlOZUTOxpCcH0JSsOaAjS0pXYp088rK88iT4ZGaEVAAjeGV1A7MnDlTxx13nLKzs9W9e3d1795dHTp00IQJEzRz5sxklwcAAAAAAACkjEj2T8GDR4pk1PxrV0vWLh0BLCPZVZK3yCiSmZxa25IpcxT5tFrO6pBUd44JR1KlpI1hmYKwTA9blp14KGNlNj10k5XJZeqfK575FDd16tRoEFFVVSXLsmRZlqqqqvT+++9rwoQJuu2225JdJgAAAAAAANoR40iRHbZC670Krfcqst2WaXokn5QQ7igZv1UTVPglO1TTi6Del6/mSz7Jt83IiiQ+afSeyDhGkRUBmR0RKWRqxraytXM+CqOaCbSrjLSheU+01anpQXwSaYP2iYAihb377ru64447lJGRoRtvvFHfffedqqqqVFVVpRUrVuimm25SZmam7rjjDr333nvJLhcAAAAAAADtgFNpKbjCr3CBV06JLafEVrjQq+AKvyKl7eByo2Wpup+lSEfJ8f40slPtBXtbkqcmnHDSJMdXMz9F2ppkFtwGSh2ZIkcK/vS9UU3PCaOaY/9pQnCVOnI2hBrMSdEYK9sjq4sv/vKuPllZTJD9c9UOPjF+vh588EF5PB7NmDFDd999t/bdd1/5fD75fD4NHDhQd911l/7zn//Isiw9+OCDyS4XAAAAAAAAzWAiUrjKUrjaktlDbtA3QSm01ldzN/2uHCm83iunKvXnZHAyLVXuayvUXYpk7pwk2/hqhn2KZEnhDjXDQcmy5CtNbr12tSO70pEJt+yFYqqNTMBIxuzsLRFrU45kShyZ0uZNam3n+WT3SZOV7ZE8luSxZHXwyO6bJrtr/PAC7R99Z1LYZ599pqOOOkqjR4+O22b06NEaNWqUPv30UxcrAwAAAAAAQEs5Eal6q1ehUjsaTNheyZ8bUVrniKwkXv+P7PDEDidqGSmyzSO7T9i1mnYX47cUyrMV7tL0RX+TpNvAvTvC8m8Lyw7U1OgEHVkdLFl5lix/M14otUM5RVQ/nKjbg6IOU+xIuc2r1cry0FMCDdCDIoWVlZWpd+/eTbbr2bOnysrKXKgIAAAAAAAArWEiUsU6n4Ildr1eE05Yqt7mUdWm5N5v7CQwhJNTau8xPT5aK5inhK6gBrvt9lIa8G8OKX1jKBpOSJKMZEqNnLWOTLCZT4KjnUFFXabOYx7JSrNlBSTTXp5kJBUBRQrr1q2bvvzyyybbff3118rLy3OhIgAAAAAAALRG9Q6PIsH4d74HS22FypPXhcJEEth33Qvaqc5vK5Df+DE76VKwp7vPiRVw5N/SSC+VsGS2JPYkGGPklEakDpbk0c75J+p+1faaSbNk5drt6zlGUhFQpLCxY8fqm2++0d///ve4bR588EF99dVXGj9+vIuVAQAAAAAAoLmMkYIlTQ+Bk0ib3cVKS+CqtFey2tFVx4oDpVCn2MuMXyo7xJJsdwMK347GxtmqYcpNYnNSlBtZEUt2N6/U0Y5/xdhIyrBr2ngly+VjRvvEHBQp7Oabb9bLL7+sa6+9Vq+++qrOP/987bXXXrIsSz/++KOeeeYZzZ8/X+np6brpppuSXS4AAAAAAAAaYSI1X02JBJJ3YdjTKaJwZeOXFD2dEziIVOKxVXa4kX+jUfp6I7taMh4pmG+pqp+kNPfTGLs6gUmqjaSgmrwCHB0KylMzT4TJMlKFqT/XiC0pQzUTXJc6svbxt6huYFcEFClsyJAh+te//qXf/va3mj9/vhYsWFBvuTFGHTp00LPPPqshQ4YkqUoAAAAAAAAkJMHcIZm9E+xcR1axkamIXayVZuTp0s4CCkmyLAV7Wwo2PR2sOxLtvZBIs9o2VUYmZGKv40iqkBQKy/F7ZHeg9wTaBgFFijvppJP0/fffa9q0afroo4+0ceNGGWPUu3dvjRkzRhdffLG6d++e7DIBAAAAAADQBNsjeTOMwlWNX/z1ZSdw9/xuYlmSr19IkU0eRYo9NReuJcmS7I6OvPlhWckbgepnI5xjy1vaRBDkk5Te9LasbFtmS0QKGKk8IlXu0nuiVm2PjG0RaYcj9WhH43ghaQgoUsibb76pvn37atiwYfUe7969u2699dbkFAUAAKLCkaBKKjeorHKz/E6Z/N4MdcrsoY4ZebLa0yC8AJCigo6jguqANgeDChmjDNtWr/Q0dfP7ZVvcCQpgz5DWOazwRl/c5ZYt+XOT20PBsiVvz4g83SMyP4UpVrqRxZVG14Q7euRsDssOxZ9jwupsyUrg95vlt2Tl2HK2hKUqI4WaWKFKiqwLyu7BE47W4y/lFHLKKafogQceiH4/fvx4/eUvf0liRQAAoFYgVKY1Wz7WttJVCoTLFIoEVBEo1oaib7Vm+5dynHbYzR0AUkh5OKJPi0u1qrJKZeGIqiOOikJhfV1WoaWlZYqYBCYRBQAX+LKNMrqFYy6zbCmrV0j2HnJd2PJIdraRnU044TrbUtVefjm+OENtdbZkd0780q+V75EJOVJVEw2NJEcyOyIylcnryYP2g4+OFGJZlhxn5xt/zpw56t+/f/IKAgC0W04kpOqqrTJOWB5fhtLSuyZ0541bgqFyBQJFkqQ0f678/g5JrccYRxu2L1PECcZcXhEo1qbSH9Qzd1+XKwPQXhSFwyoOO7IsqZvXq0zPnnevWVnE0fZQREZSKD2kDt74d/82R8QYbQ0GFXIc+W1beS3o7WCM0ZdlZQo4sS+kFIXC+r6iUoOzs9qiZABotbROjnzZQQWKPYpUW5Il+bIc+XMchk9KEitk5N1h5NtqZBkp1MlSqLslEycgcINJs1W5b5q8JRF5SyKyHMnKtGTlWrLSm1mXkVQRqfk3kbYRSUEjZTa/bqAuAooU0rFjR61duzbZZQAA2jFjHJWUf6fiqu9kzM6LOB5vhjp22k/pmd2SWJ0UDldr246vVR3YUe/x9LRO6tr5AHm9GUmpq7x6i8KRxm81KqrcpO45e8uzp9zuBiAllEYiWlpRpZLIzs9kS1J3n1fDMjPkT3SCzN2o2jFaVhHQltDOGksCRcr1ejUkO0eZnpZ/7q2tqtKaqkqF6vRu8FuW9srMVJ/0xD/ztwZDqow0fpdnYSCgAZkZ8tl7XvgD4OfJ9kkZefTCTTrHKG2dUeZKR77t2jk3g8conCNVDbRVtY+V+KTVbc22FO7kVbhTze9bu6KpLhCxOZvCUmWijVVzQuJJ/nkIUh9/IaeQ4cOHa/bs2TrvvPM0YMAASdKyZct0++23N7muZVnMUwEAaFJR2VeqrN4gs8uke5FwlYq2fqFO3Q5WekbXpNQWcULavHWxQuGGZ83VgSJt2rJYPbr/Qh6P3/XaKqq3N9nGGEeVwRJ1SO/iQkUA2oOKiKMFZRXadWhpI2lTKKyF5RU6qkOWPEns4RZyjD4uq1Z5pOHtlsXhsJaUFuvQjp2UZjf/dt+1VZVaWdnwMz9ojFZUVEhG6pORWEixPdTUYNqSY2p6UnRLc//3CABgD2WM0lcbZaz6KZyo++suInmLpYzvHFlhW5WDVDODeIoyBeGm556oy29JWal7vNhzEFCkkD/84Q9avHixnnvuuehjy5Yt07Jly+KuY1mWjDEEFACAJoXCpaqs3hB3uZFRWfHKpAUUZWXrY4YTtcKRKpWVr1NuxwEuVlXDyCjiRFQV2KGqYIkcE1aa5SjDn6Nsf648ds0wJ3V7pQBAU1ZWBxqEE3UVRxwVBEPqk8QL6uuC4ZjhRK1qx9G6qioNzMpu1nbDjqMfKxu/A/SHqkr1TE9v04CGWSiAPZfjSGUlPpWX+hQO2rI8RlnZYeXkBuXz8+7F7uEpk3zbjLwliv1LwkieKslfaBToZSmS43aFdWsx8u2IyCl0ZAJGsiUr26qZKLuJ4Z6MY2TKnZqeEYnKsWTtAT05kfoIKFLIqFGj9M033+j999/XunXrdNttt2nYsGE6+eSTk10aAKAdqKiKH07UCgXLFAqWyud3/8y7orKgyTblFQVJCSi8dpp2lK1WxOycgyLihFVevUNVwVJ1yeotnydN6b7kzpUBIHVEjNHGYNO3Ma5LdkARiD2Ja12FgeYHFJuDQUWaiAvCP81NkZ+W1uT2crwebWyijWVJHbwM7A7siSIRafPGTAUDO4dgMxGrJrAo86l7zyqlZzAUEtqeb4eRp9zIauRXshWS7MqauSkiOUm6YO8YZawNylP+UzghSRHJlBiZUiO7py2rsdrKjYzHSjygsCQ7m8vKaBu8klJMz549NXHiREmKBhRTp05NblEAflaMMVLVFplgkSRLVnoXWemtu6PeGEemapNMsFSybFkZ3WX7O7ZNwUhYxKlOrF24OikBRThSU18wVK7wTz0pvN5M+X3ZDdq4rbx6mxwT+yJdxAlrR2WhBuSNkN+b7nJlAFJVyBglcqmtOs6kz26pdpq+azlojBxjmjWxdbzJrBvuP7ELkvlpaVpZUaWwiV9vF59PmR4CCmBPtGNrer1woi7jSFsK09Wnf4UsppBBG7NCajSciHIkO7Dby4krfW1Q/oKQLFPTu1tpNaOqSJKM5BQ4sjNtWd7Yv4tN2EjZalZAoQC9w9E2CChS2N/+9jcdcsghyS4DwM+ICZTIbFsihSt2PlayUsaXIyvvEFm+5t0dKUlO1VZFdnwhU/fCcsn3stO6yNP1YFkeLui6xbYTuwPXTsIcD5JkHEfFpT8oEql/5u/x+JWd1Vteb7o8CR5DW6oOlioYLlPHzF4qqdxQ8wfBLoxx1DEjz/XaAKQur2XJVtPXCfxJvhrnty2FGhniSfrpWJo5DFOik38nevwey9L+HbL0VVm5YmUq6R5bg7Iym1MiAJdEwpYqyxq/fOVELFWUe5Wd03SvLqA5jFcyiWTXtmR8u72cBqygo/S1QWWsDsj66aTBhGuGd1KuZPl3hhSm2MjqGvv3q+VV8+afsCSnmIACbYNsOYVdc801uv7665NdBgBJxonIREI1vQvaKROqkNmyMBpOGCci4/z0B0CoVGbzpzKRYCNbaMgJFCm8bVH9cCK6bLvCWz6TMXTVdktmeq/o/51wUOFww+fF68uSPy3XxapqhCMBVQeKasKJXd5nkUhQZeXrFImElJXV0/XaKoNFkqR0fwd1yu6vdF8HWao58bctj7LTOikvu6+CkcbHUgeAuryWpXxf0/eT9UlLwtWQOnr7m66xR1rzbzbo5k+TrcZDCo8sdfMnHkzn+f0anpOjbml+1eYfXstSn4x0HdoxR+n0ngD2SIFqT0Lzw1RX8R5G2wt1suRkWzJ1f93t8oI0XsnJsBTMc3l4p4hRxuqgvKVONJyICktmu5ETqrMg/nR+UrYtlTcjcHAkVRmZBHpSAk2hB0UK69ChgwYOHJjsMoCfNVNVKlNcIFUWSzKS7ZPJyZOV21OWJ7kXDNqaKf1RckIygRKpeqtMuOZiq7F9stK7SOldZZWtlXIT/1xySlfW9MmOt89QqUxloays3q2uH01L83VSMFSmorJlClolkiTbk6aMzJ7Kyukv27bVoePeSalt+/avFQiWqLJqi4yJyLI88noy5PdnS7LkOGGFQmXKye6TlPpq+b0Z8nv7yBhHfqdKtuXZ2bUaAJppYHqaNofCcYd6yrJt9fYn93yjf5pXawMhVcf5de6zLPVJz2j2dv22rT7p6VpbHT/c7ZuRIa/dvHvuOvq8OsiXrYgxihjTot4dAICfj0hHKdTFkne7kW+bZIcVDSiMt+Yrki4Fu1mKuDxKsa8oIjtYPyCwQkaqkExt78aAZLoaKUvRm6hisWyrZjKmRBlJIXpQoG3QgyKFDR48WBs2ND2hKYDdw5RtlSlYLlUWKXqG4oSk4gKZjV/LhJvTPzIFVBbIVG6SKV8XDSck1YQWlZuksjVyytcnvDkTCcqp3tpkO6eCzzm3bNjyjsqrVsvUCY2cSEAVZatVvG2ZOuTuq4ysHq7XVV5RoMLNnyocrlR6emfZllfGRBQKl6uqaptkjDyeNKX5c+X1Nv8iWGtl+js1eMyybHlsb71wIsuf62JVANqDjl6PfpGdqfQYwx118nh0RIdMeZN8cT3NtnREh3TleBrWkWl7dHBOrjI9LbsvbkBmpvqlZzT4o9WW1D8jQ/tktnxIJo9lyW/bhBNACkhLjzTRn6oGk2Rjt7AsVfeRnCzJ7NppL1JzJSDY01Ll4GZe4G8D3uKaEQ2MTzK2ZFcbeSqcneGEJAUlp8yRdkgmPX5vBxM2UnP/lAqZmi+glehBkcIuvvhiXXrppfr88881fPjwZJcDyAqF5CspkR0Mydi2jMeRlen+xUI3mEhIZuuPatC3s1aoWmb7Glnd20cvJ2MiMoFimar4gYIJlctqTpjgBBsM1RNzu07zho1Cy5RWrFJR6ReyZCnN11kef4Yi4SoZGVmWV7YnTdWVherQsb+rdUUiAW0vWi7HhGVMROFwtWyPT3JsWZYl2/bJ401Tbsd9XK2rrnR/jtL9uaoOFsdtk+bLUlYShsYCkPq6+rw6Jidbm0JhFUcisiV183nV2bvn/CnXwWNrbMcMbQtFtC0ckZEUTuuoLj5/q3qRWZalgVlZ6puRoc2BgILGUZplq3tamvzN7DlRqzgU0uZAUGFjlO7xqFean6GdgD2cx2uU2SGsikbmobA9RlnZzD+B3SNtsxTqYiuc7ci3TfIW1zweyZaC3SWTYSmhFC0Gu9KRr9hIESPjsxTqZMukJbYxq/Ylb1ly0mz5dsS4SdLUfJmQkRVpZLuOpOb+6R2SFJaU1ngz4xipNCJTVXMjnJVpSx08Nb02ABFQpLRJkybpiy++0LHHHqubbrpJp556qvr166e0tCY+GYDdwL9tu/zbtte74GwClTLpabJ6dpfV3v7wK93S6NBEkqTy7TJd+7eLoZ4syyMFS5tsZ0LlMsYkdjHCkyZZdpM/RybJdsf2ks/rfW/ZHnn99Sc9L9n+jbrmH+7qkEXlFQUyxlEoXKlAoFi7hoLGGEUiARknIp8vy7W6dtWz04Fat22xwjHmmfB6/OrbaUgSqgLQXtiWpZ5+n3pqzz6n6OrzqKuv5pyv0Nt2f5Ok2bb6ZrTuppew4+iLsnIVhepfwFxTVaV+6ekawATZwB6tc161QsFMBQMNw0nLlrr1qJbFGCHYDaygkadUsoNG3h2WLKN6Qzn5t0shY+QtthTu0owNR4zS10XkLav/97B/S0TBrh4FezZ9DcX4rJ09GCzJeC1Z4V1uArRqvuxcWyqTTHcTMxgwtpHKmtkLKSw5YaPGKjUVETkFQalOrw5TImmrJbuXX1ZGO7tWhBYhoEhhnjoXfG+55RbdcsstcdtalqVwmLsJ2gNjjFQdqP3G9S6EsfiKi+Xfui32wuqATMFmWX3cn7h2dzKB8kRaSYFKKdPlgSh3E1Nv6Bwj1U6QbXtVe7uI5c2s6RnhafqihGX7ZGd0l1NZ2Gg7Oyu5cwr8XFQHd/aOMXLkRMI1J7L2zlOFUKhc4XClq0FAIFii6uoiOU6dwV6lmmGojBQxQVVV71AkElCnZsx/0tZ83gz1y/uFiivWqaSyUJFIQF6PX7mZ+eqS1Uu+BN4TAJCosDGqiDiyLalDG9wEEjFGFY4jS5aybatdzp3zZVlFvXAibIzCP81BsaaqWj7bVr+M5t0UUR1xFDJGabbV4h4dABLj8Uj5vStVVuJTealP4aAt66deEzm5Qfn8DDOD3cOukqxIzfwTciSFjRSR5JHktSQj+XZI4R1G4S6J//5MX98wnKjl3xaRPFKwe+O/40OdPPJU/tQrISRFsmxZQSOryqoZ5smSrGxLdldb8qmm7pBi9niwjCUZS3FHiYin2pE6xq7TBBw5G4NS3Ym0HdV870jOhqDs/mmyfPwO/bkjoEhhJoGhUVrSFnsmY4zM5u0y24ukn/64ygqVKZSbrWDXjlKyusYZI/+2HY23qQ7IVFa1s+GeEvx5t6O/762M7jIVBVJgh0yoUjVnFpIsjyxflpTeRUrvpOYctKfjvjLV22Sc2PN12GmdZWV0b33xSIBVM69DpEzhSKWcSM1zYlleeX1Z8voyf2rl8smjkaqqt8nnzVQ4XKlIpFrhSEDG1N7dY8kT9ikcrlaH7L7u1rYLr8evrjkD1DVngCSpgylLaj0A2p+gY/RddbU2BEOqvUEyy7a1T7pf/dN2HRi7aWFj9H1VUGuDoegNmOm2pb3SfBqQ5ms3QUVxKKwdoZrfa1URR9tCQVWEd94lmuX1KGKM+qSnJTQnxfZgSKurAiqpE3jk+X3aOzNd2V7uBAV2F9uWOnYKqWOndjbXH/ZsluQpl6xKI2+ZZIe0cwpKv1G4g2TSLXlKE7/uZlcZeUsbH0nAt81RMM9u9FpPONejyI6wPFUm2lPCpFmS56cJsS3J6mLVv/obb3OWJKuZ1w4tyYoxB1UtsyO8M5wIGZnyiExg53FbabacdFuePtzM9XNHRJXCHMdp1hdSlzFGZvUGmU1bo+GEJFlhR/5tpcpYvyWhsfx3B7uqWlao6RNEU1bhQjXusRLpFWF7pLTsptulCCszX7JsmUhQ0XBCkkxEJhKQbL+stC6yPIlfILF8HeTJ+4UsX84uCyzZWb3kyTtMFn21XZGZ1lPVwW0KhyvqD9VmwgoFSxQMlCotvau8PneDRtvjk+OEZFm2vN4MRSLBOuGEJBkZyygcCcgx9BQE0H4FHaMF5RVaE9gZTkhShePoy8pqfVVZ3azthY3RJ+VVWhUI1Zvfstox+rYqqM8rAu3mJqfNwZpBtSsiEa2rrqoXTkhSRTiiVZWVWl3VcJi+BtsKBLWstKJeOCFJW4MhfV5SrtIwk/QCQHsSyZK824z8OyQ7qHodDOxgTe8Ju9LICinh6zLekqav0VkRI09ZE9uzLVX1T1O4gy0nvX5QYHktWV0sWd46j/slyx87ULC8Vk0K2By2pKz465jaIaOCRk5RuF44If3Uw2JtQKaC350/d/SgAFKAKSqRKa0ZUsiEwlJFpUwoLF+wUk66TzJGvqJyhTp3cL02y0nwF0mi7XYz4zhSRYlMeYnkOJI/TVZOZ1lpzbzomt1V2rFeijQSzuR0l2W3p7voaoZ1sjLyaoZxqj12T1rNME+hcsnX/NegnZYru8doOYEdMsFSybJlp+fJ8ranHjd7vjR/V5lGLvBHwhXqkDvAxYpqpKd1kW17FQpVqLy8QKFwxU+9O4xs2yefL1sZaV1lFFFR0Qp1yzs4oe0aY1RZvVVllYVynJC8nnR1yOqljLROLarTGEdF5eu1qXi5Kqq3K+xUKdeXpS5ZPdUxs5tyM/PltffsseOBn7tAJKKC6kqV/XTjhRUJqI8/TWl7yNA931cHVBaJf0FjdSCoXv7EJ89eEwipKBx/ewWhsHqGvOrpT/0/GcOOI8moMBCIe+3IGGlFeaX2zsiI23MkYoy+K48fYoSN0XfllTos1/1zcmBPFQ5bKin1qbq65u+izIywcnLC8niaF4AGA7bKSnwKBW3ZtlFmdlhZ2WHmncBuZ4UkT6Vqhkdyfupk4GjnLd+25C2Tqnw1wxY1OiFD7SoVjrzFTs0k17YUybDkZDT83WMlchnFa6m6f5qCeV5lf10ly6npPWH5YmyvUxO9BDObeWOCR3EnujbGRHtPOCXh+sM81RUxcjYFZe+d3m56bqL5Uv9sE/gZMNuKa/4tLZcp2Tn3gR0KyQ6E5C2rkrHtpAQUjj/Bu+V9yb8wZ0IBmYLVUii488GqcpmS7TIdu8jO65XwtizbI+XvJ1P43c65GOrK7CSrczubO6Fqq6zsPjLl6yXbX/NVh5XeVXICLd68ndZZSuvc2irRAo6JKOJUqmP2EJWUL4/ZJiOrt3x+9z9j/P5see0MbSr6XOFwZc3cEz9xIhE5JizLspSZ2U1V1dsUDlfJ20S4FY4EtGnbUgVC9Sd+L6ssUFZGd3XvfGCzeu6EwlVaWfChtpX9oECoXIFQqYyMioyjgpLv1KvjIGWl56pv5wOU3cIABMDutbm6SivKiuv2D9TyQKVWVFdpRFa2uvuaP3xSW4oYo/XBYJPt1gZCzQooEtleewgoMj0elYUjCse7OPKTiDHaHgqpa5zz202BkMJN3B1bFo6oNBRWji/1f25Aa5WWerVla3q9YLCy0qMdRWnqkV+lzMzEbmLbsTVNpcX1/56srPCqeLtR916VzD+B3cq/yZEV+ikscOqEBhHVDIvklRSWvCWSGhnuSJJkjNI2RJS2KSJPxc7XrV1lZHxSsIunXsBhmnH64WR5VDEkQ+nrgrKqYoQTuZbszk38jRNoZkAQkYzH1Awntev+LEvyWVK5U2+C7AbtvKqZ6LvCkbLb0w2eaA6y5nZg1apVuuGGGzRy5Ejtt99+uvHGG6PLFi5cqGnTpqm4uDh5BaL1qgMyFVUyJeUyjpEJhWt6UtT+keUYpW/aITVyV93uYvx+RerOLREOy1taLk9pmZw6E7NbOcm9k8wYI1Owpn44UVfJdpmirbGXxWGld5D1/9n7sx9Lsuy8F/ztvc3sjD7GPORUWSNrYJEqVpHUFS91oaum+jYagoh+afChpQcJgiBAgv6LEiBBL3qR9NrdEvtCFNEtgRquyOJQLLHmyqyszMiMOcJn9zPatIfVD3Z8DD/nmGdFxpDpX5YjosLMt22btu29vrW+75VfRK28Akkboga0llFXPou6+rmPlTSR+BJ8hmosoZY/g2peAJOAjlHJEmrxDVTnGpTnmvsvI7zPEHF0269yaeXXaTWvo00TrRskzQssX/wqS6ufwz6H++t8wd7g1sSnRE78KEQCZTliNHqEdRmlnW9gv7Hz4yfIiX2Msw12+u/V7p+IcGfjz9gavk9px6TFDi7YA1mUwmasDW5R2JT7O29RuvnyIed4ehARduyAjXKPoT+/9uc4HX1b8rMT5MQ+vAjfHY8Y+edbCZqFcCDDJCKMvWfgPfkJGdd+zX46EdI5wXqAwXOYW34UuNZoYOcQCw2jaRnDaIZE00lpqGkYfUyu2zk+OqSFop9q0rMGA18iZJl5gpzYRwiwtt7C2vnnP+jFT5ATzirKQpPnmo3H7eeldvzMIB7sWGFH6tTcuHN8tGg+qPwdZD92rg5/5MgjHA1BlbMfxmQjEO8FfFs94QWhLMS7h9+Z0FD47tliCn7BkL6ZQJsqdqQEtaDQr2j0tRpt2TPOdwIoP/09VksRcrRaMwCOitzZR6vq10n5p3N8snCe1vGS49/8m3/DP/gH/4ByklGllGJ7e/tg+9bWFn//7/994jjmb//tv/28unmOnxdaEfojGGdQHjoyRd4iSYRvJhAg7o+fSxVFcfky7dt3aKxvEg+HB7qLEjyh3YI3XyVKnnMFxbgPdnZ2v/S2YPnimcoKVZTA6k3U6s2ft4cvNpQ58tcGdK6f7q31MSJlPklQR+5vEi+yGn8F230ymHt0v2eFza3vIcHjg5tUTxyd9HtEFEEs1o1J03X0nD7mRY+83Ju5z2D8iJXFNzE1JJnGxTbbw/dJix3SfPeID4ZCdEykE3KbMir2iE2D3fFjri69Obfdc/z8uJuv8372mCwcEtOr0QJf7LzGcvTx8Qc6x8+PB+mIWeEEL8KdIufL7c4z69NJmMncZNc5NqyjPBKNayvN9SSiY8zBfvOgqeIi82J6M3w5Xyo0jeZGs8FmcXqiilJwZVI1Mesa1r0eH5frdo6nj36qedyLyMvDh6SZCNeXHUvtj1dwrteLZxIHIUCvn3Dp4vQ1mggM9g5TyIvckI0N/khAdBQJrbbjwuUPX8n9okICZJsRdqAPr6WCZDHQuuR4DlPzTxyUFXQKErGfH3VIVOxj8u++CfE2lNenNOaFeGfynhuFW1BEJ4y1dQm6EEJTUVw/4w0WIdlyxNsO0iPSSwLUqMQQkYo8OAsipptuA2olgjUNzkMRkCOVFMooVMccEBSz2jnHxx/nkaSXGH/6p3/K3/t7f49ms8k//af/lO985ztPGNn91m/9FouLi/z+7//+c+rlOZ4GpJHAXh/K445MCtClIxrnhEZMNEyfT//iiGgwJEqPm+uiFDiP2tgmFM93wiij07Olj8E7yJ/PNXzRobSB5qX5O7avfPSdOcdTR2RaxNHi3P2a7RrPwFNGr/cBzmdV6tipoTQhBItzBXmxR6Mx28B+nG/OPaaIJ8t3avVvb3SfvdF9nCsIJ8y7rS+wPkckMCp2ARjkZ6vUOseHw7vpQ34yvnuMnADYdUP+rP9T9ux5tdc5KogIu+X8Ocr6tArMZ4SW1mQh8KC0x8gJgFQCHxQlI++5WlNWSCvF5Xh+4KNuey8DfmlxgcuN5AkComE0rzSbtI1BKbg4I6lm1rZ9aKW48DG6bud4etgba25vxsfICYC8VNzeitkbf3zCMyIwTue/B6PR7H3KQuNcdb3yzDAaRMfICQDvFGv322Tjj1e0XgKMHsSUfX2c6BEo+5rRgxj5eHFaLyTMAHyXKvhiOGT4j0JDiMEvPkk4HGtrLKgjAXq/oHHL6knCI0D2RoRfONuY0HhoSTbccd8KARkJ4V5A5lR3kAtMMdCeis50022YkBBXIsQeJycAREOQgCqqf1fn8k6faJzPnF5ifPOb30QpxX/6T/+JX/u1Xzt1nziO+dznPsc777zzjHt3jqcJpRXMKNlXPiBGoWqU6n8UaDxew2QZrtNB+YAKARSoiViCZDk83oA3Xn0u/as6UXP2dj7Lm45kCdn6LuKLSr4qWYTGKkpPPiXKoBZer9WUuIwwvk/INkACKl5Ed19DNy98dP0/x0x022+wN/gRAOP8Mf3BTymLAShF0lxhaeVztDv1fVqeFkKwlHaEzMnzdT4ljrtzqzxCzXf8ONkwHb3RfYK4SnRKAkECIZQE8SgRSqUREXzDnen4LzrGbsxbe29xb3wPJ46FaIHPL32eNxfeRD/nSqrUF9zKHk7d7gm8nd7jf1r60jPs1Tk+SuyVBY/zEWPnMEpxIWlyrdWhoecvdPd9LudhhnTyM0ERAuWMeZ4AG9bx6hkqVt9sxNzKS3adJw+CRrEcaVYjQ6QUGnij8fw9xJ4WgkDHaPaoEkQbWrEaJywfIRMuJwktM/25WY4jlqKIvpueYnqtkRC/IMbqnyQEgfUSHuSKIgASc60duN72RB/idpQeNkeGncwQBFqRcKXrWWl9uO94aeGthwmj3FBYcEERGyGJhFYsdJuBh7sRy+2Sj4NHrMjxvLW8MOS5Ifiq4LrZ8DSbfq40UwjqoL3xDDIjCOxsNbnZGT+N7j93iIfRg4jx4wikKmY3rYBpyMHz4QtF0TM0V5+vBOHHHSqA7yh8UzADDvOl9uWdTPX30ITQZuakQp2yzXc0vi2ostouBsqr5szSTnociHszngUHsiWoGzMGmMDEQ+MMk57O7LmWiMAgoFciQuoPpZ2OmGuHgUdfiFDJ+bfzk4xzguIlxre//W2+/vWvTyUn9vHKK6+cExQvOSS30G3D6PTsft9K0KXHP49FZAg01w8zksVoxEw+LO5ItuHOHvLKdVRN48anjqQJ4xpVFHHjo+/LSwYRQXZ+CONHEHehHFRTFpdBvg0Lr6PiBdSlr6Gi9tz2Qr6N3/4uckRAVeyIkD5Gd18jWv3yR3Yu55iOTvMm1o658/j/ySi7Q9CH9ycfZ7hySNJc4dorf+1MMmg/L0zUJPjj1WNPQpDg6XbmG9MnUT2JliSeLwHkfEnpc7SK8GLxweJCeUB0CoB4xrZPyy7ggv1YmGSvpWv857X/TOHzg38b2SFr2WNuDd7jr1//PxHp5zfFfFBszV1W7bkRQ5eyUGPMOseLjXeHe6zlxwNSQ1fyMBvxpaULLM/5rmulaGpDHmYHeBZmBK2fBR6WlqXIcFUi1u2TwXGD4mock4ZAo0ZwXES4WzhsqHwmJuKcZDawZR2fbib8xmKbrvl4BAse5QU/G4+JlSbSGus9ZRDWiwJBWIljVuKIL3TmjwlfXmzzw/74VF+SC0nMZzvNj+IUzjEDTuAv+oq9I6+GKzS9QnN3aPiVSyWtM3yWhoXina0YFw7nO5lV7Gaai23PZy64M5EIo1zxkwcNdoaGtNQU7oi8UxwoE2GYay4teHqpZqXz8iczaA1RJFir6PWT414THqyNSLOIa1dn+0PFSUABeW5mTgVNJDiryFJDq6bx9osKXyjGD2PSdUPYf1Yc+MJgEiFZ8QfPX9nT5wTFR4zQBO0mZtUnYvdq8nffmsg6KUWY8QkIzSkDh1JI47Dp0Dj7Wivena/NJENBvKCmGXk3FJxVUCIopAioxpT5wihUg/SiQQeQ8snxTUUKtXBePfFJx8djxvkJRb/f5+bN+br3ZVniZmT5nOPFh7IOvbIISwvQakAUQRQRkhi30CIkMcp57Mqz19RW3qNryB6I83DKgvpZQS2uzt+pvYCKa4gznoDkI2SwgQy3EGc/RO9ecPTfr8gJgMYK0ryE2BGS7yA2Q1wJ1/5nVGu+/I/44jg5IQ4pe/jxY3z/Fm7tD7Eb3/4IT+Ycs5AVa+R2B61itI7QOsJETaJ4AaUUGw/+kP7OT59pn1rNi7WqDrSOWFp8be5+3fZVlJodpWjEizST2VJRAM7ntJIlkqiD8zki/kQVlhz4ZjhfsjN6xEpnmijty4Hc5/y39f9G4XMEKELJyI3o2T5jl3JvfI8/336+7/C4phn2KOTzdzrHC42H2egJcmIfTgJv9Xewc4gHgOut+UHp1xrPN4Fh5CcVFAINFKUPFCGACJcjw+dbDTpG1zZnfi+3PLaOC7Hh042EplIEqYiOi3FEW2suRGcLFhRBeFg47hWOvZpm0nVQhsBakfMoz+nbs8+z+tbxs/EYkYqQeq3V4EazQTcytIwhDYHXW01+eXGBqAa509CaX1nu8qWFNheSmKUo4koj4ZcWO3x1sYN+CiT+bum4n1selw73cXf/fQp4a3ScnDiKzCl+uFN/fu8DT5ATR7GdGh4N6r8bzsPtzYTCKvbGivWeZrNf/bk10Kz3DbsjTRDYGhqy8mNQPjHB0pJlOIopS4211U84Is/k/YR4mIEoElodh3ezr0uzWY05tnx+IS4RKEaGdC8mH0bYVJH3NflA1za2FoHxo4jgQE4xHvalwg4PzzHUMBk/x88H3wHTA7TCLk3sJiyoyT31TfCL4Baqe2FXp9+T0FSVOfYsaLArZ3+OdR7QWcCMPToPT8i/A1XnZ31GNaDP+M1JPcwIB+0TEkorWDGo5QgiVT3sGlg0sGLO7n1xjo8dzisoXmJcvnyZO3fuzN3v3Xff5caNZy/LcY6nCKNhcQGVl1U6yoSV9/YwCOMXWoTWs188i9aI0nP9jJRWVd+fE1ScwOpVZHf99B1MhLp4tsChFGNk6zYUo6NHQhYuoS6+Xvk2vOQQCcjwLgAh3UB236qqJvYnPGoDybeQ1mV49a/PbS+M7lfkhAghfYTPt2H8CHETPXhl8P138b23iG/8DUz3Y24+/gIhBM9W78/QKLRpE+InZ4kijq31P2fpwhcqma9ngMg00crgZXZQygdLVKM6wuiYS8ufZ3PvrVO3K2W4uPKFWn3TOsLoiOXOq/TTR/sNICEgR+q7FYrCpeRuhJlDjrzouNW/RerG5CFnUA4YuzFuYgyuUCQ6Ifc5X1n+RRaT+b4mHwWimtc4OneWfKkhIjzKRjP3cRJYy1NebS/M3O9Gq8N2kTOYkmRwJU648SESGJ4WrAg/ywq+PUoZe89YAk6q9f2KMXigFLiZxEQ1guOV6XeJiLBmPTvOExC0Ao+w5zwdrXlUOl6rUZ3rRXgrLXlQeo6qUEm+y+e7CyxGH67C14vw3njMWpEfU8xYNBGf73ZZrFmV+yDPT8jIKBaiiIUjvz/2/kzVgVoprjQSrjSe7nOxXTreG+VkQehOdMViBW80Ez7ben7P4IuMPMDaHBuZQanYLRSrjfmBt62xmUpO7GN9ZLi+6GuZoe+MDHsjxffvNshPBNldAFcqslKzNxauLDmGmYaVj0dGfKtlGQ6jJ0gIY4Rms5J4UkpIU0N7RtXDysWCve3p69xWx2Gi6t7qswZXnxKyfsRos4H3Cu8UeT/GFg2SjidpV31qLAS6lx2zptBupA9JhylKOz7TSDegNDPbOsfTQbQHril07kM0mMg07S+FXfUTGlQm2Yvg5+Q4FTcMrdv+mBfFse3XTPWBPwPiLUvjscVkh19LCQILoFon2pr1zCjOHiUuBQkyNR6ktDp8jK3AyFcVFUpVklLDUMlPXT4n4z/pOB/OXmL85b/8l/n+97/Pd7/73an7/Jf/8l947733+M3f/M1n17FzPHWo5QWU0ajLF1Cd1nFTJqNwi22yV569eW11fINdXZ6/X7eDesqLuLNCrV5GXX4FkiMTXKWgu4S6+SYqqU/wSJkhj98+QU4ACAw3kfV3T89aeNlQ9iEUhPEasv0jyLaOC8qKQNEj3Pv/EbZ/OLc5ybcAIYzuEvIdZHT3kJwAEI+UfcLoIeXd38Wna0/9lM5xOrJindLuzd0vTzewZQ25tKeAECzWZZMqhFlQRKbJg0f/B2k634R6oXOdqxe+SiM+HkBvNy9y49Kv1KqeAEiiNo14kSRq0mlcxJiESrV9YvSGItIxiWkR6YTSZqz1b9Vq+0XFg/Q+ecjpFT0GdnhATgAIQhEKtosdvrXxLVzddMGnjOuN+RVzDR1zIZodtD7Hi43MOzI//xnbLedXyhil+MrSKjdb7WMB/kRrPtts8Sud7jOVtjsKL8KfDsfcKgrGwTMIFTkB1fp+x3nWSsuOc9wvylpVDz0fKAUelI4t5wgnImCFCHcKy/t5PWPwvxgV3CuOkxMAA+/4/qDH6ENUcosIPx4OeHSCnDhst1+73e1yftXFzoeozHja2CkdPxpkZCcupBV4Lyt5ezzfzP2TiO2ynlr6dlaPlN7L54dISq8Y16x0WNszfPdu8wly4iRyp1jrR2wNPh4hGhF48KBDFAXi2B9q4QAhgPeKbqeSykrnmGnHifDKmyOSxvHRwBihs+BodypyQylod5793CPrRfTXmnivCE6R7iR4qyoz65GhTKt7Wgw1/UfxTN8Ne8Qo3TRPn/+KHFZOxAsvvxzYi45o19N6ANHwODmxD+Uh2QaVCflrinn6b6Glyd6McIv6WFwntBT5axH2wtkSaJINS2PdPSkLFUD6gmSHHVZNNdvQWilqMa/Hf4uZo/CCqfw6yoDsecSd2FcEyTyMz5/lTzpe7jS+Tzj+8T/+x/zu7/4uf+tv/S3+9b/+1/y1v/bXjm3/1re+xd/5O3+HKIr4h//wHz6nXp7jaUBdWkX2BtX3a3UJum2kPwKbggeTFdUnwYeq2qIOvCfZG5Cs79DY2Cbuj0ACodGgvLBE+sZNykurtdrLbt4g2dxGTRaKuizRpUWsrb5XSYy69PzNj8WWSJlBCEjwVdXEymXU8iXUGas73Affhvs/hHxQzbKDBRRoU/20liEI8c0vfhSn8uwggvgSGT+GYgdcCq6onNsUgAFTCXKGx99CrX55ZuWIIEg5qCSiyj2k7IEvq/aqglnQceVHAbj1P8F86v/2LM70Ew3vLWs7f0h/9B4+ZBydZBrTIm6sECcTCRSRGoTB04GI0B/crrMnWic4l7K++T/41Ov/29zf6LQu02ldprRjQrBEUZPInF03/MLC6/THD4hMg9h0sK6oFiayfw4BpfRBcHN7/JBPy9eeWQXK04aXwMiOKEOJEBAEHzxlKPETY3GjUh6kD3iUPuK17nzZrX1sl3vczh6xU1ZEWZfrvN54lUvJxTP18WK8xHLUpeemZ9e/2bz23M28z/Hzoe4oVDdVINKaT3eXeKOzyHhSSfFLxfipyPX8PHhUWj7Iq3melyfPJwBpEEY+cD2J2bCOV+YkhIgIA+d4NyvYcp4sVFezqTQXY81qFJFouF/MD9pvWs+mnX43nAi3szFfWahH/O5jx9qZpIET4U6W8uWF+ZVa+9esDIHt0vIwz9kqS/IQMEqxYAyvtZr86tIS7TPKWj1NvDXIuDMu2CwdRQi0UFyKDK81YxYiw93C8nozpvMx8QV5Wqj7jtceM2o2WPe4P32cUM4hJ/bhveL9zQZ/+XPFS2+U3R9E7PVj0jQ6IC9N5IkjIYoqo+csMywsuCfIzdPQ7niuXM8YDSO8VyhVyT8dxcKS5VkXsIvAcOswya0YmyeeoXKkiZoBrcHlinKkadQgFqJ2qKolTlPqmSSgNz4m1TYvMpK1CTkx7VIL4KB1B0Zfh7nSEkCIqh/T9yTbgrKCbynMnqe4GWEvGmQGkbAP5YRkq4rBhLaGXU809KgsIOXEXWpTUJcUalmhrtfoXH7GJMtmlZQ1tY+RQi1FyO186gCrmgbSgGQB1Tr/xn1ScX7nX2J84xvf4Jvf/CYPHz7kb/yNv8GFCxdQSvF7v/d7XLlyhb/6V/8qjx494pvf/CZf/vK56ezLDNVsoF+/AcYgpUW2diEvgIqhdwttkr0R7XsblZjnvPaso3PnEa3bD+i8f4/mxg4myzF5STQY0Xy0yfL3f0r33TuoGhrCvttl+AufR6KIaJxishzlPftLAbXQRQ1GSFpPF/yjgGRj5MEt6G2DsyhtUCKwu4E8vl0RFjVhf/pf4d0/gnQPnIUyrQzBXQE2B+9gvAPf/99x93/40Z3Us0Dcraoo8q3qT5uCOECqCYa4yizbDpH+e4Tdt2c2p+LFipgQRxjeBZ9Xbexr94sHXyBlHym28bs/Qp5Rtv4nFc6XvH3nn/Fg4/fxIeXkktv7jDzboMiroHGULBDXMJB+WsjyrVqEiHVDRITh+CFlOZy7/z6SuEOzsfyhyAmAhdZVri5/idKOyco9gtgD34kJJUfpUnI7pvQpGsMg3/5Qx3oR0InaePETgkIofEHmswNyAsCL597oLn+08Ye1/EMA3hvf4896P2K92MaKx4pns9zmfwy/z8/S987cz68vfI7l6PTn9M3mNd5svdxeIOeAljFENUimhTPKCxmlWIwTFuPkuZMTAPdLW/k5CCRanar6UEolrXA1jrlfo1ogVoo/HmY8KB2jEPCAB8YSuF867pWWsa8qNeZ5Wtwv5mcrb5cFZTgbsf24mF/5slWW2BrtLkaG1HveTzPeGY+5m+UMfcAK5EHYtY53xyn/7/V1es+pkuJuWvDnvZR7WUnmA0Emnh6l47ujnI3SIsDDGqTRJw2LNVMul+J6z2A3qeF7paAdzQ/iZaVia2BqkxleIC0Vm2fwuHgR4b3izp0uZW4IQYFUP94ZisKw/9rmRRXMbzbqrcMuXs3pdD1xLE+QE91Fy8rFZ19lVIyiA18NEbBTKnVcfjh45zOqZMyRKhEdURlin7K7SYT2DYupIVt2jp8PcQ/0/hJpyuVWAvEONG/NHz9UKXTfsnR/UtJ4HNCZoBxEQ6F929N929J+z6LTGiTWnj/okxkGVBEwI4/JhYOPewGyLchAYMhMlQc/8pVm5FmQANPMv/examDKsKaaGrVYbZT+uRHFJxnnBMVLjn/yT/4J//E//ke+9rWvMRgMEBF6vR5bW1t86Utf4vd+7/f4R//oHz3vbp7jKUAtdlFfeJPJLA6aDUJs8O1GRQaEgM4tzbX5Ei3Nx5uY4ZjWgw3i3QEqy1FFibIO5Ry6KNF5SfPhOo1Hm7X6Zy9eYPyp1ylXl3HdDq7TQa0so169jl5aqKoW1jeRMy5QnwYkBGT9HkwjIfIU2a4nJRQ2bsG971fBdO/A5RybqUgAm0EQCA55+z8TsvrB0hcNyiQQL0C6Ad5y+qxMwBdgx7Dz45ntme5riLeEdL0iJ7yFUE5IiglRQQA3RsLEQHt0/6M4tXNMcG/t39IfvYNzM4gg8ZRFH2czVi//Mto8G7k259JK4qnG0t57S5quE4LD+WdrfmxMg2ayhFbmxKS/mqx78bhQIgIulFj/8sp03GzfRKMRBBccNlhEBBEhSCBIQCuN1pr74we8P3h/bpvb5R4/G1eeWl48O7bHRrHNjt3Fi+OD7C4bZb1v0T4aOuavLH2Jbyx8nlcbl7iWrPLp1nX+l+Wv8gud+lUdHyW8BB4Vfd5Nt/gg2yH19eR0zlHBKM3V5nxz6+vN+d40LzKyEChF8JORsKsNCeCCkPuADYFYQUsrROSgGmIW/utgXJluS8CL4EUIQfCh0sTfsZ5d6+gYNbe9k3JEUFUqfJBZ3h8PuZeNSYM/M0GR19g/QGUUPgdXGwkP84LtsmSzKClCdd18CASRKoYj8CAr+K87ux9KolNE2Cosd9Kcu2nO6Awm4TYI394bH/sdAcpQ3c++8/wsLRl5f+r1/qRjKYLlOSRFrIXL7XrP4JWun5sAfaHtqVNsUzpF4c4YcpmQFC8zNjcbFKVBG8GYSRa3gPMKazWjcUwIh1UA3W69oKTWcOVGxtWbKQtLlnbXsbhsuf5qysUrH77qpEgNg52EwU5CkZ6NHPJHTKpn5WTIEV+TMKOiJlkMxwgJkwjNS45k0RO1AqYZaF1xLH+uJO48//FAPPhdjds0+B2NfNziy0HQx4vLp0I7aDwWzHD2zs27jmTDE42lqsoIoKwc/ER7gWhPaN3zc0u6tJ14r2SBeM9V1ROOiQ4YBwIFAJRVNYXszmgzlfrlZvsYCKoxe5xTDtRShL4YozoG1dRIpA6lnwa+8sywz/+ZPsfzw7nE08cAv/Vbv8Vv/dZvsbOzw507d/De88orr3D9+nl24McNajSGJEHpHMlStPVgq8VMNEhxC+2qqMI6JD799dZ5QbK5Q+fWfaJxysmaWtEKmZgGGqNpbO9SXLuIJHMyEL0nHqfY1VXsRP57qUhP7BNgOIKlZ2ycOupVZMIsDHvIhasoM3tYDPd/VBEQ5ZyZistAEjAF4fZ30F/8a9P3fdHRWKlIhGlQE91JlyI+RVyKik4PGqlkERqXkPF/h3BaEFkOqikk34b2dUK2DnzpaZzJOU7AuZLdwY+wboAw5x0Rh4TAxau/8mw6RxX4D95Sb6YcyPIdFhZew+hn53cjEuiN7hOZxuS448NtVIF7BSgS4qhBWvbRL7E584XmRV7tvEa/16+qKEQIJ+6PEkXhC1qmzTuDd/j04qdnyindziqD8c1ih41y50AP3/sha+UGF+NV7mT3uJJcPnN/LyfLXE6Wz/x7HzUeFX3eGm1QHlnJvzPe5HpjkV/sXsOcy0/VwuvtRXq2YDTF3PpTnSXaH9Kg+UVBohRGKfQko37kPWkIB3JPSiALHpGSq3HMl9qzq8HGPvDjcUEWBD+JQ4T9thA0VSxj4IVN60nmRPxOKlD8LCu5WzgCYKkqZ+9mKQmK//XildpeHnHd/WpKdA6c5WFeUITjjhtKhEQpSlWRHY+ygvWi5Fqzvi/Zbml5Z5QdI1U+SHNW44gvLrRJ5vTxcW7p2UNywoqQeUEfCUytW8fb44JfaNXv1ycJX+4K3+mrUxN/tYIvrzpMzeB1I4I3Vhy3905fE7Ri4fXlelHY0lXE31kgQFKjOuNFhbWKcRqhteC9otHwDAYx7ihR42Ag0Gl7rl7JOKPSLs1WoNn6+ZM9XKnYedzCFsc7EDcCq9dy4sb8m6fNEX3/Gc/Y0c/6rE+8MtC66kjXokMjZgVRu0rfVxEsvFq+EObYbsvgt8zxafo6mAsec8W/9DJlAPosj1mo8u3ibcEvnH7yOg0k2wHlBFWCLuUJ6ShtBdnx+EVF1Bfc8vQLKZNhKtpxxNsOnQbUUcsXVfULDZIKMhbYA1mVU7/HEgvzloRPwFaVF6Y7Y32zPwBHCtXShA0LY3/wPRY8alsRXhP0K+ffuU8qXoBh7RxnRa/X49/+23/LN7/5Tf7Fv/gX/NEf/REAFy5c4Gtf+xrf+MY3zsmJjylklEKvX/15ct4qFUlhxjkmnf4lTTZ2aN1bw2SnawCqICjnUc5j0hydFZi0hsFknkONLDap0dbThmTTdcgPdwqQp7N38RbpPYZsSK00Cm/BFcjuy10BIBjQzcms++RERh3+BIdqXYF8d2Z7vv92VXEx56i4DPEF8oyz4T9qiHhE6mdWfpQYZbexbojz4/k7A0Es48Gze55FAkZH1HnfRALOpxid0GicTev850HpUnI3wIcSpQ1ax1RhPmCfnFCmsqUQQQgkpnWmY/jgDjJ6s3KM/zkz7YOEY5JMZ8FKssKbC5/i9c7rKNQBOSEiKFHExOhJpMEFS7/sMZrhBQGwU+6xVe6yVm4/YdYrCFt2h7fTn32o/n5UCCK4D3kN18shPxg+PkZOQHWuj4o+3xs+fBpd/EQg0pqvLl3i1fbCsUD1UpzwpcULvNo+uxG6iOBCwE2y6583biYxK8aQhkARAqkP2CAHfRMAVck8vTMJwM/C22nOmnUopYiUqtQaJ9v21SsM4BAelA4zJ8J0IzkM4r6bldyekBNHESvFe+mIP9zdqn3eVxuHAQqZVHmcrGxYiWMaNSKbP+iP2C4tQU6vx/MITiD1gTwEHhX1I1ID6/jRMD214mPXOn44GM99jvasw4uglcKKMPbhicpBEdi2nk37cUtPfjpYiODXloWbjUMVEQVcbgW+frnkUutsLMHVBc8XLlkWjwSoIw3XFzxfulwS18wzGBcfIiFBCdeWXox54odBlh2XbSpLjTGCMeGYUbZS0Gz6uYbCJxFCrSXnXHin2HrQfoKcALCFZvth61h1xDQ0uu6ALFAaoimkxtF/byzMvr/JQqB70xJ1Dn9HaUiWPQuvlugXgHd32wa/YZ7MIRLw+9s+JCRMhA9egNfAjMEtgtSJnArEfTAzpr1mLOiiknTSxZPkxH47ZhAwo+pnFuySQY89yZ47aE8d/ajvV1F4IKMyzC6AKUsJ0/wQ980DW7O/TaqhUU0NHvzjEhm5w5d5fz7jBdlyhI3nW1EsIlU1xzmeOc4rKF4y/Lt/9+/4u3/37zIcHpeM+aVf+iX+/b//97zyyivPqWfneBaQ0iKj2T4O0TCbXgooQuPxJiYvZmsohjCRjTLocpqsz0uEp9V9AbLeGRqUCUnxcst2qKiFxG3w44nM0/5EaVI5IapK94k6E4PsWbqWD5HxA2plxIuvzMttvwp+vuRpOFn6gCy9eyClFMXLtNuv02zdeI69EpxPqVvLG1zOaHCHheU3n5nJc/U0Kea/d0IInlbr0kfep5PHBSjskBAsEjxh4tMik80aCKGSeeo2Vieky2xYX7I5vs9OukFmh9zvvcug2EGUIlIRF9rX+fKVX+f1lS/U7uluvsXa+CHDsg9AO2pzpX2Dy+3rtd8vrTSvdl5jp9zh/eH7hFCRHYIgSrBYvPcYDKDI/HzvIU9go9iZuc+O3aUIBQ39fLOqei7lg2yLtbKHiNDQMa82V/lU8xJJjfsK8G66NVO2bKMcsWtTVuP58kXnqEiKT3WWeL29SBk8RiniD+GSOnKW++mI94Z99sqSgPC6BL7UavP5VpuL8fOJCL3aSLiRRHwvzRh7TzYJsisAEQzVgk6opILWSkcZhESf/k4/KF2l/CBCEYSTszxVNUsSAgta8X5e8tXO9KqM64nh/VyxYz13p/hRdCeVue+Mh3xtaaWWL8iVpMEtNeZ+njNwliBVJvxiFLMaxzS15o3W/HckiPDeeIwNgptGUEyuhw0n68Hm43ZWzCQghs6zVVquzDEu91IFRXrW4yfkdjwhkfa/tg2tyAU2S8fl5HwZfxIdA19ZEL7YhTKAv1wQ/xxTlZVWYKUVcL66P7GpnsGzIOxPBOq45k6QaDlzRcGLiEbTMxxFOKdRiso3goNyLRqxZ3HRsrObsFBD4mk0jBj2Eoq8ujhJI7CwVLKw9OFIu3Evxs+QWvJOMerFLF2avY7TBjorJaOd6h1vdByuOP6+R61wYN6tY6G5WMcgW+i23YFNnzKzKy+eJSRQVU7MgN8xmIsedYahSvY08ihCtgykiqVYcEuB8hWHveThOREz9gI0Y+ZXFiiIRqBqmEwrL6g5j8E8qSgASRTaV74WHG3z6K8GKhLBgMzpm3g5y3BVwc2WN9uHuhDj7g5gp4STIYUEaGlQhvCoRF2MUXXL3p4SpPDIbo4M7SRbQxGt9nCrC9TS9DvHz40XZIg7Rx386Ec/4nd+53cYDAa0222++tWv8qlPfQqlFN///vf57d/+7efdxXN81HA1JmBBphIUJs2Jh+PKD2JOMEp5Dz6gfMC35pvH+mazVgaMOkPJ/NOCatXQn1YKGrOzmlUUgz1jObH3ED07uZmPAqpzvfKhUPuzwlMqKbSBxnKV3dhYmdqWXf9j8CX1SB6FQiE2fenJiX7vhwwHPz7m8+Bsj0H/hwwHbz23frUbN/FnqFDx3mJtSpE9G5NnpSJCKKk7XRHxOPtsK26SqEOkG4zzXQo7wsuTpG4QRxkKXLCstK/SmCKBto/S57y7/T02Rg8Zl31+tPGnbIwfkLmU3KbYYNlKH/GHd/4//Hj9T2v188HwNu/tvX1ATgCkLuXO4Ba3em+fSXP9ZucmX1j6ApGOCAREHRKICoVSCi+ezKfY4OhEs8dghcbPCQu2dJPH5XrtPn4UWC/7/En/Fo+LvYPrVQTLrXSDP+nfogjzzWv7Lmfg5j+jD4v+3H3OcRxaKZom+lDkxF5Z8L29bb67t81mkWMn3gxbzvInowF/OOhxt4Zp80eBWCmWjCH3gexAMu5wlAlUxGGkoK01vRB4PMXoeT9APw6hkoniya+xUMVgigA2BB4WdmYAXivFry40GXp5ItlVKcVyHJNMompBhHfG9Xy5xt5jRSiCP1AjDQI9a3mYZ7zRarNagzR6lOfsWje1smQ/X2ffIyNI4Fqj3ly1DIGdGqbka/nsfWKtGDqPk8OvnVDdryJUhtmxUrw2ISUeludVFLNgFLQMPxc5cRSRqWSfzkpOADSigD7jHLb0ipe5UKbVqkYCraDR8MclkKiWXFrB8rIljgRbarJ89s3a2Wywvd48ICcAykKzs9lke33+OvU0pIP540edfQC6l0o6qyWKiXn1ij1YFkctodGtxhfTEJZu2DMRDcqAjl8ccgIgDPX86gaB0KvfaXloCLdi5H4E6WROaRXxtqH1bkzrVox6Djl/vg3S1IQ6y3mhqmDwM5L12orQUPOvn66ULcKcIL0ZBlyzau9UcuJI33AcfvSmnI/kUm+ZfhShIkrm7rZrq0qLkuO5cUL1b0VAxh5JAwyfbfmMpI5wf4gM7OH5e8HsjkjubsL5d/eZ4Dz14iXCP/tn/wznHL/zO7/Dv/yX/5JutwvAD3/4Q377t3+b733ve/zhH/4hv/mbv/l8O3qOjwzBekJ/WAW9URjlKrcwrQlJhGhNaMRTiQLl/SRrRdWbZSshxAaZk/UFgDHYpUXiXh9Vlpi8QIqsmtU3G1UmvNaweDa5BfEehgOkLEBpVKeDap/R8HJhGXbWp5tkA3SWKgJiVl+ChzMHPgSWn2eG/FNA+zJETTCNyosiOA5nFXqS0hNBslhJ2sTdqU1J2ZsQFPUgIqg5wc2DfYPDp48QOwAUNrpI1Lj03MmNPHtIkT+auj1L75Ekl2g0rzzDXlXQJkLrpHYJtYijSDdqSwwVxYC93bcoij2MabC0/Fm63Vdq3xPrxkSmSX23NmF778d4/9uYOX4yJ1HaEcN0DR9KItNkoX2dOJovxaSURqEp3RgfZlScCVibE5smes44cr/3LuVEBu2D3R9TuqNVCELpMlpxl6Dg+4//O68vf4HF5urU9gZlj0czzOZ382020sdc7dQfq1biVRaiBfplvyqkoiIpFBqjokpyJpTEKsLM8dy4FE8nNfexGq9ShOdnLm6D5wfD+1OJnLEv+Mn4EV9beH1mO2V4coETROi5jDRYFNA1DXI/P+g5CyNfcjsfYMWT6IirjQVaz8jc/mVDEOGdYY/NIiP31WAoCJn3OOfQgBch0ZrLUUzbPNssuqH3vJMVGCofiqNJh5p9ORshmYwrblIZcRpKEcZBKIWJRNvp++3/67rzbDiPFWjMGLabWvF6M+J2YclCRYLESqGixhOJmOk8T7AJ3h4NEeC1VpvMe0a+qvxoaM1iFLFRFrzRnl9BcT8r5hKwR7euxjHX6sx7qSpWoLrmfespJWBQLESGljkSSJ2TWrpbeFpGM/aeSCtMlQiLmiSyGiVcTiKuNqp5ankuPfHSIIkVkQn4MxllKwqniF9SH4o4FtptT5oaRDRxFLBovFWIAmOgkXharcOxoLo+p78n6Shi2H9yjRaCosg1o0FEkWsuXClotuoHNV2pKDJTVVEoiJPwhOfErAqLk1i4XNJeteT9CO80S9dzrO0QvKoqSNqBpP1y3tMnUDNWKzWvn/Q1YdvAtqky8QvAawxCiAUtGtMXkocRxaeebaA4tBUEj67zaCnQtiIhprbX0ZSrmuSxQnRAlVTEy5FqgtAAv2wQowhzlsHKCXHfIw2F2MqM+gnskxL72Q0LTF2LKSdnl9bSYOYQFKFvCfdyKOVQegqO5z1aIA3Q8IiTMxdyfFiICGFtXBEtIlUJXuERFzD0kTiiUZQUn7v54SopQiDa2MHsjXAPEtTqIurVy+hnPJ98GXBOULxE+OM//mOuXbvGv/pX/4rGkcyer371q/zzf/7P+Zt/82/yx3/8x+cExccQYh3+Bz9F7j0Ga2GcQQgkIRDiiNBK0IXFtxKKy8vIlIFTIoPEESGOMD4gWqGmLHIUEOKYUHORBlCurtC6/wAzrrwcZF/aaJxCt4N+8zWUOUMmxaCPbG0eqxmU/h7SaKKuXZ9LKBycizZw9VVk7d7p9YdJE3Vpvm+L0gaSFpT19PoPf/Hlzv5X6Tpc+EUY3AXZz7fcP6fJDMM0UMlCRWTMgMRLsw23j8GDbqA786XrfLaO3f0RyGFQb+TvYKIundWvYWqSHB8F0vTe3H2y9O7zIShUTBxdoLDb1DWiHg3vY+YEOkUC62t/xs7WD5EjOvt7O2/Tal/l1df+Bkljce7R4qhDo7HKKJ1O8JxEUfTIi1067XqGykE8W7tvM8qOZ+fvDW6z1H2Vi8ufm/n7IkJhBzifMyvlSBC8lKR2dvZw7lIGxV51Li5lUDzp6SIILlgikxAI/GTzz/jLr/5fpra5MZ5//TbSR7UJipEd8a3NP2JkR4TJfzDRbJ1IbcUqphW3aEYtMp/RmuG7cbN5mcvJKpvl6f41q9EKy9HSc5V3eljszfWcWC/75MHSnCEO3TghAzV0BfeLHv7It2nHpjgJfL5zmcU5Y+pJBBF+PNrgYTHkqGjWvXSX680lPtN5/qTti4atIqfwnoGtvk25dwycRQRak8SGUelRwM0k4Zc7Z/e1+Hlwtyi5mxc8LEsKnlRtKAEfBGU9F7QmUorGlCSURCnuFSXLRjHys5MkLbDtAmtFSVzjkVk0mkRrkiPTvNME3jo1yONdaxn5w/etZQytEwv5kffsWcvKnCqKgZv4behKBuNoXOQojKoqGX59eal2xnuiFTulY+tEFcWudbSN5kazgVHMNMneKR0lwqc6DTKfMfZM/EFgP/FcK8X1xLAwmd9Pu7/nePEQG2G5FdgY1l//JEZoxC93IPvK5ZyfvbfAcBhRlBprFcFX10Abodlw7O41aLc83a4jiqbPQU8jJ/LUMB4djiXbG02s1TSansvXc4yZff3SQcRwt8FRvrRMDToSusvlQT6aOSNJZCKhc+FwPMjzs3mOvTSoGUVUNZ9j2daQKaQAxofvikJhSlUZPEcQ2oIqQJ7xdFBZTveKOIlJ7H1e//LXDJ33LDoHfUpxps5A7Xry6xGhMXvsEFV5WUikEK0QM5F5Oq08EqqshuXp7YU0nF3iKYZjH//T2l2zSM8fEhRH+3U0tBAEyQVVZ+LxtDC04ARxAekViAuQOvBCNMkUCMMEJWCvreIv1J8H6t6Q5k/voCbzhDCM4fEO6mf34Zc+g746PcHsk4gXqFDsHPOwtrbGr/zKrxwjJ/bxG7/xGwA8fvz4WXfrHB8xRAT/w3eQjR1IYnATM7EQwDt0XqDzAt+ICVGEKS1+ilawb7coLq5AFCFxVNWKnrYIUwrfbCJJjC7ddE+L4x2l9XgNt7CA63Sqj4ufTDYbDYgjOEPGl4zHyOY6EgLiPeL8YTeKHHn0EDmDQ5pqL6Be+TQsrhzWyEYJ6sJV1I03UXWzrS+9WfuYB3AvgMPXzwEp9tBlD+IOmGZVMbE/i1AadAImAd1AhRKZIXMSrXwBpG7mSyUVY5Y+M3OvUOxid75/jJzYh3cjRjvfmdmnjxrO9ubuY2vsMw0hlDg3wto+zo3OZMAteBZaZ/EuEsp0hziZTS5sbX6P7a3vE4IlBEcI1fsbgmM8fsT9e/8JP9coHaKogTqLeC3VMdJss9a+IsLa9vfpj6rMeB8czpeIVDP7/ugeu/33Z7ZhXcrDnR8yzydDK4Ug7Axnm4yn5aEM2LDoESaBa0EIE4N1kerv+9gZr81sc2QHM7cDZC7FnZLdfxKFL/jR3o9YzzZIQ4ZGH1RIVBbg4UDmKdEJnajNcA4pc6VxkVeb13i9eZ2uaVfSbiIkKuZacoUbjWtopbmRXJvbv2nIQ8nQZ9ga53gaem4+MS0i9Fw6c5/FqMnShHTIvOVuvoeXyow5D5ZiEhBv6ZjvDO6fWnExC2+Pt3hYnH69H+d9PkifjTzbPNjgSZ3FzqpsfEYYupIyBLxAGTwDa6t3DOGoSsPAe/58NMQ/Y+Psd7Oct/PiCa+Io/BAGgKDEFg1mhvJ6UH7SCk8lSTUvPMIQB6EbRdqJVN+sR2TqOo9sFL5PZyEVopf6Mwnpwfu8JvtQqAMATv586jcVN/N/rYHEWKtaBqNQZFMCJyTaTwauJwkvN5q8ka7fkBxs7RkU57h1Ace5dV37lpjOokymMwRFyPDLy21udKIiCZzc01F/LyaRCxGh9/Cm43zHMOXBUutwBuX64/jWsGnLtvaJtwvKsZpRBwFFhdLnNN4r0GBMYEoCpRldYJpZihLTbM5fU2X58cvRpFX5ESYGCmLgJtk6he5YeNRa+bSNR8b9tabxM3j764IuEIx2EkOfr+99PzWDy8y9ELgiYH0JBTopZpr9VRXxMR4SngyQLxbyUrp9OcIYTpQObUrQPaRrFO/mFtDmJNDGfcE11GnVztAde0KaD4MyKzyRYCIipyIFJLo6fdFA43qTz0rYdQx/96e1uXlOQTF45KZmRH72QOT8kHpPLtQteQOCYLsFdXxxw7soXk3AjotUWlOtNVH92smq2Y5zbc+OCAnjh3Tedz33iPUbesTgvPZzUuEoihYXT2dYVteXj7Y5xwfL0h/iGxVWaWSZjBKqyqKA51aQaclPikIcVR5S4hMzdrPX79Oc32beLeHMholAVAH8WZRipDEhFYDMWZilh2qetwZiEYjzGBIsrNHNBpNPCw8ksSQxCitkb0eaqFeJnvY3YbxGMmyQ2kmraHVglYHZUsYjWBx/kJ3Hyppoi6/Apdf+fCmy62ls//OHG+LFx1iM0K2CS6tCAnTBPblwnT14zJk/AhZehM1K+2iHFI/LSNA1IIZmdcAbvg+s2aNwWcU6UOa3TdqHvdpo47B89mfReuGjEa3GI7eIS+2CCEniro0G9dZWPgcC53PVPJN846rBKUiROpVtriQEyRMnbs6l7G7/WPKoo9zGSIO53JEAkbHGJNQFj26C69x9dqvzj3eYDS/AuUoQijmGniLBHrDu+wOPmBr722cL3A+RytDPDF7b8aLtFuX6I3us7zwOnqKAXJv/JDcjo4RBqcfU1Bo0nKO/vqRcUmpqsLDhrIiefYtw5VGEGLTqCSm5o5l9Z6vOns9zh5T+pJeuTd5suWARGHy9u/3swwl3Wi65Ns+jNJ8vvMGPxFH0zRYL7fplUNKsayVGwz9kK8vfI1k7vP8JLZsn1vZI3YmJI1GcS1Z5XPtV+iYs1Qn1L2G8/f7Qvsy3xk8YMuOseJZL0cMXH5QidI1DRajBm0Tczff47PtesbveXDcz2d7VzzO+7zWWv1QPg1PA0NXci/ts1NkBwlzq0mL1ztLLLwAfk0jZ8mCw03MkstQ6cc3dSXRUYTAo7Lk1ZoeBU8Db6UFeZhlq36IIHA9jolnjAmrxnA72LntVfWSggN2rOfqHFNmTZXl/2fD4uCLLKqgbaIDWawvdRfpRPOXn4qKfNgtLX3nGHuHE6GlDYtRxFIccSlO5r5t+844b7SabJcWoxU+VE+engQeFJWJ92utFheSeGa1w1GICHfTgotxzNgVp17P1Acipbg0hTA6iabRfGWxzf2sRERoHml0/1wvRYZL8fkS/mWBUvDFmyXvrkXspfPv22Iz8Muvv9zreRHY3U3wQVUSSSJVmjeT2bCA9wrvNcaEg7y7aa/eyVn0oBdRZBHeT95wJUSxsK/EWxaaLDW0O6fPy4a7FQHRaHnKzOAd2ELjrD7oZ/CKxYuW7vI5QXEalIbossOtTX+mz2yQnc4Z0QOYD0lO6DEkmwoz2E+wA78olFeEMGeZrqxghlUVRR2ECPQsaSsnJDueqO9RRysHjmISrI8GQrzmsNdmXEilcIsGXQpm4DjVXAoOSy41SCao7hSJp0PtyPqYQ95IFqqgfzFn5iFUXhpLETp6lrn0CrKKlJDMVtUT+1uMrdRJtEanJWGxQ7Q9oFyaH9NKHmygZiWqhkC49RD9tdnV+p8knFdQnOMcLzjk8Sb4gAxHsLED1j350fGBeDDG5CViNNFoupGjW+zS+9qXKC+tIlojSh8hJ3RFTrRbhCTGd6o/o9HsjFCAZGOT1uM14n6/IiegEs+1Jez0CNu7SJYjxfwgqFiLbG4g49Fx34gQqsqKfq+a647mZwVPw4eWuOh9iCqlxWcv3fNU4TMYr00WGFJVQEigEmp0leyTBCj7yOghakogF8APblWkQ02EcoBk06+5BEvIt+a2Y7PZGeYfJZLkwvx9GhfP1GZpe+zs/im9wQ9IsweEUL3zzo0YjW/RH/yYnd1vTwymp8PohNLtEZn5Ot770CpiPLg7dft49JDh8C7OjhBx2HKMhBLE4X2GcxnBF2ys/QnDwWzyYTB8gHOj2n2DKqCfxNNLb0UC6zs/YnfwPmm+hXUZWbGLdSmFHZKXPSR48rJHb3AH51PSfHrW+c7wDoXt86Q97InjIogIjahJYadnyywky0cMpzXWF/jgOBqeFAnYUJDZESKBq93XZh57aYZx/T668QJmxru7j818g9xnOPEECQQJh8TJZJ8gARscRhmCCMvx8tx232jf4I3WDe5kj+jZ4UFjGkVbd9i22zwuzvYePyq2+c7gnQNyAiAgPCp3+JP+Wwz9aQI0p+NSUo9oWa0hJ3cp6fLL3RsMXc7tbJeeSyfkhCJRERGan443+cloncdF/e/cWjGaG3QOImyXZ3unnhb6NucHvQ22J+QEVNOZnTLjB70N9srnY0K9EjcmQWmhZ6tqiqNr7SBC6gOZD3SN4ZF9dsHDIgQ2rMWJzE3eFGDFaJI5UppvNhOshFrJoEGgpRQbcxx7bRD+dJizaAxvNqODDDgnwsBZUu/46sIyv7Faj2zrOcdaXrBnLT1rsUEQgdR7tsuSPWu5m2e05xBtSilW4ogrjQY3m1VQcp9EVEpNpJ80Da3oRhGvt1o0a2pC95wnD4Gm0bzSSohPkV3qRpqLSTxTMmr1BNnQNpqbzZj4RLR2wWhuJBFfW/hwhsDneH64suT5v/5yympn9nu02vH8rV8ZstKtXyH+IiLPDWlm6O0ljNOIKJYDCafgNaU1hKDwXrG46IjjwHgGedNsH1630TAiHcUH5ASAiCIE6O812F+Cjoenk4LeKYq0eseVFtpLJbYwuNIckBMA3hq0Fsa9euTiJxHmQiC65p4MZmswlz3RlTNUSHbC/CB3LOhMEc74fpghtD7Qh+QEgIDpK1rva/ScBPaoBzo9YkA9D2qKD8R+e4OAyoWoNz/xQJVC687sccO3NL6rca2JQfe0fgqVt8cOhMH0k1GXovrVIge/BGFv+v32WyX05+hK7sOBLDzbJBrVjmBskdRCceLkvaAKBz5UTGoIKOtRWQ0lgO3ZSUMAYWPvw3b7Y4nz9IuXDOvr63zrW9/6UNv3ZaDO8XJBrKskjvpDcHaq3JIKgskK4t6IfI6kkFtdZOd/+Qadt99n4Wd3UN5PDLYTJI4qr4rJwsi3Wyg/5ysVAo31TXSegw+T/aUKWhtTUaHjFGk2q4F93jkP+0iWVuSGn+ggRjFEURW4syVkKTTPqM3d3yGs3YPBbnUdl1bRV15FLa1W/hJ1UI6plxE/gTLoZv3g71ODBBivVf4R4pF4ARZerWSaztpUsUtVsmPAjSEctegE0IftikfSDVR7Cinjc4jaUDfoPH6IHz3ALH/h9O3BcfJeiAhi+xR5HwgofXaZoKeJVucNynK2rEqr/fqZ2uwPfkxebNPr/wQfMhBBK4PWbZTWeD9G6xbD0XssLX5pZlsKTaght7SPKO7g/fRA4mBwjzAx0XYu56TTWgglIcSE4Oj33qPVvkw0hbQq3Wgit3QGCCQznvNh+pg038L5kr3BXXqjuwjV9VPKYN2YEBzNxgpoGI7X8avT06Z2hh9M/CfmQ2lNErVxwTIt/zo2DVaal9gcP6Rf7KCVofAFR93ktNJo0bhgCeL50uXZlShX2jfYStdmjlpXOzdrnYMNDl+5yFFO7vP+EkuQSt5pMkaWoWSlsUJS05y570Z8tv0afTfCigPXYTFawCiDAD8Z/5TLySWiGu+zDY4fj29PPedSHD8Z3ebXl75Yq2/XkmV+qtcoJnJxXoQ9N2bkq8zpjk746sIrtSsTLiUdgki1rhdwk+dcacgCNHXEg6LH46K+Nq2dVPFk3rLrcnaCRyvFQtSkY5ID4uusskpjV/I4H5J7i1Gay40OF5L2mYh+EeFnw91j8jxHEUT42WiHX125/qESCJwE3hv2uJsO8CGwlDT4hYVVLtaoYFxNGnSiiBCE0odKcmu/XwgRipZW5BJoKn1gjPwsUIZKZqrOKKiAWGvsHOmmL7USyok6xzyVC0vln2DnnPJ7uWUw0cO6mUT4INwtHQFhMYr5bGeBryzWq0AdOMdWWZJozXpREBDKEHAT2SiFogiB680Gj4qcS3OqWV5tNdmzQ5rGVNUO3pH6SrZKA02tuZzElCFws1m/MsaF/UqxwMAFUu/ZLR1BoBsZbjZjrjSSubPFpdiwGGkG7vAudyPDm0ZD6cmDcCHW/K/L3WPG2+d49uhlmq1U44KiYYTLHU+3UW88uLHq+X/8lSE/vp/wF7cTBrlGgEjBlWXPX/lszqfOEtAFvIfeyDDOq+ei0wwsd/28ovePHN7DYBAjQFnCcFhVO4iA1kJkhMhAp2NpNqpzDn76uL+4bElHEd5DOoyRoPD+UDDAREIcCyFAOopZWLJT2zv572VmSJpVynk2jCqiQoGznmxkUDqh2XUkMySoPsnQqwFjHO6xIYw0yiv0qgcHIVPoVs3v5aqvIpOaatngFITq/wYNREJoCKEpyFk4I4HGbY3pQTRQKKeQWHCLgp/kMjUfaNLPzwjY5wEzP1fz+GHV9PM+IBGOZmo8sVP1h/agx3OePaOwS4b2u4EQCTPtVwSwIHcFpqhW6yVTffzPAg3MWArJg6K+rJYCtp5x5VInIuT7JlVSyTyFyitDYRGjwatqwNmvvvQ1CKYjXlqqtFXMzVmIDKqRVJp+ISAhoGpWb37ccU5QvGT4gz/4A/7gD/7g1G1KqanblVI49+F0l8/xfKHaTRiNoSg5JoZ8cj8f0IXFjPNaJABKUd64TJYVRIPTg8W+2yY0E8KcUvJoOELnObooj5tuSyXzhDGV70WaIkrPLckPG2swPtEn50BppF0FYCVLUZevzj9PQLwjfPBjZO0+UqSHE4HeFn7tHur6G5hXP4tq1QjeK1NFkOrq/C9cQjXry1A9FdgxauN/wJEsbcUm9D9Alj8LK5+t3ZT4AmXHSNSBdA3CaYHsAHYEugnJMjK6N5WgUM0VziRn5Avc3k9Jbv7107frpLonk/shvsCN7kIoJzIOAEPEF2SdN2gt1j/3p4VG4zKd7mcYj26dur278AskSf0gZFnuMhi8xV7/B/iQI+KOVEookmiZEOX0Bj9EpGRx4QsoNX21qnULX1PeCcBETZLG8qnbRARbDqp3VcJU7w8fSkzUBITx6BFLy58+db9243LlR1C7d/OHv/7oAcN0g+3eOxTlAO8LgjhEqjrrKGpMPB4cSY1s+H76ePK783opNKMO1hckc6qIXln6LA8H77M5eoANJVXu9OFKxksVsRQRbi5+Zm57nbjLG0uf5U7/vVN7ea1zk4utepVeTdMkVjGZzxAlxyooqt5V/2nRlL7kSlKv3aEbs2v7aKVZiasx06rj5+XE86hY47XmfN+UR+X2QdB/GnbckKFLWYjmk8hGab6++AZ/PrjNnh1zr9jBH3nYgvE8LnpcSfa4WaNiJQTP7XyXcbAUwR1cwdJ7MhS5jmibhIdFb25b+2iqiIf5gF1XrRL3vwBDV9DQETdbyxilaZr6q/tbox0enZCN2ixHdEzCV5auPmH6PQ27Nifzs+ehhffs2pwLydlkEbeLjP+8cZ+RPxxv1oqUd4d7/MLCKr924drMDHalFFebbfZsgZPK52AfASFWilg0C9rQ9572MwwSt4zGqHpkgge2naM9Z5E7DsK1WLM7L/lkgpH3tGeYMnsRHpRV7x4Ulncyh5sIeGkUI+f4waBHrDT/2+X5PjKP8ur57RiDE2EcPC6EY8RLGTwrUcR3+j1eaba4kEwnQS8lCctRfCCNmgZBlDqQEfDAeunoRBGdM0R2m0azU1oe5iWbRUl6ZP479J6B82yVjos15J2+vNDi+/2U7EgbSim6keGaVvzqYovmefDiucF5+Nl2zKA4fg/WR4aLbc+nLzjm+ZZvDgz3tyO2RxE3L0x0TACj4dKCo3FGQ9hRqnm4GR+z9xulms29iJuXLQvt5xdQL60mBNjbixkMk2O5dZW0U5V/NhzELHQdUSTE8fT+NluelYsFD+90KHJNWR6/D0oFnFOYqJJ3CgGiKe2ZKBzEGEWgyAzZICIdxsfIi+AiNm53aS1YGi3P5dfqV1x+UiAW7L2YMFb4XQO2mq+HocZ3AmY3oJcD0Q03TXn6AGpJUKu+MsneNcem1NpXxS0SCfbq2Ui8xj1F647CjI52QBH1FW5BsJerGbYeQZhSKJusSf3qCSA0wMzI+5JEIRMyZqrxtlQkRjCg5g0ugESgs0BUx87Ag/SEkAV068nvit+wZ1ceFmDKkklSj/Rs/aoMATJP6Dv00jMKV2cO1Y6QwlfeE0cSBhSCCr56tgt74GUqNYyCpBGjByk6y48vE61HshLVbaG6zXNy4gjOCYqXCK+++uqHl6U5x0sLff0Kzjoo5jPJyjqU9dNFPE/ALnQJjQS32EUXJXpCYoU4xnVaSBIjcYTvzg7e6KLAFMURckKqKKGEahD3lbG3UnpuqFEGfej1UVGE7JNqIhOjaQFnke5C9d1cqBf4D3d/hmw8PE5O7KPMkbW7hChCv/Z5VDR9ISnBw+orsPVBreOiNLRX0Z35waqnBvFPkBNIAJcBgtp9B4lasFDTGNkOkbgDxS74WUFsATdE+regM504iq78Bvbef6h3bAAcvphe+qi0wbRu4NPK5NgN7yBuDAjBh+q50xFRskI+uoU2TRqdV89wfHC2jysHleZ/vEiULJ/p9wE63c8SJxdJx7fJs4cANJo36HY/TZyc7fnoD99mMPpZFfyXMKlI8FSLXUNp9yqZGF8wHt8hzzdota5Pbc97x8kqh1nQOqG7+Pqp20IoieIWUdylzPeqUHXwFVkxER5WSqNF0W5XgSo7w0C53b5AnCxSFDu1+yfYmVUXg/Fjtno/nciUgXU5h+IpQigt3gSSuEvpxhiTYGZ4H7gJwTEPRjXwUqK1wcypADA6IrMjcpfiZ2S7t6IuNhTkLqUzx7j8cvs6nXiR9fFDesUOhc8xynCxdZWLrXpkL8C11jVGdkQe8gkxMw2Khm7w/ugWbyy+MXf+0j9RVSUipL6SPkpUg0RXY/PAz/HwmGAwx6z64Li+HkEBsBy1+frCG/ze9g8waJSCREesRh1WJm38cHSftk5YnVOt9r3xGlY8eaiyzKv/ySSsqyBYlIJsjkzbUYxCyZZNsVLp3nOEmCyC41He5832RS4m9Srp7qe9A3KiDB4b/ITgiBj7kp/0N/jayo1abY3d8fMog8dJwCh1jOQYufJMBEW/LPgPjz9g4Cyx1sRHPFkEeHu4SyeK+erydGmhsbPcGvXpRDENXRIO5JSq6okIaBvDMHiGwfNq8uz8JyKluJHEvJfXkMcEUi9TK233MfCBrq5DeVRt9nzg1Rkmz1kQygDb1h2QE27imeG1YFB4EX4w7PHF7iKvt2c/f8MJkTX2Dj2ZT+beE0TQSmGUwmhNzzsa3vCdfo+/fuEi0Yy572oS0zaaTAKJUjgqySitFLFWJEqxUzru5zmrNf0iUu/Zs5UU1cgLiiPayQrGzqOAB1nBF7ptmjOIrabRfH25w6Pcsl5YyiAkWvHFhuGVRnxgmn2O+Rg5yAMYBaNMMSwVC4lwoSF8WG7x7a2Y7bFBKWgYORZs3U4NsYE3Vqa/T71U83A3YnMYYU980n2ArWFEpCGOhMuL8+djRal4sBk/8aoHAWcVHzyM+fQrJd262etPG6JIM81wlEwdjpwzpLmn10+4fDmn1Zp93ksrlkd3wRhBqYD3Gq0EPUkXt2WVANdoebxTdBdPXzdrA62uIx1GBK8oRhHpMMJbdWjhqEAbIQhkw5hHt7pceiVjjr3ZRwIR8LnCpRCcwiQQL4W6S/2PtF/2XozkFTkhWXX99s2l1FAfDIg+MkRziAWlQF1xyJaBdqhMs8sJkRQLIQrgFW6h/nrFDKF1W58gJ/ZPoKqoQEN5VTCZInRPf1h1AWJmkAknEA0hzCgcdouK0FBHFcVOh1D17/L8QHjyuMSU+3PIGrDAEDhluiU7ZyOBAIjATCETQhZgfIY2BcgDMnBQg6AQkWrQF4FEoz6Ed4UUHtWNK5Psk8oMeuLVGgQ9ylEh4DstZMa8aB92dYnWxu6RHDOp4ltCxU6PMvTr9ddgnwScExQvEe7evfu8u3CO5wDVaTE3LWd/32q1VQ2kc5Bs7xHvDtBFWVVQKEVoJriFDnIkg6y4coF5aQ86r8iJYDQmLw7L2Sqx34owEZBWc+5XU/Z2q30ajcoMvCgqSacQDiY95BmyuARzsjEBJE+R3XUo85Pfm0OUGTLsVdJPqzOyfZWC9nJ1PnUkMkRBdwUpUlTjGck8jdcOyQkJkG6g8t2DYCxKQ9lDPvd/B11jEa4MZJtVhcS81AdvYfyQUI6mGhxF3ZuQrMIZAs7Y3szN0eJn8Pkmrv8OfvwA8Snic0IQtI4wyTI2XkKZBvnog9oERZE9ZtT7MenofbyvgqfGdGh13qC7/Is02zVJHkAkUBZb2HIXPbnuttwmTWMWok4NM+tDDIZvsf8wV3JER+V/IKCh3KaRrAJClj+cSlA4n1Ha+R4eR9FsX5lqQq3QaGXodl9lM13DliO835cEm7yASmN0g0H/Nlp/lmbr8szjdVs3zkZQiKc3uEOrdbqvR390DySQFwOyYucJ7wjB4/yQ3iinlVyg3bw4M7jufEmd5YCXEuctsW7ODdZndsSjwW1ylxJOBBEVGo1BK40TS+5SRuVgLkEBVSXFQrLIZvqY9fQRhcu43X+XVtTmRvc1PrX0eS7MuR9XW1d5f/A+1tuDaonT4LB48eQhZ7fc5UJjtheLPvJMbZc9tspdsiMmgwumw9XkKrqmfZquGUkwZ0wTWy/7XIq7XIpPT7UTEW7nWzMJCi+Bh3mPMjjK4PES8BVNUfUdxf4SqfT1FnUP8wH/ZecOWXD0JhUUog1d0yCZEAC5t1xudGtdmyDCw6xP5i3bRUp2pBoq0YbVuPqm7ZQpF5L537f9Zz7zlu0yO1ZNkWjDhaTFQpQwv8aywshZ3h3u8e3dNe6nw8k6XtE0hqW4QcdEB8d8Z7jLlxYvTA1gP8pSRCDznm4UVxX3+32bVFNYgaSKZXA5frZm3jeSuNZTL4ALnp6rKsKmjTND79HM97TYRyGB5ox55SSXkHuFYxwCRTgcVX1wRErR1AYvwtujAa+22jMrWvafgcd5zkZZkoXq3ag4bkGJUISAiJCoStJqrSx4pTmD2BLhQV5gRfAINlSVaFqBE0WpqgqN98Zjvro43cPoKH48GPMwK9mxHn/EI8SgiHVFNLZE03OeR3nJm53ZsqSRVrzWTnitffh8XbLnsjJ1sV3Ce6lix8JaDvdzTfawSzcW2pFwoRH45UuWzy+52kRF4eCdrYS3jpABRsNSI7DcDAfLo42R4ZUlx7S42EbfkJWKaVYuPsC41GwODJcW/Nxs852BORb4F4FhpkkzfVBRkRaG166WXFl1RM9Y8kkpYTR6kkA5iTyLCL6SeZp3zrbU5JmmyA0SNM4qQqi+4EpXAfsiEkwU6Cw6GjMkmRYvFuSpoRhrRv0Yd6QyZr/PHoU2ldxfPjb0thJWrtRPGPh5IQLFrmG8bsjWYlxeXSAdQbzg6b5iWXj1+aljyEgRMkXY0/htg5QgTlWZ/xEQC5JrdKvE7xrMJc+MYu6qzULDQENfQ1F9iCOADBgawp4grYT+hRxqLGHjTY2aU/iiczBDNVOSSaKKoKgFNZFwymc8/ErhFjS6jrqugtCcFzwRGru+CqDX+WTsF3BNOSdlVP1qh33M7KNU9/AsyKSWW3LYLZG9Etz+GhNUJ0JdbqDi+kSFUhPCyAtEuvJRPUi8PX5uapzjPlVTxaPZIMQRurCoopwkEh/Z3ogJrWc7p3zRcV5Lco5zvOCQvIC9ehmjohSSxPg5i6DG4y2SzV2Uc/hOC7fUBa3QWUGyU5lcSxKT37yCW5xvDKokVIOvdU/qqwjVv3kPcQwzyvBln4xIGpOPp698N3w4qm5Stecccv8u0pueXQ8g/R0oi8NqjFN3AkkHyGi2kZFSugrCz0152P8FAVfA+AzB+J8Tarxe/UUEBvdQ2fYhOQEgATV6jHrwf0z8G+YgWUL23oUjJrPT4aEcovyc+tKaev0HmNNPFbXQyRIh30D8GPFVtUi1sZLj8mWfYnQbV+7iapxLPr5Hf+fPGPV/ckBOAHg/Zjx4m/7Ot0lH9SppRIR+7/uk4/cROZrRFSjyR+ztzDez3odzowPTaC8lIWQ8OYsMOD+iLPfQuoF105/rrFjH+rMJq8qMagFtYqJ4AWsHaBURguMYObEPpUnHj9je/iFqzlQkt/MNxo4jsLXz46lbrUvJih5Z+SQ5cayVYEmLbYpyyCwCIjLNmdsPIfjgyd1oKsGzj1s7P2QrfUg4pX9CwOMIIRDEo0RRuDo13fBwdJe3d37IveH7FO5wtZC5lNv9d3l75/tsptNN6aEKuu2Wu0QmYp7N7siP2Mq32aphZH8xruSH1ottHhUblHI8+3Hox9zO7tDR9bLrL9cw5jZoLsZLtdrbx1o5/3lcL/tTvRYA1oshj4oBVoQgcoycgEpWKDDxkvAZAzd7ZXc/7/Ot3n3GwdI1CStRE4PGBs+eTSmCI1Kaq83F2pW4fZvTdzkPs8ExcgKq6of1YkjPZmwX9Z69C0mL1FseZsMnpJ7K4FnLR/RryjuNXMl3dzf4cX+brSOG2wEh9Y69MmdwpGJj6Cxb5fRruFXkaKUqaTKlaJuY6MQ7aqWqOrjxDKsn9iFA3eXrSIQN6+nNILYE2HahPjUnis2Tad9H0J7IUG1YTxqeHFWdCGPvMMCOLRm42RXBF5OYh1nGozynmBiWH30/hKr2IxNhqyxInWOznP0NfZDn7FlH4QNFCJVMHlX8wYbK22LkPbfGGeMakrj3s5w/743oO7efWMk+i+KlIkCMUpQiPMpLNstnrKf9CcNmCX8xUOxauJMp3ks1Qw9lUOwVmrFVbOWaP15L+O7WcVmkaSg9vLWR8LB/nAzwAXYnXhT7CAJ72enf9dJBWmiycvYblxYK6xTjYv6bORwfD6jvDQ2jVB87r7xQ9EeGu2sJc6wJnzqUDhSFmUtQeK9ptQJSY121vZEw6CVYq7FOHazFRCrj7eArA+x0GLG8MjvyGyXC0qWCwW4DX55+38RDsLrK4PeKwdazNafPNiJGDw2juwkuUwfjS7Bge4bh7YTeredn4O0HpiIn9gxSKsSqg4FaHEihCAW4tQgpIYxmz3tlpJCfJjBSkJ8SIBfQVtG8lbD4x835HgkezKiSh5oFbRUmA784/WHNX1FIo97yX3RFaERzporRrpspA3UAB/GuR80wgtKZgBNUIfUNqzTIlHMOl/X0pM6pbSpk6sCqzlKoX8FB6M5+ZsJ6jmwVh+QEVDGdkSPcT5GzEPydCGUnpidGVyV4RxMzlEIiA4mpvFrb9eaCJsux1y+Cdyh7wjczMtBIkB/fJtQw3P6k4LyC4hzneMFh375VVRLUgBiDW2gdGFyfBp3mxL0qQKu8x6R5VQFRWrT1hEij85L0U6/gO/UCQRLHiFIo7yYzxVBVc8CkZrMa4FVZzA6O7JuEttqErU3I88p7Yp/0UGoiX6UgCDLoE7Y30QsLKDNlODtZ6RAclMXhv5sI4ka1uqjj3ZG0qe0/IQF27iFv/vqZpRw/NPaDx0UPVQ4rU+tsd2Ju7cDEkCzB8AH0P4CVz81pUMHofv3j+7Rqfwrs7tuQn42wUWp2aCaUPUK+AaZNKEdIyKp7qTQhNBBvCcGStK5RZmtzCY8QLOPhO+Tj+xT5Gt4Nq6xNnRAnK5hogSJ7TBQt0GzdQJvZi5aiWKcsNqZu935EOr5Nd+HzM9sBKikhpVGqgTsISh9l7/afNEVRbrNifnlCEpwOEY+q1Fepmy6Tjh7O3K5NTJZuMh7tcuoKQjzejUidRZsG/f4HrF788tSxoSxnk5CnIUzxvqiOD4Ud1DPfFqE/eoBMeedFAkvta/TThxMpptkzeglCVvaxviA2p09uXSh5d+t7OP+kAfzRkwh4lDK0kwVCjXMpfM6j4V22s3Vyl5H7DJGAUpqmaZGYBjv5FvcGH3CheRkzxVtgI99gZIdENaaQQQJ3Rrf56upX5+6b6Jgls8B/T/+CoU0Z+hGlD8QqomM6XIhXWY2X2bTbvN56bW57l5NlFkyLoZ8emH6leYm4podCEOF2usHvb32fe/kuebCgFG2dcDVZ5LXWRV5rrNIxEw8TAnpKetq9Yo+xLydekEeyw4+hshy3wfPOeJNvLJ1+zk4Cb4+3q6CoeEa+pPCeUjyFeCJlyLzlzfYF2lEDX9N03ktgoxhNrZAB2CpS3mzX+x62TUzqLKm35N5NTI8ryahYGxra0DYRSQ0PgPdHfTbLSsoqiOBDwE/6qVAEESJdSVE1Jqblbsb33U98VNomYtvn5N5jgyAiaISW1rS1ZjWOWI3qL528CI+t5WFZUoRAS2teSRKuxvHMCoKTiERqJx8WAvfK8th6/SRipdj1YWJlPxv7s8m+81xPpp/75ciw5zyjILgqVjL5onhiFInRFdkgckAOTMOCibiTZziZXuVRVYsEnNJslyWvziBkBs6xax1BAmPvnxC2UoD11X0ee8/dLOeLC9OTc0SEv+iND54Tt18tTJWXUt3aQ5mx1HuGNUgPJ8J6brmdljzMSvrOsyhwvRHz2VbCZ1oJnXOT7CcgAm+PKgHZtQJujWHXVoofLq8CbY+N5nLLc7kZuD2IuNH13OzMHgsf9CPGVtErNL288jUIk/urFQwKTawtK61Dsus0hElUM4iisIpeqhlkmvKI30Gk4NKi4+KCn+w/+x0JRyKlhVXkp5Af+69ZaRXb/Yirq88u2z5LTS3SASVEUSCE2fuKwOZaq8pPswpvj7wHSiaXq6p4MImw9rDDm5+fndw32ktwxWzh4X1yQul6S8SnBZcqyr4m34rxFkKuCE4h+8+MAjPUuFTRuuJozAiun0Qowe4ZwoRg0+1AvOI5QyF31c5IIbmuiJwCKCdB6P37bgTxoDsQBmbu2ktux7CnYBaR4UHningtonknJv/s9Ln+gRyTgHIKnVe/r/a7GFX+DtIQQhNkxvnbGxq77NEjUHNeI0mogv8zpjLKCc2HvpavhXZVP5MNT3Hz9G+wCoLJqU8qKKADekq8yLQNrp4K5CGiao1zml/Gh1UonNY/AMk80j+8/yKC9Cyya6EMVahoPUf/4hKmO5/IU7GBhqk6G6tqULah+plol4kyhEbCmbQCS4vZ7qNcAOdRR72/GjEkriLzbj1Ef2WKa/knDOcExTnO8QJDihJ553bt/W2nSbm6OHPgTCbkhClKor0BynuicXYws9YFqLBH685D3OoS+bVLc78sIYkxaQYi6KOLxH0xyqBBC5KXUz9eQFVhgULyDMbjipg5OiOsZoqVgKiESv4pz2EwgJUpJsPNTkVqKAVFCmXJsS94KKsqjVanqtyYB11nSX8E+aheIPQpQeJuVTWRb0O6DvluVbGw3wefgx2hdALBIotvgJmhr7/7NrgzVDx4j+rcnLrZ3v339So3jmDexMaP7uNGd3F7P0H8aPKcVIEQQkFQMZFYSqWJfDb37hXZI/L0IaP+T45XC4QC70ZE8QKN1g2cG5JnD2l3Tzd43keezid4svQBne5n52bWR6aN0U0klEf6djK3dP9vnsLusTCD+IhMh7k118egkODIRmu0uqebnZZFn73dnzF/ZlswGj4kW1qnyHdptp6UACrKAc6e3ZhQzZjeOCkn7+T891gIeCnpDe/TbT9ZzquUZrF9lW7zIv05lQfVsQt8COyN17g8xcdjJ91gY/zgCWmn0/rWMA2Wmhdp1vBQ2EzXGNkB29k67sQ7aH1JpGNAKHzGdr7JlfbpsmBr6WOCBAZufiVSIJD6lMfpY/7Shb80c9+NYoefjj9gt+yzVe5OgvaKTCCTnFEYsxgtsGV3SH1G28wn0L++8Dm+PXiHNDyZmXQ5XuYX2vOJDgAbPP/f7R/yu1vfY9sOqVwjqqBI4S2DLGPbjniY7PLFznXebF0mmvFebZUjtuyIUipS67QncbIcYuQL3k23+driK5hTxofHxRAvgYHP2SjHeBFGvkQQHFDgEAK30x0uJl3e7JwufXYSlVn0bPJBkCeqK6ZhqxgzdCWZd4xcSXGkbaMUi1GDsbO8P9zj84vT5cBS79gtcwa2xIXK0Noe+8YKXqoqi5Y2NBJDpBQLM/yl2lHEoKz6lDpHcWTeUYpgQxXVeDVpslKToChC4NujEYMjc6KB92xYy2oU8Y1ul7jmqn0sp9VSnQ4HPCwcrRmSTCPvCVOeu5OIFTSNYm+O1NhP0pJxEPIwiVEd2VYgeO95XGRcT5q0pyWUTLBRFgQfZhIUUJ2rl0AeAtmMZ/VRXjCakBSnjar7BGEeAttFyUae8wvdzlTSfNc6HuYFw/0+Hk/ePEgTsBLooDFKkc+JbqY+8IN+yv2s5EFuGU4qVjYFHpaOO3nJrSzh1xdb3Kihe/1JwpaFLFRVFD8ZatZLyPw+QVbdDedgLTX0Co0TxxuLZiZB4QPc60WsDQ1pqcitIneHwezECImBu70IFzyXOoFWfPoblUw8EnbHmrVedGolhRNY60eMCs0rF0oW53zeklgoJu2kUyo3jnK9vaHhysp8o+KnhaKcXz0BVaH85laD1dXZFVB5akjHEWUe4Zw63rYolKqSCEQgSQKjfkyR66kyT2WuGfdiijSaOxUMQaFMoDHHI+NpouwbfAnFrsYXVRXHyY+AzxVFMKx9q80rf308ayl3ANvTFGvHx1+fG9yeIbnmiJfqr1dlUukTUgWZfjLHySkYqyrQHXsw0y+0jBThVgS9GuuRAKanSB4Y8s9MN3OWGMxAYYYKXYKyh6SFosrn0waCUvjWnPNWitEvQrwHqj+7Zlo58C3wSzMqr/cC5kix/0wIRANBmkJxTarM/hMIkULnYRJUr9FoE/RlXUk5ndrBah9Gp28+FUrQUzTuwoeUKvSlx0xZzx0jJ7wg91JkdPwLL49z/MAhX1kiujF/zaCvdpBHY6T0FclR7q8VdSUdhWB6Y0K7UXmjztHOM7sDot6IaLuHHmdP3u/CViV23Rbh8TbyhddQ8Xl4/jwN4xzneJFRlDAa146Hm6LELczO5taFRTlPtDdAZzmNR5tEW7tEO3uY/hBVlJiswGQ5UW9IstObf2DnMXkOISBqEsDfnz0Kk78rGI0RO30SqkyEJA1kcwOo2O9qFnCkdp5Je85VbXk3u83FVWh1q985SU6IHP4UGbXcz4ozBktdWQmGPissVP4KavwYir3KHDu4yY+fEBUK8m3U6CFq6wez2+vd4mxClB5Z/uzUrVJscbaUDJAZFRkAdngHu/d2Vfc8ISeO32eLc1lFyARHMYcwKPNNxhNyQvZNqH1O8AUiDmf7lPkmIZR4N3/25k6R3xEJODvAlns4N0akZJZ00j60Tljofp7S7VVGuqdCoZRBKUWRb9BuTffcaDWuTLwq6kIIwU31hBAJ3L39H6l/jx1bmz/ATpEosuVwpgzTNOwbcJ8GLWZqRcTpEMb59tSt11a+RGTqecwEcYyLHsUMA+fd8TrDGjJCoDAqphm1uXAKeXISuUvZHK9R+gIXLNaX2GCxocQFh/Ulw7JP6UvyGf3bKXYY+9nm3cePm+PmBLFTn/Pdwdtsl3uMfUaik0kwXg7ykBsq4V7+gLVinfE8GbkJ2qbJ/7z8Fb7S+RQX40WWTIdrySrfWPg831j8/KkB/9Pw/dE9fn/7h+y5MY7D4O7+jyOw61J23Zifpeu0Zvj7iAgPiwFO9vPLZ2PkLFvlmMyffg1HvqTncvquJEbTdzmpLxk7S+EdIQipt5TBMXR5bU8LAVpmXiBU0akTFQHeGmxjJdDUh4Gr/YCSnoxmSineHm5RzPCXSp2deHZAzxY0jDkYC4VDQTkbKlkhgCvNNsvJ9LnRtWabXVsydm5ikF2ZPAepzHANlYnynrO8PqOdo/jeeHyMnIAqQ77nPR8UBX8+rCfdCTD29ciEfeQT8/Fp2DetriVMJ3A1jmZ8b+BH44IfpRaj1BPkxD48UIbAui3mHrdvHUVNj4w8VFUR3Rmkx9Ba/kd/MPer5AErwrtpjp0RXd0uLTulJVGKSD/pmhKkIu+CQKwVLa3pzKgMEhF+NMhYLxzrhaNfekoRyons1Hrp+CAreS8t+N4op/+s9Xo+Yoxd4MfDwJ/2HP9hw/IHO54fDf3cSpt9jBz0HTzKFQMPuT8kyfZ/AmC9ogiKe8OIh+PZgaVhqXg8NASpTLGPkhMApVfYAF40g0KTO8Vi4/T+ag25VeyNzKmVDseOm2u+9bP23OD+yhGjYOtPb7NzJDgfquTdZ4bdvQRVIz1cKcE5zc7O7O9IWWiycVQVR5+yff96aQ1RHPBeYe3077srNdnY4Gbsc9g4EGD1+tmTZT4sfKnIdsxUcmK/X8Ep3Niw/YP53yWfKoq1CPHghgq7p3FjhUwSxIvHET6vz2CpWPAFSDpDDkiAVBH6qvKlmNa3PQW36xOvJtXogZ5ZzRDtqsoLwk5+9icHofpRk+WwbwdUgGhv9jFVpBl/AdzynM4F0CXkN6e/xDqT6SVXp6B1x6G8oKdMpRUQElX5J9SBAS5N36ycgoUzhomT6c9OLV+M0/rRmzFoFUfGt0dZZagd5MmQRRmQnw6OERpTj7eSoC63qgs6tlD46jiFhXzyA6jCEj+erQahxxnR5i4hNujRKeTEPkQgLQhb/eo45zivoDjHOV5kiFJV2k9NRPnEr2FWm1oR7fVp3X1UeUYcRWkxpUWUwiUG/6lXiXcHlBeWp6exh0A8GEII6P1jnxyERSpD6zRDrKsMsKchhIkhthwhN0605SYZE1E0kZCa/hFVxqBuvoms3T3exv6MDCrZI1vi1+6irr46W4Zq5870badBfC3T8qeGZBHp3kDle5VZti+OB+zVpJrEpVD0Iduq9ptm6FrsVvvXLhtVqMEdWP3iqZsPPQnOgtkLST/8oPKdUBomoilPQCxBHEm8iE0fwcpXp7ZXpPcJPse7tKpUOKKArbw+MBcPwaJmzbgnUNocO+Wy2KIoto4FybVusLD0y7Ra0wPr+1js/gJKVCX3dOq1FEQsIVSVRu3W9IoWpTSd5k36w3cQ6vlgeJeh1OkLiRAs6fgMkmBAWe4SpgRfq3Hn7DPbZmO6PIeZG3Q9CkGriHiGjNeV5V+YSMbVqcgQCpfiZ5BR9/rvQK2qK6EVd+gkS1Ploo5iaPts5eukbowPHjfxeDAqwugITZVZ6sWjZ2T/922f3GU1868rnPSTOIm72eNKUqjcqQJ7k/+qfCWw4un5PqtqhfvFQ6Ia790+ImV4rXmZ15qzzb+nIfUlf97/gO1yRDZD9Njh2SoHrEYdejNkpQpxDH3Bgmlg52RVV1uFjXI4lUwxSrNdpuTBsm7H7NnsiKNFFVZu6IhxVPJG+yKb5ZA35MJciSGjFJeTLg+y3gmHjENcTNo1SIyqmmFoSzJv2SjSSdWDRybfYI/G2oBWmpW4yeN8xBud5annq5Wi8A4vQqw0kVJk/nhNgCgh945Eab6xMpvAu9xosV1mbBVZZb48+XclFdW6ZCIiVcn/LNeQoOo5x/aRuVsAHpZlZV49+bcHRYEHvt7t0p4hY8Dkd+uikpaWmebvXaNPXcefBg1cicxpSZsH+M6oYOwD6QwiZT/GNnSWu+mIzy9MTzyItSKtGU0VKuJjaUaFzHtpynCaO/EJlCLcy7KZJMpm6QBFQ1eyVUbxhKRWAJKJOfjlRszqjKzI7dKT+sB2adkoHOlEOir1gSDVPdhTsOM8m9ZxIzH8pYV6pPiLDBsCf7Ar/HTkuZ3BrquekVh5liK4nAT+z6uaX1ue/c5FCrZLReoVua/e2dOewwC4oMiB9fHsd25nrA+WCIVXJEYoThAB1is6cSWVFpuKbD1tWM2tYlQocltvKn13K+LetuH1S9PfgeUFz2CsSXON1k8u/ZJIaJ+oHpgzzDxVDAYJRstcWSQRBUoYpxF5rmlOqXgoco13k4z9KXJQIgqlKuNyxXH5+JPQWrC5OWhzLhQ02s+uGl5psIMZ5MQ+fDX9zLcj7EgRd6c/YeW2odzSuF50TKlYxRCvOqLlgN01mOv1xkqVUFVJ+DlrRK+QUhPcjMzo753d2ykaKGTGM51sKUxPMCONKnlSTilUz4gpFb4lxFsatzL9HoumqnpIKsmlad4WSqoKimis8NOKQSM1lWw4DXoMOpWp5ysa/IKGtZoNOlDdWS8I0D5j7CIoxAoqfvL3/CzNyRmYdX/R1XMXdgrYOaq4IRBUVWky6YrkAf8oJVqanfAoQQj9HLaPV13vn5FyHoYZBsHsLuKurCBTKhrN7gCcJ348PcHtAN5DmiN5ierWk1f/OOO8guIc53iRoXUle1Qzi0h5T+ve5sx9XBLTvXX/SXLiaDsitNe2ibd7KOfQ+XTjHpPnxLt7h9JO0/o6qXrg4Zyv52gA3S6gpgTpJhMh78GWBKVR3YWZTepmBxZXodmuVg/BV/1RGuKk+vcoQfW3jxMZp2Hcm739FEhxRlPonxc6oapi8dXPATmhDs8/OHCjisDIZjwzUYMzfSqUIfTend615oyUjWlNzpidS/CIH1e1uspMqm4mPiUnj62baNOqAqAzTGfLYhvnhlVVw4l8UCFAKHFuTJmvkzTnZ643m4ekQ5Gvk+frT2Twax0z7P+Aopj9/gKk2X20XmT2qkUq343mRfwcU3KFrkiUmrBliolOD9gP+rc5O6EgZOPTPTrK8iz1xYdYWjpddssHi1aT96MmlDLcuPwrU7e7YMlrmchXKH2O9dPH1L18k9kF5EfacsXMzOZ9jO2IR6N7IOCDOyAnALw4XLAIgdLnDMs9Vme8pwrFVrE11yB7H0UoWJpjRL1Z7hAkUPgSKw4b3BOfEieekRvRd33iMxAUPy827YB72TZD5hvYlQT2bMZ60a88Kk5rrxzT0THjUM4dWQWhxOMJU4mAi1GLPZfzfrbHwBUniCOpSLHgSG1B2yQUwTFy889lNWnTjmJeaS3TPlElESvDlcYCq0mLi8kUcvsIdssML56+LShDoAzugJyAiZdACIxcydiV7MwwtF6KE9pHrkURHEZXHgdHkwuUUhil+MWli1xszF7wPc7GfDAc4iZVBUffqEAlzSQidLVha47BM8DGEd+wAHyQ5+wdISegGoFuFwV/MhzOlP8JIozqZkVO+r5qzMwKgBVjKM6QaNn3Yar/xMgHHpeODevnUtwCjL3n2/3dmftdazQOqmTqwEngcjI9A/txXlJ3FuaBjaKc6RnhQqBlNFrBYhTRNIZIHX9uNHAxifh0p8krzYQrjen92y4duQ/HyImRCwcJtoEqMdQFeFR6/l+b9b83LypEhP99K/CTUeC9DLbd4YzGSuUhsVUKv7vl+dPe7IDpclxJPPUdlHOeaz8h5sZek81odmQNjahqrPSK2EAzkmNB7yDQiYXrix6jILWnf4sHqWZnaMjqZOsDNmi+e3t2wFYrePWKZXXRHyMitKoqJy4s+WNkSacVziSb/vPAOYX3ino1WhX5YK1mZ3f6O1JkEd4rwpRqEeDYtK7Z9jTbM26wFmyhkTneF/sIXmPzZxc20w2Pz3UtY2Fx4HLFeGNGlVaA7E6M3Y2esFEUC+VWhN3T+DlG1sf62A6VJ8a8qeD+cnRW2+tnn9OpQk/NX1MFNO4oku1qBzVtXNj3tNhS6KyqtJgG1wWTgkonq+Ipj47XIE2IZ8Sl3WJNKaYJVADdd8iUKgVJNHbB1F06QICwPf3GqVjB6IxruVKm/o6MP1z51swi565B9krYr5w4dsDJBxMOmErZtTNNs8UL7i824d78Cm0zzIlvr1WVEac2JujBiHhjBz2aXpF+DMMUaiZSfNxxXkFxjnO8wFAIdFrQqykFIBANZw+EnVt3UXUkHoLQeLSOW15AzShDVEVJ3O9XE9FZRIoAkSGsb6I+8wZ6WhaiBJQxSBQ/Kcl00ND+wTVKBNWawzaLVEKTzXYlAxQms6VKtBRsdRyRBBnsIhevoabJOKT1ZRkOMNoCZvsUSJnie/cJu7cJ6TbYjGa0TOheIyzcJCy/QejerM5jDtTgdkVSuIJjUjsHl04DE2PwcjgzW1srQ4jak2tUA8KTxuRH+9acXyHwRB/i6dnw4MG0OdADC6GabT/x3ER4lxM1LqCUmike4d0A9gOkMqkFPgJBQTBIKOd6RgA0W6+Sju/ifUpZVDPWMPGzCKEEFLr9Kt6NGQ3eoXFpdqb3aHwb53tzjwsB71JK2yOKTg8iigil2z1LvB4oCVPu8dRKiDmYHuz+cFk3fhoBIEJhz/YOa51gZsjYbPbfoagpOVR1wc2syKj8VuutMvrFFhuje3z+0mx/hwfD20QqxiiDF39MckkpjYhglKEVtSh8SWuGp0VTNxnZ+sRRIMw9n32TYqU0ZSixweElECYhDq00hoig96sr6j0XD/JN/tveD/hReoe+HRPriDcaV/iflr7IV7pvsljDuyOIsH6GZ2bT9smCrTxwprSnlMaGUFUxzPlsBhEiDCJyanVfJ0oYuIKxKyfX8VDWZB8aYegL1vI+r3cu1Kp+iZTmenORB1mPm61FbAjY4NFK0ZzI6azELRbj+ZmPToRdW9DUETuS4UWq+zu5RkopPIGluEEpgaGb/r3RSnGj1eVng10eZiMGtjxoJ9KKSGka2rCYJFxutOnVIGO+u7tF6h2KitQIVEbOh/l4wuOy5HOtdq2g+dHRbK0seb8oGHhPECFRimVjWI0iRIQ8BN7Pc77UPv1ZDEBaM0kFqq/7YhTNfEceWVuzXg5yYOwD16dUAHiBLRsoavRRgNz7Sk7LOzpTZJkuJ43a8j6K6vm6MIOgGJ9x0V+IsJGXrE5pUyvF9WbMeyN/UHETUAfvVaSgZQy/utSlG0c0tebKDN8IQRg6TzmZa6c+HKnbPHKeCBGKdet5a5TzpW49ubGnjR0buJt79iZZsRdizetNzcoU/fHTcCsTbmfCo1xYKw6l2fYJQgPsUCXB/rc94ZcXhNaUMp5EwbKBn/mqkmDakxOOtB+r/a/L6XuLwFIjcC+LGBYKFyqfg0gfkhSxhtdXLI3o8HdOPa7A9vAsXl9wfycBZq/ntK6Ih9VFR38YIygajUC7GZ6o5Liw9Oz0nSoj8UpmaT4UeWEoinDM+Psk7IT8CRO/iWnX2pYa7xUXr2YzK0bKzKB0/XE1OFW/2gKwuSbdiylHEaVNiJuB5pIn6dQ7ZtwVpO7xvEKc4LPp+7uBxg3MweMeHIRCIVYfvBhuoJFQ0v50PcVjveQJlloEBYFDg+9Tz2H+8U5iloKYSiHeVZW0U8Hpr/l+7p6FaAhudcp+E4RuldGvi9n91cLEIGlGW4mqZZC9DyVM9++cwC+Y+ffiKObx3L0zrr+KSRXZKZs06kPUwjP7uVAgTirSwQeOTNgOtjPxDyNRT06MTyBspXB/WHvZaXbHYKd0UAQ9ytBZUV/Kywf8Vh99bboH2ycF5xUU5zjHCwxJEtQZa3IljjDjKbliIrTvr9duKxpnmCwnzMj8MkWBGY1R86SoRGBfK3prhm5fu1NlVioOM/5PgzaVxFOzhcypIZZsBPkYyhxKe1hBESa1sd5W3hJFXn2/BjOy+4oPQVCkvZmbw3gb++DPcQ/+HL93l9B/QBhvogf3MJs/wqx/F7P+PaLH3676Ogu+gN33YHCf6T4AodrP56hsE5LF6e1FHWjM2H4S4iGaThiFcnbm5GkwK6fLRQEonWAaK/z/2fvvaFu2u74T/cw5K620144npxt1g/KVMCAJicZqwJHGwgHL3ZjHwMbgtt2vAYPdw294tAP4/dF2G3jWs4d5DdgDMMgB2sYBECBQulfSvbrSzfHkfc5OK1aa8/1Ra+2z99k156oqZA1Z2l/G1j2sqvVbs6pmzfAL36/wugXNkykLagFkZMktkslVhPCRFgex0Rl5PsEIOQt0lFMoYVKkbDMdv764/SpieeWdZOkQgyFL90jiW+T5FGM0nr+E1gmj0YtMxi+TOO5Rku4QJzdIUjf3ZQHNYPQiSWJP44nT22T5GG0WO/EOYrD9Qunnfp2+chDWjWmzZcpg+Gq5NekznpZXa9gghWBn72Xr8au3n8RU1GOAoiIjTu0BjZbXxveq8fpP8zGv7dorlgCSPGY33sITHomJZ06gO/fVGL1POdXyu5xon2Jrumm1l+mMrIJeykE8t+du47LXw2AYZoXIc2ruKD1oDJnJSU1KbGJaokViFrtXf2/vC/yfV/8Nv7H7Wa7FW4x1zG424jOjl/iZm7/Oh299lMvx4tLrvtdip0ZAJiFnOx0RWXQo+l7EXjYl0Rkjvfg6DIbYpFbqQWEgzjNSM3eUHh0BNTDRGS+ON8l0fqQiwoZ72yucCosKRV9K2p6/H5xY8iIe6VWjzUp0wSffUR7ZLNBxMIBjjCFFM8kztNFMHRoUAOdaXW4lUwZpSm7u6IGk2hDrHCUEa0ELKQSZNuw5AuxxnvPCeMBc7yo3et8msO/CHBnNU+MRWxUqKPqzBIxbWcbvDofcTlNSXdidaM21NOWlON4XyX49SQ5VlBzEWGviGlzVCphoTcuxdnx8OKkc+s0pnMS2ZM+ehN1MV04GTWdu/KtTe5XM7l3VJi5kFMGAndT+XIaLeGbuggE+urNrPd7zFMuehy9gkGmmd9GLaQqdj8txSiAkb+t3nJogXU8xzDRSQJIbUlOempOZolpECcFHditmZX6R8ew442N7GdcTU1Bza7gaa353N+OlSfV58OO7mtemhtfioo8dpIfPKZ7rJIfdFK4nhmccGbihhL5n2MtYXOdmCk2JQBX/tSFQmp3pLPt6RjWoTVFNEWcCT8JaOyeYxR2kgMgikp3mBc1THSS54NVNd1Dj6qbH6zd84kSyvqJRCiax5NaOxyS+83un11O6i0SAv4jwPYNxcrMcRpZJplOJr+xtzDIx2xIaZy5cliqGex79FffcmowVnq8rk+MLaUim1YJM4x2frVfaTHb9opIkh2Qk2bvqM1zwTOfQqVhIj3UQeSqcDuzk1oHgRCzIhwozr9CYBxBiQfxqwN5nwyNVFqVtzATsVafIkp7jgiz6LU44lgnhdYGYgho5qiegEM1OQaQCORUYB2OlUcW5csHyV2hQu5D37D/sb+boasuwO79fIRJU+S7OePCMpTozu5bUlYuExCAiS39Yb5YTb6aOioe9rNg6TvWd4MN8Ipn/W1NMUmNdVJ949v6aXx4e0rVYBAF4V+x7CDmJYZoUtFBVICXmin3v9dWE4wDFMY7xZQwBM9HpGt/Jc4QlW8x1rAxSa4xSGM++oPL2BogsR1ZZSWlTBBWmDlHrEzPKHD0jh5TycJBCCFAKwhDRXUJK4dTpMOMh7G0h2j1I40ILI88Kiqg8K/Qssox9XYrBDlg2ukbrShUMR+DIBjVZTH7z85i9q+TJGD24ipnuYSY7MN1BjG8iR9eRe68h4h3Urc+5f2t4BXH7qZmj3gVd1AWPb4GrQqH/QKFVUQOmY9c8qF5/egdy5c3O497yo0VgZJGzz+RM955HZxOEhWNf6xjPX0HrRWJ4hnh6mSytdm/8YIVe/4143hJptkOa7JCmO5i5aPkM0+l1plM7DVqeTxiPr1B15ZhlO+wOnnbam8Q3qUvLlFqCKDUSfe+2WPppUQlRcxUP5LmtLxiyBZRXdyNJx4xje9BoFN+qTHcEoHWOcowj5/sP1rqR1/deY+ygworzIvA6zAbkuuDLRhiMMRitEULgCR9fBWxEJ+n4SySOe5TqjKSCY/3wd9xO3YutM1ye3kAhiXW8r0Fx8P8EAiMKqqdFv//a9Ab/fusTbMa7jPKYiY4ZZGP20iGjfMKNZJtPDJ7l43vPMHToRQC0ZEBW8/0IhGfVeOh7EVvpiEEeV9pMagoHvw1jnZELg0A4s+YNhu10wlSn+BXnMSEE60EbXyhuxWNuTkcYA5fay7x9+UxlO21ZaDhMdFZUyuy3qYAUAoUk0TnbSUx3QYDu1zdfZ6IzQiXxhUQJgRLM/isY5ilxVmTo+1Iy1fbxcqpzkjzHE4LccBep3+G97ijNeGo84vaCIMUp38cDPj0a7VMtZcYw0pqh1kyNIdaal+LCnZrOBJHLMM41JZTOVmhgT2s8S//LjOGWLevPguenKSNbHxRFCKfOGzLMMiaONeMr45GT9urQzwNJnrPnWAeGdRN9gF1HMsipMOBqnOxTO2EKQez5HRKm+J9xmrGkJO0FuiWnQ3///uXcCbjdXQ1loMgvwbC3QG+uDINc89Ik5cVJWrsPANxMNC9M7L/7hXHOloNCYw5jDM+PdaE5YQ77lOZ/8yCFBoZ5QfdkgxDw4ngxvdP8XAmc62inrso4lSQ5tDxDP8oxBiYxjGIYpzBKoBfcqVTY6OTYCkgaydAZ2Bra+83WnmLnwHElDJ1II6UhSQW3dxWhn/PA+ZiV3pcuOAHFPfZ9XehLVMR4omi17X0ymN3rKkujeKJ48Rk39W+eF9odi7SY9s/Xdu2Lg0inkp3LEfFIEQ8VWXy4U0x3FNO9xeNRvCOhTlArF0iHk19PBSLQ6KwQy2aefzX/m714Oof4isd4gWC1yWH6RAhJtbFVhBrhKrY8W7/6ej4elkFOBd7QXaG6f64GkYBuWdL/Zwgvg6rCrmdmQQxHxYiamqISowY8R4UMgL+tK1W+AJCDmRjb1gv2SqLkiyBBtMsb4K3X38cBzkHdbCWIUQbRjOqr7NSc4oA2YIy7CmWvokjQAciR5SHmxUslxzX2m0JgGszrX4k4png6xjG+nKEk1BncADWYFM73Ehgpca7I7z5fCLKOu4RcjUZFBLvKqjHNikxj377olr0l8uVVuLVJQdmTzyaMg+0uqHxMNGubg1jV7M6i291+IR51ZNNpilrXXIDyikoLizNDSAnSW+wIvxsufunBVUw6Jd+9DKNbkE0KGipjkEXKCSYeIOI9TLSORJKvPTLThijBjU9CvEOlWTYZYLwQBq/CykPl5wQ96/0ohVBIx/kmq8+dnL7+K3gP/wXrcRmugepwSG+j9MdT8mxEMrlmpUsR0qcI3kjcTnvNdPQK48GzrGx8Q6XriKc32dn6GGm6u+/OydId4ulVgvAErdZZhAxIptdhySYynjJN6lQAaLZ3PsnFc99pOS6dFRs2CGGhvmiowuhbqnh8rz2jIKpnL7f2QUFeJTXsAIzJnVRe02Sv3qJ2wSZ7o3ueQLWZ5tUyZHMynrn1Sd5+5htLj3vSY5pNuDZ6jWG6S5xNZ3UJBWRuQAmSfEo4ozxSlux/gJ10u1ZABqCj3DoFnlC8NrnGjWSL3GI7JUXmhZC3XiAi/sTwRa5Mb3M732Wap+T7otsUwohIXppcJRQe97dO85bufVZbr05v4wuvUtXGHPdE69Zjg3wKCAZ5XPku7qYT65gVCFWIMho38VWRAWwYZQmZzvEWBBf20pjfvv0yr4/32MkmpDMH9SvjbW4nIzbjMQ/3Nuja5qID8JXiVNjhxeF2sU+clSXcCVQYvNk7lhlNy0L9w+waPrd7G4EglB65SYvgjC70NgyQG8Pl6ZDTraIi03O8v74oghyYwvHrwo7JeWo04o3tDmsOUWYpBJ4QpMagjWE3z49oQiRQUDu1WkRSWgMKvhQENTycOYVGwijXdErWRgrYqbkJ3s01r8cpq97R5yKFIKthzwCTPCd3vMPPjkaVGT8MRYDnRhxzwUL32XEk2djgOzLAtTG0hOAL05jdLD/U1mz2Z9Kc10n4ja1dHuq1CB1BCl8KLrQCPj+YMLZktM4/zQGtTa2gVawNnxkm3Lork7OrJG/tBPQrUjO9PF38VF6ZalZ9t70bCQwyiHN3qoUGdrKCvmnicA7nBq5MZSUmDWMgUobzXfu1TFJBkgtCZbi867EXCwaxIJ+NWEJDnMHj1yQPxCmPnEi50HcEyHxTO0ghpaET2du4taf2r2dnqBhPBeOpJJs5RaWAy5sBBsmZ9ZR21Dh7pBFarblUefULHw0V/aXy++j5Bs/PMePF73KeC27diIinQ0KL6LZUhjzDrWlxEFqSTNz9WmeCG892GW8fnhsMimgpZy6dNN1RREvuMXPwUk0XnTSku/b2Sb8Qw9YTWe443x9gBNlAMr3u0bqUYlsKZrcV2eXqbZT93KoXAcByZVN34GHtXl6dvKu8oHlK11ylOYbwikbZ6KLuhoLglmFiTCkThDb1AxRqWDjZbcwSMtaIOlUPO0WwuIyC1dgc/i44loLaUQnhhCXgYbTBTHJMOrsfvoTE8hsJ0CvovvQ0R0Y2ivH6Y6R1WpISkWbVqyegCGpYtL6+2nBcQXGMY3w5I9ewV08kVk1TO9+3lEzXVirbyloRxndkUeQ5RspCcLtSgCKF0QTW3fx6cnUVllfuTMLzyxEwS3kpqh50Dq0OwuHMYFLcP5Hnbke7zmE8LKoqpMPecn0NBRyCuGayQ771ImZyuwh85OmsmmP2pzNEHiOSId71TxT//9RO7yP2XoHKGeIasf0sYmK3Z9KJs/1HMH8+tvYpl55EObJbjzuPm3gL/CUWT2kGnU9IptfQWfl7JWWAEJ6VbuOQNZ2wd/uTxJPFtGnj0Svc2vwvRdUEBcWYMYU7TZuMJL7BZHK5yMR0BXhMjl6Q8X3XN5iMr1iPypmDry66/YulnwsE1BYw9llZLQ/I9Pv3YGo4hufQlj6bpAMU7sywoxBEDho0KbzimVaGQUl7NpExOZMamgfGaF7fe956vOV1uDZ6lduTm7OKHTNTcSj6uCYny1N8GXBrco1Mp6w6HOzbyU7lts3xQO8B6zFtNL98/T+zkw6YLKAai4m5ld5mot0VHp8dvshuPmKSJ4eDE/PfRJOYjNeTTf7vrU86Ax43kl3W/MVC0HMo4LFe+fsBsJmMuZ2OSWoEyjJhrHRQORojqKTLIYRgN5uyl7nniHGW8OubL/L6ZJetdEySZ+Qzrv1JlvDM3iavjXf4zO51JhV0Z9aDFrHO0BikEEjkTAto1q5ZdUzH8/GkJHIET27FYwazCoa28lBC7gcnYK5ZUkRABnnKbpqw7NDJaHsep6M24wW0UlDscz8/GfPx4eJA+06es6oUw1lw4s61Fn1EC8FmlvHUZMLpILBSAHWEqJVNZiiSS25ZKgpsVGEupMBLU/tz1jVsGgqhbN8SNMqN4ep0UisEGhvDnqOq5Y3djtM3VoY39+z6NFtpxiDL2Ult4dTing1zzWvThN/aWjyeD7OMUa4XunMNRVLpA+1qGam5MXxsELOZ5hht0Ae8+MNc87FBzKhigOl2BR6vWxUqKG5nhqGuVvGQAWMNLccDfGkMg7wajb3AIASccWTr704l41QwSQVxDoNEHlJSmld5xJng5R2PUeLMk2K1own9mlV4nuG+E+VtTDNIZtn1W3tFcGI0kaSZmGmnFQnD23seg5HktesB06RJGUeBJpWx5khi2aIvwM6efW3WX03xPVOpMToXpLFib8f+jgRhzt7txcH1eeO0FmQOkXNjYPv1FtO7rqHYxgkmOx7zKSaLhUuqD4Bkt+Y6OsepQeGv5eiRKHQtFmQymESQ70jykSNIuy0xO9VH1fyKj3RU8ogVDRaKNKvNZW3tYmoqCvqmihCxIHMEKNS4EL2WVeUYDXg7M/2LEkhNrfYBiNQgJ+VtFKlBTnUtXQuGBbVVaftWZH3CAwd9EtvNxJ/lecs7GuvCRzS/HdmCvhNrzDQvqiRs6NTdG4JZsVRqKQlJzWs2Btb7tdvwlYjjMM0xjvFlDGNMoZlQ5ztKWqPrAOMHLtK5cnPhIs8Ayck1dOTeBBnfd4oiH8E0QTo0LWDm5IyiYoDPJcycakUKqC5W3tLAYIBYXXX/3uwy9dYmxI6MZKMhmWCkREQO0e2V03DrRfdv3g0HL7/JM8zwRtHOLIa7ud0NYDJEMsIoHzG86vwpkVQXeAIgHcLeq3DmXeXt0wm11MtUVAQ1bO3zo9pJGTgCMgUMenKVxbRWgMnJ4y1cNylsnQFTJciTk2cjdm79NifPf4f9J41m69ZvE0+vz0Sx8wPHABQ5eRG8ENL1+gIFDVUdZNqud1BQXdWnelBWnRHDiRN/gJs3PlrZVhD0rSLUhTOtfuaN75UHwgwGz49I8uq0ZUr6+A4x5TuEHFUhnaS4r+w8U0vjQZOjHQ6mnfg2k3TMJB2THarnnjt1iyqMcTokzmIEAt8RQBk0qIJydeqr8SavTK+ymw0rVWYM9dAZoIh1ym4+ItbJjCqk3KZGk+QZ15MtrsS3OB+V6ykY4EK4xuvJdqWn3BUR25l9rknylO20ugYAgK+ltYsNsqSyaLjWOaMK1FIvjba4Nh3w/PAWu9m09A5enu7xht46K17Eo/2TTnuekORGIxFESjHNMjLu6DtoY1CmeN89BCuBQ8foQOMzo4nzjORA9YjAoIxAzx3goqDIihyJDD3frzzKxBientgrWuYwwG5+WGsj5841S1MEU16cTrkvtDvKhBCVBaPnvzu963fvxlLNdG4DTsqlOu2DgpYstAQoDLBnqQK2Qec5A0em4tv7Pf7tzU1GFbU8FLDkO0S3s5yr06RU72UOAyTakGvNc6MJ71rtWameklzzwiieZbO6YQBfwKWKmZaPD2I+ujPhclJU1Qgh6CnB+dDjUqToKMkLk4y3dBes9U01fvMq52TaMM2rz+xGwFVHNCPTd2jIF0OQ5oKVwP3rWxNVBClmNFRH2gSkGoax4PM3A950KmOtbcnWl7DaydmdVHfoPnI6ZgEzGHEqiFPBeCoYTiRZXohISwFKGsLAsDeWhEHOrR2Pcyeq7ye1ht09xe6eQqVdhIBeO2NtOaEVLn5yV6/WE3DPtcBVGNnppQTRfAR1w5g7gRobJiOJzqrm6RbrUOnQLJnueaQH6JyyRJInEpMLtJZIVay3O+vVxra8pmYJRuCS/RCexlSgqCIHIwU6FUe2owehJ9Xok/YxlaRbgmDd4mDvaUxPw1b1dyRdc3SYmhUAaoKz/4nEIKfVgwpCg3RsI7UyTm2MUpuubUFuEJbqOysSewWFkAJ8Koj6HMDEWNdFuqYO1H47XO97JIpXM9cQL7j2nMUUTkFdzVcFoaOSdlKzRAYQJ6onEX8l47iC4hjH+DJGvlNfkDlXkrzl2OwqxeS0PTt2Dh14yCwjdwUTVCG6JRzihEeQJOSTBc7fMISt2/scfoeCKfPKAgyMhuSDBc6yqE2+ewtuvLK4bVoXYtmR3RlZqYb8EASce8R61CQDCm6J2B3oySeIZIjafhYT2iPsRvnUSnvQOdy2axSQ7FBvlRchHA70RjlcOsU4OOyT7acwFcSqC2RoUqRnz4iejC5TdeucpbuMBy9YM/YBkvgWOzuPk8SblAcDCrblPJ9isgmeZ3++Op+iawoUAwyG5aLWxatVfykgRfmiLAiXWd94I+3Ohcq2omiZeFpOMzUcX6NJr+l0yiudlAyQNSs80izGU+UOU61z0qxORQuHqG3uRq4zXt36AvUY3aEb2PvM9dEVro0u3xWcOIppPmUv2WGUDpw0WFkdyrcZXCLZTw9fYKKnqa3VAAABAABJREFUbKU7lWylJuPy9LL1+M10h65skZncGpyAWQasTvGE4rOjl63nrftd+l6LvlzscJHAuWiNV5Pb+5RId+PleHshRdURu1Jaha1fmm6jkKgK73FscraSCT0HLVNuNF8YbPK5vetsW4ITc1tfGGzyL698lskCTYadNGY1aNHzfTKtC5792bwuKOJXuTEM0piVIGLZt9/r9bBFJBWTPGM7iQ8FJ2AW68cwylMCBMt+yA1HcsI4y7gZV3+HU2CUZbwUu9cxpzyPy0lyaMSfv/eaO1oXSgi2HfoJE10osNTBeEH3Wi6halqEwEVzV9P3kGrNjbR8zvSEKOgta2BqjDOwfyIMebRTvYqiqyQ3EnvCwyDLGeSLw4IamGpDbgyvjO1rhOdGU0aZxszEmF1XrwRcCn1GFZZlnx0m/N9bY56bZgzyIvybG8NOpnlukvL4IGU71VxL8oVBJiEEy64M2RlWKpyzme5rtFaC1vCSJXMYCnaPCoUbhS0g8jS3Hdz5ShqmaVE5sRe7e01mBC9s+by+6z5vrVf9LQ49zXsetvcXT4GnDJOpZDyVDMaKJBPomeaDNpDmgiQVbO95JKlgbySpysSWa7hyLeDWlkeaFTaNgb2RxytX2+yN3ONHmsJ4UpdzXtDu2NcdUkI8rSG8nUJ3qfwd1hq2r7dqVYZoDZ2+fZ6b7BZrYulp0rEimyjMASolncNkVxEPJCowC+UMRV3vNTgTD9Nthdd1hVQPnlz8RzuqbvLd+uvy+DOONZRvwBVwuAvGA2Oh7wLIHcfKIAxErzkosqZAjaoHmVIEeyxVIWKuAVIHOVYfhBrliEndkgzIb1m+U7Gr3A2za0kI2qpfqQ9gLlvGwVAiIg9asiifWwQNTHN0ZH/GItHUKbDP13rkyxZfQpYjHHqrVtyunjz3lYzjAMUxjvFlDDGsxkF+EMHOEN2yLwxFnpOuLZNsrKD98kWmUQIdRchpgr/lDgCIOEbW4djTOcTuqLLRGiYzh0Fp1H02a0qJeeF5jCvbTinYvFK9ymN3Cxx0EEgBFoHl8vMl3pI9u1T47YLWSc/lAG3QiCxGxAOEi57DKVBdbtf5u9ObNe0J8O3idCZYUPFig0X0OJ/eJr72kVo16EYbq0h2nk/ZvfVbNRqWkEw3ySyUUQDTyetMJ5dxsy0bMDlpuk3UcjzDBhUFUgYkSXkVitYJojYlE1ZatSBYwveXWFl5gHZ7cV8UwsPz2zMx7KNI43oUd3NEYXkf1DrDszh6bTDESAsRb66T2qLbmZlaF/6ZThnns6BlDZzt32s99treSwwqiLmbGYnFldGrDJPy840xToFvG3Yz++9vpwNuxluVhagFMMztVUGxSTkTrM5IrNz3UaNRQjJyPMNL0TpKSNIKQYWeiuj7LRKdkVoCianWeDW1Wi5ES1Yxz3GeIg6pirgxyCYMU/v1Zkbzub0bTCoEorQx3ErG/Mr1Z5znxTpHCsmq3yY3htwUQYq55oMUEk8KmDloXffHk5IzrQ5Tnc9Et8shgBdGuxgMiSN7L9Y5t5NqguVzZMYwWJDl31GKVOt9TYKcw5qkOUWSZ2YMe4727eW6lgYFwFjn+I572G2w++s7HM91R4SUomrAhu6i1PG7EC/4Tigl51pRJbFsAfSU5xyNIiXJKlY7zPvVyNFfhplmou/oFLj69LnQZ6WCpsaVOOMLk4QrSc44L6onBlnxN8o1u1nO7Szn+UnKROuFDBkAFx3OnTku2fi9D8DDENfYNqTAOMNKvZkb9+rqIAwQKYgd2gO+LIIUe9Nq750GPvb6osrwQldiESTQiwyv3bavy4SAlaWc8bQIQiSpIMsEaSpIEkGaQpYXgYJpAjvD4rnlFfQWtIFnnw/5wnMhz70Q8OxzIS9fabG5FexTSF29Ge1rXZQhTevrhglh6HXsT/HVF9oMdquv3eKpR6tjcZbmgulAVdefAHSq6Cw5aO5mgRwhDWksSaeS6VAx2fOIh5J0IsgTwXRP4lWoQJE1HewAXst+0/W8uqOicLlZkI1fM8cCgGzbcbBtYKfGxCQhW7E3It2obmqO4FX7MaFndE1V+/V88LfcbyFkbf+/MPYAicxAjetHFIRtjDtIn1QVnsDElmcybRDtABiV2xNSIFf8guqpAvVgUaoL0qGPJHw3A8nhk8EoRb5ezpAh8hzRgBtPOKg0v5pwHKA4xjG+jGE6DqohC6QB/1U7J77xClUp7XnFv8WsRO7gnwaZpuRRSLS55RR5DrZ36uW6GYOO3QOwuXm9CCikjuhznkM8hSzF3N6020qmMK5RiZKl5Dft2bnkGftKZ1UgQ7Ibdn544XcL1uysQqRdF+KqcvcV+znBEtRywBpQjqyWiWtFWW5POPjaxbSOwPMMOrNe0+S1D4OJqUVTZLIZF/9R3L72H9AVxYnnSOLreBZKIYDR6GXybLHT2ZiENB8TWqhminPq0zFJERBYAkNCSGt1gB2C8dCua9HunCZNR8TxImouENJDIFGqPChYiJbXz9TKLBnJUnrkjmocGy7f+LjliCKro9Eyw9Xd58qtCUVqCca58PLW5+3Hdp9FV3w/bk83GSV73J6Uj6lCCOIG15s7AsTTfMpOurcwmHCgFax4y9ajofDxhVdRDN0wzRM6jjGw50X7oY5FPXEvnzJIJ/hC4VsCf8teSFAnyA0sOd7RngrI9eJgDMypheCJPfscN0xjbsbDSk8jp6CweWrvOlOHhkMgJbeTMU/u3GCss/3qgXm1Q6JzMq0JpaTrBVybuAOTl1pdplnqbGMG3IjHvDLcI3A4piWCsaOCoQyx1nQdNjNjeGY63Q9M2DABtrMMz7GR7SlJXFPUOjVwPbaPI1frJJXM4Kqg8OvHLLk8tc+zdSsoAF6eLK6CcdFUzWEo+mvbISqw5CuUFJVG1UGu2UmzUsHyOSIlSIwh1YvVjHaynPVALQy2vDLNeGGcsJlqxhomuvARTUxRYTPOYTPNeS3OuJnkTvrwOc6FinOh/XcvRZITFWgyhjWdm5rCT2WjVHuxRhGjAUa5IXAEC3xliDzDyKE5cDde2bHvC5IM0lwiqwThBShh2B4pRrH9oaz3c7SBwViQZIJ8xn5rKGiedC5Ic8lootgeFNUTykFRBDAYSH7zt7t87gstbm957O557A0VVzZbvHy1xQuvd7hxO0Qb2BnYr9fz6jvmPC8nCO3fu/Jqp1KAZQ5jBFdeLV9XSmWYLKgCKcPVl+x7G+kVN3+4GZCMFMnYI5sq8kSSx4J0KolHkmQkGd32Fjr48xrVIvtwPF8ZaLKBrLxV0pm4E9QogRk3aJ9DZNwYA6MaAaNQk6/ab6KqT0BBeEtZt2lyYhA1l+ZqClaDad26yKLqwrrOy3Q5F90CGEtQS3iiVjUBUCw8QstV1dQXmUPbhK8B2gpGNfZzmiL6bIMvq7NkGNDtsIgElx1WqgHjBuSDZkl5X2k4DlAc4xhfxlDLvUacON0Xr1mPpf0uMs3QgX+Hmsnc9SdAaF1EgOPEzqNnDMGNmg5nA8pRQaGzDHP9WpH6swhZBnu7mL3yKg+jNXr39sKKjbu+BLft9w8VVAsm7COHTTt9CO1lmO5SNStexDtIhyaD8TtQ04ltlh60H6zprGdyG63si3id1XduFpw45ZuJfPgSppZoNOTZ1Co0Pdx5kuq5eLPW6QRX8OH25q9TnTJqwN7OZ63HtUUo1wnh0evaRIo1pqbzCySxow9Op1sMh6+jKwQCjM7w/C5hVB5AUcq3VrvYIaw6HWk2IWtwD3eG5e/wNN2hfv4wjKY7pZ/nJkfVvl64sleui6ONZjcup88qPZ+M29NbbMW3rOeIihl4B7ES2iunWiJiO6++m1Qo3tgpF1UHOO2v8rt7n69UkZGQM8zHvLlzj/WcVOeM8gTJYuoZAzwzucaq18W3VJp8Te8CNzN7BUhpG5wCwBtkFekgBIAUXJnsWM+5EY9qCXhrDOM85VZivyatNZ/YusrUUlViKKilAumRmZxdR5VgonOeHmwTV0jhzIFP72zSlQ5nlLBnZtvtGs4E9krL16ZTfmtvrxJ988gYPj22z7MrnrdfaVIVBrhmWUPlxjCuPeZD35G1f8mrv50cOMXV62/stxx6bYnWPDseV6493E5THu7Y1zFnwoCshk7GC6MpJwO7t+ek7xPnulIiKMBz44TTjqiQMYZXpynPTjKMKei5D1bx5BSC76mGQW64kWSVfVtv6Xo8GBpGWc5mkhJrjdY55wPBI+1qc1coYFjzEY8ct3s7rRYsmuPK0GfTUR3RCQxJLmr1wjgTDC0v/DiRpJkhN4vvjwAQgkksGDkcxFoXGhRZXl6tYGA/aDGaKCZT4RTynkwFn/pMm909RZYJtL7DqKs1TBPF9q5ie+CzuR0wcTjQhaieiHzgW3QtFRRaw3jkVdNQOIDrlx17kQb+0u1r9jG/1U8Z3AyIBz46k0UFwsESKg0YQ54KRrcUgxvuAEkDJk1n1Yq/npPerj5Om5FCOAJNjRQFXJWAYwmOgNyR348M2Zr9rW+yThWuIIQAVdd3HBfaFhZz9ZEXYt2lMKDq5l4ZUBuWMakrYKWuDgrIJYu9sEEWA0Bgb4O+Ma03kRj3uGQCWatji2mCnFg6jKcwqsFTHtaryP9KxXGA4hhWPPvss/zDf/gP+eAHP8hDDz2ElBIhBP/qX/2r35fdf/Ev/gXvec976Pf7dLtd3vGOd/ATP/ETjQV0vpIhpIQGXMHGMTGnyz2QEGztFtRMJSsaoQ0iyVCDcXHcZk4IvGE9RwtAvutwRo2GMBhUp+yZTtBTh4N6XJ8uxbgqN0a3qTyDCVlcx8juIDR716z0RaXIExjZnYdEa1A3Q1w77t+uI7hSihQzcgR4HFRIdgiHGKmAmhQ72kF3ox3iu3bMS4+OIkl2mE4c9+Mu5FnMzvYnHT+lqLs1MMZYKy+M0egF2gRHoZ3isDtbXyCe7mIqaWUYPL9rtSeEwHMEvGywVUkIBIr6Y+o0Lh+zBPMgxRcPgVWA3AHHeDmq+c7F2ZQbI3uGvVO0zoI1B7XbCyNHXX0JQhGw5KCRe256mT2HSPXdmOqUc6Fdl0mI4pzYpJUcxQbDEwP7Nf37rWdqu19fTOxzyJIX0VNB5QoKYyBzUR5lSa0RRgOZzp294pPb19lNpk4nYg5cmQ7YjotKQRsynfPKeFD5HmZG85k9e0BVGz2jl6qOSEor5RbAp0YjriZJZVHhX9vZcZ5TgRnmEDRY21dQpNX3zu04qkzqrwLhmmPddmWBvkcZXE/wyjRmJ63u8Uu1ZsURUNhJs0qUSPv2gI/t2MfhG2mGFGLhe6eBcaaJjWErdbvkX44zJpnBxfqRAru5Ic+LSopFuDpN+bHXRvzt12N+4VbCv7qV8U+vxfzzGwn/6OqUH315xL/ejJ3jC8BuVcGIA7jtWKbM2DsqIwc+csVB5QrcHNYUTN3/n3Jsj6vRHuWmKBCfOPj/AYYTyc5A2RJ495HlRaBiPJVOp/zVaz47u4rxxN7OTCtubvlcvRmQuQSFBXiq/jp1MHTQWjUIKKQWoWkBmLy+C2wytDtZ/ShnOvBIxmJG91Ty21qQDCXTPUkylGQOh3wDqTkmV+z3Lx1IqBPg0e6toalIf3a4EQ57O7Iy/RSACQzCdf8aeDilQ5hcS4OsOWyp2EHX15TJxzKvGwGybu6VI2YgpIBezZuoZt+z2WsA4XDy65dqrjwMZLuOm7TjeGAlUMMpri8IR1WxFU0ip1+BOA5QHMOKn/qpn+Kv/tW/ys/93M/x7LPP1s4wK8P3f//382f/7J/lU5/6FO95z3t4//vfz3PPPccP/MAP8IEPfIC8RkbSVwXStKAUqonp2TXrMZHlyOEEtSCwIIzBG41B5+hWOf2F3NtrlgWwaXcW5LvbMKpRm5kkMC3fzAopYVJfxwOvnE7IaA0DR3Dg6BcKqioHNUJ++4V6ZJ55gpg4MqKzIbXojgAxumo/OLbThVmx+THrIdOAHgYExhLE8br3Uz/bMsFYVq+e369pC3SeWzP2t29/tGbQY8hkfJU4LqfYaUdnqXu9WTZgPCl3OA8nl1lMKnE3DN3+/eVHTM7W1jPkeVWnuMQY+0q9oH6qO8oYptPy9zQKl5sk55Kk5dfTidbJXLs4C3wLpZBA0FLt2vbWLdozUsja82pGwraDniur3V+g4xClf3pcXv1hQ2ISfEeQ6eN7zzA11Xdq19Itp/C3JxS3kyFpRReYxvD02E6B9l+2ywXrXdhy6Q4BJ/1O5acyyhK6ljmuym+VIckzNoLyZ5zqnN+5+SpVVB4M8Nm9m05ayVfGA3Ycotd3Y2o0TzsCFNNc06pD2wh0jMBzBCg+Nx6zV2PNfC3LeNVCURRrjamZjpwDFxwO9mmDTfBnx/Z36vUGDuctS4WHMYbNKhW0d2HJUcXx8mjMDQfl1d1IjeGm4/xnhxOSmrfw49t2Pbdr04SJy+N7ACPgVpLwOYfo9kQbXpuk7FZs4+Njzeu2TNAZXh6n/J3XpjwxzBjlhlFeMHrkFJRRNxPNtUTzn3cSfurq1BmkeLJBnkoKXJ2Wj9P9BdRFZfjCtmLouOTrNQMUALcm5R6/QGn2Jqry0uPWSDGIBT2HDsEXXvYYOihzDmI8lQwngqGFlkdreP2Kz7iSPcHuKODyVXuAx/NMbZHnLBPcuGHZa0oQdb3DQBCU9xchm2koaAfl1+h2QDxUlTzj8a5ivCOIB65z6/e/eMe+Lho/W1e0HBKHDgq7TSieHPPYoF72OgbC1+3tq1lsA4DI7Lk+yi3HWW5P2ymZRN0JhCJIl66Vf09OTf29jY/7nledQOZwBBNM3WDHDMJSkaHjHG7W9yeY5+2+L7Od1LqHIkmdAYUGjMyNaLq+EnEcoDiGFW984xv5wR/8QX7+53+eF154gfe+972/L3u/9Eu/xE/+5E9y6tQpnnzySX7lV36FD3/4wzz//PM8/PDDfPjDH+Yf/+N//EVq/VcGTJo1qqPUfbuDq/PCa8jRuFI2isw1Ks6sEXtVgfO3FK7Mr888Xt+eS1AxbeAQt9FBmBziuhF7DRZB4cLklDoPWZjUGkABYKduxQMwdtB0NYlA7b5iD2h69Z2vCGOtCpHLb6pvD8CUO+EiB9WLHWOMpX1pukNdyqjh6EW0LQPcEeyyY0puobTSekwTj32nW+4Q1zpnNHytsh1jchIL3dHsBPIGAQBtcTgLIYiz+jsNz7NpFAia3L+VzunSz3OTkzfYOa+07BUAWc3+BzgvqdPgHZ46ApM7Sb3nMSXmtcRe4THWMYMafcYAv7j529bjoyzmRUvAsAwaGDhEqAdp/f48XcD3kNeoQM3IEY7lf+LQC7FhgiawzHOJ1lzNql+zBv7TDfs8Nsoy6oZQXty1B/VzDEnNIN6eycktc5wxhidG9dYJCbBpqVBIjUHV50thxVJ9mwNZg3l95EjVdtFE22BLltU0iiFztmUfl54cjmqNgjEwcFSMjHNde1QdOCo4dlJdiQ5sjhsZvOoQ09zNNFdrOMBi4Ne2XbRqhp+5mbCdaUYZDHSxqjko+D4xcDsxTHLDcxPNb+867l+DKQlg03JNG3W50oFbsWJseRGMgUlWn5JkbMnA1kYsrIi4G1e3fVqB/Rl+7qV6lZY3dzxsw5zWcONmvcrS5y73XHFkdO0gqGLiCJAMB/Wfh3Q4TGUDnQzj2Djv3QxIxtXv4d41n8zVJxqUjBhHBUA2aKDl5tKEaFIB4HK+btbb26iBcFZQ1Cpxm8Eog7Rcl2iSWwdIyxhTN4BXGAMs1KFNBJmJF1RET2radJhSDWggAdSyZXBPdbM+OLWwCWgDg5oGc2133+j6GiPz7x3jOEBxDAe+53u+hx//8R/nT/7JP8l99933+7b39/7e3wPgx37sx3jggTt86CdPnuSnfuqnAPj7f//vH1M9HYSLMNQBOSx3Bog4Iby5RXjbTnFzNwwab7v8/KzVgIoErCJFeZLAsEFq1abDwZ40CKIMy50ZRkioXQFgnEENEdipSqzfGdudZeL2U/XtDR0VFI7MZyvGV+0UQJZMdCdMChYR5fjaf6pvDxCy3N50VN25fgeazKJLEk+rOzb3rWW3kJb7fuvW79S2BzC1iB5LETWojpMkaXmfnk42yWrplmgm0x2raHmSTTC1yXgFuUVnIstj0rw+IYmtPzcRLQeJsgRBfRWwa6n+cOH5LYduSYMAxbXh69Zj7QYVHp/Z+rT12LC2uxk+tvMp67FJA52bX71tE0GHX7n1ZCU9i4OIHfwMpkGpe0yOtryn2hiuJdXHVQO8PL5FZglExA0rWa+Od0o//8x2/Sq8F0bbbFrmzZcG1TVV5higiS3XGwjJpkOwuQy3tca3jAk3koQGyZZcS8rHrFBK62+58LuD8vuXat3Ed8Omo180UEYitzgwlXCFz+yYOgIKLzSgIn3GIVaZNnAGuXxzz1nW7DZo4GWbNhzwiUFce1R9zlKdAHA5znlpknErwxlImQJXE8NUa35vz+7sGTQMULQsTr3PNBDEzRAom71r9WkgAVLLizVNIK/JiT9JBZuWLPXLNxRpTYqiOJEMxhYq0hSymvbSTPLylfI9YJoKsrz+Pbx5qzz5KpmC0fUDFIPdLy5llE7sbdi9FtZK20/2JKlLaLqJ89WxTHEGG2xN2HK1r4n71WHvar3nKwfSSW3afaH+LGKUQFsKg6J6hb770Bbhd/9mg3WWBmGZSLRDq8EKA+ktSyWjblCR4fiCadI+ILd06ixpyLji0t+qGznPNdaor2hChgs49Oa+mnAcoDjGlwSXL1/m8ccfJwgCvuM7vuPI8fe+972cPXuW69ev87GP2elhvurQQMgQwN8p34ypOCF64dVag2Z09RbeXvlGzcuyRpluLHXLPx810ScAXKX7e9WDMfuwOArIkuraGAfhcC6otQbBP0eGq4i3G9hzTMobX1PfXj61VhSg6pcZg8FYrjkfNFs1agsvf+rQp3BhOn6l9PO8gTMc5sLbR7G169CncGA4fqn08yjcoO4qVAiP8W65vcHg9dp1raPhi+SWwN94fL2B2qIkDJZLj0ziLZrk53ZbJ0o/T2oKtBfQ9NsnS4/kOmNiCf64MLZUIaROIVo7duMd67Flf6W2vZ3Ebq8JPjOwB2ITS7DQhRvZFtoSJPv4bn1KprGxu/FONQjwAEwsY+pEpzw/ree0vzndY2zpG16zbRVP7d4s/fzpvfpB2hjD5Un5GH153GydsGeppmwrrxL91EFkwNBCv/mibf2wADctG11fCNYcAtU2vGJZF11LM1SDdUxLfnG3jB1LJijYqz9c2HVohw0bBN1slFvQbBnY9+3XdHtcf5zeTOxVPM/s1Z+XBhpiy57jyjTjRlpt5syAa4nhZqpJLUGohnTk3LI40V+0ON4XYWyx9/ztBiUZwPa0vE9vjZoJxF7bLf/etVvN2jcYl9vb3WvYvlvl3tyJhepqEaaWCoqt2wFNyrnT1CEk34CeQPiOCoordfc2guH2l5DOpUHZnHYIodfRi7gDYafWqkmpJhBIh7yfbBCQyZUBy2P0GhJGCEvQSqTNnr20iAo1ClAAYtuWTAjUzUF1PEIVNBsTzNTSYRrQOwEQWa63QRmoTPOCSrwEYtpsHUjk1kb6asFxgOIYXxJ8+tNF9uSjjz5Ky5J1/853vvPQucdoVuYOIGybsSxH1Sy7FYC8Xe78Mo3oZrBTPDXdADt1OhoEeW5asoeFdDvzbZjaHSo6rp9raWKHg2baJEDh2LwHlmCS016MdXqRzZxztr5hXPRULojyxVJeU3B7Dmmp8Njbfa6RvdiSPZy4nr0DtgoAKRW1ReRNjrAEmqYufRQHdrbKAx5SeI28QZkl4CFdqnAO2CoyGubI8Oy13yv9XApJVovsY/+b5Z82HFMT7LuxQdYgXfWLjGemz1iP/faofhVZTnHvy/DZib2axAbXrDNoGDSSlr725N7N2qogO/nUKqL8ikOvwQVlcVjcHDWpJ4CJxUHchIIK4PJeeb9VUtS+fxpHFn3DKuDXx+VVHMaYRhUUuxYdBw/RoGaJLzr1wFpg34gvElkuw+cdFQ9Nrvfy1D4OX7E8KxdclYoNVm3sYnfZ/pdRs3fExohzeVqvDi8zsJsZayCioW/OVnxNAwmUAjYx6IbJuYFFzX7HpVTuwNjScYfTZvZuWob2pvKP126Wr6dkA00QF5ramzqc1LqBinIQuDpa/aDq1rMOZ2SjAIADTaqWGvqAnbBdVgN/bvcLDg96g+v1XMN6wy5t62aiQfsEWLfWoiFvnpW2TFBXztLZX4yhGWW0zc/k0C50YrN8ULUlKC2CuFE+ezeplJ61pOH3vrJwHKA4xpcEL79c8AlfvHjRes6FCxcOnevC448/jhCi9O9DH/rQ/nkf+tCHrOfd7bB77LHHrOd97/d+b6XfFkLw+ON3NBS+93u/13reY489duj3y85520MPk2UZ+sDMqDForQsqrLI/wMyoob79vd/CQ8tn9/9+4n/8viPn3jFssac1wZOf3z/tf/srP7Rv771v/XpMnlttztt5999v/cff5EM/+wt3ntPP/gLq7KMsv/W9pecvsvnpZ59DnX2Uv/BDf+vOc3ryac4+/Ji1DdphMx2PUGcfRZ19lHd+y4GKH+nZ7Wl96PKL21F8fu2V5/ftzf/myC4/YbVXGDn8mNCaa1/4KOdO9o78PfnZT8+CA8zIge3P9CCG471Se+dO9nj5M/++9Jrcz8nwh7/5faX2funD//rwfXL0k0PPyRh+6P/5l4/YmyZ7lfvJwec0P/+f/uw/JzzX3//7+Cc+Uqvvzf/+/j+6o5/zxJOf3rc3Hr22oD+X2/3//cyf5mu/9RsOnRue6/Pk0x+t1ffmf3/tf/tb+206iD/3/d9FHCcLbR68/ixLeewt38FSeH7/79NPPAnAtSu/U6Of3Dnvl37hrx2ytxSe55//059jfe1NCCFr2UzTlB/8qz98xN5SeJ6/+dd/rPIzPYhPfPw3S+3de+FNtfrJvEO/cvszfOif/gIieuTQX2v57WRpXrs/r7aKiozHn3j6kD2/+ybyPK/V97TWR4S1D9r89Y//buk1FUbLbT73xGVE9Mghm4993QcQ0SNkSWa9Tzab0yyhtXyW1vJZnvjMk/unfv9f+SHiA9dbpe/N/+b2Wstn+Wc//bP75xVTXL3+rLWmvXb+kM3v/ys/BMD1WfVWVZvMPls/98Ahe63ls3z9e7+FX9t6sfT3XfdUa/ja+990aH0w//ud15+56+ddNu8Yffz6c6X2PnfzmvWaXNf/a5uvAByx9/HHHy/9/UU2f/b1L+yfenBt9I4LD5MdGAPR1d69e775Azz+5NP75/2FH/pbqLOP8p3/4B/X7ntaa/7dCy+jzj56ZG3UeuO7+be/8Tvokn7tsvlLv/If99cbB9dGl597nnGaVnqmB+/pL/2H/3xoDTNfG+3OvLlV+8nc5i//+N8rXSNkWrM9O7+yTeCVvV3rOubuzl/l3budZlZ7H33hxVp9b24P4Fvf/54j9uLZ8zh8TQtsHnCofN8P/c+H1jHZXX1lUd+b//3kv7wz7h1cG/29n/+FI/3PZTPNMp576UXa55f5vh/6n/fPm6+Nnn7hWct9ct/T933DmwjP9Y+sjX7jP/1b5rfv7r+jc8mdv//uT//oofl8DiGM1V5J19v/7C9+z/98ZI3w6See5HOvh4fOq2rzJ376I6XrjmeePeBJrWHzU09PS+39H//Hb1uvyWXz9qDF9/6lv3VkHfPmd/xZ532y/S0tFU7Hu9dG97/xaxfe+7K/0fDO3vnutdFrr1yvbfNDP/tTPPZ1Hzh0rogeYWnt68u/s8Bmnsv9ufwgvv6930Icpwvvv77LbpJmh9YHB9dG04ndnu364zg/subYXxt5ps42c3a9hs7quSM2i7WRKL2m/Xf47neZojrhsY0HS9cdo7vpou+2U2JTGsGH/9nPl9r7jU/9ev0ODeALPveZJ4/Y+7Vf+7XyQWqBTTm8c+5Be//pb/1cyU2bX7p9zP+2v/YDhy7pnd/yHaizj+Lf+ya+8PRLZLp83C+zee3yJqceeDfq7KNH1kb3vfP9bA0HpW04fEsPH3vPH/kz+2uOg2ujpz5WPocssrl7ZXhoHTNfG+XPbjnvk+3ZP/sv/s2R+fxb3/+ew8lrJc9x3/Zdz+lX/vW//W/WZ1nXD+tCM5LFYxyjJoaziaLTsfPZd7tFpvZgUJ7l9qEPfehQp7fh2Wef5Td/8zf3/+3C/DzX7wJcvXq1ss1PfepT+7auXrVz+w8Gg0O/X4ZeGKExSG3Q82hshQqI7WubXP5UTjI+nIG46rj/Lpg455VPFZPNcHNr//N+w1K0lu/x/NUtfuvpgu//+auFzU5QXrasSz890L5Zpsm1reG+zWdfvM6ZJff12uweHDcHk2TfpshTFhEeldksE8Oa23zk5kvUvYuRXz6wv/T807xZ6dqRZ1e2mEn20BXLPPX+f5W1AiAKxaFzFz5cDVrCs5/9Xba3jlKFiMOnVsbjz34CE5zkxWuvHvpc3ZVCWNXmJNvlo58vePGfe+lO1URZArvWLEwP6Pc9hpPxvs05PFsK4QKoA0LyB22OJ1OkXKyDcnhtZlBScjC95vOffZls4jMYNMkFhW73aCbeKy9e44mPPY829aoetIbUIqa5dWued2qOrDfL7MyfX2qp+ur0vFqZVfNHP81SXnnpaDqj54tGOuh6cJLf/N1Xefa5wzXvXnCXsQp9D4rF52/+7qulx5qI3V3+WEGddtDmYFikzJnMlK9GK758T33+ReKZoOmNzS0Ejv7ssqnEPlH8S69c5fdmc97CrC+LTREqzPjOwRubW/zep54uRMsb2JTtED05nDU2HE94fft2xcy02WAKYDSqHZKV0EFK36s3mM7O3dkrz0yTc2obre3ZcHfDwE4y2l93HITnh0fOrYKxzvbtHVwbCU/Z759jkFCtiCdevM5IFf3t2laxzg03LIL1C+7p/D7dvTYSvoe/ulpOdee49uyA7sLBtdFTL9+Ee+zJQja76e7hNfJ8bVSs3hoICr/8UunnTz/1KXRle3r/P8JFg6UBWbVTF+e5CEzVfvVHdZupzvn8k59gMilZG4mSlczChS/89ucfxxNwY3uRblG1dj6/dWt/fXBobSRESf9z2JSCeG8LhODG9q2jayNbJfKC5+RF7YJe7a61kWlYleZ3D9MVfvKjRRBzc+8CcK6akQPNbXWPvvuf/+zL7Kw9BrVX+hB1y+ey2HjU7YEA0lL52l89c/iDCuvy+Tri6o2je+d+dx1jzEIn1N24vb3Fb/7uazx719qoFdbX6ptjvuY4uDaSUrHUXT10XpWl0UuvP8VgmBxZG53sXyj/woEpdxF+78BcNxxPnHO67fHcLUx+cG20xtucv1++dz362XxtdJG3Emp3RfzdNnOT4UnvCPXojc0t8nPNEuzbfptRCS3qKB2xFFXsNwce/uj18jKjz938Av/9A++j7uLotcef59pLR6mIh/Hd7001uzeefpm9q0fHu43OXdSrB8dSi2ljDHGe7q8NoJjXATypikQlYw51BO1o51LYpRWEMObI2shTir14xHLrqF/GZjPTOd3wzvkH10b+GIisTbG20ruLWnK+Njr/6pjTdnMHrB5+oZdaRxsxmYx47qlP8U4q9OmDY4SGqYOq8svdZzlHHT+sDcLUV8c8xlcp3ve+9/GRj3yEX/zFX+QDH/jA4i8cwN/5O3+Hv/k3/yYf/OAH+Zmf+ZnSc/7G3/gb/N2/+3f53u/9Xv7JP/knTnvveMc7+NSn7CKZXylIrm1i/q9/bT1uG4C3334/g695w5HPo2de5sRH6nPYj9f63PrAN5c0MOHCT/+c9XvWdVl/Cf+PfNORj9PREP7Nv6rdPsII/0/86aP2JiP41+6+ZIP/Z/6XI58ZY8h+4X+tb8xr4f+J/7300OiX/h/YvAzWRSge4z/1H0qPiQ//wdqLPCNCzLf9aumx9GN/AzbtArKlkB38P/xvSg8N/vN3QFrXiS3ofsuvIUqcW7f+4x+saavAA+/+ZTz/KH3Vk7/7QXRWzqXutPf2f0ane/7I5x//nfc3at/6iT/GfQ/+5SOfP/6Zv85o8njJN9x45MG/w/ra0fDaaHyZjz713dSrXxa8/T0/Rq9/VD/lyc/8Y65f/Y3a7esuPcrXv/tvH/k8SQb81sf+BuPxlcq2fK/H29/61zi5/pYjx/I84d985C+Q5vVoZ06uvZ33vf1vHG1fOubnfuvP1bIFsBSc4Lve/eNH7WVT/sFH/2Jte287/Y38oQf/pyOfG2P44d/587XtAfz4e3669PMf/OT/yq20npD3Hzv7x/gfLn576bH3fuK7GlXP/8c3f7j08/d9tsEYDfzmW/7f5fY+c/Q5VcGvv+UHS2mU/tSTP8PNWkLyBX7lTd9Fxzvq5PoLn/93PB/X1875qTf/KSJ1NCngB574ZUYNnsh3nnoj7z9zdN3x/Y//KvWvFh5rr/IDD3/dkc//4Ree4LPjrZJvuHHOD/nbb37Pkc9vx1N+8KlP1Lb3PSvr/E+nzhz5/MdefZVfbUABdFoIfv6hh458Psxy/tRzr1CXWO1PLHf5K2eOat1M8pxvfrb6eDrHt/Ra/Oj5jSOfx3nOf/9M/Tnzz52+wB8+cdQlkOY5f+5zT5Z8ww0B/Mu3lDvhPviZz9Vm/FhSkg+96ZHSY3/xM8+xW/MV6Qv4/7z1wdJjf+aJV2q2rsB/flO5Y/T9TzWjvvzVR9YJ1NFAzz+6POLfbdW7g+/qSv5f95Y7CD/4VEITjdiffQOcaB11sv/wF+CzDXQPvvvBXf74PUdX2j/zRMTj1+sSsMO33DvgWx46ep8+/PGIL9yob++dF8e8/y1HeVN++Tdb3NhyeOcsiPyMP/9Hj44kn/y04rkXlmrb82TG93z7UafW1pbk3//HigGeA7j/vgF/4J1H9wdJAv/+FyxBACdy/vgHj451eQ6/8TP17Z28d8CbvuFo+7IMPvHTTdpnePsHy9eiz/7zfunni+y94c+X27v8oSXqhwAM57633N72/7cLFs0VF1b+cvlaJfsH9va5XPfX/pfd0vj4yf9T4bs0NCy4/JfTUsd37yMZ/ZpuJwNc+UsCWkcbuPwfRvS+UCfYUeDad4ZkJ4+Ogf1/t8nSixbNH4c98ccF/ony5NDk3+3BzZq04B9o4/eP2tOjnOw/3KbuxCm+cQn/nqNjZ/LELfhsA41HAcF3HU3QSF7cht+2z5u2J5Wsdhh9+7uOHshyVv6vcr8KOJ7JmTWi/7HE3/YVCJcv95ji6RhfEvR6xSJ1eHfJ3QHMj83PPQaopkSoFjG+bGO5kbn40tnyAw2EDAFoly/UhSMi7IQlc84r2Wj9flA3G2gfvXJBXK0zmhBbCmG/76LJsC4dz7G9OKfgCFqO72QNSE1FWBqcAEAddZhUginfbCuvmfhgnpQ7bKPWw43snb/0naWfnz7VLODRblk2Tzb+USc80qT8Xb3/waOBwip445u/u/TzNBsRePV0SzyvzfpK+X1XKsArcfIuQr991BEJ4Fm0RxbhodMlC1pgYhFvX4S7S5rnyGsKls8ROLI9WzWfB9j1HQB8mr1zNjRlfo0tItSnRLM1ia0dj3ZONbI3trQvaKirUhacAHjzsmW+X4D3nbq/3N5Ss+t963p5O97cXy39fBG+ZrV8XhpatBoW4VpaPoeMG64T3mzRZwukbELPzXnLXLaT1a+yBDjhW3SbGtgCuG3JFJwa06hHu0bihyz31oV7I7sDeCOqK4gLKw6R7CYjjOuKmr1xlAYnAN7Yrv9E1h3Vnp2G3oeblhiJbxPPWICtafk7cnclbVVcH5U/4298YzMy/298tPx7b3+w2Zj1NY+U23vn23Ka7EUeva/c2RyEze6fbxGhzvOm9izroqSZvanl+RZb4S+DfF/L9f5XQROOfZeWSK+hpoAFeQP5RABpEyyqP4WgJahJ+X3KlxsOgjY9xrVmexHl8pOsO6pLyyBBWGIGQgrEsl/Png/Ktp7q1Z+DAXisnFnDP9msw+Rn18oPNPUXNRQT/0rDcYDiGF8SXLp0CYBXXy2njAB4/fXXD517DBoPVHeXec5hGrhuDGBspfNCNFuSWaihTNOAh7J8T0gaDXOBIzNJ1c9aolvuUJGuwIADxjnxNegzLnEo3WBj1XM4uJqI9nr2hYPoljuOF0FY7r2UDRd5XrmLIWpZFi8LUf6MA68ZTZuU5f3CmPoi2UIqq4BfE+d/8T1L0FJIvJoO8XbrpON6DaaBGJqNGsEaOFuAsKR6B8C3/M4iaAtlhrKIwS9Cy9HPsry+GJ9LTNxrMGYpx3dOyOXa9op2lD/L9ao0AQcgsQe0TzWwB+BbnmXTQLy2FFB3G77DtoLsfthgzsQeQFlyOI5daFkc9n7D+2dzinYbCtN3gvJ3X4qGri9L+yJZj6Tijrlye75wvd12hF8iewBvW67/zrl8okle/4loR/suduoHab++Z39P39Crb8/11g8tFIcuDB0EDe2muU02keyGUbK+RfTYa5S4AR2Lg73w5dazGYgM29BUOPLrt7Hdcr359ef1lSXX9dbHeFz+gFVDkWzLMpCGyyKSiWtsb5BsZukvTaFCh70vtt+zyTMJHN95sP6spANjF41u6OE0liV4BXbtI8g62O97gzkEsL5cbr+AA45+oU779fqNB9i2MBLEhl8v0NMSdhdOwyCoXLY0oHF/scy1QuzrwdZC037xFYbjAMUxviR429uKsuunn36ayWRSes4nP/nJQ+ceA+QJC5fxou9ZHEjexJYaYIeRkK5YSk2FaLTR5VR51rvXtHrmpCVfTAh3sMGG0/fYj/k1HYhCwoWjVDO/L7iCJI7qCutXXAfT8vfViczRz5bKs2ydCNqYvNxmdO4P17eHh1TlDtj+SnlmuxuCqFMelFldfzd1dwZh65LV4VydR/sghJXSSDbYSQqw7vA8r4WQdd85gW9x2EfhGmFYr9RdeQGxhfJmOL7RKEDRCU+Ufh6nzSoehnE5z23kCMY5YdmNCSGQDXamoaMyJNb155El3/4MVyzBPRdOyfLnAfAHevWrlkIUyuLNmOj6+esRPrmln53261+vAHxL+9Ytwb1F2EnKaYjuaa+Ufu6CAK5My6uq3rvRhPoCHrIE9u/r9PEauLDv7S6Xfr4RNAvI3G9ZW/yhfhNqDrhkCVBkxjQKUAyy8m/dzJpl2bYsc4UvJasNdpMnLYGrSKkGbP3QcSS47DaoRk5y+30aNAjSulZmD/Tqv8OnQvtadMWlx2HBPZH9O0+N69+/7dQQW7x6DzcbslixOIM6DQMe79wof44Pn6j/fAEesthLcknHEgyx4ey6YZKWv3MnV3NaYT17AsNyz/4c77+n3jULYGWpPOs9SZs52Sa2AICRSK9+H4w65e3zGgZ4bOusLF0QHLAgWnZdU4OAh+s9cDz7Jm2QK/XtqROO7zxQv4IiPmfX80rXm/VBYcnJMw1cCSKCvG8JusXNoqrGs+g1NBxTc9/eDrGkoE5+WARqtbwTilAiuh7igRpJdkbAhqXK7VT9Sm4A0bVonfqC2sXcAoxtHpYC3STpttVsPfqVhuMAxTG+JDh//jxvf/vbSZKEX/zFXzxy/CMf+QiXL1/m1KlTfN3XHeUc/mqFKBWmq/JFy8e5rr3k0WGI6ThmviYR4tXl8s+bSuJsWAIURjejoXqzow+2a9JL+BHq1FFebrDTsiyCCR0TfBNnlXQEXbwGq7Jky5pNq87/ofr2ghVrlUdrY5FseYm59j3YckijJgEU2bG2b3XtXShV75kE/gq22iTdwDECgVWU0pic2qQ40rMGNozRhMFyLXNCeNaAjJSKfu8SQlRfOU4mt8gtdDiajCStTyUXBuXvnG5y/4AsKw/8aZ0jna6scqSWAB5AP6jvcO4Edidr0oBwJsns39mI6lcZvbFrD0K8d6V+QPjB6Kh+zD4aTEsnwj42t/K4gaBrIKQ14JE0nDczCzlPP6g/hwRIMl1u73SrVztEFgqJtKwtDIKVmokCy9IntFZaNsvEiyzt6/jNKMv6lnakuv66DbDS98UNM/RWHU7vh1v1x6w1S4UMwEoDqsWuY61XRQC3DmzVR87vOLLy720Htdvnokk6HapafiWAt1kcNwBxgy5zI9bWrOOHG8ThFfbKn27DAIWtqmU5+uJm7GsDJdIZVgTKoKR9S+QpOLNWbx4JPIOLmcxGr2RDp50SWZzyRjdL17dV+RsDqxsNEiMsAQBjQKgGDnaLc9jkAr9V397G/a61VIMAhSOBqUkAxbW09U7Xv17vrH3/ItcM1AziDd5lT6DTDcYYAwjLa2WC+uuExJFjqi2UiQthLAN/0GwQFNpxXUuiHofjSYVwJL3JVQ/Zke5yvYMIBSIqv14pRX3arTZIS2Wp0MLKDGCD8SSma78Y26Nyos5E8RWM4wDFMb6o+JEf+REeeughfuRHfqT0GMAP//AP88ILL+x/fvPmTf7SX/pLAPz1v/7XkQ3L478SoZO00VtqLBvk3FO1XWk68NCWOmM5nTaiOJEWDQr8AJaWaxqTCFvlhfLd9EWW73gtx8pmyZ65ewRCwulHEJPybO7Gfd3C3QxgGmTEGxeFTgPnIdMdK72Jl42p26ml37FWjQi/DV69NvqtdYSlAmC0U1MFDVAqRFiCPFKG9PqP1bJX0BqV9+nEonXhhiYMy3VQ0mxIXQe7lD6eXy6oKKVPt3cOIaqvHJUKCAL7OxeG9YKCaToizcqzw7NsimlAZWALkHjSp0mAwuZs9pTfiJZp0yEivhHVZyRvOYJqeV5/Y3p1Ym/fcoMKiqG2i+OdDusHZL5h5U3WY92aOiMSOB308SzP8cnhUVHRKlYjCy3dy5P6gtEAkaVPB0LRdwWtS9D2Qk6G5e/wMEvo1aQu63qBlXKr6/u8YWm1VtDjm05dsGbYTxsFfeFKUu7JCBvO67b1wO3UFkpyo22xdzFs5hjpOwIUssGY9XpS7nDUxjQSkpGOdcWaX6/mRuCmwWqSWrKd2J/iXlrf4tDhbzwZeLy1G1S+5o6AEzaqCqAt6zs3b2agLHeq20DjIQA6lm626qKOscKwZqlC2IubBC0NZ7vlz7gVaAKvehtbgSHyDaHjO299MEaK6v3m7ImUwBGEGFr0FWxY6uQoS79QqtmYarsez9e0O/Xfkf6KPYjTpHrYRjUl/foEysFSRmShyCrQoH0u2htLNY4TjqWPf1JDjT5NR6P69mcoQgPnqveb0YMx+Sn776vtZtXhuWU5mq3Up7SOHWzHumGivO2V1zUrquYwLu6qlOoEABII3WsfsexBq+L6SAAXfLv2pxJwqWYU6mzb0UZTW5MxX+mRd+17JdmAe9Dmm/hqw7En+BhWPPHEE3zt137t/t8TTzwBwI/+6I8e+vwgrl27xrPPPsu1a9eO2PvABz7A933f93H9+nXe9KY38Uf/6B/l27/923nggQf4/Oc/z7d927fxAz/wA1+Sa/tvBpMphPVnsaxfnu0rG2R9eaMp2rJxEZNJfd7DwEdaAh5CKbj3vnr2wgi5VJ7tK6SsT8nU69vToABO3FedwLR/BtAYC5VGUxiHM1eEDQIKPUf2cE3ncNEI+0bHSB9qaQr4qN691kCYEBJqcqZ7oT2tJc/G1CdrFdZAmBACTIKb4OEgFKBQlntkGnAjCyEILFUNxiTUXQp4nl1oWgjBqTNfTxB2QVR7LkG44lyUbe88i7GImpe2QXrW5zGJmzlzfb/8eeQmw6tNaQWtoDzAA6Bk/exhbcleBzi/VHNMBc70Lpb/jtH4NapZ5hjl9oDC/W3H+GOBy2WbkdOyEuEehULy3mV71cV9rRpBaQp9jLd17dc0stG3ORAJad0cp82IFslszkM/4GSrXtDoYqvPkoXyaJpnqBpOewkseyGp5R32pUIgCGwVEXeh7wXkxtD3y8ejHUfA34WxJbBhqD+DKLCui25mupEmw4rlntuowlxQwEmHA3viGH9s2M3KnYepMY34tF0O9kutVi3nkgLWHPbCBok5LqKuJow4Qwdt1du7AT1fcl+FYJQCVnzJqme/phNh/TE/ByaW7NxICdp1tw4CIotT+e29Js5IQWgZQpro9XWUZtmytG0HhrCmE/vCaoaLqWtjRXPhVLW5xFPw0KXEWvCudVFIVvW1E4AS2iopl2sPUSN4MkfXEuBRCpJpzcQmpTl3T/m6I08FTQrY+xvl/D/CCKJehrRUWNwNL9IEEYQdx7jZICHekiMANOvT/or9erwTea02Cg+UgxbKJEAioUIlT9bT6BXc2f0NRCOytrG+A+lJga7pTsgdZAfZcv15uKjwsFQteapRpaVKHe2YGPBFtVhZJBATdwtMZopyvHXPbVMW9tRpu/NfCIE4F1VfbLUlIlQIy5woUoNzwL0bSpL3WugVy0uXNQvSstaQ6vwrDA2LIo/x1YC9vT0+/vGPH/n8+eefb2zzJ3/yJ3n3u9/NT/zET/CRj3yEPM956KGH+O7v/m6+7/u+77h64m74PgQ+jKuXthpATss33DoMMFIgakzcQhvUcIwuo3nyfWTdbNrAdyqoqQceIn/282DRKjkEKWFtvQhs2NDpwV4Np+TKKXvEHpB+iA7aEFegiUknCGPAws1dQFC7lNdFqxXaHZ9W9O+1H5vcqG/PAel3wOtBVpG73++iHLRLxuQ11dACwpYjrQVZBKBMnX5trKLbabqLNglCyEoMZlKGKBWidVYqou7JFkVda3VtEOV0oHu1e6DAdwahTp56F5s3PsXtW59ZuEYTwqfbu0SS7BFYnPZbO8/WaB34XtsqQB801HjI8/KNqRQenorIdL0gZJzaHfaqgY5M6hCzX4/qOdhBcKZTrhsghSStESyaY+KgoGqrCIUkr+FozxzvpzCGrmoxyas5nldVjxMOWrIlr0WIIq6cx2447bAXNHAQL6kIzzLOqUZ15CAtO8RAKh7unuCl0e1KtUYCeMeqfUxVQlp/y/b7G1EHzzIPzysePAQKt49CAmt+SEspUq3xS9aYDZK5ATvFUyAEy0C5ykw5NoC25XqbZJsD3LZoKAQz3ck6/jmBm9Zo2qDEI7cENZQQpA79BxtajnVgrLWTIqisDeccYuyjBu1zzf9Tndd2Lr00sY9vLSX5xn7EK9OMnoSxPnrt87slBawpyZqDcmS7QSaoBnxLQsVuLljzYVwjNthzDXPC4FMk/FaFwv7uS2Fqr4vuXXPQ1wjoBAYpqmmghp7mZN89+goBj71hytaeYm/knlPuOTPlzLrdnhAFG66ShsylDr8PQ7eTIy0VFJ7SBIEmjuvNTb6lQsEYSBKFENWZgNu9DGF5itIzmLzuvGkIovL3QEhDZyNhtB2SjEp/8s5v+xqpwG8bJ4OuUFB3qSVdWfQWTaKm0GMBoYFptfnJRHpGoWNpxys+dA1cX2xPpgITaLwtSbZRfs26Vf9649PG6vAWMeRtUBXHLO2BcRWSh7I+9aAE41to0NoSHYKybwWOQuD0BJv5+y1xL7TE7BzP/ezMTgbaIHs+upvDyPKMFHDKR6y490LSl+QtBaPcPVh7QEch2x4m04iSYLyR1FoMak+Snejbo7qqPmMJgHTx8H0V4dgbfAwr3ve+92GMWfh3ED/90z+NMYaf/umfttr9zu/8Tj760Y+yt7fHaDTi8ccf5/u///uPgxMlkO0IXPoPJTBSICxewXRjldyx6Sq1pzXBVjlFUd7pYE2hscFT4Mj8Ehi494EiOOOCVHDiJPLM2aJSwnbayQtQVQRTeYi1ciqcOYzW4IdQJct5vIPZvuLOBuy6f6+0DQ5+eOPIzLZ+Z+0R+8FRAzoSVwBq5RGoQ5nitZCdc9bDJtlDhWtUnc5UuEZv4+utx6POxZqLCoHy2miLAzuJN5HCswYw7kYQrhG1zpCm26XHV1e+lqhmlUyv85D1mBDCmdlZhjQboxyULUp5XLznjxC1Ti4oV5VErVO0WqtMJ+XUVVmWkKZ1aKgUrdYG7Vb5e9VurdWwdQej6Wbp56Hfwa9JXwMQON4Br0EFhXJUNfgqRNVQf/OFz+mu/Z2rkw0/R8e3p5L1vd7MkVANCkXfQQulhaClAqpsDySCb119p/Ocnh9xyjHm3g2BcAprv6N3tnYPvNReRVkCFOejBkFpYGQJ4Cz7LXpByIqlaujI+TKg79A+CqSi74fWgMNBCGDFj7jQXrJqRmwlManRrPrhLPhht9XzAs60OvhSsZvagowuciA7+pZA06rncalVfd0WACthyJva5ff7wTBolE1m22tPjWmiBUlqSWxJtaHdIIgSWSi3PCGQDSoouo4AxUuTSa2qlswYHuk2E+G0oeeo+FFW1Sk7bmU5ucNb+1gv5Jv6EYEQeBQrJDH7m98LX8CKEqyHitOB/Q5dnzar0tKWMUtSNKTOM7nHkY3s17QF4KOx6cUvhZpA1bvmxOHwNoDvaVrB4mqolmc40dNM08Wj0tpyzv1nE1oW7n4h4N7TMe992wTfMYgIASfWq0eLDLDaT4ksv9vt5vR69bWWNk7Y1tESo4WVYqmshYFvmI7Le0VaM3Ayh2ehEhMSeusJvRNTwq79uoUqtj9ey9A/mzpzq/xO3UQQg+cQwtY1+fUBjOMR5psKFZlqWy8BYirRQ8c7cltBQqWooEghetVH7djtJfULc8nXDMYyOXrbBsLqMgUmhGzV0b516RY1L7MpIbeUnqXLqlnppith31AEJhY941mT5JkFFzSe9c9IIDYC6Kujtj3gQoi6p4UMFlBGJcCpqOD+s50qgZaHvNgpAijj8nekoLqqPgsbQOYGaymWEJi6lYdKIjeW633nKxTHHuFjHOPLHTU2ugBGCKdTcHJmo5Y9AU4dB1NbJNudl2S2tpCtNqytQ7tkRyIEeD70lhCtDuKM3ZEGwKWHoVPRuSQVxncHcEQ8KIIjVTbQJod4iIkd1QJNAgqBY0XhqoawYedF+7F4p769yN7HRLA8S4GquMrTGp3Zs83BoNpnwXPsXvfh0Vl5M0HLzskftc8ja4laewTBKvY+bVCqM9MwWLR6VPj+GkG4YbUXhqusLD9Gnel7Y+MPOo7Wr+AxDucrgNYpo+FlVtceJQhXETKYXb9HcQ88hAjwvE6RqegMYmhMDR0ZJUNW+/fjWVLTjNZ4qkpfOQzheHa+w/lusyYcWfQd1/ttQdu3V4ZICWGNoKAnfWeQpK3qO+4iaf/9vqPtZfCFx/nInrFv0Jz0lp2c9HMsyTZ/bP3rnOesel16NcaEQtLYPr69oXMCv0aIwkPwratvsB4/GzWrCrIFJqUQnAl7tD0ff8E99BAsBS08V5KAgPs7y3hicR2Fmo1Hb122B+71LBe86we0PQ8fic8dB+wdW9DxPLpeEUC0jtANRcZDmzaXELyj06n8hH3ggSgisNxDISV1n7CgcLKXQZvqGpX738F+//T8B2ti2RHYbUAPz1pgt7ed1CNCy4HY8YUm7Tth4xMCRo6kHRuqJES/qx9yb+TRm1F/t0ShN9EW0JfQ94rKidO+YslB8TRsIoKCvepmqov21PGn3e+YdkJZW9+Ujm/v054SbLjod0owTBxjpYFuVNA8uSCAVmiQqtqqbHtPEaeScycz7j2TcGo1od9NWO4mnFlPuO9sQr9XrSqi1zXWioiydtpJB4vt0ZpD/8EG6QhAKGUqUyhJzxBPFdZCJ7P/P7XgCiN2NhJaSxndjYSwlyLUjNNemCIw4Rv8lsYPDdFSTm8BPVe7In3XwdYpR/+q+mwPwjk1mtlxVUEzSAIZZLfc7wgDWa3MTYOYCPyb9hFE9+o/YenYagpNweZbceuVroA3dN0Yga4boAix+x6MqD0GEuFkjGBPF4PrIruCojTz5IIRff5AWhI8gVjxEBdCOOXBhgdnPMS5ELXuI9erOPcNqu9D16OY5ETRjmKbWfyFEk6HiHmww9IphBG1ykpVnKFu77kWluT9mnu5dohc+uImRvy3iuMAxTGO8WUMM5rU3vgJo0lW7Q4zE9bL9hVAbtv4ifpZX2QpxuKcM1rDcIAZDRFBCEFQaHBIWaSoCFn8W6qiwqK/jFig0aFaXeTXvB8WcWorDzpLyIGbDkpPB5BnUJVzOY0x244qhKw6Vc8cYmpvo1mxZ8tb7W09bT+YNtDPWLVXZOS7zyP8FoiK/VAK8q3PWQ8Lv4cK+8jevbi3u4Kwex9L6+9x/lzUPk/YLuffL4Pn9/CjU9aghucv4/ldPK+HEB72F1ogVZtW+1IhQu3ZA1enT3wrYXi6UvukaBHHDpquJjWoRls1QQDGo+sYk6N1gueFKBkgpUQphVIeSimklEjlI1VAmg4JLBnqnhcVIuQVaLwEiuXl+zmx8VbrOa1olVZYPRu+gGJj+UHrUb9WQAskityhQ3DCQq/kwnrb7rBfjTZqVclIFImDkqlTM6AAEBt7UCvWCVFFvRKAvlritG8PMi57PVaDPl3VwneMCR6Kb1v/etYXVEes+R1EDe0Xg3EG9aWQ3BdVr4J6IFrjrT37861TfXIQPWUPxj/QW+dMtOQMPAgKPYMzrR49hw5QKD3Od/rc2152VrUUGouKtaBN17NvTpf9iFAqIuWx5AUESh1yoM/ZBpSQxHnOzXgMBnoWm+Msa3QH39Yufw9yY+goxWqFSiMPOB2GvNGRiKJERQ7oAzBAag1A1XfmCrC+A6EU3G4g8rzh0Adz9TsbVhz2DEVybh387nZ5FSNA2KDCw3VNTw3qrwOlmfUNBwa5oeNJlpQiEAIlBUIKkAIjBctKcG/k87auez02alZAQWS55ImGdV/g0vQ9iFUF5xwCrOO8tr4pSLsTpBdo3rCWo2oY9ZXhpiVDXEpYbmuEsDO0CgGBX3DgSwntCqK3mzuKJCtuolLQ68CJFdhYKYrvhYBxLNkZLg4FDUeSsKLYuFKGnWFAmlmyuVOB59frNFIatrbK5xHf14StnCDQC3PDhCjuBUBsqaAIWrq64MYdy0wn9j4YtDQn3jBECIEKDCooqJykYn9SEgqifs7JR2P8BRREwUrNDi0M8W2H/l8l6q67bdoPqeW8WOZUMTsr3dK3Hf2wq4sARZUKCiNQexK1665a0jV9vd5IYuO1zGZbMlmhWxsF8alZ1YUFaqSLgEMNZB0wliCeN9KYuhUUbYr5wAIzLYJrBLi31z5w3kMsmsZmE4IQs+DEjBJKRArRUYhAgRKIMwGiW+FiIgWhRJ4KizI6PVsreaIoIVUSfInIwcwzDqJyu9qntm6JurGDsEVBhSBfXUI7qBOPoBthjtlkgOMAxTGO8eWNLCuEsuvAU6RrdodLdP1m7WaU6k/Mj9UVofY8hM15ozVmMobJuFg8ttsHqhVm5XdCQK+LuHgJGfiYzcXXo1ZPwtd+MwQRR1ZTQhafh61iVWuhgdhHMoVsWl2jwOSQOp5hTYFnWJDxEC5T15shHHz4BPWj+bJvF+U1yXbRukpZ5wLyGDO+bD9D+njdBxHZCBGtg9/nMKmmABHQXnmMlbPfAsL93MLWGaSsUu0wty1ZXnuX1YEehhtE0Tn8YAUpA6Rq39U+KESx+7Q7l5DKI4xOoRzOQ0PGqY1vQspF1TcCqQIm01ftthpkDwsVkGX2wNVcryHPEzwV4ftdlNdGzioppAzxvDa+30EKiUAQtcodtsYYep1zSCFZ9Ex6vQusrz5C10FP5KmQ5d5F6rwj7XCNfs8eNOjUFpIXdKMV69GLK/ZseRvecubd1mO9YJl0QdXLQeQmI3eMb5c61QN4+21QjgCxEJyq6LAPCPClz4Ntuy7NstfhdLDKstdlRfXoyRY+3v6C10PRky3e1rmfN3XvWfib58NVbjmruA7DYNh0jKkrXsTpqM8Zf3F21ZIIebh3kpZyCPY6jtkQLND88ITkXSsXiGRRoaAQSGaOf+YJapKW8rnUWeWko4pDCsHpqMsbequs+S2iA5RK82BCKCQrXsT93RV6fsjIIqAM0PV8zrY6+FISKY+28pBCIJn9CYEnBC3lI4VkO41JdE5kodgpfCz1nTfnLXSZmTEkxnA+DFlXyjpqecAZ3+eBKKLj0tGiEEmvAwGsW2gyUwMLmBOOYFHC8bjuxh5YcVQ8uPQkbLDRHWljuD2tuY4GXhvbvS2X2vXXbR1HhcK4ijDBXVjkv9nLNM9MUk4GikuRx/0tn3VP0BKCjoB1T/Jox+f+tse9rfpjSBXYCI2WPWgpWPIXOyIUBYPH/W37mRpo1+wyLc+QWiJ1ncBwqpfRqShsrQT0I83IUUVhZudFvsaTRaCwCPzNfGkCfGnwlKHta9YsgtEHER+kgTKQZoJpLIgTQT5zSGtdBAwWYWdHUVUeyVPFb9kqM7JMMh55qBo0WUoZjOV5SAUnz0wwuhC/dkHK4pl5vraWOhWaGw10ZBboVuhc0js5ZfnchP6ZKd0TU6LlhNZyRnstY+lUwpm3Tmn1F/+239KIigEjAJQgjx0JAA14AmXkSLQ4OTtWJbteUDiPEdaqDLOegqP9R34/FkjH+boNxqs3rooUhCVAoXvVgicAKAhug0wcVUYp5PUYt9GhRGhLn04NXt1pztENjTFFVYESxYIhoii9nAfcxOzfEXBaFXRMC8r6xPKdTiiUgDWvCFS0JaIlET2FvL+FXKk2H4nl4jzR9hAb4awyo6jOIJTQUUWgwxjMbgqRRFgC3TIz9QMUw6mTsjw9u1GdBt1TiHaEsFFGfZXhOEBxjGN8GcNICbsVxYRnyLotjGdZZSYJ3l6DTK2RwxlZt4RNSvuALSVmOimqLAZ7cPsWTCeQ50UtqTHFv3e2MTeuo7WG4RCzSIkXUEEAUQfaPWgv3flrdcELigoKg7W6Yx/xiNrpjBO7SLZoEADAQYkjdl+gbvuM52hDJeqkg+f3Id2zHhbeEnfaV6GdJkWnE6cjXbZWkOHJIitDegi/jfCXkF4P6fXwgmXAYHSOkO6AWjK9TmfpEaoJbxvC1jmW1twc9msnvpF2+xLK6yCEQqkIIYs/KVt4XpcgWCUMN/BUj17vUac9KQOU6qLU3FXoaKHO0CYjt2TEF9oY9WnaPEefkTPqDil9EALPb6Okj+dF+H4LzwuRUiEo6OiW+nZnsxCCtbU34Xu9WRDoIJP2/E8SBsu0WxucPf1u1AINhwsn7M780vNPus+fJLuIGizxUip6jqBGnNXbZbTosNKyC2FfHb5G6KBYOoxCkyR2VFCsR+u12ieRZA4y446K2AhWCCsw4yshOemfZM13B4W+pv8Qp4JlAuXRUS3W/CVO+Kuc8lfZ8PtciE7wYPssa/5iir1hHuPVEKLWwItTe+C8rQLuiVbpeiGR5f0VQFt43NNe5WzQZzu1z9udBqLqofRpLdBOaQch93ZWiZSHJyS+UPhC4c3+fKU4EXZ4c++UVcB7jgvtpSKIIcGTirby6SqfjvJpK5+VIOJkq0t7RsfkCsgAfN3qaZb9kJ7nk2iNLxWeECgh8BCE0sOTgpZSKCEZ5alT5LmuDo8HvDgpfyZKCHwhWPd9lpSiLQQBdxgH5n++ELSk5EIQLHTIdxtk1fUtzyQQgnZtpSV4YlSevGGMIa5BwwfFrDXK7eu2Knold+MjW+Wy5FIIPj+uH6C4kdjHrPu69armAG5PHVVkeX0Opd0FzqBX4uL+nvQVkRQkxhBIyYov6fsKKQTPTzLWPEl3AVVrE4onQZHUWoaOEpwNBEseC0f9QMCpAE4E9j6xpIq/Omh7RUDAhk4AK+280uqoG2i0EbQsVQO5Bq0F/bbGUxB4BiULR78n72yLPGXoBJoHTiVUSbydi0pnmWAwVoynkjiVTBPJcFL8AXgLHLVaFwGHKq+xEAapDJ5XBFNs50yTQjeiKpQyRKG9o50+PyZo64X+PoPB8zTtbobvqOJwMovavrNgnhhv+wgJUS+nfzpm/d4Jpx4asX5fysr5jNayId6r9sN5KvE61cdVIQ3SFdBoUiboeH4C8JY1VAkCSAPSIFwVMLe82pxMctdxUcLUEj2GIn/NWJZTcqTJW1QKyGgJagoidqw5fEHecRGl3XU+heaBsVR1+bfqUoIBKWiLvpAQM6qkrphtu0QxoM95Ajvzf8tCB3RxDhkilIgTd0Z8IUTx2ZKH6HvIdR95snqwXPgSeTIq9CMSg1jyi0h1y4NAIXwJ4axRoghk2GBkRXqxuyBv2hkt8pWlYpCvgsBDLHWqn/8VjuMAxTGO8WUMUaSp1PpO1u9Ya4iD2zs0GYH9HXuQZLq2Vm9N4flWUWshJeQaMxoVVRRJcpQE05hitb95E3PjOmCKIMYiZBmit1xQQwkxC3jo/TbhFw48sWTPbDZ5Omt7zZWeg65CnXxzPVvCI193iFoPXgNZJ+ghMSfeYj+84vitMviRUzNALj8IQZ+iH1aYgnSGCDrgcJiadEiw/nZkeGK/vxQBDYn0Okh/GZ0NiYcvE7TsVCkAabKFH67i+fZ+cAeKlY1vXKChAL6/zLmL30V/+TGCYK2opJA+SgYor0erfYF25z6C8AQbp74FuUAvIArPkGa7+N4q7r4o0Dom8NdILKLb0ohZbnR1KBngOQR02+2TICRh2EepFlJIPL87Cw7dCU75QZ/e0iX6y/YABcBK/x42Nt5Ou30GT0VwIP9aCI8wWGZp6RL33/s/0O0spr5qtzfwK+tQSIwtpWoGrTN3VdNd8FXIKYtWjDGGrck1alV4tJZpOQJGm5NrrLRO4FUIAEgknvSYOipkYou4sg0CQeSoCLqvdYFIhpyONg7UORyFh0dXdTgTnmLRTvaB6Ax/YOlh3tK5l743c8caQ0sG3Nc6zdcuPcyZcI3TweLKjc10QFa1Yo7iye3m9jlpxWsxNSk9FdLxQoK7dnUC8FHc31rnG5bvwZeK2w6qvbPhUm3fQ0uqhUGAUZbw8NIGj/XPsOK39ulkhBB0/YBHeyd4S/+0Vcz6IIwpMtnvbff3tRYMRaZrqDz8WdACYCNs0/fdY2DH8/kjpy7xcG+VUCp8IfGkJJCSlvLoeD5dz6fnBawGEaM8Y2qhZWziDBfA56flVTKeEFwIQ5aU4r5ZdYQnxKGqEV8I+lKy7HlMtOaco5oA4I2dehn7AjgRlD+XSArORvUqX33g9bjcYb+daaKa99Ag2Izt1ao9aa88KYMCNtPycckYw4K62FK4GPTfVjcxB7jtWMu3GjgPY+OugNye0W5JMQ+aMVN4Kb4TCEFPKW4kmuuJe3xr4izwsFNQnQ0FK77gDa2Zg95hYyOA85EkcWxdLrTgXKtgIqkCX8BykDs59l/fVay2DP1IO/VXu76mGxg8YTjVK2/kOCkyx8+uZKx1crqhJvR0ocEFKGFoe5rltuENp1POrlabb06sFPR0o6ksTf7Nc0GaCZbabntJKggCQ5qJCsxHAk9qTq1P8S3OaWMEaSJqCTMLDOfOuSpzJWcvjOj2UpSl+kGI4q/bTwhCzcqaTXRbIBpoMniR/Ts6h6yC+HY6qXZPpKjLQmXonHUEfVdrOrCF+3pNLJB9jewYcGmrSBC+AQnqtKMfuuifbE3MhZWSiRxMaNAVp04DZB1ztMB9Bm8XKmlQGIoJyYBx0Cdly7KoyqiIInAikJatsBrm9TUoNLBjPyyWJKIjiyDF3dFmJSAUiEggfIHwBKK/+BnKVR95LkQcKHkzHrDiwZnASTlV2sZlH7keFsEITyDaqgh6zCooUMVncjUAFxVlktNEl8Z/vTwxAkDtDMjXltH+gjWyAKIAcW4DEfzXqWb8bw0NCr6OcYxjfDlDh37hDbCtbKSkkACsBgNORcBsZRk8r6CjWgSlIAoxaYqw0A8UAYisCMxYdw+mWA3ubKPX1ittZM1kiFEKsrSgccqzO3ORVBCE0O0j1hY4OMMOKJ/5Vm8hhALfnm3nnXoz2VMeODjpDxjDBF1M/5L7NM+vQbis4Mx/Zz/cOkmxDasY2PLaiMReQSGlh3fmG0n2nqMqeakI7YKpd06TyHAVk43Is1ER0DAak43JdYxRbXQ+nlEsLUbUOssw3TpA5XX3s5YofwljXR0fhu8vcfrst7O3ez9aJxiTI4SHlB7GaIRQRK2zM8FtN5QKaUVnUMpHCh/tcJ4K4RMnN60UJtrkRbVIjXVZ1LZn68/b1+1eQOuUMFphPJoW9DBeC0MLMPj+EmG4RG/pXjrdM057S72L9Hvn0CaGpQuk6ZQ0G5LnKZAjpU+vc3YWvFgMKT2U9EkrDINKhsSJu4otCpZqCXl3wxU6oT0Atju9VdkWQMfvWSnG5liN1tiebqKzfF9k+CgEUkg6fpepQxvn8vj1Wu3TaHoOOqO+3+WBzkWuxbeJZEhsUjJTvFezMCMeHqEMaKkWkVz8nH3pcW90muvJNhfDk6RBhsGw4nU5GazSURH3tk4TLqi2Abga75DXeL6LRrW9PCYQiolOaUmfXGlCvH1noy8UPRVwIuhWei1PhG0U9n16GXqOOekgBmmCEYJLnWVyrZFIVvyIjaiLlPOAxWI71+MRsc652OlzLR4zyBLmWuKBUEgk4zxlWYY85hDIPoi25/M1qyd5fTxglGf7dCnzJyArendEAy2tRec/EEW8OJ3yhSyjN6uOMMYUtAmzSo81z2NJKUZas7agguLN7Ta/vFuHZgymDrqCh1sBHx/Fla87EMKZudxR0kl1cDfknYdVCiHqkW7Na+u+VPi0I2nHhtxxvZGquIY+gKrJ6TtZzrUkZ5ybmVaLIBSCJU8wZ7t4fpJyKrD3QVlxuXvoO45jK77gRCC4MhX4wpCLOzRi85/xRZFrpYH1mTaDq31/cC3nyYFyBjLmCKThQs/eX+MMdqcSKQrqpkQLpqnYDwLMZDzwlCHyinbev7pYFDryDctdTRQYtJ4NgabQhJGyoJa650R1cemVpRzlEJYWotCySPPFDzDNiqWgFOBiHBOmEPs+vebeZCRpPYfz6mpMp+1+eEpBbzklTeWsuL4IqAhMIVMoZlRRWnLizMhJWVWVzuogahaK/f4gQdfRGVfgde0NDE5o4hdr2PMMymFvfo6QINvF2MLdVGJzGiABsq3xzzTI8ndAL6gYydsGuVdxoJSQ9d3viJoUAQrhep3EzOEuIXfEsU0gMKp49ytJ3QjQJSzV+5BgPFFErqtiweMVqwp2cwQCI80dn4wUc6EvCAV0JaIvEY4qt0N2uwX1ks40bGewl8N2htnO0C1Z0D4tVXdRi7ZCrPoI4x/OfZz/u+piwpOQfXFfcuMpzFIHsz0o6M0PPp55uzwPohC1trii+6sFxxUUxzjGlzGMlNCuTlKYtgN0FBa8eCVI1lbQtsCABULA9KzFYZDnyDwn9ypOJO2oUG4blG+0TZbOBIJkUXPsQp4XwYbBHkRuZ4u+fR0GO4WTVptiJa7nk+0s2JHGBbVUaLcllI/obkBQOFkrQfnIFYfAadiB1qJM+AImWCI78y5My0Gx0r+nnvB2uORU/RJCQGV6GMDrLgy2hGe+CbX6lmrcjF4b6bUQnv25zAMT6CnGZIh8gphtxQ0ao1NMXtBETQfPOn/On2VUh+2zeH7/QB24OPQnVY8gPFkEQSrqOLTaF+gtPYrntfG8NkoFCCGR0qfVPs9S31HJchfWV9+D7y0jrHoZRXVBECyTJLdQFg2ALNtFVRUsn6HdO7/wnP7yAywt3Ue/fz/tzpmZQHiRTe/7PaJoleXVN3LqzLtmmh92eF6Lc2fey0r/AaT00HqKMemMEiGi37tIp3OarZ1nuHX7qYVtUzLA96vUaoMUCt+LyHJ7Du76krsC5G5s9C7ONDWOQgjBOLVTwpWhH6zjOajLNlqnUcLn0tID+I532RMe/XCNULWQjqqgrcRe0lyGQAREC4TE37/29VxqnSaUAR4KT3goPDw8fOETqZCWbHEqOIEQ0Fpgb5zH3Ex3UEIWmYBC4QuPYT7lpek1llWbh9vVxMhvpntEC+iQDsJDcdIRkLkS7xZVRUKSmBw9qySQotBPEAJyDBOdsj0by9ccFUtnwp5TDPxo+wQrweIKou1kws1kSGKKCiFPKaQS7OqY6/EQYwrKrW4FHaUb0xGxznh9MmQjaNNSHnPt59TkjPOEaZ7xDevnudC2a2jdjbby6QchnpQoKZFC7t/Hg+h7AS2bR8rUJXgqNk8PhfZnsqQU39Tvc8L3CaSkqwpKHSklvpSsex4nZhRQ54OAzQXO6QdaVQjQ7sAA1y0URUoIVqSsnKEmKFJa3mJZi654ko3Aow7pUSAUy46swhhDqwatlRCC8xahcSEEDYg06Th+//Ga1KsAgWO+6Yf1vaUBOCv3Vn1JZgyfH6UMc81cz1YCiTHcSjWZLnwye7lmz+GYqavvAIsDpm/vCSYGul5BFy4pGigF+DMq8UhCJGbaDQsya9/Zhwc6NtWLw4g8w8mWxhaT2RwrIt8wTgWpFihhCFRByyRmwRRtivvZDQ0Xl1MePWW/4nZg9pe7G92cdlj8/0oWjnIli2u8tJGwvMBJfxACWF3S9DpHqXOkhNV+xvpyzu4CkewgMEymiigwCOEOBkVRTr+bEgb2dubakGWyRgWA4dFH7IlNAH6gMQbGg4JGyQ80njfXCBEYXQQ1/VDT6aacPmffBylVaFXUxWDbPmZJVfz2IiwSx55DZ6DTimOgMrQ3cqY37e0LVzU4gnJ3Q7Y0/qpjbxgaSAWyW9A8idBAYA4yr+57GUVb4z+QIruOYNrJvF7atID0XGb9Tt4vxKqNb6rRMrXcAtjZkkGmgALteJ2MAONDtgzZmv35ibSIxpqKS0vjg44kulN+MemyKoIUdTy7Elh2HPdA+AJ8iuCDf2AAzIpqE7GikCcU4lS9ScJoA1dTzO2sEMaafz7R6KsJerNGdC6aaZUeCIgd+vcMwjGRyaUAovp5+8l9p6zH8uUeCEHebWGioPBvHXQlQDFQL7WR952B5IsbwPtvGccVFMc4xpcxRK4RF05htnarne955O0QYeOzDXyypQ7e0F5Geze0UqQb5dm+Is8RcYzU+g5tkg2+B2GIbLcweV6+XshzRBQVZZHOBYXYPx/PRzgCJGY6hu2bELYwkyHkSbE6NXrWXlFEr70A0hRefw4eeKv9p/snCxuyStXDLM3itF30VhiN7J1CT3eLqg5LdYuRIfnGGzHdU+T9i/brbZ1C1Em70SkkY7D5q6RfrLwr7ZkEoGdC3W6E932Q8eB1GL5M+TULEEUaigjdDivVuYC5+TF0slNcj4rA5Pti7EIopGqTZ3tM9r5A16EZEUQnkTIibJ1DqghfeOh8OnOKG6TwUMESnt8njE4hpFcERUQ191G7cw9R6xzx9Cp5PkEIn6h1BrXA4Xo3PK/F6so7GU1eBTRa59y5jwIpfYRQeKpbaF5YUnRykyIqP98CrchdQQGF42R55UF6SxdZWX2UyfQWk8kNJD5RtEKvfx+RQyj6bgRBj3sv/iFubT3Na6//F5J0rwjsRBu02xv7NFvD8TVarQ06bfui0VMhUbDKaLKJdmgjQKGj4asWWqdgod46v/4OPv3iv6zo5JSMkx1ynaEsqoWBaiGR6IqVbrvxpvP4+d69PLP1JGC4v/8wL+w9Q6YTtCmCeBJFoEJWWyeQCJaCZQKLQ14bjaxFvgK+8jndclemnQxXeevSQ2ylu7w8uUKiUzKT4+ETyIC2arOkunRVjxVveeFvfm70ChOdcCpYZd3vs5MNSU2OLxR9r8tQT0l1hl9BOdIXHm0VVK4ji6TP1yzdYz2e6JxRnpCYnFWvxXYGsc7IjKH4vxyTw142JTeaFa/FiqPiQQhB1wuZOGi5DiJUPudby85zbsazwMRMk+RuDPOYQRbwcG9jof4EFEGI69MR2hg8KTnfWmKSpwyzBGMgVIpVv8WlGsEJKII6D3VXuT69zCTPyIxGIAilIpByPxP/4aVVqzM3n7E61ElWDRGcs4hkz7Hmebyn16MjJZtZxlQXztOuUrSkZGn2Xygcxi4kBjYEXK3oUxPA1JHuu6U1iurX7Av4g/3yRYIQgq/rhnx2FFeeR1Z8n75v98wEogjkeFpXqgzSxvCH1+3z0jeur/Crt8ppDm14sGMPa2w79ClsaNkEGYCHui2e2KtHRLVhofCa42Lo8dG9KQ6dVhJj9oMUrj54TwRX6sdknFBCsOoJLkRwdVrUos5lNRRF0GJ+y1Yd926O1MClFjw7gBH2FKK56taSQ58gywWRMoySoooiUKCkwdeG3EA+c4ZvdHLefiahFxqWHYLCSsJqJ+fWQBUURJHGGMFkZr/XylluG+49Uc9BlWuBpwznNlKmsWBvLJkmhQOxHWlaYXEf8gXlNlLM9CzkbHs0K2/T+fw+FkGLwNOs9FKUKph2bXTpWgt8zxBLsy/W7YLvaQZDn411+3slJWSpJNdFlYRSBs83BbVSLouEbqU5f88QPzBOIgGjBe1exnjXo3p6NeSZe65rraSk10PQkMZqn/LJCIHfKu5htFxtXWdyg6nYHfwlXWxJHWLowckMLzRkFfNflA/hOXsD5pUTZgRqRZNvyzvVAzmAAQVqNSc4n+Odyp3SfuLeFLOagSPIchA6NEwfdo/DxhMIBNoHaSn4MRJMCLpligoF2++1JHmUIyazvLVi+XwkI954kPUhWxVky3Z7IgM5NYiKc6aRkJyQ1k6dbgQYVbUco2grPZCR/aGYHQ0xyBM+9DV6YiDWxbX7AiKBvOQjl+tHsM12hhnb3wVzO8V0pDOosH8pSiCWvEII2wYpYMm+TxdSIFZCzCCpTDJiAoU+Y08YNe2IfKWHd3Mb044wUYiIY8gyJKLwi7VC5FvvQyqFqVGF+pWO4wqKYxzjyxm+hzyxDlG1DHaDwUhhFckWcUIWBbV4CrNex5rpbjyPYNed9bIPrWFtBaGUPaCgPETUgjBwBzsOrAjMqptD3OzO+AGNOSC4PVsRzCPucxFu38NcexXtEG9kMgAvmtE8LYCQ0FlBJI6KBhUg2msFDZRSM6f8/AHNwuxCzfQ5ErIzXwuBPTtXbD6xuF0HkSew+4LdXj4Bv1vRWFGNIlobC89UvYt4vUugAsqFj2cBCr8DCzL8hYpQrRMYnQL6jli28Is/GSBUhM7HaJ2QTu0OXSEkvZW3o7wurfYlBBKpIjx/GT9YwQuWUV4Pz+vR6T0y+416sf6iYuIi3d5DdLr31Q5OzHFy45sJvBWUaqGUj1LR7C9ECInvLyNVROCvW39DCFWzgkKSpNUCplDQPfWWLnLixGNcvPiHOH/x/WycfEet4MQcWmds3noSg8b3uygVkqR77Oy+yGh8ff+8wdBNQeSpEN9rIxc4pwWKXvs0cTZCOSoUljtn8CtShynhkZuM67v2WvuOv1xLtHc32WYQ26sa2n6Hx069m0AGKKlYCVeJVIuW16bldWj7HVaidSSCUEXc238DgSUYI4VECWmlDCvDRrhBx1EBADDNY7TWjPJJUfUAKKEwwqDRJCZBCY++6nExdFfwFNUTd5yRnlCs+31Oz4IVvlBkRnM5qUal1fcillWbqOJ7cjFc4+29S9bjkfQYzityRKFZEOuczOTkRpNqzUSnvB7vkOU5b+u5dXNC6bHuRZWfyIrXZj10j+lXpwOUkJyJetZnneiMezuLKemgyKiN79KAaCmfjbDDiahD34/QGHbT+moBHc/DQzDKUqZ5ziTP2EljttIp2hge7q1wb8ce+Oj7Pn6FIMvhtlcL07VmOhMPRBFvard5Y7vNpTDkpO8fqhCIFlQLvJamRDXEEw2w5xBe3so0Xo114GPt0Jmt/63LLarX+sLD3R6hg2Nl2fdoSYWqSPW04fuMLRojAI8tL1fWJ4DCQd5x3O+xgz7LhrZDq6XnqVr3D+BU6J6/QinoSGllaG1JSUsKtmZOkZajQuFW/XgMgFOYHqCrBJGAk6Ggq6A/++uqO8GJthI81K7g5BaQaOj6RRCiZEU5q1QrghOe45ULlGGSCXqzKoHQK5zLShbBipZv6IaGfqiJPMMbHI71Oc6sZES+5sau4uauYpIUDdAG9iaKbpTb5AOtOEjvpFSh/eCpIucqySS7I8nNLY8q8bSlpSJxLNcw34PMaZOkKAIhCME0LdquHBUIQWAIAo2s6H01CG7fDsky+3NOYonn60PC10oZ/MDQauWErZxuP0PnEmn34xbf8zRLG7HTYV6Gdtd9I9vLKX6UM9wMmex6pFNJOpUkQ8XolkfQyfEdug4HkccVBZRnHdtoUI4KDhMLorMZOCjBDtr0T2V47QWURxt5UTWRs5+PJ6RB+AbhFwEMGYDs5agTC3RuOiC+YQoVqlCMhNEbY9JT9nP9W4J0RaN9s0+5VAYhiqqHvOumZEJCcgrMTAZvv4riwOBiJEWFRQTDR4WzExof1NBQ6SGLotJictGRjKkgXfOq+3cEsGCrbrYPPLNQIpcV8qSPPO0j1z1kV8GwPiWSMQazszj6ZnZqaL+dCBGRZc4WAnkmWqhvIe9ZKiaQihi899GF50zfcBE9rz6VAtOKML0uYnUJ0e+gHjyHnFF8ikVaFV9FOA5QHOMYX8YQvgdZjjix2AlglERmRYZe3inf6qjRGJnm6DCouPARZB2H81TKgh5hUfUEgJCF+I8Q0LNk4nkeottD9Ffcq0soJvUwQq4vmGHjIqvUTEeQTmdBgIOkhAcWEQZMmsDUnolqdq8V57f6RXWBDV4AvQ1or2AmO9bThPKR7XVEawXRWikCH2JWGytkUamhQky4jF46h0jc6S9i79VqwZM5dI6Y2B11xmvBAhHoQ8jGiO5iCiBjNKJ7oaCEkiH7q9sZ6zwqKvQspF+pTFwGq4hgDXHAiSikQnptpNctnrahqKRY4GD3gxWW199Nf/3dtHoP4Pl9hPRRqo0fbtDpvYGl1T+AUD5R62wtgWSAPJ+SprvE8SZpuouupD9yFEqFnDv7HbTC0/jeEnJWcaJkiyg8RSs8SRis0+u+wSrkHQUblTP1AYTwagr3ffFw6/ZTTCblwaXpdIvx7FicuJ9vko4wJifwOkiL01ngEYXL+H6Ekh7KQfGTZGMiR9DwIAIVkecpu5Ob1nPOLl2qFaCYpkN2pnahNoBz3Yt804U/xv3Lj7IUrrAcrtLxu7S8Dr1gmZbX4nT3PI+svQ1fhWw4Kh5WgtXK7QsIWAlXOBnZK1qMMXxs90m0MPS8Di0VEckAiUDMdltd1aElQ1oy4kJ0zvmbu/moUut2smopwW/pnkdKQd9v4S9YNrdEwMPd0yw5KOnOR8sU4S9ZVBHkCUrO6J1m5wiKAM1QJ8QLxodAKkK1qGUFFIVY88qCgNEgKwIFHS/gYrtP34tQFNmIgVScCDusBZ39YNIitL07c5LBkOqcVOeH+tGSFzLK63lCb8ZjXhztcl9vmQd7Kyx5wYwfXtBRPmdbHb5u9bRTj2I9atGpSX2pDcQVCMnPBcHC5xJJyQlHFWhmDM9PYq7V0XiAfTHyu6GNYWoMXSUrOf+XgHf13f3leqoLHYoKEEBiNBuBPfHmwXaXtqfoKGUVWp7b6krJehByM7Fz4p8JAx5otysFlQTQVoq+45k02TxfatmvdyNQqBrzakvA1/bciQ17uWbVlzza8mlJsb/CksCSkqz6BZ3cRBtWPOl8fi5NAhvaAsYLvvjmXtGujoR1X9BWYl8cOJSCVV/wcFtwsgIFlhKw7Il9fYi72D32WWd8abjYy5nm9utd7+QkmSw0I6Kclm/o+IZQGTxpiJShG2jW25qHNhLaLpHgeftmTvN2aPDVnYBHN9Kc6mcMJorNQb1MZCVhqZOTa7i9q2bBhcPQBsZTyXjq7mBrM8HtYKb3MS8yF6KgQzKmoLqSAkJfc3PL3p+jULO8nBCGFemMtODWrYCpQ2Q6iQvKqOW1hDDKkTNHuxDg+5pWJ8PzNVkm6C6lbs0SBUtrCV4FZ/g+hGHjkkWheIY8FeSJJOynKP9O+1SoafVzkrEiW/AcoLjvJheFTsai01XxTIyG9mn7/JlPJd6SwVuvIr4GwqXvMD9tJUf2cowu8slEZAonvSi+LzzAA+9SVikYpO7J4c+MYNm+5tGhITmbMn67WwNFTQQyE6TrhnRFY8rupQTtFUEHoWF6wdEfhCA+L0nWIV0G1Kz6Yhbg0F4RRMiWIT0JZkHVl/FEsc13njU7V0K6oRCOScJ4AuMJdNVIvA8ictjTppKWpZk2mBxyDtE62W3XDH5sBIhlHwI5X0QXItoX24jOYue/XAnhRGshp6EG4gtr5Ocr6KWFAeN3PkJ6ahXjeyAERknEShf5wFlE787aShxrUOzjOFRzjGN8GcPkebG66XaKlWjZ6hNmkXuB0IZ4rWd37s/TYTwPVGa3N/99JTGhe+OeddpUkpiUAkZjOHPSSckk1tYwV14rAgl6TsNU2jpYXUeGi/LOZvdiMmY/zcEWRc9zFhI9xzOnlhcUgtlJSTBDCGivFFoVfkS5RsAdqLV7yW8+XWgZBDnMGJPNvDHSI1+6WOgxDF4nX30AbA6wQ8GXChBAaq+CEXmCqZPhbzQmWKnQAoHQcRGIQFOsqsz+MeSsmkSoxcGq2Ve89mmybI8547S6K8tR+p1C76CCPeW1WTnxPqT0ySw10VKGRN17F7dthjTdZTR8juHgGZJ4E60TlNcmDE/T7T1Et/cGpCNTvwyry1/DYPh5EosugJQh62vvsX5fSg9PtUnSufvCDYPBczhf/2shSQaMp5t34lglmE63aEVrs0CNHduDl+i2TzCcXMdTIdqoIyLXSgaE/hJCKNqROwi6PXyVTrTO7uQaVThOhHBnVmljalE8ZTqp9MYvR2t87Zn38fDaW/i9a7/O3oxqCgpneNvroqRiLdqgG9gXyg8tPcQntz5RKUjhSY83LL2B0FKRAXAtucVeNmKUT/CEJDcaISSRCjFGooQCAy3VZmpiVr0V529WHf2quWfhfLjGxXCNK/EOoQzIdcLBTljsgyQKyZIXEki/eIaWZ9xRASeDLreSEZfjXRKdHxz5UELQlj4dFTA1GZ8dXuMbV+6ztm+YJ/S9EB+FJrc+lWL2E4Sev1A352DLA+lxMupyku5d51SfZ9aDFqFU3E4mTPL0kNhspDyWvJDVIKod7H1tPNhv74mwxYkSDalbyZSTkd3BnmrN6ajFZlK9esNjcU7G/5+9P2uSbMsS+77/2nufyefwmHPOO9Qd6nZVdQ3djR7RBCFBBAyiUYLJKDOZ+oEyPZBmeNGTvgDJdxL8BjSZURT1JkpGEBQIAmgK3YUu9FxVt+oOeXOO2acz7K2H4xEZkRk+RGbeyMyb69cWXXkjTpzY7n78+Dl77bUWQGIM76Upfz2ePbH1UZrODaAI8BejyYUmie30b8/anw/HWRvzz1cGaEWWjQXZG7+YFCAy7/R85u9XPswNPHyv3eaf7+6wI8XMVfgxEFlLy1rGC3pBtayl7QxNZxmW1cyyUYa6IXgiwuacAIpd7uPyRAqsxbMvLh/lFak1DJZs0LnuDH9zQdDo+NldjS1XSs+dvGLs62a2B5Vn7IW2M/QcfJjNv/CNLvqAqYMOi+Ykb6fCrczwi5EnFqirVj05LqyB311ZPhzkJFAhJ0e14TgDoN6tARIb2GzMKDM7FVvoNyq+OrREFiLr4anDYaNZ0U4Cy7YPORgZRrmhnXraM25bHuxb1lrVhRaBrPcq7j6KmJXUE0eBNA483nc00tkT2GIgST1FaciLwHF3hzBd5F03oPY4G1jt5uwfRayv5ETu/D/8/ruHPHqULKz+e2w0dkwmhlZzxnXP9DlJGxWTcUU0oweGtdBZWTyz2lnLiSJPMVrunimKPVlz/vtzuBvV5a1ST5Q+GUN53EsiwGjP0p7Tr+SEgIkDPpe5173H22brFdHi1lLYJFDaALNKb0mdBVHtW3xZr5GbxTQDBEEchBwo5KRkUSilDp60PH7PYhZkUJyMrxXwH5aEz56ML7fgM0+Ynqaqtifas0y6C57HaVTSt6EcB+yRIBVnqiCJBynrwEdYUKxickNIvoTooC4LddI/Qp4EOoa367mT6BHk85NfKbuW+M7ivjnBgE8WzLRMAyUi9fM+9/ZBgARkQem3pbyiBWvHgg+Ex3ld3un4IskJ0o+R1fhi15StCJM6fCOqPwROfR57omkmSwRG8Ou92XNJT4sc40/eI/7i/snJsNE5+yEgvRZygZ6z33SaQaHUayzsHyHOIllSF/uccS4MIkgAHzuq1uyblqrdxDdSvDX4BalkwQhlIyXE8dxARr66SrBu2tx6DmPAOaQ1/wpKkhQTRZA2YN6qxiiGOEbiBRO6jXZ941oV4Gbtbzph6Euk0UIa56+GDsGfzU5wcX31dt7rEmfQ6CJRimnPL0NlOlcxG99G3DkfTi6l6tyAKCXEbSBgju49u92UX/vkYhkPWDBzJpyDh5P2iktwGTJndfgxESGIq++KjpuVP/mjdeNyQGyCuMVX3SbdwDa2MXH/mccvYrBRmyhexdiMKFlcgqr+PUtn9TfqZthPiaIVuqt/Y+nyTEW+y+7jf8HB3p8wHt3B+/rmpSqHDAc/5/Dg37D7+J+ffH9Z1sZcv/K/p5E925ckide4fvXfJ4lnZ2DFrksSrbL06xsCcTr/eP46HJdwiuaUGwuhoiiOyOaMryhHTPJ9GukaneZVIpdhxCGnlncZsTiX4VxKv/Meneb8u4z94VdMiiOWmcDJqzGV96y3ZveROZjs0JgTIHhaANySjexDCNwf3iGx6ZkJ5ipUHOS7jMsRt7uze+YAXG9dwyx5+ehw3G7OD+LdnZZcezjZYbc4JDHxmZX5Vag4rA7xoeRqfIWdcn4t+VXXwS4xvvWot/gBUK/G/99t/Bo3kn7d24AnJa5OBycaNuZWusaqa7CzIDvjB62rHHeceJqIIGJo2QQnhp8NH1HNWa1/d1I3nl6Pm3ODBoJgxXAr67NTzO9X0V+QYQHQj5cPVK7GKVaEMvgzE2k+QO49VgRnDP1o+Ru0YVVyVC7OuHg4mVNiEXicj1mJU5Ils0EEWI/iuT0eTvswy/gwy4ieulFOjeFXGw2uJ/Pfu8PKc1BdbNIyAlZnBShE6Nq6gfKiRxwDDSNzyzFVIbBfBRpLTEjXYxMiY54p+XVawzk+bLYYVbMDbhV1oKgxHVt35vUdPCoKbjcbXI1jIiMzx2mosyeupSlX52Q8NOY8H+dpOsPWnFKtj/KKXmRJlniN28D/ebtPYuePYcUZnAjDKjDxAStnP+XzENgrKz5II/rR/H19mF18PWMvNthFJTVE+PfWDR83zTMZJF0n/K9XLe9ky70vvxrDnRzalvpYnO4vUM9bGSBznrU0IAhrc3pGALy/WtDP/DNzUM48CU40osCCSlsn9oaLH0deCoPJxWb8kjjQyvwzgQIBsiTQ79TnjsOhmRnEABgODd12Nb1VC09V9hVEAtbCja0RcVT3eDgczH7wKyslH3+4h53XefjUWAU4PJz9Hk6zOqgkUgcgzgtQOBe4cvMINyNoclqcepJmhSzRLFskEKUeF8+fZJ/MGf+TbcziggMCSbfCuLpc0txLSy9ELc/Kt+cH2F3LEwqp//a8mIytf+4nUB3MP2aDB4kCfiL4IyE8/fR4qB5Zyi+Xe5OEgRB+FsHQQCOcjFEqsEcGKaDqeKqux+6buc9L2Q74aTktKevHFIQZLRoC3kL0eEHWg4FiTZ70n3jy63VmYBfC9HwV7S0+riZXzOIm2VKXgwoRVK0F5wYr+NQsLvMkQAPECGFy/jjFCLJEaT1pXHwqWZwgc3pfnGzXWnD8hUC4MyLs5GfT/Mpp0OLOeOFinDN/TwS51alLRTlTfx0fhEYIsauf40ZCcfVi98GhkVJc26gDHGf/KGati7m5RDbGW0QzKJR6nVUVoShhNIGVDjzcre/ozznhBiNUWTy7QTYQnGV8ZYNo9wAzpyhpsAafJYQkpuh1EO8JM9K/J5vreOfqG76TUklPje94CVOa1FkRCwQxSG+FsOvrwMZxj4hAHaixbhpQ8ITREMlmT6ZId5WwO50wb7QhP2cl48mVuCDX3psdcQ8BafVh/y6hzOsAhXXTi5VTk+xRhjTrVb7S7NelnuaQuIXtXIFiRIhSKEZAoIr6ENeT8yFq1b0vYH5z7iu/A3/9f4NyXpvAU5yDtDf750mnbjyNYXHnKIFqhC+OliulYKJ6YtjGhBBRX91Or55l2uBULJLNLg9zzDauUu7/NSZdB5tBNcb5+qrU2ATE4JJVXLKGjZaf/DUmptP/IVU5oMgfQwi4uIeLZtc0P8/BwU+oykPyGXXvx6M7ONdmcPjXtLufXGjfUdTixrV/n8nkEUeDnxEINNJrNBqLS20Zk2CMQ7CEpTqcepJ0dlOwr4sPZd0I3AeOBnfwvkTEEkUt4riNmQalfPC02zfm7gcgcg3SuMtK5zaHw3tUVb0qXsRgjMPahJX2O6Rxh96cYEIIgb2jL5gUB8xqKHyaSB0kWWnMvhgN4okukEljxMxdgX3a4/EDdsaPyFyT6+13GJUDiipHxNBwTaxxPBzdZbs5+9ipgseIoXrmbvRZjajBn+//Obfat4hmlMQrpq/J/fwxnoATS8e1KENJOV3l50xEFTwef7L9LJFxXEvW+Wxyf/a4TMJWPD8T47Re1ODvr32P0YOcu/k+E19S+BIRwYmj41JaNuFGuooTS7Hgcy62DieGpokppCIPFX66ZtWJJRAw05mxCk8Z/MxySmXwrEYNNqIGj4oBk1Cd+052YliJMjIXUy6YXL+WdXiQzw+yXEuXPwcelgWC0ItSKudPskYiMUTGUoZA4T2daLlAG0C5xLUEsPCxliEQX6AYuQO24pjyAje+30pT3kkS7hcFeQikImxG0VLv20kIxCJLrUI+IdCZk/XwYRrxP+wPjjc996xlAWfqoFZ7TvmfMtSXpVfjiM8mFcM54xTqnh/J9DWf9WoPq4qfDo+wIsTUlSZO7/Z4zIF6krtlLWtzFqtUIdC0jqtZCgKfDkacns4T6te15Sz9OOJmI+VGNjtYtpE4Hsxp8Pns34eNOU2tRQKJNaxElsdFdW71CwF6VvjtToPvzlqCf4oV4Ubi+H8PRwSBnjO0bR2s8NS9b1rWMA6BKszPaPmkafl/7Cxffs0CH6aGMjyTePCMyAh/f91yWAp/Oawrf6w7eLchS3+ulQH+dCA0TZ3d0nZAWe8rCDjxZA66SaAb12faa635nyObrYqvDj3d1DPMhSoIztRBieNhbbeXL8+5qFH12e0ulq1ibWC9V5EXQlFOJ7ijOqBwmvd1cvJ5ilIYjQzdTkUUCcNR3YC68oKRgDUBZwPm1IT+ose0tlbSapXs7S+4npGAizzzTtXOBRrtksGhwxjo9AomY8Pg0OErwbpAq1vQ7iz3mlQVuCgQpeHcRPjTY4tSj3WBRakMT38kVYVQDC3FpF5g6BKPS49TUuaPL12rsEmgGgcqI88mux1nBSUem4SZr+sxkwRM6ut7KlNPtp9p8jzNNhAbpsUWhLDomA3g9y3iBZOGJwEKebJOLIyF6pElFCAL4jfhy+n9tBckCYQ4wBjCpA5GmLEhUNXbHCcAzjqeVwPxAyFEIEOwh4LkT6YngoHgIGTgM3ADIXooTG7Mfn2jRyCVUKyC5AEzAlNM9xWDG0M18PimWarR8viaxad1A2853XT7+GmXuteFT4Xq+OQ2g3ioWoaqIdijOqhz7qEq1CsY/PR/54xTVixhOP/9JP3nW+sufUf4as6CPAHpLVhIu1fMb7Q9KJGDErrLl/A0KwlhLSXcn1bdEKCs7/WkrAjGULUSqpVle3M+4ZsZ+TtXMYMRphWBNUiniVygv9jbQjMolHqNSRLXZZEAkqSeTD5vxaUPHNe1M6P5qyiGt69RpglS+XMvkIIVfBLjk4TRtS1CEs1sug3gGw3y1ZU6g2LWzYQRyEvCvYdLTYFKkk7vGF0dAIgTSFJI0zoLQgScRdptwv7+/H1FMbJ1s27AnTWh+dTktJhpOSFBVrcw196bvS9jkbgB6+9Mf8dA0uCkDJEYcAlkvfoXGn3M7R8hS6y2sxsfYdIuxqWYbAWTnQpO2BTffjJhGOatbk26+Ft/D5aa4BSwjflNt6M2dSHRJV6545JMg/lNik8z2TqY+EljaxPVz7MIuAZEHUzSW/ynTUS89kNs6zbGpYhLMa6JcVkdnIi6JM13aK58b+mxnWZdk7Rxg7R588LBiTzfoSqPyIvZjYxDqCiLfcbjLwlLTPyeJ0nWWO3/Bmv9v7FUcAKoyyGFgLNL5IYDIIxHsyd+vy7BVzze+TN2D36G9yVlNaIojxiO7nF49CVFWa+SXl35iDSZPfHsbHqSLdFpXiN2LRrpGnHUIo5aRK5xUt6p3dhmtfstsnR2BoqIcDi+T+FzlrmkMmKJowaPh1/N3CaxGVYsy7XhrQMUhV+uPM2Dp/5u5pp0khXacRc7zeW/P2dsAI/GD+uyS0uoQsXd0VfcG83O+mrajInPnwk8OHHEJq6beyMYMeyWezSWyFr6uHmDtRmByMRE/Kj9AeaCHTK/27rOdtyt4+RiyWxCamKcGHJfshl1uDo99ppzepYA3MsPuZn2sGJOJtDrvAyhCp4qeA6KCSFA08REc57vho1oGEdsLY7ZjTV9CCSmDoxkC/oUdaKU95trMzMy3m2ssnKBDIq74yO20iaJsdjp32/YiGj62RiJmdtE+DyptUtNYGYL9psZy1FZnOkBMk93+neXzbg45kS4GsfcThK243jpyde2NURLju1YDAzmLJdejaKToIOc83W6XHffGVpzAhSx1CWfr8SOa/H83KU6ACfYBc/fnx0eslOWxGIwYk7Gc/wF9ZXwuKqwAh81W7TnlA7NjAXqSfidouTpqfYAlEDpAzfTlN/vr9CYk6EwmLMQ6DyxNRzM6SHSdpauMziBSOR4EfPJl6V+nt9PY/7BemdhU/VjG5HhdCl0K0LD1q9n0xpuJhYP3JnMfzxfTqoLTRhYYDU2LLFI9kTbGX7UMfxm1/B+c/mgO8DdSR2kSEx9pVqEei7PCjhT3x/lXogl0HSB767mNBacbhIH31orcIa6IXbqacZPghNbrYrN1vI10pMlVvVDHVi4qHj6O3EUaGaBRvpscMKaMLcJd1k8KSETRXW5LWOmTbdNnYGXF4YHOzEH08yJOJr/+L2v+1c4u6CUnECaVKTZ/O1WN8YkaX2sHh04jg4iQpBpfwOBAHc+b1Lki4+d8WGEiz12wdhE6qbaSeNJ34tZ7KnXbrzvGDyOyUd22ptCmBxaRrt27hqzY1Er0LxW1o19p8GDp79MHLBxvWatWiLzJr1ePMnIOB2YOP2rQt0/IgqYBX0oQgV+JIRy+nvuyW3g09tVe/OvGcNA4Lg/x/F7ZSIwNsg0Q0FKiB5a4nuunlift0sH41ueKgsk9wxmwpP9AMaDCeDjJ1kW9pDZE/YhED2utw2uDgiI56S3hRRghpB+WQcvFpWLAvBty+idCB9z0rvjJLtFpoGPTKjawmR7QV+ESKha9TxMmPU+P97/tP9EKEJ9sTBr87ZB1mY1ngazbZHkOQMUHYf0Z1yHCpjtGIkX7Ht/cdA87F2srxmHBThT3ycWAYYV5BUmL6GokKLEDCZEd3aWq113Dt/MMOs9TL+jwYkZNECh1Ous3XySnmanOctP3ZgEwEe2Dk7kFdHeYO4usy/vQuTI13uUWXaSChioS0UFaxlvrnH03g2qVoOiO6enBYAx5OvrlO0m3rmzJ+zjLnBMMyiqEj77cuHDlq3tej/GTAMzxwGA6eOPYqTdwcQxLFE32rR7yM0PkUYbWdmAtSt1NkWcQZJBqwPX3sP+yt9YXK+wvYHJOsi1X4H28Ury49Ut02UjSYbc+D7247+FpMs1zxUbY2//LqZzFYkyxEYE18C3ruJX3qsDNQAmJjQXZBS8++9C+xbzr96mwQnjCM3ZDXF9vAL5DguX+0Bd7splhCVXtmJTxLUxrZtI0icghKqo1xGnG9jm9To4saCnwMmfT/qkV/5tkqt/B9v+ABuv4OI1Gr3v0Lvyd+ms/zbGXn6Nx+MeFr5a0GDPjwmhoqrml195mXwop9kqy64w8Rzs/vRrHdPTqirn4OhzxuPHgMfamNi1sSZGsPgqpywO6XXeYX31V+buy5qIZlZnL1gb0+vcpt9+h07zKkncwdqE2LW5svpDrm/+Jr32rbn7C8HjgyeEajrhPft9YsSRRnXD9qPx7GDVdusWiGBnZBycp1iyufCwnP/5ADAuR/g5SxmPyiOsWOwSAZRRNeLR5BE7k9lNvG+k24yqCQ2bzXz2EpNgxWHFsOJ6C/+uE8uvtz/kB633WYs6NExCxzb4sHGd3+t+h45bXMLoaQ+KA24kq9xI+nRdSmwssbF0Xcb1ZKXOcAjQc825TbKhbkK9lXTouvRkYlyoy0UlUu93HAr2yzG/0tqaO1l3JW5xrxiQ+4psRrNsA6TGMfQFj/MB28niIOvVrMMPele5knbITERmIraSNj/oXeV642JB2qOqwIrhetZhM2mSTgMlqbFsJA1uNrqUIczsN3Ce2FhW48Xn8+10fvC1HycU07+76K9HQN9FHPqKeNn6wy8oMYbbaYSV2aWJThPAGUs558HEAttxRFuezHcdz10cT45bgVSEd5JobgaFiHA9dqw4w6005kZ0fmg1AprWUoTAUVXMPaYfFzm59xipc/s4Ncbjx2gAZwwrLmIjSejOKQnajyMOy4q74wn7RVkHSZ7a3/G/rybx3HJM9S9c7PbZBLg7nr1a9NutlJEPJMawGjsyebJW+3jB69XI8n+9scaVBX3hThtUgZuJ5UbiaE0DXakRNiPLtzJHY/q6Hi3oR7dfhWWuAE94YL+s5mZlvEyHZf139kupMygstCxkBpzUX7GpG11/0i/5sLdcgKmfeb63lXOlXTfKTl1gteH59kbOO/3lsycAVluL/2Yz9aTPEaBYaS/ed6/t597Kxacmo60J5OWzWVvOBrw3DEaWcW5oN+c/B1UldZJ2VmFnTO6baWZGllVsrM+/RjYGtq6NSLIKXxmMAesCzVZJrz/BukBZCA/uZgvnDovcUJXypD/EAqtXRk/ffj8j69XXYfmRJR+df31k48D+V9FSc5vtGwVRu8KmHrFPSh5hAibxuMzjGh6CUAwXv9dsBq4dMFk494QqJkxvYwPRSoVdFIDL5fxm2p56on+6il9sICxqDn76501f97QYPfs7UtX323ZkmNlMaKqKILovhCicnfGUaWDBgz11u+Vdnc1w/s7qIAZAsAEzrLMUpKr3c/xvKepMi2LJS6TR+xGjm5aiCz6qM77qnhNQ9IV8VZhsGYrVBdfbTqAEnxl8Yk6CHuF0ZN9Qt7hsADF1qSU3/3UxaxZz0yEdU38QxSArBnMrQrovNrluNiLMjQTp2HqVQ2yQvsPcTpHOguyJEAiTJSpyLLHNybbDEn9/iEQWWUtOBYymc1jOUHYb4Czx5w9xD/aW3jcAZYU5GmJ3D/A7h4TD4YVKUL1NtMSTUq8xEcGs9/FHd+rUsuObiOObxeNJfFMHL4JAdDiq8+3Pu3n2nuzOg7pUUYDgDCFynBQmnQYokLoRUIgj8rXewnHma30anycweKrWcwh1brs1deeyOCbsHeCHI0xj9gSOdHtIf5UwOJpmS0Rnz1bGQH/tZMzLMOtXCJMhUsy4+sha0Oot3I/0tqkO7xO++kt4+CkUY85kF+QDyIf48RGh/D3cje8tNT4AYyPctR9SPfgLALx9duV2tfbx7BztYy4ltK8jgy/q3hvnlUQRWy8nSXswL+Dx+F9Ptz3ugjaL1I27TVyXVFqCiduEqEV18DPC6GFd9BSgLAnDO1S+IOp+eKHJALEpUfcjou5HrBfLX5h8neRkOdH8x3E8/SRLrpx/GUTstDTRsjfbwtHBL77WMT3taPAV4/EjorhFnh/UozAGd7p3iljiJTJtAPqddxmNH1P5HCOWLO1jbcJg9ICyGhHHHcTA/Z2fsNJ5Z24PChFDGnXqkkcwfS7PZ409KUU1LwNhq32TVtRlkO+zzCFsjWO8ROABWCprQERmrpwHiE1CbGLGCwJuAEUoqELFTr47c5tu1OJmts1n469ouxYHT/VvMBg6roMA76S3Fv7Nk98Tw5VklSvJy+mZ8rPRQ1Ib8U62zsP82YnxKnj2qyG/2/vWwn1ZEQ7Kgp5LOajGFOdmTQmZcbybzR//camkYZVT+PPLO4HgCcRieZwP2EiWS09vuZhvtV68pJtFKKnL8XSjhO45pZxElgqDn3G70WGvmMwsqbWVNuhE87NZRITNNOMn+48XFPA4nvwXIhEmwbPc8oMX9zdaDf6/BwPGS3bKTqQunTOLE2EzdtwrLEVZnduA2017Vfx6a3EQ6L004l5RsRlZHkaWh6U/WYgaEAyCNUIkhsxYfBDu5xO2k/P3baU+j46qknEIZxb8munPBYiNIQ+eW3PKfEKdPRQb4d54Mi0fHk4yRU7/zcgY/uf9Q/7OxtrcAEq2YFLnaUFgr5g9ibyeOJrWcGeUc1B6ivDkqvL4t/IQ+G93j/i9XpP1BT3kjhmpj++uE7pu9rl/UbZCz5kLvzcfXnDh6oswAoMKJgG6LrBXCJmFzII/tcrfCHx7pbhQP5c0CtxaKbn1gmNMosBGp+LBwfmf/cbA1ZWLBT2OdZqe3UPPcHz+axy5wOqChsLNZoXbs5Sl1IEFGyhOlfgRE+ogw7SIv7NhYY9YYwJJUlFWQp4H/FMlg+o1ZwHjAu/cHjyT9TFLmZu5jbCL3DAaOBpzynj5CvKRwc9qFj0VvOCDsHF78TVW1ikY7TmOHpx/DyQ2EDc8vhDyI0PSnn+BF3U8NvaIMZgonOnxIAFCJci0x8cySVXlYJrtEIU6aFDJyeT1cS8Ooe5X0XivWHzrZcA0PdVjOy3NRN3n4vQ4LfhqQYPn6b5ONAKUM14XAVygyjxux1LOab6dfWqwE8FH9TjOxCimiSQmF6oq4JsBHPOzDwCqgN0HO6kfL+V0X8cfKBb8OCxdpa3oCSGtr7lD+mSNp3cQIsE3DOObEWFRg6IqTAMvQmgYgq8DKXJSgnr6GGKQaQRc1pY7EUpmkCV7AV2UNCzSuPg9rxxfMC56ni8w7LA7Odmfn2ZSMP3c9FK/p6WcNmv3Hnd3l3K9u/jNV1a4Bzu4nQPMwQDJC8pGjDRSZK2L2VrBbKwsP9C3gGZQKPWak+0NZLVHGE8nb09dWYfpvyUEqiSaNh4W7PD8rAJ7cISMJrjBEHs4xE4KEHOyH0LAFCXpgx2kKBjevEKYkzZ//DtuOCaIYW4BUaEu2eQ97OzNf8wimA+/jayuPzM5LUmCbF3BpPWNrTSXm2gR65Cr70LzqWUNYqC7imzfWpw9wTTL5NEX8OBnUD4VnDhWTuDgHuHf/L+ofvGvlhrfMdPaxG5+UpeSOv13oybl5vfx7WvL7ah9HZI+J6WnTjte6S2WsPa9ertZdv4UTDLN4Jjz/NgGxL36OVyZ32T3ZBhxD58fEsYP4Uxz6FDnBBcH+IOf1s3J32BJvA4IUTR/OstFHaxrY59jdffzsibGmIgQpl3kFgqUxZAiP/y6h3ZiOHpAnh8RuSZx3D0V8KkZExFHbcriaKnVKJFrcGX9R2TTieu8GLB/9DmVz8nSNTqNOiBRViMe7v4Ze4e/nLu/9c57pFEXY2a/RwSDEYc1jiRqstaa3SejEXX4ePPXSJYoZXQcEImWbJK9kiyebF5JVueeC2+3b9OwjYX9Nsy0aFEIYWG/it9a+VWuJZv0ow491znpt5CYmLW4T8e2uZ3e5P3s3YXj/zoMqwmH0zJi23GX7aSLe+q8mtmY7bhLP1pcLm0rbrNfjclsxI2kR9PEnD52DMKVuM332lfYK+cHgh4WQwShDIGBP39WMBAofFX3vbAJjxb0l3jZVpPFx/JqnC31GXxaw0V8r7vOylOZFJEx3Gp0+KC13E3fR+3uqdbnswWgayxd6zhcsOr8ZXo/S/n1ZrbUqjKhnnB+5+lmjKdsxo6rseNqEnE1ciSnnnehLjO06ix/q9vggznNoo8lRvitdsp3mzEtU5cQctMgghFDZAyJsaxEMVfSjCp4vhzPzhS8lWXklWcSnkyaHY8wUPcNCUDDGD5otqgWnPf3ipJIDHkI9crLpzY/nqCfBM9uWXJvPP8990mrsfSE/fHY58U09oqKsvIcVp48PHtV6YHHpee/2x3wP+4PuZ8vN5G9EVmWCS1sxvMniH6n4y4coDis6gyOy7AZBw6mT0nTwkoUnnm+Ywm80ynnljn6ul3tl1xdKYmeyiZoJp73NnOayfM9XyJwY7NgpV09E3xpNzy3tnMWVRJptzy9bkWaBspKsBaiab8Naz1JVDcMTyJPr13gbGCcz38yW62SLPNEzhNHHuc8Iqfe01I3475x44gr24sXPABMRpZqQVABYHA0/2wpEihzOz1hznneJZA1CorR4rOvGGitT7DJs9c7LvFkK9XJ7djkaPGB6HPBNqbZfU8/5mn5g2piQALREuXGRr+I8GND1PbYjkeOSylNgx1YcN2KxrcnRL0lmptnAWkHTMeDrZtln+lD4agzLKppCad52qfKTldAdn75oartydereqz785/D5E6dbWHKejL76ebRwjQDQgK+AWWX2aWZrFA1AvH9gB1BFVNnTkx7R8g0i6JK6kyIxs9gbld6QIpA9ssKBHwiZ8Znyjobo2xB2V+iTPSRBysUa45ixeFjgUhOSlAdl3YiAmkKZtUg/cvJcPu6SGuJ9+QS28A0I2MwvX4uPcwoe2hOLTQwwxwzWFDFo/LEX9zH7Rxgd/aR4/6vIRAGI/y9x1R3HuHvnN+f8m2lGRRKveZkpa6jLWlCSCYwyZ904gqhTgd0FgngrcFHdmagwHiPyQvMpMAUBXiPeF/3sGD64W0MQcCUFVKWdYbFHO7wCDMeYaqqvjoz8uyHcqD+Xp5Dli7VKFuMwX74MeUXn8H+ft3c2lgkrftThBAQa6GzfKkJcRGyfRM/HhIe3YXREViLlCWMB3XZp0UefFoHJ0KYU38w1B3YJkP8p3+IXPs2Jlq+XrdprmGaa5RlG6oJ2ISQXiC6Hnzd3DpdhXy/nvw/WUFhpl+23u/KR3OzUIIvqa/CbN3XwhecG5RxLbAxRF1M553lhlnl+PE9RAzBHR8XgbrkkIFQ4YtDqp2fYNa+v/zjf80Ym5Bm1/C+QCYPz+0x4VwTazOazeWeu5c6vpPJbcPCXiNSb/O8fTKeRwjVSQPvyDWIXOOpptb1RFxdask/E8A4Txw16XffY2c/8Hj/pwQCadwlOw6ynbJz8DPajSvYGX0Frq1+ny8f/zF5NSB4TxXyk8n74ylPI4bIJjgTs919j9ac97OIsJpt001XGRQHc/tLyDQMsGwPiq3mVR6O7s4spSPAdnN+EPRq4wrtuMPd8d252wXqTJGGa5AtCLY4sfxG7zv81eCXDKoRVajqoIZvEUtEajLatsV6dPkN2oFnJkDXozZrrsXAT6hCIDZuWgZpuUDR7bTPvzyoe/VkNuJ21mdclYxDgQRo2oQPmutExi6cfK2CZ68YM/QFSD3Xcrzi/Pg3w8m2ASOydIPpl+Va2ube+Gjm/boA17Pny0douojvdtcYViXDaS+JXpRcqIb9RpqSWEtVTSewZ4zRABPv2XDRwtflZVp1jl9tNvhnRyPyBa+dAA0jNObMSK46y5XYcTd3ZMawHQeOypJRqIMTXWe4Gkd8u5Eu3e8gNcKPWglf5gWeQDlNoB1IUmdOWEt06jUp50ze1BP69dnzdO/QcOrnJgS+1WzSdG7xe2T6CXJeY/PTvUd8CFTBM1nw0l5PUyKBfIlDQICGNXN7WuwXFZ+OCgiCOfm0e/L7UP+tgyrw81HOirNsRHZhQC82wrXE8vlkdkCj7ywrc7IrAFZiSyqc27z7PIG6uXv9unz9k2ArETQNHBcSbFho2MDEQxl5jAS2Gp5eHJa5/Thjb2S4f2QZFHX5qJWsYqtdsSCmM9NGt2K9U3E0ESovJC6QLaj1vwxjYHutZKNfnmRSpLFnyWQbWk1PEgeMqSgKmEx7GhgL1peEAO1GycqpJtSL1g4ZA61mzt17dbmUOA4I1cn72FpIU8/qBTJHlj3tLtrOxQExgeCn12kyPb88Hby0UFUGv+QlryBk3ZK0XVLlZnreMs8kvi/zOEYPLHHHM7oLuCeBVZlGPYOvv2wcFr7NyiOhmgZFxELU9bi2p5oAE8CC7XnSDU/UWu5JFgG3VhH2DP7I1R+Qx8+ToQ6A2DqQEQrBHwlmxr7FAf2K8NjWt4FCXeopq6tDA/hGoNg69UIsul2pQAp58uHtp/Mc5wyhakKxueBxG0GKugKFmfCkvNPxlIyp9y0BzBiiHSjmXLLGDyrswGOHULUFH4MdUU+QO8FnAsaQ3K0YvbMg4HZcpjIS8q2IIGCH9fxOVBVIqANQNEH6gvQWl3d63clKTDicc+4QkJUlSyKeuWCelwETzv57wRvZ7h4gkxxzODw/YDUpYDDGP9xDVjtIukz/0G8+zaBQ6jUnxkAjg8g9mUg+7scgUv9P5ZGyomrW/Rr8jBq1VSPDFCVmPEGKqg5C+Ce3fxICUnnMJMceHBHtLl4lHe3tYYejOthRVeefgIOvJ+wHo7o/wZzyTmckKcZ7xFd1cMEYQp4TDg7qoMXmNrIow+PpoYyO4KtfIONBXcqkKmCwT/jqF/gHi5s7V/f/qi7jFKbFNWf+oaourzQ+JNz5ywuN8WQX6QqhuXWx4ARMA0VJ/bybhGlx0SeZFCGAOELnFrIocOIa1LNeEU+u0J++qBGgBJsh1/8XSw0x+AI/2eG4W5wgdXNs406aGGMzJJRUj/9kqX2+ztqdb5Om2zSat56ZQLc2I81u0Gi+R5otmSHzkhTlAc42SKL+Sfmh2QRjYkQcy1VDfzmiqIV9qmyYtTHWJifBCRFLHLUxSzSkB9jZ/xl3HvwhB4M7deAIGE922Dn4OZNpGaljIXgO5zSObjc2+c6tf49O4wpRlE57YzxZj23EkEZNGnGHq70P+e61f3vh+ESErdZN4rk9UwRnIxKXMSwO5mz3ROaavN/79kmGwtN/83b3A9pxb+4+rDg2kvWFQYeAJxB4r/0eTbc4q+DD5m2uZ1u0XZNe1GE1XqFjO6Qmo2kb/Kj9qxdeYf+yZDZ65jkTEVo2pesysulx2HbLBShaLuEH7atnJtFT6+i5jF7U4HbWP2m03Vmwz7ZNOKpyhlVxcl91eiL3+KvCc1hNEKB3gQbXL0PDRXzcPr9sjgh8q92nG71Yf6CGdawlGf04vVBwAqAXpVxNm5gZfR6O5zcQYRg8HWtpL1uP5CW5mUQ0l3hYBmgZQ7rgOfhRM+WTRkLDGGIj9OOIq0nERuzYiBzfaST8SmO54/m0q5GjaS0dZ1mJLKtRTMe5M8EJI8LKnJ4RfzUYciWrgyPnHc8A1pg6kyIEWguWhzetZS/Pqc4JPvkz36v3vh7PnyQYes/HzeXeQwHYjCNa0ewx/uXRmIn3J1O3p9+3p/cz8p77ecle6Xk0p+n2aR83IjZm/O2ONXy/tXhC5POJ51q6/Ke+AJMqkF1SnxaA73cCT1dBSQx134g0sNmoZxGbF+jx8LPHjj9/GPF4ZBiXwqAQvjxw/Phuwv6imvpziEA7DfQa/qUEJ06zps6aaDeWD04cj+nKdoFzgTgOOFcnvRupyzl1W2eDEyLzm2SHAHfvpUwmligKBC/T+TyDYIijQJp4tjZH5LlhMlnu6Iri5SJM8YLtosSTtaflvo7nGc+7fQ2Qj935PzyHTXz93jXgUk+U+nOr8roFr7svoBwaQiVEnaqutHt8G3fq0HNZIO55isP5z1+5Z+sG2aeIqSvzuh64Nog3deXoC2TyuPUK6VaEoZxtMF3VGSCSeNxqndlT7Sz4zLxSQcdzukGQGAjxNDixfvac57P54yzbAXPcN8JRZxPA2ROs1A2mR+97yv6CrOAJ+GYdfJAJSD7NdDiVSeEOwT2kri6xM2d/PuD2AnZYH3x2AHY8HVNkQAQzDiR3KtxuhSyImvunmlUXaw7fNPjUIIlASp09kQjSFGTzzQ5OAEhmMVvp+cE5AbOdIsly12lipH7eoW7AZc9/fsKpFLzgLGFOpiqA3T9CqgqZzC5JF6bl0cPj5e7j3gaaQaHUay6EUBfx6Pdg92CaocCT7AlbN5CWEPBJTNnOZp4wfRITjNQBjePAxNOfedP02+TRHqN3FheRNXmByXPsYEAwpg5SPPMgqAMXlYfKIyu95R773TtIkkB/lTAaQVkAUn8vTeHoEJYs8QQQqpJw9zPwFaEsoJx+YEQJYh0c7BKiFFlZn72T4eF02coSF3DBQzkhjPaWG1/whOHOSdYEnWssLgI6Y1/lCPEFZKtQNqA4qgMmIvW+kx70P4ZyfkNmWfse4eG/qgMJJ8t2jpegHC/nsRA1ofstTP/j5QZYjgjlGEJJMAmE6kn1fnFgY0RsvVJ/ycnX15mIpdf/NbLJbbLsl4zHX1KVA6JohbRxnUbzNs5dVkXzJ8pqSBqv0kivUPkJ4/wB5y9LEkQcxkY02lcuNYOi3bzGbrJCUcyuAZwkXTrt2WWTTjsa3Wf38FOAaSbGaYGDwR1WbII7FRQpyqf66zxls/cRv//J/4VP7/1Tvnj0xxyNH1L6CZFYWmmfteZV3tv4da703n0SgJtjXA7pN7bZaF7nzsGEwhcn62plmjdhrSNxDSIbY5ZsJA+wkq7xvfXf4IujX3BvcAcIrGVb3Oy8S7JEE/kqlFRUfNj9iH+z8xNyzr/wPg7QDMsRVxpXFu5XRPhB52NupVf4fHyXQTUmSIcr8RZb8ebcvh1fNyeWa8kKn41nN/sGuHmBfhffbW1zZ7LP/fyIQVVn3TRNzGrUIJrOaLRtQj+aX/JtJUpJjKMinJT8Ok8ASl8RGUtvwT5Pq4LncT6k8J7UOvrRxUsxAawlDX4jSvhqfMReXpfz6EQJV9IWqX21tyPOGL670ud+PiKvKo6q8kzPg/pL6Jq6ZM6jsmDDLd+s+GX46bhgO4p4WE2Ydfa11JkMTecWBmlSY/i3Og3eTyL+yf6Qz4uCWIRfaST8qJWxcZHZzVPeyyL+8GjC/pzyPh0XcWNG34gQAvtVQeEDa1FM6cdMQn32Ow4UxcZgRDisKnaLgv6CPiO59xxUnqaz7BXPrrj008wiK8JmEi0MeFgR+knEe5Xn09Fk7kJeAzzMS67OWRm5qEn1aXkI5CEwrEJdsmMBK8KP2gmPioovJhUj74lFuJpYNiO7VDBvp/C0raFnK3aW/Ojv2fl9UF622xl80AzsFvA4F47qRcisZxWraX0sdmNPZ8mAwFcHlgeD84+DysNfPor5wfZkYemkecoKDkYGH4Q08rTSy8vKOk8cBW5ey2k1Lb/8PCEEsDbQS3Lipya3O81ybs+Ixzsxg4GjqgyddkGeVozHdXkmAZLEc/XK8GQfRWFIksXvAxcFskbFaDj/iW9159+/Jo2K7lrO3sOEqjznmuzUoWudZ/9hSrt/tPCWzLpA0ioZLygxlXbnv5GqvB5AKOv1YUm/ohgY/HFmSxRwjTrbQeTJ9rP4XLBpoDo4e/vqC04yFiSq92sXTPyf2e9IIBdsv8KPhJCb+hbCeUwGEkMoBXGBsGCMYkBul4RDqfuV7BgwUDZ8HYx46tfL/vzncPSOp/kXBvEC00BH8NTNrqeHWtUIjD7w5FcWPGYfMOOAmQhlOxAPTqZL6msFqf87+DpoYffBDOdkCZYgVUDKacCjPH9bUwaixx4z9lRzJtt9Zqgygx0d9yoV8nWHGQdkv5i+JmC+ZTCdb876dOlGmIYl7BUwqstlkVmkFyELMgOf3VdMeDQGY5BWRBg/e3ydripS9VuEdM6HcAhIUdYfGPNMy0aFfPGc29tCAxRKveak7iIG+wdn8zqZfjhWnmDrVWY+dky25vQToM6iCOwtmGAXpCjrzIgFgjHY4fB4sHWQ4njfZ66C6vqS0lkuoBCGA8jrsiXiHNI+Z/L28JCwur58FsXBLiGfEA53oThbEiWkGdJagf1H0FubPQFz0UmJ4MEtXqHmD76i2v0lnJowjXYeUfU/wHdvXuxv+gKp837r/bnGNBPiFJdSdzib/9zZ7nuU2QYc/Lw+Dj3TA+/4+TEQt0FsXXJrifrrANXgS/zhT6EcnrrmFHAZYuJT35lmb3xDJMk6SbIO/OhVDwUAEUfkuqTxBkV5SFkOKP2AZyKXYjA2IklW6K58jCw4bl6mNF2hv/IRk/zgpEn2adbG9Drv0p7T1+G0/cPPTv4t55YvCYwnu7QaT5rHL5OZkcZtPr7xd/n4xt89+V47PF+vDjsNOHTTPrvjNpMZARIrjlbcJ10iQ+FY4XM+Pfgr9saPT5pm74wfUvqCd7ofkLr5K4ONWKxYPBWpS6nKCj9jii42Mbv5LuvJnKDvU1bjHqvTLI7xuLv0733dPmhs8bA4YlidX07rdrbOypLnPwArhu+3r/Ljw6/O7edhxfCd1vZS+7qZdPifqDMqTagbYj/tOKdnK+nUCx+WmJj8bLjHF6M9ylO1PBLjeLfZX7rR9mmxsdxqdKHx+ryux357dYt/+egBD6uKSAQ/Xb9hpg2VExFWXIQRoWks4xDILimjpwiBR2VBak2diRDCzEnxWITeEoX2Qwj8yWDCPzsasld5RIQC+LNRjiD8zU6DxnMU7O87y6+3Ev77gzHnzblExvDDTo/GjKCUiBCLYVhVlCFgRZ65WfXUJZ5y78msJfeeeE4pqs/HE7aSmM+GlkFZUZxz/SvUwZ3f6vUWPkYnwlYS82hS4GBGiHZa9ltgUFVzj5VEhNgYRnPqyAj1LYCR40bhC4d5xlpkWZuTxTFPaoTW9A8uUQiyDgw8bw2k5xSZOkDx/3lsGIYna7nujSz7OdxolXy8ZCmhEODu4fzxVx4eDCxXOhdfrBECfLnjeHxkz9wmpXHger94pYEKY2B9tUIkZ3evfg7ip94vkQts9GeXlfQe9vfr6/jjnhNx5J/JuChKi7X182fs8o+5vz7m7peNmQ2uV9YmODd/fyKwfmPInb9qM52jP2s6aW9twEZ1g+/RkaPRWXwMtTYm5CM7c3yN1Qq74LbmJBBi6iBCNTEQwEwDbPXHwJMm2YsCJzKNtNtORblv68q/Y3Pm+BMLtnmxGmjV47qPhziw7QDnhM/DwEBaLV23RdoB890J4WcRTOTc8025WuEXlKIqN6FYC8QPjtMxAPskkyJYGL3rCcus1zCCGQJVQIrpbfDxmjqm/54GKcpsGqSYM4VyMgYJmDm1AoOAVGCPoFpw2TS5GpF9OjkpOYXUZaJkGig22wbpvPmZE0+TyCDrF8/2fGY/KwkcFYRxhenEVMMShqdK2jlLmH6G+lZGcW1BydnjD+xF14nHgfwly2m+DfSZUOoNECYF4WBQl0lytj6JHX/e+oD4ukl20W3OLO8EdbaDz1L8rKaHUv8/8XXQQ85Zafa0stNGyur4aqnuYfH0Sfb4JN1tY9otGC1uhhaGs1dLn9oKhvMzAE7zh7uEvYfPBCcAGI8I+48IRV73u5jBrN2GKOXcnN0zpoEl65C1+QEGf3CH6tFfnwlO1D/IsY/+DWbvFwv+1lPGO2AjaF2DqHX2ylWmAYWkD+URYdHK5mwD6X0LkpX6CtScyjE2EcSdOhCSriKuAZO9hcOr9n+KP/wUsWndXPtEgHJION0w22bYzvsXefTqApKoj7UprcYtVtqf0GrewtoW9VrcKTE416DVfYfNa79PkvWJ4svN9ljrf5sbV3+fdvP6qbJOhixd49r277K9+etLBRG8Lxnneyf/HbvWuT0r8vJsE+FWtvXMNl+nlWwDgE6ySjPqkUWtZ0pwRTZhrXGFbtpno3l1qf1WvuQvHv8Ju+PHz9yQH+R7/PnOj8lnTMAfs2K50rhKPl31b8RgzrmcjCTCGUfAc1hcXlP1r0tiIn67+x7X0/6Zck8Nm/BJ8xqfLPkanHY16fLrneusPBVA3oha/Gbn5sLsiWPX0g7rcYYVgxU50xi3XnUuODGsJ21SGzGqFq/U+nSwwy+GO2eCEwATX/Lnhw94MLncRttft8RavtNbIbO27m0zva8UIBZD01oSEd5LUlrW8rC4vNVuO2VJy1q81OWbTlXAODGdeyEWw9oSy7r/aDDmvzuogxOnTULgj4dj/tu9IybP2avk19opf3+lwVb05EgUEbaSlP/l6iYftjpzf/9qklB6X2eyiOCeKr0Vpr0NVlxEZi07C16Lx3lBw1puNDJuZilNa888f0aEtrX8rf4K7zcXBxk3kgg3PTbmTU8LkBhLagy/HM0u8fCr3YzMCvGpfhin93GcxdMQoeccLWvYfM4Ml+fxXmZPAiSL/qqlzp64smRpjZfFB7g3EboukJ6+5AWcCdP/XW5fo1KYLNGIeXf8fNMov3gY8ejQPrNObJwLP38QM5i8+knEtX7JxlpBdCpzQgS6rZJbV4ZEcwIA47E96fUxLysinzbZdi6QpcsHeqI4sH1tSKNVnnm/xLFnbWtMd2Xxudl7ONpNyLo5UfJsc3EEXFKRNkusCRgTGA+We8+5OLB6c0jaPjs+GwdamyWNBSv/AWwaMFHdI6Mam2f6fYQA1VhOgiBRe/4+3TSQZhsBkwRCcTY4YVzdILvctxR7yx/X/sggFpiTmRSmx7NdkDVymjiQ9wqk78/MVoY4kF8pya8tsS8Dg+96Rtc8/qnxVc3A8P2KagWK3rLBsYA7AjuZUfArgJ8GFKSEMK9JthXKtiFYmV8tOq4bXZti8WexzwyjdxPK9lPlSFPBXDNI79WfV15nYgS53qoDFZHBbjWQXgzO4BOHb8TgLMXWCuNfuUlYol9E1W7WWRdz0s2kUWeum97FF/18U2kGhVKvuVCUdWmjalpWyJp6QtgHfFXWCRXGULUb2Dk3QPXOAmUzA2vqAMTTH56nPruCCNWCOrwARa9LiBzBuScBDZG69NTxFZUIRO5J9sRS5ZEWb3LBDeFoj7mdzoocJgtKHm1/AJ//GCYj6idsxt8/bkTdXMO0ZkfZg6+oduYHIOzuX+M7N5YIihzvtB5TaG4i1aQOSEx7PWCiJ9F8m8CCFbpiYyTbIKRrdXZEOa77a4RQ5x4TwKZ1OSa/uPRVqHKqg5/VQ0k38OlDwuCzsxuVI4gjEIfEK9j11yPb4JtIxNBuvMP+0V8Qx306zQ+pqjF5uY+nQIwlTnqsbv6IOKknlVqd269krN3ObTrtW+T5AXlxiHMNkri7dN8J4JmV6iJClvYZjh6e3e7UcZwlqyTx/Ak1gMH4MXuDzxlOdqe/t8K1Rp92Oj+r7Ty9dI3UNQh4mnGbYXFYF1ULdZq7k4hesk7iMtYaV+hNAxqLPBzdY1jODv7mVc69wZfc6Lw7dz+/uvI9/nTvTyl9WfePEUGCnDy/BnPSo6IMFX7uNN6bIzER32vd4NuNqwz8BIPQtukL9cZYj1usxy0GVU7uK1LjyBYtr3zK9azDdtxipxhTBCGEUDf8PXXEx8bRiZL6Zws+Nye+5IvR/txtfj7YYT1uvrK+IC/bo8mYzEZspQ2aZcFkWq6yVa/XxwCJFa7H9QKP81tpfz18qEsyNY0hNcJh9WQl+3E+o6HOnjAC3QX9MQ6qij8ZThgHjw+BgQ8MqvpdaqibbP90XPDzScHHsxa0LPBxI+ajLOLPwzbDqqRlHb0lrikB3mnU/UCqEKj8cTcbTprYitQNoA+n3VMXvRbHP99MYgof6Mcxk6riqKowCC1rSJxlPUnYThaP8Woa84e7RxxV/szrcJrlSSlra4RqTkfhW82UdxoJw2pMhZ/21qh/dvzuikToOMutJOJmGl1q+aSOM7SsLMzaMNTZE00rXE0vdw3kvRx2S+g46Li6QfZOAfsmMCiFnx44igB/80pOd0GZp2cCByUcjC3Doi6hF9tAN/F0nuOtcTQW9oeznxvv4e6e473NV1fuwwc4PLTsH1iqUjABWlnJRn9CtkR2x+nnL449kQsU5bMHz/F2vV6+cJHx06I4sLE9piqFshSMWb4/BcDoICIfG+I0kDTrHg9h2kbRmGn2RFT3j3BJBcjSDbqhDkb0ro7xpTA4cnVw7wK9HUQgWakYfBVhonBuCScxdWkn1/TYBact1/UUj6kzJ3KpMyWe+gBx3fr5yx86XHfJ12T6kGzLz+0xERyY3sUC3uKA6yXDK2AmUpe1Tp8t9TRPvhGwh4FiO2CP6sBB1YBwXM3UQrm63OsSHPVzVh8O028+NeZp43LKul/FPMW6IXoEwfAk6+HMzsDHQtVeYhX+lE8N41tJ3cy7CHVwo5y/6Eg9IUaQjYywlkJeYd7pEJywO9moA1CtlIvU9atWOtjDAb6VYfbPWdQjAq0MyRLoLF969ZtOMyiUes2F3X1IUyRynPlUNlIHK4ype06EgFmwiszHESGNKbOMYC3BTJeAHX8BQUy9nXNUS0Rzg3OMrmxTJemZ2ny1aRZB5CBJoDX9tF4i6izJkg0zl9wuhFAHIBZtNx7BnHrGJm1jv/f3oX+1zlI470pJTF0KqruJ3Pje3BJPYfDoSfBgFl9gBncXjv1E0q3HFXcJrSt1YMPG9dep4ETY/PU6iLKA9D9B0n69Tzttlh2mV2gmBhMT8n0Y3iO4+a+HH96Z/i5I3MF2v4VkVzn7PIb6eG5eI37nH2CS3vKPXV1Yu/EOabzJ/tFPORr+DEGw4jDWYU2EEcfw6AuKyT6d3vs0Wov7CXxdRIQk6dJuXSNL+xcKTgBYExE9tVq9ma6TJmeDCG46uZ4lfTZXv7Nwv48Ofs6Xj/+Io/FDfCjxoWQwfshnj3/CvYNPLzRGqANH761+ByMWH0pKnxNCVQcCqM/bh/kuzkR8d+t3Tko1LfJwtPg88nB0b+E2G9km31/5PiKGKlT447KDx/8nwtiPKX2JxdCOFgd43iSRsfRcg457vn4M52namJUou3BwAmAzavLt1gbbcZvjteEnWf7T8bZdShXg3uSAZMH75v74aOGk78SX7BaLy0C+Ke6NR8TWcjVrYkVIrSO1jkgMkdSrr5tiiaevd/cS+2Z0Xf2q3o7jelbv1KLL0/MkFYGtyFFyNsj6tM8mJTulpwqBh2XFfuUpT/YBhz7wy7zgJ4PF2a7ziAj9OOZa1lg6OAGwFsf0nMPDSXDCTxtiB8I0Swh2i5K74zHtBa9FZ1oGtGUd22mCFcisZT2OWY0jEmvpOsevdtq4JcosOBFSK4y8P8mkMKe+jjNcAlCFevX+osDH/+HaCu83Ehq2zpA5vjyHukzUdmz5TjPlV1spH2XLP5cvw6AKrMeG4/m5WYQ6IHMrs/QvWP/7RX15qml1CPAgFx4XwsTX5dqqAJ8eOP7FvZg7g/ljS13guLrZ4US4c+A4zIUq1BPY41K4P7A8HpkLTVoDPD5afM1yODLky1Wjeum8h6/uRjx45Jjk9XMnAoOx47O7TQajxeNPEn9mPrXbzc/NuIicZ2UlZ6X3/MEY6wJJ6i8UnAAY7Nefsy72JM0CY0KdRRDVt0xiwFeCSyriNCAmEC/RI+NpxgWiNFwoOPHkd8FlHpvWZaZOEwuu4XFJwGWLxyUW0hsFvjgVaDk+Wdk6e+K4OXYooTpa7v1r0um1XxowMzIkJPXEt4tlbjfPZ+sm2eGcPhSL+CaMb3hwUHWg7D8JTgRX96kIS15ySTBUTeog+ay1iaHOoCBAsSBjoWoZRrcjqrY8aeB9siOo2oayI1RNg08v9sBDJPiGISQ61fs8xAiSOiR1GGfx3Sa+17xQcAIgpDHFlXV8K8O3GmcDTcYg611Mu4F5Z/sbs9jnZdAMCqVed0VZn8/SeNpoupp+eYJI3X9i2iS7So5vXmec5Iyh6LZJGilVlmAmBaY8VV/PWIIzVFkCzjLZWK7h5/Cd2yQPH1GlCfH+fp1J4T2WUJ/MowjptDHWQiNDoiWuBloteGTnZzykWd0wexm+IsQZYe9Rvc96eUzdN+EUiVNkweSN6W7C7/6fqH7xr+Cv/ylMDqEs6ztKl0KjB+vvYNur0Ls6tyluWFBO5cRFJoJcBo11GD6AdJUQd2Gyg5RjEEOIO3XJppXlSidJ+xbS/4TgSzj8jJOpERPXj1cEsRkSZbD/M1j73uydPVVL36SryObfoBrdh6PPCdUQbIrb+E2ia38H8xyTdepiQvAU5QFpvEKePwQRrG0TpRbEnrTddVGTtLHcSv3XWbt5jZ39vz77vcYWWdJnnO9R+ZyN3rdZ7X2LLFlZuL/B+DGPD38+8+ePDj+nGXdpp8s3UAZwJqbyFVYiVhtbFNWYSTXBYHA2ohF1SGzGwWSHdbdceaHJEuebwhdUoVrYlPqj7kd0bIeH1fhM5oQVe3KhPfETNtJX2+D6bRAZyweNVSTAvzq4yy/HexTBExAS62jYGCNCw0ZYMXwx2uOd5uzMvsmioPkFt3sTjKfXGutJykGZMyhLCu/JCCRGaBiLAcoQ2Igiesv2vnoJGqYu6ZN7zyRMMyWo+1D4cNyToM4EOPSeSISS2T2Ux95ThMBu6SmmH+chBIoQqI4zFET4y3FO6f1Sk/YvUxkClcB6HPM4zxl5j5mWP3JSB0BL6ibME+85qEpac16Pq2ly0hy76xwtWzfLHoc6A6JlLb/e69BccvKhmAYd2tYS4rqE1HFC8klJK5gGk4WtOGZ7QSZK0zn+4bsb/PnBkP/h8SF3RiU5gQ1j+KiZ8J1myrcaCe3n6AvyokaV587E03WG/dITwrNZI/VrA+tRneFzM73cc/741Bzt4wL2zzk1BaAI8Ge7Eb04pxmdP8toDaw3Kj7ftzyc0Si73qFw78iyvaC8zmnFEqWjAPJSiBf0Ufg6PNpxjE6VripLOJpYQhCc83x+L+NbN4+Ydxg6F2g2S46mjaKNgVa7YDCw5LnFmECaej741iFp+nxl5F5UNc3oSLKKYmxIGiVlburmzEEQEzA2EMWeJKtLQDUWNN5+2XwJUctjM081MlQTqAqDsQE7DUyYCIJf7pgySSDeLgmeutl2qJPqTcM/08MiLPlQzarHTwN+phmQrKz/e/r8SuqJ3ilOgh+vQtWDQdsT7Uz7SAhUbSi74UJLtX0aCK7uHxHknFiJ1NkQJ/9eIo5crlkGH0Ukdz32yCN5IERC1RSqhnAcAS/6Gmh4U/lWg8m717D7R8jhEDsYYVYaSKeJ6XcQzZx4hgYolHrdHd8wNTMkLwnT4AQEJIS6/0NZUTYTQuwWpgFO1ldoWlOXZBrndSmmY0bwcQzOMb66sXTDHt9sMHznFo1Pf0nRbhMdHNaNsqcr5ak8OEcQwSwZ9BBjYHObcO/O+WWDjEU2NpfaF0AYDeDgMRICIT+epBsTnIO0gYhBXATd5cZnrMO89xuE/jXC7hfnb5S0kJX5E4eybAPoRfm7Twmrv4Lk/7wOCBgH2caTm0kxhPXvLt18WmyMWfs+/vFP4PQEp88hnzbhbt2AxjYM7xKqj5FZ4z3n+2IcrnkVTtVwd6vf1+DEJRlN7lOUBxwOfkblx9MV8OB9jojDJd1pkC0wOPyCbv/DVz3kF9Jr3WA0fsxo8vjM952NaWUbdFs3WOst/xh3B58v3Obx0ZcXDlDsjh6wP36IszHOxsCzHfKGxSH3Dj9jfcn+B85ElAsmles+Bosnlx5NHjHwRydZE1CXUqlChaUOUkQS0Yq0rupl+Kixxm4xZiNpcjjt43M6Z7DtUho2Zi1ucnd8wK1Gf2bmTbRkZlL0DQo8RcZAVa/6v5I2uTMaECw83VMyM5ZfbSzfDP1l+aSR8mej0XS+Qupm2VNCHVCw00n8/bJk3itTZ4EExtNrq9x7hv5UzkyAEYGsqLhXVlyLL3dy5M54TM85hmVFau25BeIM4BC2k4QvR2OuzMmm3U4SHuUF9yf1O8KKsBo/ub7YTGKupEtm7VIHSSJjcEZoYiic47B8dpTHgZ6/v9lbet8fdxp8fGrCYn2J2uNft/0Shj7gQ51J5Krzy1o5wCKkBuJLXgwanfp7O8X5f/w4wyME+GJg+bA3+7PwRq/kZ4/dzDyy1YYnsoG7hxcLUFiz3ETtBRfqvhSVr0s7QZ1JcXBoyXMhOnkWLAdH0GqUXN+cn121vjZhMrFMJsL+QURRPDmHBC8kSUUIr27FsLGBqpQ6g6JRUVeoFeqe009eIxcHkkZJb3OMveSA0fHHq7FgWp76UurZ88FFPoaNA5sFbDb/sSy7T9vx+BWP361fXzFg20/GaDoe23/15zAsFOsv9vpVmdRBB6lLJ51ulA2cqUZRtcEOhWXiPJPrDpOXVK3zKjLA+KojRK/uvaJeAmOoVjqw0qEE3IbeF82j4TilXnPS6wCCaTanWRRnP+iDEaokIkQOWSIn2BQlPo3xWUrZahCceVIywBhC7Bhe22R8dfnJf4DRrZscvfcuYqclouy0iGeaQr+LJNG0afTyV1LSbCJXb0CzxcmnvhjodJHrN5F4ueyJMBrA/c/r0k1xgmRN5LgkQFnCeAhZC3rrmM7F6sVL/xqy+S1ITn3Y2BhWriFXPl6YjSHNNZ5ZuvLMRha/oFfEM1xG2P4tQufWqUCEQGODsPUb0LxgmZ5yhLjmtFn2qcfk0rqkVNxFjKuDUtMa/OcxjasLg2hiIiS72PGnnt8of8D+4KeU1bP9V0Ioycc7eF9QlkPy8ezX9k0hYtha+x797vsnpZwAkqjDxsonFwpOAAwnOwu3OTrVmHtZR/kekzOvSeDpTomBwP7kMcWSmVhrS7yvltlmP9/nn9z97wGIbYw9NR16HKRouib9uE8Vvjmr7KEuNVPMy+x7RWJj+c3uNW4kHTaiJvH0sycWRz9qci3tcT3rYcRQhIqjcnbJw41k8c1TJJZ+/M1Z+bVxaoK74RzXG03a7skkthF4L035/U53YUmhr0PDGNasox85MpGTMkIWIREhM4a2NRgRAoKZ8zl7NY5OSlUV3jPwzxb0soAzwj87uPwyXrtlQddF9OOIRAypqZu/w5NeG5m1XE9TEms5qErKBbV2Pmk1+aDZoHnqGrRpLR80G3zYyPAXqNVjRbiexrSns8i9yNKP3Jm+EAJ0nOXvrPW41shm7OnNMJk+NyJCPC13dnz8HX8ZILPQtHAjseyVlzuZeyU5DrZBPuNPt6Jw0kdjZ0GDa2dgrenppf5MtkDmAlvtit505f+4FCYX+IjrNxdP1jaSQDoju+PrNJkYfF1hlf2DOjjxNB/gi3sZw/H8exvnAle2h+SFpSyfPIFxHOj2CiIX+OpuxmTyaqaiGp0nU8dZu6TVK2l2C1zsQerbsqxTsnZ1xPqNEc3u5V/HRK1nMxvOE18gQHbcLHuep4MMi0RXS9yVEjkuERUAF7BbFe56eeH+Iq+rsieEqC4VhQHvphkTddJN/RVB1YKqCXbJj87ghOG7jnzN1k2zp+oSUI5SsydeqVCF5XqnqpdGMyiUes1JEiP9bp058dV9JI4IUQQEqqoAEao0PunqZUYT/JxU8vjRHmWjgUuGdbBDBLJAQPBxhE8TxBjy/rOrdReO1RpGV7ZxB4fY0Yi4mpY9ylJoNpCqgsMj6C5fj1zSFNm+Wjdg9lWdOXHBcgNh9z6EgDTahMm4LjLqojrLA+oSRXFSBzwuGKAAkNYq0lolVMW0kXm0dC1BsRGmew2/N3sVtu/cvHAGBVAHD1Y/IfQ/giqvl84sm7FxSvAF/tEfEya7QICoVV/BRg1wnfr1yHcJfrMOUsypXS4uwzSv449mP17TfmdhYEe9PJPJA7yfN8EdKPNzmnu9wYxYVtq36bVuUU1Xmzv7fM1gvz51o9TS54zLIUU1IQBGDInLyGxjcXDzKZvZFR4MvyKvzp+cdsay1by+cD9/svsnTMIEayzBBxI3bb7spzf3CEYsqUtJ7PIrk19nu8WAn48fci/fJ4RAYiJupH3eSdeJzetxOR0by/W0S2ocZfA8ImAQrJgL1bdt2IjNpMX9yez3/Y2sN3cS/E2zlTa4MxownDbHTq1jO3OsmbqPQCTC77a7NC6wyOJlcyJsTXt9lccrfY9biZ2awN+K5x+Pa5HlnTjm00nBwYwb74YxtI1hr6p4VFSsRZf4uAP0oojdsiC1hsgIuQ/kwZ/0dKhCwJq6IbyIzC9vSv38XM9SrmcpE183B3+Q53w+HvNXgzoQvBpH3EjTM9kVs9xspNwcjNgr6uBI0xmazlCGulxWbIRbjZTfWP1m9N/pO8NXeUmY9nMIUq8gPtVjF4vgRFhxl39euJbCL0d1gOI8AqwvUav/NCN1pkQ/81TTajAvWu2sk3kaiWc4a2JeYOsVTIYDJ5fueS4UM7JQoH6rPdyNubk9fwZ2PLakSUWaVHXpJAmc7u3uPezsxmxvvVivm+fR7BYM9mLK6eOMs4o4q2j3i+mpJLBxc0jSeHWr/8VA0q8YP5p97o27/kK3dSaCqOcp9mYfyNFqddFLS2zfI1mgvG8JB3WJp+qRhRLsevX8/SdeI8Vq3beiaoBLgOrZu90qAwznZ0PM44T8iiXfNkg5DXzYb8711ZsmVJ6wOyHs51AGEnsH38ooV1uEBeUa1YvTkJxSbwC5voV0WvVEvzGITG9Gpc6e8I2EvN8mOEu0N5i9o8rjDgeYoqwn7I97MUwnL2xR4kZjiiytG29fhPfEDx8TP97B5HXpKDF1uQEZjQm7+wTvCYdzxjfvOTB1CaYLByfKAob1JIu4COmu1vmyMH3s0wuAskCuvvNMT4oLjdFGiIsv3OjIrNzGdK+dM9ko+O5tqtWPnntM04HVfSmeIzgBEO7/IeHgU+R49fa0PATFAPKduhlnCJDvAwbi3tz92ZVPMK0bz04miMF23sN2l+uNoV6OuqyTRebcQVTVGGMz4rR3eQO7BCKCs8kLBSeyBcc7QDO+eMC3FfcIBA4nu+TT4ASAD55RMeAg34UQaCc9oiXHH9mYj/rfJXPPrnxPbMIHK98592enlb7k88FnNGyDSCKc1JOhIoK1FmssxhiqUNKJOmymb3421N3JHv/Twc+4O9k7aT488QU/Hd7nf9r/GRN/ubWp5+lHaV1ey1hi43DGPvOZ5MTQdPOD3h+01tlK2s983yDcaqxwvXHxY/p1ZkX4Tnf1TNYE1CvFW8byG602K5fYd+I8N5IYK8KGcyQGjKkzJY5fXwtsOMf76eLzwb/Va3Atds/MsAjQNoYrscMZoWEMX+aXe3z3oggrwo00o2kdE+8Ze1837EUw1BkUw7Liy/GYpjEX6pPhRPizowE/HYwYVU8mIB/nBT8+OOSL0eIJ046z/O5ql19pN4hP/W0nkFnD7UbK31lboR+9HsHLF7ESGdpW6uqy0+wdf7oPxTSrQgRiA4+LQPeSgxRW4Ne6gVV3ttzT8c+utyoy++RgX1mi4XFnuo1MH995h1jiAvEFbhtE4N2NgvY5wRJr4OZqQfcVTYoniccIjBdkNcSRZzCyFOX81/jg8FQGmjkbnDg2GDiqV5CQaCysXRsSPXUciAlEiWfj5uiVBieOpasVSb86tzl03PVkmxcPZsVbJVHvnFJRAvFqRbx28RekOjAUn0aEI/PkVraE6pGl+HnENyKR1gnDd4UQS90s+1QaWTBQpfX3qhb4aRbFhYnU5Zw0OPHKhNLjPz8iPJ7AqUxAczQi/uwh5uDZagPq5Xrzr5qUeguICGZzlbB/AMMxYTSBqmIsRV2uKYlOJnvlnDq4J/vxFXhPtH9AMIay1cSU1fR3AsFafOSIDwdc9PQrRUG0tzc7Da6qCIdHyze1flmqs1dFEiewugX5iFDkgNSNsTsrSPRqouIigl19D9O9jj+6X2c72Jii94M6sPAKhckeYf+n9X9EDcgPAF93b/MFlEPwJSFdR3wJjS3EzV8xLWJw/e8QOu/hB3fq/dgU07yKvHar2L/5rG1gbISzTYryYMY2CcZYGq1rF9q39wWDwV2K4hDBkmXrpNnFejG87lZaNxg+1c/iaf0le0Sc1op7lD6fmY9U+pIqVGy3bl1ov5lr8t31X2NvssPBZJdAoB136SWrM3sSnFb4gtJXOONo2AYDBthgqUJFnYsnGDE4cTjj+Lj78YXG97opfMWPjz4/CUw87aga86eDr/hB++Ylj+x8PZfw0+EOh2XORIS1pMVK1DgTpNhOO9gFr7UR4cP2OjcbPe5Pjii9J7GOraS1dI+KN01qLT9YWWO/yHk8GROAT5zhShS/Ftki76UxK9ayQ8VmHDH2nsm0O3M8LfO0FTtuJoszLnvO8sNmytgH9it/UsYnQogERt4Ti6VrzcnPLsvVJOGz0ZDYGG5nDXaL/GRJ3fEq/ZZ1iAiDqsJdcLnvL0ejk6bZ5/mrwZB+FC1smt2PI/7drVV+fZzz50dDdvKSVmT5oJlxu5GelKV606072C09LStYCZShXv0eqF8WkToosBoZmlaYhMDQ183lL1Nm4Xf6gZYL/OtDgwfiZkUnDmfmd4U6YLHIVrvi/pGdkxMMW63qwiVsnIX3NguGE2F/ZKi8kEaeftO/cIbGi7AWWq2Kx7uzj3sRyNL6uasqIZrTl6FaoiF4COC9YO3lnmOg7i+xeWvIeGCZDOvOx1FWkbVer7JE2XpFslKRH1hCWa85izvV8645QwSS7ZJoFcoDS6hAHETdCnmOmcFQQfnls8Huk5/nQvmVI7rx5kcpik0h34EqDiR3QfI6k8xHEFLwCfiGEKxQrL1GB5FaWng4JxUPiO7uMmmmnKn9p14qDVAo9aaIHOIcdFp1NgVQjvaf2SzMScMP1mLHk3rp05R39plubCYvkKKYlpJajhsMFtfoy3MuvSfaObWiRQSSBpKcWin8GjRkFpdgezeefOMVBycAwuEvz/awSHpw9HkdoDjmd8BXhGwd0/9k6X2La2i2xGvAmYxmdhPvK7zPqfzZ1aNiHFGyQrf/EVH87IrqWYaDu+zu/DkhPJkIGBx9jovarK1/D/caHN8vQytdZ6V1i92jX57789XWVbrZ+oX3uzt+wEbzBpNyzKB4NnBkxdGKu6w8Z7+WXtKnl1y8pF1kIpxx5H7CRrrBl8MvKShOMimejM/yext/k3RBwPJ198VkhyrMX0l5N99j4q+QPO+MwUvgQ+B/3PucPzy4w0GVs1uMmAD380OaNuGj1iaZi+lGKbcaywcJMxtxq7Hy9Q38NdSNYrpRPcl/bfDqV9EeS4zh7610+L8/3mcYPKkxpKfukVvG8Pd6HdySs2u/2kz518MJkRH2y4ojH8gJ5AFMgMwEPs9LrieXe1yn1vJxq82fHx0yCRW9KOLo1OKb2AitabZrxzmKCwRQfAjcGS/u2fPlZMIHC7LJoA7kXc0Srn6Dyz48LGA7tgyqwP3CEIvHn2r2XDdph46FzBi2Y8NnY89K69VM4Hy3DRWBBzmU8bPHxocrJa0lejw0osDtlZJPd8+fLlnJ/IUaZD+z/yTQSF6vfkZrqyX37kczSzz12sVJJsSioIJzgXx2qyOgnix/FcGJ09JmRdp8vV6HpxkHaf/ljtHEPFe2xNP8njmvd/fZbQ4NoQB59bfaL8YI+Xqg9aUQXECmZZ4kgEzAp1D0oFgTqo4GKN40ofSEwwUZoyFg9wZUq8vfD6uL0dCPUm8IydK6xNMCRXdOc0tj8Eukm1dZgh0t13T1ZNeTHJ8uGF8AiZ+jl8ILEBdBY/GHiHTergmYpeV7EHeeNMYuBnXgxMacyTmO25Ctw/DuqxilegHN7BqRbdBtvk+r+R5x1EckQsQRRR1a7Vusb/8Grc6tpfc5Hj1m5/GfnglOHCuLQx4++CP8a9ho+HltdL/Flf73aCR9jnO+G0mf6/1vs/2cQbhBfkDqGtzqfcRW6yaJzeqmuGLpJH1u9j5irXGVcfl8ZfOelzOO263bJ/++3rjOSrxy0ihbEFquxe9s/C7f6n7rUsf2ddgtF+cThhDYLy+/mfBp/7+Dr/gX+19ShkDDRGzETdJpwGRQTfj58BE3sj7f7VxdmD2hXl83k5j/4/oK321kpNNAREMMP2xk/MH6CtsXKM+5Hjl+2ExxwHDaKNsALSNsRJbYCHtVxUH1/EGaMniOypLxBeu4bCUJP+h0icXQdo6VKKJlHR3nWHERDWfZThOupClDX5H75cY4qjy5XzwhejAnw+Jts1t6Glb4oOF4L6uzJBpGiJCTwEQ/Mqw6wzupwYmwW766wJ4R+EE78CutcJI9IQIbmedHGzk3lsieOLbVrvj2Rk4/83VVWKAZB97tF3y4VpxbtuhNZg28c2tCq+mxp6rhZknFWi8njevXtdWo5mZPALTbi0vDtVrlK80aeZr3UEzMSW8KtZgfLvECBgjjN/85lUkgfgDFSqDsgM/qvhSYafZEIkyuC/mVN/+xvpUm5zQWOYcZL4i8qheiGRRKvUHM9jr+0y+ZdfYsOw18Nj8AUHbbxI/3zmRRnBZiR5Umc5sNnkuEstUknkzqK7zzNnEOWotXpL1ssrpFGA1g1irYrLlUEOPtZBAxkG3gD38JfjLtadE48wkinXcwNibs/wxaNy7ch0O9Oll6laPRZ8ABrewarewaIQTKdp1JYUzEytp3LrTPg4NPmXeVV5VDRsN7NFsXL330umpnG7SzjbPfC4fPvT+ZBgAjm7DVuslW6+aThrCnt3sF77XvrHyHTw8/ZVQNscaylqyxlqydjK/pmvz25m9f+ri+Dss/u6/unDfxJT8+vHdmEWMklm6U0eVJplIZqqXKeKnX21rk+PsrHVjpnHtOuIiPs4Q/PBqxHbtz99W1loPKc1R5WhcoaTCsPH89Lvjz8hHH08Fd57iZNdmIl8s26EYRN7KM1Ze4sGXZp0ovYZ44noRPjHA9sRxVnJS8E3nSqLwfmZOyVq/6LCMC11PYWH/xiaRuGuimr0+foa9bq+lZ7ZeMxvWrmIazC9aMwPrK4kVs7VbJ/r5nPD7/aDAG+iuvx0Sfr+DgccJwPzq5hY0ST2slp/mqmpa/Kd6ic2V8x5N8Bm5a7RjAx1CsC8UqIILJ36In5JtmyZfu1eZ8ffO96usHpdQFSKeFuX0Vni69JFCstBhfXVy2oVjpkPe7hHOaPfo0Ie93wRqqJbI1TqsaDYJz5P2Vc/ctcQwrXaRx+WVdJMmQK7cgOucmt9VDtm/phPos6RoAkq0hrsGzHxsGSdcwze36P6sRLKjHr14vRixrvV8njZ9Mrh+/H6KozermD3HR8oHFqpqQT3YXbjcc3rv4YN8i7eTZrK5nmh0bRyO6/OBqO2rzd6/9O6wmZz9zRITVZJX/1dV/h/YrGNfXYX2Jx+HE0r/Ae+Rluzs5Yrdc3Nj354OHlzAadZle9NqlInA9iYhPNduG+j69by034vp67k6+/CTdsPL8s8Mxn08qTq9V3y9LfnK4z5fj5buc9ZcoNdqx7kyj6nkyY2gsEWhZuUCJ02+6teh0E3AhM/Wxcny8HP9v61Rj19O/o94sInBlq6DdrJ6Zr4ujwPWtEdkSTcZF4Mr2kFbz2XNHHHuuXhkSx6++hJ6v4OEXDY52ozPr64qJYfdeyv7Dy838f9OY5hKvoQFpvNnTumbo6fxxwO2FMyWtTA7x3UB8N0CY/ly9mVK31Oy4b77ZpWtfd5pBodQbRrptTKcFB0dMHgsYoWw3CAua+R0r2018IyOPommviRIEfBITpvm8Rae99P6e7Ld10rMiX19D8hwZTFcPxzHibN0/w76a5pqStZCbHxKGhzAZ10t3Gm3kvKCFOiHtG3UfCjwSt6G5BeWozkYRAy5Dmk81Tva62uhNY03MWu9HFOUR43w6iblpiNOLlz7zfrmVhstu97bqZ5vcPfwF5Zz302rjCkZezTm1n6zyv7n5v+Xu6C5fDe8AwpXsCtuN7Vcynq/LlaTHXwzvMplzvF5P+7hX9DoAjH251Iqu/BtUVk29HEWAjrW0U8PhtOm2Qeg4Q3QqYHGRPg9/NioYz5mz+uvBEetxQrJEs/Vracqd8XhuifNrF1hQIyJcS1P+ejA7SGJFuJp8c3tKXNRaZGhb4bCqj4FVJ3yZnz0eOlaIp6kWAtxMX935UL04Y6DT8VQeqgEYE1jrFaxfMOPBWtjeHlMUwmDoCAGSxNPInu+zqMiFw4OIYmIRE2g0S5qtkhdJDDx4nFBMZu/gcCcma5fE6asPpryOTNfDfWDOrZ/tVbzCS6SXovGXdZ+JWaIdqDpQfTPW5ryVxAjSTQi7s1/oYA2+883oofi60gCFUm8gEYFum4LO8/wyo+tbZJ/frW/4nqpXXDVSJpvLN9A8s99rV8k+/wKpKkIcI+HUCTxNkPXn2O9LJo22lnO6AIlasPY9wqN/PW2WLXV5p2NJH0mfarT7DWl+/DaKXIvI1X1sJumzjZmXYW1SB68WNBb+pjTJ/rpY43in/wk/3/k3VOdMLHeSPlfaty5/YE/ZzrbZzr5ZQYnTrBh+1L7FHx7+guKcYNFa1ObDVxyUabsEJ4ZywXuu5XTSVZ3VME9WwXeshRmTSM0li+2PvOdePn/y0QNfjcfcbjQX7q9pHR+1WvzF0dG5QYrracqV5GKrGa+nCYdlyd3Js5OtRuCTdpP0AuWs3gY/aDv+8KBg5GElMox84HFZBylSI1xN6udLgO+07JlsCvVm8R6+uhc9KfEkBSEID3djxhPD1c3xhXtvRFGg132xRSn7OzG7j88uKhseOfYeBzaujIiXyOp4mvcw3F+cLTXYi4i3Ltab8W0hBqKbBcUvIzjn1C/NgN16sxdHmGEgehzq1fWzDrMA0U6gWNVz35tM1lLIK8LgnIibEYprq7xWjXO+gTRAodRbyKcJw9vXiPYOcAcDpPL42FH0OpTd1nMX3w3OMtlcxx0cYiY5VBacQ7ptaLWQb1o3ubeENK9A1Cbs/iXc+6cQQp05kfTrrIrT4h4Sd1/NQNVrwZiILNtktKBhevPpzBv1jFbc46P1H/Fw8BX744dUoSJ1DdYaV+il61qa7pKsRE1+r/stPps85u5knyJUNG3MzXSVK/EK5hW/Dltxk42owVf50cxtrAgftDZm/ly9ndadJTPCaE7jaAtcXbL59mEVlsrmOayWz7TcTlLa1vHleMyjog4qtJ3jWpI+V38KEeHb7RYbSc6X4wlHZYURWItjrqcJjVeU6fs6a1rht7sRn088X4wr1mJD1wUyA6kxWIH12HAzMXScTt68ye4/eBKceNrh0HHvUcKV9cudrD86dM8EJ46VpXD/q4yrNwcXnjesCjOrbeIZxUTPCfOYLBC/l1PtWPyBIVSCxAHbrzBd/8b39DEjkKJuhG1G0296kABBOCkLJBMo+2/4g33LiRG42kQOC8L+hJB7gnNUnYyq14RIp8+/bvoMK/WWCpEjX++Tr/cXb7yAFAXJ/Ye4o6N68hoI1iKdNvR7Oon2DSBxG7v5I3zchINPZ2xkkZWPLndg6rXU7b7LZPwY788vB5Bm66TZq8+oehPENuVq5x2udt551UN5q2U25sPG9ivPljiPFcNv967z/3z01zPLON3M+mynGjxWZ4kIn2QJ/2ownhlY+DCLT8r3LLLs/OBFp7BbzvFhq3XB35pvPY5Zf4kNuL/prMDYByYBYhFiK1iBrcTwYWaJdBHSGy/PhaPh/Hfn/lHERj/H2curtX+wM/99WpXC4DCifcEsDTHLPQYR7SuwiETgNivYfLOzJc5lmJbDBjMEO+FMJkUwEGIIERQvPq2iXjERgU6MdOrzTu62XvGI3i66xEEp9UKkLGl89gXu8PAkOAHUZZ529gj3tSnnN4lZ+RjpfQjmqZuFqINs/BqS6qSzAhc1WN/8EUly9kpdxNJq32R17buvaGRKfTO91+jz761/wHp0tnRaJIZPOtv8zbX3sS9SqFt9Y23Hjh81U1pPTTCnRvhOI+HddPlJ/BVniJc4zNZiLTf2JqlC4A8PSj4be6pw+vvw+djzh4cl1QX6lKjX06LgBNS3eoeDy1vjWuRCni8e1/Do4mNyUSBaojRU2vwGTrqrpVUt8BnIdM1VeCoWKx6khPEN6kiuUuq5aQaFUm+QUJaEx/uE/UPwntQfUfRaVM2L1d99meJHj5FizoqVwwGhM0IaWm/+m0K670HnNoweQSjBNZGk96qHpV4zUdRkffOHFMWAIj9ExJCkKxizXKkQpdTFvJOtcPtKjzuTQx4WQ3aM5XraI7H6nlPzbcWOrdjxuKwYeU8swpqzFy5fZkW4nUT81Wj2dWFmDBuvOEBRhcC9Sc69yYQiBFJjuJIkrMeRZv2e48uJZ7ecHYDYLwOfjT3vZFoK5022oI3RiTkV4V668PRs8AzLlGo6T2slZ/fe7PtoY6Dxgv0z1JstRML4CnS+AsKTAIVMKxUGV2dRiB4mSr0wDVAo9YYIgxH+0y+gerKKw42GuP0hRa/J5MorWLnuPdH+4ka6Yf9QAxTfMCIWGpuvehjqDRBFTaJocTNUpdSLExGupR2upR0+e9WDUW+cVWeZ2Sl7Sd9KHYPK8+U5zbJTY/hep/dK+7aMq4o/PjhieOp6+oiKR3nBSuT4XqeN1SDFGZ9PFs/+fjGpNEDxhoui5SIPSfSc0YDn4Fzdw2BRgk4UP9+Ymt2SMs85PKeMlDGwenWEdZod9LYrV4QqC8SPqPtPnGqjJAUUbYgfCunPPeN3NVtVqeelAQql3gChqvC/OBucOC3aG+CTiGK1c6njkrJcbsnKvAwLpdQLq6oxef4YCETRCs5pQEAppdTlExG+30q4WVT8cZkw9BVWhM04YStJca+41NhPDgdnghOn7RYlf3k04Nvtl9vv4k03qM5O0OY+MPABARpGiI1wpFVw3nitlufR40DlZwfo4ijQzC7vxTYWmq2So8P501YX7T9xWnc9J2uXDPYiiolFJJC2ShqdUoMTCgB7CCGpe0xEO3XGBAJE4GOQCqQMxPeh7AXKVQ1yK/U8NECh1Bsg7OxDOf9iMN45pOi34TJXfZklbzJ1JZpSXwvvC/YP/5Tx+C6canGaxGt0O9/BWs1cUkopdflWI8sn2evVmH23KDgoy7nb3M9z3veeeNlr3LeAlbrfROEDd3LP4VMBi44VbqT6fL3pjMD6Wsn9BxHnTcuLwNbq+NJv63prE0YjS1We/4fb3YIkfbGsjjj1xFuTF9qH+uaKDgEEJFA1zt/GTAAD8SMNUCj1vPRKQqk3QDgYLNxGigozudxMheAcVbZ4AlRauppbqZcthIqd3T9kPJ4WRT1lkj/i8c6/oKr0ZksppZQCeJQvvk72AR5r5u8Z27GhDIFPx9UzwQmAgyqwUwRKbZT9xmu3PNtbBWly9rVspBU3tka0GpefKuNcYPvakGarRJ76fn9twuqGXuuqr9m08cq8PhNSQJWCTEAmei5U6nloBoVSb4Jlu5a9ghuDfK1P9sWd2RtYCx1NlVfqZRuNvqQo92f+vPIjBsNP6bQ/usRRKaWUUq+nZa+SL7MJ8JvgVmr5o8OSPMDYBwZVIJ8+R4lAywoNC1+MPbe1D8Ubr9nwNBs5eS6k5YjIeeIl+1N8XVwUWN8eU5VCkRvEBOLEa5K+uhQhEnwSsIezt/ExnETQLvB2MaNA9LjCHQYIUGVCsWqoOrqWXL199KhX6g0gWbp4IyP4OPr6B/OUqtVisrV5fhkn55Crm4jVmxWlXrbh6IuF24zGX17CSJRSSqnXX2vJ69G20+vW01pW6FjhsPQ8LgJjXwdxfKD+N3BULddMW7054rjuN/GqgxOnWRdIGxVJqsEJdXl8BsUqhBlTMiGGqiP1fIip/3sZbtfT+FlBtOORIiBlwB16sl+WJF/OL0eo1DeRZlAo9QaQtRXCw5252xSdBthXE3MsVnqU7RbR3h5mPAGEstVErEeMXj0q9XWo/GjhNt7neF9ijH7cK6WUerttJTE/Gw7J56RIdJ2j4/Qz87QQAmMfaFpBBCbT5y8xQsOAEeFe7mlbveZX6nUXSigPDaESTBSwbY/osuW5ilUhGcD4GqSfBcygbowdLPgG+BSqacGIYkXqhi4LyDiQflnOzLaIdjxVo6Lsa8BcvT306kupN4AkMXJlg/DVg3N/7mNHvtG73EE9JThHvrZ25nsy2Hs1g1HqLWAkxpMv2goRvbBVSimljAgftZr8m8Ojc8s4RUb4qDWjA+pbTETYLQNGhJatMyrOs19qBoVSr6sQIL9vKffsmarQYiHeKIl6+v6dpewJ7qEnuxcwQ7Dj6Q8KMDlUbSjWAj4V8q3l9hk/rhaWgoofeQ1QqLeKxkqVekOYjVXMravQONWU2ghFv8Xo1iZB09GVequk6ZWF22TpFURz4JVSSikA1uOY73c6rMXRSYkYI7CdxPyo26Gl2RPPCCEQLTFroAkUSr2+8nuOYtc+07IyVDC56yj2dWpwFikCJgfJAQc+gWAAqbMoxIMZC5Mtlj4R2qPFpdPMuC77pNTbQq/AlHqDSK+D7XUIRQneczR8uFQKoVLqm6eR3WA4+gzvJ+f+XMTSbNy+5FEppZRSr7de5Phe1Cb3njIEYmNwGsyfa9UZdouKWWusrcDqMlEMpdSl8zkUe/Pfn8VDi+tob4/zRA/BDgAjlB2QaQpeoO6LHaaBiuQhjDqvcqRKvdn0KkKpN5BEDkliDU4o9RazNqG/8utY+2w5CmNiVno/JIr0KlkppZQ6T2wMDWs1OLGAiLAZG26lBnfOUxUJ3E4Nm7FOLSj1Oir3F1da8IXgh3ouPE+0W5d2OhaMEEzdayKYujm2HVL3psiXy3iomoufa58I4byTrlLfUJpBoZR6eULADga4wRBCIFBAq6klZpT6mkSuzfrq32SSP2CSP4IQiKMV0nRLe08opZRS6qW4mRr2ysCHDWG/DAx8QICmFTpWEISbiV53KPU6CuVy9+K+FOyixghvmxCgqptiA+ADZgJmAgQIUd0k+zj1RAoI8eLdFn1DtDO/70fR16CvertogEIp9VKYyYT0yzuYvDj5XpgMwe7A1jpyuneGUuqlERHSZJM02XzVQ1FKKaXUN9C1xPK4CHw58fSc0Hvq57dTw4ZmUCj1WhK3XNDBLLndW0UEbCDYuieEPaobY5+O44QjKDt1ICNESwaDGobJliW5V53787JjKNb0nKreLnrEK6VemJQl2edfnglOnKgqwt37hEl++QNTSimllFJKvbDvthzfbVm6p0qOrDjh+y3Hx01d96jU68p1z58EP81EAdPQAMV5ihWpK0UcPcmcOP0lFdgxuCMI8fKVI4oNy+i2o2w/mZb1qTC5ahnftGhDEPW20SsJpdQLi/b2kLKcvYEPhL19ZHP98gallFJKKaWUemmuJZZricWHeiLT6ASaUq89E0PU83MbZUdrlc6Hz1CsBZp/JlCFOijhQTxPsigMUEIwAXsYqNrLP5FV21C1TV1KKqA9RtVbTTMolFIvzO0fLt7ocEAIuipDKaWUUkqpN5kR0eCEUm+QeKskWnk2CCEWku2SqDe/H8LbzEyEsh0ICScZEyfBCQHvIBhwu+D2nnO+Q0SDE+qtpxkUSqkXJtXitFFCAB/A6gevUkoppZRSSil1GUQg2aqI1yrKQ0OoBBMFbNsjumx5LqkgGKHKQh2cKKYZFAaCrb8QsCOw+wGuv+IBK/WG0gCFUuqFhShaHKSwBrF69aOUUkoppZRSSl02cRCtaLbERfgYcHX/iWCA5EyP7BPBgh3qYkylnpfOFiqlXljR6y7eqNP++geilFJKKaWUUkop9RL4hlA1gAWxhxBDcFrS+hulKJHhBJkUr3okbwXNoFBKvbCi2yHa28OMJ+dv4BzS61zuoJRSSimllFJKKaVeQL4t+J8G7CHnpk/4BKqW4FPNoPgmCOOS8GhMMr735HuJo1zt4DuNVziybzbNoFBKvThjGN64Ttk+J0uikSHXthCn8VCllFJKKaWUUkq9OaquYfSOoewC9tQPBHwDik2hWIGqowGKN10Yl/gvjgiD8sz3ZVISfbWD3T16RSP75tMZQ6XUy2Et42tXkKLADocQQMIEieNXPTKllFJKKaWUUkqp5zK5IUhlKMYBM6obZVcp+AwwdWCiWH21Y1QvLtwfwZw2Le7BPlWnAdpf9aXTAIVS6qUKUUTZrXtSyGDv1Q5GKaWUUkoppZRS6gVUbSG/AvFX4NNnfz65LvhMMyjeZGFcEsbVgo0Cdn9A1dceqy+bBiiUUkoppZRSSimllFJqhmJNqJoQPQYzrJtRVC2hWIWQaHDijZfPSZ04RfJy8UbqwjRAoZRSSimllFJKKaWUUnP4TJhcA9CAxDfOsi+p6Gv/ddCiWUoppZRSSimllFJKKaXeTs1oqVnyqp19/WN5C2mAQimllFJKKaWUUkoppdRbSYwgvWTuNj6LCY3526jnowEKpZRSSimllFJKKaWUUm8tWUuRTnTuz0ISUVxdveQRvT20B4VSSimllFJKKaWUUkqpt5aIINtNQq+kGjSRoiQYg+808K1U+098jTRAoZRSSimllFJKKaWUUuqtJ5mjbK+86mG8VbTEk1JKKaWUUkoppZRSSimlLp0GKJRSSimllFJKKaWUUkopdek0QKGUUkoppZRSSimllFJKqUunAQqllFJKKaWUUkoppZRSSl06DVAopZRSSimllFJKKaWUUurSaYBCKaWUUkoppZRSSimllFKXTgMUSimllFJKKaWUUkoppZS6dBqgUEoppZRSSimllFJKKaXUpdMAhVJKKaWUUkoppZRSSimlLp0GKJRSSimllFJKKaWUUkopdek0QKGUUkoppZRSSimllFJKqUunAQqllFJKKaWUUkoppZRSSl06DVAopZRSSimllFJKKaWUUurSaYBCKaWUUkoppZRSSimllFKXTgMUSimllFJKKaWUUkoppZS6dBqgUEoppZRSSimllFJKKaXUpdMAhVJKKaWUUkoppZRSSimlLp0GKJRSSimllFJKKaWUUkopdek0QKGUUkoppZRSSimllFJKqUunAQqllFJKKaWUUkoppZRSSl06DVAopZRSSimllFJKKaWUUurSaYBCKaWUUkoppZRSSimllFKXTgMUSimllFJKKaWUUkoppZS6dBqgUEoppZRSSimllFJKKaXUpdMAhVJKKaWUUkoppZRSSimlLp0GKJRSSimllFJKKaWUUkopdek0QKGUUkoppZRSSimllFJKqUunAQqllFJKKaWUUkoppZRSSl06DVAopZRSSimllFJKKaWUUurSaYBCKaWUUkoppZRSSimllFKXTgMUSimllFJKKaWUUkoppZS6dBqgUEoppZRSSimllFJKKaXUpdMAhVJKKaWUUkoppZRSSimlLp0GKJRSSimllFJKKaWUUkopdek0QKGUUkoppZRSSimllFJKqUunAQq10H/5X/6X/M7v/A7dbpdWq8UPf/hD/vP//D/He3+h/fzBH/wBIjLz68MPP/yaHoFSSimllFJKKaWUUko9K+QV1d0B1Z/vUP7JI+K//BL7+ACqi819qufjXvUA1OvtP/wP/0P+0T/6R6Rpyt/6W3+LKIr4x//4H/Mf/Uf/Ef/4H/9j/qv/6r/CWnuhff7Wb/0W77333jPf397eflnDVkoppZRSSimllFJKqbn8zhj/+RHhID/5XnS4S3R/j3KtQ357k9BIXuEIv/k0QKFm+q//6/+af/SP/hFbW1v803/6T3n//fcBuH//Pr//+7/Pf/Pf/Df8Z//Zf8Y//If/8EL7/Q/+g/+AP/iDP/gaRqyUUkoppZRSSimllFKLhYMcf2dwJjjx5IcB9+gArGHy7hZEOo3+ddEST2qm//g//o8B+E//0//0JDgBsLm5yX/xX/wXAPwn/8l/cuFST0oppZRSSimllFJKKfUqhd0JDMo5GwTMYIzdG1zeoN5CGqBQ5/ryyy/5oz/6I+I45h/8g3/wzM9/7/d+j6tXr3Lv3j3+5b/8l69ghEoppZRSSimllFJKKXVxofD4UUnIq7nbyaTAHo4uaVRvJ81NUef68Y9/DMC3v/1tsiw7d5sf/ehH3Llzhx//+Mf85m/+5tL7/if/5J/wk5/8hKOjIzY3N/nt3/5t/vbf/tsYo/EypZRSSimllFJKKaXU18wHCIs3Ex/qbdXXRgMU6ly/+MUvAPj/s3ff0VFUfxvAvzcVAiEUgdCL9KL03qsUFSmiCChSlCJVRaUoRREF+YmgiIBKE0FBEJDee+9dOgSpISGEtH3eP/LOkCWbkORudpPd53MOR9iZnZ15nJl779yZO4UKFUpwnoIFC1rNm1SzZ8+O91mZMmVkwYIFUr58+WQti4iIiIiIiIiIiChZvD1EPEXEQyXaAWHx8hT48hJ6auIt62TTgwcPREQkU6ZMCc6TOXNmEREJDQ1N0jIrVKggkydPluPHj8uDBw/k+vXrsnz5cnn++eflxIkT0qRJE7l27Zr+yhMRERERERERERElQHko8cjiKypj4p0P8PORmKyZHbRW7ondP2QTENtzqJSy2zIHDhxo9e9MmTJJq1atpGnTplK/fn3ZtWuXjBs3TqZMmWLz+9OnT5fp06eLSOw7MjZt2mS3dUuvImKinL0KiQqyJD6OHyUuSt1w9iqka158AlMLvHj86vIQZqgDFk9nr0K6FunsFXABrMfoYT1GD+sxeliP0cd6jB7WY/SwHqOHdZik84iBZHsQLVlCIR5xnqKwqNh3TkR6e0iwZ4gEn78ponGN9KwXnxFIDDsoyCZ/f38RefwkhS3GNGPelPLx8ZGPP/5YXn75ZVm5cmWC8/Xq1Ut69eolIiJVqlSRBg0aaP2uKzh9/7qzVyFRxcOCnb0K6VqQV0Fnr0K6ljPK4uxVSNcicoY4exXSPX8k7QlDsu3RowBnr0K6dsnZK+ACWI/Rw3qMHtZj9LAeo4/1GD2sx+hhPUYP6zDJg2iLWP57KLj+UPAoWgQi4V7+EuOfUaIKPCN+Ofwlr+YN3Ply8QmMxLCDgmwqXLiwiIhcupRwsXDlyhWreXWUKlVKRIRDPBEREREREREREZFDKC8P8cyXWZDbTxAeIxITIw/9Cgky+mg9NUFJxw4KsqlixYoiInL8+HEJDw+XjBkzxptn7969VvPquHPnjog8fq8FERERERERERERkSMoLw9R/h4i4i3w8nX26rgVDoBFNhUoUEAqVaokkZGRsmjRonjTN2/eLFevXpXAwECpWbOm9u8tXLhQRESqVq2qvSwiIiIiIiIiIiIiSvvYQUEJ+vjjj0VEZOjQoXLu3Dnz85s3b0qfPn1EROSjjz4SDw8Pq++UKlXK/K7h0KFDsnz5comJsX5RT3R0tHzzzTcyefJkEREZNGhQqmwLEREREREREREREaUtHOKJEtS+fXvp3bu3/PDDD1K+fHlp0qSJeHt7y/r16yUkJETatGkj/fr1s/pOUFCQnD59WoKCgqw+v3jxorzyyiuSPXt2KVGihOTPn19CQ0Pl6NGjcv36dfHw8JDx48dL8+bNHbmJREREREREREREROQk7KCgRH3//fdSp04dmTp1qmzevFliYmKkVKlS8vbbb0vv3r2tnp5IzPPPPy8DBgyQPXv2yKVLl+TgwYOilJL8+fNLt27dpG/fvlK5cuVU3hoiIiIiIiIiIiIiSisUADh7JYiSq0qVKrJv3z5nr4bTnb5/3dmrkKjiYcHOXoV0LciroLNXIV3LGWVx9iqkaxE5Q5y9CumeP0KdvQrp2qNHAc5ehXTtkrNXwAWwHqOH9Rg9rMfoYT1GH+sxeliP0cN6jB7WYfTZux6TL1dmuy4vPUrsWi7fQUFERERERERERERERA7HDgoiIiIiIiIiIiIiInI4dlAQEREREREREREREZHDsYOCiIiIiIiIiIiIiIgcjh0URERERERERERERETkcOygICIiIiIiIiIiIiIih2MHBRERERERERERERERORw7KIiIiIiIiIiIiIiIyOHYQUFERERERERERERERA7HDgoiIiIiIiIiIiIiInI4dlAQEREREREREREREZHDsYOCiIiIiIiIiIiIiIgcjh0URERERERERERERETkcOygICIiIiIiIiIiIiIih2MHBRERERERERERERERORw7KIiIiIiIiIiIiIiIyOHYQUFERERERERERERERA7HDgoiIiIiIiIiIiIiInI4dlAQEREREREREREREZHDsYOCiIiIiIiIiIiIiIgcjh0URERERERERERERETkcOygICIiIiIiIiIiIiIih2MHBRERERERERERERERORw7KIiIiIiIiIiIiIiIyOHYQUFERERERERERERERA7HDgoiIiIiIiIiIiIiInI4dlAQEREREREREREREZHDsYOCiIiIiIiIiIiIiIgcjh0URERERERERERERETkcOygICIiIiIiIiIiIiIih2MHBRERERERERERERERORw7KIiIiIiIiIiIiIiIyOHYQUFERERERERERERERA7HDgoiIiIiIiIiIiIiInI4dlAQEREREREREREREZHDsYOCiIiIiIiIiIiIiIgcjh0URERERERERERERETkcOygICIiIiIiIiIiIiIih2MHBRERERERERERERERORw7KIiIiIiIiIiIiIiIyOHYQUFERERERERERERERA7HDgoiIiIiIiIiIiIiInI4dlAQEREREREREREREZHDsYOCiIiIiIiIiIiIiIgcjh0URERERERERERERETkcOygICIiIiIiIiIiIiIih2MHBRERERERERERERERORw7KIiIiIiIiIiIiIiIyOHYQUFERERERERERERERA7HDgoiIiIiIiIiIiIiInI4dlAQEREREREREREREZHDsYOCiIiIiIiIiIiIiIgcjh0URERERERERERERETkcOygICIiIiIiIiIiIiIih2MHBRERERERERERERERORw7KIiIiIiIiIiIiIiIyOHYQUFERERERERERERERA7HDgoiIiIiIiIiIiIiInI4dlAQEREREREREREREZHDsYOCiIiIiIiIiIiIiIgcjh0URERERERERERERETkcOygICIiIiIiIiIiIiIih2MHBRERERERERERERERORw7KIiIiIiIiIiIiIiIyOHYQUFERERERERERERERA7HDgoiIiIiIiIiIiIiInI4dlAQEREREREREREREZHDsYOCiIiIiIiIiIiIiIgcjh0URERERERERERERETkcOygICIiIiIiIiIiIiIih2MHBRERERERERERERERORw7KIiIiIiIiIiIiIiIyOHYQUFERERERERERERERA7HDgoiIiIiIiIiIiIiInI4dlAQEREREREREREREZHDsYOCiIiIiIiIiIiIiIgcjh0URERERERERERERETkcOygICIiIiIiIiIiIiIih2MHBRERERERERERERERORw7KIiIiIiIiIiIiIiIyOHYQUFERERERERERERERA7HDgoiIiIiIiIiIiIiInI4dlAQEREREREREREREZHDsYOCiIiIiIiIiIiIiIgcjh0URERERERERERERETkcOygICIiIiIiIiIiIiIih2MHBRERERERERERERERORw7KIiIiIiIiIiIiIiIyOHYQUFERERERERERERERA7HDgoiIiIiIiIiIiIiInI4dlAQEREREREREREREZHDsYOCiIiIiIiIiIiIiIgcjh0URERERERERERERETkcOygICIiIiIiIiIiIiIih2MHBRERERERERERERERORw7KIjSsVJZ8yX7z0e9Bzps/c5duCSe+cqKT8HnJCT0gc15xk/5STzzlRXPfGVl94EjNudZvnaTeOYrK/kq1k+1dTXWIS3Jn9s/2X8G9X9HREQWLphr9W93VqJGefHNH5Don6WrlidpWU3btxLf/AGyecfWVF7rtOfMqXMysO/HUqlcfcmdtbjkCigmZYpVlyb128gnH46WDeu2OHsV07RTp8/Lu/0+k5LlW4pftkqSMWtFKViskdRq0EmGDB0va9ftcPYqplkly1eXjFnzScas+WTEqHGJzvtWz37mvM1atXfQGqZNab2OkB6wHqOH9Rj7YD3GPliP0cN6TMqxHpMyrMfoYz1GD+sxjuXl7BUgopRr83qHeJ/dvnlLtq3fJH6Z/KTZS63iTa9cs5ojVk1ERIoVKST58wTK1aAbsnX3fmnVJH6BtmnnXvPvm3fukeqVnos3z+b/n6dBLcete1rQoWOneJ/dvHlTNm9cJ35+maTViy/Hm161Wk1HrFq61LR+YwnMldvmtIL58jt4bdKXPxctk3feHiSRkZGSN1+g1KlXU7JmC5Dbt+7I4UPHZM+u/bJ96y5p1KSe1u/Mm71QevccIp26tJdpMybZae2d7/dF/0jX7h9JZGSU5MuXWxrUqyrZsmaRW7fvyYFDJ2TnrkOyees+adqklrNXNc2bt+AP+Wz4h+Lp6RlvWkhIqCxb/o8T1iptSut1hPSA9Rg9rMfYF+sxKcd6jB7WY+yH9ZikYz1GH+sxeliPcSx2UBClY1/+8L94n+3eukO2rd8kWbNntznd0erVrCLzFy+XzTv3xisQo6OjZcfeg1K2ZDE5c/6ibNq5Vz7s2yPeMrbsii0Q69es6pB1TismTf4x3mc7tm+VzRvXSfYcOWxOp4R90HeQ1K9VV2sZM7+dJg/Dw93qQsB/N25K317vS2RkpHzx1Ujp3e9tq0aVxWKRndv3yM4dexNZivu6ceOWvP3OcImMjJJvvhoq/ft2jpfftu0HZNuO/U5cy/ShUsXn5cDBw7J+4xZp1qRhvOmLFi+V8PBHUrlSBdl/4JDjVzCNSQ91hPSA9ZiUYz3GvliPSRnWY/SwHmM/rMckD+sx9sF6TMqxHuNYHOKJiFKVUYht3rkn3rT9R07Ig7CH0rxBHan6fDnZsfegREdHW80TEvpADh47JSIiDWtVT/0VJkpEwXwFpFSxEuKX0c/Zq+Iwq1aul4cPw6VajcrSb0DPeHd8eXh4SO26NeT9oe85aQ3TtuUrN8vDh+FSs0YFGdT/TZv51atbRT4Zysd/n6ZLp1dFRGTO/IU2p8+Zv1A8PT2lU8d2jlwtcnGsx5ArYT2G9ZjkYj3GfliPIWdgPYbSC3ZQELmRRuWrS6ms+eTqpSs2p3dp1V5KZc0nu7fGH0MUgKz4c6m8/crrUqNoOSmfq4g0LFdVRvT/IMHliYg0/P/HAA8eOxVv3EOjJ75ejSpSt0YVCX0QJvuPnLCaZ9ueAxITEyN5A3NJ8aKFzM93Hzgir/d+XwpWbiQZCj8vucvXkZff6ivb9iR8987Rk2ekbff+8kzZmuJfrIpUad5eZsz/I8H5XcWDB6EyZtQwqVmlnBQtkEMqP19CPv5woNy7dzfevBO//kLy5/aXiV9/YXNZrjyWojGOs4jIz7/NljqtG8kzpfKLb/4ACb4fLCLuOXbzrVu3RUQkZ84cyfre3j0HZfhHY6V+zZbybIGKkiNzUSlRuLJ0ee0d2bP7QLz5y5WoKb17DhERkflz/pAsvgXMP+/2GKS/IU5y89YdERHJlTN7kr9z8eI1URnKSOESTRKcR2UoIypDmUQ//33RP1Kz/uuSOUdl8X+mijR+oZts255+73CsWqWilC5VQpavXCPBwfetpp05e05279kvTRvXl8DAXAku48TJ09L9nf5SrGwVCchVRPIXLSdtOnSR1Ws32Jy/Z++BkjFrPpkz73f59/wFebNHXylU/HkJyFVEnq9aTyb8b6pYLBa7bqezOKOOkB6wHuN8rMckDesxtrEeo4f1GPthPSZ1sR5jG+sxzmfUY4oUKSK+vr6SL18+6d27t9y9G78e89lnn4lSSj777DOby/rll19EKSVvvfVW6q60E7CDgoieKioqSvp37SVDuveRA7v2SLGSJaRRi6aS0c9PFs2eL+3qvyBHDx62+d1nCxeUAnkDJSYmRrbuti6sNu3cKx4eHlKnWiWpV6OKiMTv2Tf+HXe8w2+m/SK1X+oki/5eJYG5npGXmjWSYoULysr1W6Rhu7fkp3mL4q3H5p17pWbr12XpqvWSK0cOebFZA8nin1l6Dx0lQz4br5VPWhYSEiJtWjeV33+bI2XKlZd69RvJo/BwmfPrTOn06ssSFRXl7FVMcwYO/0D6DB0gvr6+0rJxc6n0XAVRSjl7tZwmf4F8IiKyeeN2OXH8VJK/N2bkVzJ18gyJioqWylUqSMvWTSV79myydMlKad6wrSz50/qFni+/0lJq1Iq9w6dI0ULSqUt780/NdDzeacECeUREZP3GXXLs+FmH/e7IUd9Jpzc/EB9vb2nVor7kzxcoGzbtlsYt3paduw45bD3srXOnV+XRo0ey8M+/rD6fMz/2vN/ljY4Jfnf5yjVSq0ELmf/7nxKQJYu0eamllCpZQtau3yRtOnSRUWO/SvC7h48el1oNWsjefQelXt1aUqNaZTl/4ZKM+OwLGTJ0pF22Lb3SqSOkB6zHOBfrMcnHeow11mP0sB5jX6zHpD2sx7Aek5ri1mMqVKggzZo1k4cPH8q0adOkadOmrMfEwXdQENFTTf78a1n790qpUquGTPjpOwnMl9ecNnf6zzL2w+Ey5O0+snLvZvHyin9aqVejqsxb/Lds2fV43MOYmBjZsfegPFe6hGTLGiC1q1YST09P2bxrn9W4h1t27RORx48mrtq4VT4Y87XkDcwlf/z0rdVLnLbvPSCtu/SW94aNlfo1qkqJZwuLiEh4+CPp0m+ohD96JB/16yljPxpgNtQ279wrrbv0tm9gacjqf5ZLoybNZOmKdZIpU2YREblxI0heatlIjh45JH8vXSxt2ydcEXZH8xf/LluWrpOqFSs7e1XShFYvNpM8eXNL0PX/pE61FtKoST2pU7eGVKhUXipWfk4CArLY/N57g3rJjF8nS67cOa0+/2f5Wun82jsysN/H0rxFY/HzyygiIp+PHyHzZi+UXTv2Ss3aVV3m5ZIvv9hY8ubNJdev35SK1dtJsya1pH7dqlK5YhmpUrmcBAT4p8rvTv1xvuzZ9rtUrlRWRGLHiH633yj5adYiGTn6O1m7cmaq/G5q69SxnYwcNU7mzF8kvbq/KSKx5cm8BX9I9mxZpXWLZrL8nzXxvnfjv5vS/d3+EhERIV+OHSkD+j2+e3rL1h3ySseu8uWEb6VWzWrStHGDeN+fOm2mDBs6WD4ZOkg8PGLv79m2fZc0f7GDTJ/5qwwe0FsK5M+XOhudxunWEdID1mOch/WY5GM9xhrrMXpYj7Ev1mPSHtZjWI9JTXHrMSWKBIqIyPXr16VGjRpy4MABWbhwobzxxhtOXsu0gU9QEFGigu/dkzk/zhS/zJnk219/tCqwRUQ69+om9Zs3lssXLsqWBB4trV/LGPfw8cvnDhw9ISGhD6Tu//fU+2fOJBXLlZLt//8IoYjIg7AwOXD0pIg8fjRx1MSpIiIy/evRVoWhiEjtqpVk+MB3JSoqWqbPfTy25x8r1si1G//Js4ULyOgP37O6i6x+zaryTpdXkx9MOpEpU2aZMOl7s0H3KuYAAJUTSURBVFEvIhIYmEfeeruXiIhs37rJOSvmBM1ebW0OfxD3T49B1hWiIb37s1Efh79/Zlm28jepWPk5iY6OljWrNsjIYV/ISy1el0KB5aVpg1fkz0XL4n2vafOG8Rr1IiItWjeVNu1ayb27wbJlU/xHrF2Nv38mWbdyplSpXE6io6Nl5aotMnTYRGnSsrtkz1NTajd4Q35f9I/df3fUiH5mo14kdozosZ/1FxGRrdv3p9u7dQJz55JmTRrIvv0H5dTp2Ds5123YLEFBN+TV9q+Ij4+Pze/9/Os8CQkJlRrVq1g16kVE6tWtJe/27CYiIv/7bprN71euVEGGfTTYbNSLiNSpXUOaNm4gFotFttgYLsAd2KOOkB6wHuM8rMc8xnpMyrAeo4f1GPtiPSZtYT2G9ZjUZqsekzdvXunXr5+IiKxfv95Zq5bmsIOCiBK1e8sOeRT+SKrWriE5cj5jc55qtWuKiMihvbbHGzQKswNHT5rjHhqFo/EooYhI3erGuIfHRURk6+4DEh0dLfnzBMqzhQvK7bv3ZO+hY5LFP7M0q1/L5m8Zy9u1//FjmEavf8eXWsR7sZuISOd2Lyaw9elf+ecrSK5cueN9XqxYCRERufHfDUevktM0rd9YunToFO9Prao1rOZ7ucVLTlrDtKtk6eKyeccKWbtpibw/tJ80aFhHsmYLEIvFIrt37pNunfvaHF/5zu27Mm/2Qhk2dIz0e/cDebfHIHm3xyA5efy0iIicO3ve0ZviFKVLPSt7ty+U7RvnyScf9pLGDWtItmxZxGKxyI5dB+W1LkPkrR6f2PU3W7doEO+zXLlySLZsWSQiIlLu3Am26+85UucnXjJp/LfLGwk3brZu3xU7Tyfb87zZOfYO7B279pqNsrheaNrI5hApJYo/KyIi12/8l9TVdyn2qCOkB6zHOA/rMY+xHpNyrMfoYT3GvliPSTtYj2E9JrUlVI8pVaqUiMQ+TUGx0ufzSUTkMFcvXRYRkc2r10uprIk/9nnvdvyX/IiIFC1UQArmyyOXrwXJtj0HpGXjerJ55z5RSlkViPVqVpFJ03+VzTv3SrWKz5kvbTLGO7xw+aoAkJDQB+JT8Dmbv2W4defxulwNim28Fi6Y3+a8hQu47uOs+fIVsPl5Zv/Yx9kjIh45cnWc6oO+g6R+rbpPna9QApmRSPWaVaR6zdhj1mKxyN7dB2Tc2EmyYd0WmT/nD2neorG80q61iIjM+mmufPLhaHn4MDzB5YU+8aI2V1erZkWpVbOiiMTmt2v3YRn1+feyZt12+XXuX9KqRT3p0O4Fu/xWwYJ5bH6exT+z3LsXIo8eRdrld5yhdYtmkiN7Npn/+58yqH9vWb5yjZQrU1oqVUi4XLhulAOFbB/fhQsVFA8PD3n06JHcuXtPcj3RSE1o2IMs/rFDW0Q8ikjJpqR79qgjpAesxzgP6zGPsR6jj/UYPazH2AfrMWkH6zGsx6S2hOoxWbLE1mMePXKfeszTsIOCiEywWOJ9ZtyBUaT4s/J8lUqJfv+5KhUTnFavRlWZ++cy2bxzjzRvUFu27z0gZUo8K89kz2bOU7daZVFKyaade+WDPt1l847YAtF4JDEmJnb9ArL4y8vNGyW6LnGX+zSu/OJADw/7bpvFxj7iajJmzOjsVUgXPDw8pHrNKvLnstnSsPaLcujgUVm+bLW80q61HNh/WAa994l4eXnJ2HHDpEWrppI3fx7x88soSikZNeJLmfjVVAHg7M1wGg8PD6lVs6KsXDpNqtXpKAcOnpC/lq1PUsM+Kcdh3Ef4XY2Pj4+82v4V+WH6LHmnzyCJiIhI9K5DETH3tZSe7+19Lk2PUrOOkB6wHuMcrMckH+sxScN6jB7WY1KO9RjnYD2G9RhnYD0m6dhBQU81f/58+eGHH+TIkSMSExMjpUqVkm7duknv3r1TVHGw9/Io6bx9vEVE5GFYmM3p169cjfdZnv8fh7FEmVLy5Q//S/Fv169lFIh75dDxU3I/JFReb9PSap5sWQOkfKnisn3PAbkfEir7j54QkcePJBbIG/tSIW8vL/n5f18k+bfzBcY+UnfpyjWb0y9cjr/d7srH29hHbN8RdvXqFUeuDqUDnp6eUq9BLTl08KjcvnVHRESWLl4pAOTdvt2k/+B3433n/L+XHL2aaZanp6c0alBdDhw8Ibdu3xMREZ//P1c/CHto8zuXLvFR4C6dXpUfps+SlavXiZeXl7z2attE58+XN4+cOfuvXLh4WRrWjz/90uUrYrFYJEOGDJI9W9bUWek0zpl1hPSA9Zj0gfUYSi7WY/SwHpMyrMfYH+sxiWM9Jn0w3kPz4IHtesylS65b/vBqMCWqb9++8sYbb8i+ffukbt260rRpUzlz5oz069dP2rdvb3N8Q0cuj5Ind57YAuX82XPxpp05cUqCrsWvLNZsUFe8vb1l56ZtEhJ8P8W/HXfcw+VrN4lIbC/+k+rWiB338LuZcyU6OloK5ssjRf7/UcB8eXJL+dIl5Pbde7Jpx54k/7bx2OLvS/+xuY/NX7IiuZvjsgLzxFbSzp09E28aANm0YZ2jV4mcLCl3B179/8pmvvyxj+Pfuxv8///OG2/e27fuyMb1W20ux2hYREe7TlmQlPwuXwkSEZH8+WIr7zlzZhMfH2+5cydYbt2K/zj5ytVb7LuS6VDFCuWlVs1qkiN7NmnbpnW8oQyeVLd27Bjt8xb8YXP67Hmx4z/XqlFVvLzc8/4dZ9YR0gPWY9IH1mPoSazH6GE9JnWwHmN/rMckjvWY9CFfvtjhrk6dOhVvGgBZtWqVo1fJYdhBQQn6888/5fvvv5fAwEA5cuSILF++XJYsWSJnz56V0qVLy5IlS2TKlClOWx4lX836dUREZOa3P8iDkFDz86Cr1+TjPoNsVkCfyZVTOvV4U0Lu35c+r3eT82fiF/j3g4Nl0ez5cvvmrQR/u0jB/FIof16JiYmR72bNFRHrFzIZjM/+N2O2iDwe79Aw6oP3RESk63sfyZrN2+N9PzIyUpat2SA79x0yP2vfupnkyZ1Tzl28LKMmWj+OvW3Pfpk2e0GC6+1uatWuJx4eHrJxw1rZs3uH+XlMTIyM/2KUHDq4z4lrR87w07RfpXfPwbJv78F406Kjo+WXmfPlr8UrRUSkbfvYF5yVKBn7wr0F8/6UBw8e38UUGvpA+vR6X4ITaADk/f+7cs6cin+eSa++//E36dbzE9mz90i8adHR0fLTzEXyx+I1IiLSsUMLERHx9vaWurUri4jIyNHfWZ+ztu+XkaO/c8Cap33r/1kiV88fk19nTH3qvN3efEP8/TPLjp17ZOq0mVbTtm3fJT9MnyUiIgP6vZMq65oeOLOOkB6wHpM+sB5DT2I9Rg/rMamH9Rj7Yj0mcazHpA8NGzYUDw8P+eeff2Tbtm3m5zExMTJs2DDZsyfpHUPpjXt2rVKSjBs3TkRExo8fL8WLFzc/z507t/zwww/SoEED+fLLL+W9995L0tBM9l4eJV+nnm/Jwl/nydEDh6RF1XpSoWplCbl/X44eOCTlK1WQitWryMHd8Rtu748eLjdv/Cf/LPlbXqzZSEqVLyv5CxWQiEcRcuPadfn3zDmJioyUlXs2yzO5cib4+/VqVJE5fyyTe8EhUqJoYcmTO/68RoF4LzhERETq17Tu1X+5eSOZMPIDGfr5N9KiUy8pUbSwlHi2sPh4e8vVoBty+t+Lcj8kVKaOGyk1q1QQERG/jBll9uQv5cU3+8jn3/4of65YKxXKlZIb/92SLbv3S//uneV/P81OaawuJV/+AtLlrR7y66zp0rFda6lWvZZk9veXY0cPy/3gYHm7R2+ZNeMHZ68mOVBUVLTMm71I5s1eJLkDc0n558pItuxZ5d7dYDl+7KQEXf9PREQGDuktTZo1EBGRN958Vb6fMlMOHTwqz5WqLTVrVRUAsn3bbvHx8ZEub3WUOb/8Hu+3qlavJLkDc8mhg0elfs2WUqpMSfH29pIaNatI5zc7OnKz7SYqKlp+mfOX/DLnLwkMfEYqPFdKsmcLkLv37suRY2fk+vWbIiLy4ZDu0rxpHfN7o0e+J1u375dpP/0um7fulbJlismly0Gy/8Bx+eTDXjL2y2nO2qR0KTB3Lpk5bbJ0ebu3vP/RSPll9m9SpkxJCQr6T7bv3C0Wi0U+en+ANGvS0Nmr6jTOriOkB6zHpH2sx9CTWI/Rw3pM2sB6zNOxHvN0rMekfQULFpTevXvL1KlTpVGjRlK3bl3JkiWLHDhwQO7duyf9+/eXyZMnO3s1UwWvApNNV69elf3794uPj4906NAh3vT69etLvnz55MaNG7Jr1y6HL49SJiBrVpm/6i958dW2Eh0dLZvWrJcb14Pk7fd6y09/zhMvL2+b3/P29pZJP0+T7+f/LA2aN5GbN/6TDSvXyME9+yQmJkZat28jU+bOlAJFCiX6+3F73+vWqGxznlzP5JBSxYra/I5h0Dtvyd5/Fsrbr7eTGEuMrNu6U9Zs3i73gkOkXo0q8uPXo+TVF5tbfadRnRqyY9l8ebFZQ7lx67YsXbVB7t0Pke8+Hy4TPxua6Hq7mzGffy2fjBgtBQsVlr17dsrePTulYqUqsnLNZilX/jlnrx45WNdur8n8hT9Jz3fflHz588iJ46fkrz9XyI5tuyVTpkzSqUt7Wb3hTxn9xSfmd7Jlyyqbd6yQbt3fkMyZMsnqfzbIwQNH5KU2LWTrrpU2h0wQEfH19ZXFf8+R5i0ay8WLV+T3+Ytl9s8LZNvW9FsudH+rnSxZOFn6vttJCuTPI0ePn5VFi1fLlm37JXMmP3mzcxvZun6OjP98iNX3atWsKOv/mSWNG9aQK1dvyMpVscNJzJ45TsZ81t8Zm5LuvdiquWzfuFJef7Wt3Ll3T5YsXSHHT5yUJo3qy5KFs+XT4R86exWdytl1hPSA9Zj0gfUYiov1GD2sx6QdrMckjvWYp2M9Jn2YPHmyjB8/XooWLSrbtm2Tbdu2SfXq1WXfvn1SsWL6fll7YhSSMqgguZ2///5bXnrpJalYsaIcOHDA5jyvvPKK/PXXXzJlyhTp27evQ5dXpUoV2bePj2ifvp+2XzBWPCzY2auQrgV5FXT2KqRrOaMszl6FdC0iZ4izVyHd80fo02eiBD16FODsVUjXXPcVeo7Deowe1mP0sB6jh/UYfazH6GE9Rg/rMXpYh9Fn73pMvlyZ7bq89Cixa7l8goJsunDhgoiIFCqUcC9xwYIFreZ15PKIiIiIiIiIiIiIKH3jOyjIpgcPHoiISKZMmRKcJ3Pm2N6/0NCn31lhj+VNnz5dpk+fLiKxb7SvUiX+C33cza1btyRnzvQ9DqIzMT89zE8P89PHDPUwPz3MTw/z08cM9TA/PcxPD/PTxwz1MD89zE8fM3Q/Fy9eTHAaOyjIJmPkL6VUmller169pFevXnZZH1fBoa70MD89zE8P89PHDPUwPz3MTw/z08cM9TA/PcxPD/PTxwz1MD89zE8fM6S4OMQT2eTv7y8ij598sMWYZszryOURERERERERERERUfrGDgqyqXDhwiIiculSwq8munLlitW8jlweEREREREREREREaVv7KAgmypWrCgiIsePH5fw8HCb8+zdu9dqXkcuj2JxyCs9zE8P89PD/PQxQz3MTw/z08P89DFDPcxPD/PTw/z0MUM9zE8P89PHDCkuBePlAERPqFy5shw4cEB+/fVX6dq1q9W0zZs3S4MGDSQwMFCuXbsmHh5P7+uy9/KIiIiIiIiIiIiIKP3iVWBK0McffywiIkOHDpVz586Zn9+8eVP69OkjIiIfffSRVWfCxx9/LKVKlTK/q7s8IiIiIiIiIiIiInJNXs5eAUq72rdvL71795YffvhBypcvL02aNBFvb29Zv369hISESJs2baRfv35W3wkKCpLTp09LUFCQXZZHRERERERERERERK6JHRSUqO+//17q1KkjU6dOlc2bN0tMTIyUKlVK3n77bendu3eyn3aw9/KIiIiIiIiIiIiIKH3iOyiI0ogLFy5IaGioPPfcc85elXSJ+elhfvqYoR7mp4f56WF++pihHuanh/npYX76mKEe5qeH+eljhnqYH+ni7epEThYaGiq9e/eWZ599VmbMmCGPHj1y9iqlK8xPD/PTxwz1MD89zE8P89PHDPUwPz3MTw/z08cM9TA/PcxPHzPUw/zIXthBQeREEyZMkNy5c8uPP/4oIiJhYWGSIUMG4YNNScP89DA/fcxQD/PTw/z0MD99zFAP89PD/PQwP33MUA/z08P89DFDPcyP7InvoCBygpUrV8qAAQPk33//lerVq0tMTIwcOHBAcuXKJSIiAEQp5eS1TLuYnx7mp48Z6mF+epifHuanjxnqYX56mJ8e5qePGephfnqYnz5mqIf5UWrgExREDnT27Flp3ry5tG7dWiwWi3z22WeyfPlyKVmypFgsFilcuLCICF8WngDmp4f56WOGepifHuanh/npY4Z6mJ8e5qeH+eljhnqYnx7mp48Z6mF+lKpARKkuIiIC/fv3h1IKWbJkQe/evbFz505zeoUKFaCUwqFDh5y4lmkX89PD/PQxQz3MTw/z08P89DFDPcxPD/PTw/z0MUM9zE8P89PHDPUwP3IEDvFElMp++eUX6dWrl8TExMiLL74ob731lrRs2VJ8fX1FROTOnTsSGRkpmTJlMj+jx5ifHuanjxnqYX56mJ8e5qePGephfnqYnx7mp48Z6mF+epifPmaoh/mRo7CDgiiVXbt2TQoWLCjvv/++tG3b1hyXLyYmRjw9PeX69ety8uRJKViwoAQGBjp5bdMe5qeH+eljhnqYnx7mp4f56WOGepifHuanh/npY4Z6mJ8e5qePGephfuQwzn6Eg8jVXLt2DXPmzDH/HR4ejn///df8t8VigcViMf+9ceNGKKXQokULWCwWREdHO3R907pHjx4xv2SIjIy0+jfz08cM9TA/PcwveVgG62OGelgO6+H+py9uBtz/9DHD5OExrC9uPtz/kiduNgZmqIf5kaPwzSVEdvTZZ59J/vz55fPPP5erV6+KiEiGDBmkaNGiIiJisVhEKSVKKfM7165dExERLy8vUUqJp6en41c8jYiJibH6t8ViEV9fX+aXRL/88ov07dtXduzYYX7G/PQxQz3ML+l4DtTDMlgfM9TDclgP9z89586dk/DwcImOjjY/8/HxYX6aeAwnHY9hPV988YVcunRJlFICQES4/yVX3GxEWJdOLrZFyJk4xBORHcydO1eGDBkit27dEhERb29v8ff3jzefh0f8PsFt27aJiEi1atVERARAvILV1f35558yd+5ciYqKkoCAAGnWrJm8+eab8fJifrYtWLBAhg0bJhcvXjQrs9WqVRMvL+tTPPNL2Lx586RIkSJSq1YtiY6OjpedgRnaxvz08Byoh2WwPmaoh+WwHu5/ehYuXCjTpk2T69evS1hYmJQrV0769+8vLVq0sMqC+SWM9Rg9PIb17NixQzp27CjXrl2TU6dOyezZs21mwPwS9vfff8vff/8tPj4+EhAQIC+++KLUqFGDdekkYluE0gI+QUGkYc+ePVK9enXp2rWr5M2bV0aNGiVZs2aVY8eOydGjR0VEzIbqk4y7m+7fvy8iIiVLlhQR273+rur8+fPSokUL6dChg6xfv1727dsnv/32m3Tr1k1ef/112bx5s4jE78kXYX4iImFhYfL+++9Lp06dJEOGDPLhhx/KkSNH5Ntvv02wYWVgfrFOnz4tzZs3ly5dukiPHj1EJPbuj4SO27iYIfPTxXOgHpbB+pihHpbDerj/6Tl16pQ0atRIXnvtNTl48KD4+PhIaGiorF69Wt5//31Zu3atiNjOkPnFYj1GD49h+zh58qRcu3ZNPD09Ze7cubJ9+3YRSTg7EeZnOHHihDRo0EBefvllmTFjhkyfPl3GjRsntWrVkrFjx8r58+dFxHYOzJBtEUpjHDKQFJGLuXXrFjp37gylFHLnzo0PPvgABw8eREREBNq2bQsfHx/8/PPPSVpWjRo1oJTCxo0brT6PiYkx//7o0SNcvnw53ufp3euvvw6lFN555x3s3r0bDx48wB9//IG6detCKYXixYvjv//+S3QZ7pzfunXrkCFDBtSuXRt79uwxP7c19mZC3DW/mJgYrFy5EhUqVIBSChkzZoRSCjNnzgSAZI2d6Y4ZMj/74DkwZVgG62OG9sFyOGW4/+k7efIkKleuDE9PT/Tt2xe7du0CAOzbtw9vvPEGlFIYOnToU7fXXfNjPUYPj2H7GjZsGEqXLo2WLVtCKYXGjRsn+bvunN/x48fx3HPPQSmFd999F5s3b8bu3bsxatQoKKWQIUMGvPrqqwgJCQGQ8La7c4Zsi1Bawg4KomT6+++/kSlTJiil8MYbb2D16tXmSTY6OhoNGzaEUgpTp041P0vIpUuXkD9/fuTMmROXLl2yOf+2bdvwzjvvoFmzZrh161YqbZXj/fPPP1BKoVWrVvGmnTx5Es2aNYNSCq+99hoePHhgcxnunF9oaCgaNGiATJky4cqVKylahjvnt23bNlSsWBGenp7o0aMHJk+eDKUU8uTJg7CwMABJqzy5a4bMTx/PgSnDMlgfM7QPlsMpw/3PPkaMGAGlFD755JN40xYtWmRecEqMO+fHekzK8Ri2HyO34cOHIzAwEMHBwciePTuUUpg7dy6AxDu83T2/4cOHQymFkSNHxpv2xRdfIG/evFBKYfDgwQBsZ+nOGbItQmkNh3giSiYvLy/p2LGjzJo1S77//ntp1qyZeHh4SGRkpHh6ekqzZs1ERGTNmjUiIk99SdDt27cla9as4u3tLQDM+c+cOSOjRo2SLl26yPTp0yVz5sxPHS4gPcD/P6p65swZERFp3LixiIhERUWZj/+VKlVKvv/+e/H19ZXff/9dFixYYPOxQhH3y89w8+ZN2blzp9SuXVty5sxpfn758mXZtWuX/P3337J+/Xq5c+eOOc3W45Xumt/9+/fl0KFDMnDgQBk9erT07t1b6tWrJzdu3JAxY8Yka1numCHzSzmeA/WwDNbHDO2D5XDKcP/Td/PmTVm4cKH4+PhIr169RETk0aNHEhUVJSIigYGB4uHhIZUrV37qstwxPxHWY3TwGLYfYzz/CxcuiIhIQECAfPHFFyIi8umnn0pISMhTx/J31/z+++8/+e233yRjxozmeTA6OtocdqhLly5Sv359ERGZNGmS7Ny5U5RSNuvT7pYh2yKUZjm4Q4QoXUnojoV79+5ZzRN3vunTp8PX1xevvPKK+ThhQoxe66pVq5qf3b59G9OnTzcflStVqhRWr16ttyFpUJ8+faCUwsSJEwFYZ230uk+YMAFKKZQrVw5nz56Ntwx3zm/r1q3m46wAEBISgrlz56Jx48bmnTdKKVSqVAlTpkyxuQx3zg8AZs+ebd7pAQBr1641czt9+jSApz/i784ZMj89PAc+Hcvg1MMM9bEcTjnuf0kXEREBwPp8GBERgdKlS0MphSVLlljNf/36dbRt2xb+/v5YuXIl/v333wSfBHCH/BK7+5z1mJTjMWwfUVFRAIBXX30VxYsXNz+vWLEilFIYNWoUACAyMtLm990hv4SO4atXryJfvnwoUqQITp48aXOe8ePHm8d0jRo1bM7j6hkmdg5kW4TSGnZQECXA1sn8yQp+3HmMv69YsQJKKRQuXNhsVCS0bONx4vfffx8AsGTJErRr1w5KKWTKlAmTJk2yx6Y4RXR0dLwMLRaLWdjNnTsXSil07tw5XuXV+F50dLRZQRs/fjyA2P8H7pAfkHiF4uDBg1BKoVq1agCAVatWIXv27MiUKRN69+6NIUOGoFq1asiQIQOUUpg3b565THfJD7CdYWKfvf3221BKoW3btklarqtnyPxSjudAPSyD7eNp70JgholjOayH+1/KhYaGYsCAAfj666/Ni5iGBw8eYMCAAfDw8ED9+vVx6NAhBAcH4/fff0erVq2glEK2bNnMToz27dtj06ZNAKzLJlfOD0i4vsJ6TNLxGNaT1PcRNWjQAFWqVDGH0dm8eTOUUvDx8cG5c+cAxHZMBgcHA3h88dgd8zPqgmfPnkWhQoUQEBCAzZs325xnw4YNUErB29sbSiksXrwYgPucB211TlssFvNztkUorWEHBZENixYtQv/+/dG3b1989tln2L59e5K/e+fOHRQoUADe3t7xCkuDUSgMHToUSim0bNkSAwYMQLZs2aCUQq9evRIc5y89mDlzJlq3bo2WLVuie/fuWLRoUbx5VqxYgZw5c6Jy5co4fPhwvOlGxeuPP/6AUgp58+Y1G2jGXSSumt/3339vVkYTunPr1KlTKFWqFJ599lksWrQIhQoVQo0aNazuBLt27RpGjx5t5hcUFATA9fMDkpYhEL/ie+LECWTJkgVKKaxatQoA4l0YAFz/GGZ+engO1MMyWF9Sj2FbmCHLYV3c//RMmjQJ/v7+UEphxIgRVnerG7Zv3446depAKQVfX18888wz5p3CXbt2xcyZM/H++++bLzotVKgQ7t69C+Bxueyq+QFJL0dYj7GNx7CepOYXExODyMhI1KhRA9WrV7ea9uqrr0IphTfffBPr169Hhw4dMHHiRDx69Micx1XzA5J2DLdt2xZKKfTo0cN8dwzw+Lju2bMn8uXLh549e0IphRdffNGcx/j/4qoZzps3D507d0aHDh3w9ttvsy1C6QI7KIji2LhxI8qXL29W8OP+mTt3rlXBl5CLFy+iQoUKCAgIwMaNGwEkfPfEyy+/DKWUWRFu0KABjh07Zs9NcqiDBw+iWrVqUEohICAAOXPmNPPr2bMnDh06ZM577do1VK9eHUopTJs2LcFHVwGgcuXKUEphzpw5Vp+7Wn67d+9GlSpVoJRCixYtEp331q1b5ourXn/9dSilMGPGDACPKwzGfmc8Xvnpp59afe5q+QHJyzAhY8aMgVIKFSpUMD9zl2OY+enhOVAPy2B99jiG3TlDlsN6uP/p+eeff1CiRAkopVCrVi38+OOPuH37ttU8cbO4cuUKRo0ahS5duqBatWooXrw4tm7dajX/9evXzbJm6NChAB5fHHa1/AD7lCPuXI/hMawnpfkVKlQIHTt2hMViMffRe/fumfuu8VLyAQMG4OHDh+b3XC0/IHnH8OHDh81pI0eOxPXr181pCxYsQKZMmdCmTRusX78eefLkQYUKFXDhwgWr33O1DNevX49y5crF23eM9kbc/NgWobSGHRREAMLCwvD1118jW7ZsKFCgAPr3749Nmzbhzz//RLdu3aCUQvHixbFu3bokLa9BgwZQSuG7774DEL9SZrFYEBkZiQ4dOkAphWLFipmPHKZXDx48QJMmTaCUwocffojDhw8jJCQEP/30k1mg1axZ06rg+/LLL6GUQvXq1c2xXuMyGlCjRo2CUgpffvklgNjefFfKLyIiAgsWLEDhwoWhlDKHg1i7di2A+HduGfuTMSakUgp+fn64cuWK1XTjroeFCxdCKYXKlSubdzK4Un5A8jNMzK1bt1CmTBkopcxxwyMjI+PdARUREeEyGTI/fTwHphzLYH32PIYB98uQ5bAe7n96zp07Z94JXLhwYXz22WdWZcLThlu8ffs2qlWrhpEjRwKI3e9iYmLM/W/NmjVQSuGZZ57BnTt3ALheGWzPcsQd6zE8hvXo5Hfjxg3ky5cPL7/8svlZUFAQvv/+e2TLlg3e3t7w8/PDH3/8YU53tfyA5B/Dxj716aefws/PD0opPPfcc2jTpo150b1mzZq4cuUKrl27htKlS8Pf39/s9DWeXnGVDO/du4fhw4cjQ4YMyJ8/PwYOHIidO3fi9OnTGD58OJRSKFOmDP79918Aj9sYxns63L0tQmkDOyiIAMyaNQsZM2ZEiRIlsGLFinjTX3jhBSilMGzYMAAJP6ppfG6cwN99990EKyQxMTH4/fffMXXqVDtthXPNmDEDSsXeJfykAwcO4Pnnn4dSCkOGDDHv/AgJCUHZsmXNuwqNR9ifrMR+/fXXUEph+PDh5meulN/ff/+N4sWLw8fHB0OHDsWnn34KpRQqVqxozhM3E6OiEBISgnLlysHDwwNKKfPRzSfHm9y4cSMyZsyIxo0bIzw83JzHVfIDkp/h08ybNw9KKWTPnh23bt0yP4+JibF6ZNtVMmR++ngOTDmWwfrsdQy7a4Ysh/Vw/0u5hw8fmvvPyy+/jOPHj9vc1xL6NwBMnToVSinzPRNPOnHiBPLmzYtixYrh/Pnz5nJcIT+DvcoRg7vVY3gM69HJLzg4GNmzZzefsPv1119Rq1YtKBX7DgpjuLeFCxcCgPleD1fKD0j+MWzkEB4ejvnz56N06dLmufS5557DgAEDsGfPHvP71atXR6ZMmXDixAnzM1fJMDQ0FEOGDDE7ZYzh6eIy9qm//voLwONj1ajHuHtbhNIGdlCQ2zt9+jTKlSuHkiVL4uLFi+bnMTExZoXqzz//hFIK5cqVS9Iyv/jiCyil8NZbbwFIuBKcnAt+aZWxDYMHD7ZqnEdFRVlt37Zt26CUgoeHB5YuXWreRWy8nCl37tz49ddfrcY1NP4+ZcoU89HDuL/pCvkBseOUKqXw+eef4/79+7hz5w5KliwJpRS+//57APH3IePfs2fPNh+p7NChg3nhI+6dXqtXr4ZSCs2bN7dahqvkB6Qsw8RERkaaFWHjpV9r167Fiy++iKZNm+Ls2bMAXCdD5pdyPAfqYRlsH/Y+ht0tQ5bDerj/pYyxXcbTdHEvZhoePnyI6OhoXL58Od40o7Pigw8+gFIKCxYsMM+bxlMUALBlyxYopVCgQAGrMcHTe36G1ChH3KkeA/AY1qWT35EjR6CUQsOGDfHaa6+ZT+V17doVALBq1SoopVCwYEHcvHkTwONj31XyS+kxHHf7g4ODcejQIZw9exZnzpyxekH7zZs3kSdPHlStWtX83JXq0iEhIejcuTMaNmyI0NBQ8/PIyEjznSXGezh27txpTjeyNTpk3bUtQmkHOyjI7YWGhqJTp07meHq2Kg87d+6En58fmjZtigcPHiR4IjYqCxs2bDAbAkZD1dW1bt0aSinz0b64GRl/HzBgAJRSaNy4Ma5du2ZO79OnD7y9vVG6dGnMnj3barnnzp1D5cqV4e/v73LjGcbN6Oeff7a6Q2v27Nnm4/jBwcEArO+ai/vdPn36wN/fH5kyZcI333xj9Rtnz55Fo0aNkCFDBixbtized9M7nQwTYsyzZ88es5Hw2muvmRegWrVqhRs3bth5S5yD+dkPz4EpwzJYj72PYXfLkOWwHu5/euLmZ7x7YubMmQBix/H/6aef8Oabb6J06dIoVKgQ2rZti59//jnecoyXlHbv3t0cZsxw9uxZNGzYEN7e3pg+fXqqbo+z2LMcAdyrHsNjWI898rt9+zYKFChg7mu1atXCvn37rOYxXnbft2/fVNoS57L3MfzkNKNzY+DAgbBYLElqz6Q358+fN/ezqKgoqwwPHTqEwoULo0KFCggPDzc7HeLm4M5tEUo72EFBbs04KRt3IyTk77//hlIKLVu2TNJyT5w4gWeffRZFixa1eimqKzIyHDdunDl8yZOP8hrz3Lp1C/ny5YNS1i9Y+vfff9GvXz+zYvbhhx9izZo1mDp1qjmG6dChQ12yMpFQ5SoiIsJ8+ebAgQMBJPyY/7///mte+FRKoX///li6dCm+/vpr1K5d27yD6ckXLboKnQwTW9b9+/fNBoFSCnnz5sX8+fPtt+JpBPPTw3NgyrEMtg97HsMGd8qQ5bAe7n96jPJi+fLlUEohW7Zs2LJlCzp16gSlYl88GhgYaA7zopTC2LFj8d9//5nL2L59OzJmzIgMGTKgW7du2L17N65cuYIff/zRLIc7duyIS5cuOWszU429yxF3rMfwGNajm9+DBw/Qv39/+Pv7W+1fMTExZufOtm3b4Ovri99++y0VtsC5UqsuCMB8F1yOHDlQrlw5q6czXI2t/fDBgweYO3eu+TRP06ZN8frrr6Nbt27YsmWL1QvX3bUtQmkLOyiI4kiogmG8BHH06NEAnv6I6+XLlxEYGAilFI4fP2739UyLfvnlF/j5+aF58+bm+LZxGZl98803UEqhWrVqVtPDwsLw8ccfI2fOnFBKwcvLC0rFvmRs7NixDtkGZ3ty/9u8ebNZSTh69CiAhPe9R48eYfjw4cibN685jIxSChkzZsSoUaNSfd3TCp0M45o3b555UUkphc8++yxV1jetYX4px3OgPpbB+ux1DLtrhiyH9XD/09OyZUsopRAQEGAOLXTy5EmcO3cON2/exEcffYQsWbIgZ86cmDx5stV3R44caWbm7e1tvqTX29vbbfY/wH7liDvWYwAew7pSmp/x8npD3BtdXOWJu6TSPYYjIyNx9uxZzJkzB23atEGGDBmQK1cu8x0e7uLatWto3749MmfODKUUunTpgi5dupjvm8idOze+/vprq++wLULOxg4KokQYPcSdO3e2GrojKWrVqoU6deqYj9q5KqMScezYMRQrVgwZM2bEn3/+Ga933Zjv4cOHZuN9/fr1AKzvJrl8+TImTJiAr7/+GhMnTnSZR6hTqnfv3ubj5EkRFBSEyZMn47vvvsPkyZPdPj8g+RnOnDkTvr6+5iP9cYficUfML3E8B6YelsH2kdxj2MAMY7l7Oax7cYz739MZF9qOHz8OpRSqVKmCzZs3x5vPuHjk4+ODxo0bm+9BAGKHSPnnn3/QuHFjNGzYEE2bNsWHH36I69evO2w70qKUlCOuVo/hMexcyckvoReKu7PkHsORkZHm08r+/v54/fXX0/0xnFLFihVDs2bNcO7cOavPx44di4CAABQsWBDbt28HwLYIpQ3soCCX9OTLj3TExMQgX758yJYtm9W4rk9b9tMeU3RF7733HpRSaN26Na5evRpvekxMDKKjo/HOO+/Ay8sr3viGrvTIoL225cyZM8iRIweUUubY1RERETYvfrpSfoBzMgRi73bq3LmzzYsD6YG977Ryt/x08Bz4mL32Q3cugx19DnySK2RoD+5YDh85csRu78twx/3PeClpchh5jBkzBlOnTgUQm72RvzF9x44dKFy4MPLmzWuOUx/3/5HRBrp7927KN8DFJLUccaV6DI9hfc4ug9O7lJwHE5LUY9jo7F2+fDm++OILHD582G7r4Gg617OMjq579+6Zn8UtT65cuYLXXnsNPj4+mDJlitV3XX2/pLSNHRTkUu7cuYM+ffpg8uTJdrs4smvXLiil0KRJEwDWdzZERUUhLCzMLr+TFkRGRiZYWU+MURk4f/68+Tjv1KlTzWyeXMbAgQOh1OMXAbqK8PBw/PvvvwgNDbX6XHdf/Oqrr6CUQunSpa0eZw0PD8eFCxfs8htphTMzTMoj62mdrUqlPfYNd8mP50A9d+/exaeffmrXRqk7lcEAyxFdzjwHukJ+d+/eRc+ePaGUwgsvvIAHDx7YZbnukt/9+/cxadIk9OrVK9ljnRv7blIuDj3//PNWFzvjSu85prQcTkxSyxFXuDDHY1gPy2B9OufBhLjTMZwa17NstdGM92aNHz/eLr9BZA8eQuQivvzyS8mfP7/88MMPEhoaKg8ePEjS9wAk+vnu3btFRKR69eoiIuLl5SUiItu3b5chQ4bIokWLJDIyUnf1ne6HH36QV155RVq3bi3vvvuuLF26VERElFKJfg+AeHp6CgApUqSIDB48WEREvv32W1m7dq25jOjoaImJiRERER8fHxERyZUrV2ptjsNNnjxZGjRoIK1bt5Znn31WunfvLtu2bRORxDNMaP+Lq0ePHlK+fHk5deqUTJ8+XURE/vzzT2ndurUMGTJE7t2799T/T+mBszP09PS0z4Y4yW+//SYDBw6UPn36yBdffGGeu5JyDD+NO+THc6CeefPmSf78+WX06NHy3XffiUjS9i2WwY85+xyY3suRX375RXr16iXvvvuufPPNN3L48GERcdw5ML3n9+WXX0pgYKDMmDFDRGLPU5kyZXpqPswv1sSJE6VYsWIyZMgQ+emnn2TJkiXJOgd6eMQ2y40cLBaL1XwWi0ViYmLkzp078ujRI8mYMaOUKlUq3vLSc4465XBinye1HDH+H6RXPIb1sAzWp3seTOhzdzqG7Xk9y2C00YxyRETkzp07IiJSoEABjTUmsjMHdYQQpZq//voLRYoUgVIK9evXx8yZM5M01mXcx9yA2HHB4zJ64Nu2bQulFNasWQMAOHv2LMaMGYPixYtDKYUPPvjAfAQvPdq9e7d5J1bWrFnxzDPPmC/z6tOnD06cOAEgfs/7k/kZd5qEh4ejY8eO8PDwQJUqVfDPP/9YfW///v0oXLgwChcubHMIlPRm8+bNKFOmDJRSyJEjBypWrAhPT08opVCnTh3zxXC27gZLbP8zxH1UVSmFLFmyoEOHDvD29oZSCm+++SZCQkJSaescgxnqWb16NUqVKmUet3H//PHHHwgPD7f5PeYXi+dAPUYG/fr1M3PLnj271SP4CX2PZXAsngP1bNiwwTwHGi+mVkrBx8cHP/30E/777z8A8e+sZH6xli5datajGzdujBEjRpgv907sHMX8YgUFBaFjx45QSqFGjRoYN24czp8//9QnyZKa35Pz/fzzz/Dw8EDDhg3x8OFDl7jr2l7lsLuWIzyG9bAM1pda50F3OYZT63pWQvP9888/yJ49O5577jkEBQXpbwCRnbCDgtKt48ePo2XLllBKoVixYvjiiy/w77//mtMTq7DHbaTeuXMHM2bMwPjx4+O9SC40NBTZs2fHs88+izNnzuDXX39F7dq1oZRCiRIlsHz5cvtvmAPduXMHderUgVIKw4cPx/Hjx3H//n1MmTLFbCg0atQo3vcSyu/y5csAgIMHD5ovssqSJQtGjhyJDRs24Ouvv0alSpWglMKkSZMctZl2Z+xbGzduRL58+RAQEICRI0eaFdiVK1eiadOm8PHxwfTp0+N9P6n7X9z5Ll26ZFaejUeEV61alRqb5xDMUF9ISAjGjBkDf39/FC1aFIMHD8bWrVuxaNEivP7661BKoVy5cti6dWu87zK/WDwH2k+HDh1Qu3ZtVKlSBUop9OvXD4DtsphlMM+Buoz81q9fj1y5ciFLliz46KOPsH//fmzcuBHvvvuu2VnWv3//eN9z9/yA2Hp0kyZNoJRC8eLFzXr0rVu3ULFiReTMmRMbNmyw+V3m99i0adOglEKHDh1w5swZ8/PEhhpJan5x3bx5E+PHj4e3tzcKFCiQ4P+b9Mbe5bA7lSM8hlOOZbB9peZ50NWP4dS+nhXXrVu3MHHiRAQEBCBHjhxYuHChfTaEyE7YQUHp0r1798zC/bXXXsOpU6espj95h42twjEqKgorVqzAq6++CqUUSpYsaVZKDGvWrDGnvfHGG1BKwc/PDxMnTrT/RjnBpEmToJTCoEGD4k3bvXs3ihUrBqUURo4caTXWI2A7v2PHjpnTg4OD0b17d2TPnh1KKXh5eZl3Rk2bNi3Vty21RUdH47XXXoNSCjNmzLCaFhUVha+//hpKqXgvnoo7z9P2PyB2LN7vv//ebKRlzpwZ3333Xapsk6MxQz1Tp06Fl5cXypcvj3Xr1llNi46ORoMGDaCUwrhx48zP4nL3/ACeA+3BaDy1atUKTZo0waVLl8zyeffu3VbzxMUymOdAXdHR0eYdm7NmzYo3fcCAAfD394dSyrzAFPc86M75TZkyxexA7devn3msAsCNGzdQqFAhKKXMi5sprUcDrpmf4cqVK8ibNy/Kly+PyMjIROd98jz4tPwsFgvu37+P27dvY8qUKWjUqBGUUsibNy8WL16cKtvjDPYuh92lHOExrI9lsH2k5nkQcN1j2BHXsywWC65fv47r169j2rRpaN26NZRSCAwMZOcEpUnsoKB0xzhZDxs2DEop1KtXL948Dx8+RFRUVIJDTPz777/o0aMHcubMCaUUevToYfVopVF4Tp061Wq4gLfffjvdP4IJPN6+nj17wsvLy7x7IyoqyqrisGrVKvMR4dWrV5ufnzt3LtH8DJGRkTh79iy+/PJLjBs3DlOnTrXby9qc7fDhw8iQIQNKlixpNpgiIiLM/XPatGnw9fW1eefS0/Y/Q1RUFMaPH2/1mPuTL21Lz5hhyh05cgTFixfH888/b/VobkxMjJnfzz//bD5q/SR3z4/nQPurUKEC6tevDwDo27cvlFJo0aKFzXnPnz/v1mWwgedAPQcOHIC3tzfKli1rNtyjo6PN/A4ePIjGjRubFzNu3LgBIHb/cvf8Zs6ciV69euGvv/6yuqBk/N14Auzjjz+2+X13z8+wceNGmxfXT506hV27dmHRokXYtm2b1Xk/qftfUFAQevXqBT8/P/NCdN++fV0mv9Quh129HOExrI9lsH2k1nnQlY9hR1zPAoDLly/jlVdeQcaMGaGUQrZs2VxyHyTXwQ4KSheMypbFYjEboTExMciXLx+UUvj9998BxJ6of/jhB3Tt2hUlSpRA0aJF0b59e8yfP99clsViwe7du+Hj44OqVavi8OHD5rQne6o/+ugjKBU7nufRo0dTezNTTdz84mrYsCGUejyeo627XHv06AGlFFq3bo1bt24BQJLzS+yxzvTmyWwuX76MjBkzIleuXDh48KDVtBMnTqBy5cp49tlnsW/fPpw/f96cFhMTk+T8AODPP/9Et27dcOTIEftukBMwQz1x87tz5w5effVV8+6XuNttzLdhwwb4+Pjg5ZdfxqNHj6y+72758RyoL6HHzI1tLl++PFq1agUAuH//vnnnulE+x73z1d3KYAPPgXqezG/37t3w9PRE/fr1zWPzSd27d7e6qAHEZuSu+RnnpMjISKsLFHHPVVFRUfj444/h4eGBIUOG2MzE3fJLqAwxbgQw7oa+ceMGJk+ejOrVq5vnQKUUmjVrhgULFgBI3vE7ffp0dOrUCZ9++inOnj2bmpvoELbKkdQuh12lHDH2QaMs5TGcfCyD9TjrPOhqx7Cjr2dNnjwZb7/9Nr744gucO3cutTeTSAs7KChNO3/+PN5++23Mnj3b6nOjcvbbb79BKYV8+fJh27Zt5guUsmbNity5cyNLlizm0Bpff/017ty5AyD24kncSkJMTIxVxc74+61bt2yO355eJJSfsX2ffPIJlFIYMWJEvMqGUbhdunTJHKLEeKQ8ODg40fxcxfnz5zF69Gib04KCgvDKK6/Aw8MDHTt2xOXLlxEUFITp06ejRo0aUEqhUKFCKFiwIDJkyIBu3bqZjcvg4GCrioSt/FzhpYcAM9RlKz9jO40XvybEOD927Ngx3rQHDx489Rh2lfx4Dky5xI7fuO7fv48CBQqga9euZg5Tp06FUrHjAxsvLgwNDUV4eDiioqKsLga4ahkM8ByoK7H8Nm7caN79GnfMa+DxPvTNN9+YF0eUUubQB0k5hl09P4Ot7TRya968uc3vuHsZYmzbnDlzoJTCG2+8AQD47rvv4OXlhbx582LIkCHo27evOea8h4eHOQxPSEhIosdv3I6ku3fvpuo2praE9sHULoddpRxJaB+Mi8dwwlgG63P2edBVj2FHXc+KiopK90+ckPtgBwWlSdHR0Xj//fehlIKnpyd+/PFHhIeH25y3Xr16UEohICAAnp6eGDZsGE6fPo1z587h5s2bGDhwIDJnzow8efLgxx9/jPf9J8czdQVJze+HH36Ar68vXn75ZZuPDxoF26hRo6CUQoMGDeLN42r5GZWtCRMmmBc0jLs9nqxoLl++3BzjNUuWLAgICIBSCt7e3hg8eDBmzJiBPn36mC/FtfWSP1fLD2CGupKTX0KfAcCnn34KpZQ5Rqutu7oA18sP4DlQR3L3v5iYGNy8eRPPPPMMevbsaTWtXLlyUEph7NixWLRoEdq0aZNgA82V8Byo52n5GdMtFot50WP8+PHx7jAODw9H3bp1UaVKFbRp0wZKKQwZMiTe77lbfkn57sGDB82XMce9c9gWV8sPSHoZsmHDBmTPnh316tXDvHnz4Ofnh44dOyIsLMyc5/Tp03j77behlEKdOnXiXcR0xfySsw+yHLYtOW3huHgMswy2F54H9fB6FlHysYOC0pxZs2bhmWeegVIKrVq1woIFC2yezI0T8e7du6GUQu3atbFr16548wUHB2PQoEHw8vJCq1atcPny5VTfBmdKSn5G5Wzfvn3Inz8/smTJghUrVsSrtBmVh7t37yJr1qxQSpkZu8pdIU8ytqtly5ZmpbZUqVJWlay4237gwAEMHToUXbt2RbFixVC7du14j08eO3YMOXLkgFLKvDiX0MViV8AM9SQlv8QYx22bNm3g7e1tNWazO+A5UE9K9r/bt2/D09MTY8eOBRA7bi4AbN261WzoG+MHT5482SWfNomL50A9ScnPqAP+/vvvUEohe/bsmDRpEh49emTOY7zg9KOPPsL8+fORIUMGvPTSS7h//75jN8jBdMsQANi1axcCAwPx7LPPut2QEElthwCxw8CULl0aWbJkQdu2beHl5YWNGzcCgPnkGBBbhhjH7x9//AHAdY9fIHnnQJbD8SVnH0yIOx/DLIP18Tyoh9eziFKGHRSUZmzbtg01a9aEUgrPP/88Jk+ejOvXr5vTbV3QiPt48KxZswBY311nTN+4cSPy5s2LwoUL49ixY6m9KU6RkvyAx+Mzd+jQwXyBZFwxMTGIiIhAly5d4Ovra1YoXNnDhw9Rr149vPDCCyhatKh5dyaQcGPoxIkTKFq0KObOnQsgtsJlsVjMisfkyZOhlO0XFrsiZqgnJfk9+f3s2bMjMDAQt2/fNj931cY8wHOgPSV3/9u/fz+8vLzwySefmJ+dPXsWI0aMgK+vL7y9vREYGIgDBw44bBucjedAPcnJr0uXLvDx8YFSCjVr1kTbtm1RqlQpKKXQrl07REZGYvfu3fD398dzzz3njM1xON0y5NGjR8ibNy+UUuYLYl25/ABSXoa888475kXQkiVLxrvgZvx7zJgxUErhtddeS72NSEOSsw+yHI6V0n3QFnc8huNiGZwyPA/q4fUsIj3soKA04ezZs2ah9t577+HChQtW058s5J48YSflsbbixYtDKWX26LuSlORnfHbs2DFky5YNSinMmjXL7N1/svLWs2dPKKWwaNGi1NuQNMDY7nLlyqF3797Ys2cPlFLInDlzvFzj6tevH3x8fHDt2jWb01euXAk/Pz80aNAAISEhLt1IYIZ6UppfXOvWrYNSCm3atAHw+MVsxt+NO9xdBc+B9pOS/e/IkSNQSmHp0qWIjIzEpEmTzAvExh1kSilzrGFXfxSd50A9Sc3POIavX7+O77//3rwYlzFjRlSrVg0jR47EyZMnAcRerMqWLRvKli2b4Au1XYVuGWLk2rlzZyilMGHChNRc3TRBpww5evQocufODQ8PD/j6+prnuScvRM2aNQtKKbzzzjs2p7uS5B7DLIdT3ha2xR2P4bhYBqcMz4N6eD2LSJ+HEDkZAClWrJh07txZRETu3bsnhQsXFgDmPNHR0RIRESFBQUEiIqKUEhERD4/YXdjLy0tERCwWi9WyLRaLxMTEyPXr1yUqKkqyZMkizz77bKpvkyOlND9PT0+xWCxStmxZGTBggIiITJo0STZs2GDOEx0dbWbq7e0tIiLZs2d32LY5g1JKHjx4ILdu3ZKHDx9K1apVpXXr1hIWFiZffPFFvPkBSHR0tFy6dEkyZMgg58+fN7OPiYkx57t8+bKEh4eLh4eH+Pv7m/uwK2KGepKbX1zG8bp7924REalevbqIPD5+N2/eLEOGDJElS5ZIdHR0Km6F4/AcaF8p2f8uXLggIiILFiyQF198UQYPHiynT5+WoUOHyq1bt2Ts2LEiIjJw4EABYJbZrornQD1Jzc/T01NERPLkySO9e/eWI0eOyO7du+XkyZMyb948GTVqlJQqVUpERM6ePSvBwcHy/PPPyzPPPOOU7XIUnTJEJDbXmJgY8fHxERGRyMhIEbHeF12JbhlSrlw56dWrl3h7e0tMTIzMmTNHRGLbKNHR0eZygoODRUTE19fXnO6qknMMA3D7clinLWyLux3DT2IZnHw8D+rh9SwiO3FUTwhRQoze5P/++w+enp5WY4seO3YM33zzDV577TUUKlQIZcqUQceOHa3GVE/opZ1xP58yZQqUUmjdurXVWIiuQDc/ALh//775AslatWph06ZNVtO3b9+OwMBAlC5dGjdv3nTMhjlJTEwMQkJCkDt3bvTp0wcAcOrUKfOOiG3btgGwvgvi0aNHaNeuHZRSGDVqFO7evWu1zF27dqFYsWLImTMn1q9f77iNcRJmqCcl+RmM817Tpk2hlMLOnTsBACdPnsSIESNQuHBhKKXw2Wefucxd7DwH2ldK9r8DBw6YQ+wopdC2bVur8XEfPHiAwMBAKKUwffp0x26QE/AcqEfnHJiQzz//HEopTJkyxfwNV6Wbn5HNd999B6VsvxTWldizDPH19UWuXLmwbNkyq+m7du1C8eLFkT9/fvPOYleWkn3Qncthe7eF3e0YfhLL4OTjeVAPr2cR2Qc7KChNME7qX375JZRSqFq1KrZu3YoGDRpAKYWcOXMiR44cyJIlC5SKfRnitGnTzJchxj15x/17UFAQRo8eDaUUihUrhh07djh2wxxENz8A2LNnD1599VVz/lGjRmHjxo0YN24cypUrBy8vL/z444/O2kSHunDhAjJlyoQRI0aYn3344YdQSqFBgwbmZ/fv3zdfuPbzzz9DKYXcuXNj4MCBOH36NE6dOoWvvvoKZcqUgVIKQ4YMQXBwsMs9EmwLM9STnPyePA/eunULmTNnRpkyZXD+/HlMnz4dVatWhVIK5cqVw7p16xy7MQ7Ac6B9JXX/Cw4ORkREBO7evYuWLVuiSJEiVheVoqOjzYy///57ZMuWzebL/1wRz4F6dM6BcQUFBWHMmDHmiyVDQ0NTf+XTAHvkt3r1amTLlg21a9e2GkPbFdmrDHnjjTeglEKOHDnw0UcfYeXKlRgxYoR5/H766acIDw93+eMXSN4++ODBAwDAzp073bYctmdb2OBOx/CTWAYnH8+Deng9i0gfOygoTYh7EjZeZBUQEIBMmTJh4sSJOHfuHM6dO4dr166hc+fO8PX1RbFixfDnn39aLce4Y+LGjRuYNGkS6tWrB6UUihQpgpUrVzp6sxzGXvnduXMHnTp1MseB9fLyMgvUX3/91dGb5RQWiwVnzpyBUgpffvml+XloaCiyZ88OpRRmzJiBGTNmoF27dliyZIk5T/fu3REQEGCOc2rklz17dvOlV+6AGepJbn5P3qG0ePFiszOiY8eOUEohS5YsmDp1qqM3xWF4DrSf5Ox/bdu2xfLlywHE3jUWdxlGQ83VGqBJwXOgHt1z4MOHD3H8+HF89913aNy4MZRSKFu2rHnXrKvTzc+wfft2KKXg5+fn8h079ipD7t+/j65duyJnzpxQSsHDwwNKKeTKlQszZ8509GY5TXL3wb/++sucx13LYXvtg3G50zEcF8vglOF5UA+vZxHpYwcFpRnGcCOLFi2CUgovvfQSTp06FW++K1eu4K233oKHhwfefPNNq0cwL126hG7dusHX1xdKKWTNmhWDBg0yX7bmynTzMx4HDg8Px4kTJzBu3Dh8/vnn8e6McAdHjx6FUgpz5swBAHP7f/nlFyilkClTJvMx4d9//93MPigoCPPnz0f16tXRpEkTvPDCCxg3bpzb5QcwQ13JzQ94fAyPHz/enKaUQp8+fXgOjIPnwKdLzv63YMECq+8mNHSYu3VU8ByoJyXnQMOlS5fMadmzZ8fAgQOZXzLyM9y5cwf58+dHly5d4g014YrsVYY8evQIZ8+excSJEzFx4kTMmDHD7fY/IPn7oMVicfty2B5t4bjc7RiOi2VwyvA8qIfXs4j0uPZbCildMV4M1L59e3nnnXekVatWUrJkSQFgvkQIgOTPn19at24tf/zxhxw9elTCw8MlW7ZsIiJSsGBBqVSpkkREREjp0qWlS5cuUqhQIadtkyPp5me8oMnHx0dKly4tpUuXdtq2ONvly5dFROThw4ciEvsir2PHjsnevXvFw8NDIiMjpXjx4rJu3TopUKCA+b3AwEB5/fXXpUOHDmKxWCQiIkL8/f2dsg3Oxgz1pCQ/4xi+cuWKiIi0aNFC/ve//0nx4sWdsAWOx3Og/aT0+BWRBF+ArVzoZZJJwXOgnpTmZ7FYpGDBgjJjxgwJCQmRdu3axdtH3YHOMWzIkiWLHDlyxKxjuzp7lSHe3t5SrFgxGTx4sNO2JS1IyT5o5Oyu5bA92sJxudsxHBfL4JTheVAPr2cRaXJGrwi5tpMnT+Lzzz9P0Xfj3jlji3Hnx4MHD8zHL8+cOWP13UePHuHevXsp+v20wFn5uQqd/Ix8Vq5cCaUUDh06hDt37mD06NEoUKAAlFLmf729vREUFAQg8ZcVp0fMUI+z8jMyvH79uvly7PSI50A9aeX4Tc/SSoY8ByY/v/SaWVxpZf9Lr1iG6OM+qIf7oJ60sv+l5/KE+6AeXs8icg52UJBdGCfaMWPGmI9LGuNSJ6VwN07GCS3XYFQeDh8+jOzZs6No0aIICQnRWfU0gfnpsXd+U6ZMgVIKPXv2RK1ataCUQsaMGTFhwgQAQLdu3aCUQpcuXey8Jc7DDPUwPz08B+rh/qePGephfnqYnx6WIfq4D+rhPqiH+58+7oN6mB+R87GDguzCOPEaL/FRSqFSpUqIjIxM0vcMDx8+tDnfkyf8jz76yKx0uALmp8de+RkvkFu6dKm5HCOn4OBgc77z58+b01atWmXnrXEOZqiH+enhOVAP9z99zFAP89PD/PSwDNHHfVAP90E93P/0cR/Uw/yInI8dFGQ39+/fR7Vq1fDSSy8hT548UEph6tSpAGz3Osc9SV+6dAmTJk3ClClT4p3U4373/PnzGDhwIJRSqFq1Kk6fPp1KW+N4zE+PvfILDw/H5cuXUbVqVVSqVAmHDx8254uKijIrKe+//z4KFSqEc+fOpfKWOQ4z1MP89PAcqIf7nz5mqIf56WF+eliG6OM+qIf7oB7uf/q4D+phfkTOxQ4KsguLxQKLxYLChQvj448/xsaNG6GUQs6cOc2xHW0JCQnB3Llz0aRJEyil8MILL+DGjRvm9IiICISFheHixYsYM2YMqlWrBqUUKlasiB07djhi0xyC+emxV37NmjXDzZs3ERMTY/W9mJgYswKS0OOb6R0z1MP89PAcqIf7nz5mqIf56WF+eliG6OM+qIf7oB7uf/q4D+phfkTOxw4Kspvbt2/D398fAwYMAAA0aNAASikMHjwYQPxe571796Jdu3bIlCkTvLy8MGLEiHjLPHr0KNq3b28+Zpc7d26MGTMm1bfFGZifntTID4i908ZdMEM9zE8Pz4F6uP/pY4Z6mJ8e5qeHZYg+7oN6uA/q4f6nj/ugHuZH5FzsoCC7sFgsuHnzJgICAvDRRx8BAPbt22eeiA8cOADg8UuBLBYLFi1aBKUU2rdvb9XLbMxjGDNmDDp37owJEybg9u3bDtoix2J+elIzP3fBDPUwPz08B+rh/qePGephfnqYnx6WIfq4D+rhPqiH+58+7oN6mB+R87GDgpIkKY9CHj9+HD4+Pvjqq6/Mz959910opdC6dWvzs3v37iE6OhohISE4ceKE+Xl0dLRVr7Txm2FhYQgJCbHHZjgN89PjjPxcDTPUw/z08Byoh/ufPmaoh/npYX56WIbo4z6oh/ugHu5/+rgP6mF+RGkfOygoQTdv3sSXX36ZpHktFguOHDkCpRS+//57q2VkyJABSinMmzcP33//Pdq1a4fVq1dbfdcV73RgfnqYnz5mqIf56WF+epifPmaoh/npYX56mJ8+ZqiH+elhfvqYoR7mR5S+sIOCbPrhhx/ME/H8+fMBPH38xp07d0IphSVLlsBisSAiIgIA8O2330IphSxZspiPyC1btizVt8GZmJ8e5qePGephfnqYnx7mp48Z6mF+epifHuanjxnqYX56mJ8+ZqiH+RGlPx5CFMeNGzfkk08+kT59+khERISIiHz66adisVjEy8tLACT43cuXL4uISHh4uCilxMfHRw4fPiyHDx8WpZQ8fPhQypcvL//995+8+OKLDtkeR2N+epifPmaoh/npYX56mJ8+ZqiH+elhfnqYnz5mqIf56WF++pihHuZHlI45vk+E0qqQkBB88skn8Pf3R/78+TF79mzUqFEDSil8/vnnAGy/dMoYZ894SdC5c+cQFBSEESNGIG/evFBKoVChQlBKISAgAPfu3QOQtHEA0xPmp4f56WOGepifHuanh/npY4Z6mJ8e5qeH+eljhnqYnx7mp48Z6mF+ROkbOyjcXGhoKJYuXWr+u1atWihcuLD5yNqSJUuglEKGDBlw9epVALZP6gDw5ZdfQimF3r17o0qVKuZjcFOnTgUAtG3bFkop9OnTB8DjgiA9Y356mJ8+ZqiH+elhfnqYnz5mqIf56WF+epifPmaoh/npYX76mKEe5kfkOthB4cYmTpwIb29vVK1aFUeOHAEAHD9+HH/99ZfZGxwTE4NXX30VSim89dZbNpdjnJgXLFgApZT557333sPDhw/N+Y4fP25O27p1aypvXepjfnqYnz5mqIf56WF+epifPmaoh/npYX56mJ8+ZqiH+elhfvqYoR7mR+Ra2EHhhlasWIFixYpBKYXq1avj559/RlhYWLz5jBP1/v374e3tDaUUtm/fDsD2C4ZOnTqFcuXKoXbt2jh16pT5eVRUlDl/r169ULJkSVy5ciU1Ns0hmJ8e5qePGephfnqYnx7mp48Z6mF+epifHuanjxnqYX56mJ8+ZqiH+RG5JnZQuJHz58+jVatWUEqhSJEiGD16NM6ePWtz3icfV/voo4+glELt2rUTXH5MTAyCgoKs/h235zruf9Mj5qeH+eljhnqYnx7mp4f56WOGepifHuanh/npY4Z6mJ8e5qePGephfkSujR0UbiAiIgKDBg0yH0dr164djh07ZjXP08bPu3r1qvlioF9//RWA7V5nQ2LT0hvmp4f56WOGepifHuanh/npY4Z6mJ8e5qeH+eljhnqYnx7mp48Z6mF+RO6BHRQubtq0aciaNSuUUsiXLx+UUnjppZfM6ck58U6fPh1KKeTPnx/h4eEAgMjISLuvc1rC/PQwP33MUA/z08P89DA/fcxQD/PTw/z0MD99zFAP89PD/PQxQz3Mj8h9sIPCRa1btw6VKlWCUgqVK1fGlClTsHTpUgQGBkIphUWLFgEAoqOjk7zMsLAw1K1bF0opfPLJJ1bTrl69ivv37wNwjcfemJ8e5qePGephfnqYnx7mp48Z6mF+epifHuanjxnqYX56mJ8+ZqiH+RG5H3ZQuKCjR4+aPcPDhw+3evxt2LBhUEqhYsWKiIiIAJC8E/CqVauglIKHhwfu3LkDi8WC0aNHo3Llyvj888/tvi3OwPz0MD99zFAP89PD/PQcO3aM+WniPqiH+elhfnqYnz5mqIf56WF++pihHuZH5J7YQeFCLBaLOfbelClTsHr16njTT5w4geeffx5KKXz99dcAkn5CN3qne/bsCaViXzBUp04dKBU7FuAvv/xix61xPOZnP8xPHzNMvjt37phZTJ48mfkl0+jRo3H06FEAwLfffsv8NHz33XfML4VYDqcc6zH6mF/Kcf/Txwzth/npYX4pw7aIHrZFiNwbOyhcQGhoKADr8ffiviQoJibG/HdkZCSmTZsGpRRy586Ny5cvA3j6o3Fxlzd79mxkyJDBPJG//vrruH79ut22x9GCgoIQGRmJBw8emJ8xv6SbO3cu+vXrh5MnT9qczvyebu7cuShQoADmzZtnczozTNyyZcvw+uuvo2vXrti6dSsAHsPJMW/ePPOlcUOGDAFgXdFnfok7cOAAjhw5gmPHjuHhw4cArPNgfk8XHBwMi8Vitd/xGE66ixcvIiwsDGFhYeZnzC9lbF3kYH6JYztEH9sietgW0cN2iD62RfSwLUJEADso0rVDhw6hV69eaNWqFRo0aIAePXpg37595qNuCZ2kr169ipYtW0IphXfffTfJv3f+/HkMGDAA2bJlg1IKVatWxfbt2+2yLc5w4MABdOnSBVWrVkWFChVQu3ZtLF26FCEhIQCY39OEh4djwIABUErB19cX06ZNMzOLWwF4EvN7bM+ePahevTqUUihbtizmzp2bpO8xw1hHjx5F/fr1zX2wYsWKWLdu3VMrqMwv1p49e1CtWjUopZA5c2b4+PjgrbfeMl8alxDmF2vfvn1o2bIlsmfPDn9/fyil8MILL+DUqVMAYi/W2ToXMr/HDhw4gK5du6Jhw4Zo2LAhBgwYgOPHj5sXOplh4vbv34+XX34ZJUqUQNmyZVG3bl0sXLgQ9+7dAxBbj2F+CduzZw+GDBliNXREUjC/WGyH6GNbRA/bInrYDtHHtogetkWIKC52UKRD9+/fR9++fc0e3xw5csDT0xNKKRQrVgyTJ09O9PsWiwV///03MmTIAE9PT2zbtg1A4r3OV65cwcsvvwylFHLmzIlZs2bZdZscKTg4GO+++y6UUvDy8kLevHmRL18+KKUQGBiIb775JtHvu3t+hvDwcDz33HPw8fGBv78/6tSpg3379j31e8wPuH37Njp37gylFHLlyoUPPvgAhw4dSvL33TlDo8H5zz//oFChQsiaNSv69etn3q2U1GW4a35A/P3vk08+QZ8+faCUwosvvggg8Ya9u+cXFhaGjz76CEopBAQEoFatWmjXrh1KliwJpRSaNGmS6PfdPT8gNsMhQ4ZAKQVPT0/kzZsXmTJlglIKBQoUwLBhwxL9vrtnGBkZic8//xyenp7Ili0bypUrh9KlS5v1wvbt21vdif0kd88vLCwMw4cPN/OaNGmS1dMnT+Pu+bEdoo9tEftgWyRl2A7Rw7aIPrZFiMgWdlCkMwcOHEDTpk3h4+ODDh064I8//sCdO3ewa9cuvPbaa8iQIQOKFy+OAwcOAEj4xH7v3j2888475h2fhsQKgo8//hgjR460eoQ7vdmwYQOqVKkCHx8ftG3bFkuWLEF0dDSuX7+OoUOHws/PD3Xr1sWVK1cSXY675meIjo5GeHg4KlSogEqVKqF169bw9PTEZ599Zj7qn1gW7pzfV199BW9vb3h5eaFz585YtWqV1XY/7Y4bgztnCAAvvvgifHx8MHPmTKvtiYyMBJB4DoD75jd27Fj4+vrCy8sLnTp1wj///AMAOH36NJRSyJ49O65evfrU5bhrfgAwZswYKKVQo0YNLFu2zPz8zJkzyJEjB5RST70by53zA4DPPvsMSinUq1cPixcvRlhYGE6dOoVBgwYhc+bMUEph2rRp5p3YtrhzhmvXrkXmzJlRvnx5rFixAgDw6NEjLF++HHny5IFSCu+99x7Onz8PwHYm7prfv//+i969e0Op2BdkKqVQrlw57N69O1nLcdf82A7Rx7aIfbAtkjJsh9gP2yIpw7YIESWEHRTpyK1bt/DKK69AKYV+/frh9u3bVtOPHTuGVq1awcvL66l3LwHArl27UKBAASilzEc6bVVKjPH/0vuJ/ODBgyhXrhy8vLzw6aefxsvvyJEjKFasGAoUKPDURgHgfvk9KTw8HAEBARgzZgxmzpwJf39/lClTBmvWrEnS990xvyVLliBjxoxQSmH48OFmA8pgVKieVqE1uGOGQOzFOaUU+vfvr7Ucd8rv4cOH6NChA5RSaNSoEX799VcEBweb0w8dOoRixYqhYMGC2LVrV5KW6U75GU6dOoWAgAAULVrUaqxa4+5r4+6vVatWPXVZ7pgf8DjD4sWL48aNG1bT7ty5g08++QRKKeTNmxd//vlnohdL3C3DmJgYREREoGPHjlBKWR2rxnYvX74c+fPnh5+fH0aMGGEOk2CrXHG3/MLCwszOsSpVqmDVqlXm3ZRDhgzBnTt3krU8d8uP7RB9bIvYF9siycN2iP2wLZJ8bIsQ0dOwgyIdWbduHZRSGDx4sPmZxWIxT8JRUVHmI9dffPEFANsv+zM8fPgQY8eOhVIKZcqUMYcDSOw76dnt27fx3HPPYcGCBeZn0dHR5h2a4eHhyJUrF0qXLm2O35wYd8vvSRcuXEC2bNkwcuRIREREmBWOd955B0FBQQC4/z0pJCQEPXr0gIeHBwYPHmxVKQsNDcXVq1dx+vRpnD171qrRkFBDwR0zBIDBgwdDKYXffvvN/Ozu3btYsWIFZsyYgSFDhmDJkiU4e/YsAOYHxJ7rVq5ciXHjxpl3VRufA8DNmzcRGBgIpZT5mPTTcnCn/AwrV66EUrEv0wNiy424jZ127dqhYsWK8S462eKO+QHAwoULoZRCr169AMTe+R93my9evIjixYtDKYWWLVti//79CS7LHTN89OgRypYtCz8/P5w+fRpA/O2dNGkScuTIgcKFC+OPP/5IcFnull94eDj69euHRo0amU+eLF26FFmyZEHu3LmxcuXKZC3P3fJjO0Qf2yL2xbZI8rAdYj9siyQf2yJE9DTsoEjDnizILl68iNGjR5tjRMbtHTZOwl9//TWUUujbt2+SfuPMmTPmi4nGjh1rtaz0ztbjqnHvRop7USkiIgKff/45lFL46quv4vWuJ1SpcJf8bLly5Qq8vLzwv//9DwCwePFiFCpUCIGBgZg/f36S7r5x5fwA6wyNv2/YsAHFixdHrly58PfffyMyMhKrVq1Cjx49ULFiRSilkC1bNpQpUwYLFizAw4cPASSciytn+OQ+ZGzXoEGD4OPjY15M2rNnDzp16oQsWbKYY2J7eXmhaNGi2LlzZ6IvTHSn/J68o8iYbmzv66+/DqUUPvvssyT/hjvlBwC//vorlFKoXLmy1ecPHz7EjBkz4OHhgRdeeAFr1qzB9u3bn/qSP1fOD7Cd4VdffQWlFDp27GjzO8HBwWjbtq35fopx48Yl+n4AV87Q1nZcu3YNZcuWRcGCBeN1hBnzX79+Hd26dTPfR2E8qeJu58C422Fs+8mTJ+O9FLt79+5QSuG1117D5cuXk/Ub7pIfwHZISsTdFrZFku9p28G2SOLibofxd7ZDkufJbWFbJHme3A62RYgoMeygSIOe7PmNW5A97WRrvGzo559/TtJvRUVFmRdclFLm3XjpWXJ7znfv3m2OX6iUQtOmTZErVy506NAB8+bNA5Bwo8Cd89u7dy+UUmajICoqCv3794dSCi+//LI5/MmTFwLicsX8ANsZxt2HjCFMXnrpJYwaNcp8MWKNGjVQrlw5lChRAkopZMqUCSNHjoy3rLhcMcOn7YNvvvmm1aO8zZs3h1IKnTt3xuLFizFu3DjUq1fPHMYjsbti3TE/W59HRESgX79+Vo2CpDTs3SU/4+8RERHImzcvlFLo06cPNm3ahNWrV6Nnz57IkCEDlFLm3f9KKbzxxhu4dOlSgr/livkBiWe4ePFiZM6cGVWqVMHRo0fjzQcAtWvXNjOpUqWK1Z12T3LFDK9fv26Or26IezxWqFABSinz6Qhbx/SKFStQvHhx5M6dGwsXLkzwt1wxv/Pnz+PRo0d49OiR+ZmtjIxxwg8cOIAiRYrA19cXv/zyi/l5UrhLfga2Q5LGVoaJlalsi1hLbB+Mi20R2552DmQ75Ometg+yLZK4p+XHtggR2cIOijRk8+bN6NKlC1q2bIkGDRqgf//+OHHihHkCt9VhYTAaUy+88AI8PDzMu5uS4vr162jcuDEqVaqEa9eu2WFLnONp+dnKbe3atXjuueeglELdunUxadIkDBs2zByTWCmFLVu2JPh9wP3yM/5rNAqWLFliLmPnzp2oXLkyMmXKhKFDh+Ldd99FgQIFsHz58gR/11XyA56eoXGcHjt2DHXq1DH3sZo1a2Lr1q3mUCf//fcfRo8ebU43XjaZ0FjsrpJhUvObM2cOlFJo2LAhxo0bB19fX0ybNs1qWUFBQWjYsKHZWEhsLGd3yS+hc5jxuXFne4sWLZL1u+6SnzEEx9KlS5EtWzbz7jjjOK1bty5WrFiBVatWYdasWeZj6j179jQ7KWz9P3CV/ICnZwjElh2VKlVC5syZMXbsWPO8Zsxz9OhR5M+fH6+88gpKly4NpZT5AkVXPwdu3LgR7du3R5UqVVC+fHk0b94ca9asMc99xn8nTJgApRTatGkT765M47+hoaHo1asXlFL44IMPzLtgbXGV/NatW4emTZuiRIkSKFOmDFq0aIFly5aZx25iFzqMd1PUrVsXx48fT9bvukt+bIc8XUr2QbZFHktqfmyL2Pa0/IynctgOSdjTMmRbJHEpLYfZFiEigB0UacK1a9fMFx4qpZAzZ07z7xUrVnzqnTOGW7duoXDhwsidOzfu3r2brHW4efNmitff2XTy27x5M1588UUsWrQo3rRhw4aZd5M8jTvmt2DBAiilrMbRBYDhw4fD29vbfAlbkSJFsH379kTXIT3nByQ9w7gX6SZNmoRnn30W/fv3T/Aukt69e0MphVdeeeWp65CeM0xufkeOHEGhQoWQJ08e5M6dG+XKlUNoaCgsFovVeNjLli1D7ty5kS9fPnMs04S4Q35PaxTs2LEDPj4+KF26NC5evJisdXCH/OIep8ePH8ekSZMwbtw4lC5dGmPGjIm33N9//x358+dHrly5En0PAJC+8wOSnqHhs88+g7+/P7JmzYqJEyciODgYEREROHz4MGrXrg1vb2+cPn0aX3zxBZRS6N69+1PXIT1neOXKFXPsdF9fXxQqVAg5cuSAUgpFixbF7NmzATw+Vjdv3owCBQogMDAQy5Yts5oW9+9//PEHlFJ4/vnnn7oO6Tm/0NBQDBw4EEop5MqVCxUqVEDhwoXNffC9995L8KmIuMNiGUNEfPHFF/FeHvs07ppfXO7aDgH0MmRbJOX5sS0SKyX5sR1iLbkZsi1iTbcccfe2CBHFYgeFk23atAlVq1aFn58f3nrrLaxcuRL37t3DmjVr0Lp1a3h4eKBatWqJ3n1pMF7e+dJLL5mfufr4e/bMD4i9M8SYJzIy0hzKY/Pmzam+Lc6QkvyMfJYtWwallPkC04iICCxevBiVK1eGUgoeHh5o0KCBOdRHUh7RTI+Sm6Fx91JQUBAmTpyIM2fOALB9rG7ZsgUBAQEoUaIELly44LBtcqTk5gfEVkDjDoXQpk0bq0pv3DvsjMerf/rpJ6tprsKe58BNmzYhS5YsKFGihDlmvatLbn5P3j04depU5MqVCydOnDCnx824TZs2UEph9OjRAFyzTE7JMXzhwgW8//77Vh0axh3EOXLkwOTJkwHE3lns7e2NHj16wGKxuGR+S5YsQYkSJZAxY0Z07doVq1atAgCcOnUKvXv3hpeXF9q2bWv1wtygoCDzvQkdO3Y0LwY/eYd7TEwMihQpYlVWu6L58+dDKYX69etj48aNAIA7d+5gwYIF8PX1hVIKn376aYLv4jD+PXPmTHh7e6NEiRLmhaSE5nUluvkZ3LEdYrBXhoD7tUWA5Odn1KXZFomV3PwAtkOelNQMjWHDgoKC2BaJw17nQHdsixDRY+ygcKILFy6gXr168PDwwKhRo+LdrbVz507UqFEDmTNnxu+//57gcowT/PDhw6GUwowZMwBYVzTiXhhwlULRXvkBtl+AFRUVhWbNmiFz5szYtGmT3dff2XTzmzhxInx8fHDgwAFs3boVr776qllJq1OnDrJnz45SpUph9erVjtokh9PNMKFHpQ379u1D1qxZUahQoXgvQ3UFOvktXboU5cuXh1IKtWrVivcyYmPM0w8//BBKKXz99depuzFOYM9zIBCbmTEskXHOc5Xywhbd/MLDw1G2bFnUq1cv3jRj/xs3bhyUUnjrrbdSZyOcTCfDqKgojBs3Do0aNULmzJlRrVo19OjRA3/99ZeZn3HB89VXX3XYNjnShg0bkD9/fvj7++N///tfvJeBb9myBdmyZUOVKlUQHBxsdTwuW7YMxYoVQ0BAgNmhE1dUVBQiIyPRtGlT5MiRw+xEcyUxMTG4d+8e6tWrB19fX6u7LY3y9aeffkL27NnxzDPPYOLEiTaXE/disDGsTp8+fawujsS989VVLrrbOz93a4cA9svQWNaT/3b1tohufu7eFtHNz93bIYBehkuWLHH7tog9z4GA+7VFiMiah5DTbN++XbZu3SoTJ06UkSNHSubMmQWAxMTEiIhIuXLlJG/evBIWFiaRkZEiImKxWOItx/js4MGDIiJSsWJFERHx8PCQa9euyaRJk6RLly7yyy+/iIiIUiq1N80h7JWfSGxWhpiYGPHw8JAbN27I3r17xcPDQ/LmzZv6G+RgKc3PyPDhw4cSHR0t48ePl7Zt28qiRYukRo0acvjwYdm6dau0adNGzpw5IwsXLpQrV644bTtTk+4+6OnpKQDiLTc6OlpERK5fvy7379+X/Pnzi4+PjwO2yLFSkp+RTf369aVdu3bi7e0tO3fulL///ttcbnR0tPj6+oqIyL59+0REpEKFCg7cMsew5znQ+Lxu3bqilJLTp0+LiOuUF7bo5hceHi7//vuvnD17Vk6cOCEiIlFRUQLA3P92794tIiI1atRw5KY5TEoyjImJEQDi5eUlH330kaxfv17OnDkj69evl0mTJsnLL79s5nfhwgUREWnYsKFzNjCV5c6dW7JkySJ///23DBgwQPz8/CQmJsbMqnDhwhISEiJZsmSRTJkyiVLK3Afr1asnnTp1krCwMJk4caLs3btXRGL30ejoaPHy8hJvb285deqUWCwWyZAhg9O2M7V4eHjIo0eP5MSJExIYGCh+fn4iIgLAPHd169ZN+vbtKw8fPpRff/1VNm3aZM5jMHL19vaWPn36SPbs2eX333+XY8eOycmTJ2XgwIFSt25dGTx4sPm7rsBe+blrO0TEfhkayzK4S1tEJz8RtkV08rNYLG7fDhFJWYYbNmwQkdhy2N3bIvY8B7pjW4SIrLlGDTudqlixonz66afSpk0bEYk9KSulxNPTUywWi2TOnFkCAwNFRCQoKEhEbDeKPD095cqVK7Jv3z4pWLCgVKpUScLCwmTBggXSvXt3GTJkiJw5c8blKrb2ys9gFIqenp4SGhoqI0aMkODgYPnggw+kePHiqbsxTpDS/IwM/fz8BIAsXLhQPD09Zd68ebJjxw4pX768iIh06NBB8ufPL7NmzZJdu3Y5fgMdwB77YNxKl3FRz8vLSx48eCDTpk0TEZHu3buLv79/am+Ow6UkPy8vLxERCQgIkE6dOkmXLl1ERGTYsGGyZcsWsVgs4uXlJSEhITJx4kTZtGmTtGnTRpo0aeL4DUxl9jwHenh4iJeXlyD2yUoJCwsTkcf7pCvSyQ+AeHh4SKNGjeT27dsya9YsERHx9vYWpZQEBwfL+PHjZdmyZVK/fn157bXXHL+BDpCSDD09Pc3znrG/5cmTR/z8/CRz5szmskNDQ+WXX36RbNmySe3atW1eREnPAEiZMmXkn3/+kfr165sdC56enuLj4yMhISEyYcIEsVgs0r17d7OOYuyDAQEB0rlzZ+nUqZNcvnxZevToISdPnjSP5dDQUBk7dqxcvXpVunfvLkWKFHHm5qaau3fvipeXl+TMmVOyZ89uXhTx8PAwL8C98cYb0rRpUzl69Kj8/vvv8vDhQ1FKxeukACDNmjWTt956S+7evSvvv/++NG3aVCZPniw5cuSQKlWqOHFLU4c98nPXdojBXvugiPu1RURSlt+DBw9ERCRDhgxu3xZJ6f5nlCXu3A4xJDfDRYsWyYMHDyR79uzSsWNHt26LiNjvHOiObREiekJqPJZBSZOUR8QbNmwIpZQ5ll9CjBchdu3aFbt27UK3bt3MF4N9/PHHdlrjtMWe+cW1bt06tG7dGkoptGrVCufOnQPgeo8XpjQ/I4fg4GCUKFECI0aMsPpORESEOd/777+PTz/91G7rnNak1j64evVqNGnSJN744q7GHvndunULVatWNcexf+eddzB27Fi88MIL8PT0RKFChbBy5UoAPIaTsqz//e9/UErhhRdesMcqpmm6+UVFReGbb75BtmzZoJTCoEGD8Pfff2POnDnmC48LFiyIv/76C4Dr7X9A6pbDzZs3h1IKn3/+ucYapk8bNmxAp06dzJdmN2nSBM888wzeeustLF++3Gre//77D1WqVIFSCnnz5kX//v0xadIkvPrqq/Dx8UHZsmWxZ88eAK65D4aGhiJ37txQSmHXrl0AbO+Xc+bMQWBgIIoXL47169cnuswJEyaYdWilVLx6jiuxV37u2A4xpMY+6C5tESBl+a1ZswYAcO/ePbdvi6TG/ucu7RBDSjJcu3at+bk7t0UA++2D7tgWISJr7KBIA2wVVFFRUQgLC0OlSpUQEBCAa9eu2ZzPOJEPHToUSilUqVIFBQsWhFIKr7zyCq5cuZLq6+9sOvkBwO3bt7Fr1y4sXrwYb7zxBvLnzw+lFN5++22XHW8zrpTkZ4wp+fDhQ6vvGIz9Mu5nrkx3H7x//z6OHTuGZcuWoW3btsiVKxeUUujZsyfu3LmT2qvvdCnNz9jPzp07h88++ww5c+Y0LyhlyJABHTt2NF9m58p097+4lixZYr7k7r///kuN1U1zUpKf8fdLly5hxIgR5n4X90+HDh3cYv8D9PdBi8WCa9eu4bfffkOHDh2QJ08eKKUwcOBA3L9/P7VXP82IiYnBokWLUKhQISil0Lp1a0yePBkffPABWrZsCaUU/Pz8zJeaGmXs6dOn8cknn5idZUop+Pj44NVXX0VQUJAzNylVGWXAgAEDoJRC7969481j7HNBQUFo27YtPDw8MGHCBJtjr2/btg3t2rUzM+zYsSOuXbuWuhvhRPbIz93bIfbaB921LaKTnzHevzu3Rey1/7lzO0Qnw6ioKDNHd22L2LscBtyzLUJEsdhBkYYdP34cWbJkwfPPP2/eCZIQ4y4bpRTKlSuXrDsVXVVS89u+fbt514O/vz8aNmyILVu2OHBN06ak5hcTE+MyL4y0t6RmeOTIEdSvX9+szHIfjJWcc6Ax/6ZNm/D333/j+PHjDljDtC25+QGxLx+vUKGCeQeUO0tOfr///jt69+6Nvn37YvDgwdi3b5+D1jJtS06Gv/zyC3LlygU/Pz80aNDAbc+Bf/zxB15++WWsW7fO6vOoqCh06dLF7PwC4ncMHTx4EGvXrsXChQtx5MgRh62zsy1evBhZs2ZFiRIlsGPHDgC2796cPHkylFJo0aIFAOv8QkJC8Nprr5kX2d1p/7NHfu7eDtHN0N3bIrr5uXtbRDc/tkPscx4E3LctYq/8ALZFiNwZOyjsKDIyEvfu3bPb8n766SfzDkKDrRP9gwcPMGjQIAQEBOCnn36y2+87mrPyCw4Oxm+//YavvvoqXTeonJWfK3FWhg8fPsSiRYswfPhwq0eG0xvug3qYnx5n5OdqeTozw/v372PFihXYvn273X7f0XTyMxrpTz6pE/fC2/Xr1+Hj4wOlFE6dOhXvu+ndvXv3MGzYsGRneO7cObz88stQSqFPnz6IjIwEYH3xEgBu3ryJTJkywc/PD5cvX7ZahsViwdq1a/Hzzz9rb4ezOCs/V2mHAM7L0FXaIs48hl2Bs/JzlXYIwH1QF/MjImdiB4WdzJo1C6+88gree+8989H7lDJO4N26dYNSymZF4cKFC1b/vnLlSrp+hNXZ+SX0iGF64ez8XIGzM+Q++Jg77oNpJb/0eqGT+elzZobpOTeDPfMD4pcJFosF9+7dw/PPP4+8efO63J2ZX331FTJnzgylFH777TcAydsvfvnlF+TOnRt58+Y1vx+3MywqKgrBwcEoV64cihcvjhs3bth3A5zM2fml93YI4PwM03s90Nn5pXfOzi+973+A8zNM79JKfq5QJySilPFw9ku607t169ZJmTJlpHv37rJixQr5999/JTQ09KnfQ2znUILTHzx4IEePHhU/Pz8pUaKE+fm5c+dkzJgx0qVLF1m9erX5ef78+cXLy0tvY5wgreTn6emptyFOklbyS8/SSobcB625yz6Y1vJTSqVsQ5yE+elLCxmmx9wMqZWfUSYAkJiYGFFKyfnz5+XIkSPi4+MjgYGBdtsGZ1q2bJkULVpUhg4dKh4eHuLr6ytnz54VAInuF0/m17RpU+nQoYMEBQXJuHHj5NKlS+Lh4SEWi0Wio6PFy8tLAMi5c+cEgGTIkMERm5fq0kp+6bUdIpJ2Mkyv9cC0kl96lVbyS6/7n0jayTC9Smv5pec6IRFpsmdvh7swenVnzJgBf39/FCpUCMOHD8fhw4eT9P24PclxX/4Y9/N9+/bB29sbderUARD78rQZM2agdu3aUEqhZMmS2L9/vz02x+GYnx7mp48Z6mF+epifHuanjxnqSa38nrxrMO58169fR8uWLeHh4ZHuh9EBgBMnTqBRo0ZQSqF48eL48ssvzeEhhg4dCiDhIdQSym///v1o0aIFlFJo3rw5zp8/b067efMm+vXrB6UUJk6cmEpb5TjMTx8z1MP89DA/fcxQD/MjorSGHRQpdO/ePVSoUAE5c+bEP//8YzUtoUec457Io6OjsXLlSrRr1w4TJkyIN++3334LpRQ++eQTbNiwAe3bt4eHhwcyZsxoc/70hvnpYX76mKEe5qeH+elhfvqYoZ7Uzs8QGRmJv/76C3Xr1oVSCm+++Wa6HlYiLCzMvEAREBCAvn37mu8dWbJkifmSalsZJpTfV199ZX5+9uxZFC5cGEopFCpUCMOGDcO4cePw0ksvQSmFunXrWr2/I71hfvqYoR7mp4f56WOGepgfEaVV7KBIoW+++QZKKfzwww+JzmdrDL19+/Zh4MCByJEjB5RSGDJkiDnNOOl37twZSinUrl0bzzzzDJRS6N69u1UPdXrG/PQwP33MUA/z08P89DA/fcxQT2rkZ8x7/fp17Ny5E3PnzkW7du3M+T744AM8fPjQ/hvjIDdv3kTZsmWhlEK7du2wdOlS80WaALBixQpky5YN1atXx8WLFxNcjq38LBaLOYb63r178d577yFDhgxQSkEpBT8/P7z77rt48OBBqm9namF++pihHuanh/npY4Z6mB8RpWXsoEihJk2awMfHx2p4gitXruCvv/7C999/j8GDB2Pt2rW4fv06gNgGe0REBP73v/+hVKlSUEqhXr16NocDCAsLQ+XKlc2TeZ06dZI8bEB6wfz0MD99zFAP89PD/PQwP33MUE9q5rdq1SoULVoUSilky5YNL730Eo4cOeKwbUst4eHhmDNnDr777jvcunXL/Ny4oLF//37zjk7jKZG4HTyRkZFJys+wa9curFmzBgsXLsS///6bSlvlOMxPHzPUw/z0MD99zFAP8yOitIwdFE9hnKwNxp2BL7zwAnLlyoXjx48jOjoaq1atQosWLax6ib29vVGrVi2cO3fOPLH37t0buXLlwsKFC62WGfdxuVu3bqFTp04IDAzE4sWLHbCVqYf56WF++pihHuanh/npYX76mKEeZ+T333//YdasWZg4cSJ2797tgK1MPU/mF3fICIvFEu8JE6Nj67fffrO5vL59+z41P1tPraRXzE8fM9TD/PQwP33MUA/zI6L0gh0UNlgsFpw/fx6RkZFWJ1fj72FhYahRowaUUjhy5AhCQkJQtmxZ+Pj4YMiQIVi0aBHGjBmD4sWLQymFVq1aYceOHQCA0NBQq996ssAwJPZIXVrH/PQwP33MUA/z08P89DA/fcxQT1rIL6HP04On5QfYfvHm3bt30bp1a3h7e2Pu3LlW3zHmDwsLs/pOes4pIcxPHzPUw/z0MD99zFAP8yOi9IgdFE+YM2cOatasiZIlS6JkyZLo2rUr1q9fb043TsAffvihOZ5y//794e/vj7Vr11ota+/evShbtiy8vLwwdOhQhISEmNMSeoFiesf89DA/fcxQD/PTw/z0MD99zFAP89PztPyepmvXrub7NoD4d2Ea/2Z+trl7fgAz1MX89DA/fcxQD/MjovSKHRT/79q1a2jXrh2UUsifPz+qVq1qvtTRw8MD3377rdXJ+Z9//kGmTJlQokQJZMqUCS+++CKA2BN13EflpkyZggwZMqBy5co4e/asU7bNEZifHuanjxnqYX56mJ8e5qePGephfnqSm9+TjDszf/31Vyil0Lx583hPm7gy5qePGephfnqYnz5mqIf5EVF6xw6K/zd27FgopfDGG2/gwIEDAIALFy7g22+/hVIKGTJkwLRp08y7306ePIlWrVqZ4wwPGjTIannGCf7mzZvIly8flFLYvn07ANcck4/56WF++pihHuanh/npYX76mKEe5qcnqfk9ePAAQMIZ/PLLL1BKoWnTpoiOjrY5BIUrYn76mKEe5qeH+eljhnqYHxGld+ygAHD27FkULFgQxYoVQ0REhPm5cdL+5JNP4Ovri2LFiplj8QHAtGnTkDdvXiil0LVrV6vvADCX9dJLL0EpheXLlzticxyO+elhfvqYoR7mp4f56WF++pihHuanJzn5zZs3z+YyjHlPnz5t3u155cqV1F/5NID56WOGepifHuanjxnqYX5E5ArYQQFg165dUEqhSZMmVi8SMsYZvnXrFnr06AFPT080adIEx48fBwD8+++/6NOnj3n3nNFTHfe7jx49QpEiRaCUwvnz5x28ZY7B/PQwP33MUA/z08P89DA/fcxQD/PTk9z8Tp48CSD+CzotFgtu3LiBqlWrIiAgAKtXr3bshjgJ89PHDPUwPz3MTx8z1MP8iMgVeAhJSEiIeHp6yjPPPCPe3t5isVhERMTT01MAyDPPPCNvvvmmVKlSRbZt2yaLFy8WEZGiRYvKW2+9JU2aNBERkaFDh8qhQ4fM7wYFBcmHH34oFy9elEGDBkmRIkWcsn2pjfnpYX76mKEe5qeH+elhfvqYoR7mpye5+f35558iIuLhYd0MUUqJt7e3xMTESEhIiMTExIiImP91VcxPHzPUw/z0MD99zFAP8yMil+D4PpG059ixY+a4fLdu3QIQvzc5JiYG48ePR8aMGVGnTh0cOXLEnHb8+HFzfOGCBQti6NCh+Pjjj1G3bl0opVC9enWru+pcDfPTw/z0MUM9zE8P89PD/PQxQz3MT09K8jt69Gi85Rh3fPbo0QNKKQwePDj1Vz4NYH76mKEe5qeH+eljhnqYHxG5ArfvoDBOwi+88AKUUpgwYUKC8xw9ehQ1atRA5syZsXDhQgCPH5vbvXs3+vfvDz8/P/NR/4CAAAwcOBCPHj1y0NY4HvPTw/z0MUM9zE8P89PD/PQxQz3MT49ufrbm+/rrr6GUQs+ePREWFpaKa+98zE8fM9TD/PQwP33MUA/zIyJX4fZDPCmlJCYmRlq0aCEeHh6ybNkyuXjxooiI+WicUkpERMqVKyfVqlWTsLAw2blzp9U81apVk2+//Va2bNkiGzZskKVLl8qxY8dk0qRJ4uvr6/gNcxDmp4f56WOGepifHuanh/npY4Z6mJ8e3fziDhthzAdA6tatK8OGDRM/Pz8Hbo3jMT99zFAP89PD/PQxQz3Mj4hchhM7R9KUXbt2oVq1asiQIQPGjRsXb7pxh9zOnTuhlEK5cuWs7ogzepvdFfPTw/z0MUM9zE8P89PD/PQxQz3MT49ufsDj4SieHJbCHTA/fcxQD/PTw/z0MUM9zI+I0ju3f4LCULFiRXnllVdEKSXz5s2T7du3i8jjHmVPT0+xWCySPXt2CQgIkLx584pSKl6vtLtifnqYnz5mqIf56WF+epifPmaoh/np0c1P5PHLOp98aac7YH76mKEe5qeH+eljhnqYHxGldy5x5pk+fbpMmDBBgoODk/U9AObffXx85MUXX5QWLVrI8ePHZcyYMRIdHW2eyGNiYsTDw0Pu378v9+/fF6WU+Pj4uMTJm/npYX76mKEe5qeH+elhfvqYoR7mp4f56WF++pihHuanh/npY4Z6mB8RkaTvIZ5OnDiBJk2aQCmFfPnyYcuWLUn+btxH8W/dumX+fcOGDShXrhyUUujXrx+uXbtmTjt//jxatWr1f+3deXBV9fnH8c/3BrKQIFuQKGERBGkBhTBaEBCQimHAWluwVoaC4FgsdcNRdJRqbatMWyrTQVplMODQuhREBdkUCIvgvrApCCGKggGJtYYogZvn9we/eyUmUeAJSYjv10wGcs+5557zZuYwkyfnHEtMTLRnnnmmag6iBtHPh35+NPShnw/9fOjnR0Mf+vnQz4d+fjT0oZ8P/fxo6EM/APjaKTmgiEaj9sILL9iFF15oIQRr1KiRhRDsuuuus08++eQ73xvzxRdf2L/+9S8bNGiQzZ8/P/56bm6upaSkWAjBfvCDH9hf/vIXu/vuu61///4WQrARI0ZYQUHByTq8k45+PvTzo6EP/Xzo50M/Pxr60M+Hfj7086OhD/186OdHQx/6AUB5p+SAYvv27TZw4EALIdhvfvMbmz9/vrVs2dIaNWpk8+bNO6aH+ixfvtxGjRplycnJFkKwRx55xMy+PuEvWbLERowYYSGE+FfTpk3tj3/840k9tupAPx/6+dHQh34+9POhnx8NfejnQz8f+vnR0Id+PvTzo6EP/QCgvFNyQPHOO+/YJZdcYmPGjLH8/HwzM7vxxhsthGBDhw61HTt2VPrezz//3O68805r2bKlhRBs+PDhtmfPnvjyoy+VMzNbtWqVLV682ObOnWuffvrpyTmgakY/H/r50dCHfj7086GfHw196OdDPx/6+dHQh34+9POjoQ/9AKC8Wj2giJ1cv3mSNTNbt25dmcvftm7daj/84Q8tEonYtGnT7Msvv6x0uwMGDLDOnTvb2rVr468dPny4zOdU9JmnGvr50M+Phj7086GfD/38aOhDPx/6+dDPj4Y+9POhnx8NfegHAMeu1g4oDh48aCUlJXb48OEyr1d0uVvstSlTplgIwXr06GFvvvlmufVi29q7d2/8tdLS0nKfURfQz4d+fjT0oZ8P/Xzo50dDH/r50M+Hfn409KGfD/38aOhDPwA4PvVUCz388MNavHixvvrqK0nSkCFDdNVVV6l58+aKRCKVvm/MmDFauHChcnNzNXfuXLVr106NGjWKL09ISJAkpaenS5IOHz6sevXqxV+vK+jnQz8/GvrQz4d+PvTzo6EP/Xzo50M/Pxr60M+Hfn409KEfAJyAmp6QHG3ZsmXWsWNHCyFYUlKSpaenxx/oM2zYMHvvvffM7Nunzk899ZSlpqZaq1at7MUXX6zW/a9p9POhnx8NfejnQz8f+vnR0Id+PvTzoZ8fDX3o50M/Pxr60A8ATlytGFAUFxfb1KlTrUmTJtauXTu79957bePGjbZ37177+9//bl27drUQgt18882VbuPoe+yNGDHCQgg2evRo+/jjj83M7NChQyf9OGoK/Xzo50dDH/r50M+Hfn409KGfD/186OdHQx/6+dDPj4Y+9AMAv1oxoJg3b56lp6dbq1atbNGiReWWz5gxw0477TS74IILbMeOHZVuJ3bvvfXr11vLli0tNTXV5syZEz/ZFxcX25o1a8qsWxfQz4d+fjT0oZ8P/Xzo50dDH/r50M+Hfn409KGfD/38aOhDPwDwq/EBRXFxsQ0fPtxSUlJs06ZN8dej0Wj8RPz6669bs2bNLDMz03bv3n1M27399tsthGCDBw+2vLw8W7JkiQ0cONBCCLZx48aTciw1gX4+9POjoQ/9fOjnQz8/GvrQz4d+PvTzo6EP/Xzo50dDH/oBQNWo1gFF7AR99D33Dh8+bPPnz7epU6daSUlJpffjy8zMtOTkZHv33Xe/9TNKSkrMzGzv3r3Wo0cPi0Qi1rNnT6tXr56FEOyCCy6wDz/8sAqPqvrQz4d+fjT0oZ8P/Xzo50dDH/r50M+Hfn409KGfD/38aOhDPwA4eaptQFFYWGi7d++24uLicstiJ+HKbNmyxVJSUqxt27bH/HkHDx60oUOHxh9KdPbZZ9uCBQuOe79rC/r50M+Phj7086GfD/38aOhDPx/6+dDPj4Y+9POhnx8NfegHACfXSR9QlJSU2F133WVdu3a1zp072znnnGN/+MMf7K233jKzstPnb06bYxPqpUuXWnJysl1xxRUVrvfN90yfPt0uuOACCyFYUlKS/fWvf63io6o+9POhnx8NfejnQz8f+vnR0Id+PvTzoZ8fDX3o50M/Pxr60A8AqsdJHVCsXr3azjnnHAshWPv27a1nz56WkJBgIQTLyMiwV155Jb5u7OR9tNiDfyZPnmwhBHvggQe+8zM3bdpkaWlpFkKwa6+91goLC6vugKoZ/Xzo50dDH/r50M+Hfn409KGfD/186OdHQx/6+dDPj4Y+9AOA6nPSBhT/+9//bPDgwfET8UcffWRmZm+88YaNHj3aQgjWrVs3e+GFF75zW5dddpmFEOzVV181syMn/4r+A4h97j/+8Q977bXXqu5gagD9fOjnR0Mf+vnQz4d+fjT0oZ8P/Xzo50dDH/r50M+Phj70A4DqVeUDitiJ9oknnrAQgo0bN67cOl9++WX8ZJ+dnW1vvPGGmVV8qduuXbusbdu2lpmZacXFxWXWOXDgQPw/ith0+lRHPx/6+dHQh34+9POhnx8NfejnQz8f+vnR0Id+PvTzo6EP/QCgZtSTk5kphBD/Pvb3vLw8SVL79u0lSaWlpYpEIopGo0pOTtakSZP0xRdf6MUXX1SnTp3UpUsXJSYmxrcXW3/Lli3atWuXfvrTnyolJSX+OStXrtScOXNUUFCgJ598Uqmpqd5DqRH086GfHw196OdDPx/6+dHQh34+9POhnx8NfejnQz8/GvrQDwBqh4h3A0efzM0s/mdxcbEkqVmzZpKOnNAlKSEhQZLUq1cvjRo1Sk2bNtWzzz6rZcuWldueJK1fv16lpaXKzs6WJG3evFl33XWXfvWrXyknJ0dNmjTxHkKNop8P/fxo6EM/H/r50M+Phj7086GfD/38aOhDPx/6+dHQh34AUEuc6KUX27dvt2effdaWLFliq1atKndJ2tSpUy2EYIMHDy733thlcx9//LGNGDHCQgg2fvx4+/zzz8ut9+Mf/9gikYgtW7bMHn74YevevbuFEOy8886z1atXn+ju1zj6+dDPj4Y+9POhnw/9/GjoQz8f+vnQz4+GPvTzoZ8fDX3oBwC1y3EPKD777DMbO3asNW7c2CKRiIUQLIRgo0aNsvXr18fXy8vLs8aNG1vjxo3tpZdeMrOK78n3+OOPW7Nmzaxbt262efPmMst27NhhrVu3toYNG1rfvn0thGBNmjSxhx9++Hh3u9agnw/9/GjoQz8f+vnQz4+GPvTzoZ8P/fxo6EM/H/r50dCHfgBQOx3XgGLu3LnWrl07S0xMtD59+tjtt99uN9xwg6Wnp1sIwQYMGGC7du0yM7OCggK7+uqrLYRgN954Y7ltxabO+/bts6ysLAsh2NKlS83M7NChQ2ZmtnLlyvh/GCEEu+mmm6ykpMR1wDWJfj7086OhD/186OdDPz8a+tDPh34+9POjoQ/9fOjnR0Mf+gFA7XXMA4q5c+daZmampaen27Rp0+yzzz6LL1u4cKGdf/75FolEbMqUKfHXZ82aZc2aNbN27drZ4sWLzezrE7nZ1xPo3/3udxZCsFtvvbXMZ65fv97at29v2dnZlpeXd0IHWFvQz4d+fjT0oZ8P/Xzo50dDH/r50M+Hfn409KGfD/38aOhDPwCo3Y5pQLFz505r06aNnX766bZ8+fL467Hp74EDB2zSpEkWQrAJEybEX8/Pz7df/vKXFkKwYcOGWWFhoZl9fSKP3edv1qxZFkKwBx54wMy+njgXFxfbBx98UBXHWaPo50M/Pxr60M+Hfj7086OhD/186OdDPz8a+tDPh35+NPShHwDUfpFjeZB2QkKCMjMzNWHCBF188cWSpNLSUtWvX1+S1KBBA2VmZkqSduzYEX+9TZs2uvrqq9WpUyfNmzdPf/vb3yRJkUhEpaWlSkhIkCRt375dkuLvq1evniQpJSVFrVu3rpKHgdck+vnQz4+GPvTzoZ8P/fxo6EM/H/r50M+Phj7086GfHw196AcAp4BjmWJEo1HbuHGjHTx4sMJlZmY5OTkWiUTs+uuvN7Ovp9FFRUU2Y8aM+H33/v3vf8cnz2ZH7svXokUL69Kli+3evds9camN6OdDPz8a+tDPh34+9POjoQ/9fOjnQz8/GvrQz4d+fjT0oR8A1H71jmWIEYlE1KVLF0lHJs2RSPkLL7Zs2SIzi0+IY9Pj1NRUXXvttSooKNCkSZM0duxY9ezZU1dddZU2btyoZcuWae/evZo4caKaN28uM1MIoarmL7UC/Xzo50dDH/r50M+Hfn409KGfD/186OdHQx/6+dDPj4Y+9AOAU0BVTTouueQSCyHYm2++Wek6M2bMsJ49e8anzyEE69Spkz333HNVtRunLPr50M+Phj7086GfD/38aOhDPx/6+dDPj4Y+9POhnx8NfegHADUrmJl5hxy7d+/WRRddpEOHDmnr1q1KTk6ODT8UQlA0Go3fn2///v16++23deDAASUmJio7O9v78ac8+vnQz4+GPvTzoZ8P/fxo6EM/H/r50M+Phj7086GfHw196AcANe+YbvFUmdjlce+++67y8/M1dOhQJSUlxU/gsUvbYidzM1OzZs00cOBA/57XAfTzoZ8fDX3o50M/H/r50dCHfj7086GfHw196OdDPz8a+tAPAGqP8jffO543//+9+9atW6fS0lL17dtXIYT4Cfzjjz9WTk6OXn/9df+e1kH086GfHw196OdDPx/6+dHQh34+9POhnx8NfejnQz8/GvrQDwBqEe89oqLRqA0aNMhCCPbee++ZmVlRUZE9+eST8dfHjh3r/Zg6i34+9POjoQ/9fOjnQz8/GvrQz4d+PvTzo6EP/Xzo50dDH/oBQO3gHlDs3LnTWrVqZT169LDi4mJbuXKljRkzxlJSUiyEYBMnTqyK/ayz6OdDPz8a+tDPh34+9POjoQ/9fOjnQz8/GvrQz4d+fjT0oR8A1A4nPKAoLS01M7MFCxZYCMG6d+9ud955p2VmZloIwS6//HL78MMPq2xH6xr6+dDPj4Y+9POhnw/9/GjoQz8f+vnQz4+GPvTzoZ8fDX3oBwC1i/sKirvuustCCNa0aVMLIVjnzp1txYoVVbFv3wv086GfHw196OdDPx/6+dHQh34+9POhnx8NfejnQz8/GvrQDwBqh3rO51eoqKhIkhRC0PTp0zVu3LgqeTbG9wH9fOjnR0Mf+vnQz4d+fjT0oZ8P/Xzo50dDH/r50M+Phj70A4DawzWgCCFo2LBhatmypW688UYlJSVV1X59L9DPh35+NPShnw/9fOjnR0Mf+vnQz4d+fjT0oZ8P/fxo6EM/AKg9gplZTe8EAAAAAAAAAAD4fonU9A4AAAAAAAAAAIDvHwYUAAAAAAAAAACg2jGgAAAAAAAAAAAA1Y4BBQAAAAAAAAAAqHYMKAAAAAAAAAAAQLVjQAEAAAAAAAAAAKodAwoAAAAAdU5paalat26tEIJOP/10HTp0qKZ3CQAAAMA3MKAAAAAAUOcsW7ZMu3btkiTt27dPCxYsqHC93NxchRDUv3//Src1evRohRA0a9ask7CntUN+fr5CCGrbtm1N7woAAAC+RxhQAAAAAKhzHn30UUlSy5Yty3wPAAAAoPZgQAEAAACgTiksLNRzzz2nEIKeeOIJJSQkaMmSJdq9e3dN7xoAAACAozCgAAAAAFCnzJkzRwcPHlT//v3Vp08fDRo0SNFoVI899liZ9fr3768BAwZIklatWqUQQvyrf//+8dsezZ49W5J0zTXXlFnnm7d82r9/v+6++2517dpVaWlpSk1NVVZWlh588MEKn4Fx9K2jNm/erJ///Odq3ry50tLS1KdPH61cuTK+7sKFC9WvXz81atRIp512mn7yk5/o/fffL7fNo29ZdeDAAd1xxx1q166dkpKS1KpVK91www3av39/uf0466yzJEkffPBBmWM8+pZPX331lSZPnqysrCylpaUpKSlJZ5xxhnr16qW7775bX3311bH/IwEAAACS6tX0DgAAAABAVcrJyZF05Afv0pHBwuLFi5WTk6M77rgjvl52draSk5O1dOlStWjRQtnZ2fFlnTp1UlpamkaNGqW1a9dqx44d6t27t84+++z4Okf/fePGjcrOztbu3buVmZmp/v37q7S0VK+88oomTJig559/XosWLVJiYmK5/X399dc1fvx4tWvXTgMHDtT777+vl156SZdeeqmWL1+ut99+WzfffLN69+6tSy+9VK+++qoWLFig1157TZs2bVKzZs3KbbOkpEQDBw7Upk2bdPHFFysrK0urVq3StGnTtHTpUq1Zs0YtWrSQJPXp00dFRUWaN2+eUlNTNWzYsPh20tPTJR156PiQIUO0YsUKNWrUKD4sKSgo0NatW/WnP/1Jv/3tb5WRkXEi/2QAAAD4ngpmZjW9EwAAAABQFd566y1lZWWpYcOG+uSTT9SgQQOVlJTozDPP1P79+7VmzRr16dMnvn5ubq4GDBigfv36KTc3t8Jtjh49WrNnz1ZOTk586HG0L7/8Up07d9bOnTt1//3367bbblO9ekd+F6ywsFC/+MUv9OKLL+qee+7RvffeW267kjRlyhRNmDAhvmzixIn685//rI4dO+qTTz7RwoUL1bdvX0lHrmQYNGiQ1qxZo/vuu0+TJk0qdzyS1LFjR61YsSL+HI4vvvhCV1xxhZYvX67hw4frqaeeir8vPz9fZ511ltq0aaP8/Pxyx7h69Wr169dPWVlZWr16tVJTU+PLzEzr1q1T9+7d1aBBgwobAgAAABXhFk8AAAAA6oyZM2dKkq688sr4D8sTExN19dVXSzo5D8ueNWuWdu7cqSuvvFJ33nlnfDghSU2bNtXs2bNVv359PfTQQ6ro98N69epVZjghKX6lx7Zt2zR+/Pj4cEKSkpOTdcstt0hSmdtAfdOUKVPiwwlJatiwof75z38qISFB8+bN065du475GAsKCiRJffv2LTOckKQQgnr37s1wAgAAAMeNAQUAAACAOuHgwYN6/PHHJR25rdPRYt//5z//UVFRUZV+7qJFiyRJw4cPr3D5mWeeqQ4dOujTTz+t8LkRR99aKqZJkybxWzdVtLxDhw6SVOmDvxs3bqyhQ4eWe/3ss89Wz549VVpaqtWrV1dyROVlZWUpISFBM2fO1PTp0+MDCwAAAMCDAQUAAACAOmH+/PkqLCxUhw4d1Lt37zLLunfvrm7duqmoqKjMrY2qQl5enqQjA4qjHzB99NeWLVskSfv27Sv3/szMzAq3m5aWVuny2LLKHkx99MOtK1v20UcfVbrON7Vv314PPvigSkpKNH78eGVkZKh9+/YaOXKk5s6dq2g0eszbAgAAAGJ4SDYAAACAOiF2+6bPP/+8zHMmYmK/9f/oo49qzJgxVfa5sR/ODxkyJP5Q6cpU9EDrSOTbf2/su5afqBDCca1/ww03aPjw4XrmmWe0du1arV27VnPmzNGcOXPUrVs3rVq1SqeddtpJ2VcAAADUTQwoAAAAAJzydu3apeXLl0uS9u7dq71791a67ksvvaRt27apY8eOVfLZrVq10tatW3X99ddryJAhVbJNr4oedP3NZWeeeeZxbzcjI0Pjxo3TuHHjJEnvvPOORo4cqbfffluTJ0/W/ffffyK7CwAAgO8pbvEEAAAA4JSXk5Oj0tJSDRw4UGZW6VfsORGxqy0SExMlSYcPH65029+1zuDBgyUdeb5FbfHf//43/myMo+Xl5enll19WCEEXXXRR/PVj6VCR8847TzfddJOkI8MKAAAA4HgwoAAAAABwSjMzzZ49W5I0cuTIb103tvyxxx5TNBpVy5YtJUnbt2+v9IfzsXXefffdCpdfd911atWqlWbPnq177rlHxcXF5dbZtGmTcnJyju2Aqsitt96qPXv2xL8vKirS9ddfr2g0qiuuuEKtW7eOL2vevLkSExNVUFCgzz77rNy2VqxYoUWLFpVrFI1G44OQNm3anKQjAQAAQF3FLZ4AAAAAnNJWrlypvLw8NWjQQD/72c++dd3s7Gylp6drz549Wrx4sYYOHaru3bvrrbfe0rnnnqsePXooKSlJ55xzjm677TZJ0uWXX6777rtPU6dO1aZNm5SZmakQgsaMGaMLL7xQaWlpev755zV06FDdd999mjZtms4991xlZGSooKBAO3fuVH5+vn70ox/pmmuuqY4k6tWrl6LRqDp27KiLL75YiYmJWrVqlfbt26f27dvroYceKrN+/fr1NWTIEM2fP1/du3dX7969lZKSovT0dE2ePFkbNmzQLbfcokaNGikrK0tnnHGGiouL9corr2jPnj3KyMjQxIkTq+XYAAAAUHdwBQUAAACAU1rsyoTLL79cDRs2/NZ169evr6uuukrS17d5evrpp3XllVeqsLBQjz/+uGbOnKnnn38+/p5u3brpySef1Pnnn69169bp0Ucf1cyZM7Vt27b4Ol27dtWGDRt0//33q0OHDnrzzTf19NNPa9u2bcrIyNCkSZP0yCOPVPWhVyoxMVErVqzQr3/9a23YsEHPPfecEhMTNX78eL388svKyMgo954ZM2Zo7NixikajeuqppzRz5kw98cQTkqTLLrtM99xzj7KysrR9+3bNmzdPa9asUUZGhn7/+99rw4YNXEEBAACA4xbMzGp6JwAAAAAAfrm5uRowYID69eun3Nzcmt4dAAAA4FtxBQUAAAAAAAAAAKh2DCgAAAAAAAAAAEC1Y0ABAAAAAAAAAACqHc+gAAAAAAAAAAAA1Y4rKAAAAAAAAAAAQLVjQAEAAAAAAAAAAKodAwoAAAAAAAAAAFDtGFAAAAAAAAAAAIBqx4ACAAAAAAAAAABUOwYUAAAAAAAAAACg2v0f5Q1+xwm1kDkAAAAASUVORK5CYII=\n", | |
"text/plain": [ | |
"<Figure size 1800x1080 with 1 Axes>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"plot(ratios_df.loc[\"2021-06-22T14-55-27Z\":], title=\"Two processes, interleaved (default)\");" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "ecc317a5-b7d6-4df9-896b-bdae4e74742f", | |
"metadata": {}, | |
"source": [ | |
"The standard deviation can give us some more information:" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 14, | |
"id": "e099a9fe-6312-418c-8221-ea9f729ed3c3", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>count</th>\n", | |
" <th>mean</th>\n", | |
" <th>std</th>\n", | |
" <th>min</th>\n", | |
" <th>25%</th>\n", | |
" <th>50%</th>\n", | |
" <th>75%</th>\n", | |
" <th>max</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>exposure.ExposureSuite.time_equalize_adapthist</th>\n", | |
" <td>108.0</td>\n", | |
" <td>0.973056</td>\n", | |
" <td>0.059460</td>\n", | |
" <td>0.83</td>\n", | |
" <td>0.93</td>\n", | |
" <td>0.98</td>\n", | |
" <td>1.01</td>\n", | |
" <td>1.12</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>exposure.ExposureSuite.time_equalize_hist</th>\n", | |
" <td>108.0</td>\n", | |
" <td>0.999167</td>\n", | |
" <td>0.031389</td>\n", | |
" <td>0.91</td>\n", | |
" <td>0.99</td>\n", | |
" <td>1.00</td>\n", | |
" <td>1.01</td>\n", | |
" <td>1.15</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>exposure.ExposureSuite.time_gamma_adjust_u8</th>\n", | |
" <td>108.0</td>\n", | |
" <td>0.998611</td>\n", | |
" <td>0.044814</td>\n", | |
" <td>0.88</td>\n", | |
" <td>0.98</td>\n", | |
" <td>1.00</td>\n", | |
" <td>1.01</td>\n", | |
" <td>1.20</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>exposure.ExposureSuite.time_histogram</th>\n", | |
" <td>108.0</td>\n", | |
" <td>0.997870</td>\n", | |
" <td>0.036508</td>\n", | |
" <td>0.91</td>\n", | |
" <td>0.98</td>\n", | |
" <td>1.00</td>\n", | |
" <td>1.01</td>\n", | |
" <td>1.12</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>exposure.ExposureSuite.time_rescale_intensity</th>\n", | |
" <td>108.0</td>\n", | |
" <td>0.997130</td>\n", | |
" <td>0.051737</td>\n", | |
" <td>0.78</td>\n", | |
" <td>0.97</td>\n", | |
" <td>0.99</td>\n", | |
" <td>1.03</td>\n", | |
" <td>1.14</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>...</th>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>transform_warp.ResizeLocalMeanSuite.time_resize_local_mean(<class 'numpy.uint8'>, 512, 512, 2, 3, True)</th>\n", | |
" <td>0.0</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>transform_warp.ResizeLocalMeanSuite.time_resize_local_mean(<class 'numpy.uint8'>, 512, 512, 3, 2, False)</th>\n", | |
" <td>0.0</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>transform_warp.ResizeLocalMeanSuite.time_resize_local_mean(<class 'numpy.uint8'>, 512, 512, 3, 2, True)</th>\n", | |
" <td>0.0</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>transform_warp.ResizeLocalMeanSuite.time_resize_local_mean(<class 'numpy.uint8'>, 512, 512, 3, 3, False)</th>\n", | |
" <td>0.0</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>transform_warp.ResizeLocalMeanSuite.time_resize_local_mean(<class 'numpy.uint8'>, 512, 512, 3, 3, True)</th>\n", | |
" <td>0.0</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"<p>693 rows × 8 columns</p>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" count mean std \\\n", | |
"exposure.ExposureSuite.time_equalize_adapthist 108.0 0.973056 0.059460 \n", | |
"exposure.ExposureSuite.time_equalize_hist 108.0 0.999167 0.031389 \n", | |
"exposure.ExposureSuite.time_gamma_adjust_u8 108.0 0.998611 0.044814 \n", | |
"exposure.ExposureSuite.time_histogram 108.0 0.997870 0.036508 \n", | |
"exposure.ExposureSuite.time_rescale_intensity 108.0 0.997130 0.051737 \n", | |
"... ... ... ... \n", | |
"transform_warp.ResizeLocalMeanSuite.time_resize... 0.0 NaN NaN \n", | |
"transform_warp.ResizeLocalMeanSuite.time_resize... 0.0 NaN NaN \n", | |
"transform_warp.ResizeLocalMeanSuite.time_resize... 0.0 NaN NaN \n", | |
"transform_warp.ResizeLocalMeanSuite.time_resize... 0.0 NaN NaN \n", | |
"transform_warp.ResizeLocalMeanSuite.time_resize... 0.0 NaN NaN \n", | |
"\n", | |
" min 25% 50% 75% \\\n", | |
"exposure.ExposureSuite.time_equalize_adapthist 0.83 0.93 0.98 1.01 \n", | |
"exposure.ExposureSuite.time_equalize_hist 0.91 0.99 1.00 1.01 \n", | |
"exposure.ExposureSuite.time_gamma_adjust_u8 0.88 0.98 1.00 1.01 \n", | |
"exposure.ExposureSuite.time_histogram 0.91 0.98 1.00 1.01 \n", | |
"exposure.ExposureSuite.time_rescale_intensity 0.78 0.97 0.99 1.03 \n", | |
"... ... ... ... ... \n", | |
"transform_warp.ResizeLocalMeanSuite.time_resize... NaN NaN NaN NaN \n", | |
"transform_warp.ResizeLocalMeanSuite.time_resize... NaN NaN NaN NaN \n", | |
"transform_warp.ResizeLocalMeanSuite.time_resize... NaN NaN NaN NaN \n", | |
"transform_warp.ResizeLocalMeanSuite.time_resize... NaN NaN NaN NaN \n", | |
"transform_warp.ResizeLocalMeanSuite.time_resize... NaN NaN NaN NaN \n", | |
"\n", | |
" max \n", | |
"exposure.ExposureSuite.time_equalize_adapthist 1.12 \n", | |
"exposure.ExposureSuite.time_equalize_hist 1.15 \n", | |
"exposure.ExposureSuite.time_gamma_adjust_u8 1.20 \n", | |
"exposure.ExposureSuite.time_histogram 1.12 \n", | |
"exposure.ExposureSuite.time_rescale_intensity 1.14 \n", | |
"... ... \n", | |
"transform_warp.ResizeLocalMeanSuite.time_resize... NaN \n", | |
"transform_warp.ResizeLocalMeanSuite.time_resize... NaN \n", | |
"transform_warp.ResizeLocalMeanSuite.time_resize... NaN \n", | |
"transform_warp.ResizeLocalMeanSuite.time_resize... NaN \n", | |
"transform_warp.ResizeLocalMeanSuite.time_resize... NaN \n", | |
"\n", | |
"[693 rows x 8 columns]" | |
] | |
}, | |
"execution_count": 14, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"stats = ratios_df.describe().T\n", | |
"stats" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "2456e6bf-043d-4375-be9a-13c568a379f0", | |
"metadata": {}, | |
"source": [ | |
"These tests have a standard deviation larger than 0.05:" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 15, | |
"id": "f136cf43-7186-469a-9a8d-df90a31165bb", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>count</th>\n", | |
" <th>mean</th>\n", | |
" <th>std</th>\n", | |
" <th>min</th>\n", | |
" <th>25%</th>\n", | |
" <th>50%</th>\n", | |
" <th>75%</th>\n", | |
" <th>max</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>exposure.ExposureSuite.time_equalize_adapthist</th>\n", | |
" <td>108.0</td>\n", | |
" <td>0.973056</td>\n", | |
" <td>0.059460</td>\n", | |
" <td>0.83</td>\n", | |
" <td>0.9300</td>\n", | |
" <td>0.98</td>\n", | |
" <td>1.0100</td>\n", | |
" <td>1.12</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>exposure.ExposureSuite.time_rescale_intensity</th>\n", | |
" <td>108.0</td>\n", | |
" <td>0.997130</td>\n", | |
" <td>0.051737</td>\n", | |
" <td>0.78</td>\n", | |
" <td>0.9700</td>\n", | |
" <td>0.99</td>\n", | |
" <td>1.0300</td>\n", | |
" <td>1.14</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>filters.MultiOtsu.time_threshold_multiotsu(3)</th>\n", | |
" <td>108.0</td>\n", | |
" <td>0.998519</td>\n", | |
" <td>0.053158</td>\n", | |
" <td>0.85</td>\n", | |
" <td>0.9700</td>\n", | |
" <td>1.00</td>\n", | |
" <td>1.0100</td>\n", | |
" <td>1.18</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>interpolation.InterpolationResize.time_rescale((500, 800), 0, 'symmetric', <class 'numpy.float64'>, True)</th>\n", | |
" <td>108.0</td>\n", | |
" <td>0.999167</td>\n", | |
" <td>0.086943</td>\n", | |
" <td>0.80</td>\n", | |
" <td>0.9500</td>\n", | |
" <td>1.00</td>\n", | |
" <td>1.0500</td>\n", | |
" <td>1.29</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>interpolation.InterpolationResize.time_rescale((500, 800), 1, 'symmetric', <class 'numpy.float64'>, True)</th>\n", | |
" <td>108.0</td>\n", | |
" <td>0.997130</td>\n", | |
" <td>0.061387</td>\n", | |
" <td>0.73</td>\n", | |
" <td>0.9600</td>\n", | |
" <td>1.01</td>\n", | |
" <td>1.0400</td>\n", | |
" <td>1.11</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>...</th>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" <td>...</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>transform_warp.WarpSuite.time_to_float64(<class 'numpy.uint16'>, 1024, 1)</th>\n", | |
" <td>108.0</td>\n", | |
" <td>1.012222</td>\n", | |
" <td>0.077113</td>\n", | |
" <td>0.82</td>\n", | |
" <td>0.9700</td>\n", | |
" <td>1.00</td>\n", | |
" <td>1.0600</td>\n", | |
" <td>1.26</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>transform_warp.WarpSuite.time_to_float64(<class 'numpy.uint8'>, 1024, 1)</th>\n", | |
" <td>108.0</td>\n", | |
" <td>1.001296</td>\n", | |
" <td>0.073537</td>\n", | |
" <td>0.80</td>\n", | |
" <td>0.9575</td>\n", | |
" <td>1.00</td>\n", | |
" <td>1.0325</td>\n", | |
" <td>1.32</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>transform_warp.WarpSuite.time_to_float64(<class 'numpy.uint8'>, 128, 0)</th>\n", | |
" <td>108.0</td>\n", | |
" <td>0.998796</td>\n", | |
" <td>0.088579</td>\n", | |
" <td>0.70</td>\n", | |
" <td>0.9800</td>\n", | |
" <td>1.00</td>\n", | |
" <td>1.0300</td>\n", | |
" <td>1.33</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>transform_warp.WarpSuite.time_to_float64(<class 'numpy.uint8'>, 128, 1)</th>\n", | |
" <td>108.0</td>\n", | |
" <td>1.004444</td>\n", | |
" <td>0.050794</td>\n", | |
" <td>0.87</td>\n", | |
" <td>0.9900</td>\n", | |
" <td>1.00</td>\n", | |
" <td>1.0125</td>\n", | |
" <td>1.16</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>transform_warp.WarpSuite.time_to_float64(<class 'numpy.uint8'>, 128, 3)</th>\n", | |
" <td>108.0</td>\n", | |
" <td>1.006296</td>\n", | |
" <td>0.050393</td>\n", | |
" <td>0.90</td>\n", | |
" <td>0.9900</td>\n", | |
" <td>1.00</td>\n", | |
" <td>1.0200</td>\n", | |
" <td>1.16</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"<p>94 rows × 8 columns</p>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" count mean std \\\n", | |
"exposure.ExposureSuite.time_equalize_adapthist 108.0 0.973056 0.059460 \n", | |
"exposure.ExposureSuite.time_rescale_intensity 108.0 0.997130 0.051737 \n", | |
"filters.MultiOtsu.time_threshold_multiotsu(3) 108.0 0.998519 0.053158 \n", | |
"interpolation.InterpolationResize.time_rescale(... 108.0 0.999167 0.086943 \n", | |
"interpolation.InterpolationResize.time_rescale(... 108.0 0.997130 0.061387 \n", | |
"... ... ... ... \n", | |
"transform_warp.WarpSuite.time_to_float64(<class... 108.0 1.012222 0.077113 \n", | |
"transform_warp.WarpSuite.time_to_float64(<class... 108.0 1.001296 0.073537 \n", | |
"transform_warp.WarpSuite.time_to_float64(<class... 108.0 0.998796 0.088579 \n", | |
"transform_warp.WarpSuite.time_to_float64(<class... 108.0 1.004444 0.050794 \n", | |
"transform_warp.WarpSuite.time_to_float64(<class... 108.0 1.006296 0.050393 \n", | |
"\n", | |
" min 25% 50% \\\n", | |
"exposure.ExposureSuite.time_equalize_adapthist 0.83 0.9300 0.98 \n", | |
"exposure.ExposureSuite.time_rescale_intensity 0.78 0.9700 0.99 \n", | |
"filters.MultiOtsu.time_threshold_multiotsu(3) 0.85 0.9700 1.00 \n", | |
"interpolation.InterpolationResize.time_rescale(... 0.80 0.9500 1.00 \n", | |
"interpolation.InterpolationResize.time_rescale(... 0.73 0.9600 1.01 \n", | |
"... ... ... ... \n", | |
"transform_warp.WarpSuite.time_to_float64(<class... 0.82 0.9700 1.00 \n", | |
"transform_warp.WarpSuite.time_to_float64(<class... 0.80 0.9575 1.00 \n", | |
"transform_warp.WarpSuite.time_to_float64(<class... 0.70 0.9800 1.00 \n", | |
"transform_warp.WarpSuite.time_to_float64(<class... 0.87 0.9900 1.00 \n", | |
"transform_warp.WarpSuite.time_to_float64(<class... 0.90 0.9900 1.00 \n", | |
"\n", | |
" 75% max \n", | |
"exposure.ExposureSuite.time_equalize_adapthist 1.0100 1.12 \n", | |
"exposure.ExposureSuite.time_rescale_intensity 1.0300 1.14 \n", | |
"filters.MultiOtsu.time_threshold_multiotsu(3) 1.0100 1.18 \n", | |
"interpolation.InterpolationResize.time_rescale(... 1.0500 1.29 \n", | |
"interpolation.InterpolationResize.time_rescale(... 1.0400 1.11 \n", | |
"... ... ... \n", | |
"transform_warp.WarpSuite.time_to_float64(<class... 1.0600 1.26 \n", | |
"transform_warp.WarpSuite.time_to_float64(<class... 1.0325 1.32 \n", | |
"transform_warp.WarpSuite.time_to_float64(<class... 1.0300 1.33 \n", | |
"transform_warp.WarpSuite.time_to_float64(<class... 1.0125 1.16 \n", | |
"transform_warp.WarpSuite.time_to_float64(<class... 1.0200 1.16 \n", | |
"\n", | |
"[94 rows x 8 columns]" | |
] | |
}, | |
"execution_count": 15, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"stats[stats[\"std\"] >= 0.05]" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"id": "bff4fd72-e7f9-4f26-b316-bb3bf244e8a0", | |
"metadata": {}, | |
"source": [ | |
"## Single process" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 56, | |
"id": "ae8dca40-b2fd-480e-ad3e-f02190f0ce85", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"!!! 2021-06-25T03-37-32Z-processes_1: Worsened? False Improved? True\n", | |
"!!! 2021-06-25T20-46-41Z-processes_1: Worsened? True Improved? True\n", | |
"!!! 2021-06-26T03-18-27Z-processes_1: Worsened? True Improved? False\n", | |
"!!! 2021-06-27T03-29-04Z-processes_1: Worsened? True Improved? False\n", | |
"!!! 2021-06-29T03-31-48Z-processes_1: Worsened? True Improved? False\n", | |
"!!! 2021-07-02T20-40-23Z-processes_1: Worsened? True Improved? False\n", | |
"!!! 2021-07-03T14-40-21Z-processes_1: Worsened? True Improved? False\n", | |
"!!! 2021-07-07T08-35-25Z-processes_1: Worsened? False Improved? True\n", | |
"!!!\n", | |
"8 out of 64 points showed discrepancies larger than 1.5\n", | |
"!!!\n" | |
] | |
} | |
], | |
"source": [ | |
"text_results_single_process = timeseries_compare(Path().glob(\"data/*-processes_1/fv-*/\"))\n", | |
"# Parse text and get time ratios only, grouped by benchmark test\n", | |
"ratios_per_run_single_process = {date.replace(\"-processes_1\", \"\"): parse_results_lines(text) \n", | |
" for date, text in text_results_single_process.items()}" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 17, | |
"id": "4355bb34-fa0a-4e26-909f-8015eea06fef", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>exposure.ExposureSuite.time_equalize_adapthist</th>\n", | |
" <th>exposure.ExposureSuite.time_equalize_hist</th>\n", | |
" <th>exposure.ExposureSuite.time_gamma_adjust_u8</th>\n", | |
" <th>exposure.ExposureSuite.time_histogram</th>\n", | |
" <th>exposure.ExposureSuite.time_rescale_intensity</th>\n", | |
" <th>feature.FeatureSuite.time_canny</th>\n", | |
" <th>feature.FeatureSuite.time_glcm</th>\n", | |
" <th>filters.FiltersSobel3D.time_sobel_3d</th>\n", | |
" <th>filters.FiltersSuite.time_sobel</th>\n", | |
" <th>filters.MultiOtsu.time_threshold_multiotsu(3)</th>\n", | |
" <th>...</th>\n", | |
" <th>util.NoiseSuite.time_salt_and_pepper(0.75, 0.0)</th>\n", | |
" <th>util.NoiseSuite.time_salt_and_pepper(0.75, 0.25)</th>\n", | |
" <th>util.NoiseSuite.time_salt_and_pepper(0.75, 0.5)</th>\n", | |
" <th>util.NoiseSuite.time_salt_and_pepper(0.75, 0.75)</th>\n", | |
" <th>util.NoiseSuite.time_salt_and_pepper(0.75, 1.0)</th>\n", | |
" <th>util.NoiseSuite.time_salt_and_pepper(1.0, 0.0)</th>\n", | |
" <th>util.NoiseSuite.time_salt_and_pepper(1.0, 0.25)</th>\n", | |
" <th>util.NoiseSuite.time_salt_and_pepper(1.0, 0.5)</th>\n", | |
" <th>util.NoiseSuite.time_salt_and_pepper(1.0, 0.75)</th>\n", | |
" <th>util.NoiseSuite.time_salt_and_pepper(1.0, 1.0)</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>2021-06-22T14-55-27Z</th>\n", | |
" <td>1.02</td>\n", | |
" <td>0.97</td>\n", | |
" <td>0.99</td>\n", | |
" <td>0.96</td>\n", | |
" <td>1.00</td>\n", | |
" <td>0.98</td>\n", | |
" <td>0.94</td>\n", | |
" <td>1.00</td>\n", | |
" <td>1.01</td>\n", | |
" <td>0.97</td>\n", | |
" <td>...</td>\n", | |
" <td>1.00</td>\n", | |
" <td>1.00</td>\n", | |
" <td>0.98</td>\n", | |
" <td>0.98</td>\n", | |
" <td>0.99</td>\n", | |
" <td>0.99</td>\n", | |
" <td>0.98</td>\n", | |
" <td>0.99</td>\n", | |
" <td>0.99</td>\n", | |
" <td>1.00</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2021-06-22T20-35-08Z</th>\n", | |
" <td>1.19</td>\n", | |
" <td>1.07</td>\n", | |
" <td>1.10</td>\n", | |
" <td>1.04</td>\n", | |
" <td>1.06</td>\n", | |
" <td>1.04</td>\n", | |
" <td>1.04</td>\n", | |
" <td>0.99</td>\n", | |
" <td>0.98</td>\n", | |
" <td>1.02</td>\n", | |
" <td>...</td>\n", | |
" <td>0.99</td>\n", | |
" <td>1.00</td>\n", | |
" <td>1.00</td>\n", | |
" <td>1.00</td>\n", | |
" <td>0.96</td>\n", | |
" <td>1.00</td>\n", | |
" <td>1.00</td>\n", | |
" <td>1.01</td>\n", | |
" <td>0.98</td>\n", | |
" <td>0.99</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2021-06-23T03-25-18Z</th>\n", | |
" <td>1.19</td>\n", | |
" <td>1.00</td>\n", | |
" <td>1.00</td>\n", | |
" <td>0.97</td>\n", | |
" <td>0.98</td>\n", | |
" <td>1.02</td>\n", | |
" <td>1.00</td>\n", | |
" <td>1.00</td>\n", | |
" <td>1.00</td>\n", | |
" <td>1.01</td>\n", | |
" <td>...</td>\n", | |
" <td>1.01</td>\n", | |
" <td>1.01</td>\n", | |
" <td>1.00</td>\n", | |
" <td>1.01</td>\n", | |
" <td>1.02</td>\n", | |
" <td>1.01</td>\n", | |
" <td>1.01</td>\n", | |
" <td>1.00</td>\n", | |
" <td>1.01</td>\n", | |
" <td>1.01</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2021-06-23T08-23-53Z</th>\n", | |
" <td>0.93</td>\n", | |
" <td>1.00</td>\n", | |
" <td>1.00</td>\n", | |
" <td>0.99</td>\n", | |
" <td>0.94</td>\n", | |
" <td>0.95</td>\n", | |
" <td>1.06</td>\n", | |
" <td>1.00</td>\n", | |
" <td>1.00</td>\n", | |
" <td>0.99</td>\n", | |
" <td>...</td>\n", | |
" <td>1.02</td>\n", | |
" <td>1.01</td>\n", | |
" <td>1.01</td>\n", | |
" <td>0.99</td>\n", | |
" <td>0.99</td>\n", | |
" <td>1.00</td>\n", | |
" <td>1.00</td>\n", | |
" <td>1.00</td>\n", | |
" <td>1.01</td>\n", | |
" <td>1.03</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2021-06-23T14-50-00Z</th>\n", | |
" <td>1.22</td>\n", | |
" <td>0.99</td>\n", | |
" <td>1.01</td>\n", | |
" <td>1.07</td>\n", | |
" <td>1.15</td>\n", | |
" <td>1.08</td>\n", | |
" <td>1.08</td>\n", | |
" <td>1.03</td>\n", | |
" <td>0.98</td>\n", | |
" <td>1.00</td>\n", | |
" <td>...</td>\n", | |
" <td>1.07</td>\n", | |
" <td>1.07</td>\n", | |
" <td>1.09</td>\n", | |
" <td>1.08</td>\n", | |
" <td>1.09</td>\n", | |
" <td>1.04</td>\n", | |
" <td>1.07</td>\n", | |
" <td>1.08</td>\n", | |
" <td>1.06</td>\n", | |
" <td>1.04</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"<p>5 rows × 693 columns</p>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" exposure.ExposureSuite.time_equalize_adapthist \\\n", | |
"2021-06-22T14-55-27Z 1.02 \n", | |
"2021-06-22T20-35-08Z 1.19 \n", | |
"2021-06-23T03-25-18Z 1.19 \n", | |
"2021-06-23T08-23-53Z 0.93 \n", | |
"2021-06-23T14-50-00Z 1.22 \n", | |
"\n", | |
" exposure.ExposureSuite.time_equalize_hist \\\n", | |
"2021-06-22T14-55-27Z 0.97 \n", | |
"2021-06-22T20-35-08Z 1.07 \n", | |
"2021-06-23T03-25-18Z 1.00 \n", | |
"2021-06-23T08-23-53Z 1.00 \n", | |
"2021-06-23T14-50-00Z 0.99 \n", | |
"\n", | |
" exposure.ExposureSuite.time_gamma_adjust_u8 \\\n", | |
"2021-06-22T14-55-27Z 0.99 \n", | |
"2021-06-22T20-35-08Z 1.10 \n", | |
"2021-06-23T03-25-18Z 1.00 \n", | |
"2021-06-23T08-23-53Z 1.00 \n", | |
"2021-06-23T14-50-00Z 1.01 \n", | |
"\n", | |
" exposure.ExposureSuite.time_histogram \\\n", | |
"2021-06-22T14-55-27Z 0.96 \n", | |
"2021-06-22T20-35-08Z 1.04 \n", | |
"2021-06-23T03-25-18Z 0.97 \n", | |
"2021-06-23T08-23-53Z 0.99 \n", | |
"2021-06-23T14-50-00Z 1.07 \n", | |
"\n", | |
" exposure.ExposureSuite.time_rescale_intensity \\\n", | |
"2021-06-22T14-55-27Z 1.00 \n", | |
"2021-06-22T20-35-08Z 1.06 \n", | |
"2021-06-23T03-25-18Z 0.98 \n", | |
"2021-06-23T08-23-53Z 0.94 \n", | |
"2021-06-23T14-50-00Z 1.15 \n", | |
"\n", | |
" feature.FeatureSuite.time_canny \\\n", | |
"2021-06-22T14-55-27Z 0.98 \n", | |
"2021-06-22T20-35-08Z 1.04 \n", | |
"2021-06-23T03-25-18Z 1.02 \n", | |
"2021-06-23T08-23-53Z 0.95 \n", | |
"2021-06-23T14-50-00Z 1.08 \n", | |
"\n", | |
" feature.FeatureSuite.time_glcm \\\n", | |
"2021-06-22T14-55-27Z 0.94 \n", | |
"2021-06-22T20-35-08Z 1.04 \n", | |
"2021-06-23T03-25-18Z 1.00 \n", | |
"2021-06-23T08-23-53Z 1.06 \n", | |
"2021-06-23T14-50-00Z 1.08 \n", | |
"\n", | |
" filters.FiltersSobel3D.time_sobel_3d \\\n", | |
"2021-06-22T14-55-27Z 1.00 \n", | |
"2021-06-22T20-35-08Z 0.99 \n", | |
"2021-06-23T03-25-18Z 1.00 \n", | |
"2021-06-23T08-23-53Z 1.00 \n", | |
"2021-06-23T14-50-00Z 1.03 \n", | |
"\n", | |
" filters.FiltersSuite.time_sobel \\\n", | |
"2021-06-22T14-55-27Z 1.01 \n", | |
"2021-06-22T20-35-08Z 0.98 \n", | |
"2021-06-23T03-25-18Z 1.00 \n", | |
"2021-06-23T08-23-53Z 1.00 \n", | |
"2021-06-23T14-50-00Z 0.98 \n", | |
"\n", | |
" filters.MultiOtsu.time_threshold_multiotsu(3) ... \\\n", | |
"2021-06-22T14-55-27Z 0.97 ... \n", | |
"2021-06-22T20-35-08Z 1.02 ... \n", | |
"2021-06-23T03-25-18Z 1.01 ... \n", | |
"2021-06-23T08-23-53Z 0.99 ... \n", | |
"2021-06-23T14-50-00Z 1.00 ... \n", | |
"\n", | |
" util.NoiseSuite.time_salt_and_pepper(0.75, 0.0) \\\n", | |
"2021-06-22T14-55-27Z 1.00 \n", | |
"2021-06-22T20-35-08Z 0.99 \n", | |
"2021-06-23T03-25-18Z 1.01 \n", | |
"2021-06-23T08-23-53Z 1.02 \n", | |
"2021-06-23T14-50-00Z 1.07 \n", | |
"\n", | |
" util.NoiseSuite.time_salt_and_pepper(0.75, 0.25) \\\n", | |
"2021-06-22T14-55-27Z 1.00 \n", | |
"2021-06-22T20-35-08Z 1.00 \n", | |
"2021-06-23T03-25-18Z 1.01 \n", | |
"2021-06-23T08-23-53Z 1.01 \n", | |
"2021-06-23T14-50-00Z 1.07 \n", | |
"\n", | |
" util.NoiseSuite.time_salt_and_pepper(0.75, 0.5) \\\n", | |
"2021-06-22T14-55-27Z 0.98 \n", | |
"2021-06-22T20-35-08Z 1.00 \n", | |
"2021-06-23T03-25-18Z 1.00 \n", | |
"2021-06-23T08-23-53Z 1.01 \n", | |
"2021-06-23T14-50-00Z 1.09 \n", | |
"\n", | |
" util.NoiseSuite.time_salt_and_pepper(0.75, 0.75) \\\n", | |
"2021-06-22T14-55-27Z 0.98 \n", | |
"2021-06-22T20-35-08Z 1.00 \n", | |
"2021-06-23T03-25-18Z 1.01 \n", | |
"2021-06-23T08-23-53Z 0.99 \n", | |
"2021-06-23T14-50-00Z 1.08 \n", | |
"\n", | |
" util.NoiseSuite.time_salt_and_pepper(0.75, 1.0) \\\n", | |
"2021-06-22T14-55-27Z 0.99 \n", | |
"2021-06-22T20-35-08Z 0.96 \n", | |
"2021-06-23T03-25-18Z 1.02 \n", | |
"2021-06-23T08-23-53Z 0.99 \n", | |
"2021-06-23T14-50-00Z 1.09 \n", | |
"\n", | |
" util.NoiseSuite.time_salt_and_pepper(1.0, 0.0) \\\n", | |
"2021-06-22T14-55-27Z 0.99 \n", | |
"2021-06-22T20-35-08Z 1.00 \n", | |
"2021-06-23T03-25-18Z 1.01 \n", | |
"2021-06-23T08-23-53Z 1.00 \n", | |
"2021-06-23T14-50-00Z 1.04 \n", | |
"\n", | |
" util.NoiseSuite.time_salt_and_pepper(1.0, 0.25) \\\n", | |
"2021-06-22T14-55-27Z 0.98 \n", | |
"2021-06-22T20-35-08Z 1.00 \n", | |
"2021-06-23T03-25-18Z 1.01 \n", | |
"2021-06-23T08-23-53Z 1.00 \n", | |
"2021-06-23T14-50-00Z 1.07 \n", | |
"\n", | |
" util.NoiseSuite.time_salt_and_pepper(1.0, 0.5) \\\n", | |
"2021-06-22T14-55-27Z 0.99 \n", | |
"2021-06-22T20-35-08Z 1.01 \n", | |
"2021-06-23T03-25-18Z 1.00 \n", | |
"2021-06-23T08-23-53Z 1.00 \n", | |
"2021-06-23T14-50-00Z 1.08 \n", | |
"\n", | |
" util.NoiseSuite.time_salt_and_pepper(1.0, 0.75) \\\n", | |
"2021-06-22T14-55-27Z 0.99 \n", | |
"2021-06-22T20-35-08Z 0.98 \n", | |
"2021-06-23T03-25-18Z 1.01 \n", | |
"2021-06-23T08-23-53Z 1.01 \n", | |
"2021-06-23T14-50-00Z 1.06 \n", | |
"\n", | |
" util.NoiseSuite.time_salt_and_pepper(1.0, 1.0) \n", | |
"2021-06-22T14-55-27Z 1.00 \n", | |
"2021-06-22T20-35-08Z 0.99 \n", | |
"2021-06-23T03-25-18Z 1.01 \n", | |
"2021-06-23T08-23-53Z 1.03 \n", | |
"2021-06-23T14-50-00Z 1.04 \n", | |
"\n", | |
"[5 rows x 693 columns]" | |
] | |
}, | |
"execution_count": 17, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"ratios_df_single_process = pandas.DataFrame.from_dict(ratios_per_run_single_process).T\n", | |
"ratios_df_single_process.head()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 18, | |
"id": "ccc2e09d-ea78-403a-9478-76cf2c25f4f3", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"(0.51, 2.76)" | |
] | |
}, | |
"execution_count": 18, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"ratios_df_single_process.min().min(), ratios_df_single_process.max().max()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 19, | |
"id": "c617aa1d-a5f7-4657-a2f6-7a6141a6d18d", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"(1.0061097016440024, 0.07376327297287917)" | |
] | |
}, | |
"execution_count": 19, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"np.nanmean(ratios_df_single_process._values), np.nanstd(ratios_df_single_process._values)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 66, | |
"id": "b10c48b5-a19e-42fc-8ea8-738dfddfbc92", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAABigAAAO3CAYAAAC5k8wlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdeZxcVZ3///e9t/au3tPZN5aEEJaEXSQYVgFRAQH9jjLKNvhDcBBhhKgMjIoILqOAMDIiizIqsoggCiEShLAGwiKRkED27s7Se1XXeu/5/dGkSafXdCe3urpfz8ejH+mue+6tT1Wnq07d9z3nWMYYIwAAAAAAAAAAAB/ZhS4AAAAAAAAAAACMPgQUAAAAAAAAAADAdwQUAAAAAAAAAADAdwQUAAAAAAAAAADAdwQUAAAAAAAAAADAdwQUAAAAAAAAAADAdwQUAAAAAHq1cuVKXXHFFTr44INVUVGhUCikCRMmaO7cuTrrrLN0880364033pAxptu+xxxzjCzL0rnnnut/4QM0ffp0WZal6667rtClAAAAAKNOoNAFAAAAABie/vu//1tXXXWVcrlcl9vr6+tVX1+vN954Qw8++KAkacuWLRozZkwhygQAAABQpAgoAAAAAHTzm9/8Rl//+tclSdOmTdPXvvY1zZ8/X5MnT1Yul9P777+vv//973rwwQf12muvFbhaAAAAAMWIgAIAAABAN9/61rckSXvssYdeffVVVVZWdtk+ceJEzZs3T9/85jf10ksvqaSkpNsxFi9e7EepAAAAAIoUAQUAAACALt59912tW7dOknThhRd2Cyd2dMQRR/hRFgAAAIARhkWyAQAAAHSxdevWzu9LS0sHfZy+Fsm+7rrrZFmWpk+fLklas2aNLr74Yk2fPl3hcFjjxo3TWWedpWXLlvV7P4sXL9anP/1pjRkzRtFoVDNnztRVV12lhoYGrVmzRpZlybKsQY/oyOfz+tWvfqWTTz5Z48ePVygUUk1NjT7+8Y/rvvvu63GB8IHaVtvdd9+tfD6v//7v/9YhhxyisrIylZWVad68ebr33nt73X/x4sWdx1izZo2ampr0rW99S/vvv79KS0tlWZZef/31Lvs8++yz+vznP6+pU6cqEomosrJSRxxxhH7wgx8okUj0W3M6ndZtt92mj3/84xo/frzC4bAmTJigww8/XN/61rf0j3/8o9d93333XX31q1/V7NmzVVpaqlgspn322Uf//u//3hmK9cQYo9/+9rf6xCc+oQkTJigUCqm8vFx77723TjzxRN1000097p9MJnXTTTfpox/9qKqqqhQMBjVmzBjtu+++Ovvss/W///u/SiaT/T5mAAAA7CYGAAAAALazfPlyI8lIMp/+9KcHfZz58+cbSeZLX/pSt23XXnutkWSmTZtmFi9ebMrLyzvvc/uvcDhsFi5c2Ot9/OAHP+hxv23Hfvrppzt/fvrpp7vtP23aNCPJXHvttT0ef+3atWbOnDm93ockc8opp5hEIjGo52jbMX7xi1+YY489ttf7+OxnP2vy+Xy3/bd/fE899ZSZMmVKt32XLVtmjDHG8zzzta99rc/HMnXqVPP222/3Wu/rr79upk+f3ucx5syZ0+O+P/rRj0wgEOh1v1gsZh599NFu++XzeXPaaaf1eZ+SzA9/+MMu+9XW1poZM2b0u98rr7wy8F8YAAAAdilGUAAAAADoYtasWZo0aZIk6U9/+pO+/OUva8WKFbvlvlpaWnTmmWdq2rRpeuihh1RXV6f6+nrdc889qqioUCaT0fnnn698Pt9t3z//+c+6+uqrJUn77ruvHnnkEW3atElr167VrbfequbmZl1wwQWDrq21tVXHHXec3njjDVVXV+vHP/6x/vnPf6qpqUnvvvuubrjhBkWjUf3lL3/Rl7/85UHfjyTdcMMNWrx4sS677DL94x//0NatW/Xcc8/p4x//uCTp/vvv13XXXdfnMb70pS8pmUzqlltu0fvvv6/Nmzdr0aJFmjBhQud9/PSnP5UkzZs3T0899ZS2bNmiVatW6fvf/76i0ajWrVunk046SU1NTd2Ov3r1ah177LFas2aNotGoFixYoNdee00NDQ3auHGjnnzySV122WWqqqrqtu/Pf/5zXXnllcrn8/rkJz+pJ554QvX19dqyZYuefPJJHX300Wpvb9fZZ5+tt956q8u+d999tx555BFJ0sUXX6wXX3xRtbW1qqur08svv6x77rlHn/jEJxQMBrvs941vfEMrV65ULBbTTTfd1Pm8rlmzRs8++6x+8pOf6JBDDpFlWQP6HQEAAGA3KHRCAgAAAGD4+c1vftPj1fVnnXWW+cEPfmCWLFnS4xX92xvICApJZu7cuT2OQHjwwQc72/zlL3/ptn2fffbpHCnR0NDQbfuSJUuMbduDHkHx1a9+1UgypaWl5p133unxMS5cuHBIV+Jv//xef/313bbn83lzwgknGEkmGAya2traLtu3H0ERCoU6R0vsqL6+3oRCISPJzJ8/32QymW5t/vznP3ce6/LLL++2/aSTTjKSTCQSMc8//3yvjymXy3X5uba21oTDYSPJXHTRRb3uc8wxxxhJ5tRTT+2y7TOf+YyRZE4//fRe77MnVVVVRpL56U9/ulP7AQAAwD+MoAAAAADQzRe+8AX97ne/67z6XpLWrVunBx54QFdffbWOOuooTZ06VTfddJOy2eyQ7uvGG29USUlJt9tPP/30zgW6X3nllS7bXnrppc5RHddcc02PV+1/9KMf1ec+97lB1ZRMJnXnnXdKkv7zP/9T++yzT4/tTjjhBB133HGSpPvuu29Q9yVJkyZN0je+8Y1utzuO0znqIZfL9Xkf559/vubOndvjtl//+tedv6ebb75ZoVCoW5tPfOIT+vSnPy1Juuuuu+S6bue2FStW6IknnpDUMTLhyCOP7LWOQCDQ5ef/+Z//USaTUXV1tW6++eZe9/nOd74jSXr88cfV3NzcuW3b6Jlto3oGarD7AQAAwD8EFAAAAAB69LnPfU7vv/++fv/73+tf//Vfteeee3bZXltbq6uuukrHH3+82tvbB3Uf4XBYxx57bI/bbNvW3nvvLUmqr6/vsu3555/v/H7bSfWenHbaaYOq6/nnn+98TPPnz1cikej168ADD5QkLV26dFD3JUmf+tSnup3Y32a//fbTzJkzJUlLlizp9Rinnnpqr9uee+45SdLMmTM76+3J2WefLUlqbm7ustj1okWLOr/vadHzvjz11FOSpKOPPlq5XK7X53HWrFmSOhbEfvXVVzv3P+iggyRJv/rVr/TrX/9amUxmQPe7bb8FCxbomWeeGdJi5gAAANg9CCgAAAAA9CoSieizn/2s7r33Xr333ntqbGzUI488os997nOy7Y6PE88995wWLFgwqOPX1NR0Wztge7FYTJK6BSBr1qyRJFVWVqqmpqbX/bed9N5Z26+5cfjhh6u0tLTXr20jHLZs2TKo+xpInfvuu68kae3atb222TFA2t62/WbPnt3n/ey3337d9pGk9957T5JUVlamPfbYo89j7Gjbc/nHP/6xz+dx7Nixnfts/1xefvnlmjZtmlKplL74xS+qurpaJ510kr773e/q2Wef7TLSY3s33XSTQqGQVq1apWOOOUYTJkzQZz/7Wd1yyy16++23d+oxAAAAYPcgoAAAAAAwYJWVlfr0pz+t3/3ud3rooYc6Fxj+3//93wFf2b49x3EG1G7Hq9+TyaQk9Tg11Pbi8fhO1yR1LN69s9Lp9KDuS+q/zm3b29raem2zLczpybb9+ruf0tLSbvtIHQuG77h9oIb6XJaXl+vll1/WV7/6VVVWViqZTOrJJ5/Uf/7nf+pjH/uYpkyZop/97GfyPK/LMQ4//HC9/PLLOuOMMxQKhbRp0yb94Q9/0L//+79r//3319y5c/XXv/51p2sDAADArkNAAQAAAGBQTjvtNH3iE5+QJKVSKb3zzju+3fe2YGJbUNGbRCIxqONvfyK/ra1Nxph+v7aN6hiM/urctn0wAcH2+w30fna8r23f9xWQ9Gbbc3nllVcO6Hk0xnSbRmrs2LG6+eabtWXLFi1dulS33HKLPvOZzygWi6murk5f+9rXdMUVV3S77zlz5uihhx5SU1OT/va3v+l73/ue5s+fL9u29cYbb+gTn/iEHn744Z1+TAAAANg1CCgAAAAADNr2UwINdh2KwZg2bZokqampqc+plbafqmlnbD9d0uuvvz6oY+yM/sKdf/7zn5I+fNw7a/r06ZKk5cuX99lu+6mPtu0jqXMtkNbWVq1evXqn7nvbc7ls2bKd2q8njuPokEMO0aWXXqoHH3xQ69ev17x58yRJt9xyixoaGnrcLxaL6dhjj9W3vvUtLV68WG+++aZqampkjNF//dd/DbkuAAAADA4BBQAAAIBB27BhQ+f3EydO9O1+jzrqqM7vH3300V7bPfLII4M6/vz58xUOhyVJd91116COsTMee+wx5fP5Hre9/fbbevfddyV1fdw7Y9tJ/HfffVdvvfVWr+0eeOABSVJFRYX233//zttPOOGEzu/vueeenbrvj3/845KkZ555ZqfDjf5UVVXp61//uiTJdd3O56k/++23n/7lX/5F0ofhDwAAAPxHQAEAAACgi/fee0/f/va31djY2Ge7119/XQ899JAkacaMGYO+un8wjjjiCM2cOVOS9N3vfldNTU3d2rz44ov6/e9/P6jjl5WV6YILLpAk3X333XrwwQf7bN/a2qq6urpB3ZfUEfTcdNNN3W53XVeXX365JCkYDOoLX/jCoI5/zjnnKBQKSZIuu+yyHsOQv/71r/rjH/8oSTr//PM7F0GXpJkzZ+rkk0+WJN144416+eWXe72vHY99ySWXKBwOK5/P61//9V/7nWZqx1Ev/Y0u2baAtyRVV1dL6pj6a/369QPab9s+AAAA8B8BBQAAAIAuUqmUrr/+ek2aNEn/8i//ol//+tdavny5GhoatHXrVi1durRzgeJtixlff/31vtf5ox/9SJK0Zs0aHX300Xr00Ue1ZcsWrV+/XrfffrtOOeWUIYUm3//+97XPPvvI8zydffbZuuCCC/TMM89o06ZNampq0sqVK/Xggw/qwgsv1JQpU7RkyZJB39f06dP17W9/W5dffrmWL1+uxsZGPf/88/rEJz6hhQsXSpKuuuoqTZgwYVDHHzdunK699lpJ0tNPP60TTjhBTz/9tBoaGvT+++/rxhtv1JlnnilJmjRpkr797W93O8Ztt92myspKpdNpHXvssbrmmmv0+uuvq7GxUXV1dXr66ad15ZVX6qSTTuqy3+TJk/XTn/5UkrRkyRLNnTtXv/jFL/Tuu++qublZdXV1ev755/XjH/9YRxxxhM4666wu+59yyin6yEc+oh//+Md64YUXVF9fr8bGRr399tu6/vrrO2s9+OCDO0OrLVu2aM8999Rpp52mu+66S2+99Za2bt2qTZs26YUXXtB5552nP//5z5LUOZICAAAABWCAXtx8883m7LPPNrNmzTJVVVUmEAiYMWPGmOOPP978+te/Np7nDeq49913n5k3b54pKyszJSUl5pBDDjG33nqrcV13Fz8CAAAADMa7775rQqGQkdTvVzQaNbfddluPx5k/f76RZL70pS9123bttdcaSWbatGl91tLXMYwx5vrrr++1tqlTp5q//e1vnT8/++yz3fafNm2akWSuvfbaHo9fW1trjjrqqAE9F4888kifj6Un2/b9xS9+0flYe/r67Gc/a/L5fLf9n3766c42q1ev7vO+PM8zl112WZ+PYerUqebtt9/u9RjLli0zU6ZM6fMYc+bM6XHfX/ziFyYcDvf7PB588MFd9tv2O+rra/r06WbFihWd+6xevXpAv7MTTjjBJBKJPp83AAAA7D6BQWQaGCVuvPFGbd68Wfvvv78++tGPqqSkRGvXrtXf/vY3LVq0SA888IAeeuihLkO/+3PJJZfotttuUyQS0fHHH69gMKhFixbp0ksv1aJFi/SHP/xBjuPsxkcFAACA/syYMUNbtmzRX//6Vy1evFjLli3Te++9p+bmZtm2rYqKCu2777467rjjdO6552rKlCkFq/Wb3/ymjjzySP3oRz/Siy++qPb2dk2ePFmf+tSn9M1vfrPLtEulpaU7ffwJEybo2Wef1SOPPKL/+7//00svvaTNmzfL8zxVV1dr1qxZOumkk3TmmWd2LiQ9GKFQSAsXLtTPfvYz3XfffVq1apUk6cADD9RFF12kL33pS4M+9jaWZemnP/2pzjzzTN1222167rnntHnzZkWjUe2zzz4644wzdOmllyoej/d6jLlz5+qdd97RHXfcoYcfflhvv/22WltbVVNToylTpujEE0/U5z//+R73veiii/TJT35St912mxYuXKhVq1appaVFsVhMU6ZM0eGHH64zzjijc82KbZ544gk9+eST+tvf/qYVK1aovr5ebW1tqqio0OzZs3Xaaafpy1/+skpKSjr3mTp1qpYsWaKnnnpKf//737VmzRrV19crl8tp7NixOvjgg/WFL3xBZ599tizLGvJzCwAAgMGxjDGm0EVgeHruued00EEHdenoSx2L9B1//PHatGmTfvWrX+m8884b0PEefPBBnXXWWRo/frz+/ve/a8aMGZKkTZs26dhjj9U///lP/fSnP9Vll122yx8LAAAARqeHH35Yn/nMZyR1TPszZsyYAlfU1baT43fddZfOPffcwhYDAAAA+Iw1KNCrefPmdQsnJGm//fbTJZdcIkmd8+EOxA033CCpY2TGtnBC6pgP9/bbb5ck/eAHP5DneUMpGwAAAOj06KOPSpKmTZs27MIJAAAAYLQjoMCgBAIds4NFIpEBtd+wYYNeffVVhUIhnX322d22z58/X5MmTVJ9fb1efPHFXVorAAAARq7GxsZety1ZskS//vWvJUmf/exn/SoJAAAAwAARUGCnrV69Wv/zP/8jSfrUpz41oH2WLVsmqWP0RTQa7bHNYYcd1qUtAAAA0J/jjjtO//Zv/6YnnnhCtbW1ampq0ptvvqn/+q//0kknnaR8Pq/Kykp9/etfL3SpAAAAAHbAItno11133aVnnnlGuVxOGzZs0PPPPy/P87RgwQKdccYZAzrG6tWrJXUMre/N1KlTu7QFAAAA+pNOp/XLX/5Sv/zlL3vcXl5erocffljjx4/3uTIAAAAA/SGgQL+WLFmie+65p/PnQCCg7373uzt1FVoikZCkHte02CYej0uS2traBlkpAAAARptbbrlFjzzyiJ5//nnV1dWpoaFBsVhMe+65p0455RRddtllGjt2bKHLBAAAANADAgr0a9sVaalUSqtXr9Zdd92l6667Tvfff78ef/xxTZw4sd9jGGMkSZZlDbqOO+64Q3fccYckafny5ZoyZcqgjzVSGJlCl9Ana3iXN+wZDf7vBeLZGyr+gIGiNlr/gkvLSlVaVipJSiQT+sMDf9AfHvjDoI7l18vgzBkzJEk3fP/7uuH73/fnTn1AP2ZoePaGiH4MUNT4Cx4aXgKHblf3Y4ZwOnTEaGho0NatW3vcRkCBAYtGo5o9e7Z++MMfavz48bryyit16aWX6qGHHup339LSDz4ofjCSoifbtm1ru6OLLrpIF110kSTp0EMP1dKlS3f2IYw4K1pqC11Cn2YkmwtdQlGrC0wtdAlFrSbnFbqEopapaS10CUWv1DAicCjS6fJCl1DU1ha6gBGAfszQ0I8ZGvoxQ0M/ZujoxwwN/ZihoR8zNPRhhm5X92MmjY3v0uMVo0MPPbTXbSySjUE577zzJEmPPvqocrlcv+2nT58uSVq7tve3mfXr13dpCwAAAAAAAAAYuQgoMCgVFRUKBALK5/NqbGzst/1BBx0kSXr77beVSqV6bPPKK690aQsAAAAAAAAAGLkIKDAof//735XP51VRUaExY8b0237KlCk6+OCDlc1m9Yc/dJ8H+JlnntGGDRs0fvx4HXnkkbujZAAAAAAAAADAMEJAgR49++yzuu+++5TJZLptW7JkiS644AJJ0gUXXCDHcTq3LViwQLNmzdKCBQu67bfttquuukqrVq3qvH3z5s36yle+Ikm6+uqrZdv8twQAAAAAAACAkY5FstGj9957T+edd54uvfRSHXzwwRo/frza2tr03nvvafny5ZKkU089Vd/97ne77FdXV6cVK1aorq6u2zHPOussXXzxxbr99tt1wAEH6IQTTlAwGNSiRYvU2tqq008/XZdeeqkvjw8AAAAAAAAAUFgEFOjR/Pnzdc011+jZZ5/Vu+++q+eff17GGI0fP15nnnmmzjnnHJ1++uk7fdzbbrtN8+bN089//nM988wzcl1Xs2bN0vnnn6+LL76Y0RMAAAAAAAAAMEpYxhhT6CKAnXXooYdq6dKlhS6j4Fa01Ba6hD7NSDYXuoSiVheYWugSilpNzit0CUUtU9Na6BKKXqlpK3QJRS2dLi90CUVtbaELGAHoxwwN/ZihoR8zNPRjho5+zNDQjxka+jFDQx9m6HZ1P2bS2PguPV4x6utcLperAwAAAAAAAAAA3xFQAAAAAAAAAAAA3xFQAAAAAAAAAAAA3xFQAAAAAAAAAAAA3xFQAAAAAAAAAAAA3xFQAAAAAAAAAAAA3xFQAAAAAAAAAAAA3xFQAAAAAAAAAAAA3xFQAAAAAAAAAAAA3xFQAAAAAAAAAAAA3xFQAAAAAAAAAAAA3xFQAAAAAAAAAAAA3xFQAAAAAAAAAAAA3xFQAAAAAAAAAAAA3xFQAAAAAAAAAAAA3xFQAAAAAAAAAAAA3xFQAAAAAAAAAAAA3xFQAAAAAAAAAAAA3xFQAAAAAAAAAAAA3xFQAAAAAAAAAAAA3xFQAAAAAAAAAAAA3xFQAAAAAAAAAAAA3xFQAAAAAAAAAAAA3xFQAAAAAAAAAAAA3xFQAAAAAAAAAAAA3xFQAAAAAAAAAAAA3xFQAAAAAAAAAAAA3xFQAAAAAAAAAAAA3xFQAAAAAAAAAAAA3xFQAAAAAAAAAAAA3xFQAAAAAAAAAAAA3xFQAAAAAAAAAAAA3xFQAAAAAAAAAAAA3xFQAAAAAAAAAAAA3xFQAAAAAAAAAAAA3xFQAAAAAAAAAAAA3xFQAAAAAAAAAAAA3xFQAAAAAAAAAAAA3xFQAAAAAAAAAAAA3xFQAAAAAAAAAAAA3xFQAAAAAAAAAAAA3xFQAAAAAAAAAAAA3xFQAAAAAAAAAAAA3xFQAAAAAAAAAAAA3wUKXQAAABi8TGaLsrlGSVIoWK1weEyBKwIAAAAAABgYAgoAAIpQLteq5pZlyruJ7W5dpUAgrorygxUMlBasNgAAAAAAgIFgiicAAIqM66bU2PzSDuFEh3w+ocamF+W66QJUBgAAAAAAMHAEFAAAFJlk+xp5XrbX7Z6XVbJ9jX8FAQAAAAAADAIBBQAARSaV3rhL2gAAAAAAABQSAQUAAEWmr9ETH7bJ+FAJAAAAAADA4BFQAABQZBw70n8bp/82AAAAAAAAhURAAQBAkYlGJ/XfJjLFh0oAAAAAAAAGj4ACAIAiUxLbQ44T7XW740RVEpvmY0UAAAAAAAA7j4ACAIAiY9shVVceqVCwqtu2ULBK1ZVHyrZDBagMAAAAAABg4AKFLgAAAOw8x4mquupI5XKtyuYaJXWEE8FgWYErAwAAAAAAGBgCCgAAilgwWEYoAQAAAAAAihJTPAEAAAAAAAAAAN8RUAAAAAAAAAAAAN8RUAAAAAAAAAAAAN8RUAAAAAAAAAAAAN8RUAAAAAAAAAAAAN8RUAAAAAAAAAAAAN8RUAAAAAAAAAAAAN8RUAAAAAAAAAAAAN8RUAAAAAAAAAAAAN8RUAAAAAAAAAAAAN8RUAAAAAAAAAAAAN8RUAAAAAAAAAAAAN8RUAAAAAAAAAAAAN8RUAAAAAAAAAAAAN8RUAAAAAAAAAAAAN8RUAAAAAAAAAAAAN8RUAAAAAAAAAAAAN8RUAAAAAAAAAAAAN8RUAAAAAAAAAAAAN8RUAAAAAAAAAAAAN8RUAAAAAAAAAAAAN8RUAAAAAAAAAAAAN8RUAAAAAAAAAAAAN8RUAAAAAAAAAAAAN8RUAAAAAAAAAAAAN8RUAAAAAAAAAAAAN8RUAAAAAAAAAAAAN8RUAAAAAAAAAAAAN8RUAAAAAAAAAAAAN8RUAAAAAAAAAAAAN8RUAAAAAAAAAAAAN8RUAAAAAAAAAAAAN8RUAAAAAAAAAAAAN8RUAAAAAAAAAAAAN8RUAAAAAAAAAAAAN8RUAAAAAAAAAAAAN8RUAAAAAAAAAAAAN8RUAAAAAAAAAAAAN8RUAAAAAAAAAAAAN8RUAAAAAAAAAAAAN8RUAAAAAAAAAAAAN8RUAAAAAAAAAAAAN8RUAAAAAAAAAAAAN8RUAAAAAAAAAAAAN8RUAAAAAAAAAAAAN8RUAAAAAAAAAAAAN8RUAAAAAAAAAAAAN8FCl0AAAAAgKExxmhzrl0b0q1Ke3k1247GhctUHSqRbVmFLg8AAAAAekRAAQAAABQx13h6ubVWDblU520NkrZmkyoNhHVg2SQFbadwBQIAAABAL5jiCQAAAChibyQ2dwkntteWz2h5W73PFQEAAADAwBBQoEe5XE6LFi3SFVdcoY985COaMGGCQqGQJk2apLPOOkuLFy/e6WOee+65siyr169Zs2bt+gcCAAAwgqXcvGozbX22acq1K5HP+FQRAAAAAAwcUzyhR88884xOPPFESdL48eN1yCGHqKSkRMuXL9eDDz6oBx98UNdcc42+853v7PSxjzrqKO29997dbp8wYcKQ6wYAABhNNueSA2rXkE0qHgjv5moAAAAAYOcQUKBHtm3rzDPP1GWXXaajjz66y7bf//73+sIXvqDvfve7OvbYY3Xsscfu1LEvvPBCnXvuubuwWgAAgNHJNd4ubQcAAAAAfmKKJ/TouOOO0wMPPNAtnJCkz33uc50Bw29+8xufKwMAAMA2pc7ARkUwegIAAADAcERAgUE56KCDJEkbNmwocCUAAACjV00ophIn2GebkO1oTCjuU0UAAAAAMHBM8YRBWblypaTBrRvx9NNP680331QikdC4ceM0b948nXjiibJt8jIAAICdNSc+Ti+1bpRrTLdtlqSZ8bGyLcv/wgAAAACgHwQU2Gn19fW6++67JUlnnnnmTu9/7733drtt9uzZ+t3vfqcDDjhgqOUBAACMKlXBqD5aPlkr2hu1OfvhotkVwaimx6pUEYwVsDoAAAAA6B0BBXZKPp/XOeeco5aWFh1//PH61Kc+NeB9586dq0MOOUTHH3+8pk2bptbWVr322mv61re+pTfeeEMnnHCCXnvtNU2aNKnH/e+44w7dcccdkjqmllq8ePGueEhFLePmCl1Cn+o8t9AlFLWcVV/oEopaoPuFxNgJJsDf71DZ4jkcCuM5hS6hKJXKU16eJspSSFk1q0XNhS6qSNGPGRr6MUNDP2Zo6McMHf2YoaEfMzTZQhdQ5OjDDN2u7sesDDBrTF8sY3oYCw704sILL9Sdd96pKVOm6OWXX9b48eOHfMxsNqv58+frxRdf1CWXXKJbb721330OPfRQLV26dMj3XexWtNQWuoQ+zUg2F7qEolYXmFroEopaTc4rdAlFLVPTWugSil6paSt0CUUtnS4vdAlFbW2hCxgB6McMDf2YoaEfMzT0Y4aOfszQ0I8ZGvoxQ0MfZuh2dT9m0ljWg+vrXC7xDQbssssu05133qnx48dr0aJFuySckKRQKKQFCxZIkh5//PFdckwAAAAAAAAAwPBGQIEBueKKK3TzzTerpqZGixYt0owZM3bp8WfNmiVJ2rhx4y49LgAAAAAAAABgeCKgQL++8Y1v6Cc/+Ymqq6u1cOFCzZ49e5ffR0NDgyQpHmfIEwAAAAAAAACMBgQU6NPVV1+tH/7wh6qsrNTChQs1Z86c3XI/999/vyTpsMMO2y3HBwAAAAAAAAAMLwQU6NU111yjG2+8URUVFVq4cKEOOuigfvdZsGCBZs2a1bmmxDavv/66HnvsMbmu2+X2fD6vn/zkJ7r55pslSZdffvmuewAAAAAAAAAAgGErUOgCMDz96U9/0ve+9z1J0t57761bbrmlx3azZs3S1Vdf3flzXV2dVqxYobq6ui7t1qxZozPOOENVVVWaOXOmJk+erLa2Nr311luqra2Vbdu68cYbddJJJ+2+BwUAAAAAAAAAGDYIKNCjxsbGzu+XLl2qpUuX9thu/vz5XQKK3syZM0eXXXaZXn75Za1du1bLli2TZVmaPHmyzjvvPF1yySU65JBDdln9AAAAAAAAAIDhzTLGmEIXAeysQw89tNfQZDRZ0VJb6BL6NCPZXOgSilpdYGqhSyhqNTmv0CUUtUxNa6FLKHqlpq3QJRS1dLq80CUUtbWFLmAEoB8zNPRjhoZ+zNDQjxk6+jFDQz9maOjHDA19mKHb1f2YSWPju/R4xaivc7msQQEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQAEAAAAAAAAAAHxHQIEe5XI5LVq0SFdccYU+8pGPaMKECQqFQpo0aZLOOussLV68eNDH/r//+z8dffTRKi8vVzwe16GHHqqf//zn8jxv1z0AAAAAAAAAAMCwFih0ARiennnmGZ144omSpPHjx+uQQw5RSUmJli9frgcffFAPPvigrrnmGn3nO9/ZqeNecskluu222xSJRHT88ccrGAxq0aJFuvTSS7Vo0SL94Q9/kOM4u+MhAQAAAAAAAACGEUZQoEe2bevMM8/U3//+d9XV1emxxx7T73//e7311lv63e9+J8dx9N3vfldPP/30gI/54IMP6rbbbtP48eP15ptv6rHHHtPDDz+slStXat9999XDDz+sW2+9dTc+KgAAAAAAAADAcEFAgR4dd9xxeuCBB3T00Ud32/a5z31O5557riTpN7/5zYCPecMNN0iSbrzxRs2YMaPz9nHjxun222+XJP3gBz9gqicAAAAAAAAAGAUIKDAoBx10kCRpw4YNA2q/YcMGvfrqqwqFQjr77LO7bZ8/f74mTZqk+vp6vfjii7u0VgAAAAAAAADA8ENAgUFZuXKlJGnChAkDar9s2TJJ0n777adoNNpjm8MOO6xLWwAAAAAAAADAyEVAgZ1WX1+vu+++W5J05plnDmif1atXS5KmTZvWa5upU6d2aQsAAAAAAAAAGLkIKLBT8vm8zjnnHLW0tOj444/Xpz71qQHtl0gkJEklJSW9tonH45Kktra2oRcKAAAAAAAAABjWAoUuAMXl//v//j8tWrRIU6ZM2akFso0xkiTLsgZ933fccYfuuOMOSR1rWixevHjQxxopMm6u0CX0qc5zC11CUctZ9YUuoagFTKErKG4mwN/vUNniORwK4zmFLqGoZQtdwAhAP2Zo6McMDf2YoaEfM3T0Y4aGfszQ0I8ZGvowQ7er+zErA4wR6AsBBQbssssu05133qnx48dr0aJFGj9+/ID3LS0tlfThSIqebNu2re2OLrroIl100UWSpEMPPVTHHHPMgO9/pFrRUlvoEvo0I9lc6BKKWl1gaqFLKGo1Oa/QJRS1TE1roUsoeqWGEYFDkU6XF7qEora20AWMAPRjhoZ+zNDQjxka+jFDRz9maOjHDA39mKGhDzN0u7ofM2lsfJceb6QhvsGAXHHFFbr55ptVU1OjRYsWacaMGTu1//Tp0yVJa9f2/jazfv36Lm0BAAAAAAAAACMXAQX69Y1vfEM/+clPVF1drYULF2r27Nk7fYyDDjpIkvT2228rlUr12OaVV17p0hYAAAAAAAAAMHIRUKBPV199tX74wx+qsrJSCxcu1Jw5cwZ1nClTpujggw9WNpvVH/7wh27bn3nmGW3YsEHjx4/XkUceOdSyAQAAAAAAAADDHAEFenXNNdfoxhtvVEVFhRYuXDigkQ0LFizQrFmztGDBgh63SdJVV12lVatWdd6+efNmfeUrX5HUEYjYNv8tAQAAAAAAAGCkY5Fs9OhPf/qTvve970mS9t57b91yyy09tps1a5auvvrqzp/r6uq0YsUK1dXVdWt71lln6eKLL9btt9+uAw44QCeccIKCwaAWLVqk1tZWnX766br00kt3zwMCAAAAAAAAAAwrBBToUWNjY+f3S5cu1dKlS3tsN3/+/C4BRX9uu+02zZs3Tz//+c/1zDPPyHVdzZo1S+eff74uvvhiRk8AAAAAAAAAwChhGWNMoYsAdtahhx7aa2gymqxoqS10CX2akWwudAlFrS4wtdAlFLWanFfoEopapqa10CUUvVLTVugSilo6XV7oEora2kIXMALQjxka+jFDQz9maOjHDB39mKGhHzM09GOGhj7M0O3qfsyksfFderxi1Ne5XC5XBwAAAAAAAAAAviOgAAAAAAAAAAAAviOgAAAAAAAAAAAAviOgAAAAAAAAAAAAviOgAAAAAAAAAAAAviOgAAAAAAAAAAAAviOgAAAAAAAAAAAAviOgAAAAAAAAAAAAviOgAAAAAAAAAAAAviOgAAAAAAAAAAAAviOgAAAAAAAAAAAAviOgAAAAAAAAAAAAviOgAAAAAAAAAAAAviOgAAAAAAAAAAAAviOgAAAAAAAAAAAAviOgAAAAAAAAAAAAvgsUugDsGtlsVq+++qo2btwoSZo0aZIOOeQQhUKhAlcGAAAAAAAAAEB3BBRFLpfL6brrrtPPf/5ztbW1ddkWj8f11a9+Vddee62CwWCBKgQAAAAAAAAAoDsCiiLmuq4++clP6qmnnpIxRhMmTNCee+4pY4xWr16turo63XDDDXrllVf0+OOPy3GcQpcMAAAAAAAAAIAk1qAoanfccYcWLlyoGTNm6PHHH9fGjRv17LPP6rnnntPGjRv1l7/8RTNnztRTTz2l//3f/y10uQAAAAAAAAAAdCKgKGL33nuvSkpKtGjRIp188sndtp900kl66qmnFIvFdM899xSgQgAAAAAAAAAAekZAUcSWL1+uY489VpMmTeq1zaRJk3Tsscdq+fLlPlYGAAAAAAAAAEDfCCiKWC6XUywW67ddLBZTLpfzoSIAAAAAAAAAAAaGgKKITZs2Tc8++6yy2WyvbbLZrJ577jlNmzbNx8oAAAAAAAAAAOgbAUUR+/SnP626ujp96UtfUnNzc7ftLS0tOv/881VXV6fTTjvN/wIBAAAAAAAAAOhFoNAFYPC+8Y1v6Le//a3uv/9+/eUvf9GnPvUp7bHHHrIsS++//74effRRtbW1afLkyfrGN75R6HIBAAAAAAAAAOhEQFHEqqur9be//U2f//zntXTpUt13332yLEuSZIyRJB122GH6v//7P1VVVRWyVAAAAAAAAAAAuiCgKHJ77723Xn75ZT333HN65plntHHjRhljNHnyZM2fP1/z5s0rdIkAAAAAAAAAAHRDQDFCzJs3jzACAAAAAAAAAFA0CCgAAAAAAAB2o1xeak3b8oylaNBTPGIKXRIAAMMCAQUAAAAAAMBu4HnS+saAmpKOzHaZRDRkNLU6p1iYoAIAMLrZhS4AA+c4jgKBgN59993Onwf6FQiQRQEAAAAA4BdjpPc2B9WY6BpOSFIqa2nVppBSWaswxQEAMEwQUBQRY4w8z+vy80C/tt8PAAAAAADsXi0pW4l076ddXE+qb+FiQgDA6MY7YRHZMWQgdAAAAAAAYHhqTDj9tmlpt+V6ksPlowCAUYq3QAAAAAAAgF0sm+9/+iZjpJzLNE8AgNGLgKKI3XvvvXr++ef7bffiiy/q3nvv9aEiAAAAAAAgSQFnYAtgB2wWygYAjF4EFEXs3HPP1S9/+ct+2915550677zzfKgIAAAAAABIUmWJ22+bsqinQP8zQQEAMGIRUIwCxnA1BgAAAAAAfqos8RQJ9f553LKkceV5HysCAGD4IaAYBTZs2KB4PF7oMgAAAAAAGDVsS9p7bFYlYa/btoBjtEdNTvEIFxQCAEa3QKELwM7ZcS2JVatW9bq+RD6f1z//+U8tWrRIhx12mB/lAQAAAACADwQD0swJOSUzllrabRljKRryVFHiyWZtbAAACCiKzbnnnivL+rAXs2TJEi1ZsqTX9sYY2batK6+80o/yAAAAAADADkrCRiXh/tekAABgtCGgKDJf/OIXOwOKe+65R3vttZeOOuqoHtuGQiFNmjRJp512mubMmeNnmQAAAAAAAAAA9ImAosjcfffdnd/fc889mjdvnn71q18VriAAAAAAAAAAAAaBgKKIrV69msWvAQAAAAAAAABFiYCiiE2bNq3QJQAAAAAAAAAAMCgEFCNEMpnUqlWr1NraKmNMj20+9rGP+VwVAAAAAAAAAAA9I6AocqtWrdJll12mJ598Up7n9drOsizl83kfKwMAAAAAAAAAoHcEFEVsw4YN+uhHP6qtW7dq4sSJyufz2rx5s4488kitWrVKW7ZskWVZOvLIIxUMBgtdLgAAAAAAAAAAnexCF4DB+8EPfqCtW7fqmmuu0YYNG3TKKafIsiwtWbJEmzZt0hNPPKE99thDoVBITz75ZKHLBQAAAAAAAACgEwFFEXviiSc0ZcoUXXvttT1uP/HEE/XEE0/o+eef10033eRzdQAAAAAAAAAA9I6Aooht2LBBc+fOlW13/Bq3/ZvL5Trb7LXXXpo/f75++9vfFqRGAAAAAAAAAAB6QkBRxCKRiMLhcOfP8XhckrR58+Yu7aqqqrR69WpfawMAFKdcPqlkaoPaE7Vy8+lClwMAAAAAAEYwFskuYpMmTdK6des6f957770lSS+88ILOOussSZIxRsuWLVN5eXlBagQAFIe8m1JT25vKZLdKknImJUuWIrGxKq+aLdsJFrhCAAAAAAAw0hBQFLHDDz9cDzzwgNLptCKRiE4++WRJ0uWXX66SkhJNnjxZt99+u1auXKlTTz21wNUCAIYr18toS9MLcr1Ul9uNjFLtm5TPpzRm3GGybKdAFQIAAAAAgJGIKZ6K2KmnnqpUKqXHHntMkjRjxgxdcMEF2rhxoz75yU9q7ty5+p//+R8Fg0F973vfK3C1AIDhqq39/W7hxPZy2Va1J2t9rAjAYOQ8V++lmrS4aa2ea3hPLzWt0Zr2BuU8t9ClAQAAAECPGEFRxM4888wuC2JL0u2336599tlHDzzwgBobGzVr1iwtWLBABx54YIGqBAAMd+2pDf23SWxUSekUH6oBMBhpL68XWzYq4WYlSXlJedfTmvZG1aVbNad8kmJOqLBFAgAAAMAOCChGGMdxdMUVV+iKK64odCkAgCLgGVeeyfbbznVZMBsYzl5v29QZTuwo4+X1dmudDquc5nNVAAAAANA3pngqYp/5zGf0la98pdBlAACKmCVblvpfW8K2WSQbGK4S+ay25tr7bJN0s2rupw0AAAAA+I2Aooj9+c9/VkNDQ6HLAAAUMcuyFI1M6LddNDbeh2oADEZ/4cQ2Tbne15oBAAAAgEIgoChikyZN6rYGBQAAO6s0tlefoygcJ6xY6WQfKwKwM0yhCwAAAACAQSKgKGKf/OQn9eyzz6q9neH6AIDBCwbiGlNxmGw73G1bIBBT1dhD5DjdtwEYHqqCkQG1KwsMrB0AAAAA+IWAoohdd911Kisr01lnnaX169cXuhwAQBELh6o1ofo4VZUdpHh0ukrKpqlq7EGqmXiUgqF4ocsD0IfyQESVgYjSXl6rU016o22TVia2aGs2Ic94kqSoE1R1qKTAlQIAAABAV4FCF4DBu/LKK7Xffvvpscce04wZM3TwwQdr2rRpikaj3dpalqU777yzAFUCAIqFZdmKRSYqFpmoTGVrocsBMECu8ZQzrl5o2aiU1zH9Z1ZSfaZV8UBIM0vG6pCKKYUtEgAAAAB6QEBRxO6++25ZliVJymazevHFF/Xiiy/22JaAAgAAYGRa1lav19o2qSIQVsC11O7mtG1lCtcYJdyMMm5epfT8AQD9MEbK5y3lZCkYYJUjAMDux8eUInbXXXcVugQAAAAUUFs+oxXtjUp7eTmWrfJAROWBiNqMkf3BhSyJfEbvtzdoTJjp2gAAPfM8qanZUUubI9e1FDElCoc8VZXlVFmWK3R5AIARjICiiH3pS18qdAkAAAAooI2ZNjXn091u3xZOSB2jKDZn2tSezyoWCPlZHgCgCHietLEuqHSm6zKlmaytuq1hZbK2xo/JFKg6AMBIxyLZAAAAQJHKGU/uBwth92XbOhUAAOyoucXpFk5sr7E1qGTK8bEiAMBoQkABAAAAFKmoHVDQ7v+kUdB2FLYZPA0A6MoYqaW1//eRptagD9UAAEYjAgoAAACgSE2OlKk6EO2zTdB2NClSoYjDySUAQFeuK+Vdq9926SynjwAAuwfvMAAAAECRitgBzSkdp4pAuNc248Kl2rOk2seqAADFwuo/m9ipdgAA7CzGeQMAAABFbJ9YtRxZerZlnTZlk/JMx+1B29G0aJUOrZiq0kCksEUCAIYlx5EiYa/PNSgkKR7L+1QRAGC0IaAAMCwZz5MSbTJtrZLnSYGgrLJyWSUlhS4NAIBhZ+9YlfaIVqguk9CmbFKNlqPxkTKVBQkmAAB9qyh3Vb+594DCtqTK0pyPFQEARhMCCgDDjsnlZGo3SLnshzdm0jLJNplYiazxE2XZzFAHAMD2HMvW5EiZJkfKtLbQxQAAikZp3FM2l1djU/dTRLYlTRqXUihoClAZAGA0IKAAMOyYuo1dw4nttSdlGrbKqhnrb1EAAAAAMEJVV7oqiXlqaXWUydiKylNJNK/KspyCAcIJAMDuQ0AxQrz99tt64YUXtGXLFu2333769Kc/LUnyPE/5fF6hUKjAFQIDY9qTUjbTd6PWFpmqalmO409RAAAAADDCRcJGkZqOtSZKTXuBqwEAjBbMkVLk1q1bp+OOO04HHnigvvzlL+vb3/62/vjHP3Zuv+WWWxSNRrVo0aLCFQnsBJNMDqCRJ6XoMAMAAAAAAADFjICiiG3dulUf+9jHtHjxYh1wwAG6+OKLZUzXoZef/exnZVmWHnnkkQJVCewkM8DhwwNtBwAAAAAAAGBYIqAoYjfccIPWrVunq666SsuWLdOtt97arc2ECRO077776rnnnitAhcDOs8LhgTUcaDsAAAAAAAAAwxIBRRF79NFHtccee+j73/++LMvqtd2UKVNUW1vrY2XAEMRLJaufl6ZIVFaIgAIAAABAcUjnLG1udbS5xVEi3fvndwAARhsWyS5i69ev1yc/+ck+wwlJKisrU1NTk09VAUNjOY40dpzMpnpJPUzjZDuyxo7zvS4AAAAA2Fl5V1rXEFRLe9eLsCIho2nVOcXCTF0LABjdGEFRxKLRqJqbm/ttt3btWlVUVOz2eoBdxSotkzVxkhSNbX+rFC+TNXkqoycAAOjFjuuRAQAKxzPSqk2hbuGEJKWzllZtCimdYzQFAGB0YwRFEdt///316quvqqWlReXl5T222bhxo9544w3Nnz/f5+qAobFiJbJiJTL5vOS5khPoGF0BAAC6SOSzej/drNpMm/LGU9QOKBgp16RIuQI2750AUChNSVupbO8BhOtJ9S2Opo/J+1gVAADDCyMoitjnP/95NTc368tf/rKy2Wy37Z7n6d///d+VyWR0zjnnFKBCYOisQEBWKEw4AQBADxpy7Xq2ZZ3WpVuUN54kKeXltbq9QctaNijnuQWuEABGr8ZE/59hmpOOPM+HYgAAGKYYQVHELrzwQt133326//779corr+jUU0+VJP3jH//QVVddpT/+8Y9auXKljjnmGH3+858vcLUAgOHM9bJqT2+U66Zk20E5FaUKBGP97wigYFzj6dXWerm9TOuUdLN6N7FZ+5VN8LkyAIAk5dz+p28yRsp7UojLRwGgYIwxUjIvk+oY0WaXpuSVRKR+1v3FrkFAUcQCgYAef/xx/du//Zvuv/9+3XrrrZKkpUuXaunSpZKk008/Xffcc0+/C2kDAEav1uQqtSZXSvrw8r1cbUrRkgmqqJ4ty2IEEzAc1WYSypq+R0hszSaUcfMKO3T7AcBvAcco088aE5YlOYQTAFAwJp2XV9su5T78PBxsaZAJOspNGiMTCRawutGBTypFrrS0VL/73e907bXX6i9/+Yvef/99ua6rKVOm6JRTTtFBBx1U6BIBAMNYW/tqtSZX9LgtlayTJFWOOcDPkgAMUGM+1W8bI6k1n1aNE9/9BQEAuqgqcZVM950+lMdcAgoAKBCT8+RtSEpu9xHJVs5VcP0WZaePlYKcQt+deHZHiH333Vf77rtvocsAABQRYzy1JVf12SaVrFNp+Z4KBEt8qgoAAGBkqCrxtKXNKN3LQtm2LY0vZ60gACgU05TpMZzYxnI9BZqSyo8t97Gq0YecHgCAUSqd3SrPZPttt20kBYDhZcwA1omxJJUHI7u/GABAN7Yt7T02q3ik+yrYoYDRXmOzioZ6PzEGANi9TGv/n4ft1nYfKhndCCiK2F/+8hcdd9xxevrpp3tt87e//U3HHXecFi5c6GNlAIBi4Hn9d8Y62uV2cyUABmNCKK6w3fcaMTXhUoVsBk0DQKEEA9KM8TntMyGrCZV5jS3Pq7LEVSzsaWuboy2tjtzu+QUAwA99jJ7YxnIZ6ba7EVAUsbvuuktLly7V4Ycf3mubww8/XK+88oruvvtu/woDABQFxxnYVdUDbQfAX7Zl6dDSiQpYPXfp44GwZpbU+FwVAKAnsbBRPOypMeGoKemoOdnx74bGgP6xIayWdk7PAIDvgj1Pwbc9E+Bin92Nd8Ai9uqrr2rOnDkqKel9XvB4PK65c+fqpZde8rEyAEAxCAer5Th9TxFjWbaiJRN8qgjAzqoMRjS/Yqr2jFYoYgfkWJZKnZD2LqnRPiVj1e7mlPO46gvA8JPzjJrzRq15I2NG/jRH2bz0/uaQ8m73k2GeJ63eElR7pv8TZQCAXccqC/fbxq3of1pVDA0RUBGrq6vTEUcc0W+7KVOmaNmyZT5UBAAoJpZlqbxklhpbX+u1TUnpVDkBRlAAw1nUCWp2SY1mfzBaYkO6VS+mmrTK3SKpYx2KMaG49iypVtQJFbBSAJCyntE77Ua1GdM5s0bMkaZHLO0RHbnXUG5pC/Q5lZMx0uZWR9Nr8v4VBQCjnFUR6liHItfzC7QJBuRWxH2uavQZue/+o0A4HFZLS0u/7VpaWuQ4fc9PDAAYnWKRCaoqO1iOHe1yu20HVFqxt8oqZxaoMgCDsaq9Ua8nNinpfrjGjJG0JZvQspYNSrkDW3sGAHaHrGf0fIun9WnTZdrvdldanjT6R2LkLsbQnOz/9EtzO5/bAcBPVsCWPSUuq6T7NfxeSVjZaTWSw+nz3Y0RFEVs33331XPPPaeWlhaVl5f32Ka1tVXPPfecZs7kBBMAoGexyARFw+OVyW5R3k3JtkOyJ0Vk9bP4LoDhJeXm9E57Q6/bs56rVcmtOqBsoo9VAcCHVrYbJfuYdW5t2mhi2KhqAHOCFxvXG8A850byjGSPvIcPAMOWFbRlTY7LZFwp1TGKLVs2TiYULHBlowcRUBH7zGc+o7a2Np1//vnKZDLdtmezWZ1//vlKJBI688wzC1AhAKBYWJalSHis4rFpikUmEE4ARWhtuv+RtY3ZpDIu04cA8J9rjDZm+l9rYl16ZK5HEQ72PzokGDCEEwBQIFbYkVURllURJpzwGSMoithXvvIV/fKXv9Qf//hHzZ49W1/4whc0a9YsSdKKFSv0m9/8RmvWrNHee++tr371qwWuFgAAALtT2wCmbzKSkm5GYYePAQD8lfak3ACyh0QfIyyKWXXcVXum72tEx8RH6IMHAKAPfDIpYrFYTE8++aROP/10vf7667r++uu7bDfGaO7cuXrooYdUUlJSoCoBAADgB8ca2ODogbYDgF1poK88zggdQVAd99SU9JRI9/xMREJGNWUEFACA0YeAoshNnTpVr776qv70pz/pr3/9q9auXStJmjZtmk466SSddtppsqwR2sMDAABAp/GhEtVm2vpsE7IdlQYiPlUEAB+KOpbKA5Za8n0PoxgX8qkgn1mWtNfYnDY2BdSYdOR5H95eEXM1uSrPOqwAgFGJgGIEsCxLp512mk477bRClwIAAIACGR+KK+YE1e7mem0zOVIpm4tXABTInlFLy9p6DyhCtjQ5PHJfo2xbmlKd18TKvJIfTPcUDXkKsvQXAGAUI58HAAAARgDbsnRE2UTFnJ4X9ZsYKdfUWKXPVQHAhyaGLc2K9RxAhGzpsDJboVGwSrRjS2VRT2VRwgkAABhBMUK4rquGhgal0+le20ydOtXHigAAAOC3EiekA0pqlEg1qznXrpgTUnkwqgmRMqZ2AjAs7BWzNS5ktC5j1JqXbEsaG5QmRywFGOEFAMCoQ0BR5F566SX953/+p5599lllMple21mWpXw+72NlAAAA8FNzLq03EpvU5mbV9MFt7W5WJYGwos4IndQdQFGKByzNDhBGAAAAAoqitmTJEp1wwgmdwURlZaXKysoKXBUAAAD81pbP6IXWjXKN1+V2I2lzpk1ZL685ZZNkcXUyAAAAgGGEgKKIXXvttcpkMvq3f/s3fe9731NNTU2hSwIAAEABvNveKNd4Sro5NeTaVedmZWQUtgKqCEZljFFDNqkx4XihSwUKxjNGdZmMNqYzSriuHMtSTSikKZGwSgN8NAYAACgEemFF7OWXX9a+++6rX/ziF4UuBQAAAAWS9VzVZxNqzKW0IdMmSdo2jiJt8qrPtCnhZjUmXUJAgVHLM0avtybUmMt1ua02nVF9JqP943GNDTMVGgAAgN/sQheAwTPG6MADD9xtx1+xYoV+9rOf6ZxzztGsWbNk27Ysy9IDDzwwqOOde+65siyr169Zs2bt4kcAAAAw8mU9Vykv3xlO9CSRz6g20+JjVcDw8n57qks4sT3PSP9IJJT1vB63AwAAYPdhBEURO+CAA1RfX7/bjn/77bfrZz/72S4/7lFHHaW999672+0TJkzY5fcFAAAw0oVsRw25VL/tWnJpH6oBhh/PGNV+sG5f722kjemM9ohFfaoKAAAAEgFFUbvsssv0hS98Qa+//rrmzp27y4+///776z/+4z906KGH6pBDDtEFF1ygZ555ZsjHvfDCC3XuuecOvUAAAAAoZDtyrP4HRkfsoNJuThEn6ENVwPCRcF1lPdNvu6ZcXnv4UA8AAAA+REBRxD73uc9p+fLlOvHEE/Wd73xHp556qqZOnbrLjn/hhRfusmMBAABg95kYjmtLNqneTsGGbEfxQNjXmgAAAACgPwQURcxxnM7vL730Ul166aW9trUsS/l83o+yAAAA4LOp4XI159LakGlV3nSNKSJOUBPDZYo5QYVtuv8YfeKOo6BtKdfPKIrKIH8fAAAAfqMHVsSM6X+Y8mDa7m5PP/203nzzTSUSCY0bN07z5s3TiSeeKNtmzXYAAIDBmB4p15p0s/Z1xqg5n9EmLy/LkuJOuHNKp4mRClmWVeBKAf/ZlqWJ4bDWpnpfh8W2pIkRRhlh90hlLTUmHeVcKehIVSWuoqHh8xkdAIBCIqAoYp7nFbqEQbn33nu73TZ79mz97ne/0wEHHFCAigAAAIpbPBDSAfGxeiuxWZXBiHbsJY4JlWhytKIQpQHDwp6xqFrzeTXluo8qty1pv3hcYS6Ywi5mjLSuIaDGhNPl9s0tjirjrqZVd4TJAACMZvTA4Ju5c+fq5ptv1ttvv61EIqHa2lo99thjmjNnjpYvX64TTjhBGzduLHSZAAAARWlapFwfLZ+sCaG4bMuSJak0ENY+8bHar3SCbM6CYRRzLEsHlZVqVjym0oAj25IClqUJ4ZAOLS/TuHCo0CViBNrQ2D2c2GZzi6P3NgXlFud1hwAA7DKMoIBvvva1r3X5uaSkRKeeeqpOPPFEzZ8/Xy+++KJuuOEG3XrrrT3uf8cdd+iOO+6QJG3YsEGLFy/ezRUPfxk3V+gS+lTnuYUuoajlrPpCl1DUAoyaHxIT4O93qGzxHA6F8Xo+oYOBmdr5XVYZtWltAWspVvRjhmY492NKP/jaZkOhCukD/ZihGQ79GNfYqsvUdLs96wWV9sJyTcf1om8G2xR32lUWSMixhk9aQT9maOjHDE220AUUOfowQ7er+zErA4wR6AsBBQouFAppwYIFOu200/T444/32u6iiy7SRRddJEk69NBDdcwxx/hU4fC1oqW20CX0aUayudAlFLW6wNT+G6FXNbnh8wGvGGVqWgtdQtErNW2FLqGopdPlhS6hqBFIDB39mKGhHzM09GOGZjj0Y7a0OQo3dD3l0tJuqyVlK7LdbZUlpSqNeAoFjGaOz2q4rNVOP2Zo6McMDf2YoaEPM3S7uh8zaWx8lx5vpCG+KXLZbFY//OEPdcQRR6iyslKO4/T4FQgMk15OL2bNmiVJTPEEAAAAACh6O07dlHOlllT3UzDeB6NlsnlLtc3D+3M7AAC7A+9+RSydTuvYY4/Vyy+/LGP6HgPc3/ZCa2hokCTF4ySKAAAAAIDiFt5hnq5EuufrQwP2h+2ako4mVeYVYHYgAMAowgiKIvaTn/xEL730kk4++WS9++67+uIXvyjLspTJZPT2229rwYIFikQi+ta3viXPG95DhO+//35J0mGHHVbgSgAAnpdTJtWgTKpBnssMsACAwki7rhqyWTXmcvKG+QVXwI7KY54Czof/b3Ou1a2NY0ux8IdtjJEy+e7t+pN3pUS7rUTKZtFtAEDRYQRFEXvggQdUVlam3/72tyorK5NldXRkgsGg9t13X11//fU6+uijdeqpp2q//fbT//t//2+317RgwQI9/PDDOuOMM3TDDTd03v76669rw4YNOuWUU+Q4H14Oks/ndfPNN+vmm2+WJF1++eW7vUYAQM8846ol8U+1pzcom05IkizLVjQ2XmWV+8h2ggWuEAAwGqRcV++2J7U1m9W2U7chy9KkSFR7RqOdn3uA4cy2pImVea3b2tF/6um/bXnM1Y432zvx3zvvSpsaA2pJfPgZ27akilJXY6vyO3UsAAAKhYCiiK1cuVIf/ehHVVZWJkmdHXXXdTtDgJNPPlmHHXaYbr311p0OKF577TV95Stf6fx5+fLlkqRvfvOb+tGPftR5+4svvtj5fV1dnVasWKG6uroux1qzZo3OOOMMVVVVaebMmZo8ebLa2tr01ltvqba2VrZt68Ybb9RJJ520UzUCAHYNYzxtbX5Z2Vxjt9vbk7XKZdtUPf5Q2TYhBQBg90m7rl5tbVF6hxHgWWO0OtWulOtq/9LSAlUH7JzquCfbyqm2OaBo0FMq2/E5PeBIFTFXsVDXkUGhoFEkOLDRQq4nrakLKZvrmkJ4RmpsdZTJWpo6PtdjMAIAwHBCQFHEPM9TdXV158/RaFSS1Nzc3OX2vfbaS3/+8593+vitra166aWXut2+cuXKnT7WnDlzdNlll+nll1/W2rVrtWzZMlmWpcmTJ+u8887TJZdcokMOOWSnjwsA2DXa0xu7hRPby+XalGxbr9LyPX2sCgAw2ryfau8WTmyvPpvRxFxEVUECcxSHyhJPlSVZtbZb+mdtWEbd16fYZmypO+BAoaHF6RZObC+ZttWatFUeZ84nAMDwRkBRxCZOnKja2trOnydPnixJevPNN3Xsscd23r5mzZpBDYM+5phjdnpx7bvvvlt33313t9v32GMP/fSnP93pGgAA/kim1vXbpj2xkYACALDb5I3Rpkz/ax9tTKcJKFB0ymJGB0zN6P1NwR7Xo6gpc1VT5g74eM1t/a+k3djqEFAAAIY9FskuYvvvv79WrFjR+fPHPvYxGWN03XXXqa2tTZL029/+Vi+88IJmz55dqDIBAEUg5yb7bePmUzJm4B+cARRGys2pPt2q+nSr2vMsdI/ikfFcuer/AqmUy3sRilMsZLTvpKwmV+UVj3iKhT1Vl7qaOaHjtoFyPSnfQ8ixo9wgFtwGAMBvjKAoYqeccooeeeQRLV68WMccc4yOOuooHXnkkXr22WdVXV2t0tJSNTc3y7IsXXnllYUuFwAwjNlWQK7J9dnGsmxZVv9X6wEojKzn6s3EZtVnE2rY7vbKYFT7xMcpwkL3GOacbssF99KOSfVRxBx750dL7Gigi1/bXJIKACgCvF0Vsc9//vN69tlnNWPGjM7bHn74YZ166qnyPE9NTU2qqKjQD3/4Q51xxhkFrBQAMNxFw+P7bROJjfOhEgCD4RpPL7ZuVH020W1bUy6lZS0blPUGfnUuUAgRx1F5oP9r6MaFQz5UAwxfliWVxvqfuqksxmgjAMDwxwiKIhaPx3XUUUd1uW3s2LF69NFH1d7erpaWFo0bN042l00AAPoRj01XMr1exvR8AtOybMXLpvlcFYCBWpduVWs+I0nKeHltzqXUls/IyChkOSoPRrW+vUl7xWsKXCnQt+nRmN5oa+11e8S2NT4c8bEif23O5LQhnZMyeVmSxgYD2iMSVHmAEYzoqro8r7b23sM625YqhzBKAwAAv3DmeoSKxWKaMGEC4QQAYEACTkxjyg+TbXX/oGtZjirHHKhgqKwAlQEYiPWZjhO6bfmsVrY3qjmXkms8ecYo7eW1KdOml5vXyjUslorhrSYU0qySkh4/qEZtWweVlSkwQqd4Wt6W0lttaTXlXOWMlDXShmxez7WmtD7T9zSMGH1iEaPJY3Pq6c/BsY2mjssqyCWpAIAiwNsVAACQJIVDVRpT+RE1t76lrGmX44QVL5+uWHySbJu564HhLO3m5RpP6zIt6i2CaMtn9F5yi2bGma4Nw9vkSFQ1obBq02kl3LwsWRoTCmlsKCR7hIYTG1JZ1WV6HsVoJL2ZzKgy4CjucAFaMWvPWGpL2zJGioWNyqJDC43LSjyVRDJqTjhKZWxJRiVRT+UlHutPAACKBgHFCLBkyRI9/fTTqq2tVTqd7rGNZVm68847fa4MAFAsPOOqqfUNpTL1koysiCXPyyrZukZOIKoo608Aw1rQtlWbScs1ptc2liVtziS0V0mNHIszVxjewratPWKxQpfhmw3pvkdIGElr0jntXxL2pyDsUtm8tGZrUMl019fecNBo+picYuHeX7v74zhSdbkriemcAADFiYCiiCUSCZ199tl68sknJUmmzw+kBBQAgN41tCxVJru12+2um1Xzljdljz1Y4Wh1ASoDMBCTwqV6O7ml82fPGFnq6ANuUxaIKG88teXTqggW9sSvMUaeDEEJICnreUq6/V9J35DnBHQxcj1p1aaQMjlLRpKMOqdlyuQsrdoU0swJWUWCgw8pAAAoZgQURezqq6/WE088oaqqKp1zzjmaMWOG4vF4ocsCABSZdHZrj+HENkZGbc2rCCiAYWxapFy2LLXk02p3c0p1nAZTxA4qFggpZAdUWeBQQpLa8zmtT7VqU6ZdnjEK2LYmhEs0OVamsM0iwBidBnpauq8L0jB8NSQctaVstaUttWc7pndybCke8RSPeJInbW51NLW65ym+AAAY6QgoitiDDz6oyspKvf7665o8eXKhywEAFKn29MZ+22SzLcrnkgoES3yoCMDO8oxR1Aoo7eXlbne6M+3llMu5mhUfp5AdkG1ZijuFmSKmJZfRmy2bu0xDlfc8rU+1aXOmXXMrxirqsN4NRp+wbStqW0p5fQcQVUFCvGK0oTGgTa2Ots+XXE9qabfVnrE1tjyvpqSjKVX5Hhe8BgBgpCOgKGKtra36+Mc/TjgBoG/Gk9rrpVRDx8+RKqlkgsS0GviA62UG1s7NEFAAw9Qbic2qDEU1PhdXysup2euIKUK2o7AVUFOuXZXBmMZHyhUowEgFzxgtb93a6xoZGc/VirZGza1gvRuMTpMiIa1q7/v9eFqYAM9vridtbbeVzNqyLKki4qki4g04SHA9qb450BlO5F1L2Q9m6nKsjlExTUlHY+KuXE8KkEEBAEYhAooittdeeymfZxgogD5kmmVtflXKpz68rW2t1PhPmbEHd4QVGPUce2BXUzsFuuoaQN8SblZbc+0KWLamRsq1Lt0i1+56ItP9YM2HPWOFmaqtIZtSxut7/vzmXEaJfFbxQMinqoDhY0o0qJa8qy3Znj/fzY6GVM7Za181pmytbAhq++VB6tocRYNGs8bkFB3AmhGNSUeWZWSMpUTaVs7rmmy0Z6Wc66m6xJXDtUMAgFGKt8Aidt5552nx4sWqr68vdCkAhqN8Slb9y13DiW3ctKxNL0u5hP91YdgpiUzpt00oXM7oCWCYas6lO78vD4S1d7RSpYGwtp0GC1i2xoRKNDlSUZDRE5LUmhvYSK22fHY3VwIMT7Zl6YDSiGaVhBX/4Ey1JWls0NFHSiPaM0pw56e2jKUVW7uGE9ukcpaWbw4q3/+65kpmLMVCRm3bhRPGdHzJdKw/ksjY8rZbOHswcvmOBbe9AdQEAMBwwwiKIva1r31Nzz//vI477jjdcsstOvbYY2XbZE4APtC6RvL6ONHj5aWW1dKYA3wrCcNTOFSlSGis0tnNPW63LFul5Xv7XBWAgbJ2OKsVdYKa4JRL6pg+ZNt2u5BT+zGvOtAvy7I0KRrSpGhI1VlXNgsSFMzG1oD6WpM841raknQ0obTvkWGWJNs2MkZyXSnnWtp+qZGAYxRyjPpZfqRXrUlbW5sDSmc/eJ23pfK4q5qKPNNFAQCKBgFFEbMsS7/4xS90zDHH6OMf/7iCwaDGjx/fY0hhWZbee++9AlQJoFCsZO2A2hgCCkiqKj9YzW3/+GDB7A8/JTtOROVVsxSOFmZaGAD9qwpEZWn7v9wPbR9eVIaivtW0o8pgROvV1mcbS1JFMOJPQcAwRzhROK4nNaX6D3S3JO1+A4rSiKd01lYwYJTM2t2CCNezZAWMPEnpnKXIAKaN2mZrs6PNTV1P6Xie1NTqKJmyNX1ClpACAFAUCCiK2Jo1a/Sxj31MGzdulDFG2WxW69at67HtjlfWARgF3AFMk+Hldn8dBeBlmtTeuk6em5ZlhxWKTVIwzAn2vtiWo6qyOSormal0ZpMyFS0KBEsUjo6RxYLqwLAWdQIaG4ppeXKrWvNZJdys2mQUtYMqCYRVHoioNBhRdQGnaasKRVUSCCqZ7/19pzocVdTh4wmAwsp7PQe+3dv1/xm7osSTMUbpnK1I0MjzJPeDg9uW5NhSOGjU1u4o70oa4Dro2ZzVJZzI5iy1Zyx5riXbMYqGjDY3BjSxhjUrAQDDH58Aith//Md/aMOGDZo/f76+9rWvae+991Y8Hi90WQCGi2BMyvZ9taoChbuadncwxlOucZm8VJ0y7ocfLbOp9QqEqhWvOkSWPcBPfqNUwIkqHpuuYHlroUsBMECNuZQ2Z9tVl01oY7pNrow6ImpL5YGIWgJhfSy2d8EvWNmvdIzeaNnc42LZJYGg9olXFaAqAOgq6EiO9WGQ0JtwoP8Yw7akspinumbJU8cUTNtf9hF0jGIho1TOkmUNfPREY1vH0AjPSM1tTucUT5KknKX2tJRM26qpzCvIWR8AwDDHW1URe/rpp7XHHnvoiSeeUCjEomkAujLxKbIal/fdpnSqT9X4I9/8trxUXc/bsg1KNr+heNWhPldVXDwvp1y+Vdl0QsFQmawCLaiLXc8znpK5NhkZRQMxBW36DiNBys3p5dZaZU3HSf/SQFjtbk5548myLLnGU004rg3pZlWFYqoKFW4URSwQ1KGV41WbTmhTOqmc8RS2HU2IxDU+UiKH0VoAhgHbksaUuNqU6LsPNK6k7+mdtimNGJXFXGVyljJ5W64nGRkFbaOA0zEtU0nEyDO9TdbXXSbTsZZFQ4ujVNqW45hui2yns5bW1Ye01+QBjKoGAKCACCiKWC6X02GHHUY4AaBnpVOlxAYp28uV8MESqXSavzXtRsbNyk1u6LNNLr1Jbi4hJ8hosx15Xk4tiXfUnt4oI1e5fEq2HVQsPkmlFXvJsggqipUxRhuTa7UpuVG5D6Z1syxL1ZEaTS3dSyEnXOAKMRRr0i3KG0+NubQ8I8WdkOJOSMnt2rTlMyoNRLQ+1VTQgEKSgrajabFyTYuVF7QOAOjL5LK8mlK2sm7PI8/Kwp6qYt6AjhULG5WEPaWyjlxPSmUtZd2OQNa2OkZRjFe+Y4qnAfCM1JxwtKXZUcsHIYplScGAp0ioa1CRSFnK5iyFdmJtCwAA/MZlSkVszpw52rRpU6HLADBc2QGZ8R+RSiaoY+nRbSwpNk5m/JGSM3ICTje9SVL/n+yy6Z5HWIxmnpfXluYXlUyvk9nuOfS8nBKta9S4+XUZM7AP4Rh+3mv5pza0rekMJ6SO0GJrarOWNyxTbiDr1WDYqssmJEkt+UyvbRL5jIwxasqllO9heiUAQFfhgLT/2JzKw137P7YljYu72rcmJ3uAs+aVhF3lXUsyUiJtKZvv+F5GMh/kBm0pR2+tDyvbz5IRxkjr6oPK5jrWndj+9mzOVjLldB7TsaWAI7UmOe0DABjeGEFRxP7jP/5DZ5xxhl544QUdeeSRhS4HwHDkhGTGHiLlU1K6seO2cGXH+hQjjTfARQANJ+d2lEitUS7f+5oTmXSDUsl6xeITfawKu0JzplFbU5t73Z5209qYXKvpZTN8rAq7Uv6D8NDIyDWekm5WCTen1g9eEyN2QLFAWHnjKmgF5BrDBwBgF2nNu9qYzqgt78qWpepQQJMiIYVsTgiPBJGg0X7jcmrPWUpmLVmWVB72FNzJQaU515InS3nTcQxtN5OTbRkZIzm2UVPS0dqtAc0Y33uftjlhqz1tKxrpOEAmK6VzttwPRno4jqe866i0xFNZiSvL6hhxAQDAcMbnkyI2Z84cXXHFFTrxxBN1+eWX66STTtLkyZNl99Ihnjp1ZM01D2AnBKJSfFKhq9itrAFO22QHCju9yXCUTK3rt017YgMBRRHa0t7/iKGtqXpNLd1LNvP/F6W4E1Kjl5JnjDZlk0q4OWVNXttOb6W9nNJeXutSTZoWq1KQdWWAXeK99rTWtKe73NaSz2ttKqMDy0pUxcrEI0YsaBQb5BRJxkhNCUdVJa7WbQ10jKTYjutZMh/8K0kbGoPac2xeTi9vyc0fLI6dy0uJpKVE2tH2g1w9z1ZjmyQZVZV23BZmeicAwDBHr6mI7bHHHpI6pmn4/ve/r+9///u9trUsS/n8AK8uBoAi5ERqlHdKZNxkr20sK6hQhJPs2/OMK9dL9dsun2/3oRr0JJ1Pqj2XkC1b8XCFAnZwwPum8r3/PWyT91xl3YwigehQykSBTIuUa1M2oYSbU8rLK2u69/eMjBL5rNryGXkysjXAeUkA9Kg+k+0WTmzjGqM3W5M6srJUYUZS9CnpGjXnO+adrg5KoYHOmVREXK9jBEUq+8EIB9vINZaM6Vg3ImAb2ZaUzFoqj0m5vKVM3lIs1HOokMl2/J9aXx9Ue8aW28PAYNuTUhlbW1scRUKeSkuYphMAMLwRUBSxKVOmyLJGXicOAAYrULm/cltfkdTzB7FY+X6yuHq4C0u2usw10Fs7Fsn2XTqf1PqWlWrLNHfeZlu2qmPjNals7wGNeLAH+Htz+P0WrQmhuIyRQpYtz3T/O7ZlKWQ5ynp5lQUi2pRu1aRohf+FAiPIulTva75IHSHFxnRWe8YiPlVUXJKu0T8SRltzH75m2ZY0KWxpvxJLzgj6jGt/MKVTMtPxnu2ZjvUnLEkyUt615NhGAUdK5y2VhI2cPh6+bRvVNzja1NR9NMY2npGSaVuhhFFwghnwWhkAABQKAUURW7NmTaFLAIBhxYnUyKo5QrmWd6RU44e3B8oUKZ2hUHR8AasbnizLUjQ8XqlM31MBRWJjfaoIkpTJp/Tu1teV325ha0nyjKctyVpl8intVXVgvxcqVEVqlMi19dmmNFSuoBMacs0oDNuyVB2MqjwYViwTkOVJGeNKMgpajiJ2UFEnqHggLGOMGnPtBBTAEGQ8T235/tezasjmCCh6kHKNXmjxlNnhWhLPSOvTRklXOqKs47VtJLBtqSTkKZe35HkfLoq9PdezZNtGubytypJcn1MyWbbRurpQr+HENsZ0LI7dkmAUDwBg+COgKGI333yzYrGYLrzwwkKXAgDDhh2uVnjsUSprb5XnpWXbITnBsiEd080nlU6uUTazWca4CgTLFI5NVTgyMgKPeGwPpTL16m0UhW0HVBKf4m9Ro9zqpn+ovm2NWrNNyuTbZVu2osFSlYWrFA9VqDXTpNZMg8ojY/o8Tk1svOqS65XbIejY3sQS1qgaCWqCJdoSSGpTPqVsPi9jPHm2rYDlKB4Iy7FsGXWEXP3JeHnVptq0OZOQazxFnKAmREo1LhwfMScN+5Jy89qYatfa1ia5kkptR9PDYU0Ihhi9jAEvOMzCxD17L2W6hRPba8wZ1WctTQz7V9PuVl2aVzoXUcA2SmWtjlEUkmRJjmVk2x09MGOM9qjp/f3aGKmlzVE6O7DXIc9Yqm0Iypi0eOkCAAxnxOlF7Otf/7oeeeSRQpcBAMOSE4wrGB4z5HAim96s5i1/V6p9jVy3XZ6XUTazRW1Nr6qtaZlMT5fCFZlwsFJVZQepp26BbQdUWTNXgWDM/8JGqY2t7+mdLa9pU3K9WjONyrhppfLtakxt0pbketUn1iiTT2nrABbADtohzao6UKEeRkhYkvYom6HKSPVueBTwU1kgrEQ+qzXZFrW6aXmWZNm2XHlqyie1MdUs17gKWLbigb7P+rXlM1ratFFrU01KeTlljavWfForElv0Rkud8gMIOIpZYzatpU1btSGVVLvnKeN52prPaWkyoVfbEyPiNR9DE7YtBQcwxV48wNR5O/KM0cZM/39D69Mj6++sNNLxeNJ5u2tQYDpGT3heRw9sXHle1aW9v8Ym07aaWp0PA45+eEZqT9nqZ0YyAAAKjhEURaympkalpaWFLgMARizPTaut+TWZXta0yKRrFUiWKRrfy+fKJGM8ZTKblXeTsqyAIuFxcpzBTyURi0xQOFStZGqdsrkmObGUwuEqReMTZO/EoswYmtZ0gza0vKf2fJtyXlZSx+/a9fKSjFq9nBwrqK3tG1UWqRrQMUuCpZpTc4QaUpvUnGmUMZ5iwVKNi01UyBlBl6iOYlWBqFa0b1XO85T2OhbJ9iRZsmRZloyVU0suIyNpYqS81+N4xugfrZuUMz1PX9OST+u9RIP2Ka3ZDY+i8LKeq7dbm+X2EkLUZrMqc9KaGWFB+dHMtixNjAS1tp+zvpMiTJ23o6yR8gPIHtpH2PCT5nZbOddSwOlYD8L1JNdIMlbHKApbCgWMxpf3PXVYLi8l2u3+lg3rwsgolbYVixQmXG5POcpkbFmSYrG8Qr0s/g0AGN0IKIrYvHnz9MorrxS6DAAYsdLt62V6OVH3YZu1ipTs6eu0H6l0nVrb3pbnfXhypLXtbcWiU1VWOlvWAK7s7Iljh1RWsrckKVPTuktqxc7ZnNwoqWMNChmjrJvutg5FQ6pOldFxSuUSAz6uYzkaG5uosbGJu7ReDA8r2reqPptUu5dTxnPlGSOjjjVmHMtSQLba8mnFnZCifaw3sjWbVOaDgKM3mzIJ7VlSpaA98q4Or0+neg0ntlmTSWvvcGRUTHWF3k2PRtSYy/e6FsWUaFgVQT5q7yhgSZbV8zoM2wuOsL+vxjZHRpJjSZYtOfa2J2C7RcJt02/uYFsfBBuWBhxS5PNWQUKBdNrWps0RZbPb90nDKilxNW5sWo5DUAEA+BBTPBWxa6+9Vhs2bNC1117LcHNgEPi7QX9y2a39tnHdlFw36UM1HdKZzWpuWdYlnOhg1J5aq+bWN3yrBbteW7ZJrskrYAeVcVPdwglJyrs5JbMtyrnpAlSI4WZjpk2Lm9cpL08By5GtjmDCyMgYI9fzFLAdObalDekmeX289zVlU/3enyejltzI/L/XmO1/HpS05ynh9b9AMnad4dhfC9iWDi6La2o0rMB2J9NLHEez4jHNLBmeo2wK/VwGLEtjg/2HDyNp/QlJak3bCthG4aBRwDHa/hmwrI7RE45lye7n7EwwYBSwTb8Bz/aMpNKYv7/3bNbWxtrYDuFEh2TS0cbaqLyRPVsgAGAncVlHEXvttdf0r//6r/re976nBx54QKeddpqmTZumaLTnDvEXv/hFnysEhh+Tz8k0b5XamiQ3L+MEpNIKWeVjZAUZio8dDPQToI9zsrcl3lFfl82l07XKxfZScIhrb6BQOk4qB53QB9M69cy2nI5RFhjVjDF6J7lVzbm0sp6ntJtT3hi58j54lTCyZSnrufI8o2Q+qy3ZhMaFe54idKCnsIbf6WJ/DcPz5SOOa4w2pFNankioNpNRxvVUGnQ0LRLTPiUlGhcu/BnsgG1pRklUe8UiSnueLFmKOsPv+j9jjNZnXK3N5NXqerIk1QQd7REJaEzQ/5FQe0UtbcmZXhcRj9jS5PDIGkFhjKVoyCiftuRYkmt9uIh68INRJY5tFO9npINtSTu72nUk5H8S0NgU6jOAyGRsJRIBlZX1PWIPADB6EFAUsXPPPbfjCjlj9M9//lPvvPNOn+0JKDDamWxGZuN7krtdZ9jNS81bZdqapUl7ygoNfg5/jDyBUKVyuaY+29h2SE6gxJd6crkW5fNt/bZrT69XeXA/HyrCrhYLlinv5uUZT+FAVNl8WjtO+hBwQioNV0qWrfZcQrFgvEDVotAa8iltzLSp3csp5+WVMR9GE9t4Msp4ObXmLaW8vOpSLb0GFGWBsOozfb/GWLJU2s9C28WqLBBUcy7bZ5ugZanEGXnTWw0nec/Ta22tWplMqin34Siyllxeb+Va1ZDLanY8rn1Khsdrn21Zig3T/xPGGL2ayGpT7sNRP0bS5pyrzTlXs2NB7RHxd52pyqClg0ttvdHmKbfD+fgSRzq01FbIHlkBRUXM1aZWR7aM2vMdIda2KMv1OgKMipineD/rRORdKZ21dmaGJ98DCs+TEon+TzO1tgUJKAAAnQgoitgXv/hFX+c8x8hlpzMKtCVluZ68UFC58rg0TD9oDYXZtK5rOLE9Ny9Tv07W1Jn+FoVhLRKbqnRydbcTxNsLRyfLsvz5e3G9gU2r4rn9T1PSm0y2UansJmUDCQWDpYqWjPPt8UGqKZmkZLZVQTssxw4qGgwo7+XkfbAWimMHVRGplmMFVRIsV97NSAQUo1bGc7U+06qQ7XwwcqLn1yojo6yXV8bLaVOm9/VlxkXier+9Ufk+RoVVh2KKOCPzI8SEaEzrU8k+T/xNDXed0ge73sr2dm1Mp7uEE9sYSbXpjGKOo8pgUGNDIzMs21XWZPJdwokdLW/PqTrgqCzg78iPcSFLx1fZ2piRWvJGtqSakKWaoEbk59txFa5WbpI8dYykcL0PR1A4dseXkRQK9B0muF5HOOE4HWHFQDiOv8+n61oDGmXmuiPv9wygMIwxUiIvk+p4DbVijqz4yOyrjmT8xorY3XffXegSUOxcT5HazQq0dZ0/P7y5QZmx1cpVlReosF3PpNulTD/ToWTTMu0JWTFO9qGDEyhRSdl+SrT+o8ftwWClYqX+hVq2PbATMbaz8yds8m5KDS2vKpdvkSTl7I6/l9bmd1VRNVuR2NidPiZ2XlV0nNoyjdraXqv2XJtc5RXYblHjiBNVyImqOjZeju102YbRpyN0cCUjuer9xJaRFLAdteUzas33HnQ6lq19S8fq7dZN3UZiSFLUDmpGvHpXlD4sRZ2AZsTL9W6ipcftFYGA9onEfK5qdMl7nuozmR7DiW2MjFpyea1Ppwko+rEm3f9Z7DWZvA4M+P9e4liWpkYkaeSfqK6IeSqLempM2nI9S4EdrvsIB4wmlufV1B5QRUnv//cDjlEs4qm1fWAXjliSsjlbruvftWeOYwa0EDqLZAPYFUzKlVebkvIfvqaYJkkhW/bEqKzw8Jt6ET0joABGsejGTXIS7d03eEbh+q0ytq18Rc/TQPjJeJ7kupJtyxps7zrVNYQxntexboDtdL1SK52UCCiwnUjJNNmBEqWT7yuX2SojI8eJKRybqmjJdF9HF4SCFQo4ceXdRJ/topFJO3Vcz7ja2vxyj8f13Kyatr6p6rGHKBSp3KnjYnCmVewr23KUddNqyzQp46bkWI4igZjKIzUqDVUqHIgqGixRLFj41+hdLe1mOk6NGzMir6TdpYxUYgXU4qb7XPxa6ri6LJnPKmwHlPdcBeyeX7uqQzEdVDFR61Mt2pJJysgoZDkaHynVlGi5gr3sN1JMjMYUdRytb08om07IsSyV2o6mhSPaIxxh9MRu1uq6cmWU6mch8nbPVUsfIQaktGfUPoCViJtyrFa8u3meVBrxNL06p82tAbWkbHlex+LYlSWexpa7CgeMkum+X19iEaOJNTltbg50LGTRD6OOkRqJlKXyuD+BgG1LJSX5fqd5Ki0d+dM7GU/yXMmypRH+1gkUhMl48jak1OOiRllP3oZ22dNisnweJYjBIaAYQYwxamhokCRVVVXJtvkjRO/s9nTP4cR2wlublC+P7/RibLuKyWVlGhukROKDRYgtmZISWZXVsiKDWyvCZFIy7W3StjmmbUcmEpMVK5Vl2xoNV3Fh54XCYxQKj5ExHcGWZRfu7TMen6nmltd63R4Oj1MoWLFTx0ylN/YZehjjqa11taoJKHwzpXymsm5GzektkjquRLRkdTlhP7F0j0KVt1usSW3U++0blXA73puCbpWmRiZrj8g02RZ9mp5YlqXSYFjG9D0fuSVLRpJrPJUG+n//LA2ENbt0rLy4kSejwCh6/jOuqy2ZtFryOVXLkmekuOOo0gkQTvhg555hfh+7BE/j7mdJmbxU3xLQljZH2XzHNEjBgJGsjvAiNIARBZYl7Tkxp5XrwsrmBnbGO5fz/xdcVZlVe3ug14Wyw2FPpfGRGzC6eUvJhpDatoa0bcbEYNQoWplXqISRI8CuYpqyPYcT2+SNTHNO1hhGWxaD0fNpYwRbuHChTjrpJMXjcY0bN07jxo1TaWmpTj75ZC1cuLDQ5WGYCrb2fQW2JFnZnJzUwOa839VMNiOzfp3U1qrOnp2MlEzIbFwn057sc/9uYnGZ9jaZloYPwwmp47KW9jaZ5i0doyqi/ix2jOJkWXZBwwlJikYmqKJsjmx7x+kYLEUjk1VZftBOH7M9Xdtvm2yqQZ7b9+Kx2LX2qJyt6uh42ZYt27I7w4mAHdT0yn1VHhlT4Ap3nddb39GbbSs7wwlJavdSeqd9pV5NvC6vjzURRrMxwZg8YxS0nT7XyrHUcSFLWSCimBPqdfTEjmzLGlXhRMrN67XmrapNt8v9YASPY1nanMvp+USrNmYHv74PBqY00BEE9bfodIntqDLItXZ9idiW4gO4YK2aK0t3u/a0pXfrQqpr6QgnpI6wIe9aakw4endTUJtaHcXC/b/XhUKeSqIDXIBCUjbfMfLCT+Gwp4kTUgoGe5gqMOpq4oSURuq1lO7/z96fxdqVnfe96G+MMZvV7p49Wa1KsmRVJEuy3DfxSc5xXpzm4b6lhxEEQR7SOgjg2IgDJFAegsTIS5DgAklejNzgBD43nX2BJIob9SqVVCpVqUQWe3K3q5/dGOO7D3Ptzb3Jvdaai0Vyk6z1M2iquOcea6zZjvk1/79V7F1tMNoLObx0KRJF71ZI2n1Ov/iCBSeA9GZ3Ykn/+e/Wel5YrOqecX7t136Nf/SP/lFpCgMHXRNJkvA7v/M7/O7v/i6/+qu/yq//+q+f4CwXPI2ois5qyp1MUEju3imTB8f+UMqfv/RKdfkPpSGbkmyxBRQZapGgWPAMUK9fpFY7R5rewbohWoXUamcxpv5Q4zk/O/EgCN4X6IXnwRNDK8NLq5/gnH2ZTrqNF0cc1FmpnXquOgpuZ1tcS+9M/Plmvs317CYv1i49wVk9G7SCCK0UghCgyaf4UATasBzVOVN7/mTBHhXvDXpkUyRx3hgNOR2GhM/R9fe0ESjFuTimWxQMJ6xVtVIshwGXag/3zPsw8VIt4Dujyc94BbxYW4QEHjdff79GUiicK7uyPAoElBKMglGm2e5rPn5+9lhvv1/Hel0mnqt8uDCxk+FxUq87NtZTdnYjsswQhJ7TGxmtVvXkyrNI/26MndK1MtgMiJo5J1zvtGDBM494mW12A+AWXUvPCovV9TPMf/tv/43f+I3foF6v83f/7t/le9/7HkmSkCQJ77zzDr/yK79Co9HgN37jN/jv//2/n/R0Fzxl+IpVZz548qsnSdPpyQQAZ2HQrz5mbweWVsFM+D4mgDBGZmgeL1jwtKCUoV6/QLv1UZrNlx86OQEQVPhdpfQiOXFCxEGdM61LnGu/xFr9zHOVnAB4P5ndwXM1vf4EZvJssmxq9IpsanLCIShgNWxwsb6QajuOxFl2Z3RIOBGuZ4tOssfNRxpNLtbrbEQPPnMUiou1mFcbzWN/vuAoL9YCLkbHr30V8Hozom2er2fK00YvUdzuGqxTWK9wXiG+jKt5ryicwnkonGKQ6qnxtmEKO13NKFHVkhMwlpJ6JF+lMtYqrt9ocPtOnTw3KAXOam7fqbO98/xet84qsv7snZ12F4YUCxZ8UJRWYGYXqy78J54dFkfqGeY3f/M3McbwX/7Lf+Gf/JN/wkc/+lHCMCQMQ1577TX+8T/+x/zn//yfUUrxm7/5myc93QVPGVXMr30txtdPQK9vVnJijFTcrhwzQZkAtXoa1Vou9bqLHHEO1VxCrZ4qPSiKReBhwYePZn12ZXqtcQatwycwmwWPG+ctg7zHsOg/FdJJXTtbcrDvBk/FXJ9G3h5uksn05LoCIm1IXfGhkmyah4EtKgX8um4hFfC4MUrxI+0lfmZ1jY81m2hg5Cw1rfjs8hI/vbrGq43GSU/zmeFTrYjPtCLWA0OgFJFSXIgCfnKpxqV4Ucb9uOknmrTQJIVGqXvWfiKldLoIOK/IrCLJFXbKo643CMhyRZpXv4+HUZn8eJLcvlMnTY+f495eRKfzfK4nbaYrPUdstjB+WbDgUaCW791LxAuSe6TwBwozACwvnnPPCosj9Qzzla98hZ/6qZ/iZ3/2Zydu87M/+7P8zM/8DF/+8pef4MwWPAv4OKJYXSLc6x2/gVJkZ9ae7KQOfXbFDecZFACxOXS2IR0e9EX7IkUtr6OWnx899wUL5qEWnSEO18mKnWN/rnVIe/mVJzyrBY8a6wuu9y+zndzFjYP9kYk427jAueYL1SXzHjG6wr1cUVZOLzjKTjHictqttK1Gk3nLnbTH2drSY57Zs0eV8xDmWKIs+MBcTRK+PeizVxSIQN85Ei/UtWYlCNGLg1GZc1HAuQmdFAseL1pDWqgjnREicMhhD6RMZBROoaec1kpBXkzvsrifeuTR6slJnIxGZmJyYp+9TsTycvHc3U8fyyvsggULJqJWQ/xeAZ0cSf09ySejoGHQa9GRJMaCp5tFCdUzTL/f5+LFizO3O3/+PP1+dSmcBR8esrMb5Bsr3O9S5qOQ5NJZXPOEqtMaDaqs3FSzul+EarTxeYrcuoIkw6OirUWBbN/B721CVJt/vgsWPOMopVhf+VEatYvcf+1F0TLrZz5HEC78WZ5lrLd8d+cN7o5uHyQnAHKXc61/hR903z6xuZ2OZifDN8L1E0ugPM1cGXXouxw/o2ZTgHhspP2D4daTmdwzxnIYYSqcY6eD51ee5GnBi/Dft7b43Z1tdvPiIN4gAnezjP9nc5M/3NvFzxOlXbDghFhtesSXfhNltwTHCvI5r3j3dkg2xb9guW2xbr6OiGZkn6jEU38w+8OsVaTp8ydzFNYc2sy+L0XNRUfoggWPCqUofSYOrwmcQCFIpEspqAXPBIsyimeY06dP8+abb87c7jvf+Q6nTp16AjNa8MyhFPnpdfL1VYLBCOU9PgpxzQ9mOqiKgnCvg9/bLv+hXkMtt1EV/SxUECKtNgzK7g7xHpIE8hwQCEJYWUHX50igLK3Cd74EbooMxrCPJH1UY1FZ+iQQccjoNn50C/EFKmiim5fQtfWTntqHEq0Ma0ufoll/kb3em+R+iAnqRPV19MLJ75nn1vAaIzsEhFExZFD0cGLRytAK2wie9doZVk/g+nu5fpHr6Z2pIfaXay8+sfk8S/R8diThNIn9DhQRKE7CLfUZINCac7U6N5LRxG0a2nAuXFTiPW7eTxK+PehReI9DSJ0ncRbLWK5MKf7n3i6X6g1eqC+Mshc83dRCoV3zjHKD95ONrbWCzCm+dS3mJ147XsY20EztsDiOJ1175X21CT6PjyKlobFSMJjis6EMxK3n8MsvWHACyE4OXlBrEcp6KMZ32EiXXRR9i4wcqvH8JUSfRxYdFM8wP//zP89bb73FP//n/3ziNr/5m7/Jt7/9bX7hF37hCc5swTOH0djlFsXq0gdOTgTdLs0fXCHa2YUkLf/sdpD3byD9YeVx1OkzUKsjeY7sbCPDQekZURRInkGeI3u7lceTIh9HaCYsmqMIohi5dbXymAseHrEJ9s4XsTtv4JNNJNvDD29gN/8Qu/0NZKE1fyKM0lts7f0B1vVRWuN9xqB7mc1bv08yvH3S01vwkHjxbI1uI3juDG9wd3STYdEntQmjYsDm6Da3Bte4Pbx2IvNbDlt8eumHJkrsfLzxUU5FCwm+4xAPWqmZ8kQC7BYjvHiWw0Wn4CReaS6xFh3vvVXTmh9rtRedPE+At/p9hs6TeEenKOjYgsR7Cu/JvWfgHO8nCf/P5l36duEJsuDpZ73lCLQc2zkB5SuK0RAauLEXkE7ooggM5FM6LI4bF9TU+qxHTRRWW8OH4fPZAdXcyKm1j78vKQPL5wsWVlALFnxwxAvSO3StBRrqpvxzyDxbusUJzG7Bw7AoiXyG+Xt/7+/xH/7Df+Bv/s2/yX/8j/+RP//n/zwvv/wySikuX77Mv/23/5bf+73fo1ar8Su/8isnPd0FHwJ0klC7def4H4ogd7cgClHxbHkEpTVy5ix0O2XHhHegNapWh7iG0grZ2YIoQjVbsyc3GoA2qOYSFBlixw8qrVFhDGZ8O0xmm7Uu+ODYra8ixbBMRNhhGWUzMcrU8KNbqKCBWfmhk57mM4GIJ8938GIJTJMwfLgOoLzosdt7AxCcSynyHihNEDQBT2fnLUzQIIqXH+X0FzwBrC8ofMF2cpfEHl8dnruMK713+cT6jzzh2ZVcqp1lNVjiSnKTnaKDIDT1eV6qXWIpWHS1TWI5rNEyMamfXQCQectmPuCVxqJLbRJaKV5fWmUnz7idjmjZjEApLoQRL8Qx4SKq9ETo2ILEuYM/ngeFP3PvuZ6mfLXb4efW1ivJcy1Y8DDkDvpZee23Y080ZyFuL9FEgdCIhaQojbHvx2jQWvAesqI0y64dE8BXanoz+HHbd/oBWaFoVJAeehQsLRXsdaKpPhn1uiOKns9iJKVg5UJKNjB0N2NcoVAKopantuzQi0LuBQseDYUcf0O9n+wpuddYi+8MykKXZg0VLG4G97NIUDzDfOITn+C3fuu3+LN/9s/ye7/3e/z+7//+kZ+LCO12m3/37/4dn/jEJ05olgs+TES7e9M3EEE6PdSZipWwvR4qjlHx8dWMALK3Wy1BYcYPAKUgqqEm9TubxYPiceOTTXzeRdJNJNspk0/7hE10/Tx+cBW99BpqsYqfymD4HsPRFbzPD/4tDFdYav8wUbgy31jJFawbMkpv4VyCc+WYSgXEtXXi+jrD/jWi+PVH+RUWPAG0MjhfMCim+1GlNmFYDGiGFe6pj4FW0OD19mv35pMukmGzaJiATzTW+b3uqIIPhaBRdG3GcnRCHlPPAEopNuIaG3GN14JFQuIkUAr6zpI6hz0U5VQcNRAuxHM3z7iTZVyoLTqDFjxarIcrewHbI3MQbFcK1uuOV1YtVWNLmz3DatMT7QlKwaRfC41gnUIrmSrj5GSODgoFSaYoCgW1J5OgCENhdSVnd+/4gjStYWMjeyJzOUnilmMpWHR4LVjw2Ki6RDvppZx1hHd30YMRvj2OaymFWmmhL26gFvGnAxYJimecX/qlX+Ldd9/lX/2rf8UXv/hFbt68iYhw8eJFfu7nfo5f/uVf5syZMyc9zQUfEoJ+he6D4WRt5we3rTBemiDOzb6xt1chjKGYviBWa2erz2/BQ+GTu8joBpJ1HvxhMcS7y9B+Bcm2UfXF/WsSvf53GY6uPPDvRdFhd+9LrK3++FxJiv7oB/RHV8pulkOIWNLkLl4sSi0WUM8igQ7QyjC1nBFoBC32su0TS1AsmJ+zUYtX6qt8rX+bgZ/ewu4RCu+4me7xQmP1Cc1wwYL5sCJkzuNFcPfdswTBCRil0EoRKMXAOrbyfJGgWPBIcR7e2owY5keTASKwPTKMCs3rZ3LMjMCX99BPdJnYaDr2huYBE2ylINBlUsIJLNUd7drxFb/OQ2BkqpH2/fNVQHdoWG4/uSri9fUcEwh7exHW3ptrve7Y2MioxU9JRfOCBQueWVSoUbFBshltZa0TDHs7T3TtDiq/b40uguz18VmO/sgFlD7pLMrTwSJB8Qzx27/927zwwgt8+tOfPvLvZ86c4Vd/9VdPZlILFhxmRvCr3KbaglRGQ/zuLqTJ2BExRjUaxyciqnyuLRCtYec2uLHNYhhBo12OrXTpInf6YqX5fZiRYoj0r0K6WR7PaBnVehFVr9YZI3nn+OTEPt4hyV2QJyiY+4xh7eDY5MQ+Io5+/23W136i8pij5Bbe5Vg3xPkU7wuUDgnCBsbE5OkOcfx0BDXzvE9/eIM03QEgipZpty5Ri1dOdmJPMRv107zf+/7En2ulaUcr+IX/yzPFWlgn0JpIG7QvJuqb7zNyOZlbVHQueHq5mSYshyGR1oycQ7hnKrwf5hRKo+xYazyCm9E9tODpo/DCjUy4mUEuQk0rLsaKCzFPhVzX3YFhmCtEYJAr+pmm8AqjoBl7nPfcGRguLE1fqx4+M5VWnF6y3NwN8KLwUiYn9KGtlIKPns2YFKsSgVrkGabVglleIAz9iRhSrywXLC8VpGlpDh6GnihaXKvPI1KA2zP4rgYPKhb0qkcv+Yn2jwsWPArUWojcnnIfNgq1HD65Cd3/8Xu9B5MTh5BRhuz2URuLrnE4+WaXBXPwp/7Un+Jf/It/cfDfv/ALv8AXvvCFE5zRggVH8VOkmA6IZvtP+K27yK0bKFeU8j/OQTJCdreRND26sQlmyjL5QRf35u/D3mZZyuRcmaRIR9DdhkEXMQH6459DL7LXU5HRXeT2F6F/GYoB2BGMbiObX8LvfLvaGMVsrXTJe6ArnE8fUkbJbDPjvNjF2mrG9IUdULgBab6JdQNELCIO71LydJc86wLgDklJnRSDwU1u3/0S/cF1CjuisCOGo9vc2fwKne4PTnp6Ty2nGxdYr53mQSX3UgLqTOMCgQ5oBM0nP7kFH4jlIGbJxDNDtAKkvmARLVjwNHMzzVgKAk6HEYqjAd7DyYrlMKSmDbEytBbyCM8UiRN+r+v57lDoWiFxsFcI3x54/qAr5FU0xR8zm0ODF7jdN2wODYlVWA+Zg92R5kYv4Fp3dq2n0RAF5fdRCEmuCMb/rVX5RPaisF7hPLywXvCRM5ODbUZz3GN8KhpoNU+m+ECpsmui2XSL5MRzih8p8vci3KZBMoUUCj/Q2OsB9npQqY5wwYKHRS2FqI0JMQOj0BfrKHNy617Tna0IIju9JzCTZ4NFB8UzhFIKf6j84X/+z//JSy+9dHITWrDgPorVFeI7d6duo5bbU38u3U5pjA1Qr0N2SJJJQPpdCMN7nRRLy6XR0KTxbIF/703o7ZZJCROU5URunMn2vvzvU+dRjelz+7AjNkG2vwHiEJeXCQoEgjoqaMDgKhIto9ovTB1HhU1Qemo3jQpb5TYLjsW6alJp1g3HJtfTyfJdnBsBgheHiMU7h1YGpQ3OjrA6eGgD7kdFnvfZ2fsuMiEU2+n9gChq06iffsIzu0duh4zSXQQhCAPq0dNxX1mOVznTvEA9bNHPO2QuRaGoB03a0RJaGUIdslY7ddJTXTAHTjxOhNfqa1wdJxKn4UWOrCUXHMWLsJtnpN4RKs3LIgQfkoRO5oW7hcWK0DKaU4GZur56XCTe4UUwWrMeBOxYi6VMTCggQBFSVrbXjWElDLi4kHd6pvhGXxhNiMH3rPDmAD63dLLXXWoVOyNNUihyVyYnCq8ItWA0iBGudgJ+/GI2M+e73nbc2g0YZYq00IQGFB7rFH7sJxEHnpWG57WzxcTuCSgD/rV4voiv9Yr1GZ0eCxY8DOKhuBrChNPL9zRu0xBMSbodO64FeprAga8Jvr3IcjwNSOqRRMocaUOj4qdjfaTXI6QdIJ2izCIrhWoZWApR0wx9piAiMCgw0keMwbdrTL05Hz8IqpjdtSzZdInWDxOLBMUzxPLyMlevXj3paSxYMJFiZZmg38dM8ploNqA9Xdtc9pMTgIpiqNWRNDm0AUiSoFotiGuolemSM7K3hQz7MOxCnpbireLHslCqLEXKRnDzCtJaQS0kniYi/auIy5HhDciPZvolqKOaF6F/ZXaCwtTRjXP44c3jN9AG3TiP0ifXjvm0o1W1faMr7sM0v4vWMc7n40QFeBwO0CrAhHXEe+rNk/Vo6Q2uTUxOHGzTv3YiCQrrMu50vssw3bo3F8moR20urn6cODh5U+JXlj/G93a/RXhMEkIpxcvLH0UvEoPPFBqFAqzMssi+RyKLF6HjuJOOuDzskx9K4HTzhI/ENT5WP/nr93HhRXgrybmaHZUIa2jF642YM+GTfV0MlOJukZN4x/CIQfZ4vggWyMWzFoa83l6iaRavtM8Ke4XQsdPvVndzYeiE5glWvYKwNTQMck1qIXf35hIZoRYIS7Gwm2jWG9OTvqfbjpu7htwpBCjGngxGg0EwWmjEgtZg3ezvbNR8wdowgDRT1J+QSfaCDw++oycmJ/ZxuwZzylWqOxMBbhpk14DAvu6CREJ20S4SFSeE5ILctkhS7v/y/ztUU6HOBajg5BMVKtKo049GfUE6GX47BScEZlz8c1dh19u49TmK9ZQqkxozCoPULDOjDxGL1dwzxGc/+1n+x//4H/y5P/fn+MhHPgLAG2+8wT/8h/9w5u8qpRY+FQseP0qRXLxAtLNLuNe59++BQS0vwersbgfyoybWamkJggBJRqU0E4AtYHkVtbY+0xxbujvQ34EsLeWiRA55Vsh4zAwGe8jNy0hzCdU82SrxpxVJ7iL9K2CTB39oE6R3GZRGbIIK6hPH0Y1z+OQOWof4dBOKcUJLKVS4hK6fQdVPlV0UC46lVjtHkt6Yuo0xdcJgpdJ41iUURQetQ4QYf0jKyYtHeYsJGyfuQZGk2zO3SbNdRHzpK/OE8N5yffvr5PbBNt4k73Nl+w1ePfVZQnOysmXtaJlPrP8IN/pX6GS7BwHtpWiFi+2XWIpWTnJ6Cx4CpRQKxTujnUrbl0bZnsxbYr14Ddjnbprwvf6DHShOhHfSBAv88HOapPjmMOPmMRV+Iy98dZDy460aG08wSXEmivlfuzt0CkugFEZrvPcH8k4eiFDUteZsFPNq4/k8Ls8rW0W1AON2Ac0TVO7KrKKXaTKrKO6LLe0nK+JxF8V6Y7r8pdaw3vIUTqEBowU37pwwSgjG8ataKHRHGusgmPDdrYMkmy8YGAae7a7hUm3hP7Tg0eIHFdbaDiRRqObsa1+uBtB9cEyVK2pXQtJXCnxrkaR4kogV/LUCjrl9yFCQawX6xfBEZZQeJdLJ8HePiXV4IdjqgRfcqep+Ea7dmCnzpFYXMY99Fm8mzxD/4B/8A772ta/x7//9vz/4tzfeeIM33nhj4u8opRCRRYJiwZNDa/JTG+Qb66i9cSVxFFaTCZiw3lCNRin35Fy5Ub2BPlWtQlpsVhpte1dKOYl/8IOsQJYhrkB2bi8SFJNId45PTuwjDkm2mHggx6jGOdTYrNeEbfB5aYitI1DlG5lZ+sijmvVzSS0+TRiuUBSdidu0mh+pLM+RFzsYU8P5lEDXEV3Dm3GVtdIoBeILotoJm2RXFLItn3vVhhyM7tAdXifNuiilaNTWWW6+QL22Vnla3dGtY5MT+1iXsz24xrnl1yqP+bhohm0+tvZHyF1G4QtCHRKdcOJkwcPjxLOVDxnabPbGgELRK5KydX0BUHYQXB5O1/+9nCa8GteoPWc+VR3rjk1O7OOBt5Ocn3mCCYrlIKBTWJx4Rs5hZV+/HwyKQCkaxnA+ruEQ9oqC1XDRcfmsUPXO4/c7necg9XA1UdzMIPNgiojzTccLLUc8R7LDS5mgECB3YH3pE7E/I6MFRBE3hTsDg8hsa5+0UIgojCmTE0oE5xReKZyAE+glmjPL0/eR99Dpz3c9prmutN+zXNHpGgZDg3iIIuFcK2RlqeBhVFLyXNPphgwGAd4rwtCztFQaZz9nt9IPL1Uv6ArbyVAdm5w4PEZ0JyD9yKIL9Ekiu+7Y5MQBOUjXo9aefS8oEcHvpFO3CXb7uNXW5Czyfbi1JUx/NLmLQuuFQfYhFgmKZ4if+Zmf4a233uJ3fud3uHbtGr/+67/Opz/9af7kn/yTJz21BQseRClUPNsQ+whBUHpEuAefgkqp8ucAterVcpLn5Xh+PzFx3ApJIE/KLo08Q9IRao7P+NDgpj+wAbADRIdTXymV0gSnfgy7/dWxGfah80RpzMon0I3zH3i6zztrKz/KbudrFMXefT9RtFsfpVGfLrV1GOtSAtPEi8e6HkoU6tDbo9YRJmiizZzX9CMmjpYZHZJQOo4obKF1tUXj5u5b9Ef3pMZEYJhsMkw2WV/+KCvtlyqN0x3dmrnN3ujOU5Gg2Ccy8SIx8RxwJx9yOdljJLMrYxUQakOvSDALKa8DOkVGNqP9XoAbecZHapO7A59FruWzAz17ztN3nvYTkiC4mibERrNT5Lj7EmkewQOiYOQdoVLcytJFguIZYiW43/p82nbVGTr4UkeRHRo6dYrLvYCbQ8PnTxc0gmrR1G6qiQMIlCd3wQNG7c4rAiPkTqFVuf1Kffo9pJ9q8kKRO8jtPe8JpKyhQqCXKDpDM7UWo9PXWD9n4iZXtBvTdXiGI83tu+GRz85yxZ2dmN4w4IWzyVxJhVFiuH27fiQml+ea7e2YwSDk/LkRC2/7Zx/VEOjP2ghUFXmx3dknhB4qVAayWL4+MaRbwbes6+E5SFAwKMrC1WkImN4It1bNY1DiiOLCKcJbW6XU+CFUYNAvn0NFizXMPosExTPG+fPn+Qt/4S8AHCQofu3Xfu1kJ7VgwSNCKQXLy8juPakKEYE0LZMMSkFcQy+vVB/TOwRVRmb8jAdOvwPnXgSbA4sExQNEsztLVLSC8g5meB+ooE5w5qdxne/i++8DgmpcIFj9YdQHDJqKeHxylyTZAzRh7RRBdMKV/48BrSM21n6SLN8mTe8gYjGmSaN+CWPmMwwNg/LYRkGb0DQo3AhnElAKE9QxJiKurSLiOMmlQ7t1aWaCot26VGms3vAmveEN8qJP4VKUUsRBmyAo991O911q8Sq1aHZVi62QvPPe4bzFLGR1FjxCUmf53mgHW7GMsaFDakE0rk5eAJC5Ci/fQPIcmouns9ZFYxL/5BIUnaJg6ByBKivW9wvpVfkXAiTOEymNUmpmcmnBo2fkhPcSx93CEaB4qaZ5oWYwFVoXT4dQN5BMiZcvB4rVcL4g/Dd7R5MTh8mc4s2dgB8/U63yOnOKQAvWayIjFOMuCkGhFARKcALDXNGKPNkMDX4R6A412gh5pimcOnglUZSvNyKKKCg/68ZuyCunj5/rMDUoqV64Xn6+olWf/BvOwZ37khOHGaWGzd2YsxvVOvW8hzt3agfJCRHIcoO15f6z1rG9E3PmdLXxjht/2A+whUZpaLYsYbS4D1TF52B7Bp+BzzWm7tGxECz5/Ub2yphVh9s0U09IvexRFZa+FeosAFCFQuY0il/wcIjITI8RAKko3fe0I7OSE2OUnc/03TfrZK9eRPeGqLhUJqBVR620jhQELlgkKJ5p/tk/+2d85jOfOelpLFjwaFlZg1EC6QhJE6TfPyLrolBlAuPM2dn+EyLgCoji0iB76sZAnuKGPYKF2eKxqGgV6meQ5O7xPw8aUD8zMzkB4NNt3M4byEFgVyGjWziXYjY+g5ozwL6PS7cp9r4FLiF15XmTDr5PEK7QXPsM2jxf1a8AcbRBHG18oDGicIl6fIYku4tShiho42r3EkUmaFBrnEafcHC9Xt+g3XqB/uDasT9v1E/TalYzut/cfYvd7vfxh96IRmwRBk3azQsYHdAdXKO29vrMsYyOcH66BrVSGj3vm9+CBTO4m/UZuLxSsGp/m7WwgVm8EB0QVtwXUVXduGeIqt8pfoLffa8oECnNsu0EuT5BaI4TJuGiG+iJ4UT41sDy5Z6l6+7ddb7ahwux5udWQi7O0FJSSvHpluarPX9soWqk4Y+05jvfdgvozYgXdXNNN1csR7PvlqEWhrki1J60CHAovL93Dy0oExhxoNlJNJ+Y8WjfG2pEFGlRSkcdZj8JJ1IW11pXbp9biI5ZctXj+QJjAHEwPXjf65uZNVydQciptYwqecp+P8SNfTqyXNPvh0c6KYZDw3AYsLqSE1U4HocZ9AJ2t2pHxuvsRDSalo2z6UI6agriIbsVYHsa2zW4ZHwuagjajqApRKct4Vr1ZI8KIDhvsTePfz9QsRCcrZh5qLhElsVS+omhlAJNqfc4jefkmCijqq2nH6b9S2v8ShtzeuE3MY3FLfwZ5m/8jb/B3/7bf/ukp7FgwSNFaY06fwEaDWQwvJecCEPU0jKq2YTRALkzW1IFWyC1FiAwS/JF63K7vW2oNT/o1/hAiAjiCvBPl5mdap5HNU6j2i+UyYh9dIhqnIGll1GtC6gZ+9pnHezWVw8lJw7/bBe7+WXEz/8C5vMuxc5XkaKPiEPEI94i4rFFh8H2l5GH2KciHu+ycffA80mjdpFafJpm/UWC4N75r3RIXD9Ns/0C9eY51AcIsDuX4/0H141dX/0hNtY+SRTe6+gJgyZrKz/EqfVPVfLdGCXbbHe+d5CcKAMEHhFPXvTpDq4iIqRZp9KclhrnZm6zUj9T2RNkwYKq3ClGFFI9mNCxCU0TESyCugesRXGlIPfF6PnTlLh4XAT0PpaMZrmi1vKjIFQaBUTaEGqNuk80UqvShyIarzXOxc/fcXla+dbA8Qf3JSegjF1dzzz/Y6/gdj77frQWKn5yWXMhVgfeBkbBpVr570tzyjvtTllaeBl3PwjsZdXue6t1z7BQDHIDqvxdL0f/Fin7eXaGhrSYPt9hptnsG5J88nUk47l2R4asUAzS4+d6es0TxfN1C9RjTz5ljumEzzqM95Bm1e4DSVpuVxSaXjfEufL3vb/3WpflmqvXmlWtxQAYDQK27x7tzPBeIQKjYcDmreevCOlRkt0MsP37khMAHmzXYEeK7G5A0ZlvfWBWPeFLBbp96Lw0YDYc4StFpe4JALU6+z3L1wWZ0g204NGjlmafD2r5OclQtMIHI+TljeZIwaxbWtxrHheLMuFnmHa7zWuvPT161gsWPCqU1oh16I0NZLwKfaD9LRkho1FpoD0F7Sw+qpUdFIUfm2Qf96Fj8YDAQDqE+pPPbot3+O4NpH8LsRmheRupb+CWX0aaZ574fB6gdQn675ehgmj5nmiuMmXgVRnU0qszh/G990pT7AlI0cePbmJa1T0URBzZ3S9ie+8gNkGKPj1vx74JDUy0QhifIk9uEjdfrDSmcwnJ4AdkyU1ELApNVDtLvfUqwaHg+PNAs3aRQfI+EWU3hYgjb45Q42OrlKG19NLc44p4Bv3rDAc3sHYIQBgt026/QKM5O6g/iVbzPK3mebwvEMBU6No5zG7/MuDx4siLAXkxxLoULwVaBQSmhohnffmjlcZbaV6kM7yBdcebyGtt2GhXk55asGAeMm/xc4h9eIS3+7f5v8584jHO6tlCK8WLzRbvDSYbZb8QxzSfQ8H0jTDgVGDYmiJX8LHak/UeagUBLWPoO0ekFH4sp+NFSv1/EbQ29KylZQzrC/+JJ0LflrJOAzf5frNZeN4ZWc5Fs8+ZdqD4dFvxughWIFTltfioGDm4MzAMirIi1iiIA+FcY7ZhtlbjgLwrzauL+14dhPLfuqni5VXPjZ7hbNtNNJIeZdBN9ESP1H28V2RO0Z+SMNAKTi0XXN+cIzGnH5A+fyLsG2RnucY5jVKCNkK95ohjT5ZrBsOAdqta8VBnpzyvilyTjgx5Xu6nUgHY4b0iHRlqM/w2Poy4RGEHGrHqaHLi8DYDjak7iq2AYDmfafx+GN0SdMuWr9keMLON4+9HtQVpCQwm/2JxZnFsnzRqzSB9P1nqKQC18nwUvSitUGs1ZDtFCg/DgqDojH+o8PWI4sIahIsw+uPi+TiTPqR8/OMf58aNGyc9jQULHjmSZZCXuqRK64nafNLvTh8oCEs/ieZy2RUxaaWkdCkCi0BrGel3HnruD4t4i7v9Bn7vCmLvabKqZJvgzlfRnctPfE73o3SAOvPjMPZzUNqU/6YUmDrq9OdRM3wqxBf49HiJqCPbDW/O3OZgW3Hkm1/Cdt5CiiE+3UTcCHEZNtvFFV1cvkc6+AFJ751KYzo7pLv9+6Sjq8hBlb0nS2/R3fkD8my78vyeBbQOObXy44RB6beglEGPj60J6qyf/gxhVM0MbB8Rz872t+h23jlITgAUeZfdnW/T2at2LGbNe97khHUZWd5BqYBRukNW9MltH+dzRATnC/JiQG94k0FymzSfcZ+hTJBc2vgscfjgPgpNjZfWP0UcLHxtFjx67Jz6+wJcT7uk7oN3Mz1PXKw3eaXZPlZD/8W4xh+pn2xn5ePkR1s1zoYPRmxDBT/SiDlXocviUXK+FnM2jmkbjWMsfTNOTgAYpVEII2fJvV94UDwhbuaOPTt9XxcCd3JPd8Z2hzFKEWv1gZITa/ctA3oWLieKfnFPrsNJKfP0pbsRyYx4eG5he2RwngOpouMonOZ6NyApFHvJ5LDK3X6A8zBLPMQLZEWZoGjVJu/DtbanuguF4F3pezGJ2pTP2kdrqFWUl6rXHKORYa8TMkoDnCv3jYjCWc1wGDAcBiiEfr/aGi7PNHmuyVJDrxMeJCfKcSFNDN29iG5nkbA8Dtst95efkJwAEKvwednA74YPdz0qXco+PezlrF4qYOmY89FA9oLFLS/u908aFSn0pQCOubRUrNCXQtScXW9PM3q9Bo0A2UuRwwZDYy0+PcqheLpULp4nFqmfZ5hf/uVf5q/8lb/C17/+dT772c+e9HQWPGbEe2SvB8NR+Q/NBmhhYrnOs4yrWB0xYzulFMQNVDpCVk6VXRTZuMJ5bLqI0qX8UxCBCdHOlYbcTxi/dxXJ+hN/bna+i2+chuhkdQtVUEed+ykk20OSTRBBxStQVb7GF1Tp55YZev6Hcf3L+HQTEHy+B0jZjeIywONdAspggiZp//tw7v+cOeag+ybeH2/eJ+IYdN5g9fQvoJ4CmRTvC5L0JkVRBtLj+DS1+MzccwtMnTNrP02W75LmWwxrt/E+IwhaZOkOOqgRBNVbWgeDG6TJZEPrQf8qtfoGtdr6XPOE8jsPhrfJ8x4oRb22TqN+utJ39mOZL+cLRBzWJqVfzSEEIS/6RMESm7vf4YWzPzVz3Cho8NLpn2CU7THKdhBgIzC0a+tPnbRTYodsje6Q+5xQh2zUz9IMF5qozyK1h/CFGdmcQhy14942nxDWe+5mQ/q2vNevRTU2osYjraCelxcaLc7VGmxmCZlzBFrzE7WIxiyJyGecQCk+36rTd55bucUhtLTmfBQQPOTx8CLcLRxvpz08sGQCzsU1ggoC8R9tNPlat8uKj7Ai7IkgXpVqnar0DGkHhnYQslMUvDMa8ql29a7G3HtupRlD59BKcSoK2ahQ8f9hJ/NlkH8WTqCCyhNQSppuFnA3F7zAUgAXY0U057vNWghLpvShcAI3UkXhYZArnJTdE2s1oW6E1Cne7oR8ZmNykvZKJxh3HJSmzpNyAUqVn/H+XsAPnZo83v5ZrzQzDWe9KAp3vP8ElJ0dmTXAHPtI+fIamsBS27G7F0z1oVhuFZX8JwDqdUt/EGKLe+bJ+z4bpem9wjgYDkOWlqq98zlb+oAMepOfed5BdzfizPkZvoPPKDZRFD2NeIUKhGjZYSreumTsfTLtPADAj094N+XEn/QZObg9gxQKpQW97NHN+cZQBtTLFkkVdHUpfhALdsUvSqtPEFXT6FdCGAqSjNUtGhrVfP4OiniB1KI3akjq8FIDrfD1EIxBOU94Z4/i0qmTnupzySJB8Qzzl//yX+Zb3/oWf/yP/3F+5Vd+hT/9p/80L774IvFCi/W5QwYj/Ps3Sue0fXa7NPM+6aUNXOPhDIWfWqpqHQcVgivLa0h/D3q7EASQjb0mxopOaFOWBWkDS2tInj582cdDIuLxgzsztzO9a7iNp0OWQ8WrqHh1/l/UUfmGNkMzvapJtohgh9dABYjLEV+AHSFS4A+9aRWjW0htA2WaFOkWYW3yosIWPYp8d+rnep+Rp7eJ6xcqzfNxkaZ36PTeOOKPkaQ3MLrO6srnCB9CiioM2vSG3ydLyy6RIi8TZ4PuFZpLL7K0Wk32aDi4PnObQf/63AmK4eguO7tvHTG3HgxvEpg6pzc+TTSj08OYCGtztFJoFeInyI2FpoGIpbBDRukOjYrzbMSrNMbXRlsmJx1PAi+eK9132UqO3m9uD2+wXjvFqysfRz8FSbcF1Rn6fJ4wFQBOPHru33p0bGcj3u7v4A4lBu+kQ2LT4fWlU7SCkwsWh1pz4VC3RGP44amSaxvNx+offN/3necrg4yhE7qmDBTeBt4bDfh4a4mz8fTne80YfmFtnX936yaJLzsn7k9stIMAQegUBdt5TuoctQoSXNeTlO+PRkcCsTfTjHZg+FS7Ta1qBPZDSE2XXTWzCBTEFXbj0Alf63kGhx7BNzN4ZyR8sqm5VJvvHvXptvDlruJmDtu5IvHgw3IiRkFmHTeHmvNNz3aiSSzUj4mEWA+7I4P1pRH2SI6fx+Gw69ZITw3uN2ueOBDSfPZ30kpQlIH8415HlILBaJ7zVKFQhMHkCRoDZ88U3L4bHltD1Kg5zqwdX7RzHINhSL1ugQhB4V2ZeLk3I7CFodsLOHW6WgDbBEKWzr7Gi1xjrSKY8n2fNcTD6FZAMTx63LNdQ7ziqFeQPVJhuT+U3q/Qm4CRI9tXxd4xuO2jx8ftGlRTCF8omNfCTtUEao5Fr+fTg1IKWgrVes6fk728lCnTGtXQePNgcZ4eZqjcIk+4w/TDwHN+dj3fGGP4l//yX9Ltdvn7f//v8/GPf5xGo4Ex5oE/QbC4eJ5VJMvxl68fTU6MUc5Tv7aFyj/A49t5dJqhs+oV61VQ1iJphtj5X+5VFENtdqW2WpodfFW1Jko8qlYHE5WagQdlPJSrvrgBq6dQQTDuCHjCxkfFCCrIbahsb75xxUPeK//MYaI6dUiXI3kXscdr7c9C6QBdwVBYNyvq9bsUXILSCkyM2FFpaH2f5IOIw9sRSIHd15KcgC1mS/rMs93jIi/22Ot+41jzbucTdjtfxs/RibLPTu8bZMWDElaCMOi9z6D3/swxvLfYYjhzuyKfrPl+HGnWYXvn20eSE/tYl3B3+xs4N/07Gx0SBGWALAxqhEEDrYLxK7zC6JAoaFKvrVGMPSWyYr55Pq1c719+IDmxz066xZXuB5fdepTkvqBne4wmeHtUwYunZ0f07Aj/iO6DTxNLQW3uVEOIJvMnE3jvFRlv9bePJCf2yZzjze4muT95jenCewa2YFS1o3MBAIUXvtQvkxP344C3Bj32itnPpRfrdc7EEaEuLbL92Jk4pjTtzpynbx2JLx1YehU6X+9mOd8bDklcKQvlRUido2ctW1nBN3s9/DyOvR8yLsaGtWB66CDScCE2LM3YzonwlfuSE/t4gTcHns18vmPRCuCnVoWRU+z/qlHQDjynag6joZNr7ia6PGfy4+c4GstCxaGQ2emiTDKudyq8xky5EX/sbE49EqIZQV+tIAqEWijHvfYBpbJIMufSrj9StBvTn3/NhufShZyldrmvFBBHwtn1jBfOJVRofjogTTVal50UinFyYv+YaMGMg+BFoUlG1WIUUewr1Y/FNUdR0Qz9WWF0+8HkxD5Zx5Buz47+h2NpJF2ffB6oUNAh6FAwjerXn916MDmxjwwV9vpzGoeygk4ElS2eGw+L5B5Jfdm18JQg6aGbr/eowh5r4qPSOW/EIqgsR5Lsgc79Bfd4Tu8WHw7mObEXF8Gzi2ztMtVVzQvRTp/s3Npc4ypribb2CLt99st+fBxRrC1TrD68AbAZjYi2dzDDEZKVclTSqKPWV1G16t09an0DuXmDie2lrXaZdJiB2ByCsOyMSAZQ5PfGFCkz5JR+CgDUGqjoSXekVF1IV9xOPHR/gOpdLQP4ACZC2i/AymvMXcYCSN5HOu9Assn+TpN4FbX8UVR9vhZHs/QakmyW3Q7HoOJVVONstcHGbysiAuKQosf+8RVRoA1KlZ02SkeIz5GZgbmq4b6Tle0ZDH/AtPZr73NGyTVazY9UHjMr9sjy6f4ag977NNuXUFPPo8ezD3u9KwiT74fOZQyGN1leennqOMvtF9jqvA3jhMT9PhZGxxgTH5rf0yXR9DAUPufuaLq3y3Zyl4vtl4krdjA9LoYu4XuDK1wbDA4MoJeDJV6rv8KZ6HSlMbx4vp/c4mp6l0zKe02sQl6oneaj9QvPVaeIQWHnkGJomgh1Quf09aQ3VeWvlN8Z8FJj+clN6hCJs1wZ9tnOUjxwPRuxYgJeq9UrGf9+2LmWW5IpgQYB3k9GrIbT92XmPUPnMONaEiseEchQDLwn0p6hdwdSQLM6grwIX+p0uZVlWC8MrKNjC7xApDVawVJQSlp9bnnpqZPlexpoGsXHmoYt6+nY44/xuUjzQ43Za8ybWWliPY0fJMLpaL7jIAKBEs6OXzfcMZ4Ju6lmY0qwe/+fDTLVt2EfL1AP/NQAfiOG184WfOUHk9+DtILACEZDI5aJ8xMBa+d7fhWFqrSMiSPhzCkLp+6tk9syfxGcGn+cCQS7vw/Hf4moAy8ObQRrNUWhCCtU7LeXC4b9yeGrKPYEc1b+P+24TFEMph/vbM8QrzmmLWt0TQiWPbarMQ2PO6YLJ2iX6+vodPXEvHgmJif28QONHyn0HEmPpxmVCdFdIejc+zdfF/LTCre8eHZUQToWv2vv6QFqhVoyqI2nwM9CAblDhgWSe4wuu+ElCvCt+r2uiarTFMHsdDGdPso63E4NZTRqfQl1dm2i1+qHlcXeeIbx3s/1Z8GziezNrtwNeqO5xlTWUX//FuFej8M9yTrLiW9vEd3dmXueAGYwoH7tBmZ433xGCXLjNjKqXgWr6g3U+QsPyjgpBUsrqDOzq/AB1LCPBBHs3Ck9KO6PjIiHQQfp7kK9iVpeLw21nyRhHRXODgj6xsbssURQm19H7b1zLzkB4HJU5z3Una/O3U0heRe5+weQ3IHDweFsD9n8CjK4Mdd4KmxhTv846n75IaXQjXMEpz5f2T9BmRoELdzg/TI5oWP2H22CR3yB+AwdNAnjsUTPjO8fxuuoCo/HMD457UkRR5ZtztwuSW/NNW6S3p65jXc5WTq9m0drQ1RBAqxWry7v5L0jSWebkw9Hs+XSlpuXWGm/eIwclCII6tRrqyggCsp7QVV5p6eZvXR7ZnWwALvpZN+QJ0HfDvnfe9/gZrZ5kJwA6NoeX+u/wbV0tnSYF89X++/wbnLjIDkBkEnB95ObfKX/znPTTaFg7mSLNoaV8Al3ClIGibfz2euArWy+Nc2jYmQt39jbYXOcnNin4yxfHfa5kj2fuuaPklv57MDWTpHPNHd/Zzikkxd0rCV3jn1LYEFwImTeMbSOTlHQLQpWpnSKexG+3OlxPUlxXtgrCu7mOSPnSb1n5BxeoFtY/sdOhzf7gzm/9YeHH24YfnY54FR4NMUZKvho3fB/rERshLPvR7cqVBzvFkJSxfTiELczaM4ovxRgaBWr8fHnYDMqz7Qb/WBmAMpTFtZuND3LE8bb5+VTBa3YH9tpoYDQCHEg1ENhrekmqt32E0MYylwWhF4Ue/0nF/Zp1B3OK9IkwOijyRYvpZ+ENp5WwxJFnv6gmh/S8mpOe7lA6wfPi1rd0Voq0Bri+vPT+VZUOG7imdhhcZj4nCVccwTLnqB1L0mnjBCuOoKmULtgCY4zqZ702UM101cFwHefj7CjyoT6D44mJwB0ArWrQrj9fCRhHid+q8DfyY+aFXkpkxbXMmRCAvyJocDvZch9Zkoqt5jdPiorym3qFQpvRQhvbRFsd1CH2uLEefxmB3/59gOqDx92Fh0UCxY87RzTUnY/as4bW7S1ix7LQqm8wIxSlHOgNa4eE23vYZda1W68+4hQu3kbMxiM5aKklJ6p11DGgAiyuYN66WLlIVWjiXrpFWQ0hDwvvSKaTZSpdusSKc2S2box7pyYtKGHpA9hjFpaK+f7BFFKoZcu4nbem7KRwbdfmD3Y8CaM7k7+eboN/Wuw9FLl+cnOd0pz6+N/iux+BxpnUXOYtepoGX3uZ/HZHpJ3y+RE7TRqDhPmfZSpI3YAaJSJQGvEu1Laq9yAIFoBpdFBEz2jOtyYOlHtLNmU4H4QtIniCgmjx0Qp61TFbHw+GRc/DuZ6b8mSbWxRBgqDsEEUrxwc40ndL4dptV9gd6osmaLVqijlBYhYpMJ39hW+cxjUWWm9SGhqKPRYwkkRmPgg2BuYGlHYpB6vEYfTfS32cb5gs/su2913sT6jbSIurHyMU+2LJ26o7sZSYIO8y2Zyi9SmaKVZjTfYaJzFjDtibIVj+zj5zuD75FPm8NboHc5GZ4j05Ars69k2m4ck2BKXsWP7ZD5Ho9mzfc6Eq7xcr9ip9RRT09ONTY8j0uZEKsTduAp+FrOC14+Ld/pdtrKEobOIQGw0K94Tj6vbvjMacj6MDv67Kon3XM0y9sZyUaeDgEtRRPQcVs3l3tOxjpu5peeEXO+xEoaciWrUD63drMjEl1AvwnujIZl4RN0ri5BDf4sIOR4PpN5P6auD21nOdl6uARPv2SsKeoUlF8FRljRESpUdFMC7wxHn4pjT8XwdM93CcivLSZwnUIozccipKDxR43eA1AvXMsteUe6l9VDzQhzMbUQN5Xr1E82Q1+oB74ws3x05coHToeJjdcN6FZMK4Lj408jBnhVyD0bDslHkXqhP0056YFzFkikTJsWUe816zTMpj6IV3B0Y8hnyTjD2UhDNa6s54ZRXh9zCrU7AettjnWVnaJBD2Q+NYJRQiwSthRfXJz8DrS1loOY7eqrsonhC1OuWPNeln8a4M2RfWRfKWrMgEGo1jzEyVSjgMM2Wpd5wBKFnNAhIk9IsPIodUexQioMkxfPCBJu0h9pOKcAI2aam2A1QAqrlabyUUzvtMc3JnTsTP3eW6fac2z3txLcENeU1I7ol2GWQivfCDxuSemRnyntG7pHtAnX2ZDpWRQTfy0t9wAkJctMbkZ0+V8kzVfeH6P7kohsZJMhOD3Vq5WGn/NyxSFAsWPC0E4cwwx/Ch3Ncys4TdgdlRrfbRydHTc90miFhQLHUIrtUPXgTbW5Tu33niByV2BxGKbQaqEYdigIZJeX/ngPVaEJj/q4GpRSSDGE4gFma1nmG3H4fXvvU3J/zKNDLF5F8gO8fU/2tDPbs5yCYnTBSvauzt+lfQyomKCTrQj7D+0JsmRhpv1hpzMPoeBUexmz7MD5Dx+uIHaGCBlIMURqUL99QdNDEu5Qw3iBuXEIHjZlDNpc/iXOjY/0qjKnTXv3sB5vzB0SpAKVCZEbrvanwXQ8TmCZ50WOYXMfV7lULWzsgTbZptM4TRkuVxm00zlAsvUK/d/mYL6BZXf0E4QxD68NoHaJVcKz/xGHCit/51OonsC5ldekVuoNruEMdR1pHLDUvEgZNTq+9Xmm8UbbHd6//Z4bZvS6PRCyb/Sucal/i9Qu/QGjmSPo+YiJd43L3HXaSownMft7l9ug6H1v5JPWwRXyMGdyTYmBHbOWdqdt48VzPbvJqfbKM19X03ne8mW2zc5+HSN+N+M/2y/zFs/8XzROWs/qg3MkGhFqTzeHbcFKvzYHSBFrPTEDUKxYhPEq2soRvdraxhzIoIwffszlnw5AzYYQA1/KM1yrIS+5zPcv41mh0JIC+VRS8k6Z8rtnkdFitcvhZIPXC91PLW0l+EBwuXEGnKLiTZlys1blQqxNqPTU5s5XnWPFkvkxiaKVwcjQ9XSYpoG8d61HEzTTl5cbx9/6baUo4jrrdyTK28oLDKX4HJCIURcHIe9bSlJtZVjlBISK8PUi4fd9afSsvaBrDp5eaJ2a+fSuzvDHMj+y7bet4L7F8phVxOnq4gpzLqeNqJjSNpkmZDPjOyPNe6vl8O6Q9Q6KjYaA7fpQLcCMTOoczCg56VvjGQPMTy0KtYjKlYQSlFC/WhPdTdWxhdzMQPr46eR1RONgcGJyomclfATSeaMZlvN03JJnibsewO9Lcn15wKJJCoZTnwqpjvT35Htmoebxn3BFZWWOEWvjkEr+DQcjyUk6ea3KrEa8OZJ8A9NiHotEoj0MVeScApWH9TMp7312iyPU4mC4UuabII9pLlpW156sDSlfcNyaa0SHroff1mNHl6KDjQQBSw2Cvgf+hjPbr+dwLBDXjc+fd7mlG5YLpz94u2IXizOOfz7OIdGYXkUnPIael9Jd80gwKlANWYmQv47iHgGiNb1VbB5rO7PuRbHdhkaA44DnKL394ee+99/g7f+fv8NM//dN87GMf4+/+3b978LMvfelL/Kt/9a/odDonN8EFHwi1vjJzm2K1VXk8XRTgPUF/VCYnRNDWoa07uAmrwlK/NVs+5mCO1lK/fmOCV4YggyGy/+L2iM24ZyJSSjvN3M5DlsCdqyfm2WJO/RDm7B9BNTZQYQ0JW/iVVyku/RzSqCgnVBxaOYlAMSxNst2hRFTee1Dqqsp44yGlGJWeFPbemDKn2fGRMV2OTzZxg5u44S18soXMMDo+8vtFH9M4j1n+ODpoo8IllK6hTQ0TLWOCJiZoUmt9BBO0CGuzV41ahyyv/zit5U8RRmsYUycIl2m2P87yxs9ggicsA3YfSmka9YuIeKwdUNj+sYbYjVr1DgWAwNTpDb+PdUOKYkSe9bDFCBEPeEaDW2gdEMXV9OHbSy+ztPwRjGmgdIAJGjRblzhz9sdpts7PNTelNK3m7N9ptS5UGs/okPOnPse59U9zbv1HWG69RD1eZ7n1ImfXP82Z9U9x8fSPE1RIKliX8c7N3zmSnLiHsNW/xvdu/36leT0ubg6usJdu4cVhvcV5e3CvK1zOu5230CjW69U8Hh4HfTfbWL3cbvqCv+fKaqWtvPNAcmKfrhvxpd7bz7zUU6BN5dv5PpEKcCfwvZVSnItn3zvP1aqvaR4F1nu+sbdzJDlxmDtFwZ4tX6p7c5hm71jLG/clJw4+U4SvDocMP4AJd+Y9dwvLZmEnzv1J8pVByo51x1aup95xO0vZyjPORrWpXQUD54i0xougSrUdYF/iqUQDgVIECu6kKYMp+3HgHIHWOPFsZzn20DiHcUDhHe+OEvby6p1kl5PsgeTEPkPn+Fa/2n3tyJytYzu37E1ySq7AnvUPJCf2cQhfH+QMKnRp38+11PFecvzvpR6+0i9wM87HS/G94383F/YKIZPy9xMPqZSeFyMHX+9VP7fPxWAox2hpoa6FWAuhLhMTF5uOjy5bzk4xCh4Viq2RmWhS/SCatzenZyj6iebGbkA31aU/2jEIZdP8astzdWdyknapKeSFeiDJMY16zfMwFjpppuiPDMmcptNZrglD4czphKV2QRQ5tCmTEmHkqdcttZrDe4XW0G5Vv966uxGttiWuufKdxJf+Fa0lSxg7OrsnVwhyGBHIR4Z8qJjjleYBwiU/M2mgQyGY4e8wfCc8kpw4PE9fwPDtmOT9+RPmui4QCT5V+FQd38mhwKw83L1M5WB6Cj041E53QuiKKo86fbjnsR55TM+jJ9xfTwrxggw9MvDItNa0KmQVvpsXyE9mTSPj+alAo9ZrqFaIBKZUZ4gC3HITt9ZC5dUUCnSFuJdkxcIv+BCLDopnnH/zb/4Nf+2v/TXyceuyUort7XsBkq2tLf7qX/2rhGHIX/yLf/GkprngA6DWV0sfiuT4p6KvhRQr1V/mRWvwghklmCQrExbje6JRZTeGq8XowmKGCa45O0Mc7nVmB7xHCcQRc/eOflC0ru65UGT4dIQZdKG98linNQndWEM3SsNzG1SQdLqffRmZZAuVbMMhuRsJW9A8B2Gz+nE4JEsj6S6SbB6Re5KggWqem2GYfDziclznu7jBdWR0E8k7gELFq+jGRXTrImblE7Olo5QGceigga6tI8MRBDW0F1AKpUN00AStqS99vLq/hTLUGhepNarLkj0pRAQRz3B0GefuaboHQZtafA5jYqJonVqtmleL9wWdwXfZ2vsyab5Fmm/ihwVKm7JzQUfEtVXCeBVdIWAv4ul23mM4vHFPZkppoqjN0vIrYwPq+VlaeplRsoV1x+vY1+N1GnME2LUytJvnaVdIfExjb3CdQTI9qbs9vEE/3aVdW/tAn/UwOHF8b/dNvDhG9l6wTKGJTESoI3KXodAHUk8nga5YNzNrO6M0hS/YspMTpxrFyGfcyfc4Hz+7HiM1bcrb+RzvNjUTnJhJ9qXGElv5iHRCQHkljDkVz9f59UG5kyYzA6pbtmA1CI7Vj5/ED9J06mFxIlzJMj45ofJ/Epn3fCdJuZ3bg3hNoOBSFPHxekxwApJCW4XjZlZ6OdSUIj1mf46cpWcLLtZmyCyW2owUIgy84/7Q5WGZGICBsxRTunI0Co/w3mBENnGrfTNuyLxwJ5u25T2cCDeS6dsOrGMnL1ifVWYP7OaWH4wyerb8Pj9wQlMrXqtHXIznCx5eSYup559HeD+1fLI5X+T6cjo90Jh6uJl5XqhNfpacihRnY8XN1HM5EQZOSBxkUr5ORAqUCArN2Qh2CqkkH/XOEN4aKK6m5bY+D6gb4aW25WKzlP38+Kqd6t/gfZmkqHpL9Qi3+qXU3qRxe6lhZ6Cxbvq4hdMkOXRGhtxaomOWv9ZBMUf8UgGXThdzvX4Nhpqd3YC8UNTG71Bx5Dm9ltFuzA407+8HY+DURk6vF1BYTZZpvFc4p0lGmq4WNtaHlSWZ0kQzGgQMByFFXnZloARnFc6V/93vhqysZeiTW8ow3AkZ7UY4p7BFed2GdU/zlCOI5wtE6gBqG450a8IXUlA/PT1YKhaSK+GR5IT4sezSfgLYQf/bEeGaJVypNkfx4O4aZKjxu/fmp+oeveTZX06aUw41Z+5DMpCbAfVDHhxiwJ5yFKfdybSCVs3TzVkCbrqe+K47ktjwNUV21uCWTq6eXESQbYd0/JFzR7UU6nSAih7iIFTtijipr31oekoraIa4paUHt6v4PURVWG0rTkR29Wll0UHxDPP7v//7/JW/8leo1Wr803/6T/nyl7/8QPbtF3/xF1laWuK3f/u3T2iWCz4oymj0qy+gVpeOBpWVwi43GL14phRrrYhEIYjHDEalD8V9PfM6twTDBBeFBBWrvoL+AF+bHnCUoiirsJtPNvAgWh0Jsk/Fe2TnNjJ8+G6Ak0YaZ2F4CzW8cyQ5AaCKAar7A4jmqE6tnwJlkGQLGd580IvCjpDeFZgz4Cy+wG7+IW5wDd//AZLtjdszPJLu4Pvv4QdXsVtfLn1EpqBrZxFxuMGVMlERrXCwKhbB2yHiLY2VTxM1qlXXP+10e99ilFylUX+RILi3cLK2zyh5nzg+w9rKj1ZKxnhv2ep8iVF6g/7wPQrbK4OXqvSwcC7D+5ws3UWhsMV0k1sRYWf7Wwz67x/1wBBPMrrL5t2v4ly14M/9BCbm7OkfpVE7dSTAqpWh3XqBUxufPhGvh53BZfwMl8DcJnQqGHg/Dq50vs/m6DagqJn6QYBf8GQuxXpLO1piaCv0rj9G1qMVwgoJkrPR9CTU2WiVkc+xU/xIlkz5LLqd7843yaeMjXD+Z+qyqZ+YLn6kDT+yfIaNuH7kpU0rxfl6i9eXTz3xuW3nKXVjpiYfEu/JvedsWC2Y60W4W8yuCr5TYZvD5F74/f6Im4eSE1AG1q9kOV8ZjMbSL0+WO4Wj5zxKKdYCTVM/+FIeGs16GM/sGlkNQr4/HOJk8l21TCaUHhJuSmAYYCMK+XKny1aFbpX9LfY7ZmbRqdi9slWhI2Mnt7zRSw6SE/sMvfDGMOP9dL4y7Lv57Cj27Qqm5ofpW2FY4VfuVoigf7oJewUMxmMmviycNQoiDXsWOoXncuq5UqGi+M0e/NdtjQVWQ2FfZSpxiu91Qu6MFJ/aKDjbmD7WXqrRcxRr507hPOyMJp+Eo0wYZHpm0kOAm3shWa7ojI5/Fg4SjbXz3COF5ZajVlFipz/Q3L4bkt/nWZHlmut36vQGs+tbm817108cO+KaO0hO7GOM0F6yDIYBgwpjAvQ7Id29iCI/OjcvkAwNw36ACCSjk6vB7d2N6W/FOHd0jkWi6d4Isdn8z7famqN+xqKDo8fQxELzQkHYmn5siz2DO3Q+iQdxivtPSDfQJJcj7GD2HEWguBridgwqFMy6g/H8JNG4HYNoCM5ZgtPz3WckA/l+BPcZhCsH4R1DdONkjq9rULZozcAuVT/GQcdTv2of6LrQqVC/agk6J9dNIbcdsuMf7LoZCP5a8XDdFK0KOzDSqOhkwtSqVS2T5lrV5GF9a/YaXS2drCrD08aig+IZ5gtf+AJKKf7rf/2v/MRP/MSx24RhyMc+9jHefvvtJzy7BY8SFRjUixeQ87bsRABo1ElH1WWYDiNhgC4KlPUoX/5BBFGANkhgUM5WlgFS3iNBgMQxalrVWaOBquiXIWmCdDuQpmViptFELa+g5tRrViYYd41U2NiE0NtDsukB2Kea+gYqnRJwEz/F8PpBlA6R+llk+1uTtzExjG7B8quVx/X995Gij2TbSLoDblgaW2sDpgkIknUAhR9ex7RfmjhW0H6ZYvdbeJuAS/F2RFkCoVAmxgRt6ss/VN1p7iknz3dJ0puICNYNKU9ug+AIg2XqtbNoFVTuahkmVylsj6LokxV7eBm3mh5aX2sdEoQN8rxDkXWmjpcmW6TJ1sSfOzui33ufldWPVZrf/QRBjdOnfgRrE/K8D0pRi1fQev7WdOcL+sObDJK7eG8JgwZLzQtlAmSOIGkVY+79zzsJbgwuHxiMBzok0CFOHCJlQNGogFBHuBn+Ho+bQBleql/g+6NrE7dpmyanwukG9S/XzvHO6MbkDZRiIyxlyk5C6ugwXZtyNd1jd2xIvx42ebm2SquC5xDA6aiJn6d9Atixkw37ngSxCfjk0ilSZxnYMui6EtYITsjZ1EkplhIpzdV0yNBaCnFoFKtKsWoC2sZQN4YzQbX7jB+P23GOPVsaMmfjKv9IKWKtWQ0CwjnXNN8ejfjyYMi1rPRLiJTiXBTyWi1mOTBsW8fNvODSnAbPHxQncrDM0kqxGhiWRegSAVL6jyiF0Qo343y9maVk3uMPjXkc+xJQmfcsTfEtaWnNlVG1dd04vEatYvn1BA/Nh9ru3UE2dc+8Pcq5EIWEFSo3RaTSfaHq/A+2H49pRdi1QtcKghArxVqoaI8LpqqMu1UoAq1YCaCXlftejf/IeIyBg2UFVxL43DFFrPukDn6vo+k7GDl16POlrBLXcH0YkFfQ2nFe0Qw8g7x6Cb51Cusnt7KlhcZPkHY6jEgp89QZ6YmvYN7N9sY4imJzN0Cp2d/dC2xtT39Pu7MT027aqR0ZzaYljDxFrvEC/X6AdYqiKM+PMPCsrWXUxzJNW9sxzRljAnQ70dRX0zQxB9JPJ4HNNKO9yfd08TDcMSyfn3+tFa94omWPSxTeqVLWqVbti/rDpjuUyQnxwH1JChHBFZDfCTCvTu+68V2NDO9toGIhOO2QQiG2rA00aw6zPv8aS24HDwTFDxPsauyawjef8IHWinwDoruTP1cicFPuVUfwQnxryhcViG877LKaT4FCBNP3hLsW13NlJ8ASqBWFqtgGKkOP9KYcOwuy7VDn5gsnqyWDbE82oAbQa/ONKU6QbgF9i3hBhRq1EkLTzN+Z4DySWaQ/Pv9jAy1/pBjYt+tQMZ7lVtuYsffrJPTplfnm+JyzSFA8w/zhH/4hn//85ycmJ/a5dOnSIkHxnKDCAJarm8pOHMc6lPNoa8E51L73BCBG8GFAvLlH8mK1anMXxwRFQb6yTLS3hzquUiyOUeeqSa/47S3o3BdkzzOkuwdnz6Oac0haRQ0q9w7bHKSGjE62ivgDke4h7Uuo/o0Hpa2UQpoXoUjAJhBUNPoMm6iofazPhDJxaY6dd5Gsi6roTeAH10AcrvN2OZcx4hy4HLEDMDVMvIofXJuaoNDRCips4Du74A9LoQniMlS4DGiy0TXi5kPIZj1ljJJriDiGo/dx7l6gUQHWdhmOEkCz1P7hSkH7QVoGg9NiB+dH+P3uhv3FlHiKYoDWEZBgZwQ3B4MpgeExw+Etllde+0DdDkFQJ6h6Dh9DXgy4tf31I90chR0ySrdo1E5xZv2PoCsmeZrxOpNTMiVaGRpRtevjUTIc+8gopY50WRpl7nUaAalNWYo+oGH9I+CHmi8z8ik30wcT8E3T4HPtz8x84VgJmvxo66NcTm8/qOuqFJfiUzTGXV/tD3AOfVAuJzu8NbzPtNxlXE33+FTrHJdqKzPHGLq8lLObgztZD+stwSz5vMdMzQTUTsAQ+37qxvB2b8itNKFT5GSHKu0twsA5NsKQH67VK7/sehGu5zkd53AibFtLMT4XQ6XYCAIG3pON/8QV1ilXs5z/92aHLWcPYkqJCN0040Ze8KlGjZdrMVdPIEHRNvoBI2OtFLX77vGx1rRmHPPvDgYIkE15oRdKGQCLEGlNI5h8r/5av08+w5j9yNgC5yvuv2bFDuZZ2+3mltGMOTrgZl7wUm323JRStLRmMGPM9jyaZUBDK1LvuZwc7W7JEHpOWA6ES7GmVWG/XMsEL8KtvOwA2p9JIaVRdaTLY7xkhMQLqZ9slv3OEK6kiv2mkUJKk3vvNQZohkIn1/zXazE/c66YapK9WveEc8oDDXJFbI7f17ml7ByoaGptNGT2wer2fWqxn0vdRoDtbkBhZ8fUhkON89NHt07RHwUsNSfvQ6XgwrmEG7caXLtap9M5mnC3TrG7V8OYlKW2xVrFcBjQak0e01mFy2efV1lqCKOTKTwYdWavuYuhxhVlTdy8KMXYa2K+Z37Q9KhAyuSBA7Hq+ARArsmuhwT1HDdUBFM6M9zu8ReJCuVAzsl3DJyds3vCAr3ZxznYNeRTzsHHRXEadA7B3oM/kxCSl6snE4KeoOz0Y6kKwfQEt1zxqhehdjUn6I+vgZyyQCkF2RX0JY2qVUiWdmdfQ9L3yJn5zKyVUehLMf56dmySQq2HqJXq60LJHP5GUj5E9v8t98jQoloBnK9VX7fdHSGdHEKD0hYpPFhLkHZxKy0kDvH1iOJc9XcliSOK86cIb289aLitQF86jaogp/5h4uTfChY8NN1ul4sXZ2uj53mOrdiqvODZQAqL9IeEvQGuFuLrc8jrOEe008HHEYignTvojRelQauyI8J7gk6f7MzGTAmpYnWZYDAArcnX1jBZhk7SUkxWa1Q9Rp0+hTazV/zS7z2YnDj4oSB3bsELL1fupNCNJt4EoM24hGQKzoItqic0nkKUHUK0jKw2Id1FFaWZrAQNqK+DDgEpzbOrBuZsgmq/CMUASbYg75XmfGEboiVUMUKidvnZFRIU4h3ikjJJYSdUNfoCSe7A8kfBTpcaE/FItoeOVhA7KA22xaK0RpsGSmny4dUTN7Z+VFg3JElvHUlOHMb7nFHyPs4llRIU++Nk2Q7OZ3gZJxhF31vUiWDtiFC3ZvpHzEpgQCnx5X3xUF4U3juSdJsk2Ubw1GsbNOqn0HMEW0U8t7e/OVFqapRusdt9j42Val0eG0sf4dbum+RTTJ4b8TJrD+F1ISL08z1yl2JUwHJtvXLiBCC1CbWgQStcopd3yF1K7nIEOfCfMCrA43ht9RNzz2+fwudcH96gX/RoBi0uNS8RP8TxVUrx2aVP8FLtPN/v9Ri5EYEKOB+f5Vx0trJHxquN8/zs0uu8nVyjZ0ckPqemQ06HK6wGZZJbAS/GJ2MKvpUP+c7gDgOXk4sjUJq2idFKIQjfGtxmKYhZnnGfzsRh5wxWJDZnaAuWjxM4P4QXYTcfkXtHpA1rUePEpKEeJ7lz3E0TBq5AAaHWWD+uPxdwSmiheCsZcS6KKyUT3hiNqGkNzrFj7YGJsxnvv11rORWG1I3hm6MRP96aXnjRc47/e7d7JDlxmIH3vJVktI2hdgLH6GIUsB5obuWO1At23JUiRg7OmboxnApjlmZ0oWxlGbtFPtMXxAFayoTPtKTHjVHKPOJIife83q62XmgGhpUwoFNMCdaiOD8jqZAcSiQkrkxaKRR1yq6TfYZztDy8UDN8dzQ9yPRibb5QgFawZ8uEwcgJTspEQsMojFJ0rVDTws8uz75Gula4lXpSXyYTAEz52oBSZdOrAVCwHJTb1CYM+82+PkhO+HFyYn9POWBoFa1QGFnNtYGhHXouto7fNxtNTzqXhFIZACyP04PHJ7MK66VSB4VSUAuFwEAYHH+sGzXB6Pnu+VmhGKWK5VlSQEW1750Xs49vGAphaEkzA0oQKb+f0YI2Zb5me7tGLR4RRZ5ixj63VhHWHMyQg1IK4tp8CQpXKNKRwRVl50oQClHdEcZzjlMhgQLgC4UJn1z1f9AWwlOW7HqIdxOSEwAKXKJJroXULlqmJUIkr3Cu2PI6nsvaLFdIXv4NQCRwzCNDP4RU1iNBKbJLimJNCHcFnY29MZYVdoXqHguAzqqdAzqXGSKy94ju2HvJifux4G949Kt6dtC+ikm1BwpgzqW+qmn0KzWk58o2OS8Qa9RKgJp0kz8GEcHfSA+SEz5xkIz9SRqmFLPdzlGnZk/Q72VlcoLSe0JWY2Qvg2GB0gV6kJK+eBq/3JjbT9W3G2T1C5jOAD1KUc1a+WdjGVXBm+rDxiJB8Qxz+vRprly5MnO7d955hwsXng/d9Q874j1y8y6y2wUR4qQLlEbZ6bl1fH12VVXY6aMAV48JRgkY88DyQ1mHbzfLF/Ven2J1etDZtVrYpTZBr5RbcbUarlZDZ+P5xBFqbaXad+wcU5JwZANBuh3UxqlK47G0Pi5TqdDerxS4AipKODyVqPFtXQfQOI0wIfg2jxyODkofiHS3TFK4DPJuKeukIyReBRMh9TOoKgFYpcFlSDHgXjP/g4jLwGUQzeiV9Rafd8fyUDXEpYBHvMP5Lt720EGLyL5Y/Ts/zYinKLpTN3EuobA9wnB2n7FShlF6h+7wXZxLEfzYD6T8mTbhuOhPEBFqjekBXa2DCgtp9VDdE93e+2zvfpv+4MZBckHrkFbzPBtrn2Rl+SOVKmWGyeZEo+19esObrC29Winx0aytc2H9U1zd/PKxXhSBjnjt1OcJzHxVzZ10i5u9H5DZe51BRhtONy9xbkpX0WGMNoDQCFq83/0+uc8O5J4oINCGumnx0tJrrDyEWbQXz7f33uTNzpskhxKONVPjEys/zKdXP/1Qlfrr0QrN1ge7Zj/VeoV3kxtkvgw8Z77gerbFZtHhQrzBZ1uv0TDVdGQfNV/rX+N7oy2KQ9JzRmlOh01ORS0E4Uqyx6fb0xMUuXeVtdIPfgc300j5ZtLj6miP/ND8IhXwcnOFc7Wq+gVPP9Z7OkWOUmWiwnqPk4Mr5MDrwFImFa7nGR+pTT8mQ+e4UxSsBwHvJskDXhRGKRpac0kplo1hsyjoO0d7ShHHO0nKzRk+BgPvuJ7nvPiEuycAYq14KQr4xjBny947ZwqXUTeGlSDkQlznY83ZXcAj70jc7PPaA7l4zsYx0ZSk0WYxn3eDA/q2etXvx5p1vt4dTPSieK1Zmzo/gEApEue5kxZHOkc6XlgJDOejAKXUga9CFV6IA27njj07IRAfGM5H87UKfG/k2M4876f+oCMIyiTFWqBYDcqOhVaFzow3+443R2V8Kvf3JJ70uHvCKHAOzgTl/pn03YcORu5ed0IuD64q3Vg6yajyJ1cHARdbx58XSQHFnNpXoSnNtY9DK+gMq+1no4TACKtNx6SmIOuYO1Gc56XnwyyqLst0hQSJtfD+lTaF3TfGLudsKeeiNQSBp9MNOX0qmxnX1br802oXDPqT32GWV6tf795B526NYS9g1A0psnIHBKHQWC6oty2rZ1KCiv4dqmLi6ASs0mh9MqPYDnCjKR8uZQeD7WvsSBGuTd5UaSmL1aahmMvxVgqQ6wbu3lszRoCPBbvmjvg/SIXz+XHim4qs+cGSJFL19lt1H3oh3J1RlFwAPWBWPeFjMgTfRxmFWg1g9QOEo/sWrMenDjYzJD10E1bg6xqcR61HM7s8ZO9ewZof5LCdwthLSasCnRZE790i/cyrcycoAAgC3MYKDjCn5/AC/RDy7JYJL+Cnfuqn+MY3vsHXvva1idv87u/+Lu+++y4///M//+QmtuCxICL4KzeQnc4DOnY6LWhcvYvOZuubB8MENza0dmGI3NcdIVojYYAbt5uZQTXd3vT8OfJTG0hw6EGjFSy3URfOoiq0e4uzkKUzt2NUzbwbQAfhuByrwu1O6TIoW392HxzSPDd7o7BZqdPhgPoZ6F9B8i5iE8h2D/wcxOdIugXikWQTv/e9mcMppWAcFFRmcqBHmTpS9FGN6d/JZ9ulBJXL8dnOuD/4HqWmap8ivTthhGcLrWNmtXcbXcfaQbUBRbPb+yZgUcqguHe9iDi8y9HKoE1MGLVpti9NHa7eODPzI+Pa+tyeEZ3ue2xuf5Nu98qRzgfvC3r9q2zufIvdvWpyhqN0Z+Y2IpY071Se36WNH+W18/8HzWiN/UCJUpqVxll+5IX/k9NL8wXbO+kWV/beOpKcAHDecbv/Pjd7P6g0zlK0ylZyh+uDy6AU91vXOu+wviDSEYNjZNxm8Y3dr/O1na8dSU4ApC7ljd1v8pWdr+BPyOfh3eQmS0GTpeDBiifnPafCJy+5BXAz6/LN/u0jyQko/TBu533u5qUs19189jWceYudO0VRdl5M4kbS5fvD7SPJCYBcLO8MtrmVzH+ePK10ipyBs9S0wQtHkhNQxkMiFFuuYMcWlYyvN8ddy9fyHMZ+E4cTp/v+FHWtD67GzRnj/iArSEUIp7wYW4Ge9awGT/71rmM91wvHq7WA86EhPDRNj7AexvzU6jrLM7pfvQgNE1DcdxwmEWvNpVp9agLAzSmBBvDtfsXnJ9AKDJ9dbrFxXyVkyxg+2W5wqUKXc6QUN9L8AVkrD+xax9Xx+v7cjK6nwxil+LF2zMtxcCQhGSnFR2ohP9qO5gp0963wP/ZybluhZiA8tMtzD7u2PGZrgaI3I8D/+x3H90aQelByn/cEkI0TFqGCgShaBpYmZCi2c9iIOEhgTFJMcQKn6+W9clAokglxvGvdgHyGzNH9NCPBTeiQiAOhl1aLRCoFtQCasac9oQtglGpEzSnxY4SgQtKo1XQz5aOUgnZjehBUBK5eazIcBYjniGG0UEo8eQ9FoRkMyuumOUOuJ4w8UeSJ6572coG5r8MkjDzLqznL69USFOJh+0aDYS9gsBsdJCcAbKHo70Yk/YCt6w1cxc6S2tJsxYp5vCMeJdGK0P50iprQmQOUkUGnkFzhpyUyAL08e92h275yLFccyA9CSPWB2fbBOJki3DJH/CRdhc9/2rFLerbqmxpvVwEz9KgKu0WGFZKV7dmfqeoKFX6wJM0HQYYOnzvkVno0OQFlsm3k4XqK9KavryRzB8kIPyyQO6NS3um+8cK7HWrfufoov8KCY1h0UDzD/I2/8Tf4D//hP/Bn/syf4V//63/NH/tjf+zIz7/4xS/yl/7SXyIIAv76X//rJzTLBY+M/rD8MwkvRFtd0ovTzUMRwTVqBL3BwcuAoiw38sZAGCBGYxvjAHJVpzGlyDfWydfX0FkGIqgiqZSYuDe3qttVX9jJ3l2IYhhVeYAKGINqPsPVoY0zELUhn+yjIXOYWQMol+BRSD6A4U1wyb2eXR2WXQuMZRx6l5H2S6hgelWybpzH7ryBiMfnXfD5oTEjlKmhaqdAKUzrpRkzFEy8ge29BwjiC8Rl2LFxsVYBytRAHDbvElT0AXA2obf3VUa972LtEGNi6s3XWFr7PGF8clr9cXwarcJ7UkzHbnOKKs7wIsIovV4alKsApTRejrZ1C4I2DYKgRhSv0JiRoGg2LzDoX8VPNKNULC29PHNuh3Euo9O7TKd3mdHoLnkxwLschcIENaKwjfeOKGyz1H6RMJwuz3HYetW6jCTbJS/6iHiMqVGPVoijZWSOwLpSipXmRbw4dvtXsC7jVK3NuZXXWK7PLyN0q3d56q1uc3idU82LRDNklBI7opvtkdoEEEITlbJoSJmsUBqlNDvZJtf6l/nE+qcrz/H64Dpf3f4qu9kuHiHUAXXToGZqKMruivf77/Nq61XO1Gcnrh4le0WfW/kOsQ55sXaGQhyFL1BKU9dlhfnbyXV+Mnx4WauHQUT47uDuQRdL5h07xZCey3DiCZVhMx/SXq4RTtHV38eImjs9EaEnmoNb8VwZTe9kvDza42yt/VByT16Eu9mQW8mAkSswSnEqbnCh3qbxMKLcHxAZ/1/mPSiItD64+ykgHl+EIrDrbCXjYS9Czzk2i4KOtaTeY8eGz4FSB2oIW0XBC3H5XzO7BcbziJRiNB5vv2bcUFaXK1WmHy+dgGTA95IcJ7BsDJ9uGjLxjJwwNCvUtSHQemKHwf2cj6OD7zsNBdSU5mJt+nqjGQSQzddFcTefb/tWYPjUUpPMexLnCZWiWeH63edaWrAcGHYLhxchcULiPcoJWkFXK16NQ5bmGBPKbgKlFAZh6IS6UbxSM7xYC+a+ft9NLDtW8FKec1qEQoTcl0FrK4q93NOryVQT59R5vtT15FIqexRSnv+HrzuhDCA3AuhaOBNNnqsArQDWQuFaqhjZMsmhKOukgrEkfDv0LEeH1zbHd/Bay9jwujqRmfwKIwKFqzZeYMr7RBzIxMCuCCCqlMGq+DoUmGrbhgG0W47eYPJ5ttwqJspP7TMYBKSpKU2/nS4b1MdJif0jLL7sVCgKRbtdEMwYE2BpLWfzZg1baLyDLNW4QhGEcvAZca1a99OoH5CnmlEvYNQLDpIoxghB5DGBkA0N2gj9vYiV08dLgh4mblmCyGOnSD01VufzZHiUBE0hWHYUmxNCgB7Q5evYrGeSWXO4XYNkCrun8DsGScrnp64Jes1RuzA7oX/AtoF92aYlD/d5XCirMAONW/JIJNiVaisf04FwR2PGNTS2LRSnBN+oPrXHhUSKYkUT7k3+LsWqRqomAQ5aPwWdCGbo8Uk5tqopaFAmFKrcN5Y17Lqy42ICan1Os55HjQjsFZOz0oz9KO5ksFKxs3QnnXozN7sDdGeIX3k+ZKOfRhYdFM8wP/ZjP8YXvvAFbty4wZ/4E3+C9fV1lFL8p//0nzhz5gx/9I/+UW7evMkXvvAFXn/99ZOe7oIPiOx0Zm4T9EdlP/QUfC1GjCklmPIC7TxQrt619+g8R4IAP37h2++2qIxS+FoNX6/Pl5wAMAaqGGbG1SQ5xDsYdMtxq6zMBWitoGpPwarlYVEaOfP5CbJICln9GLTnM4r2/avlm2LegaIPvij/2xdgR+XfyRbeltJKDGebJKtwCcQi+8mOw2O6pJxr3kGv/QgqnN7RosJlRGl02EJsgthh2UUhUkqCjf+3iCMfzZ4bQJF3uHPt39Hd+QOKooNIgbUD+t1vcufqvyUdXas0zuMgCldpNF4em1Y/SK12njBcJgxmJ2KyfJus2KUWb7Bfw6i4/61XYYs+UbzG+pkfnekbYUzExqnPYo6TzlGatfVPEtfmS/D0BzfpdL5Pv3+VNNvF2iFeCpzk5EWfJN1mMLxBr3+VwfDmzPHisfRVlvfZ618hzfbw3iLisXZEf3SL3vAG4Ry+Jd3RLa5ufZl+cpswqFGPl7G+4Prud7m++90HzZqnfd+sM04oTEYEdka3Z461ObpFZhP0oTItpTRamfJvFEYZ9tIddtLNmZ97MG66yRc3v8h2toMfh5cKX9ArunSLzkEAfmAHXB9erzTmo+RadtRkO1SGhqkdJCcAdooeI1eha+8RslUMScVS0yEDl3M52WXXjrDiEIRcLJtFny92rlQyQr2cduaew0rQYCU8/jm3lQ0nJi/2seLYyqp3Mu7jxPNmd5N3+rv0bekxkHvPzWTA1/busJtXO/ceJa0gpKYNhS+NZ5VS6PGfw10PRilyL7T07BfyZWN4J03ZsZZUykBzIXLwfVMRRt6zaS3FWBdmeYZH19kwwFB6FRwEcNmXgBZSEQzwsUbMWvBk688S79m8r9owVprVwNAOQoJxd8OtbPbx1UpRNwFxhf1sgPU44lw8/Zl0OormMhUG2JszQbFPrDUrYTBXciL3nu3ccioKaBnNbuHoW4f15V3UjYP413JLbw7pqa71/F435XJakAnEpkxmfi+x/GEvI5+jsyT3wu3MH/zOXuHZc0Ih95rTchGu5p5vD+xUiadvD4TtYtwl4R8MhO6f227894V4avyJpaDs4Ih12XGh1L1rw3pF5hQ1LXxy1R7MNdRCbYJETBTKPHVQKEpT70lfuZ9qjK7WESSi0EyXsS+7Ieabo9bl96rCqVOWVvP4Z8BS03JuY3agvtcPCYLx+etKKSXvFSJqvDRXWKcPPC9mdU/sE0WeotCMBoZhP6TIDV40eW5IhgathdvXG2Tp7PfPUTckGQT0d2Kc1SAKROGsJhsFFJkmH3e+jLphpf2tFKxeSggmeFc01hy1E6z813WPiJpetT9OUsyqxFchmHVLcdPgboT4gS6b6x34kcLvGrJvx7h+tbuv7N47ZqohsPzgvU4PFRIL6StFpShmfE1Ru6oxg3JeOAg6ivr3NcHOyVX+Hya7YLATPHvsiia7UP1Z4usaRAh3HeGeRe9r5wlIIsiOIKlAhTCK0gp9MTzW/wMF+qxBtU42lCyBRoazn4m+kyPTnnehBg0+s2U3xaTPG6/Twpuzu/AXPDyLDopnnL/1t/4WP/zDP8yv/dqv8bWvfQ0RodPpAPD666/zG7/xG/zSL/3SyU5ywSNBiqJcHGUZjHWIFRYJD13GArpwZSfEBPKVNvGtTXSeY+s1guEQlTtEUyYm4hhRoIsCX4soVmfrBR/Be6LNLeK7W7h0AMtL6LOnKplaK6VgeQXZ3b73lbyU39nbUnYmjtHLFWU5nEW8h3REpXIB8bB6GhVXNI9+WgnqyPmfgWQTRndQ3iJhq0xMVDXGPoR03wOXUnaYROM+3PFbqQ7Gb5g59K/C6scQm0xd+4p4/PD9MvGQ7aKCJqLC0m8CKcfUIapxHjXBCPowOmyhglY5D1NDKY2IRSFlV4COUNrg7JAi25r9fUXYufNfKfKxWbuA9yni8zIBpC3bt/4L51/+C+gT0K8Pw2VqtTNoHZFmdxklV/G+IAhatBqvEYZNtI6o1c7OHMu6ISIOrWMCU8P7rKyeEo+oMuis0GgdEdfPsLz2Q5XmGEVtzp7/aZLRXZJkGxCiaIlG8zxmTh8GgL3u9xklWxTFCOfvvRyXclSC8znKaUajOwxGd1hd+ejU8drN82x3vkd/dLM8byYwGN1mbfkjM+eX2yF3976LF0uW93FSYH1BTRxGGzI7ohEtsd66WOn7FoeC5tbnJMUAJxbrLaEO0SqgHrYoJph8Hya1I6wUGBMSIbhxIBwUZpyoKD/HYn1B7jNqTL9PpC7l7e7b5C7nuHtr5jJGakQzaALC0FWXS0ldxo30LrezLbKiztnwNOfj8zSmyMEdR+KPBhgHNuF2vkshloaJOR+uE5mQxOdP1Ici8eXze8nEvDm4jRt7lngv5OLH3T2KLiOuJHs48ZgpEoXzO1DAZ1cvEU4IAGe+WqCo6naHuTLs0imOP2e9CN/tbfPjaxcOAtpPgroJOFNrEOo9Qq3JjxGSV0CsFHWtORvOvn8NvGfoykr43Hu0UvdMtwHvHIExOBFuFgU/3GhwesYa6RP1Gv/fTq/UL1alebLlXqW6VtDSmh9rNQ6MuJ8U6QMv/kLfCTuFY5c+dROwEkakrtq5WteKKuHcmjG8Um/M9B36ieU2/3OvU+mz95ktdPPo2N9/+99jOTAMrScdn4tNrVgKDJkXvj5I+fnl2d/Zi/D1QUY+Iarac57vjHI+06pWhJT6MhnRMIq7uWXgyqTB/hE1lD4MADtWuJY6PtI4PsywZ4VdKwTqnlfv8b0M0A7gTKRJppw6ayFs52Xy5YW6sBzAjbT8b2WEWiCshMJqfO8TLjb9xCRAPSy/i614i1OUHQ+TjKuTQqErSjJ5D2kB+ZSOi4e5PUZRddl0reDcmYI0U/T6hthaAiMstwvqFU2jC6vQWgi0x7lgbBAu466PoxOp1SydTkS7NTuBuXWnRlzzZLFQ5ILzgrcKbUAHntEwIIwKtm7XufDScOp3TgYB2dAgE7pliqzsnhCv8OOOjypmzyYU1l8akQ8Ng+2IIgcdyIknJwBMcz/9NwVVXjd6hgyVWLB3AqRQYMqO3LK7R1AGpAC3a8i/G1P7XDp73x2S0ZIMEIU0Pd5RnrwKfN2TfKyYLYsEBNuKYG/yhvENhWsKcjI2ZPfQivSCIQ4g2HaYRHANhV03ZGfMXH4HMu6O0PfLHR3epitQsQ5TxQr1UgB3fGlorRSsaPSGQc1jiPSYUPXZBagqVKj9TP+Em77SCrUcQW9GYcJYYlHN8ANb8MFYJCieA37xF3+RX/zFX2RnZ4crV67gnOPSpUucP1/BrHbBs4N1yJ2t0h1tTFQkSBRQrLQOvCRkRhWexBEghJ0epj/EFOMVuAOxDl0UFGaJYJjQf+k8UiGxsE+4s0f7zW8TdXsggvcWbtzGv/c+6pUXMJfOo2atrFdWS4+JNEGSBBkMjgQQlfdIrwtxbfZY2kCeleU7ruKbxsoMiaxnBaVKuafGmcrKWcchvkDlvVKux9tydf7AKlNKc3GfIcUQNSMALcndMokRr0H/CohH4Y52zxQ90DE+3UbyHmqGUXa4+jrZrf/f2N8iRhFjDoImiiBaRSmFzWZXPeTpHbLkVjlXl1Hke8gR4+Murugx6H6XpbXPzBzvcbDU+iEuX/03JOkN9l82nBuQZ1s0G69w8cL/C1XhTcqYGihNnu+OfR0O+oMBj0KX15mCdHiTIu8T16a45h1CKU2jeY5GFV+UKXhfkCTbJOnO2Nj6sESDQxGgFHjvcC4jTXdnjml0SC1endjVoHVEq3GW3vAGq0uvzDT03htcZ5htM0i2sD4jyTs4XxCIJwrq1MMlhlmHz7/8S9RmdAQBBDpExLGb3GVY9MlsQlL08QhaaRphm9jUMcpwcfk19JT5RaZWdkuMjcmDCdtqZTDKEKjZS8Nbo1uIyFTz65Eb0QiapQyLnv0G6MXzncF7fKv3Djeyu1hxOBdh0JyNzvDJ1sf5I80fxlSJEFAaOgMU3vKd0fvcyfeOHO939U1erZ3jZ5c+WWm8R0U4nn/u3UEQNnWWzNsj92pB+PbwNteSPV5uTDYvjyruj8P85Npkmb+w4njhnFEyJ5476fRElRXhTjbkYn3OwogPyGutJd7s7DC0FicF7r77QkNr1sOQ81G17oQrWcaZMGTXWhxlsHi/Ghz2zZ3Loz/wnk/VZyffmkZzKYrYtY6RF1AQcK8SNlRwKQ459YS7J6CUndpn5D3vJQV3CocFCsqgY6Q1w0aLj7faNGZ0ynYLS4TCANNqI63zU43F97mezU7k3s+cEv8fiP39l3th4DyJk4PkBMDQC6PcQhQw9MJm4Tgzw4vibuFIZnRI3MnLbeqz3ImBSKvStFpgt4BEjoY5LWUXQU2VSYyvDezEBEXiyyCalXvdEseFTZ3AVgG71nMxnnycOwWshkLHlkmJ5bC8LPoOfChooBkKqYN6AEuR8MoUr4C0gNh4ElvRNwI41XBMsn5xrgzKT0rCHMZ62BuZiWNBeT9J8vmCg/V4ckJmErVYqMWWtszfZWh0qQyjg1JM0o+TAPu31v1bhlJQWM1wNHtfJ0NDkWu8U+R5mcT0zhx0aTgXUGSGIBCabctoGNBsTT7O+90RKCm7J47B5hqlysTKPMbW4hSjvYgiNWVSximGWwHJntA6Y4kaT/AGc2Ri5avx1JNRQMeCjqfP0e0ZXF+XiQXD2FwJQB1YAUqhsIHg9jTBxozkjAFJgR1zkKxQlI0SEpQm2b5BpeQEQLQ9e8NwW5FfPKFjMSa644i2HabjCQblTTHoCEEfwj1PvmHIz1Zc54kgRiFGoSb4AOklDQOYUYdUDtd1yKYba+aN92fHl9fxGTPTePpxo2KNbgT4/oTrXCuomfLvGR48ar2O2k4mXhY+Du75tp7AOuvDxELi6Rmk0+nwW7/1W3zhC1/gn//zf87/+l//C4D19XU+97nP8WM/9mOL5MRzhqQZ0h2USQrkQD8cQOWWcKcH4nHNGAmnP8R0mhFtd9BJinYeUfpIdl45IRiMUHlOsVqxUwEw3R7L33yDqNN9MJudZcj338ffmC1HorRGnb8ItToyvJecUEEA7TY0m9DvIZt3Zo9lArx3MKFi8wEE1PD5Mf98JGSd0tPCZ6XfxKRKDqUpnbyGqOaFqUP6cZJAiR93INxbtIoIooKyuyLdwqdbB9tPw9TPYGqnUaZcvZYt5B6lawS1jYNOB1VBNiJLbiBSIC6nyHfK5IRQnotSLh6dT+hs/++5PAruR0TwvphL+qf8Pc/Wzv/GS44xdQ6v1pUOyW2XwbCagXItOkUYLJPmW4CMDbjLYL/3Hi8e8Y4oXiOImuxufoNkOPvae5Qk6R5JujPRc0MO5LzGvgpKVdqnWmmW2y8SBvcSBoKiFq2y0n4Jo0Ocz8mL2VI227336CV3sFIwynaxLt8/VUjtiGHeJSn6vLf5NXI7+2W/Ha+yl2yWyYkiYZB3D7TvvXcM8i6Fy7C+4GpnujH9Rv0Mq/EGgXow2SzjJ4lGsxyvslpbp1EhgdIpOgAsR8vEE5IPXjxOLHXT4EJjdufIm/13+Vb/Xd5Pb2EPmTM7PDfz27w1fJtvDt6cOc4+F+INvHjeHF7mdraL9/7IeWG940p6h7dHT1Z+6kzUIlSGPZvQ1BEiZTfC/vFVgFGamg7YtSP+P1vfmTrex5un5p5Dd4qM16m4+YCR+v1oNBvRfPq7fZs/4EHgpezo8YeeAZ1i/mCYFV/Js2ASdRPwM6fO8kqrzamoRk0bNBAozUYY8JF6nY/Xm7zeaBDPSMxk3tN3jrNhSDz2XVCU3hMaxuPe8w15JY6PGBhPYsc6Xq3F/GSrwfkwwIggXlAirBrNjzYavN6o05kh8/k4aBrNaqDJxPNuUnBrnJw4TO49W0XG17p7x3apHKbvHLHRM+NQOcI3ul1GM0rd3xnM7sS8n9U5fTz8WMLrYagZzXJgSJynV3hGzpUlAiLlM3h8n868sJVbdorZx3jnfoPPYxBgr8JYADWtaBrFZmZJJ3zNfVmmzAs3p8hkrIeC0aXE07gw+tigUDBOiHy1K6xN8SfYKaBu4NW6sBKU47UDYSUQlkLPeuyIjFB4xStLls+fyqcmAIwqOyiqBklCI1xccjSj4+e43zFQJZbnRJFbRRxO3n+jxGDtfIHBpcaTrdxvtwvyXJHnBqMFdV/Gr2zCLqWqityQpeZA7mkSaVKu34tCk4zK39m/5MaKrogo+t2QdGRIZyQ99ucUhEf3zf5YcO/Vpt62lQvZRWD3Wp20b/aXpgfjeavo3Qr5/7P3X0+TLGl6J/Zz94hI9cmSR/dpOdMY1Q0MFhoE15ak0Wg0wji3uMb/wT9gsXd7A6PxhnuD5S7MuEbbhQ2AHbEDYDCixXT36aPqiNKfThXKxcsLj/xEVUZk5Jkz090z9bRlV53KSA8P5eH+Pu/7PLb8YoHd4GOu2Bd93YWyIRMU6wP9ivg9iuxe99ggS4UsGz01e0VKxC+vPrLQ2Ec9xtM9D8eRnLi6nrENVSnSowS/02+8UhZUj6W/Wf5sA+zZM0921JAT8yvWVwkks4CZCtmRJ3vW87grQQnUdxP8RNMULkU1igz0LR2JiR4KnTLzhKd+bZaATAPy9GfnpbKCyjTq7gA1WVPRkSrUxMSKoFvZRjJFGYX5pVuo3ZuxDmUUYZwhw6vkS3v/4Ms8jFd4Aa/on18w/Kt/9a/45//8nzOf3zTA/e53v8u//tf/mrff7jYvfYVfTMjz08jaVjXkTWBBKYwO+EEa5xNFTfHuZkmX7OQCs8jRLsRqC5EYtBG5zBhTzpOdXKDsCxJSHRh/9jkm71gEOos8O0Lu3UFt8LVQWiPeo27fQbyHqowyT/M5Mp9DmkJVIoe3UBv8KBQqelH0giCzCySEzdUZf50wuBXFRpUCM4R1wa2VdNTw7kbPiNXMWsQhvoRVkN3XcU6w+vdgkeIIkX7Xz0zeIPgS8QVip/jgCW5O8HNMdodsdB+TbA6+ruDcDO9LvJvHdiWWt2qVYZIJzl5Ql88ZjLarEHBuSb58QFU+RiSaUw9HbzKefL0hHLpRFE9Y5B+jVUKWHiLJAXEGqS8z/aez73O4/x2SDR4KShnGg9h/EcFLGY+VwMq3I6jkxvMwn37MaLJ5rPmyUJTHiDiMylDKRELiBQQJJCYlMUOSLWTMsmSMmbxBXh5TVOeAUNopQmA8vENiBmzKeRQJzIvniAjL8oSyvmjIHYsSQStDoeeIeAq74HT5iNc3yEYt6imgWNRTZuUJQXz0BWjaW5nhCsJ5ccRrO+8wannu9geHfP3g25yWz6lDhReHDx5/7TyOzYQ7w7u8udGQ/vKgAdhNdjnMDnlWtpPPb4zf4LVR9/2ycDmfl894Vp20bnNUH3OYHHDuLjhMDjZ28V56gBPP0/qMwtfUzfFqFJlOGKqMXTPiTxcf8us7X2O8wVvly4JRmm+MbvNHs4dY8cx9hUeaALtglCJt+gnwtJ7xpJryxmB9wsC2BCfA//Tsz/gbe+vHrUwb3hju8bictv7+rdFeq0TUJngJXNiKp+WcubO4EBgYw61syL1swu2s3/PrJHpXPCmWVMGjUNweDHl7tMN+uv21fGu0wzd2Sl4bjnEh4EXQSvG6LUmb5+2bw/5jy4ExSNPGijxJGm8LAwy15n6akm8I1l+HbwyJbRBqiVn2RsHAK2beU4Q+Ft5/MfilUcoP84qZD2tFxxKtUSiO6orHZcFXx+3vJq0UmdYvkRwvwgMndcUP53P+7uFh63Z9paWu4/6gH0FxUls+LyrOm2rksTG8Ncx4c5htZUL91XHGJ3nFubXkLlAEiYoUxPtmP1HcSgzH1uG/xKu8TUsigWW4aWi9wireKcTzXYQOk2Cj2dExo19Ce5WMicWbBODzCt7e8PgNDNxGKLzica0oA2itwQRuDz2/dsvyzTW69uv2uz8Uzgs6zb5XyBLhW3e6JT/GA8+y6reuuB4gX/s9sMWwAUCWbC/J9+fB3q7lQTVpjMpXiSM3twlB4TxkAyEvko1B9+Dh+NmA6dmAMo+VE0qD1uEyoVkbIc08+XJze4ORp8oTTBZwtcG7aOi9knxSKpplo2D3Vj9Pmjo3nD8ccv5oiK8NwSmUMSQDIR0F0nFAGyjODOkb/a9JdaFZPkypLgwSQKfC8K5n521LskGK6TrcXOEudPtDvCoqMbGffSC+IT6sutmuju2F1BOmOkpkdT0CKlZcUCqoVSzLyhVD19w7GnSumFNi3/G9Kym68JdZKfcSnJCdeAgSKyfWwCwCfseQngTqOzqyth24/NYoQqpIrCCzSHxILoQ6oG4r1GjzyQsnGwiqeUDKgBr+bOMl6u0RXNSRAS59NGyCWKJXethJUG/10/FSRmG+dYD/8IJGbRWUQq5Vi4edIf5ut6rDK/z58CoC9wuEH/zgB/yzf/bPmM1mjMdjvvOd7/C1r30NpRR/+qd/ym/91m/9rLv4Cn8BkBAIz0/g+CySBSvjPRF07UgXBUoEPxrgJxsGYB9IL2bo69p5EjPwFFyuMFQQdG3Z/dEHvdI0dFmRnZ6hNiwCZZ4TppsrFKQowMbJoFouYLlErmXIibXIdEp42MOoWHFDFmvzzh3k883b/XVBto8yGergGyidghnEzwpKQbqDSsYwOEDd/zsbm9SDRiIo+FiBYBfRw+LyJiSSE3aGuDyuSjZAKYMe3kWqE6SOgeZYSSF4u8QVT0EEk7UHMS4PefgGSsDWp7j6HO/yJigeU6FCKHH2AledsZz+eGN712HtlPPTP6AsPr8kXkQcRf4ZZyf/G85tvvfmi/eQcPUMK6Wi18a1mb9zc5b5JxvbEgkYnbE7/gZeqmg+fV2MpElvzOePqcspxgxxdkldtQcvv2zU9RytE9Jsl8QM10pXKaUYpPvsTN5ikB1s1OcGGGYH+OC4mH9KWZ1fJZRJoKqnnM8/wfmKNO0meZbVGVoZ8uqsISc8LpSE4PDisaEmBEfpcs7zJzydbq5u+Xz6PkvbSOWJp/Y1Pli8OGyo0SpBRHgyf0DhFpwV3VUtv3bnN/lb9/4he80xXycnMj3g9ug+w2SM6SHvBLFyAuJ5/+rOV3lt+Br6hSmlUQnf2v0Wf//e3++UggJ4VD4n9yVlaE95q8Wx8EseV0969VEpxcKV5L68JCcAAkIlloCQqZQLv+Tz8qijpS8f3xjf4X62y4ldUgd/I/s/iFCLpwgOhWKoE36waCeAPsg3S5q9iAfL7qq0b0xu8cZw76VKCoXireE+Xx1vHkdfxI7JEISHxZwHy3PO6wrXRNkq73laLPk0n/aqoHAh8P2LYz5Zzqia94MgnFQF37844Xm5fca8UYrf2L/FfpqRGcMoSRgYQ6oUqVL85mSX28nmoPVAaybXZIecyOU6F+L1dSIMtGagNTPn2OkhU7RrNO/lJf9pkfPQWipiMkdQmrMQ+EFR8kfLnPwLBOO/DNxKNPtGr5UVSrXmMI3JNFNneVZ3X+PXsgFFz0qQp87xg3n3++huT7JhhQS4m20muT7JS34wW16SEwC593ywLPjhLN+qqud2loAIFzZKePmGsBTi/bL0wrPaceECrkfU/LCrRKCB6rkdRPmpT0qhlvX1VcKVHEspkHW8gveMcCuNibxtYf1YQRLjcXdT+EnefsyHzeWdO/jxQvGgULE6g1iBMXOaj2YpH00TOgo7rvo3EO7vxKqLPhgngdd225+7Wzuew4mgetJB3kNetY8JO8Ptg7OzPCH/gln7XwQiMJl40jSg9Mog++XtnLsyyq7rDq8lDw8+2OP8ZIizqilqVgSncLXBNpJXwSvqylxu04XBxLNzWJOmgk4C3l0jJ4heEggY0xAVG5BfpJx/PmL+fEi9TPB1bM9VinqpqZea4iwhOKiXus/SBoDlM8PZj4aUZ+ZS8ThYRf4k4ewHQ2ze77rWp5rFewNCpdczk00JlDKCHmxe/qtxZFDDQkdC4bqOIVxKPkmuEdds14FLk2yroAamGioNXqGCQoyQnGv2/sOI0Q9T1jLhq7ZSkB52d37ys2Mo0mlke/WLennXoJrvVRCS6eZ7MAwUkoC5cIw+qzGL5jeKeC2mgny+qslrhxQhXoMNkNnP1lMFQO+l6K9PkOvkBFyd072k15rwsr3XJ5iv7ceXzwu/83tjil9/t11N4hW+FLyqoPgFwr/4F/8C5xz/7J/9M/7b//a/ZWcnZkt+//vf57d+67f4kz/5E37nd36Hf/JP/snPtqOv8KVCnEdOziFIrCwYj2MAv3YIgs9SQpYgG/RoAZT3KOeRVTa0CCp48HI51xUNK+4ymeekZ1Ps7YPudp1D9SEBJPQjC1Z+EWWBdGgHy/QCyXPUeL3bk4SA5IuY3tEHSqGStLdfhXgHixOkWoLSqMkhanzQb1/r2quXhMXz6OeQDKIfRtrTyaoNvobFo0gCqAQmr0FPDwEAZTJk/DpaPH50F+YPuXSKUwaSISRjuP0b6PF99Oje5jbHr6Mu3kNUgtQXVxUZK3NspaEJuItb0jeNx04fEOpYAYN4BIVSBqUTlE6plp9w8Pr/aWM7g9HrKJUSXEGQuiESrk/mYp5gkIrF7Mcc3v/f9/J7AJhdfA9plSqqmV18n1t3/lFnG85f1eaG4PBhGeWslMboCboJBl/frg0iDsEzGtxHkTRHuarNBkQj4vFSU1cXeJeTZLuEHubMAM6V5MsnOF+gdcp4/BrZBj+Rl/voybJ96nqONUOcrwBHCAHQGJOQmBGj0V1Go9vs7vSrJNzbeYtPn/4e3lc4X+IbU2Wjs0iEEHrJO/lQIwR8qAkSqN0S7x2hsVlVKJwyjNL9aMC+eIj30bR6fXuOx7MHCEKWDDE6xTTG1gqFVjrOjZUiBM9p/pTXdr7S2cdEJ/zma/8QFxw/Pv1T5vUUL45MZwyTMcNkSOlKPrr4Cd+99/c6PS0A3hi9yaP8EZWvmNkZe+keIzOmCiVOPJnO+O6t7/KdW9/ZeP4AylDjxMfzYy84tzO8BAZqzL3kLsMkku9OHGXomckYHJ9UzxibIUWoKUONF0+iDAOVgRKmbsmtdJdl2GzOeR1BhKf1BafN/XErnfBGdtA7Y3rqSnZMRqY0+WUtzMq6PMr/1MEx1iljnbH07cdcrKko2gSHJ0hovc5KKb61c4d3RgccVQuq4Blow/3BDoMN/gFtSLTGS2BqS8qW4PPMVRTeclLl3Bm0v/seLKcsXMs4ivD+4pzDbEC2ZZXHwBj+1uEdprbmtCoJwK8YzZtZtpXx9FezjP+1LBFgqBRBKdw1CSDTyNAVIfBWlvWSeHpSWx7Wllnw1OEqvLAiVislPLeOj8qKb4+GTMxfbg6aExgrxa5WnDYVAIKQmMBQGZzE6iAnQrUh/fvXd3f5fz951Gu/Ary/XBKaapV1+LWdHf7D+ZQ+4mGrioW3NlT6zqzj42XJaV3zqLIUPsTfosiMItUaJ4HfPOjnp3JcOZ7VHqMUVQgEuRb0V0IVYOY9g56X9fXM8JNctZpkA9xNDeOe98nSC4+qgFKRfKjlKll6RUysWgoCb2ft7d5NFVYgaEh8TJRel8ztQjTJHmhF6Wm9xrdSGGv4Uak4s4q5h8I18UurmCTCIIFHS8N7Fynfud1d7XAwCrxz4PjJ85S8h5RSbjXTSnMwXH9f746E+/ueB0dJL2mmIIrTrmCuUqQG6i2G/nlucL5NTOvLh/fRJPvunYrpdH01g2rif85prAMfNG31NJ99tEO+SBqT7UhOXG/TWY1SnmwQ/SLq0pBtIBV2DixVbhjtWerSMNxx2EpDUOhESAeeg3sV3ikWZxm7t9vfw94q5s8GBIFqYXjR0yJ4cLUiHQrlzDC+5QleoTeQYK5QLD7JWpexrlTMPhxw69fLzphpqCH/OCMsFTcY8xd339x2ZtyUSnW8QvWOR2oVH/g2U/cVoXJuovF1F54nKA2yG2DWnEMFoiQmT/pIUigH4/cz3L2Afb19fW/vCNmT7ufN3vnZERSqeX7Vhhi/ag5R93nelcKNNZPnFlULqg5xgFXEqG8S50jhOKDf0e2yRy/sS5zAIkTiAmCk0Dvmpe1+VlCVoN8dIzMHRXPCxga1G8mJ8KREf3Xci6iQIKidFPXVPTgtQcDtHmLvHRIOtpM2fYUvhlcExS8Qfv/3f5/XX3+df/kv/yWDwdXE+Tvf+Q7/zX/z3/BP/+k/5fd///dfERR/1bBYQmhkmPIS6voy0VyhSCpHCDnlvYONTYkxSGKQLEWKEl1GCZLriC/KgPIeUYrsfLaRoJA0QZIegQCt+xkLrbYpNgSNjEZmF60EhdIaLrbIjA0hSkr1yJKUxQly9OAG+SGzZ0g2Rr32S6i0XzkhxCz2cPx+JCeuIZ3NCfvv4u/8Sv9juI7Zp6iz924SNLMHMLyF3PtN2GBmfYm9bxAe/nZDdEzBXTNTDiMY3ob8Kbz2D3o1p5SG4V3cJ/8fcHnTP4nEjC+RZAc12ANl0Nk+1Juz9cvHv409/Y+Iz2N1gcQAHMpgkgk+xFlUMfuA0d4vbezfYPwV5OwPkbBu6RwrNoKvCH5BVTxmOH5nYx+r6hi/gTRwboatz0k7Kj0Ss4uIYN0F3t/MFHYsMGZMmhyQmM1yVrHywpCXjwgSA/830UxGRbD1lCJ/zm62i+4hhzO9+Ij5/FOum9wvZp8yHN3l1u1fuyRSNsGYAaPhbU7P3qO2c7wvr3l/BLwPIAoRz8H+N9jpacotEjAmIy9PCNeCvJYcpTS749cZDQ5Y5s/ZnbT7OmmVUrucEDxFNW28Ml6geiRwnj8lS4bsj+4yq045HK+XPTornl8FjiUSFi9WNvjgEAlobQgSKDcQKV48Pzn9Hp/M3mecTvDiOKuOqV1FHWpKX3BWnvBo+SmHwzt8bb/7GRmYAYlKeH/xAS8+HwfZAb+090v8+uGvd7ZxHUOdkbuCP1t8SHGN/BKWHNsT7qR3eHvwJqlKGel+8j0PqyOqUDN1ObXYS18LK54qOAYqpTSW/WTCpIe02grndskfzT+lulbF9Fl5wk/0E35z911ubai4idufkwfLYTLhwlWX5ERMYJTmvaybagrHTtdY/QV8cPqG2ocm4Z0/B+l+HTZ4EqUvqybWYS8ZsHCWx+WilaBwIfC86q6QCCI8LZd8ZfzFyvD304z9NJ7zd5bbn9+vDgb8DpGImGjNrJGMuq58UYTAc2v5J7ubA9hOhB/kBVPvqZrs+uu9MioGNV2Ah7Xl06rmV8b95yBfBmbO89PS8tB6yiDY5ngl1My9Z6IN4yThjcFwo49HohRjkzDvSUbOvOdJWfJWi9n4JEv5Owf7/O5F91xipXByJ8s2+kl8sCj4w+mc48oSgMIHbFPZMNCKgzThuIryT/+X+7c2HvMHi5JP84rcB+wLCbVKwCE4L9xLDec9En20UvytnYz/PK/XSkJNtObXJj3ngMCxjeTEymf0OkEGcaawimcepIpvTtrf75NEoYlkVcr6Kgrh5mxkZOgkgO9lwlmteFhGsizQZIAHzdLBYeb5eJ6QGeHbB5YOz20A/sZdy+99MuC8hyyTC4oPTwx/+632seI33q743icDqp4BvWfT9vPnPWSpUG/hQ1HW/by5viyYJvBeVgbn9CWxcB3RhyJ+ijzB6PXnLwQ4ejJqtg+EsP7iWatJM48IZMOA7ajIgOgrsXNgef7ZCGcV3mq0BnQzfxOFrTXpMLCcpuzcqltJgPw8je/vWl96jrwIbxXJQAhO4S0byQmA4jjBbzBEr+cKO9dke+33X31mCLnGlzoen1fruaqGdVSZbNRZCQuDHkkniQGxPXHgzzTJ3fV9lLm6qogom7+vOz8NuaJqxeCzBPtaezWRvSOYBZjZ+g3qN4TQf+r3pSM0j7hsOH+r70PPQkAztyTTgKrDJbkBxIqIBBiDLASmQNtSc9U3EZgF5MxzI7duLvjzEOXbXjdbVSh82ZDSI6WPagL7KeyvOVE2wDLKPXW2tbCEp0toKvAYxO3FJMio//vyFf58eCXx9AuEp0+f8rf/9t++QU6s8I//8T8G4MmTftIHr/ALhKJCjYdQVFCvX6xp60iKHgs5o7GHe9i9Saym6JisKufRRYkqK5TtnlGHwYD69u3oadEBtTNB729ejKvhKL4MrIsz0xDiBEcE8T5myANqMNpMYpTbZMYKzC9g3N1HKabI84/WV2bUOfL0vS18LyCcfPASObHqj55+gj57v3dbl1g8QZ3+aH0fyzPU8//cS74LQB7/OxAL6U6smlhlpSpNjKDWqJ234eI9pCPTd4VQnuCf/Ft0ug86i5UdNE50KAg1ygzRo7tRTmpDsglRRgABAABJREFUdUJ99kPKZ/9rPFaVchkcDoJ4h7NLtBmjdMry/E8IHQaxACHUoIQkPYgVGNdNqNEonaGUasiGFFdfbDxmAGf7bWfteef3u7vfxvsc73OkMbEOwSNNBnr8d8tk/O7GfSmlGWWvsyg+x/mC9tCl4FzBfPoJSToha9HDX2E++4z57MHa4GlZHHN2+mcb+7bCzuQNzs5/GqtiRJoKAnVjoah1Cih8z8oOgGVxTFldMBwcRN8KpQjBRT8LPY7nMljKDdc3NUPy6pTaLZoAwPraeSFwsnyISCDvIN2W9YxJU2USj1PHsU9C9FURd5n9rptnI9HdE+ePL97j+TLOD+b1lJPiOUGiCXrpcyofn4nKFfxvj3+besN5/Gj+ITY43h6/xciMqb2l8rGCxAfHUA83VmFcx36ywx/NfkS1JiAZEE7sMUf1ERMz5q3Bm73afD+PGdhOPFZixaE07xEvgUosdXDkvuQrg82VXwC5r/hPsweX5ESQQBliO1Ww/OHsAcse9+C5LTizOVpFCafr6YwxGzl6FYgSjuoFv9xRmXYn277KbqJSct+dRbyCl8C0LjirC+wW77UXESseFDtJxk6S3qhIGDYeFEOTUHjHzLafw6W3vcyIZ7ZfcPsvAkop7qQpXxkMGGh9KaOpgEwpBloz0ppUKc6ce8k8/EXMnOO9vGyy4a/ILKFR0RBAhFICj2vL+V+yUfbcB/7zomLmY9/qILECQGKwOHeOubMU3pN7z2tZN3lybC37fZJeruFpy/wY4F6WorXm1yeT1liaIgbtXxsOuD/IOvPM6xD4nbPpFTnhPHUIl7IZVRCmzlNJ4FFZ8z8/736nBxH+4HxB2fhOvLjvy2stcGQ9yz7GCMCt1PCP9gfcT00M2oswVIpvjlL+/t6AYR/X5gbLAHcTdXlNr1dMrLC6x78zSXi7gwFIlMIoIVVRzaUNAThqLuuvjLv7OneKx5W6ejaaU6SJpMrMGRY1PCsMPzzdHOl7Ojcc9NT29wJP592BryQRvnqv35iLgnnR/v6srb4kAPrCaP5Sg4jGRHIiz02r74BSoHW84a3VrRUPVWGwtcY7RQg6/mYdJFZtKAVJ0o9YPrhfAYrgryoydCIMRp5s6KkLQzFPcDbKSbXBlvF+97Veb7odrj5xH/2Kw+3s5slbtXXj37zaKPPk59EDAq/i9VgtuV5E8+/SRmBc32+hCIWiUxl01f1a4bvIvlzDSm6pjv3EE1lK33wCNwYdM9WorkdKQfmuUL11jYhQ4PeE8msBe/dnVz0B4A40ohVh2FQ2eXnJ9EY0hJFCtMLt95DtKwOT922Mm6ymAddL3RrZLebgZ+3zBDXSkAELQc5fICdWsETJqKOfrVm2rComhPhy8uuvq5QbPDVKR3gSyQkRQVxAGslMZR3pwxP4GUlo/nXDqwqKXyBUVcWtW+ulWQ4ODi63eYW/YlAKmYzh8boAdoRoDd6jrEfSDcHcO4cMHj3fmEkjQLoocHnZS2svf/cdBscnJLM5a2c1aYp6/f5Gg2wgEhCJQZbzOBsLIb4UFGCSOHkajVASNvdtWyc5WyKzM9T+7fb+nT+mc+ZmS1icwN79jbsTW7SQE1cwF58QDr4eZ7Q9oaYfdm9QXUBxBOPuPob8CJl+yErWKJpha9Ar2SMF1RliC5TJYP4ZHHyzs0139J8QX6PMAJXtIjaPBIisZlGCVGcwOESP7m8mKI7/49V/iGtm8M2MVimQGm/PQd0CEar8M0Z7v9x9fgCtE7TOACFcVlLEVKAgOpovblUu33dx2L3dILsFOsG5Bc6XjWSUoNBoPcCYEWlygOrpJzAc3Me5Gd3HIkhweJczGKx/D11uKYH5/JPObcrimLqe9ZJ7UspQ21kkHxRok0HwhGCbx1/woSQvjnh+9KfcvvUrjbl1Nxb502i+rdNmgVzgGw8Ea5fUbkaSDLm1121ojQTKekllc6RVURuCeEJwTIvjl7T9bx4vDMyYUTqhtDkgVL6IVRNNiplCo5VmYEbcnbzFoMMYfGkXnJUnLO2c8+qU0+IIGypciM+wQlG4nFEyYZxMqHzBxxfv8e3b31nbXuUrnhZPKX3Js+IZR9URF/UFuctBwVAPebB4wN8v/gF/7+7fY9TDtPzHi4+pxZKqlErWkRSw8Ev2zC77yeZ7RkR4WB1Ri8OKpQo2Bg+FSOyg8KLJlOFWsktfa+FPypOG8PA8r2dcuCud+ZFJuZvu8kl5wq9ONpAoCma+BAUDk1CJJwjX7gtF1J4P3EknLNeckxXSns/5dawq/rtQB89PZs95b3HM3MXnYqgTvja5xXf2X2cn2c6IevWqVkoxSTImSYaIvBQ0WwU5/7zoesb+MqCJUk8fF8WlNLcAVgQjwlBrMq0Zas2juubdNclHKxw7TxGEwnsquVaZ1WAVc/A+cGZt7+SDLwsPSsuZD1H6xwdqEays4iPx/wsfWAbPjjGkGwLjCih7BuEhLma7QjcuCKlS7KUJ39nd4eM8p2xklFQjtzU0hr0kYagU7466CZRP85JT66JpuReqa5Jb0EjMhEDVyJ48rmqelTWvDdcTyU9Ly9QGXFhvMB5bjdfZBuFJT22fZ7Xn48Jy4QOJisTnvczwziAh24KcgHhN7g80zOPxXZegWn2vgYGG3URxL+1u/3YaJZxaYkmXyH30rPjuXndw7geLhjhRseJkVelx/caYWQ0EHi8N3w2WNvuN0ipOckPaFgh/Ad6v91e4DgW9PSCkObc+RGJhXWNb8nekyV/umFCWmsQEvFc4t/78XAbu9cpIu6WxpvrCe938TqG0QOMXsWpbqaY9AZMGNhQtATA/T1lepEhQl9UcWgn62vmqcsNw0tP3Qwk6Deha463CO32D2LBGkY6E0cF2Qd1gIVT6ckmrFOhMMJn07Ne1P420M4PNYSfjgJtq0sP2NbSE6CvRMT1phv+YbMGGShAmATlSMDVx2xWZc22TIAptAmGL43a3BXf7hQHr5wFG4fYVo48FXYIum+S6RAhDhSQKv6tBQX1PXxvU2pE9r0lmHl02ihgvThQSIgGUAhsUbNUtQ/jMtl5flQK1EE496rZBbTDw/guDF2RmkTJcEjwq1aixiaV3PSGnFeIFljaSGU1bYhRqt4LxAHOxxN/uJ9v4Cl8cryooXuEVfs6hdsYoa2F3ElNSXoAkGr8zQAYpyXyzMWQYZIhWqA2LPxUEUxRo53vJN/m9XS7+5m9Q3zrg5qxQwXCI/tbX0W+tlzS5DhFBnj5GVRVqshNnmnUdfSGcA2cj2WFS5OK8O6Tq/Zaz+JgxIs8ftrfpLBSbJYdk0W1CukJYHm8OJohDLbtJjBuoplBvNltWy80VV3LxfpwZI5HUsCtJJric6bkCOfsB4i2Sb24zzBryxKyqJ66lFTVtil0goYZkjB7eaW3LFc+Q+gydDEEliC+i2OoL5FVwBa4+RekBddHdR60zkoYEUDpr5H+uz/RWCxmNcxekg/b+XUeWtZNe22w3W/y0yZjXl+QE0PgglBgzRhCKsp+Gt3XThojZNLkMBO9wvlvJuyrPCD0qafK829h5hfPphwyyw+Y6CCFYwg2TcAMIVXnGydmfcX7+Qa92a5cDmmVxzKJ4fklOEPdCZec8P/vRRimqeXFEUZ9uPC+RSPHMq1NMR8XDbiPvtZfdwoslhIAXj7wQugrimFXn1K5kd9BWpw2n5RFn5TFzO6N2JXUoscEihKauIyAi1L5kVl8gInw+f9Da3lF5xNLmfDT/iEfFI06qExZuQSBWZOQ+57w+53unf8r/9Oj/S7GhYklE+N78PYZqwCQZMtDZzeoYYKBSjDIMeso7HdcXPK3POXcLjNLRwHsV9JGAb47daMPXRm/wpOo3Xj+uLrDi+bg44swub5jgFt7yeXnGn84/29jO7WSMD0IQwYZAgr7x9Anxu1QZfnPvbZ5Us9a2DnqQcS+iFEvZUUFRBcfvn3zKH108viQnAMrg+Mn8iH939DHTHmbW17GbZJfSPSusy+gdJymHHRn2O0lK2iPydNDD5PgvEgdJwsdV9ZK8kxDlnebec8sYtFI86cj+BzhznnkIlGvIiRWEGAs68YEndc9M7S8Jj2vPmQucuBCTXoW1SvJOhE+LJf/2uFt6c9eYrSpgUqV5a9h+zzyva94aDdhNY2B+qM1lJR5AajSh6d+dLOMgSbidtWfZf7gsCUGoRajX0JuxyiB+v7rD31u2j4Mf5xUaIffd1qWKKPX0rLLUG+bwn5SWP1lUXFzL+AzA55XjP8zKtWbmXbiTKgofCcVMrU/ANgpeT6Op/KZs/V8eG2zo9LlFiOox356ojdUej0uFVi8lIN+AFYUEITPCcdk+hhzn8bvc9aM5A8L+qDsZ6tGp5sFxP4kQAcZZYNZSRbE7DqRbVlBoDeMWj4y/CMwXKUVpYgF8i+QRrHwnoiRTmq4/puHIY1aEweqPm/8Zoa7ak6AYjruJvPlZytGn4xutiEQ/i3KZ3Oi3BK76sAaDSRzxTBaT6UzmCU7FSoRr/VuNCGbQ7/plhw5fKVyhb+TbiRD/falRRsg6TNoB0v0Qza/TK2Jn7WCjBDIBUbhp9/o5LEGWGtyG97EATkXZqDbshmiSvTCxeqLlcLQFPdfoQuEOQy8j7Ev8PJETREIimQmSKvx4VUkByoFZCmEQqyaq1wz2Xr9Yxs4PC3TVSDu99GIi6uk1y8ZNo5sC1FCvPW8qA5r+UgjMfzaVBeKEcFYjub8x+IsNhKlFFldjgBq3r+UkCGFRw0WF5O7mi8QLZpajpzlmtjnO9gp/fryqoPgFw7Nnz/i93/u9L/T9SgbqFX6xoPZ2IE1QxsDeDuIcUlRQlCjvwGsYZIjWvYyqVW0ZHJ/3ICgCqna4HubbK7jDA87+8T8gPTljcHTEuFjA/h763m1UH+8JgOkFFM0LYG8f5lNi6aNvsh9eeFNWJRJC9Jt4EcHDzmGUbeoDpcA7pENegtBTQLan0TahXyBBBds/V79nm/SR+GiCrhJsJD3ExfN63ThaGSjPCMvHmGxzZoH4OmYz+wKpZ+Cra6SHjrJPyQDMCCmOUaMOYmsV/FQpQSXRFPymejOr7B2NwrlZPJYNGI7eJEl2cPUZWiXEkGGTmaHi0lzpFAkObfpJrKTZIUl60Cn1lGa3SdL2DPFYnfATvK9JkjFaDy4lnYToh+BDgXMzlvmn7Ey+vrFfIVSkZkLFOdLpeBbrg2fnH3L73nc72rs6vyJCXc8o8mcUxSkiljTZYTR5jcHo7sa+AXhfoZTCmAHOV4RQNR4UDTEjHqUMXgV0qHh2/MfcvfNrG9sV8VhXMls+wvnGDF1FE2qjByRmgEjg6PRH3N5vrwp6cv7D+PvOUEuzT+I+h0m7P8jB6B7p/AFP558yyfa5KE4wSoPSlwlgWhm0SkjNgJPiCYluD6Yt6inT6iwG6rXBBdss7q8IN1FN5RIwqy+oO8gWGyzPiqdM6wsqX1G4AtfITkGsUAghMLVTdutd/vj0j/hH99vnH54QJZMUZKQEE6ObVmrAMNQDxmbEUA/WSkCtw/vFYwyaEAQbPBpFQOGbsKmIZmQMO3rEqZtR9zSarsXxtLzgwhYUoY6VhsowMRlJU+n1sDpj6SsmHcTBm4N9JknKo8riJZIlsUbtyih72LQLQt3hMzFuMVvvQtTMbx8HP16c8llxTlu49Hm95IfTZ/yjO+/23qdRmtdHO0xdxSKfU3rH3NVY8Wg0E5Owlw7YSwa8OWp/jxileX044fP8ioRfOsvc1XgREqW5lQ15rcNkexMq73la5syd5bxccj9NeTMb9DKzXkEBz208x0OtsSHE+qomaB1EyH2UBuoyMgb4tKyogqzVcV+33z9c5vzfbx9s1d8viiCCEziz0R+jCu1vEUUM3P/J/Jz/W/0Gh9n66NLDsqTcovp1oDXjDtLKSXz/vzmIskYn1pFq3ShCxLs8UfDWcIhRijwE7rX0DaKEk6yC4XI1kt64NHKl2KEVVB3SELmX3hUjSmDpA3UIrSbwhQ+8l8d7zwbh3AUWXlg2fZgYxdIL/4fDUW+Zp9czzYUN1H4lQ3fzeBPgwMBeqql7XLq7maLuOakNPfIplYJU8ZIR+vXbKNHCKBWMAhvaj9tf+06rzVUeiYasI34oAr/z3qSTPHkRk4HgWvqYNYH8pq65F9IkbF118edBURiWy+g/samTzmkO99vXXUrBnXsly3nj8+AjAfEijAkkSfRKsbVmNG5fE7taMTsZIAGSLFCXCcGDb/qrjSAhYbTrUEoY7nTPEUb7lsVJRpIJ2ghVlWAyQQeP9waI/hPZOGAyoTgzDPfCRhGAdEcItUKsupKJEohrEEESYZAI6aT7JCeHnmQn4Ga6/R2iAAPJUHALTdJR5SEe3HESB7iOZ+n69tJRQSRG4CSBdYH1GxuC8jGI73e2D4rrBaTnCmUVkgr2UAib7fpegiqF9BRMLpglhEQIE3B7GndIHDg2YPDIobwQhqAaUiYMIBhFmIBkiuW3DKT98smTo5r0YgPrC1dSWRvIHfHEQXWiIBcomxfeimjzoIwgAxUVlnv18suFnFYoAQYaqV4+cFk41FCjJmmsqGhDEFg4xF75LlIHpIqm26kvYhXjszP8IMG/0S/h8OUOCXqe4/MFhIAapKjb+6iW6sq/rnhFUPyC4d/8m3/Dv/k3/2btd0qp1u+VUjjXM2D6Cj930O++iT+dIt7BbHnpu6CDR1QgWRSMHzylur1Z+iI9vSC5mHX6T6yggkC6ZfBDKezd29i7t3l9ebHdbwGZxt+IdzCfQVXDdQ+MuobZDJl41N37kbhZzCOZ8SJMAsMtghTS+F2kHS8Kk4LSrNPWv4G0X/amSvoZWUoPmZRLJP2OuU+banAQ/TSWTyJZ0RhQXx6/agQ5qnM4+R5+793NS0mTIfNPCPUc7AJw12q0dSRAfPy7Gt5D6gtUS4a4zg6iyXh5AnYlL3b93l6FdA0m3Ud8TuihET/a+RqD8VeoimdABSrckF9ROiNJ9xmM36IqHpNmBxvbBNg/+JtcnP2nl8ytAYzZYW//O52/r6ojBMH7ReyJao5R6Wax6vG+oCifMJ+/x707/+XGTMYk2cWYSeN10L6d0ilaJxTL7soH09xXIVhms09ZLh5SVzNWs+aKU/L8Ka5eMB7dZbLzVmd7g3Tlx5DgXYHIy8blIg7vCxKTUddTivKU0bB9ApmXp5xNP+Js9j61W1611wSVfLD4UDMZ3mNePL70qliHk9kDQti0qrrW10uxjvXQSnN/8g6fnv8E52Olg9HJpSyfUoq0qcAQCexk+3x28R6//to/XNveor7KvrfO3cj6X/XIiyclJdMpLtSXZMM6VKFi3lRMzOoZVbj5PHnxeDwLu6DyFZ8sPuG/uPN3GLQE7BNl2DMTcl9QhZoy2Mv9C54ylJdVHvvJZgLUS+DUTaMMCZ46WFxTM3F1xIGlLzllxtPqjGEHwXMdIsJPy2c3jJ5LLHNfsmeG7CUjMpXwaXnKr3QYqx8kQ15P9/gxz3HB45reXaOM8AqWvubz8oJf22k3fp8kX2xh0ybRZIPnk/wc1/mOE55XC87rgsOs/7vpq+MDTquC9+dnPCsXN56Y3EfCZy/JOEi734vvjvdYOstRlfOkWFJc88bQKHbTjA8XF/zS7mGnse46PClyPlpML5/QxNY8szXvlQV/Z7LLYY9kiyDCuXMMVHxrVHItaK/U5XE/d45n1vJOh7yTF+GJdYRGkqgLHkBg6gI/LUp+dfwX7wCqlWKgIQ/CzHvKjj56YkZ8LcL/dn7C//X++mfk/eWiB917hYkxPK4qfrllvjrUmnlDTi5c4G6WcW7tpak1ELOelcJoxV5iOu+bncQQJPqJXBN/fAk2BE6t5VaastshvyrN/ZGqWH3ShpUUu1GKCx/YaYk4f15FW+xzF3hcOaoAp9ZfnlOt4neC8N2dAW8PNt/TdYALH1iG9RUyHpj7uO/f6DDIXuF55Xtd46WAltWd0459Azsm9tP5aybZzWVscpMZ6PgGHnVUIAySKwIg0YL33WPIwdBTNTJG626bh2eGWal739NJU56i1fo+Oh+lboRrB7gBIu39+4tAVWnK0jCbJ5tnRhKwvnvl8MZXcp49HjG7yAgt10MRvSy0DmTD0Hm8y2kav9dySU7Y0lz21XuFt/Gc7d6q2bnVndikE+HgrYKLRyOysae4iGOR0o1fSyqkw1jFMNiN1RU2V2QdxEJwMP8kxQwEl8f+XJIBqlmKenClxhWKZNTelk5g+A1L8WTlfrz+BOpEWE2HQtV+s4SphqrdEPwGBNQoEC46nuHPEhgFODebpaAC+ARMruj9CAQYfqZeMMxWJGcKvwvlu6G3rkz2WEhPBbMQkourf5cU6juB7LmifBdCh2+OLgSTC8k0YBbX30MKHUAVUI8hmQuuW1X3EqOHcZah2nmlKwxAZRsqKFYvpIsAtumjaxj5QiBRyECBDsiFQ27rjevNLxMSBJk1M6u9FHVuEbeGpKgC+pvdc0rRIGXTlg1IbqG0UIbLahMFqIslO3/wHu7+Acu//8vQN/kWwDqyh89RtUX2Yn8E4HiKvnuAfrOfGsNfB7ySePoFwjvvvPOFP2+//fbPuvuv8OeAuncb9eY9sA4pqzjjUpqQJoRBCkqhnGfy4OnG9LrxZ08wZT+vEgkBs9ggUvglQkIAW0eZp4sLJM/j8VxmIkiTMhQi+VCW8QXV4r2itEbtH245IxfUYXtmtzIJTK4Cn+JqpC4QdzOzV+32M11VO/c3OqWJGSHjfu0BkI5h1ONFt/vOxk3UwS+BW4DLm9Qd16RVNBnsl+k8AVyJOv1RZ4VCNNFOmoqMaUwHJGaHxw0akkgZBI1KhrHKogV6cAgoxOdR2unScPtmuM8kY5QZxOxVvZkU0jpjZ+9XGIzfJsluoRpJJVSKSQ8Yjt8mG73BYPga3rX370UYM+Lw9j9kZ/fbmGQ3Eh3JHju7f4PD2/8AY7r7Zt2MNNm7NMR2bkkQhwQbz6msqgoC1s1ZLDcbrI+Hb+JDvb4K6RIKkwzQJkU1weI2DAYHmGTCYv6Q5eIxZXGGDzUhXIWIQ2M+/eTx71IW3fI6t259G2OyS9PqNiJAJOBcgfeeukPirLZLnp58j0XxjKpjuyAO65bUdkFRna3dxgeHCwWyVtBkPRI9wG2oBFBK8druVxpvCYVWCRICIXgUGoUhNQPG6QSjU2Yt/QNITQZKUbqcSgrMpaeLXH4U6vK9IsDBoJ3cGegBQTx1qKlC1Rh4X31WKEPFtJ5ShpJ8DSF3HW8PX8OJpwqWIB4vHhssNtTYYKlCRaYznGw+z2WoMcpQi8NFauOSnLg64ihtZcXxcfmYfb2Z1HUSeFbPbpAT1zHzJUtfcSuZMNsga6WUwhGY6IxUm4aykstKCt1IPnkJfJyfcthBJt/JRl8o20haVvW5t5Q9KgXLYFm4/jI8cZ9C7T2ZjtUhpln0DbXhdjZikqQ8KRecVN33i1aKX927fVm1EqRpV2neGE0Ym4TnVc6D5XSr/p3VFT+anvGkyPl0PuPB7IIPipxja5k5xx8u5lQ9MvtLEeYhsJck7BhDaPq4uv9WHqW1CJ/WNW93ZOsXIZAqzXkIvUYZK0IugUfVX15S0v3EUAXBhs11ZF4EJcLTan2VlguBM2e3GFFh6h2nHZJQb17zPqsaya0dY9hJoh+GUlFW6m6W8dXRKBpVd7zjvjUZkjS/M3qVHHDzs/o3J8K5dfzSuP3dfjtLQGDQQ2Pc05BBHRXTMx9Y+ngPOIFHpWXqw2VVShA4sYG5C/zZsubEbjAPFeEPppYTe7NyQl74uxOYuugf8jIRfhM/2mJp8TsX3CST1uDv7geMgltpJHqun0kNpFrYzwJV0FxUmjsdckd3xx6tYG8g0dOiY78auD2OslG2pclnF+ZGVcYmaCX4QKuMU20V1vUnJyDmem3j7+oD5IWiKNTWVn4QA/+zeRorKDZvTZ5veosJiCJNWqoOVKx8SZKA1kJiAs6279tW8d3hanPpFaH01VsxPr/xv0QUpofp9mDiuf3VJcNdx3DPkY48Og0kw0Ay9KRjz/iWv1zyuS7TaCB/kuLypl/mqm+yGp+0kIxjtcPs05RN0yMzCHF+kcnLEUB99bnMP2uR3AIIecya73S5vwaxsfyvdViYNSelVr1yfbQDXahuk+xrGDx6kZy4gpnD4GG/40iPIjmhi5vkBICykJ3E6o7RJ9LJNutSMIub5ITygqoEXQq6ErLTgMn7P3xm6RFN9J7oQkOAqoPuYxYjyIqRhkhSrIrXA1ALVAFSiYbZx3/JZtn1lecECsJEx1l07a8qISYGdStDZd3PmgqgMgMuIIWDykVy4soaM4agohkO5uiC0R9/1L+vImSPjlAt8pvh+IJwfNG/vb/ieFVB8QuETz/99GfdhVf4GUEphXr9LvzoQ9ToaqEl1yQawiDDFDXZ0QX1/fXZ5oRAdnTWLdJ6fb8hYPISZS2ybSXFF8FlNn6BWAvFMvpOXP9e6+jF4RupoarqnKPL7Tc2kjY3f0Cjad/RzVtvEc4fw+LoJjGRDGByC3XwBowPeu1O6QRz+C7+9OPWbfydb2+d9iSH30aV/4G2Gavsvg2DNVUnL+28RkavwcX7UYrpRtjgMtcoSivpAeIrZPoAdfhLa5sLy0fonbfwFz++2daLl0hpWHyG7L7bSCqtR6hOSSZv4+YfXpOeerGPAQkWX89IB7fJRu2ZzZe/Ek9dHlHlnxNCiTQm2VoZjMlAAsbsYJIdti1s1TplPPka48nXtvodgFIapTRpekidf4Z1syhNdI2M0TpjkN1FKcUi/4ydyS91ZrVU9SmJGSKbxoVgSAcHmGS4MUtmMLzNfP6Q5fLxTcKqOX9puot3BWVxxmz2gOGoPSCepTvsTN7m+PiHbFasBmunnffMdPmQsr6grKbIjRDLzbZEAjaUlPWsdUzQyuB8tdUQMx7sozeNMUqBKGpfkNsZrpETAqhCiSFhZ7B/2S/dcbyZGbCfHnKWHzVSVjE8fxMBFywazW62z2uT9qqWVKccpAc8zh/jxfOSrasQSRAl5C5HGnmVNngJpDrhVrrPmZ1SB9vQCs25QGG8ZqiHPLfH1KEm6/Dw0CiCBDQa6916+RVW6ytLFRyfVUfcaamQWeFJdc6OGZBo0xiMv4xSLLfTnY1Z+8f1kkwZlr6mCg5/rXfRbcQTQmCoEyy+U4JqrDMyNG6LnHODapWH0aqf7rpCbV2dcFTlPCznLFyNbsyyARKtGZmUVBvObMnnxYw7GySaFt5ybkvmzjJ1NS4Ezm3FUZVzZzDi9eGEp+WSd8d7JD08KxbO8t8/fMDH8ymL4LANoWqAodLcShL+xmjM7SThb+90V/IYYgDp3FqmzlGFgJOroK0GCqUYiOBDN+GrlSJRLxoxt8MRTaGrHmTel4XXU4Mnxgs29VEAlCJtGbOUUlRb+iMUPlD69uO9nabcyVI+LQpObE19TbMn1YrbWcq3JmOypk9a0fmOe3OY8cYg431boDqOWIA6CO9MMpZeaEsbOUgN+6mmKP1m2R6JElNnHQSFBo5t4HkdeFi5G+czUYEDo9lJNBc+cJAaPi4cdzoqPJ5b4fMqUEnM7i/8y3Wqq94MFMy88NwKr7dk6HoRzmy3oOR1fFTCZ0XgG5P2Pv6dA/j9C+H9XDWEYBNTinFtJCgGxmO9IjWCjwnAa5EYeHvf8clZQmaE0nWNc4Jv5NfaRpnEyFbkQGA1vq7/XimwvQL/V1gWptcywgc4OU1YLMzlUvFM7XC4a7l7q+qjXANAVeqNlScrCNH3wfu1VosAHD0dg14TWL8GrQWlo0G2dRrVUoECoJQQvMI2xtPB3XySlYptITAYWZYXGYPRZt+lJBMmd2pCUNS5oV4aXB0lnlxhEC9kOx6T0Ll0cIXCFZEd83WsVFCJRFmd1UZBxaVXGkmKeqYZdJhaV6eGUMbZmEok+mOseK6mUak0MvTogWDGHSORitvGH208LbHyQ3csZbXAQkf/iU1QoG0kJ6THY6BqSM43VJJfKOrXpdvTQoT0JB5ssmjZl43kQxgq0jOwrbmFcklOKBf/bgq5PJeiIAzBvGagu8j82s65Gvi6sFoybipIPg9cMrS1sLZcUIAF0Vz6IiC3BdWDaP9SoFRTRWGR0xpyH8mURldRBhpcAplG/IZ+KVCTBDkvoXaxrRuPUnPQAZSNGlnJ0RQ1L5DdzZWqelGgqu6EHjk6R+7s/6VWofy84lUFxSu8wi8IlA8wHLxgQA2iFG6UxUoKYHDUnjFo5jm6qtE9Z8oKSM6mvcy3vwwopWA8jpUTi/nL6T5C/LcgEALiPVKX0Uy7BVp3zYjWwFYx0N2FchFfjC8ssGM1RQ6797Z6wej9tzF3voV6QXJD0gnu/t9CdjYH1F/CYB95/e/Ci0E3nSIH34Dbv96rmbB80hhjB9bbXq42rMFXjXn5T9s3K55GqaDhbdBDLqswVjMBZaCRghE7xU/fhw6pHl88Q6W76PQgVne09DGSDDVoQ9YRfIWYiX/06H8kX36A0klDTsQ0ihBKbHUaF72+IviKbHi/s70vE4Msznaz9BbOzV8gJ1b99zi3ROshiMN2eF4AnF78Mc7n6A0yN0qD1kPGO90VeSKB0+PvYetplAe78aUneBc9JCTKUS3nD2/4VrwIa5fU9RTVQ4ZHJGDtklFHBdGyeM6yOKKqN2VXK4KvsS5n2CLhpZRCYegfaoGd7JDdjnsaYJzu8Xj+EY9mH2GvkRMreBzz+vyycuL+zlda2zoY3Gac7uCJlQm0LNpXskp76UEnQXF7cIuD7JA6NF4yHW0FFch0xm6Hr8qpvcBLICPFBf+CGNOq2kF4WD3iR4ufcGSPW9sCGDXjR6oMiTbX6iduQhGrIvJQ8l7xsLNNgKf1lIkZ8Ea2z8ikN4MLCkYm5SAZY8VxP+uWW3xcXXBslyy9xa4hFmLAT8i9JcHwvGpZDQP7yYDDbDu/hUwnrUH7HZNxmG5ubzfJuLWFvBPAg+UFn+dT7AspuS4Eprai8I46eE6qgmqDj9MPL074LJ9zWpc3qlqqEHhSLPl0OWPuLKf15qDSwln+h4ef8OFiytRHcuJ6omAugVNn+V6+4N9OzznaYOCcKMXMe068p2yIieuJeNcrKuYh8GdFe8XNWGuW7iUasBWOGAA+MH95OWjnPuBDoE89jQASAr+8uz46YpRi15heMa+rNrsrN5RS3MtSFs5j1ix9FVBfu4dub0jISbXm7x3ucjtN8OFloZ1VvC8a3Su+ORly1GFcfidL+Oo4w/TI1lcKSglcdFQ93E417y8tn1fuJTNtJ3DiYoXFirg4cR7XQZI9qwOzWFay0V8iEzixwtOqvX8nFi62KPApPPww774jvMDf3hUyFcmH63E0BQy0UHlN3gR4TzpMsgHe3PO8secYJrH6og1KKZ4tY2Vpm8fDN+66rZIYnFe40L500UroYTl4A6VVN9Ry1yEEePwkYzY3N/LYQoDTacrDZ6PexzFbpL23FVEkiWfZUUUxO89wtca7FgpPIPimIm8UGbSOvA2GE4+tNHVpCNbcqFCAKKEVgiIduFiBuug/ng52HNXCUM6Sl+SofK0ozhO8g2zS/jDZeUOWJnKlrLsmeC8ego1khl10J76Un2SxHV44g6uXEg2h52P1RNJhvK13A7L51XrVvgfVRXjcd3CuO5eZ19sTUQRDr1TrZNpvPb5pO7OM1RF4QXUIUehi1V5HBYppsvadkFwETH6TWFACpoDRZw7T04DaTTTJose2AixBlh3kehBkHpC6YXIVV9UE16GAIiAPG/+G5Rcot/qiSBTMHHJcw8I3FR4rIkFiBcRZjV965GEeSZQWKKNh0kjpVtKeCycS43EhoJwnfXTSq6t6vrlkUKyHvO9D9VcbryooXuEVflHgPCpLCamBsoKyjhMJ3ZSiNmKbqiOLTHtHstyObBjMl6iyBHpk2zcweU56MSVMz2KfJmPY341+ERugDm7Bh+9fkhAEf+Vyp3Qj99R8h6CSBDXqCKaUOXFZ13M2LwGfL1vZWwkeOfkkyjJlE6iWSDmP+xjto02KnDxAJofbkRR7b6B2X0OKi+jzYAa43X4kQisGh8gb/xCqafR6UAZGdzdKSl2HFM8hf9SvCsVXiJ2jukyoLwPWGj26SygChBzwzT6aagxlEDOAlb9Fm69GcPGa1eeg08acPOafXWFVMhzIBndxxdNOz4h8/iHF8mOCrwi+JIhtpKmadlUC1XOSwQG2OmYw6pve8udHmu4xyO5wfvGngDTB8WsEDzHzzvnlZVaubDAAnhef4Pyiacew/lmJT4SzC27d/Y3O9pbLJywXD0HpS4JnFT5SKg5Y3hUYMwBpBHg69O7PLz4gBNu5TYQQxJJlu6QdPiwheKp6hpd2uahVe0KsctIdz0zZIUG2DoNkTGK6fQPOi2ec5Ufkl74qLyNIYF6dc3/nbb5ysL5iCeDe6HX+7OSPKX0Rc/PXnEchlt4nOmWQjFqJB4BxMiHVCS44FOrlCopr/VMovrbz9c4KDy+eMzvls+IptoXoCQQWbsmD8lNO6lPeGrzZ2h7AW4M7/HDxCVWwN6oTrmNVJ+BFeFA86WwvbheoxaGVxjUVGkbByGSMzYCkeUYSZXirxTNnhYfVlBO77JSskqZvSx99ObyEaJb+ArRS3ElGPK7bSYwXsWOytfcBxIDbNya3eVxOyb1FRCiDo/TRKcOgmJgBXxkdRqKmJ0SER/mcOnjO6pKlr3GNYXSiNDsmRSQwHO4QRPAd75zCOx4VC+YtRIEAM1dzXBUt9NRN/PDilM+LBYX3OLn5i9UVKprS/s+rih/mOf/Vfvsz/LCuSZW6PI5VG9cDQxJPChr44+WS/+N+e+Zcqrvy9F9GAhz0dMSd+8CfLgs+Ki11EA4SzW9MhnxrmPU22X5QWhZCNB/e0FEBEq34zb32Z+T1DsmrF6FoSI0OLWgvwod5wWuDAbsm4cM8j/1QirQ5xudVzc7YoJTindFmGcivjodMEsNukuCdi4bYXF1jafrl5EpWqg23soQ3BxlK5egOsmXVgpV4Dtuwq+CZ9ZeyS6sZwvWA/dM6cGgcXx2mZFp1VhS4y+dRtRIZK1LGqyjxZDuOd+6EJ1uowwWgg+8A4JNCsRS4lSoWtokxCSgTSE0M9g+MUHrFk6XZaHwN8I1bju89DUxLffm+WP1sRRZpBbVTnBUGWD/3nYyikXHeUw4HwDaeFusgbC+7JBLbHGbtB34xNVSN/r+tFYulJi80KmiyJLA7dkxGjjsHm3V1bK02WvXd2N7ptcbXq747B3VlGnmj9W0EiebWSsFw7Dv3P9qziChcrVfLySsrvKZ6IskCIvpqydkTCvBW462izhN8bUAaH4pRwKTgrSLpuBarvphhIDjwlb4RNFUrmR4l6Ax8oTuP1y8VIW+qMOooTyerh/Z6YNwIehQIhUaP2xtUg23eSIBT6MP2tUgYSW+5KIjPnt/vF4w3U0iPFcqDGAgTwUf11Bc6saGtVShi06GvtutoT2mFHysGTwK6iuSEWg3SKsZ2xIAphcEjR/7tze9EEennPwFgIXwY0N9tmZsLiGuC9c32aychDgiCWOA0QPfU/EuFnMeKcJauMQ+8SfJEyTIFCx8NtM9r1J0Of9BREkmN7oI5kEhOSEgiWdEDSgRVW/Q8RxcV3qhokL03Ru1OYFXB2OfF9NcAryooXuEVflGwN4mGXssCVdZxMaBAB8EUNcmigBDwHTq3Ar0H00v4wOjxUe/NB8+eM/rsIcm0MbguK+T0HPnsUfTP2NhABlkGdQX2SlM/ZnhE1hofwHtIUrj/Wmdzks/ZVoKHJw/av1ueIXWOnH2OnHyCLM9jUNzXsDhGjj9Bjj5GZv3P2QpKafT4FnrnPnp0sPXvWzHYh503YfLaVuQEgJp/Dq5o5J260KTg5EedFQ8qjdUuKhkjdhHP26XptnDpc+ELCBVqeJew+LyjvV1cdd74VHguxTVf2jD+XzZ5lyp/2BnsXlx8j+ALiuUDnF0gvuSqJjaA1LjqhHz2HkpnGwmALxs7k2/iQ4HWI2Lo6zo50UA8dR0zO0wyaW2rrE9QKKxb4v2SdiIv+h/sHny9Oy0NmM8+xfsaEXdZfXJZQS6N3Fao8b5G6YQk2Wmt3nCuJC+OKatzqg6fhRVEAuNx9ww5SycsimdN1Ub3ZNDohHF2C+/bF+RFfb6xXze2t+2+FxCP4b2jP+KseNZpVg2CCzWTdJ+kQ/IoNRmFLbgoT6l8RSvhgaOwS+6O3uAo7w7Yz+wMpVYmnevhguNWdotfO/i1zrZ2zJg/vPghJ777PNbUHNXHfFx82rkdwBvZbR7XJyx8e2b69TD0fINnBMDCV7yfP8MFT6YMQQJWAjNfUjX3R6IN/2D/G5feCG2YupLjeoGVNvokosYzcyWld2vJCaDJzt9uUZNo09oewNvjfb679wZGaU7rgpmtqIPHhYANgaFJorfHFmnB57bkqFrypFhw4SqsXNnF1xI4dxWPyyVTWzIwhkFHQsPTckkdNpy7EMidbfUMWaHwjp/Op1TeU3S06YkkxRNXM3eWY9s+JnxWVQhwL01jcJerN8gKQjTPPnGOmfccufb3yH5itvJkuJWYXvfEh0XF/+t4yu/NC55Yx4n3fFRZ/sezOf/j2Zx5j/liEOGzyuGC9FpbK+CtwbhzVubhkjjog5HSneblz6v60sNgkhi+Nh4xMvrGPmwQch/45cmYwx6SpneyFI1i4f2lafT1ww9AEYST2vJ5UTE23e/Nd8YZaWO63YZ4z8Rgx6hDtuw/zWsSBZWPtX3r7j0HfFR4fveiZOECacfp3jGKgVYsGx+UdZdZiLOv0MSJ9pL2/j2tPMUWN3QQeK0jrgTwsISZi74u2sRY0ySFURplqYyCOii8KGYW1nipvoTESHM8+lLa6HIuo1ZSYJDowEluWqsajIb9jmDvOqyKxddhvlT9zIlvQDHPu+/B6TyOubO55vlxwtlFQllpaqtZFAnPTof86KNdZsvu/FZrFUmy3XKjKJJWnwelQILCe/CuZY4PIIq61AyGntHEY5L2AUlrGO9YglfxE9TlxZXmL1o3+1NCmvW/fvk0xTtFfp7hCkNoFIldqSguDK6GZCD4DpLONORFPTXYpb56iJuPrBRtRUV126A6p7P2wqAyQRmu/ObVtT9X97cR9ADSQ4+ftV/AsNAwDPQuHlYB1eG5oT5NYvlVr7Zi8N5tIigcjD7UpCcKXcXqB11BcqbIjtRLy52wgXQJzRgkHbcggKxMxjvGrJAp/EhBEJRrKjOulW1GoiEmJqTnAbOhMsIsPdlZNyl3AzWE40AoW565VbaBDTAP7UtDASqgFmTmkb/E1HeZWmRqucHEX88QCM2LObdI5eO2HVCoxhxsw8vJCypEBtzv9agiFkFPFyTPTknOpui8jEnG0yXh8Qnh8TGybNYgg78EOfVfALwiKF7hFX5BoPd340u5rBHrkNqC83EWK3GwTPKK4q12aZNITmyvbafzzcEbgPTsnOz5Eboo0HlOKEukrBDrwAfkyTNk04LX2iidpLiSs5JreYcikRBIEvSdu+jDbjNoKQs6Z23rULcfr1Q5Mn2GFDNw9VV/vIXgEFdBMUOetssc9YF4i1o8Qc0fQ4eR70ZUUzj9CTz5j/Do9+D5H8Ps01il0QNBQjTI7nMOxYPLUbd+tXUTvfNO85c0ViWEipuziuswhPKEYNsz1M34LcLy0dVvVyvHG7MUWJlbi9j46TAprqtj6vIIVy+RkPPyrCfOIIN3LKd/Rl12S8582QihJktvkWV7KJWCqJg5IzpWyaiYBVrZI9L0kMS0VxM4tyA1ew050XWNhTTbZzi6i3PdVVh1dY5CIcHHILYIIYQoabJ6jINFAVm2x97+11o9I5zLWRbPqes5fY2ofegm04rqDOcKrlZp7cjSA3Ynb7S26YPDbzC8fhGL6gzfYUJ8tHjEo9nH+NAWCrqCiFC47vHh2fIxD6bvrX7RsaXCaMOD6XssO8acaX3Bs/IZmc5Q1/53o19E4+37w9e4NbzV2b/n9SkPiked26yQh4IPi3a/nhX+/cUPyEO18W0X+ykMTdZJBp3ZJRcuRyT6TCilSLXBEz0ELtyS/WTEPzn4Je5tkHfyEtBEkqJPEPnCl+wk7QRUFTyLDgLtRSRoRjrFbpBQ+pX9+3x9fIv7gx0mJmNsUu4OJvzq3mt8bXKLqSv5aNltcH8dnywueFIuWr0RBLDieVwsuJ9NOgmU3DsyHTXVbfAUzlI49xIZoZXa6D+RO8fcWS56GH57omn1Y1uz6JCCXIRoSJwqRcL6p26lmFCGwIVznLcQFE6E/Y7g+1ooxf6GitUj6/j3s4LpmqpbAT4oa353lm8koeomLlBKvxF6oDTjJKHoOH9eYvVBHwix6ue1QXtyTn7tGFck20jFCqhUKYZGc5im/PJkzJvDzdUTAIX3lMHjpZ2mjfe08MGy5FbafQ2n1uHp81aKklq3OypkntqAlc11wzVw6gIPSseyw/fjnYFhoITpJokgYtB+YhTvDNr7d2q3m5WLwEFbeQcxhlYJVEGRKEVo4mp1iETE6hZeHaIhEhZdcAE+u0iYZHLpM3KjaKVpK1HCKIXKKfIOr4oun5l1yGvVaqxdVJoNvuZrMV92+LkJOKfIc818YcgLjXPgbJSckhAP+WKe8uj5kKpub6uuNXt7Ft0hjbUOaQehYBLfkBPd8A5EFDu79kVF5JehY8VFkkXj7dXHGEEbiSbbAiaBSY+qkRVmzzLmzwYEG1WDbd30K0QCwJUaXyt8R8VAuhdwuaJ4lrQv26W5pyUWk5sO4/dQKZKDqG+mTGO6reNnVYmhjGB2hOEbDpUKoWrvX1goQgeB8RK87iRkmJlIePS8ZUQJYdK98fChQhfRy+FFrwplIb3mSyEJ+P0N+xwo/ATQCn9tWaWCoOr4QSRuA9jbHeNBpgjDSCqJ4WZuXVNBobygXCQwdNl9rKoSBo9rej9yHlg2n9ZOAmWPF0mgITPYaEZ9o3kryMzFj+3LrDS/9YLMHRTXtPBeEE6IG4ZInpQBnHR7LdY+lur1OYcSKy3cm91yvQDmdIqqanRZXybbSm1jPK92yDxHzuaQJahXBAXwSuLpFV7hFwbh+BTxHsqSlZBoEgQxCjEGSQ31rV1UxyRYkgRRsjVFIT0Wxzov2PnpB5GcKCu0rWN/szRWRGQJ7Oyg5gs4aA/gSPCwXDTki3/BD6Ip3xOBooiZ3JukAM6PXiph3YiOYBDVPJIRtowEhb9W5QFE0yYHrkDyKWq8YcbzAiR4wtnHhPkzEn1w9e/D27i7vwZZu9/GzX5OUU//AHX6Y1g8jjJJwUMyhNFdZP+ryGt/F27/amdGvBKL6JTNta8QZ/Jj9Ohu6xZ6eAc1uo979NtQT2O1xEs71auNUXYWKy06oJJRlF3y5Sql6IUtYlWGSH1p2NxlhB5cjrNTJCzWtHXVZgg5dX1CVTxmNHmns49fJpQyhOCp63NWlroiDo9F+ShBFUJFCJ4sOdjQVkJRH3dmwq8QfBGJkA0VFFqnuFAAiiCesAq0S8xMU0qhlEHrhN39r7G7925rW4JQVedUdtpzga9wdo5zBUnycmaLiDBbPkbrpIdklCJNBkxGd1vvF6OT6OuwBWznKg2O8ofRd6JHKpQQmJcXndv8+PRPqH2Jl7DhOgvWW5ZuzknxvHWrR/mjxmhbGjNv1rbrcPzo/M+oXMUgaU8l+9fP/t2GSpErBAKfV4+a+3D9m+x5fc5P88+Z2yVVj/S+RCXsmlGnDNWD8pgqOM7dgmf1jDpcGVdnOmFHZzyuzvnf6XaprRU0isJbfOjWzV9BCDztkG86swWFuN6vuVQZbm8gAADO6wIUfH2nnWB6Vs756viQtEeq7EfLc5buZT+V61iRFOt8Oa7DKEUVHEtrb5AzykOmDbtJhtGKu4PRxkC3UYrKO+oOeczr8CI8tTWmYyaVKIUGjpxr9WW4TnvPQ0C3jG+GWJGxDTww3BCd+6CoOe0QshfgYW15Zj1vZO1zQENMXmwSPzfCqFgx03VdavFbVVBUoXt7oxRehCdlxaOqpLpW6pFpxZuDAbezlMkWRNCzssaG8JKqxIsQwIbA07LmrVH7OPiTRUnh+3mNiMAPliW/urOeTCmC4JpATFffHFC6wMwHHhSW39hZ37+xUagmwWBTe0bBL48Nkw4GYGKu1Fr7IAG+Pw98d3f9OLPycS2CcGEVVYBqdSJFY5SQahiaKKl2bxTYUNDC8dJwVpjLYxa5eX8LlzEqjBa0grSjTRe2ywktrdrgM7F9sllq2k/4qrXzC8N0brD2SmJKozBGSJPAIBXy0nA+S3ntzvpxSWsYZIFBFqiqfkFso0MnoeE7jcqvUNcJJ88zvvkr043bVkvDYNyc5KZK40UoIwzGjvF+P4Li5MGIx9/fx71w3J4of2a8EDKhODedxcjaQLVsgvodRIbUCkkEk9J5Sygd7f30JGCPzKWfhUhTedEEyPUw4OaGZM939s89T2AbufwA/qLjXjBcVXJsGhcEJBNMqVpj56oEM7sKXLtDIT29eYJ0GYkKSaF6c4O0T4P6DcXoY8Htgc6FZNZUPzQII0imUL4r+N3uZ97e0lHWSanLAWYl86SIxEWyBDcPyAZG1Sz8DZPtjQhAHYmeNkglV5kUG9sSGKvL5KQuiBPkeY0srpEBCtTEoF7LUB1k9CU0sGwMhYLcrAa6sbPmz8qDSjuvsa9cZLZ7ERTgDyebtw1Ccj5DV5aQJZjZEmXdDbZbjEbSBL0hieGvE15VULzCK/wCIJxeED78PPpLDAZwmRkXzXqUBPwww0+GUeqpBW4y3raWAIDlN9/t/F4XBZMHn6DLElMUmLpuNBoFqWuoYhWFXEwJFxv02quqMcheyf6sgQjYmjCfIUfPWpsSEajL7cRDAd7+ZnubSJQlcvVVBcWLfavLaJidn2+1WxHBP/8xYfbkpWNX5Snp4/8AdrPREvUM9flvo46/D/PPoDy5InpcCctnqIsHqIf/HnX0x91tZQfR26HXYkjB3rsbCQU//RiKZy3XN2agxDpki/iym0yojjG7X48ExUomah3ERcPj8ghtJp2Gy85XuHrKplmZhApv5+SLjzq3+7KRpoeU5UN8QwLItQB59BJwIII2KU+P/he8b19FDAf3KKon9Lm+3peI1IzG3abgo/Eb2GpOCDVaGZTS14LJgkhAKc1k5x1ef+MfYzr8GELwKKUpimP6hL+USgjBkRfrq1qWxTF1PWvkEboDkgpNCI7a5owG64O0tV12BrbXwQdL2fKM1L5kWp6S6ozQIx9ZEHyHxJgLjieLzyl92asCxeFY1FPKDmmkk+qUkRlThzpWynS8VU7sCf/1T/7rTnLpp/mnrT4RL0IQpnbKubto3eaj4jHv54+4CJvHypSEoU756rBbKvD9/BkfFM8ogkWjqMVdBper4CiCxYrn0/KE95ZPO9tSSvG0mrGUfpU3BsPjsj3Ycu6Kl0ynO9tT8Npwj1EXEQ+c1pv9qgLCud1cYVl5x9RWG42vIQbDPph3V2YkonhULHEIqTboZnyJ18OzcDWHacadbMittDsjfi/NqELorVQRqyiESQcB8HqaMvOeU2s7n7pVhn0Qad2/Uopj67cKR86c517HYjeI8FntNj53Mx94vsFZN9WKw1Rje2onFyGQAOMOE++JSXubgkP0eGirQIFoev1ZUfBpUdwgJwDqIHxelnxWFJ0yUS/i1HmWvs8o3ZBMGyROfzyvqEOfVIF4D36wbG/v9VT3lgSrBU5trKLowpHrNws0Au8Ou4PSv7aTtMoXrUMOfJQLy5Z7zCjIFJxbRdHEl1J9FQPyorCNzdnhIPD6OHCnI9sc4KPThOOlZpBAZjqqZEQxrzT7Q88oXb9V7brJgTbkLZI4aqMI/nrs7bbfFUpBVSnyQkf/iGu7EGIVhXUa5xVlpZl3GFoPhx5jhKRFsmkdgijSlvMHUFf9n835RcbH7+92biNNwoxJAoOxZzD0aBOu4pyNrFM29Nz/ar65GgM4/njE539ygKtb7n+J3hOhVuTnBt3lQRGgOkoItkfVSKURLZ1T5GTP45cKbaLBNYpIUlx2QWFGIfpZ5Ap7btAd94tbKujRt+sI847tv2Kh6Japuo44he9IEpjd/C6MwN4RwovTHoHyawF/0G+/YaQovq4IO00YflX5YMCPwY8VkoC2ql2jbbXrVOF2FaoxMFKr/LqmggIFygpJIegN5tN66W8QJRvRkFJtZIA4iYxz38IhBySgNkxrJQjysELmL1QqCMjCEz6vOs2sL2ElmiYNdBMzaLkXVkZBKNQk6fQGlaXv7QEhSuEPdtAd72EAVVbgA6qs0EX8+0tv0iAwWyKnm0nVvy54RdW8wiv8nENCQJ4cxT+XRfR1qB14hxZBtMKnBj9MSeY5XSk3Sitki6y0FexhdxXA4OgYQkBZiylLlPORTPE+VhSYWNamhhnMuuVIwulpk0lwrS57HUTg7ATZ2UH2D1HryvIvpaG2nMwf3mv9SpmMkAwa74TQmDQ37Ssd016SDJVPYzXIFpD8FCk6dPZDjTn/EH/vO53tqPOfohYPoTyD5VOw+bVKBQU6A3GoZIicvQf734AWGRa1+3bjI9AnrUVBut9UMbQcQnGEP/1T0ElMswqal2fVPp5XXyLiUR0VGdE9bwGkbAo4x6oCS1fesgRH8Cs/i00QJDjq4nGPbb88zBfvARrvLSLrg4NBPN6PKMunzBfvcbD/3bXbGZ11EkA324wz2iRt97QASJqA4JWx9WqxuzrvBm0GZIO9TnIiQkiSMd71yyDWSiOXVRvrjsFRuyWuMYzu3jNYl+N9Tdu9H4In1aNLD4I+qG1JXs+YDA5e3mczllhf9qpqAUXZIbklBHK7pN5QtXH9F7WvOisaRITMpPjgsdJ93ILwef4ZPzj/Pt+5tf4erEPdarS9DnPfHE8Lx/i4OuXczXudPa0UmU75L/Z+uXWbIMKj6pypK+JwQ8Cgmix/QaPxCAtfUYnj4/KIrwxvM265t70E3i/6SyNFM8v2oyl8rJ7QqF5EjxPhYEPQHiL5YIPnvC45qhac1Tl18GTacJCNeGO4x53BuJcPRSAuIPtIWgXFZfZ3Gz4r5lFmq8k8DEGogr88/sI7zFLz92+9sVHiSQFuC28u3/ymy0D6XpJw0cg89Uk+FLgkWdZBZDuXkdxH6aG2Pgbodd1ezBpvw1up6R3HCMBZh38HwFCrbimGF+AlSq21Ye4dZVPtsP730YPi2NZ8ZU3l3TrMrMN1yDutEIhjZtfhPClqCh86p7w3+gvMOhq8nxkyFcmHTXBAHgKLDYGZM9dPwssqOLGeIEnrPT1UvvexQnw+HhTdsaPSR0mnpElGrsLVs7UKJA6NMNDCV/f8hmoHOFrGedG8gtLqdoKC7qUKxOXMeEtT4UT3e/b6Qy59WNfBWoUP0Yw6hEgYrIrWVVOhggADqKzuPGalYG+/xvWQZLrsnYD3sVJjfe/7r11F4MmnE771K7NW0kMEsqFneZFS5Yaq0LhaI6JQSjCJQqeO4Y5jg1oeEJe7Rx/sYgvdvVQSCEGhg1AvFaO99RuXp5pQq343gQfXFfwHzG7A57EiyGQQMrnK6dKCSriRtiyB+DJuO5ht5J1Wbebt11Adhq1M1bXfQJi+2G0LybmKxEUNaLCHQv2a4Lu5rJcQRgoxQjBgKjBNsb1Jwe4Lfgd0oUjOwXUpAGmQgUZMQBfcMN9WqlkepxBSRXYesPcEydYftfZh+wEjo73aQSKZsJX5VY9wi1y4aFgNSB2gCEjzolKpgrFGzg3qzgapIwE1NqjCRLJK5GWzpdW/Z3EAU7c2rDdrv3kwv9YB1WN71bynVVmjKocKIcbHXPNm0gqaZBJ50n9d8FcdryooXuEVft4xjdUEUtdwMYNlHsUsG6ggpHnF8PkFynp0V02w2y4LD0C0Ilm2Z6KqusbkBShFOluga4e2FuV8Y2jtoyRVXiDLAqlqpKuPs4vmpbLhTRsCzOdIniOz9ayz0o0m/zZQGj09af86m8BwN/ZvRVKs3srSBNabjGq1zWwLCPPuzFsAvXga99EGV8LsMyhP4eJDqGcgKzNgAQKEEopjmH0Sqynm7SbUku5DOqF3OXn+BDHtwS938R7iFtwwxl674xp8hVIJethOUKh0l3r2MdTtlTRNgxBsPAu+IrQEbIvlJ63frW1VPMEX+A2+DF8mzqffo6qPW8mJFZy7YL78kLOLP+3MYB9mr/WrjxFI0259fQBbLy4rVELwjYl4k66DRimNiOP87CcsF933fJbtUpUXvYNzIoEggeHwYO33o+EtrCs2+mhEOJyv0DplUay/v7JsgjbbaYY6Sh6evbf2u9QMGJoJF+UJ/YhVwfqSRb1+DExUiiC9qjFWCITOCoqddMKD+QPqnhUALjh+99nvtn5vMGxDIlssj+p2UvDT4jndeevX2hLH35x8g68M26uCntczgsRgfRFqcl/jmjJ2hb6solj4itN6gYjwsMPQ/eP8hIWvehtbKxF2dbs0TCmOoUk6JYeuI9GaJ8WGSkZiAPvT/IKP81M+Ky6Y+5pKPHNf87Sc85P5ER8uTplsJBlhoBN2k4w+75EgwpvjdinDqa14XuUcJhk7JqPynnlwuIbSW31Obcn/8PgjPlt0H+tJXfTS/b8JYdIRtTp2jqO6bpV3ehFBhL0OImW3T/ruNTiBH3Z4hyVKcSfZfMcMtWJ/kxYOMci9Tfj1pK44t+1np5RwqfvfB0apTp+Ox2VNpjWZXn/EA6PRSvG47P/uP64t024NnkvUQbjVIZP1o0WJZrtYUN0xvzxMDV8b6F7xKkcM7Hed78ILQUIvEkoCnFg4su3tfX8BW0iVAzD3kLYQtae2UXzVMUHVyhU5QfOnE8VZpdFa+OZ+d6rxydKQGuF4afj8Iu30h41+KUJpNYt6/f2VJeB6ZuaukCbCYYux9q297Q0oUtM9+k7nJpqCB0UQ1ZAUTaVBiCbSItFfonaK4aD77rpzy+J6yjJBDMhOp+3PSGLCFpUjCltrnj9uX4toDeUyoVxq8nmCLQ3B63isXuNqhc0N89OMk4ebCf3poyH1UuPt5reJ+JijtXzePncsjlO2yXHzNfiW+w/ALzXJvieUmlAolMTlcbR8vPpdsKASIT30uGn7Q9pFNrSi7CAopnqL4HCUcOp6RYTR1ZeqgPHH0Sxb1Y2SVIDsVDH5sUZ3F/2/hOQkMPlRYPQ5pNNY+aACqArSExh/ANnTQHrWfTxhCGbqUeVNcgLisWlPY6Ady8LS845nLmwSVlr3G6BtapnAZTlaX9QbPB4ApvGmlqVHzhxShDiI+ugTIWeO8KhHQlqqYGhQE9OwObzc1xU7XQmMNWq04dn0/Y9XeUHnBTLozvUPgxSUQhUVuq6jvFO49mYKASoLVY2UNWG5jW7aX128Iihe4RV+ziF1nEjL87MY6A8SB1HfzB6bGaSuLOnFAt9hnKcvpZe22L9S6I7SdN1kwqXTWXxJeH81q72a3UanNQlQ10hL9pyEED00Vp/Ojknc13wW227D3uHGY7x5QBrJO2Yre/dQzsbZ5fXAZAhRRil4qPOYOT7ozjR/CX2yxMWD79jOF9HUevZp9GRoJQA8lGeo5ZNO2Sg1ut1ZEfFCo7D4HLEdGd3lafQwuDQA7k7DknqKytqvoUp38ec/oE/qiEhoDLcDIayfBDg76+7TSwigDKEjoPtl43z6fWp70WNLIYSCk7P/iHRkuo+H93sReclgl6IlUH8dRXHcGA2OrlVOXH1EAsFbvLc8fvTvCB2G7WkybgiOflNvwWP0gOFg/T1jVEJiRvgNmf8r+OCY54+wrmXSKJCo9uBxG/L6fO2/a6URBLvB6Ps6gkRpqHVQSnFreGdjtch1CMJAty/IS1dyVB71bs/juagvWr9/Z/Q6vQlQIoHyafmw9XvZYpXmCHxn9xud2xShZs8MCAjLUOEl4IKnDo7KW6pgscHhgufIxgrBvIPkfFhOqYLrPcp4FF9pIdwAdnRGpuIibdOhZ8oQRDiz3ebHNnieVwsKV3NWvzy2OQnU3nFa5zwuN5MdWim+Pj5gsCHQrps+/s2Ddsmt0nusBLTWpFpTrjmX0vz/1NX8dw9/+pJ59nXMrGO5ZbXj3NrOCoo/WSw4cq7XXZ1Cp+wAREPmbbAALja46H5rlL1MfAiUXpj7wMIHDhLN29lmAvZZ5bYKrs+846RuH+NqH7aq9tUiMSGlBWXwuCDcSlNuZQmZjr4QefDk3lF5z7m1LLrmktcQRHhvXvSWKZoH4VuT9jH1tLbo/uomABx2zPXfGSQcZElr7OlFBJFOz5JlI0vRp3+OKFtWdATkz10kEbbBimRYh8Kv/lQ4iUmpq9rc1cc3GcHPloZiw2WuvKKycLzUMdF1ExQsrWLZEiDWGs4W29GgRgsHk/Xj1mQE290tsDfxhI4RyTmYL0z0gVj5jVx+4lxdiJUV1moO97rJvLrD5HsdFFC1SSMB+7eqrapuQoBi2R48XJyn2EpRF8nLZ6VZKIeg8E7z/LMJeQd5AlAtkijt1C+vBJMItsOE2s63CzcHqzun8WIVoYgyTioLsfh/9Wn6LE5hxkJ6x6NM/E1re19yBNHPFZT9nxHtdGeJmN8FyYAAw0cNMWEjsbHynoBIAOz8wPSuPtC5MPg8kJzGtpRv2rXN35v/zp5CctJ9M5gLIZk3bGrbqRZILgRsY8LdgjBur/JqRQ1qsH7HSqlrRj494dqVllYQK0gdosRT2zYXjjDvJpGVVrCbRKPsTLdHtBWRzMgFydvblHDlqdcXyfMpssk3Ik0IowG6qKPCySpu51cxMgAB6xHrYYMU5F8XvCIoXuEVft5hNFJUMJ3FwW3dDE1AOY+2DlO1z7wlBNQWUgYAhIB0ZAqKMShrUXVNyBJUiPJOaiXRtBqIvb/yzihbgn2qkaDqYbgJxDad62bst5nRrlC1B5tVkkE6in0MTS20rSK54Or4py3g9FPCrN1odi36HneHfwI6hfwE6vmGKhSJREd5AR2eEWqwIij6SR4RLHLyvfb2kp0oGbWaGXc2F0CnhMWnrZuUT/59TPnpA6nxrkDEo9X6c6j1oPF06PucaERsp6fFlwnvS8ryCf1zLQN1dYztII1CqBmkB3QHiRVGp7h6iXPdZExdnaP1EOtyWKus7gnBYusp89knLDdo9o/Hr9H3eEWENG3PvlbKoFRC31moiCMvT9AdKz/9Ba790ay9aunx9OOe8k4RiTLUbQQKcGf8+lZ9A3iet1co/OeTP8JvFY6ks1rgVydfI9lyOvp50U5QVFuQOwA/6RhfIJpK30omePGUzlEFRyWWSiw1jlriZ+ZLHhRHFN6S6fZFy6oCoy92TcZJR8XPItTcS0ZkPbxQomeJEAidkkLPygWC4DreIVYCu2bAj+f93nN3BiMGJu2s9FAo3hztsNPhj5FojUGxtDUfLM5bvRs8kHvHSV3yo2l76XyqNcuegekVHjvbWpVWhcD7ZYkN/WpkHLFCYtlCojgRPq76Z/av8HHR/Ry8O0j59fGAtLkeZRCeWseJ90x9oA6xSujHRYXbMI96VG9zR8fR98fzdr1lgU7JphdRipB13M+J0hgVA+xT6ziuHSfWclpbTq3jYVnxaVHyn86nfNhRMbzCp3nJwrveslYCPO+ozsjdNiN+xKDjeFMF99OEUY8YpyKaYHdd40go9OthLVEuq0tCKYTQL/D/AtraTFWUZTqzsGikntZdm2XQfDQ1/Psn3VVfRgsnucF2aNyvIEDlFKXVZC0mz+cLRdGR3b4OqW6XsLcOJqPtTuC9A9dpDO6coiwVtY0VFNchrKoqFIkOpIkwSLufz6PjQTOy9OtnVRuSpH3bg9sW3fH9i5CgMGn7GmNxkWJrHeXXmgCx0hI/UbIeVDTn9g5On3ZXUSgtnRUML8JZOqWjQq3Q2/iWNARcewcFn2vcTGOPE6TQUY/NK6gVIdeEUuGvVUZ0Eh7bv5K6l1Wfb6k6L5A96viNgvLtgFmCmSvMsvmUCl3Gv+sKdA7JBSRn/a5deiok0yjrpOuXiQldx0oKVcdtuzB8FO/PDm94lAddQXockA7z6GD09qRRxzRerMC2sXKRjct6DJBveLdrBRc91hipiv2s/fqlJjQahg5xnnDSftMqrZDKbxUZ12WNnm2oxhdBzZeoes2+I+N7NUTW9gvJsP9VxCuC4hVe4ecc6mCXUJQw37xoMnlF0jFYJstiq+xSiIkkYdQ+MQvDYax6gEuN0JcGWEUMvlsHSRI9NNbtSynY3aM/hS2QJKiOTDJ6mHLeQAjds0aIKQLaxAoKb18gAlSsmfUe+fA/4M/6+xPonXbvixVkdDcKiLYhmUDxvFsG6hIBqjOkkxjRnQTGS3AFcv6T9u4dfhsJNlZ6bEKTfe87Aoj1yX9mm/vF1+eARrfoTA93vo6tttGBDCg0SQ/poxs92VL+a4WifEoI2wlqCIHF8v3WfihtGGR3UF22VEqDBIKvqMvu86OUxtk5Etq9G2IlhSNfPuH46E8625tM3uxo50UIzuetVRlKKcJWAexAWU3JWkgP63NMh9lrG5Z2fda59TUnxWapt+vI0lFnhUTaZtbQgVm1vsID4GnxZOv2bnVUQX19/JXeckcQg+x5aB8/Bh3kwDr8/vTH2I7x8rVsn6FOm4BzDO6HaxSSEAkYT2DmS36wfMitpL16LtG6U3LtRVjxzFzVWvGQojHGcC8dozfk7AeJb+n7Wbfo8rktEBEq8YxN2gR3JfZbhATF2KSg4KIuKTZ4sBxVSz4v5rwz3mMnSdf2MkEzNim30iEnVfs85jAdkCjNR8vpRppMgJmr+eGsXbZxoDX5luPxUoS8JYB+6lz0gKAfzW2BOgTKlut75hwnW8rDADzfQLoYpfjHe2P+zwcT9rXmuKpxQUiA1xPD39oZcpgYHtWOP160E6AiwmLLxJcAPK7Wt1mHQKYV2wgdWCDrqAB4bZCxlyQc1zVn1rH0Pj7P1865C4G5D/z2yRmfdMhjATwoSo6r7eaWP5q339O7iabqaZC9wrjjeE9cINWKu5nplC9TRM+GoVadhGUpQtnzHrQCz+rA/Q6GYj/TvcmdFRJiP9fhTgbnNsa9aulOZ7Ao/vuPRzxdth/v/sBzVpjeJIoNitQIw5ZX7WenKdt4KADktWJerP/N2cww2SCx9BK0YmfU/hvnYbE0+A2+EWkauL1fk2/Idp/OUtJs5dizGcEr9juqMkZjR+hBGK0gwOHt9c+oswpbaVylMcnVlbm0EwSUiv8uXhOcJp+lnflu2Y4lbCFpZXPN8KD9KTAdBtprIZHUaG9Q8AuNOzfrKyMEpFbYM4O7iPdA0iUltuXSGuiOOn4BT4vkvPs3YYeY1W9VNJBeFe0rEAPKNaTFQpH2XPaZC2HwBHTbMkzid7omVii0lYoFIT0PiG6qfrtICgeD5x7XMW1ze18gpBsgLNaPCZL7/gbZK2jY9BZTu8ml50TrNkMd978JuYfKQdmVpEp8KZ1b5KKbVVOJ2lwC8kLbyXF3BXHy7JTBRw8vvSjWtyPtbPRfU7wiKF7hFX7OoZIkmmP3GbyCkJ1M26sGZBshjWb/sLEKod7fQ9c1ZpmjfIgmQJcG1cT6Zq1j8D/pzl7Wd+9fejhshEkgG8Bo3L7NltrNIKisnZARCVDOonxTuOY/sfqIj1UUEmI1wSd/2HvPauc+Ku0yaNT4w292N5I/h8vqgB73jIRYcdH29eyjKG7aFyKQd8i/jO5vEVsPiC+Rzv1fu8/6dM8XdD0FwRV4v5kMvPYLVIc+/HU4N2c2/QFHz/4Xjp//z5wc/TuWiw8IYZtUpNCZzb8eQpe95SA9JATXbZYtHutyglhchySYNNIAzuUbg7DRnyIwvfigc7v5/LPO72/CUJannXfENsFhAOuWrZNWAaptCLzLH7YFCoTSbXP/wW56iOqYzj3PH23VHkTfiHUQEWq3fercJGmvaln4JX5Ld79laA/23UtubfWeW4ScT8v2KoBUm5j5r6EWh3+BnFj9WYlj4UpyX3Pq2u8JF2QrU/AyOJa+al34DU3CnhngifJIXQgIQ5Pwxuigc7tYaRGovGNhK6a24rwuOLUFJ7bgqM55Ws45qZb4HsH9T5YxW/52NsKLYJTCNMrXBhgow16aMU5SEq35JG/PrtdKUXpH3VOWKQDndUeA/QssDDvck4AYu9nmjp6FQN4i4xS+QCIjQN1jnHuvKPnvjqf8/y4WfFh7PqgsHxc1jyrLhQuXpNiR85zY9ojU59X2mvi+o39Pqmrrioyuiou3hgP2jeGituSNYbalIYdEqBuz6yp46iD852l30OGotL39RVb9Kztkuu5mCXbL+3A3aR/zvQjPa48NvvtdSHz+ENhtCf5DnNYte97QATix0mnQ/bzYPkGjSzDVqKZQO/SrtVw6zW8/bJ+3DZKYlNsXAozT9iqiGH/abvW12EAADLPtKI9BGjpjb0Wh8U7hvLQu+XxQTGeGNAnIpuMRhelKDX8RSjr7Nz3Ltoodai0Mhi33WUtgGYlESfCK4OL5WKkWb1pqLE8HbLPCFqe6l9aJcOVO3g/VRVeyXqyOkBeNhG90CkKucDMNSkgOOp7T7fNy1hgtXO/f9oTMxuWfA9P4bVz+xsfqBl2CLiCZK8wiVj30QTIVTFQK7uybCvHTda4hEiUboaLngelg7Ve+Gluhg2QKtqUMrQvDm34m66AOTYw+O4E8Sj3JzMPSR3ZZgZpEo/lNazWxIb6YNt06HqjCRtJDjdPtiYKuPjpH+vgInW+YLQgxnpSlG+U+/7rgFUHxCq/wc45Q1vD+g97bJ+dzTIvJjtsZfSGWdvCkI+AsgnHRG0P7RoJq9QnXZg/ew2AQJaCG7QsDtbsLh4f0m5UJ7O6ghu1BfZVuqw+vYNSxFCqmkRjRKVTL9kCjLaGYIdOnhHLeb886wbz266hsTTBPp7j730VGt7rbWDyKpta9MkI1JAPUxUetW8jZj/p5Y1z+IECXvn95jE4nvTwPEA92idIdch/73+55rE2TIviO7PCzo39Lf8+NCOc2X9+6OuHs5A8oi0esltAhlCwXH3J++h8JXb4i1zDI7qM7zsd6KMbDd9Z/ozSKFBHbmYUP4O2SfP6Iqmg/f0op6vqiV3AphCs/ijxfHyB2ruRsA4FxY//E7PSiaCfdQq/qomsQoarWB6wSlX0hgqKNDEp0htuQjf4inFgm2foKHi+epx1yTa1oGX6VUl9oAr2w7c/IDxcfbt2e7Vg5vTPYXIl2HZVYPiu7vVXKYJm7aqP5doXn4+KI9zvM3ytxGysdrsMSmPu6tYLiMB3x1dHBpRxT18ReAa8P9nlt0F3xNTEZj8oZua+Z+ZoquBujQ0CoxfO0nPOkmHX6WVzYksI7bPA8WF5cSu5GciJajXsJ2OB5YzjBinBRl8zs+jGx8I5H5XIrkbGLqmjt4/uLiy1aihDgrMVL68BEn49tRpkyBJ62tFf3lIp6EfMNBs6/M13y/3h0yveKikqu1vgl8HHt+N3pgh/k1SWR8LCl8jUAF1vIMa0waanczLTmUbG9p9PDloqMVZs7iQalKNdUKihiUD8PgZlzHFc1Z3X7GPNkg3zWixBgP22vZIva19tdZdNxVzgRjq3jod1MlDmJ1TRZx5A01NvJkT8vAx92BIP+5Atw+l1WKOcW9hNY9HzoPPD9s5SiZft5pehQU1kLGzTDFgmiu7tuK9nG2F6soliH/Ykny2DUs4oiMTBqC9YTi9uLQlPWK22jrn4l/NmHe50EI8B44siL/lHsJAnMF+svsveK6cVgq2C9SPtU3qRCkgpJGvBOI6KQoC5Jl8vYt0SJp7owmDR05s5Nn2w20n4Ri+OOm9opzDBsFamziw7SMleESm0eELyiPtWY3e7j1YMv8FaqOxpMv0CiwJDOeyK5UKii8ZuQRi4pRJ5ECZcGNXqpyJ7qjYFuZYXB46Y6YgMkECsK2i6xUbgddSkP1dmWAj9SZM/bN0ymWxpaQ6ygMOtvCLXsca+8CANqg66gSjVqL4mG2O5q4iEepA5R3sko1EhvXGuEotHz64MqxPY7IAfZ1sfs9tsTZM10iTm+uPRq7USQmFA72t7T8K8iXhEUr/AKP+ew//YPYlpQTySzAtWyMFVmO2mJFUxHuXt6do6yLspASYCV/8TKg2Jl5p0YIiUO7HZoxJsENZrQKZa6gggsl6hB+4Auwy2NqkVQu+1yJLgash2YH28IZEskMKolrDEZXfsLV+HnTxFfI7YE7wijO/i7v4b9yn+F7PTQknd5NL7uVYWiwQw7SxqlOGarNAoVIGl/YYuvoseD7plt5CtIOjLdXvsv2WpGoQTpEE+11Qn9/R0iqmW7nwCAiGd68b3Wdr1fMJ/9qNe+0nSHNN2n/0pNkab7JGnHc6AU1i83BkhEAraasthQ0WDMiOBLNl+X6N2RpmNsS5Df+ZKqxVB6bR8REjOg7giIuy09CoIEXIukkBDQXVlhLTgY3V/770ophp1VVC/j2fxTBmb9b2pfUfQg0F7EyLTfL7eG3STpOnQtNE46DLRb2wvt49vbgztbrdMcgfeW7Z4WXgI/Xjxm6auN2WEA81Dyx/NPW/0b9pIh3XnNL2OoDbblffPWYJcdk7GXZGTa0DY2aMCgCQhvbaigyL1lbmtsiD4Ubb11EqiC5w9O28eEVaXDg+UFCxvJDoe8/PFXC2wvobVCovSOsw6fqHUQ2jP224iGTbhokVAa6m3op4iKdomieeiytm3HpEOqcu49/8+jC+Y+RPNgbn4CcOqFD4uKR42UUdmS3GIlBlO3xdc7Kl+rLSWjUmC5gZB5VNaYa0by15NvVwobtQ/MXTzeeYc86HxLzxKA1wbtwciJ6VapWIeiI9nIi+LT0vciyRxQiXTOA3c6/BDWYQ68l7efo+KLMG7S/gxXAX6a95+pCjCrNcsWE+DC6q1kBwHmlaatCOVg8kUOGCq7fkwYDuDugWUyCiQbfAo0MB4E5h2G0d4pZkuF6ylRlFeG77+31zllHGQOt0Eu6jrSNLTu3zuFc2x1EwZPq0m3UjA5sKikefabnLqXCuJDrGDwNpqHt+VCSQBbbh9Ss0X7b9QqYN938Bfo0nD2S73ZH+CyY5r6qDuJTN/+AoO+aT+H3Nu+PRl0H1B60oz3iij15IjLsOajGoICDemFIjnuPtmDzwO6oJe8lRLwG5R/w46OfdrUVoAwjp4Zrdt8ARlINOiWMUZ9gVgRFahR93MgZYwNqbGJ16UOUDZxojSWwkkeUAc9yM2560/KBKKOXVffzrZMPFAgB+1rJV1U6EUeE3T7oLb9Yl9/DfDqLLzCK/wcIxQVfLKdPIdxvpWgCJu8FVqg24y3RcjOLzB5Qfr8GFOU6+dSzkFRQlHB/i5qg+ySlEW/Ad1apCiRjsw5TrbUS1eK0PUSM9n/n70/D7ctO8/60N83xpjd6vba/enrVKcqqaRSa1sykeUETAzEBIgMwfhJCBCDmwRuAo4d4CF5LhDi3CQXrrGDLmATMIQ4RjdA6ExjGTeypSo1lkqqkkrVn6rT73Y1sxnj/jHX3mefs+cYa81locjyefWs55T2nOtbY8455mi+5n2hnNSVFPNgS8hHuIDg5xGqWy+QP/dPKJ//F1RXP4PdfRl963OYa59EDt5YvErg8CqUI4gCtFdHMHEdoGiq2DjC/ouL/e4RnIaAiLLoeKZBMWGhlYUy2EAb7PR6u+ZVUxD/86gC1DE+lOUuVeCaJ5PXg0ERgOn0KtUCuhxleUAcraHUotlampX+29Ch852lLA9xc7f3FdaWjPZfocj9Tu8o6lIu6MARMYgov7C1c60qHmqNiYLYQylUlBOmgbY3wbqSykMzplXEEsnDQb5vFWQNP43CTvjizU83Hot1wqRNBdQMNrADywIBSB9CGg/t3bmwV/kpWH76dljTpAmfG/mDjDeLQ16Z3qKcaU/MgwM+N34d4wkSZyqU+9yMUVUQeaputCje1T/DmsnI7UkCqtPnGaXo6jiY/VrYip1ijAL2A+LrtSPbMakKXh7vMPJQf0WimVQFzx3e4nox9orxjqn43N4N8qpCi5oFW06jco7pgvROR9gtCrTnnTPLyQGx43FgC+2ZERx4Kzw6tE+MBIgCSQr/ZOeQPWvJ3Z0w8r2MGRVws6z49GjC1Fov/7/BLUVBdRQIaETLIUGJkATWleOqYuos4xnl0cn7OWP94Ij55CgQ0wsJ3S/RZ254KlAAbhZVy7QIf0ULwAuTnMMFHVYWOMytNwAFkKig77PR5mcC5QzL5IjuVf5uIcALI9WqamlUQdeTtV2UjqKFngDApBSv/9xoSNrQHc3QCVRIvPnylK21iniOcHQUOdZXSspKGE+br0kbx+5OO86eq7dSdg7837l1O221NnLOX0WkjaMq1HxaqbsQPrczKNDK1Tl0AW2LqhCORsmx53pFQTltv78OaUbEAztzqi5uTwLC5QtVT8zgSmFyJaxd1po9GUCJP3duiUQffS3cZ/VBvSW12tWaEfdiVlXhtMMJpC/7n4fkjuga6PFi05M4sAn+wG/lsM4uRC0lFeg9W9vzYbxEIoPgHYxdtERaxIS5+hL2VoE7tLjdEg4qmLo6y+HQwu0St1PixhWyEn62rrAwDUwKTdgrvUm6trRwpR29rlOCC7wIMhojebH4As5Z3DzR7V8nuB+guI/7+CqGu3mrduq3+hLIqPk7Iovkf56G9dRWS1mi9w9IXnmVaH+O0886GE+wc1as5c4OvL5gUME5uHkdQnQA+YRWM5go5MCfse1MjLvx4uK6DFU599ernZeo3vgV3MFVqvEB1Y0XqF59Bl77JPLKL2Ne/gjm6mJON+dysMVMH2OOPKLOQAR35n3+04q2VAt5TX/l+9XsLJSHYRqoYygQsJNb3jOq/cXpz2qUVIHseqXaiV0D4Czjw+e9h4v87vZbW2Btjq0KynI0c347imJn7k/lxS2UjomiIfOncEWWnGFt9evQngx7awt2D79ItaAORlWNGR1cIQ/QZOXTXRZ10U0nN3AInU5zRUFZTYgCgsP3wrmSyhZk2Xrj8cPxVYpAMKkJ1hUY7Q/wmAUCkPci9VS0VLbEtnS+lq7k9YMXGo9p0ehFNX1OYBAPvcd6LZ7HETrKH9Q4H2+2tpcHAn6/cvBia3t7lX9TcKs84HY5Jm9B/Ta1JbknKBMS0PYhtxWRx2EPsBV3OR/3cFIHfO4l6jj6765OWIkydgPvwF45pXSW1yZ7C4lQj13JqCq4Om2ughpGCc/u3wrqQBxhguXFg9t0dcTAQ894WBVBSqkmlLbyBgX7cfv3F+ANT0BmZO1C+g8n4YA107whD+mehvDmAFXAs+P8mOqoiSb7yIlfODiwlucmOeej5v6Xu8X33yfxhqc/FNay1vKZ5M55AygAu2XJ0ESMK7/6i6P2BYpzrEaG9UDFg17imewGEl9uLKHhMQpUmdwobCuNjNvAq9PCq4NxWAllG2czsBMIkLwzkBPjQ+HwBl0KC3stmRurUkg9Q2peqdYBo9EU9iaeIJ5yDDrtoloKx2rgO0kMD5+bMuhab3/U2tHNLEpDJ7WMp81rAaUgD9HvNGA8Vezs+9+RW7di2uy9qlJQnmoQrd0sZ61dgKIKBB7ysaIsFG6e8LYTykJxcDsmHzd3GFuBmhMoaoIKBBSi/gI6H/cg2/Dbq6UJF7RnodrRwbw4F6AM8+LLLLptdgO0TBU4VdMxaY/Y/BGkELAOsyfeAnp9COlLDrWo/1jCMRc1cWQvuYV1I+LbYANbet2Gg++4ESAebj83XGKSG1FXQwRgr+S4m0U9aJeu/lSzf3MH0wo3sdhbc/aQk6qmg2pz2eOqnkiacFjC7flr1JMQO0cH6HDiT/Btws4B3G5f8f61iPsBivvw4tlnn+Uv/sW/yHd+53fy+OOPo1TNB/d//B//x6/K7t/+23+b97///aysrNDr9XjPe97DX/7Lf3mu4/rXI2oN5iVroRuxXIDCW3ImgtnbI769s1g5YFnCdb+zGcA9/2x93qIYj7Fz+Ypb3EOlcIHqDbfzOuQtouyiYBQIeNgKu/MKxSsfp3rlo3D9V2B8FdwepryJGb1M9NI/I/3XfwrzqR+b/3vxsA4QFIeEqYocTG/h0nXYerf/tJbOXKBerfsOFft1ZclCz6Sqqx0ClDzVHHqlJhzc/rj/YCvB6uMvMZ/5HfL8FgcHz7G78zTXr/40b7z+f3Lj6j/j5o1/xe1bv8To4IUFKNgEpVJsNUUknGEiEqNNh5X+W7znVLbgYPRFFt/4OaaTm8F23rz5Kwva4lgg3GdPRNCtNDcsIjrYvspD1+SHIP60L6IAHZIPCv/G/qBYoDrrHuwENDeSJSoe4kBA5qDN+DfDJHDPX29ZBQUw9egTAOS2Pf1KqDKitJZpS2HwUFXIG4EAqQ/zHPJ75ZQcSyoagxChiERhqMWoFbUgp0FQIsGVgAC7+YTbC9IoVdYyDgTiC1vxynhv4Vn4oCqCwttlVeGXo22GCzivo6VSQaHweGwFOGizhpnB14plKowgzPI4tbb2C8yxkQMHRYVBqDztWFbT0UehJMBm1D5o9Nok7FwQgcKFlQAcdWXH162EExV2ivYBhVDFyGuT9uuOm4GIwauTdv3PAU/vT73P8kpetaYjD1WZvG3Q/p0L3fGxa+/fDD7B9pIgTKpAJq20Z+7Qc6ibKgvXdyKMhn6vIokdsak/SeRIYofRUJa1o74TcCgfsfG2QVmp4D3a329XUaBULWztw+FB2wqF8P2bHBhGe4bCE7Q5iWKiyaeKPEDjFGftx4RQUMNVgrTau0Ky4X8LbJ0HtTBcAfl1//W6JSoeCARkloGaF73XoG/JXBolNQV9GO4HMrIYf+HuaViwgSIUdWgx+9XihSMVpC8G1rbL3Frn33stlXUA2EAlnsst7kYOOyUcuDqPraIevI/+PQReyylfWGD9OWo56ttZ5UUTZjRgbSAOCFQyxq/792WNKC3V/QAFcD9AcR8B/OiP/ih/7I/9MX7iJ36CZ599dintgnvxvd/7vfy+3/f7+PjHP8773/9+vuVbvoXnnnuO7/u+7+ODH/wg1aI8bb9ekC/jLAXvGi/AJR1C2W92wElVoQ8OFhMAOsLOLm4SqAq5djXo4D4FZ7H7gVWDDpepNhgMimTbmy/Bwc3FzeUj3MjvcHSjm+TP/jQczKfySj//E0RP/XD4pJUHawqqhWZaB/l+2JOxhDONQMVDee3nF68+ASh2QPvT7fJxs7hyCOX4ClXR7GQti3AArRmWKGmuAACI43Um49eYjF8jn9xgPH6FstyfZftPKMt9ivw2t2//Aju3fzk41sbR2h3tE2cJBRaUiul134QNZJuPJq9SlCNokW9pq4LJqNmpfHj4hlfwuhmO0eEb5NOdxqPGdMk9z8qHIh9ReuiyKlvQfiVvmXreA6V0ywBKjcOiOWgpopi2DqDAuPK/p2ZOIKsZ/n51fXqttbX9kEj2YXuR7Fz8c06k219vGqj62qvG5C3zaYc6I/ZQxPzrW22rvsDOqd54bbpP6SzrUVZXWsidoEZdTSEYEaau4qCYsmL8AaiBSbky3mW64DWXOCpbcTZtduq+MNrlsFh8fJlieXbfP8ceVu2dpZEoxh4H8aO9wVIhgNeKZnuJUhwukXDj08K4HEdLte+lif8dWVuA0O8Iu9TO9dc8G/FltwYTz/MwSjEN6D/48OzIn9o6NBEfuXFzoX4zBn5xJxwkHrURZJhhLxDUuBVwcvhwEAhQ3GpT7jDDtcJ5nQJfHJet37kQjdwFX+lCAA68Qt6lpVWFB4BFeHHfo/Fg7Dy68kZ7Y4+mhVa1rkUbOCccBJzn+yPFwVjIK0EriLRDq9ly/kQzrK0rOLSCridIkedquUCj5xlXlbTSnwAwxnm1qkaHinzadl6X4Ng02tcctKjyGO1pLxWU0tBdmykxt2lh4KfLQ0XehkBhjlZRudvunXM55NcC++eAILcXIRqxlu8HgMw0QhqhQd2GaG+x56t3oUqcl3jA3HZI29yc5qJSAOJbtjUXZHLFIh6hZ1kmydfibaO7ukRJC1Dd9H+vupbDtXL+dZfAZ8cUXwokHWQabrX0kZXgdpu/U42W87fpazue36rQ++2TuezN9glqX4u4H6C4Dy/e+ta38if+xJ/g7/7dv8sXv/hFPvCBD/yq7P3UT/0UP/IjP8KZM2f49Kc/zT/8h/+QD3/4w3zhC1/gzW9+Mx/+8If54R+e43z9dQa1ZFWJt36iWk5sMe8108NIVRFdbems2j/EeTamzlo4WMIhHsimJW0nOIsD8Wh1OGvh9Wfb2cNh9/1R9OLG83DgF2i9F/EX/wHqVsChl27CZPEAiux+Ad74Jf8Jegn6i4CD0E1vQ8CZ2gR7+Ib/mEdcOYwK69N7COhT+CFeccT6sKIs97HVlIODF5iOr5BP35h9rjIdX6co9qnKKfu7n2I68VOcGdMlS8/iXDHbid6zGz1GTGTWMDrDBjLKq2pMXrVbEDlX4Txqe0VxgLPtymQP9l+i9FTqKKUpWgbJJvl1Kk/Ge1Utw5YOKrBcMro9o3bh4fav2qa5zRArfxvKqn1FQcej4QEwKtpzpO7n/vd0FNA58EEH+OE7SzCcDwMUVJFopi1Tq7aivvfYG9P2c9zhnKBu7ioq51iNMro6JhJNpPRMd0KTaINRGkFItOEg8B4YpbjaokpGgNUoI/GM+4dlQd7Svfnc4U74B1vioCqYeCi31tuuEY6a4Ul9zK1tTQ8DNTVUE6IltcNCo8gz03ab8Y8eTtnxBGQO2qZezxCiqtbSTonHAqNAgtPnDw643sLj/LO3dvhcwLmwTEwm2G2X6NPhCoD2BosZ00YTDqv51Tb3IuQc3ozaOyA0NV15E6yT1gEUwbHncYpGGsolXCRjj26FC9xbH6z1izxDHQSwVsDVARCtaie/0Q4t9SfSjmhG7dNNLUnsCSiU7QrX77Sh+e9lSevIZZpWXkqjslBULTVBjr7nw5Uv+OfoJuSjKMj0kK23pBPGLy3oLFRTYNJmFFRMbvqvN99ve/+E0PbKzqFNaoSHAg2oM+dbwomf4kcK6DyzeBtVBS4QeFYjUC0HmSywVZeJRbfMRdJ7IL6pewkqVyq8wQJ3sGS1S4Bqyn7ucPGJpAT3yX3vOydGQdutgwU7aW6AGy8XkFEeGnapbK292haHS7BWfA3ifoDiPrz4Q3/oD/FDP/RD/O7f/bt5+OGHf9X2/rv/7r8D4L//7/97Hn300eO/b29v86M/+qMA/IW/8BfuUz2dQLmoMPI9iG54HCBLVqhkV5qDEK4sMW3TjIDKo1fhANpUYxzh1YCDv20Vija4283Z4aIU3HixnT2Aq895D5Uv/GwrU0KFefbv+U944R/Qdispn/tb/oNL8KWT+Tnlq1H77GsOAxnH4xbVLCfgG2cmo9eWsBYhAQfxZPwK2vTY3f00VXmdu1fUDpiST9/gcP/zjMdXOAxdL9DvPYHS8Wx3cyTteS8qymoXa6de/QkAY3qUZdsgT4nx9IuD/fb3z9ophWcnZKuSKkDx1QzHdY9o9HIBKLix69cYUUtQxFSeoJGWthVfszYErmvXU50Swiv7/us9dO13knuBINh0IT2auxG645PWEsWw5/wbib1i3Noh+VpAT+a1vH2G1K6dUAaqKDJliJVmRSc1zZPUFE+Rqv+73qYL/SjhQrbKlYm/DYdlzqQsFtf1A4aRvyLDOT/vvw8H+YQ9T+JB1VKjBepR8srIs+5wc3iEPXggbr7mwrll6LT5rKcCYFpVSznE40DU/Is+HmYPcuCpw+Z3ZMUst5W8HtAk6Rjdus+4wHr5n9241creobX83G0/NecyK/OruX9cKpZZRweOtaKGmaEEjKfLmCXeud3ASzC1tlUACur2ZZ4+vVuEqbuaoBSsxc3X9epO+xHBAQOPvb2xYhnNWROgeYqMm1UdzP5/VI9jSkDr+iNSB1LTxHJuM5CogmOZKNlzLzcH9o1xVLbduCBSEZnmNytOLbZthAe4faN5PeUs7HmOhbB73b+Wvv2yfw70YeypahAF4xvtA9O7z/vXgfZ2e3ujl/yJINZTfRREaOBsKdIOtQaAbzEYvSFEc2ib7kX6QoDCq32xPvEY8FTO6UOHarlUVQ5s6fnSErSDWKg8DvslmSUh8ei0jKu6eqLNazyy2FeafTjFznLJZu4Fz/6lt9zeUA6b2+ecax3QAuCVJXwkX4O4H6C4j68IXn31VZ566iniOObbv/3bTx3/wAc+wPnz53njjTf46Ec/+n9DC786ofLlAgrao8ngi/TOQ3yreWNv5pTBe3Fjp/nvcziEvQiU9uPJmgyd7zwbZ1cdESW2RICugiXoPvSrT3uPyUvtAh4AEnC+sv51re3RueQ9ZMdtSDxncKF+u1wQb7z/+ca/V77KiiA0KpDRPR69zP7uM9hg5UhFUdxmdPg84zlBkjheJY62CbvVLM4VTPObQee1MQOWUadLso3Gv+/t+oNxIfgCFOPpTZZ5xtc8Ohh57nc6hbB/2PxMKlswzdtXFMQeXYi8Wm4MXMu2vMeKVnKpNSbLaM8EUAXGTbPEUjTDX/HQDwTkfCgCDrhiif63U468CQbLOJsLYKfwP5OLyQprJkVE6OiINZOSKoPM/mdEMzQZj/W2iZTmoPSPqbeLMSNPhZQP1wNVNZ0lROTHWK5Nm20uSzb6xcPm9cp+i2DMSfwH681j4MGSFRTXPAkkV3Kf+kMYD3tEnvMq9Db6ccWjk7Ckspm3DZVzREu42IeBfvbF/faVli8Fsh+XCSNPApUm8RK0dCF348V4uaobXws7AW0AH0IzyJXpMkSL/gAKqn0FRVdb1rPm67o5XS5RwKerPs6FyLRMHBJIAhoF/Y6l37HEM6e+EkjiumpCTthY7VW8+fKUKNDFKg811TzsHza/c1qDidr1mZu3Errd5nknXUaQGRgdNF90MRWWcYEd7DV/x1aw83r7ea4KCJOPA9UQPkxvBzQjlqhAIUiPtEyfCdBuLTMpObzbF+MvRPcivuoX3Zbl3CdEO81/dz5l+zlIff7rYBm/H2rc3GckW24OMWseBordEtrewxzcjeaAjHt1SX/Rjic5zBNYmQdf4YqE/FIhLEH3+LWI+wGK+/iK4BOf+AQATzzxBFnW7Dz4uq/7urvOvQ9on3c4g3cjtOTW3lcuvmyE/UWPsPGyaovjwETQlsu4qvzfWbZ9k53AwfbZvmIDAY/pfC2LVm3YbUtpBYQc7Ld+sb29EOxyiwART7bTHK73ZoyD5bXT6TVGo5eY9/45l2OrKdNJ+BmKaCLTDQZFwGFtjijD4fhF71mTZSpagKlHZ6RYpgIKuHW7ObARKrkOYeqh0QnfMz/8Q6Bib7xM1U0zlFpukbzeOes9ZpcIQBVtdGIWQGguW0YZaRJwfy2qnXASVeC9f23UXpcmx3rFjZddeOvANzNteFf/LB1lEKlpnNaijM2kx2bSYy3ucCYbsBHX1F0+rm+AnemIvGW15c3JoVfI+7ndlkKBM+SesWS65Bgz9VAUFeVyFQoHnntULlkFnHs4ViK93FJr4nkeeklR8M94Ns5L+kUofNQNwEshnTIPygClzBJpEVwPtGGZXMvQFXWWeCShmez1aft3pMLfzz4z+tVrEJ7E1C0XJPOhsu0rKMSBz0c4WtIZ6ZN9EYHxAmLMJ6EEdCAwJAIXtwoGver4HRQBYyBNHFniGPYrLp0pWBuE7/aScodBBpNOp926oygM42VogwIYHXrWU0tOwruvN+8bRIC8/agQWt9WnmBIEIGAB8sEKAIzzxLMpmEsMa078Dax9wvt7amAPb3cMobKV+Fxdbl1jFecfMm9ks+eW5K60denq73lBhnnq/BYQqcK8IsVLevf8aw73BJJB8CyOZdfc7gfoLiPrwheeOEFAB544AHvOZcuXbrr3BCeeuopRKTx86EPfej4vA996EPe8+7doL/73e/2nvdd3/VdC/22iPDUU08dn/td3/Vd3vPe/e533/X7Ted833/6R7DW3uXAsbj6b9bWJKX3fgDZq1eNv+sD38rjw/PHnz/w2z6Iq6q7zr1juNmes5bnT2Qy/uk/+v3H9v7sH/yext+/Y9I2fiY3bvOhv/W/33lOf+t/R59/gkvv/KbG8+fZLKoKff4J/vD3/5k7z+nTn8VceIJ//vO/3NwOj82iKPhv/6cfRZ9/An3+Cb7uW+9U/FTF1HtN9efe21n/vZq17+RnkftUG7n7MWEtyloubPdPfT79qU/cWVtZ/zNtevZN9i5s9xnf/GzjNQWf097z/NZveX+jvbLK775Pges/+ZyK6S7f/1/+Z6fsvfH6ywv3k5PPKVt5HIC/+rd+jOTCyvHnU898tlXfs9ZSlhX/5Z/+Y8fnPf3pTxzbGz6yyv/y4z9CWex7bJ60W3Hz5lX+zod/guTCCu/9Ld9017lHNi+/+538y5/75+zu7QX7Xl5M+OWn/hF/5I//XrJLd67xJP7Gh79nof587/X/xb/wRxgkF48/n3i6plS6fetzi/eTEzY//tG/cZe9QXKRH/urP8H1m59q1/dmNn/h5z5yyt4gucj/+4d+bOF+chI/+9OfbLQ3zC5T3sPnH7Q5MzvsbPGhv/q/I+lb7voMtt5DVVWt+/NW9wIATz392VM2y6JaoO/d/bl6/W6n/El7xaRsvKbaaLPNqqiQ9C132Xz3+z6IpG9h/+DQe598Nl+7/QbZ8DzZ8DxPf/IOndf3/tHv51/+k59p1festXz+s88e28uG5/lrP36H9u7vv/BLrfuztZb+uct32fzeP/r9AKyYbH4/uedBWWu5+PDb7rKXDc/zjR/41uPTnuht8me//T/nI//wn/PLH3uaX/7Y03zyY0/zyY9+jI9++J9x8JmXawFt4Ff+1UfvWhuc/Hzv/+O/uEdkNdSf67ZOXcVHP/l0o72/85mPea8pdP3/8mqdyHCvvT/7v/3tU7+/iM3P790J7J9cG/3O7/yPG69p3vW/9Qf/DE99+s78+Ie//8+gzz/B2z/4n7TqJ0efj37iU+jzT5xaGz38jm8mH49b2/wTP/SXjtcbJ9dGf+NXnlnomd57Tyf3rGOO1kalW7yfnLR58/bNxjWCEuG1yaidTeCv/OX/2buOuWtAWaDvAew657X3xqsvtep7nGjBb2lYG/3rn/2XDdcUthmdoMb77u//z+9ax/zM86+06nv1p+Kv/8SPH593cm30M8+/1Lo/V0VB/11P8N3f/58fn3e0NvpNf/APeu6T/55W+ZTVb3h349ro23//B6nKiqNbePJzei6pP1f3p2yvPHLXfH6ENw6k0dZddu+6/vrz277zz59aI3zi6U9jlOUw161s7h8csj18pHHd8WN/9ScAGPYtzz39k/ztv/4/8/P/+uf42C9/go/98if45Y9+nJ/+v/5P/vwP/EEevZhzFJP8pvf+1kZ7P/Q//CvvNYXamZfCd33Pnzm15pD0Lfz1v/7/bWXTWsfzX6oD6PeujVa3/m1Gkzx475s+zzzz0vF5J9dG62feu9DzvPdTVYp3v++Dd50r6VuIek9SVe70d+bY/NSvfPZ4Lj+Jb/zAt2Ktmnv/Lfe2j7vWByfXRo3tm3v96tSa42htJOt5220mB9MRndXzp2x+7x/9fpgJkDfZ5OTnLqOOx9eb1zHR9J7g1L12PDb/2V/6+4323M1xu843O1dfd3zmk58+ZW/v6avNg9Qcm07unHvS3v/yP/5/vAOfDcwl/9Z/+PvuuqSv+9ZvR59/gv/mz/xw4/nzbP6+7/jj6PNPnFob/f9+9B9723D3Lb372E/95D85XnOcXBu98PSXvPZCNl959dpd65jjtVGmg/fJ9+x/9C/9T6fm89/yLe+vNSgCz/TY9j3PaZLnv2Z9lm39sCEsGd65j/toh4ODury62/Xz2fd69cJk36NP8KEPfeiuTu/Ds88+y8/8zM8c/3cIR+eFfhfgypUrC9v8+Mc/fmzryhV/jeH+/v5dv9+EYTLL1rAOe5Qis0CUfLq3z4sf/yz56O4s09RErZlGBXj+2k02Pl5PNgcnHFcXh8MWlu5AK8UXrtzkZz9bOyC+cKW2udVr7h/3rknuxVGk9fVbB8c2n33+DYxS7Aay4JrsKiWMTqRB7Y/zY5tmusu7G77Tpq1H+NnPvgy24p0Lnr8IvvSFz/KO5RKw/bA5dkGbR9dejHfIp808j3LPuXNvmAWr4PlP/Stu3zqtDVIUJ4N3i8EBH3/uKZzu8/zrL9117N4k20VsisDtw5v8/DMfB+C5L92pBoiMYqV/d92/tXjTA7QRDg7rjJGD8ejY5l1tLBxpojBevoNZu4DNjZjVYYRWgp2NHSdtJuliWTf3rs06vbuXD8986gXKceR97vMQx6dvyIvPv87FB5bLo4g9FBeHJ2he7r2me2Etxxv7/YPm7J+2BQ9Hj/7Kq5Znv7Rz6nja1SxDB/3UJ67Si4Rnn3v91DHnThgM9L2TKHPHz/zCS6cPCFR5hW54XiEcJRmdtHl0T21h0U2EJYHnc/L2/MozzzMt6+9fvX6L6mwgU8tjs7pHIO9LL17hF2dz3v48epMmm86hOzH2hN2r12/xix//LAky//k22FRJRLV/d8rqwWh83E6Aw2df5dX/9V9w7tvfT7y1gooMxd6YajRl92CP6y+9hkIov/CG96dVbNplz1mwk4KrLzT0l1m76/Ps4kKODq4e3ODFE9d2hGjYO3XuItjNx8f2Tq6NzMqK7yvBQcL0ezz9/Bsc6lps9fVbB7O/e9a588ab2VrlC1du3bU20mlCfnuH9Mz26S8Frt2e4KQ+uTb6lWsHcGaOttQC9/RobVTfyfYLDzttXps98+lfZuIUiw2C9vgfMZ4trVKzcW/RPn10nv8muGPNiHY2n/n0LzMen54j3V38+vauf3wwo73jufzq7bvTe9WpSvWFVjJ88fWXjm2eXBupqCk7fI5NAd3pcfX2jVNro3jzQvN3As/J4VBJnbZ979pIRLUWiRUTIyaCE1o3H/v5zwGwu/tmYEFNgRPNTQarpw4/86kX2NvvYnk3bSZ2pTTKRFQNWjwvPv/6cVtf+cLn+ad/9y/ywGPfyCNPfDNZb8jta6/wxc/8C6699jme/ugfOf7e4UFz5WF/cI9u3ALrcmZsOFeuNu+dz51/bI6ReyE8/+Iht/Zf4tkv3V0lnsQdItOedms8zY/XHCfXRv3uaXq+BZdG7B/kp9ZGWpvmDOzZ/sXbvsmdseDkPD6aQ8fsezz3Ov1Oro3OyfuWsnkvjtZGndGQC/YtwXPvtXltr3ndcfX6LQ4entAJUHf+G8WJh5/car4TSp3avS5keOezb/D69DSNcmzunTMXs3vzc69zc+d06VJxr67dybE0YFordbw2gHpeB2rBiwbYOe3sRfXcc+/aaLDhf7YhmycrPk+ujc6MNQSqePzvyN3XdbQ2UuUiI/TpUWJvenpMHY8PeekzTzMM2rpj8niMsPU858NXu8/yCG38sD6Ic4Ga2Pu4jxP45m/+Zj7ykY/wkz/5k3zwgx+c/4UT+HN/7s/xp/7Un+I7v/M7+Zt/8282nvMn/+Sf5M//+T/Pd33Xd/FX/spfCdp7z3vew8c/ftpx97WG6b/4Rfj4Z7zHfQPwrbc/yMH7Ti8copeucPaf/Fzrdtx83zs4fPJNp/6uv/Qlzv/zj3i/F1rsRb/vd576WzEew4f/buv2AUTf8fsb/178y5+Cq82OEy8efCvRe3/zqT+XZYH7qR9YonUQ/Z7/sfHvhz/1B7zf8T1fBxz+nn/eeEw+/JuWooOwv7PZXvF//XtgW3I9JptEv/nvNB7a/8e/qW3TAMi+5R9hGjimb/zM74G8vVD2m97/YXSD0PMXP/WnONj95db2HnvP/0rWOXPq70Wxx3PP/GkO9p9ZyI5SfbbP/lYuPfiHvOcUxT4f++QfoSzn0zOJxKyuvIcnHv9vGjMWPv3c/8Qbt//xQm07iXOXfzuPvvU/PvX3j33sh7h9/Zda24vjLb75N/3oqb+/+MpH+PRn/1Jre93ug/zG9/+/Tv391t4L/PQv/fHW9r7pnX+asxvvOPV36yr+xr/83a3tPbzxHn7bk9936u9FmfNDP/9dDd8I473nfyu/8ZHmdvzgv/6DQQ2IJgzMKn/qff9z47E/8Av/SXAR7cOPfeOPN/79Wz/23YxcO80Lg+EfPfmTjcd+8Et/nY/uP9OqhQ8n5/hrj/8Xjcd+0yd/aCnR43/+5B/HNNDpfN/nP8xnx+2p1f7B234/PRPmVXjm8DpfGu/wucMbvDDZOVYfUQjDqEOmI96//giP9ja9Nn7hxkv89Zefog3x0cVkwPc/9k2N7fsTT/00N5bQQfn31h/gP7j81lN//2vPfYqf3z8drJ6Hd/XW+L7H3nXq7x+9cZUPvdh+E/Wfrm/xH22dHvM/e3DAd7/ySmt7/263y5+cVRKfxKiq+MNfepWXPBRVPnz31hq/d+O0w/QLB2P+4Mvt7x/Az77ldPtK5/i2Z96gLdnitjb8xbc2p3x8/+ef4WVPAMOHR9KUP/vYmxuP/Yef9K+jQ/jf3nG6/wH8oU8+x+ESu+e/887T62iAH/jMy7yUt3F8wTtTw//w6LnGY9/6K1eXolD66bc1BMGA3/HpXZZJPfjbj2VsJqfXbf/PL+X865a8WwL8zTcrtpLTgagfeRn+/hKiwn/jAzsMG5I0fvLTCT//antn6e992z7fcPH0e3ptR/irPztsbe97fuMuw264X1QWXrkaMZqcnmvS2HHpTM4pX+g9ePpThs8912/dvk464T/6907PZeOJ4h//07OMx+2eyeUHdvkN7zutFTQaCT/99y42fCOMtc0R7/93T3PzlCX8zN86PZbNh+M3/f7TY7tz8It/rb29dLXgLb+teeR89scCgXMvHI/9J80v1qsfGtCeLNBx4bua7R0+FZP/Qku9rzM5q9/evNYrf7wL15uDzKE34PU/ttsoCnTuf9CoJYhiXv0DBayf/vuZ/7FcKqv7yneAPXv6m2d+ZJ9oCSq51789prxwep3V//ldhh9rNhi6C/I7hGjz9A3MnxnDLy5By/ReTfxE79Sf8394FZZhFE4h/o7T81L+0avwuSV0KIYQ/87TbC7OOYq/4V8H+vrg5JEtxt/8jtMHRmNW/7ef9toLPZP0B74jcPRrByFf7n2Kp/v4iqDfrxc+R5UUTTg6dnTufVCvopbA5OFmPnKl1VJcy+ageQElK8MlrAHf8PbGP+tlOQA3mzdVwHKaAh5uwyU1rViOsdiP0DNcponBPpE0rNTmQZ9enNzBctOO+J5jtLaUvSpvHovS7sNL2SsmzZkHzubtpF/EknUvB0+5vfMUZblYUMa5ksrm3nLKC9vf2vj3edi+8E2Nf7986VuWsnfm/Dc2/r2bLfd8ex7R6Em+s5S97bW3Nf69rKZEak42cgOmpU8AuJ2T6gjXx/7Ml3QJ0ehBctqxeYRlNn0hxEts+0LjXEe1J0dOlT87U5a83qbgBIBeUrwpnzOXvTTZ5UvjHW4UIwpn2Y67ZDpGi0JEmNqSs+kK1/N9Ko+AN8Djg61WwQmArjLe4Ml/8MDjrWwd4e0bzc7XJ1b9gvAhfP1G87poLVmOTPti3DyvD6PlBHbf3Gl2iHa0RgWelw8PNTiGATbS5drnyXnHiHAmat+nH+w0rxOsc5xNFsxeP4HpvJK4lgiNSssKg/uwzNpyav3jwTKONAVeHZnOkpc7dR5R4eXMecfim0uKPN/Om7/3dQ1BhkVwbtB8/w4KRXsZb8fOaP7c8/oN0xicAJjkwmvX57/v73hyuet97FKzs3k01pRLaB5oj6CNLRXLaChmHh2MutiqfS+MsubrrZfX7e35lh31a7jEbl2H1ghf3nxkd9B+XaS3AvdouFwfVKfjWQAUSxZjaJ/Ew7C9LQdIvzlINw24LUIQ7RlTk+XWqcozRuvVJUl2PGMq0ZL7Bp8I+jtPV0EthCeb9zbzKIe8mHreOb0knUX3yy3u8msT9wMU9/EVweXLlwF46SV/Jvsrs4yzo3PvA4iWFHT10UCJusNZ0saex2HvjF5qo6G2PTPzkuKNXPRrmzBZQkS58GQNyKK0A/dgGHCoBByB/u8EJmZZYnKTQEBhCWcf04DzPF4i4IGgfIJTbjk1Q9HNzptlMsMBdNR8D0V0u37jHGnqcwWBc5ZrN36GNpsh5/xibMZzH+YbbV6UadPesQSQps39wpj2znWAJG3OPtNquet9/eYnG/+uRNPN2i+UtTTvTPWyIt6BYlgdcL57vyP+xfUyAYpGCqcZxku8w2UgP9gE2u61F3D+zytpb/1bAceiDwqI51zXl8a3cc5xo6idKJFoBiZlI+6xEffomYSJLchtxVWPiDzAayPPjj+AsfM7F/rRchuuyHO9vSXXRal3DlnKHJmH3y1ach0zCHzPtCx2j4Cex5ERoZYgZIK3DPxj+5uy9uNq1/MclQg7vjVYACZA8bPMrBS6R2ZZZXAPiiU64dj627BUFS31vW9Cd7mYFqnvkSzRQAUYj6DrsilAPpbMxLR/HjEW5WmfFnAt500BIhOee4oS9nxC0DMcjhUTn9NwhmUd4p1O83eMclRV+4fsa0FbKs0jxKl/rl3Zbl8T9PA7Q5WeS1yv5x6JgOq0X3fEoaVod4mJLvDeu2n767V7gQfZX24itp7lhfVvo8LwXLNdYitiAY//f2kHrPMsY6RlBd4xfI9k2Qb6JttlB2lPO2TJjFGVNT/gkGB9CM5XnrZ0gGK5PfTXGu4HKO7jK4J3vrNm2v/sZz/LeNw8wX/sYx+769z7AC41Z/zNQ3J1p/HvZRrjlthYVZ4Mw2plhSqgK+KD9nA0qziGJeypBx9q/LuzdrkqFM89EqVhGYfpxmXvIVlvbnsI1bo/I9VuNGd6B5EEUk2WqkA5wHkyPuXsb2xvz/QRn5O1XKIEFcDjJFQep848xElz0M1EKygVsyhHt7WWIr/lPZ4XtzkcPc/im0kbzMrXpoOWtlVr2hvIGa4+glLt35H1tSca/55lWyyz8btw9v2Nf3fL9GfgxSv/qvHvRieYJYIeqw10YHAUoGjfB9fS5rnCOksWtU8lCwUUsiWeb8/4g6Bt6acgHCRJlgjInOLvPQG9xPMQILfNc0+6RFAwnqNbsV9OOawKJq4iDwRADmfj5c3c75x5esdfjePDjXzszb4W1/79PZt0uJA1j0uPD9ZJWgYBYuCR3rDx2HTJMWHVo3mwtWQFhS+wYZ2jWCJA0fXYE4HVJdaB//6K/x3eXCJo5PHlAnC1Jb0TwIMd/7i0zKy+EfuvaWOJ6w299WueapwQQj7n7pK7+52i+V14rLOcQd97+mDSflY3QOX51ls8jvJ5mHqWRusdS7ywZkmN1a7D4/vCzNMxakAaWc6shNuwP1psXbk/pxJjOhXSpN31Co5zm80UK93uctnw/X7z95JAoCGE3or/e6vb7dpoEsvG+Wb/RZ3D135MVYFAWLbV/h4mmd9eetG/xvHBrPrbYJfo0+4wcI+WTRz3uAwOH13OYe9bruwvsbWePuwPbFRLXK8DbOab15d0iHuu1xcImQd92eNgf6y9bweAy83XJUYtNbH78hicR2dwHqqzvir/JTNfNpdIWv0axP0AxX18RXDx4kXe9a53kec5P/mTp3mjP/KRj/Dqq69y5swZ3ve+sJDTrydIozDdAt8rmxdlomS+MmwTIv/EV/kEIX1I51zTVsugTJygYs9M79xyFSM+ewDbj7S3t+6v8JDt9qseux4Qn3v797a2RxqYEPUyq0Z3RxX3HiTnmh3HQawGhNiWzLC3rnkxsgx1g6guzpNBLKJIPM7jZjjGYz9/ubMFVdWOr386CQjiiqbXacedm/XO4TzOV6UiVobNPNt+GKLY5/yqUKp9RsnqsPk9tQFHdAhF6ec67aYbtN2cDjv++u5QcMCH3DY79JyzdM2gtb1hoEpruETV1+XssvfYchUZ/u9smWHrrUEa6GO9JXbOMQrracU8HYkmpCrxBgCA498KnQN3KsRCFE+hahL/d6z3t0ts6+S5y9nKXeKIJ6FEuJSEaARP4029VTo+kdUlAigA0bKUAB74ghAWuNGyQ1f4N3iVcwwDa7omDIG39f2BzitF+3E1ROlZLpHN+EDqb59Z4lm9qeNf22576LNCGASCQr5qlxDKwLt+aUm6j9xj882dJarwgMLTxCd77ds31FB67G0smXRaeoZBo2C7185B3I1tcBXQtgduDSzzusWicct55zkn9Hvtxv1eJ6fjCWrUdCnt95rG47B3TojiJSiZotCFL04bJeJYWZuSevRAXKCaKYRQxXZnu+X1KoiG/mfYfaj9GB2f8duTZWJGobl2iaW5w3kf4eRRR+vHIv7rKh5UQcHzJhy8i2bxdIC0/Tq/SgN7VLWES1zwf2lJ/7oyzTfJLEktyXZgcF9m+++bh5ctlPZVPCxZkaG37gco4H6A4j6+zPjBH/xBHn/8cX7wB3+w8RjAf/Vf/Vd88YtfPP77tWvX+J7v+R4AfuAHfgC1LM3P1yDMkpHU0sNh5/IctcSgaePmiUVNpxSrq9g2z2xO0EWtrUEbTujzF2DUnA0qWh+RjbbDwE9DpLYfBdMiIznuId2h97A2cThAcA9s5wxquuM/oX8R+8T3LN4+lUCIoqZaQoQKV1ebNB3Z/SJEbcg3DdGKPyAjy1BkoTEeqimlE5B2zgelE0zkdwLH6RaLVlBAST69jvUEAIry0L/g9VmsDhlPrjYei3SPYf+ttFkO9FceIgloQ2yffR/Soqogilcwniz/OBq0pj3K0rMoTxZ9GqJHC0CJvw3bw2ZhVj+EyrMbq2y5VJDs1d3nGv+ulfE6ekNYSfwCjctQKE0DIsk6QM3iQxRgWV+mIiPkKNBLOA8jiYg9fSZV7VUoYqXpaP8Gr6MitAiJ0sHhIZm9S91A4Hkjbl9xY0QoPIENJYpui6qRvo4YxCmjqvkduZGPedfqFtGCd7GD4tvO+SsVt5K09WZIgNue6swr0+lSFEoPedY9k8oyabls08DnJ81By45WJKJa6RR8z5Z/PMit5flJ+2zfIpAsEy9R4XFt6l+rLOMqCPkrbuTtsy3zQCuu5+3vX8jpHC+5j1r1OJecaz8rRYDx3MWBEV/isxfnM/DRon/az1gXRNfjEFcClwbtPFaVFbKo+TvDjiXW7ez1Ujs3sJDEi/XsdM55cWwZDtu0z/HY5RGx53rBLbWO2b3dPE9o7YhbVngAHOw2z5m2ApwQZ4utFdJeyUPv9lMf6sghLZ8vQBkQEXcVEAyw3A0VOeJAxYgZuFb2AHSARse1FEAHEG9/AfJlKlXFP7hHUGy1u15roPLkPthUGLXIJ5xsQH7Bf4+K9fbXa7tgk+Zn4lJpHUAhwD5s95argqqq5j7olhXxvB2IXLUNnMcgsWeOWyJgZBU4z5xJZJgbYW6AbLRPKPtaxH1P8H148fTTT/Pe9773+PP0008D8F//1//1XX8/iddff51nn32W119//ZS9D37wg3z3d383b7zxBm9729v4tm/7Nn7X7/pdPProozzzzDP8jt/xO/i+7/u+r8i1/VqB6mRL8dhZT1VDNJq23qg5EYrV5gFTigKbpdhswfQlYX4FRRRD1mWhfKM0Q1bXIJS9Fwg2eBEQ9ZTNB9tVUSQdpO/XoFBpH+ltQTR/u+aiAaRD3DwKkzf9LuwDv22BxikQhfPQ4QCgl0tNqzwZ567Y9auQNUEZJCDUnW58Q9umQbSB9mQxJ9kFb3DFB6Uzr0McmFEeLUpZYZlOrmA9GfFQEkftnOzOWab59cZjxnSJzSqL5/cJ1pakHhHqGhVpsrjNTmfLqzWhlMaYdq6M1eFjXsGzKODkDaHfOe89ZlRGSyV0Mk9VQ2kLoiUolApPRZB1lkG8imkZdDvb81fV9LzVLn4kAS2bi3F7KsNVM/QfXCIIbwIu5c2oLQUabEQ9L5/7Q+l6+2zauBesNImU5lzSx4hiGAg+rMzes/MejRaAR3vtg3ixVUw8WlUdE9FpUQ26kXTYKSaMPfbGVckb0xFns+5CgYCHB6sMY/88tp11SFoGfRWw66HSulVVrZ2vGljxUENdK8vWAY8K2PWkhxsRNiONkcXElCPgcwEH+mHlGC+RfdgLUGENfHohAYTcKckSjoIQjZiPGiiEKvAds4QzN6RLfnYJQdIYP83YIJIQHX0jOgpGHgL2YSQMWjxiAR7v+J/jQbmcO2MSEHJ24pPkbkZlIfG8qN0UNgPO43sh1Fs/X4XHEXqZJZ7jdDba0Z+jZxAZOLtdohak7Vkb5JzdKLzbU2slzOHmgTfc4aDbb59i74uBVqUi7pQoDXpOZUZvbcpwO6e34g9KikCysgydcOAeOaHVclU5OgERamXAtNF5MA6VhM5v/3z1VuAdWLIKSvm2ShaI27Vyum39uhtGKFeEaTM76yloR3ALdPjmCNvymvNNwXkG/ulW1Da3DpI6gaQJagn5TgAO/UHfpRCKuqy1vOBYQcczaFXt+7Mohev4H6JtW2nZz9CXF+xgX+O4H6C4Dy/29vb4pV/6pePP/n6dovKFL3zhrr+3wY/8yI/wEz/xE7zrXe/iIx/5CP/0n/5THnnkEX74h3+Yn/qpn0IvKyrzNQpXVdBpN8A5AfFEsH1aEiFUkcF6KI+c0qi8oOp1F8vqVhoCPMHHyDLwVG3csaVgMEAZE6ZxClQv+KA7fgecrGzD9ptgEZoO0RBliPE/Q4k66PVHIB3gz7IX0Bmus4GLMlw2J+hiK6Q8hEDW9+xEXDKE7YDui1umgmJWidBkTkVQtqAochYXoDTSvcstWwadvj8AZaIB0lJoPM3OBY8f7H6mhTXHZHLFyycqEqFaKwZWaO13mZXVPrTIOheJvRRPAJPxzVrbYqHgliKOV6gqfwCn12undieB3FfVegVfw4n/el+6/lHaLKcUyr8pEE20zDzoWVsrUVzoXvY6y304LPe8x7qBvuTDajL0Hjufbba2ZwJVNS/nN1rbu12FUnDbb1x8As8ApTj6LceYoU7nPsPHO+t0dMSZpEfU0L/W4g6JNlzurNEJzEmZjmhb43FIgfHMw5EoHu4MF7KoEQprGVWlV/TYOTisSgprUQGrGugoQ6o0t3L/PDYuS7IlApe+byRK0WmZwd7DT3nUU6r1+1sC00CFwjs6CYkI85IaFdBTwmfGObc8FSOpEirnWlVkQFhMfLCEjkfIzdhZYkytQu/9Es7XkPsy82VhBhCasUMVYT4MArcoEshaOphSDbHnPiVK6LXoMBHQD9yj/SWcSwCxx0F8mAulFcyCWfGKIBMuAL/h0cXXvUog1m7u+wlwbqMIbr/ObpQLbc8GPUsadEjXEGB7fcrWmn/NppRbivZIPM9DBFYCv+fDeNTcyZR2FFNNZ1CgFYh2SJ2vddcnSizdQUnWK5h4bB0hWyKAEmBaRLSj1dpDgwQ0LUSBGpQL5yKpxKFDga05wuuNbSgC31liTAWwPt2XXcGm4BZc8jsFh++YI0q/KegxC91DlYO5GrCXakYPLX4PbQzFWqAPuiVYilK8W5clWcsgbv5i5aEenwtPxQiArLRcJ0QK5+EJlFiFo/4NcJHx67qKUK22TG56+FzN/HEf9wMU9+HHN3/zN+Ocm/s5iR//8R/HOceP//iPe+1+x3d8Bz//8z/P3t4eh4eHPPXUU3zv937vfWqnJhyOIaSH0ACrNc5Da1Sc3cCZdoOfCJQrzQ4pm6WoPEcVBdW8DaVWYDSyHXZGiTFIFNXX7eOMBkhSJIrqIE43kNFbtHSwi4JpaCMhtZZHNo9aSMDEoHUt1u2B6m6hslUkW4Uoo3HlIwqbrdcBimSVavOt4V9+4xeRwzdAFpi84wEkfroe9DIkj5E3g12ZPrTRAXAFdnTNe1in6yyWB3oEwQSyeZP0bND53tACBmvvDZ4xGr3Uwl6tk1BVzbRlWXqWqmyb2iJ00uasDGtLxrlfo+I0FFWxRz697T2jqnK00sTJKuFlhiZJ1ojjHtOJ397Zra9j8QoPzeH4dAXfESblLrIEAUsaNWecV7Zgd/RakALqVAuVphM327OuIl2gmupebAWCOGd659EtFe8mgSDi+a6/msSHh7v+qrONuD1NmwoEAK4WfpF5H0pXebUXVnR7yqM8MMZtRB0GcbpwL9TUWjbzkCjDb1i5wMPZGo911lmNUkRqeqjtpM8D2RqP97a53AkHuHtR0npzUODIPO/AZtJhM+2QLEQN5jgo85quynPNRimUwF6RU85x4AyiGAfBAMVrk0NMy/Q+BfQ8Wf4PJ0nr9WxHa6YePpetOKK3RPph6Jq+qZ9xPtL0VSjEA31VZ60fWMsXxs0ZxLES1iPdsoYMzgaqWtIlKh42AvP62XkJL/dAA+cCa+/NgIC2D1HgeVxYgp87UorK02f2l/AuXUoMY0/12ZqRtsyS9JVf+6Orxasn0YQCeHUacL62axowq4LyVF7sThRaHB42kFMwCrZ6FeNARcaw61idU8lw3DYFw65dSEKvkzoun83p3WO7m1kun83nVk8cIS+F4UoVDMoIjpVewWq/4iDgsBepSZ7aYnWled4UgbTT0mFPHYhogjZ16+LU0lnNMcYh4o47kojDRJa0W5L2SuLMMp0ToHCeaqFg+wJfSddtu3fOQXngN6hSh1hZuILdbFSYkEi7pvWLZ0Ni7QMLgQBLE1ygl+l9qLoWl9TBh2C7xDF+0FGeCf++WFdrVMxrpgAlpK+ET5w+EJP355uzAsWGwnX8FyKVCxbkNMIBPh/6MiLZCkzf88WRbT9QC+iH/T4ItRL5M0XuhQFEkJ3mMUZFGrJ2F+0ijQusBYqzG9hkwQamEaqlf+5rGUtqtN/HfdzHVwRLiDyLuGBEt1hbIbm2uAPHxrG/DSLgHKooIY5wZYk0OeOFOkCRJEhnjrOn24OyhCiCqqpTTKw9Qbgrta6E0ccBjGDEeXxw3M7FIDgXWFqPbiP5IS5O6goJn6DoUQqOMoTyGiTu1tlu5RTpbeKmGeQHs9SaGQWTjut/ow62u431CAADMN2Fw9dn35+fsSDTPdz4OnQ8lD3xEnyIKq3vYdPqOlkLpw01oDr0i0YDEPWg2FnQWoTz0ieB6IQ2myBRhuHWB4LnWNuOr9o5622C1lnrjZ+SEGWaZeKhf2rEzAkZytBMkxX2RGF0jFKRh65K0DomTgYoHeEC78iZ7a/nM5/7a15h87usCkynu/7+ZytERTgPPYvfbuie2/r4gt1GS0zmoUlyWNKWlFYAFwM6LavJZp2d1qa6P0BZ1tftsoI0mtWAVsxK1EOQVlm/USggtIQgbu78AYX1pA/N8UIvDit/X12PumxGPW4WI0YLBGs1mvVosUBxogxP9rZ4S3eDUVXwMrPpV4RsQR0IYU72uAe+NzjVhu20h1EKqcKW61lPyJTxPsdIFM7VwtwhiEh9Li4oHu6cn+bAh64oYk8lmxLhTBRxxVNx0Pgdwq/n40nM9dHiyRYK6AbWjhtxxLt6GU8dTtmrcu71uQgQi5CdCBT4mNMc8HBqeK6FDoUGLmb+teAokNTRhHl99lKnw9P7hwvrsCbARoCOtG8ioEUlKARpxPpLOCa6gSBOplVQ//ReaOBcomfr5NPtjLVqpWErwGrcLmgVggOuBAIUXdN+zNcB96YFYjOHo2UGAVJj2eiENSMmuZBEDiXzWQgjbdnqL75GyRLHpe2CsoKyErRyRC09PHkuGOPodKAsLdNccK5ermtdt1upunrCGMf12zHDvr96QylHVbV7LklAZ2J8ECDM9yC0NcwGBaM9QxQ5sn5JVUJZalxVTz1KO6KsQs+c5qFn61wdvGmLKPN/J1mtWtHhihUChciUB4LuOsSAmzdUC0T9CrPq74O6Z+ss+xaX7aaBbPjNCmcIl5qd+lLox6CabX1cBFLQuEhxAq4PpI4ytN11Dr174nfnXLfY5t87ibIr0BOsdahDz+UIEEGVOspB4IK1tCmErxFTJ1w2QCnVviIjNI056oVJmzamoHwBD2YVFB0NuwsYnQ289yZW34WOhr3FZzqBIA9ffmmb7LNfWszQoIs4hzsYI71lEkO/tnA/Zf0+7uOrGVlak4O2WZNpjd458B4eP3wRGy+4GRJhujH0r/KsRZzDalMTsHo3xFJrS1w+j0zDZbrS6dYVINrcWRGKnHD4H23lpQ52KF1XUTQ1r15x0mqo04Ir/c4lt3etXpfYqm6P7+GI1NegDDLHueRmTlMASXqQ9EBHoCOcTkAniC1wpkv++O8OO+AOXql1I1Q0U4ILQdUr1euf9J8SD+fYaIDRXoeuK3brtrXBxE/ZopNVdOcsi6VRKHS8gqi0DgI0YHr4KqpFxnScXg5mc0N7uoWqHKM89EhleUjkyeb3IYoGKI8GgANsNWXxQcZikhXiQOCq279InAwpq+mMjsojmO6gqqYoFRF7KgqgDvDEC16zc3WWztjTZ/qdC8RtRO4B0Ezy3eYjKqKbhPQ47oXQTYdEnueb6IwooCHQBIVho+PnLT0s95FWgW7hbNevQXFl8jqmRX5LP+qjA7Rkq3rQmlIoU/7s682QPoUHha284t/n4pXWiV9TV3od6EOT8fX9C/QDuhxHEKCjIx7vtuljYEQxMAl9k9AzycLBCYBRFZLz9bfTR/EE8FhvDWH+KCPAWpzVwQzPOT0TMbFVXUkRsOOcY1QVdHXESiAbfitJyVqW1a9FERdi/z19LG1HLl2JeN+osbU8lLUT8k4FHs3C/ev3b67w1iwmlfp+qROfWITBCQd4KsIlTyagEcG6dsvUvjFejQfrHGNrW9W5KWCn9DsWLnUyzi+YyWiA852MPBAkuRnSPfNAB96PG3l7+otMiZcW7K0dQ9rigawJWFFeNo290rZiYHHUK7Keh6NoVDnaxhSu5XgrRh7K2ouCGOW41G32hvZjS2lBiZvLnW6U48G1kn7iSAMZ4ONcSMx8ewC9xHJ2CU0Do2tB7LbBCai3SkpBf1CiVL3tM6beumldH4ujin637qtlJez7KJTUMnkCjoMDf8Nv32wvUmCM/73qDQs6gxKlLdbWuhRCzUSstMPElnKqGe8bbAVx6rfVIj/lLqTDQAAgcagWFQXOOoq9ALXkriYaWNSi74rM8ut87dusICR63dTGUJdOgZZC6CKC87knOmBTsB1Xb3WPJje583EKXAI2gem2w/iZTdF7oCZ1sGNusczMfjUn16haUZSZ4LTUlR7m7vYdt1NAEKqu/4fLgW7HkqWBXt1vGrGp2+uCOLAjzzOMVDiA0YSH/GwMAJJp5Gw2n39QA0bqIE5oL5S37M+ACfjbVOUotlbnM5ckEWptAEmMuxXohL+OcD9AcR/38VUMiSPYXl945eMUMEfYbby9jk1S7LwBUwQbGQ6eeNR/SlVho2i2q1U4EVwUYY9Wp0IdtTYGLpxFpylUlX9ChLrKIo7hqHJD69mKUThO4TFRXWGR1BQWXkd8UdSr6zb0CGkPCWU+Vnm9CHC2btdR4OTkakJm168ipL8xJ/sapJwg2RDJ1pCog+psIIMLVL1zuM46LlnB9i9SPPitEIezl6WcgAguHjA3fUM04BCP8xVA1p8M22iC8bdRXAGtHMRSC1F5nrGKV9DZeSRdZV5RoOgEbXrEnbM4T+ZyVR05cxfpMxFJuoWtwpmtIQHtJjhX4HvpKzsmiduJ2FpXevugtRPq1duiK1tHFPfRHlFrgNW1t+CcJYq6aNOb3cp73xFNFHVxtiDP94gCtEY7u1/EUbHYM3E468jzZk2BOO4QB/pnEwTxingDPHr+3/EGvJps9dM1r46IiKKam952N5QoHhj6dVXyahrOGroHscQ8vOq3Z51FWrgju6ZLFUiberB7oXWm1qr2V2R8/eBNrQMKsTJYzzN8czesMdOESGkKD1XcpXSFXpQyiBKiOcvwWDRbUY+39r5ywnmjah5x0mlECIWvmhB44XCHro4w4g88CJAqw0qcsBKlFJ7nESuNFjn+t8lO/RFK61iJEs6l/vFlJU54tLfSau+8rjUrHipNaF8BAFB43tGpdTipRYwXxboxPJ6FvQuxUvxnZ9f4j9f7xFLPAoqa8jlWd2tGPpxGQQf/rWLxmhsBHsq63gqUyjmMtMveVEAWqIK5mCS1A36OnRS4kCYMI0MvELSKaO9r2Qh4jZfRjLgcoK36wLDTKkBRKCEVR+V5OyvHQnoId9l01htAmVhYa5mnUlgoPLfpHS2pvqEu6u55XqqVtE6CsoT3UwIMEsdaZtnuVYSYyRx1BYWZw8MiQOUEt0Ql4K8G0ay6I9LQ61akiSXSDqMdSWTpZiXdzKJOeEFLD6WVtWBM2zEwXINQFu1dVsMNf7JZZ1CSdCqGW9NZDl59LaJqeicR0JHFOWF8ENH10E8dIQoEMHzobflt5vuKarr4NVsrFBN/n3GlILHD9CzEgTutgNSSXzPBYvf4kWIBT/09plPntaliB+N29pybVUY0oFhzYKCKoerUQQgb15oVzsz+O4Wq7yg263NDGhmqqKsiyt58XQurwGZQroevpxpoyhWNzer2QH1L7SwoYTVYA3YgiBVU7n9uNhVaMbkakJ6/6sIMDXTbj0Fu3PyAVaJpNSkJSBa+0WIU6myKnMn8wRRNrYsRKaSjkSTwTCYtK+vzCib+d1jKEtvLcJGZw3ascJVFuhmuaB+Y/lrE/QDFfdzHVzn0mc3FdwZKYSNDFRjUlYNy2MctwPE7Or9Ffs6vGeG0pup0ZgUNUg+ySkEU1dRQUVSLXadxHSyYtdFXUgggSiErq5BP66oMx4my81ldpQiUJe7woP6bLzvXRPV3Q1oWJ6EU9FbqoIb3nKguCxd1lGrDnaDEiWCFmFqDYuPB+b87E9wWHSFJH0lXUNkQ1z+PHVzCDi7g0uFCwtxulikrJmWuBoXUjmIXCHqodLWuyGiDKCAybrrtAxQ6QQIZ2PH2NyHRCuiY5mlNAINITNK9RBSvIZ7UIOeqmfN1/krPRH2UNoSc+9bmVGVLfhic1+GtJMa1qoGuAx5F0eywVxJTVPssmv+qlEHrOEiRpFVMr3sBEY0SdWKLf9J1KFg7xURdnK0oiuZ75JxlZ/d5nKtYdMlSVmMvZZS1FbZlAECUIQ1UeFxcfxexDujgnLSFIosGQQqlUbE3xy1yN1LTITb+d1QrjV6I/79GJ+ox8vSXI4REqk9CELq6SxQYiwpbtgp4ANws/ZolW/Eq6cLEtDVUJV6an2U0KBRC5BmzYmV4cEZ5lYi/dkQAjeK3rL2J80m7qqlfDXzaDyGkEnlFrUdVwe1iSkdHtXZZwI4WRaY1q1HqvX9ahO2kQ2kr8gan/jFTuUDHGLaTjLWA3gHAt2yfo7foOgG8znWoKwCen1Mpei9ya72UTLEI+5UlXTDRQoB3dOdTBFTO8fThhCSKuBAbjhgpcgcT6ziwFQelZUUp/vDmMGhrp4UApgYeynrEnv6iRTDSjjBFA8OADtphVZEphVL+kVUDgziibwwPZVmwqibVunUFwAMd//qtsO2IGwV4vOO/3kgJ3zJssW5zjmnlF2XOZDHB5pOYVn46jVhoff8K59cw7SxB3X2UUNsE6yDVdTBBPOfVVWMQaUc/cVyaU/FgFMR6AV2BWS7Wqze/sizcxsBgUNW5VfU2jjRzZJkjTSxGQ5ZW6BMBFuOhIBKpaaHaYjIJzT3tAh5aWzoB/Q1tHKtnJoz2Iqyl1qAAnBWKXFOVQhTX41qcWuw8XZf2DFSUI3/HnVzTuICmyamfFyj2AxoFs+cRb1RHJAT+cxFcqSh2A88jAtoEoQRU1+JbXlTX2q87RALBAg2TSxbbc7MM+rpawmV1dYXLoBo4yhV3XIURcvA7Q12JEXmZ8OrzZtvH0SPgPILRJzF63OAiufNMZu4EZnmONgWnhXIoRDvOzw+nhXKg69+fBwH6IKWEI+2XW45BFn8ylHXtAhQRUFqvqPURZHM2r8a6/s7JUtCjygmjIFHIVop4Jh5n3d1ZGYvAWcTD4AG1j0yN8zpp1Jg7ibt3fQSKqn6BtaoH4vu4H6C4j/v4aofbO5hlui9ysqNKIybn/RnWejSh6HfqigdPFYUDxusr5BfOoA8DPLtKka8OccZgI4M7uaET7lRAaH1nMu8v4MjrdOoUHK1m1RFHVE8zmzPnqNvdxXU6Xg0KZQzS6dVUSwtlIwn0hkjXT18j/c3alI4gziBK7rZ/RO2UdmD1PHple+6vqrWH8a7aZnDpGra3QCbvkViu0hCFHGtSi1WbFDYCVRLpJrR10GX+oJZefRtUExZfyVukFw7yRCuPEq09CaYLqilIISgdk/YeJko3ibIziOedEhXVa4a5DliF6BQQbIBHvih2aUeqClAxHb3WeCSKBkRmQJudkFKGw/FL/l+rRgvaU2idUhYjisJf1prne3S626xvPFmzPB8H7uDY7aoMIhFRNEAEDg5ebbRVlmOmxf6seYs5wZyrvKLVk3yHak7FyylYy7mNd3sP74/fYKV7jkXuYRp1sK4k9QTxnLNUtqKNkPdqGqb/6Zo+/WhxLZnKlewFqqo20nW06IWCChERUztlmAy957w2uRrUILkXBsO+9QdQ1lWPSSvGdEgCzumSiqhlvnRfUi9lFNRBilWTgQjGcx8Vwpmoy7dtPdHqt3+1CLXbh0gUvtqI3WLKTjGhwM7NFI+VIlWG9SQjCWg8DKOYqbXeHugA44S3DdYZBOidjrCeZPzWMxcXGgU1sFOVXgqgvariZgv9CQAnQuoJUHS0IlNCumDgKGI+xz3AJw6nvJqXvJ6XGFGsG8WRn6SaUTatGMUTWcxaQAiycg7bIts7FoXF0fNsxJUIqy01GZQIb+v7x7gXRmNG1pKK8mpBGGA9iniy36dvDGcSf795czcjanHNAjzR9QcMVqOwWPm90MDZJJxdejFd3NFR2Hp2VZ5r2ow1acthIUfhY/voGcGTaOuFsXgrMnLXvqIl9IpMSiHSjk7kSIxDqzpIceRTUtwJTpzpVWx1w9UTAKu9CqPrJKvQs1bUgtVXA3Q9/yYw6FXEsWN1paLXvbuWJjaWXqckjixRVN85paDX8Y9zaUu6nhr+m9jptZvT007FYDWsW+ZcvZ00kcXEFqUtIg6lLKIczil6azlRUpGPw89DteLXAXBMdv3v6GR3Rme84MBgK8EFvNPHgtcmQN0k1FmMFtCWaicQiL8pSOYW9yRq0GcDa/jrujVPlp1T/F0NYfSYZXrWYrU7zl6wGsqeo+o7XAxVt76OcsVvrByA0w6zC0SzSoyGa7cxHDwJ1aqiXCCvpNjSFOsKZ+oKiCObTs2qKrRgEyiGGikdyqfFI0J+1uBivLRXx+hTB1tw4YTRgsVFqKEOrvjap4CcxfqzAB1di7pP/OOIKy3ujQmyncB2Cqm+k1t4NFBnGtZj1KUukmnoeTp/XrUuExQEF6hktIMuajIFJTil7/iJjm/RLBotAruHYC1qdYlywK9B3A/T3Md9fBXDOQfXb9XEolUVVukCQJhsr9Xn+2Ad0d4IG0cgCtEzu0fCvAIoTbVWz6zJ9duMen4Hdb61SZUm6AlUWqMPR7OIsnBcy5mZmmJGK2R1vqPMllUdoKgsx1UTwF2aDyK1BkYyJ0ts6wJcfXnhhY/0V8OUTL01iDtI0qm1KqyFo827my0m4y4SZ0hnBXrz6Xj08BK2t43df93TKE25/e46mDAP6VodIHBu5qw/cf8afzyDAIVJFa/RVtSajj8oI3F/pkExp113voGk4SCPTjfBWky6jktWqaa3Z1RcdxbDOu7X1TmiSXsPe20pFSM6xeW35rTR1YGJOU4KW01rLZRWcEG7xvTmtO00fGzttWbDojsMh9KLr1Zl1kZ3MqVZZhUUotBaU5aHxHE/6Oyu38fFN+tax3VQ5MsEJxYzRy+gsGOU6DnVGYKIphsQjAaIdNzKWZXMqUjKTIeNzjavj5uDQE04yP08qFvpFolKmNgJ5ZxqlNSkIJAE7t9Lk9eP+8oiMGJIJGAvv9aaMKUTqBK7XhxgRJMHKIzuxWPd+ZRMu+Wkdu4CmlokXAEGjRGNUkKsI6xrn738q8GNaduKLygV3nnTOcf16YjpQtRRwmFVshH7KwCcc1yZHB6/I76eI6quYln01j25ssbfe+1FpnPmO0VNx+TjwweYzDQUFukxQq3xELo3m8YQqcUMCnCtLKic8zp096qKK0WJc44vTnKcwGpkWI2gLCsskCjhfBKz7xyfHU15R8DBnswqExa53grHWqhKFejrdtvTVGsvRRbA9SJnam3dPhGi2Xt3sjZXKTXT03BsxBHDACXThU7KahRxOF1Mr0UBewHar8nMwb7oSqsHHFYBx41z3CgqEmCRWp5SwqNv4WAjUlzL7cLpFllg0JpYxwLJxXfBzpnSuwr2WixV522ntIIsckxKR6wd1tVbksrJ8Xczbckih1lgubGSWbpHTnsBcc333FH/zqgFvc+XA2nq6HYshyPFcOhQumA8VohANHuz+507b/jGcBqkc4/i9gEKrf3fUS0nwe6gCI79zsH+zQQdOZJORewqiqmizPXx8y2mimKiMdH8Xh+lFh1VVPmCa1VVbx+DaMG+KorgAKJ7Fp058hsaiSw0BVwU3OmcMnfrJxpc5KCQ8OAlQGLRg8BJJTW3UQtUg/nPJT/jSF6rKxHUIWBBnDsWsXa61orIt+ZEOdUR7Zo74SvhuGLBzaorylWwPaHYlIXKxNTYYVOFyyyVgCpnaRwidQAmYpZdP9cU082I7IUcjq6vqe90gMRz7ARc6eqAgoaF830C07bMRKoXWuprkN78C3Y7BZR1kEVvJthEcPsnklod0DPo4YxZYi0OBmTqKPPi63ynFSHBHxdHuCQGDmsBbJHTOiGzPTHO1j6tQfuK7a9F3K+guI/7+CqGu3EbZy0k0UJR5yqLcZ15TMUOled3R31F6oz7md6DMxo9rSd+NZ4guX92qnpdxpcuUqUpUhT1AH80AYjUzntncdYh584ggTJ8AFsUqFvXZ8LcsyqKo022tfWqUtc2ZTCoqaAC0BtnYXV78YTzPFAxAogo5NLbobOGZCt1FcVR4ESpOngRZ9DfRM49EaQmOrapY6KHfyNq5eJpx7ROKS7921Tb71jwAsBtvQeXDGYLqITTFz+bEHUH4gEcvuG1pXaeAZM12PBdTAwBQWM3vgrx2mK2ACSC0p/NDeBsge6cqamoXIWInPgotE5w1lJMrpEN344OZJMn2QUQPaugCK2iHNgCW468AtQAVXVA+woKR9q56LdZjlqaq8iyZtHjojogjddZ7Pk6ymJEnKwQxf5KqDgZMJ3c5vbtZ7FVDtS0BiK1G1qJxdqCqiqoyhFVVdDtnW+0ZUyHbrbdKkiWxENSTxAgjVfRLSnLtIp44fWf8R4fdM6R56O5OhSCkEV9zq484j9HFMNkE7WwqLXM9Dn86EQ9HJCo+bQvgiJWCXmgyuRS9wFWkhU6cyqrBCFRCZvxJnuFP+BRtKTcylTKpfSC9/hT+8+1sgd4s/8B9sqRN7PYh/cFnjHA9fyA1/N9HA4tCkFmQURFNcuajETT1wmvB4JF/ybw0jg83jahcpbbnrnTAftFzkFVeGm0oH4GY1uQimYSCOpez8e8MRnT0aZRXP0onCkIz492uT1njXCEW/l0rlj2kTN7oDQ7ntL+bOboXrTHRMB2FHE7QBXQ0YpU9MKbtkPruB7gMn51tr47qCz793jJjNHERuOUYjLz1P3KyH8PtQhrevEKAAE2AlUt1jnGzi2cQRcB23HCc4f+wFpeOUZlxdRarHN3vc9H8fPSWkrn2KlK1uesU4eR4V39xR0JiQjPB+7hqLStNuQ9I9wOBChulZYjsspFMQrQWxxax3ak2VrwoSjgciJ0PBf1+tTR14svy4/gow85E8NG1C4srRCvPF1qHIPEspJYYn3UP4Rq5o2stRpqMeq9iaJcoGRJBM6vFXSSGZVQ0znUW5y8VMgcrYp/EzizVdDvzYIRvRlF0iyvZKVXkiUVSmBrNWdj6N8XlqUwZyhtRJY1j4FFLjgrxzRMi0BrOAyIbudjTVkIZhZImY4N5Sy4ILNrtpWwfytmvG+IPW07Qn8rJ+5aFlUqVpr6fA+SoWUxvp4aom1QVFsE4q0Slwu2UM0v31H8LK6pzSQQZFIbDpnRHs19kbVDb/oUbmboeCJ2HjgD5Vo4qCATyF5UqMnsec7aK1bQh4IaCTaC4pyj2J5DJTR1qLIOQgB3hLdni4LjPCpd60HkZxZ7dtGOxca1LVVxp/Mx+/9lHUSR3OGMYJNmu1I4lIXp1qyBvgGmoA7SdCWcjLlv52ptnIIB1jzMHMnsuo4WUSH0NMRS60Wk/pnR7d29xpF+hBoYxChEq/rfvF5Py3qMWvdfkDsqkWsBZxRVgLoRoDizjosMUlWImyXd3pVdY2tt1jSBTltV8q9d3K+guI/7+GpGXtQaDnEMajyrcjg96zjAdhPKfgcpwouostc5zma2ka4X6NYiswW2U7U49knhaSmrYBnb9OyZunKiLGEyAWOwxmCMmlVOaGS4skC6CLB7GzedQpyAHs8qAWYVHkcTtzG1mPZgpa4sCUA6/Rmn3wKRcQdu79bcJqoog4tP4m69DJNDyA+hzHHKIEkHSQf1v8PFxVUl7hA/9luoDq7jbr+Aq3KK3mNUG08sVjlxVwM1buvrkKtPQ1TVqSO2qD8IiIEog2TmqC/2AU/Gb74/+33NQo52naEyfwDC5vsoAasisAs4jpzDzXHQOVugdILuPkh5+9N1QAxb7xOUBjEok6HNADeH3seYLpFZoeD1WT6zr88KUNUC2YFFXl2hEIMLl5qfhn9RNhq/HGhXs63IQylkbU43u8Te4WJO3aqaIir2UmQdnVNWE4p8b3ZvTnBRC+DqjaZzFVWVE8c9r0i2iLC5/jZeePEfL9Q+gI21J4g9uipKKTZWHuNg3Eyh1dAClBimgT7oXDUTvT5aeTdvdLQYVjpbbA8eDP7imd4lXtj5TNDWEYxE6Dki7ONyRGEL+vEKxWSKDfQdJYq1bItY+xfda8kaK9EK1lkm1YS8oW8LgsFQupLt9AxFgAZtanNiiRi7+eOBQhFLzLet/xbvOdeXcOhvBDQeFIpMIg4WykWuBaMf7531Hi9sxc/tvohBMZ2NqSJyHOByCIWz9EWxYjLygN7LvwlMXdmyPqt29u0XU1YbKh+0CFNXzsYA57VtRBGJYqeaMqr8/WVcVVTOopSiow0TW82qGeq0xqOqATcbd3JbcWM6ZiPxB+imVcXn9neIRSMUYZ0MYN1E5J6AZAWci2N2xuFkB6jf8EiEt2WZlzIKYMMYBIuhTmoM2ROpdUSmgRTxI+2OfI4myJHfdTLHAfvubswvHiw2x8VKEQUCsNbVM68WoZxbNQyJUhTOMfK8J9Y5ps5yUsbbzuwK3FVJcTZJOJ8kfGE0YjOOST28PRux4XPjCanAeE4TFbUmxCgQUNBKWuRtwr6F/dJvL3fw7Lio2SMW8PuVDm8wAcA6YWiE86nm+kE1N6E2Ad4ziL0OsNzBrZZ5GyJ1O5t0KGINW4njheni2iUSytYXODeoeH3fcFhU3DjUWOuOyZlEZlsT6mDGzkSTVyXxHKf8SmbZ6Fn2xoqi8qwbZ8uI0bSdt2yaCzsHmqKsi+hXehVZ0jJoo+DMVsn6asX+oWJtVVDK0rEjrBMi41jpFnODD1UldLP2Yq8dTxCgqgSlHEo7qgV0GURgMtJUvns8swlgYks+1uQzgWYlINrdYWNxdaCizBUm8r+lK+cmJP2S/FDNr6IQUMbRXfffI5NaXHU0Ms2HqwTTD+8LXAl2IqjYURVST1aeCVmlDt3x9x+dOlTXUu3KbHvtaWdiUX1Xh0tDDvF5OWF3/TigHZNHw3NO+rJC7whS1vRN0nFILnWgQdXC2eXQ1RRPcyAVqFluWNUFKUGVszlyFpxwAlUG5WqLwFLpiG5WtaFiVvlAHQixseCMoMf134u1Ewmgp9rnMHt1MpjN6moFqU7Ey46+5qifuwYy6uTRBpuuAg7d4qnsCugqVNz8BdFSBxvGdn61TSpIpJCNyKsZAZzSjBAR6EfQMbXgdV2ejDzURc0pcxNH/b39YvF+KODmCHkX57eIv/TaUQPvvG9qRuEG9YAdR4txc/46wf0Kivu4j69mZCmCICu9O2VkR076k5HoSFNlaV2CmMypUOhmVL2jjbrcFZw4gior5ET2nYvCiy2bxMS3bqPKEmcMLorqiaKs6uDE6gpiNG43LLwK4A7qcySK68DCkY6FierKCaXr8sVOB4njuYJCzlqI0wXXeA4mY9wClDyy/gDS20D11lBrF1FbD6M3HkD1N2t6p+03IS1pCgB0bxNz8euJLv9bVGcWpHVqQvcsZBs1nZJJIe7X9E/pKiR9iGd6DUpDQACYbH0mPr0goiGSrnsPu+ntuk0teM7dNBw0EhXjrMOOr1JNbuDKQ7A5zuW4aoQtD+pKB9OhKncpA/z6oiK6gydOZMM3dRwBFM5V6KhPVfr1GLTO0EuI7FpPIKWsRuTF/CDaSYhElB6hbq1TrM2RBYlGtY7Z3wkHMw72XyWOV0CgKo8CODMHoqsFwJ2rgzeiDL1+c3XHEQb9B+jPOecISmIevvxtwXMunnkfiy5/6kCMI0v8fXrn8BXSeID26F7MLKGU4U1bX08vQPHknGMl26AbDxbKf01MRmrClRFXR68xiIekJiOd0xd70YALvQeDAQqAJ1efpHJVLcCNRt3zPyMGpRSxijHKkATs5a5gPV4JVjEcQaN5Z+9tPNb1VygU0s6hr1GcM/6gal+nrJisMVu/CRfMKqsB2q3Pj64xqvJaVNrVzlLr7LFIsaP+/w4oXUU6JwD15cZi6iJ3o8Ix9AlRO0hUTfNYehziszAmgqARDkq/C7Svo2MHd6QUSuqghBZ1F6WREmEryVAiXJmEaauujA95bTJiskAwaDuK6wxqj7MlFuGRNPVqHZyEA/pKsR3HXg0KgHWjGUbR3H2zo35+A63JAvaOBLeTOZUeR76B3hx6lQupobdgpxEnwX24FkGJX8z6XhTOUTh3HHS4F0qE20VJdoLuy574HLcLeO7gkC+NRlgHrwWEzl+bTCkqG85AncEARgn9gFd3XLlWGgqlC1fI7JWW64Wlp+fPdHUwiKAmRKrgTKzoaWGeoosCHu8IT3b9V6SBnXLxhNWjRGXteQMmFXQCAuhN8AYIZjg/qHhwtcA5mFaCo66gqJxQ2DoQInKHkunawfwnmMWOs8MS46mOcNTX2okrDieaQEzrznccXLlheP61mJu7mr1Dza09zQtXYl6+Gi2UF3YvosixNqzYWCtZG1o2Vwu213LWBvODEwDGuIUrCU6i02kef41xWKvQgQqBk3AOyiLcG7SxlLli/2ZCUQi2EmylKEtFOdXHotg6cmSDgsOd8DysNFx6122Sbsk8D6coGJwriQJLt3xftaK1ijo2SLkFUB4IthBEgYrtneoDOfGxQAHxelmzBHvgSlBnypqx1xdHMSCJQyKQyIV51W4riN1Cg4ITKNYqpg/752s1qvM69Ymp30Vgu7Uwdq0/4VA5RDcWmKsjUJM7iVYuqoMRtgM2q/UiXASqqPUpFkV0rSJ9qSK65VAFxx89Bn3o0BOLTBxVAvlWILCvQI0q1NgiTupB/USFx50TgfFsvdURL+WR0xYOHMQsxrAbg1w0/glHC9I3kMypolDAyMFQI1vhG+kLXogWpGuQvqmrKhbh4DMKWU0X1qFwAJGZW+RkexnVSg93pDUhUvu1jrJJtIZuWif4ll/ZZKSvZtwPUNzHfXwVQ62tQG/miF8b1hHWk5OJCE5ril4GSrBxxORMmD6n7HXI11YoZ985Dk7MbNWrT8FFGrN/SNXNcIFyd8lzspdfxcYRVSfDGXM8CIvWdXuPqi8m4QxU51w9SCdJ/b00gyjirlWXUmAMMqyvUwYB5zrgJmNkOqpXj/MgAiaG6XwRXVEaOfsWZONBiDv1ilNFMNhGLjyJdIbzf+/fJLpncetvrQMR2swWA3ZWm57V2hMiuMED0PGL7KrNd1OvLhdcKCsHnQD/utK4Kq/v10JT0HyNBFEGO72OHV+Z9b0jlTEAmWXSluAsxeQ6VbHjtyWa7spbULp3Iohy8trr4ASiUComilexgUqQNDuPMc3VAX4optOrjUfy/LY32OCDdVMm02uNx5Jonao8bLGZVExHzbaOUOS7VNUEpeJ6HBCFKDMTy5ZjfQhtUrLOdn1eqP22YHvr3RjdJbx7UZw7+xvoBPozQL97Hj3nN+9YVCgV8eD5b/aeM8n3yKIVIpOh5bRIuyBoMfTSVR7ceEfw90qbk1dTzvUfphOFxdIERWlzzvQeCp53WOwxiIesp5sMklXiBv0GQejpAf14Ba00m5m/AgDgcu9BttJteqZHpCLUTDT7KDgRqYhBNKBjuoyrEVsBIe/NaJVIxSQSfiYK4Uy8xWPdR4PnXYw3g8fvhQDfsPK49/hDnU224gGZRHP3zgZBG0Nu/c7D16Z77FRjYm1ItDkVmKn7i0KLwuHYayvq/qvE5d5qq/osqHt8zzS7LpUIXWUwcwIf1jkybYiUJgl4wdaSlMudAYraSahnAQqZ2ZfZ31ajlEtZXSW4X4YzLb94uM9OPqWYQ9MWi7BqDEqEzDMvGakl7o1SC+3rJ87x3HjMZiDZ4nwccT42C82YWmDVKDYDWmQX47ov94xm6KkSMEA8W2++Yw71gHOK1UgveL0Vnz8MJAmIsGoiShcWEz5C4Ry7ZcHZgB5ZJIJRQtdotJwOTKjZ7xolvDye8sp4wl5A6Pyl0bTOghaZS0WglNDVmrcN/OuAnpZW75wooQxM2QfVnQSLeX1mxkpCJ/Dwzsb1KGVEWIv96QwRcCGC37wWB6tkehoOq3YJ0wMDh56bdD2HL4zbBVbnJauqmY/vbL+iG9m7bGupqZ86UZ2x/PqBYW8BzYhe6hh2LbGpRbbvXVlq5TB6JsqtHKN8/hVdu23Y2W9+eAcjxZUbX9kAN9QBhT1Pm3xI4orhSnNg2kSOJKmIosXfEgdoHagA0I7xgcFW9ZwbJbVIdu26haoQdGwZbk5QCvLJ/OvpDCs2Hz0kCoiHoxwms2TDirTf7JB0DopdhWgHC1CXSeQwXYeac2410vW2RrvZNqYhQ16BdBzVRKHSgM7NROBQoTYrpOfudoYL9QQSOSQF1bP1tiwU3RSpAxRzghROoOpVjJ7Mcan/etWoHuhlTr6hKmqqp3lwkWBT5gZQnIZyONdc/dt7FdkXSqTkTuWEzJi9XF2hUVM8CVXXXz0BNR2USxSqcPXg5lzztu6o2HQEhHKbtKonSlH1cwsNbzHQEdQZ4w3aixJkK0K6BnrqNIfPrAqFTEFPvHR+d2Fl/tgmC5xz1D51rluLai90PjgR1BzWEilKXCetgxSRmemYMPNxRTDoInEEpUXmJBj/esL9AMV93MdXOfSbHwIB6XWg36md/WkMaYyNDFUSQWSwRpNvrVCsh51aiDC6fL6udDCGKo3rQdPo48mvSgw2jtGjMdP1cAAgvnX7OCvCRhFlt0Mx6FMM+pAloBRuNKM6WDTDrtOrHZlJUjvX4xjStP7EMRIn9d+yLtKZ4/w93K1poDyb8FPIOgs740UpZOUM6uLbUQ99A+rB96A2H6o1KP7vhjK4c7+hDhZIBDN+87qMdAzlCOI+7sK/EzQjoqD/EItvJR1SBQJRIoiOQBnmd4g608LNyea201vY4gDnqjqt58jJdGy+pghztqSc3pi78On0HyWOhyiVcodk9egjs8swKJUSJ9vB67A2XyjL8p5vBY+W1XzqkJMoApQ3IoJ1FYtqPDhXYQPO15lRivyAshwdOw2VCEpptI7RJsWYBBFDmm7M6JHCUEqxufF2atefuusjohExxFGXNz3ywbm24qiD0kcC8vMgbK+/nShUpSCCMWndt5VgVIRRCUYlRDol1hmRTujFQ8oA1VFtqm5TN+6TmAwtR4Lypz9H7ti1OQEZQdGPV0h0Rsd0yaIuHdO765OZLivpKr1ogHMVvdiv0wJwvnOejs7oR302kg2G8QqrySrDZMggHtAzPXqmhwhsZdtEgSqAC+k2sZij191zDUJHdbBYRnMc9oM5ouFNtkNDwnY04M3ds/RNRkgFQCOkKiYSzSvT297zJlXBxJZkKqqrKKQOvhx96iRGh0HxQLrKy5MdqhYaLL9auAAXvQ+h6hIlQnIiGNPUm6Hu+x0TsRIlpCrs9v3G9bMMozvzgpo5l41SGKXItOHR3gp6tqYJuS5La7k5nTCqSuyc++ycY2Qt21F0bPteWOc4rKqFOXSnzvFqUQQpfhKlWDNmFogJw+DYiExwxu5qxeXZZvhNaXwqsCDAyixIdCk2PDqHxuBqUbJuFgtQWOd4eTJmp/AHjUTu1okIoc5gd3QCzptBZOhqNavcax5RT1JQvzqdIIFBQYlQzDzckfI/kyOn/oOdhLf2/XPIilELr7Aiat/ORhQYiwS6WsjtYkGeTAlrgQBZpISuriugzIz88uSK6MgfmSkYGGEQCI5B/cymC16wUNM6nY38/rlbRV2R0SrIM2fc358Ke7liJXVkkaMbO1JjiZRDRJiWwvWR5mAq5CXsLyhqvZJV1NqqjjSqbWdR/d+xBqMdzgmxmf/sKgu39sL3eu9QMS3arkF/9Sjzdi6m9fUxUcDBvrqREycWUYs/5dDS8uB2TNq9s5YVqQMhcWqJ04ooscRxhYnd8fF5GO9G6AiijkPFtVP+SKJQVL3t0VEdwHF2tg1qgBxFTWF+1YiA6bhZkGLOvVGgEnvnWoSaziq681HGoQ3ojqXc9d9AV4I7VDXJwcCiVyukZ+98MosYV39mQQ8VoBxTBlixdyLGDdfpFJTrFXalroSYd18WqsY4OncBlEPBBpaXLoJiXRbOwu98oayDEFIHKKSa/XvEOzgLUlSdWqsiCIFyMNNQqe787fREN/t3njkjyJHehZLTAaij5xRxrBchgTkJQF1KcHpmz0gd2DAnPhGQSa0dYcHthveashKBh1IKmFVFLO70V1sZdKLFKkYAqRxzy5Zmncv2Mmyvg13pUQ37yNoK0usiR3Ol0bDSNpnxaxf3AxT3cR9f5VBnNtHvfAvS7SBrQ+h1OcoQt5HBZjE2iRg9uM3+Wy/XgYY5KDZWGV88Uwcm4gh79B0RyjShWBngIkO+uoIK8NwCmL19EMHFgQ3sZLYR7YQd9yJSBx0igwxXa52JrHPXBCBRBMNVZDBEzs7XeHCT0ez7izkj6a9CgKv61xRWHsKe+7fAJNy1GhEB08GtPQHd8D10xQHSQrCXqIc7vBI4xaDiFSReZT7Nk4BOUHMcjtX4dajGiIpnxJmnF67OWapyF+equTmFJhrQW303Jl5tcGwJIhqlDHF2FmUy4sSfsT2dXCHP/RRQzVBo7emDzs6ucXE4qqBmhHMlbsGtvbMFUTIMnpMk64zG17DVFKXM3b/tLM5WgMLohCzdIE03gvaMydAqwZiUfu/iqWtxzmFMyhOP/QF6oeqdGWLTI40GwXty51qGPH75twfP6SbrFNUELWZG83SnzzjnsFi68YCVzhaHAcc1gFExnahHJxoQqwQlCi13u3+PwhNGGYbpBqPpbtDmSrKGEs2Z7sWaEkp3iFR83LcVQmY6DJJVtjvnGMRrjIpwn41UxPs230esYmIdk6r02J4RQ8d0UKJYiYe8e+1dQVub8dosSBF7nXQKRUnFQXVwF41P87ntnDGRMnxi9CXvcRHhW9fexnv6D9BRcaN1jZCoiC3TI1aal6c3vfY6pr73ijtZ/ydxdA82oy4bcZfCVVxtPYYsj2f2wxVSTaico/DQIw2jFAt0dUTPxI3PRyN0dERHR2zGGWtzgvwXO31+78U3cT7rok9UMgjQ0RFPDja42LmTrLEWEGW+VUxRIpTWzs2qttTX2hVN3+P9emE6JQcGSi2kK5A7x25Z8vxkjj4S0NOKo5BlExQQK0PlHDfm0AW8NYt5NI04Exve2UnpzN6rWudS09XC42nM71kbYOa8c7mraYxCdNFHsMDtfMqXRv5KwImF7oIqu47a13EQ4MN5IE3p6rrypemuKBESpY/70rRyhNQ53txLj1lNnKvvWdOlC/B4N+M7z22RBq4nVouPWrHA0Gje3PVXjDyUGlbUYkEPI3Ww48neHDoNHKVz3J75EI8ScY/gqPtBCXxhFHYs3SwcLMbmggBnIjifKbqeRKNXxjVtWJvQaqodO4EKhRuj+nk5WwcfJqVQ2jsaFw7IK+HWWLE7UccBq3monLA5KIlP6BwcQStHYiA2jtjUFRch7I9UMMhyhL2Dr6y7ZzxuR08EzE3k6a0UdPtFKIn8LlSVoAM6I6N9Q5RYusMCfaoyw2Hi6q4tShKqiphhsmeY7BuKw9ma7UQKu3O1DKOztX5DNSeAk21WR4zGYSHoyGE6jnStIuqFO0O8WiFxHXyQWXDiLluqrtiINkp0x1Ht+9voyjsRXTGu5vpPTldkiAjSs6hhhQoFUDYryBwcVW00PGcXOaqBY3KpQM3RaKn69QAzT+jZprXNRVCuC5PzQtU/3T6bwvQc5OcX7aCO9I2qttO8bT3Wi9Dj+r6qAA+fTYSqo5hs1lEvcbNKjHs3D0eR5S4QKMZXHYWsKMikFv/x0XgBJIKcMWGeQEAyhZyNZ9flTgdJjIAFN7a4wsLenOoELaiLGdI5HemTTKMuZcgi9E7Hv69Q57uQzF97OFFQVdhkDs14bLDdDERRdVNc0xwWG2R7FbXSrBX56xH3RbLv4z5+DUCd30bObeHeuI69uYu7vYPLc8ajA/LVHuOHzmIDm5UmVN2U6eYqev8QVZRYo2sB7SjCGY1N6lld5hCYHh0vux2i3JMRNxO4lpVwVi6ADIe48SESRcjaOi7PkarCFQUohWiNPPQIqrvYQC7O1hPJIusPAaK4hUP+qxz5HlJNcQ/8uzC+Docz2qDO5h0app1nYePtXhOunOD2X6IWep63QFf1sw5kiatkHVSESlappjehKPA+nBltlu6G9QdcleNcAa5AdIKzNQesHNmoz6IqR+hogCyQsb+y/o0c7n0GZ3NsNZ5pUrhZ5USEiEbrDlG0hon8/bqqplRlO80IkLoapOlanZ0J6rawJuF0GduiwsM5S6d/fs7vaWw1rWmdbIVIVT+HE9nJxnQwUQdt0rkaFPXvVlhb0O9foNc7z/7ha8ci3J30DFm2xsb6Wxa6BhFhbfAwB+M3uONqOQ0lCd10HTtHk2aQnaGqpiBS0zxZh3UFzjm0EhQGpWJ6ySrV3HcItroXGBUHpFEXM42wTs90CapZ+q+QqIw06tCNVyjn2NzunOONw1dAGYbJGgrYz/fI7RTrHImOOd+9zHb3PHqW0rdIOx/oXWY9Wefa5BqRikh1SqKTE/oTCZe7lxkGNDcALqVncDhSHXNYacp7XIhHLvzKViiTclCNgvb6LSsorLUclGGbm3Gfb1h5mIkt+fj+i+SuPK5qUAhGaTIVEemInk6ZBqqMtqIefR1zNT+gdPbYYW+PNBhEyFRErDX75ZS+SShbBiV/NZhHc9SEijpAkTToLhml6JkIozSrcUqsNOOqoHQWEIwIkVIMopSeqalhtpL5z/Byd8Afe+SdfOL2NT5y4zXGVUnHRKzHKf0oxuKOg0DnUv96obKOjtEzh2tYNFpRUzIlSrwOtYm1FM7NhLvnowIOrWU0Z62lRYhF0ALFPaYV9YauPgdezYu5AtMiwpuzhEfSmKtFyW8cZFwvLblzRAKPZwnDBRJeoOb/P6rZ8I+oHB8/qCqmoesVR6Y0e5TMG4mO/DtxYN32aDfjI7d2GBpDaS1ja6lcnQl/9K2TwRUR6Bu/w341jtlMInaLksq5Y63Zkz1CAeeSiN++vUpvjo5bf07m6UkYJTyUxrwp9XveBkZzMdV8ZkRQKDumpvFaNYp39sKVqldyx8QK2t3R1oU7do+Sc3MLnxtbCuuIPN7k3AmRgkUieBFgBd6U+dcpU+pEWh8FVBPOdEpK6++tR7lZtyc1mVxpBevuXPURpXheCXk1X9PiCJWFc8OK/bGmtI7KgnOCFofWdzL1z6/OkyLnWCdh7m/OI0r/MqOqFNN5QtEnUF+zOlreNEJrR54bkk7FaH9+enw1p2rEze5dnFqG2xMObsVYK4g4tHF3pNNm7est8jwqYXQrwlmpqea1w1aOI6/9cTXFid/3Id2oML2KcmJqrRPF3VHBmbM5WamIB5ao64hXwi+UGVqiniXPVf2yOqh14WbtMqC6Fj2sO3942SFI1+IOVL31K6mFsqXOPXPKoRSorRI9sKgVWxfze+AuFvBUAin1y5cLlHK8dXHaUXUs04eKmoZqzv1zMVQrjnIM0c3mc10ELoVifbG5Ot8U9B5MLgsysej9WivCCbikblMxh8TiCGKBijv0Tp6xSyqQkUOmJyojGk8UinWN2jfYuECV9R74uN8cT3RAh1rM2uEVyQZQ5zT2wNbfOdm+o34oQFeQrkI6an4J236FihR23eBen3H82ZkdNXvWFbVOxYHFrri5mfRiFHIxw+UWRrNIT6aRBYIMp+AckhhYS2F66J+fpF4/uUWSKEQoN1fRt/eQSV4HKyoLR3O+0YjRqO01pKUf72sZXyNeuPu4j699yIxbX8oS1e+h19coNlYQrcleu4EahzmWT8Ls7JO+fgN9OAal6mCE1phJfldwAuoqjRDsrHLCpilVz+ME0AbZ3kCS+bzv0u0ha3cyqiWOkSxDDQaoXh/1wIMLBycAnIlqiqdF1udKwbgdv/9XNfZemv2HQLYFG2+rPyeyzOXgSjCgwPQ2VNOZNsmcKUMU2CkuQIcj8QDVuwzxEFQyt4pCknVU/3LwHBX17uhaqHhG+aNPBCdmtkRjks25FRkAcbpBml1ER3206aJNB226KJ0goonSLXS0QpyGufrH41dhrovlNHxUI8Z0mL9kuxvOaW9FhnMWcZb5TNo1dNTFVvkJEfHTmEyu0emewZgOWkeoWda5iEKk1nQQpUjSdVbXniBJww7savZ7aboG1GPhoHeB9bW3sL76Zjqddfq9C4wn/qz1e7G68ghRoB8IGq0jOtkW+6NARRAwzncY9i4Smw4gKCUYHROZBC0RkYnJ4j5aYmJfZcwJrHXOsN27wGb3PLG+U0URqZhIJ2SmSxKldOMBqenSDYncA7FOeGT4BFoU02rMXr6Lw9W6DzohNR1KVxwHJQRI5rTzdn6bp289xXZ6ptafEMFiGVdjQEhVyla6yTdtf9Pc691O1unpDqXHqe+oq1AcjlU9pHQFowDN2a0ApVnI/jy8u/cAZ5IV1uMeHZ2Q |