Skip to content

Instantly share code, notes, and snippets.

View javiferfer's full-sized avatar

Javier Fernandez javiferfer

  • Vodafone
  • Madrid
View GitHub Profile
import numpy as np
import seaborn as sns
import pandas as pd
from pandas.plotting import scatter_matrix
import matplotlib.pyplot as plt
from scipy import stats
from scipy.stats import norm
from sklearn.datasets import fetch_california_housing
from scipy import stats
X1 = stats.norm.rvs(loc=10, scale=2, size=30, random_state=0)
X2 = stats.norm.rvs(loc=10, scale=2, size=30, random_state=1)
X3 = stats.norm.rvs(loc=14, scale=2, size=30, random_state=2)
print(stats.ttest_ind(X1, X2))
print(stats.ttest_ind(X1, X3))
t_values_array = []
for i in range(100000):
X1 = stats.norm.rvs(loc=10, scale=2, size=30, random_state=(i+1))
X2 = stats.norm.rvs(loc=10, scale=2, size=30, random_state=2*(i+1))
mean_X1 = np.mean(X1)
mean_X2 = np.mean(X2)
std_X1 = np.std(X1)
std_X2 = np.std(X2)
t_test_function(rvs1, alpha=0.05, no_test=100)
t_test_function(rvs2, alpha=0.05, no_test=100)
bonferroni_correction_function(rvs1, alpha=0.05, no_test=100)
bonferroni_correction_function(rvs2, alpha=0.05, no_test=100)
bonferroni_holm_correction_function(rvs1, alpha=0.05, no_test=100)
bonferroni_holm_correction_function(rvs2, alpha=0.05, no_test=100)
sidak_correction_function(rvs1, alpha=0.05, no_test=100)
def sidak_correction_function(rvs, alpha, no_test):
FWER = 1-(1-alpha)**(1/no_test)
alpha_sidak = 1-(1-FWER)**(1/no_test)
counter = 0
for i in range(no_test):
rvs_random = stats.norm.rvs(loc=5, scale=10, size=1000, random_state=i+1)
statistic, pvalue = stats.ttest_ind(rvs, rvs_random, equal_var=False)
def bonferroni_holm_correction_function(rvs, alpha, no_test):
pvalue_test = []
for i in range(no_test):
rvs_random = stats.norm.rvs(loc=5, scale=10, size=1000, random_state=i+1)
statistic, pvalue = stats.ttest_ind(rvs, rvs_random, equal_var=False)
pvalue_test.append(pvalue)
pvalue_test_sorted = sorted(pvalue_test, key=float)
def bonferroni_correction_function(rvs, alpha, no_test):
alpha_bonferroni = alpha/no_test
counter = 0
for i in range(no_test):
rvs_random = stats.norm.rvs(loc=5, scale=10, size=1000, random_state=i+1)
statistic, pvalue = stats.ttest_ind(rvs, rvs_random, equal_var=False)
if pvalue <= alpha_bonferroni:
def t_test_function(rvs, alpha, no_test):
counter = 0
for i in range(no_test):
rvs_random = stats.norm.rvs(loc=5, scale=10, size=1000, random_state=i+1)
statistic, pvalue = stats.ttest_ind(rvs, rvs_random, equal_var=False)
if pvalue <= alpha:
counter = counter + 1
rvs1 = stats.norm.rvs(loc=5, scale=10, size=1000, random_state=0)
rvs2 = stats.norm.rvs(loc=6.5, scale=8, size=1000, random_state=0)
import numpy as np
import matplotlib.pyplot as plt
from scipy import stats