Skip to content

Instantly share code, notes, and snippets.

@jessemapel
Created April 18, 2019 15:59
Show Gist options
  • Save jessemapel/baa03c0804f71cc284d8c7ed0bd8695a to your computer and use it in GitHub Desktop.
Save jessemapel/baa03c0804f71cc284d8c7ed0bd8695a to your computer and use it in GitHub Desktop.
MDIS Stereo Pair using USGSCSM at commit 9598b19b4c02af328dee905dfadc55c5382fd571
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import ctypes\n",
"from ctypes.util import find_library\n",
"import csmapi as csm\n",
"import os\n",
"import pyproj\n",
"import matplotlib.pyplot as plt\n",
"import json"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<CDLL '/Users/jmapel/miniconda3/envs/csmapi/bin/../lib/libusgscsm.dylib', handle 7fa989e13db0 at 0x120ec4e48>\n"
]
}
],
"source": [
"lib = ctypes.CDLL(find_library('usgscsm'))\n",
"print(lib)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"def create_csm(image):\n",
" \"\"\"\n",
" Given an image file create a Community Sensor Model.\n",
" Parameters\n",
" ----------\n",
" image : str\n",
" The image filename to create a CSM for\n",
" Returns\n",
" -------\n",
" model : object\n",
" A CSM sensor model (or None if no associated model is available.)\n",
" \"\"\"\n",
" isd = csm.Isd(image)\n",
" plugins = csm.Plugin.getList()\n",
" for plugin in plugins:\n",
" num_models = plugin.getNumModels()\n",
" for model_index in range(num_models):\n",
" model_name = plugin.getModelName(model_index)\n",
" if plugin.canModelBeConstructedFromISD(isd, model_name):\n",
" return plugin.constructModelFromISD(isd, model_name)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"image_dir = '/usgs/shareall/jmapel/mdis_stereo'\n",
"EN0213023991M = os.path.join(image_dir, 'EN0213023991M.IMG')\n",
"EN0213110924M = os.path.join(image_dir, 'EN0213110924M.IMG')"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"EN0213023991M_cam = create_csm(EN0213023991M)\n",
"EN0213110924M_cam = create_csm(EN0213110924M)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"EN0213023991M\n",
"[(-2080718.7744600587, -185633.32068822882, 1259691.2367162416), (-2077113.7592865254, -114103.48446807172, 1274068.7523893046), (-2046408.9888007683, -124803.68495125533, 1321857.2732250646), (-2049404.6902888957, -196546.54934161785, 1308427.3878835537)]\n",
"EN0213110924M\n",
"[(-2088600.7706305275, -207764.23888551746, 1243082.1380592226), (-2083034.1833333941, -119808.38933187095, 1263838.162467917), (-2050977.2860463343, -133146.5700676071, 1313939.3148091917), (-2055633.2119064806, -221488.0492170276, 1294599.3597098233)]\n"
]
}
],
"source": [
"image_corners = [(0,0), (0,512), (512,512), (512,0)]\n",
"EN0213023991M_pts = []\n",
"EN0213110924M_pts = []\n",
"\n",
"for line, sample in image_corners:\n",
" EN0213023991M_gp = EN0213023991M_cam.imageToGround(csm.ImageCoord(line, sample), 0.0)\n",
" EN0213023991M_pts.append((EN0213023991M_gp.x, EN0213023991M_gp.y, EN0213023991M_gp.z))\n",
" EN0213110924M_gp = EN0213110924M_cam.imageToGround(csm.ImageCoord(line, sample), 0.0)\n",
" EN0213110924M_pts.append((EN0213110924M_gp.x, EN0213110924M_gp.y, EN0213110924M_gp.z))\n",
"print('EN0213023991M')\n",
"print(EN0213023991M_pts)\n",
"print('EN0213110924M')\n",
"print(EN0213110924M_pts)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"EN0213023991M\n",
"[(-174.90179985131846, 31.090669614640582, 4.656612873077393e-10), (-176.85569280840633, 31.485835143582847, -9.313225746154785e-10), (-176.5100433108931, 32.811576414470004, -4.656612873077393e-10), (-174.52184752899575, 32.43704760597564, 4.656612873077393e-10)]\n",
"EN0213110924M\n",
"[(-174.31917247157054, 30.636204105122445, 4.656612873077393e-10), (-176.70818628452528, 31.204478043599497, -4.656612873077393e-10), (-176.28565041633854, 32.59057317268081, 9.313225746154785e-10), (-173.8502838777742, 32.05303423258575, 4.656612873077393e-10)]\n"
]
}
],
"source": [
"semi_major = 2439.4 * 1000\n",
"semi_minor = 2439.4 * 1000\n",
"ecef = pyproj.Proj(proj='geocent', a=semi_major, b=semi_minor)\n",
"lla = pyproj.Proj(proj='latlon', a=semi_major, b=semi_minor)\n",
"\n",
"EN0213023991M_lla = []\n",
"EN0213110924M_lla = []\n",
"for x, y, z in EN0213023991M_pts:\n",
" EN0213023991M_lla.append(pyproj.transform(ecef, lla, x, y, z))\n",
"for x, y, z in EN0213110924M_pts:\n",
" EN0213110924M_lla.append(pyproj.transform(ecef, lla, x, y, z))\n",
"print('EN0213023991M')\n",
"print(EN0213023991M_lla)\n",
"print('EN0213110924M')\n",
"print(EN0213110924M_lla)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"EN0213023991M_lon = [lla[0] for lla in EN0213023991M_lla]\n",
"EN0213023991M_lon.append(EN0213023991M_lon[0])\n",
"EN0213023991M_lat = [lla[1] for lla in EN0213023991M_lla]\n",
"EN0213023991M_lat.append(EN0213023991M_lat[0])\n",
"EN0213110924M_lon = [lla[0] for lla in EN0213110924M_lla]\n",
"EN0213110924M_lon.append(EN0213110924M_lon[0])\n",
"EN0213110924M_lat = [lla[1] for lla in EN0213110924M_lla]\n",
"EN0213110924M_lat.append(EN0213110924M_lat[0])"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[<matplotlib.lines.Line2D at 0x1213cde80>]"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAD8CAYAAABw1c+bAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJztnXl4VeW1/78rYZ6nMMYQhjAGwhBwgCoyCKIFRVFxaK3eem29t33qvV7ba1trbW/trT9r621VarWJ4wH0hCEHBEVERQiEISZMIjMoEMaEIWR4f3+ss7v3zjlJzknO3vvsfdbnefZzyB7yrpeds953rXe9a5FSCoIgCELikOS0AIIgCIK9iOIXBEFIMETxC4IgJBii+AVBEBIMUfyCIAgJhih+QRCEBEMUvyAIQoIhil8QBCHBEMUvCIKQYDRzWoBwdOvWTaWnpzsthiAIgmsoLCwsVUqlRHJvXCr+9PR0bNq0yWkxBEEQXAMRHYj0XnH1CIIgJBii+AVBEBIMUfyCIAgJhih+QRCEBEMUvyAIQoIhil8QBCHBEMUvCIKQYMRlHL8XWLgQOHUKGD6cj86dnZZIEASBEcVvASdPAnfdBdTU6Od69+YBIDNTHwyGDQM6dHBOTkEQEhNR/Bbw/vus9P1+oEULoLgYKCnh46WXgIsX9XvT0vSBQBsYhg4F2rZ1Tn5BELyNKH4LCASAlBRg1iwgKQmYOVO/Vl0N7N+vDwTaoLB6NVBRwfcQAenpZutg+HBgyBCgdWsneiQIgpcQxR9jqquBFStY2SeFWTpPTgYGDOBj1iz9fFUVsHev2TooLubfVVnJ9yQl8XNG62D4cGDwYLYsBEEQIkEUf4wpKGAf/003Rfdcs2bAoEF8zJmjn6+sBL780mwdlJQAS5fyIAPwYDJoUKjLaOBAoHnz2PVNEARvIIo/xgQCPDO/4YbY/L7mzXkReNgwYO5c/XxFBbBrl9k62LoVePddQCn92cGDQxeVBwzgwUIQhMREFH+Myc8HrrnG+vDNli2BkSP5MHLxIrBzp9k6KCgAfD7zs0OHhrqM0tPDu6cEQfAWovhjyNGjwJYtwO9+55wMrVsDo0fzYaS8HNixw2whrF0LvPmmfk+bNjwg1F5UTkvjBWdBELyBKP4YsmIFfxqjeOKFdu2AceP4MHL2LLB9uz4glJQAK1cCOTn6Pe3bs6uptoXQu7cMCILgRkhpDuE4Ijs7W7mxAtdtt7Fb5eBB9yvE06dDQ05LSoDjx/V7OnYMtQ4yM4Hu3d3ff0FwG0RUqJTKjuRemfHHiMuXgVWrgHnzvKH0OncGJk7kw8iJE2broLgYWLQImD9fv6dr11DrYPhwoFs3e/sgCEJ4RPHHiM8+A8rK4tPNE0tSUoBJk/jQUAo4dizUOnjrLXYlaXTvHmohSB4jQbAfUfwxIj+fN1FNmeK0JPZDBPTsyYex/0oBR46Euoxee40XmzUkj5Eg2Iso/hgRCADXXceLqAJDBKSm8jF9un6+pgY4dMhsHTSUx0gbFCSPkSA0HVH8MWDfPg6V/Nd/dVoSd5CUBPTty4dxh7Mxj5FxUJA8RoIQW0Txx4BAgD+97t+3mvryGH31Veii8vLlfA0w5zEyDgqSx0gQQhHFHwMCAc6Lk5HhtCTepFkzVuCDB4fPY1TbZSR5jAShfkTxN5ELF9gVIW4e+zHmMTIieYwEoX5E8TeRNWuAS5fEzRNPRJPHaMMGcx6jVq14vUDyGAleRhR/E8nP5xw3115rU4PV1aypevfmhDwdO9rUsPuJJI+RNihIHiPBy4jibwJKsX9/6lSeKdqC3w/cc4/+c0YGMHYsMGaM/tmpk03CeINI8xgVF9efx8g4KEgeIyGeEcXfBHbu5PDDn/7UxkbfeYd3Sr36KrB5M1BYCHz+OZ/X6N+fBwHjgNCli41CeoOOHYGrr+bDyKlTPCAYXUbLlvEr0ejUKXSHsuQxEuIFSdLWBJ59FnjsMU7KdsUVNjRYVsaa41/+BXjhBfO10lJ9INA+9+3Tr6enmweCsWMleU6MCZfHqKSEBwoNyWMkWEU0SdpE8TeByZNZ3xYV2dTgW2+xm+eTT0Kzp4Xj1CkuEFBYqA8Ie/bo16+4ItQy6NHDOvkTkLryGBUXA+fO6ffVzmOk/Vu8dkKkiOK3gXPnePb2H/8BPPOMTY3Ons0K/ODBxoeYnDnDg4FmFRQWArt369f79Am1DHr1io38wj+pK4/R9u2Sx0hoHDFNy0xErQCsBdAyeP8ipdSTRPQHAN8GcBnAVwC+p5Q6E+b5/QDKAFQDqIpUsHhn1SreNRptUfVGc+YMV3p55JGmxRV26gRcfz0fGufOcaC70TJYulQPeu/ZM9Qy6NNHnNVNIJo8RsXFksdIiC0NzviJiAC0VUqVE1FzAJ8C+DGADgBWK6WqiOj3AKCUejzM8/sBZCulSiMVyg0z/gcfBN57j/26zexYIs/JAe6/H1i/HrjySuvbKy/XBwPNOtixgzUTwL4Jo1Uwdiy7jmQwsIS68hjt3Cl5jAQmpjN+xSODZnw2Dx5KKbXScNt6ALdHK6hbqanhMM7p021S+gDH7qenA+PH29Neu3ahlVjOn+cFDaNlsGqVnh+hWzdzWOnYsSyzDAZNJtI8RtqgIHmMhPqISG0RUTKAQgADAfxFKbWh1i0PAPCFPMgoACuJSAF4WSk1v477XMPWrcA339i4W/fkSVawjz7qrBJt2zY0vvHiRR4MjGsGf/iDrnU6dw61DPr3l8EgRkgeI6ExRKT4lVLVAEYRUScAfiLKVEoVAwARPQGgCsCbdTw+QSl1lIi6A1hFRDuVUmtr30REDwF4CADS0tIa0RX7CARYb82YYVODfj8r0jvvtKnBKGjdml1PRvfTpUuscYyWwR//yNoI4AD52pbBwIGSEyGGRJLHSBsU6spjVNtlJHmMvEPUUT1E9CSA80qpZ4nouwAeBjBFKXUhgmd/BaBcKfVsfffFu4//6qvZ3bOhtt1jFdOmsYN39273zpQvX9YHA806KCrSHdQdOnAuBaN1kJEhmsYmLlzg9YLa+xD279fvkTxG8U2so3pSAFQqpc4QUWsAUwH8nohmAHgcwHV1KX0iagsgSSlVFvz3DQB+HWlH4pHSUlb4Tz5pU4PHj3P6z5/9zL1KH2Bn8pgxfGhUVnL8otEyePFFthgAdi2NHm22DIYMkcHAAtq0CX09gJ7HyOgyiiSPUWamrPXHM5G4enoByAn6+ZMALFBKLSOiPeAQz1Uc+IP1SqmHiag3gFeUUjMB9AC7hrS23lJKrbCiI3axYgWbxLaFcb77LpsX8ejmaSrNmwNZWXw88ACfq6piTWNcM/jb33hKCrCWycoyrxkMHWrjKntiIXmMvIls4IqSu+8GPvwQ+Pprm8zbSZN41l9SkrjflupqdkwbLYMtW/SdTq1a6YOBZhkMHy4rlA4QLo9RcTGHPWsY8xjdcgtw443OyeslZOeuRVRXAykpHE73j3/Y0ODRo7zD58knbfQtuYTqag5bMa4ZbN7M+YwAdi2NHGm2DDIzJX7RIYx5jLRB4fPP+ZVs2eK0dN4gpj5+QWf9euD0aRvdPIsWsV/Ji26eppKczP7+IUP0NNU1NRzUbrQMfD7g5Zf5evPmwIgRZstgxAgbc2onLikpbLxOmsQ/nzvH2z6mTHFSqsRFFH8UBAKsb6ZNs6lBn49nrUOG2NSgy0lK4kigjAzgrrv4nFLA3r3mNYNFi3jdAOC1geHDzZbByJGy1dViAgFe27/lFqclSUxE8UdBIABMmGBTxsRDh4B164Df/taGxjwMkb7lde5cPqcUcOCA2TJYskRPqJ+czKuSRstg1CheWBZiQl4eZ/2oXetAsAdR/BFy5AhvdPn9721qcMEC/hQ3T+zRktqkpwO33cbnlOLB1rhmEAjoizlJSRw9ZNxnMGoUh70IUVFRwf+1d94pkblOIYo/QpYv50/b0jT4fKxcBgywqcEEh4hTXqalAbfeyueU4gV2o2XwwQfA66/rzwwebLYMRo+WnMkNsHo1r8Fr/82C/Yjij5D8fD0VruXs3Qts3GijeSGEhYjTT/fpY86M9vXX5jWDNWvMO5q0OsjaMXq0VFQx4PezoTR5stOSJC6i+COgooInevfea1MovebmueMOGxoToqZXLw7tMoZ3HTtmDitdt85cB3nAALNlMGZMQtZBrq4GFi9my1mCqZxDFH8EfPop7xWy1c1z5ZXsgxbcQY8evBPJuBvpxAkeBLQBoaBAH9QBvQ6ycUDwePHd9et5P6JE8ziLKP4IyM8HWra0yTTdvZtXkZ97zobGBEtJSeGiDcYSW6dOmS2DwkJOy6GRlhZa+rJ7d/tltwi/n7dT2DaJEsIiij8CAgHeeGJLWTtfsKyBFnooeIsuXYCpU/nQ0Ooga2sGhYWsITW0OshG68CFdZCV4jDOyZM5M7fgHKL4G+CrrzhNzCOP2NTgggVc9So11aYGBcepqw6yNhholoGxDnKvXqGWQZxnPysu5u/TY485LYkgir8BAgH+tCWRlJbd6oUXbGhMiGs6dACuu44PjbIyYNs2s2UQCJjrINdeM4ij3Mh5eSzK7NlOSyKI4m+AQIDL0w0caENjPh9vFLo9YcoXC9HQvn34OsjaYKBZBitXmusg17YM+vZ1ZDDw+4GrrgJ69rS9aaEWovjr4fx54KOPgB/+0IbGlGLFf9118s0QIqdtW+Caa/jQ0OogGy0DYx3kLl1CS19aXAf5wAH2XP3v/1rWhBAFovjr4aOPOIbflgiEoiJeTPjJT2xoTPA0ddVB/uILs2Xw3HN6HeROnfQSXJplMGBAzIpO5OXxp4Rxxgei+OshEOAJ1be+ZUNjPh8nLtFyxwhCLGnVKrSUVkUFrykZdyH/+c9cHxnQ6yAbLYNBgxo1GOTl8a73jIwY9UdoEqL460Apjt+fNo1j+C1vzOfj5OQe38AjxBEtW+qz++9/n89VVnKVFKNl8Ne/6nWQ27XjwcBoGQweXG+2tdJSrtP7s5/Z0CchIkTx18H27cDBg8DPf25DY4WFnJ/niSdsaEwQ6qF5c846OmoU8OCDfE6rg2xcM5g/n9cSAE5XPWqU2TIw1EFetowDjyQpW/wgir8O8vP50xb/vs/HXzj5ZgjxSLNmXKlsxAjg/vv5XHU1sHOn2TJ49VU9FLl1a66DPGYMzq0bixt6jMWYEcMASB3keEBq7tbBpEm8oXLrVosbUopztowYwVMjQXArxjrIwUNt2QLS6iC3bKnXQdYsA6mDHDOk5m4TOXuWE7P913/Z0Nj69exT+s1vbGhMECwkTB1k/6Ia/HTuHvifKMTwiqBl8PbbwEsv8TPGOsjaMWKEDQtriY0o/jBo+19sKaru8/EfuWxnFDxI3pIklHYehMG/GgQ0m8cna2qAffvMawa16yBnZpotA6mDHFNE8YchEAA6dzaHQVtCTQ2wcCHng5CqTYLHqKzk9EKzZv1znZdJStLrIGs1J5QC9u83rxnk5QF//ztfN9ZB1o6sLKmD3EhE8deipoYV/4wZtf5YreDTT7m0n9TVFTzI2rW8ThZRzAIR0K8fH1rKEqXYDWrcZ5CfH1oH2WgZSB3kiBDFX4vNm7lQhG3RPK1bAzffbENjgmAvfj//ed9wQyN/ARHnFerb11wH+ciR0NxEubn6M0OGmPcZjBolFnUtRPHXIhDgvx1j7QxLqKpiv+bNN8sMRfAcWu796dNj7I0h4pTlqanmdbGvvzavGdSugzxoUGjpywQuCiCKvxb5+ezbT0mxuKGPP2bTQtw8ggfZtIkn5r/9rU0N9urFkyij9XzsmNky+PRTjijSGDjQbBmMHp0wdZBF8Rs4fhzYuBF46ikbGvP5eKYvNegED5KXx+uxjnoxe/Tg75fxO6bVQdYsg9p1kPv1C01j3bWr/bJbjCh+A++/zyaq5bq4spLrrM6aJSFqgifx+4Frr41DnRmuDvLJkzwYGAeERYv061odZGORG5fXQRbFbyA/n1Phjx5tcUMffshFt8XNI3iQXbs4tc8PfuC0JBHStStnY5w2TT93+rS5DvLmzeY6yKmpoZaBi+poiOIPUlXFM/5bb41ZCvK68fl4YcnyFWRBsB8t976r9yR27sxV4SdP1s+dPcuDgdEyWLIktA6y0TKI0zrIoviDfP45xxxbvlu3ooJnDrfcItvSBU+Sl8d6Ly3NaUliTMeOnMRr0iT9XFkZJ/QyWgbGOsg9eoRaBqmpjg8GoviDBAK8YWvqVIsbWrmSZw7i5hE8yNGjnH7q6aedlsQm2rfnSk3Gak3nz/NgYLQMVqzQB4OUFPNAMGaM7XWQRfEHCQS4hrXlob0+H5uRU6ZY3JAg2M+SJfyZ0BnG27YFJkzgQ+PCBXMd5M2buQCxVge5a1ceAObNA773PctFFMUP4NAhfid/+IPFDV28CCxezLN9SUUreBC/n8srDhvmtCRxRps2wFVX8aFx6RIrHs0yyM3lRWUbFH+Dy5hE1IqICohoGxGVENFTwfN/IKKdRFRERH4i6lTH8zOIaBcR7SGin8a6A7Fg+XL+tDyMc/lyoLxc3DyCJzlzBli9mpev4nA9M/5o1QoYPx54+GHg8ce51rGWp8hiIolfqQAwWSmVBWAUgBlEdBWAVQAylVIjAewGEFJRk4iSAfwFwI0AhgGYR0RxNxfIz+daKEOHWtyQz8f+veuvt7ghQbCfQIA9Fwnt5mksr7/Oo+W999rSXIOKXzHlwR+bBw+llFqplAo6qLAeQGqYx8cD2KOU2quUugzgHQBxFeRVUQF88AHP9i2dpZw/zxW2brvNhrSfgmA/eXkcym55OnOvUVPDbp6pU4E+fWxpMqKIdSJKJqKtAI4DWKWU2lDrlgcALA/zaB8Ahww/Hw6eixvWruV1F8vdPMuWcUPi5hE8yKVL7MmcPduGfTBe49NPuRbBd79rW5MRvSKlVLVSahR4Vj+eiDK1a0T0BIAqAG+GeTTcHDpskV8ieoiINhHRphMnTkQiVkzIz2dXm+XeF5+Pp0PGsC9B8AgffsjLV7fc4rQkLiQnh/N22fifF9XYrJQ6A2ANgBkAQETfBXAzgHtU+KrthwFcYfg5FcDROn73fKVUtlIqO8Xy1Jg6gQArfUsL+Zw7xw3NncuZqwTBY/j9nPLeuNFViIALF7gK3+23cxioTUQS1ZOiRewQUWsAUwHsJKIZAB4HMEspdaGOxzcCyCCifkTUAsBdAJbERvSm8+WXfFju5lmyhBcTxM0jeJDqav4TnzlTopSjJi+Pd//a6OYBIovj7wUgJxihkwRggVJqGRHtAdASwCriVdH1SqmHiag3gFeUUjOVUlVE9G8A3geQDOBVpVSJNV2JnkCAPy1X/D4fb9O++mqLGxIE+1m3jrMdSzRPI8jN5V27115ra7MNKn6lVBGAkHyVSqmBddx/FMBMw88BAIEmyGgZgQBXaevf38JGTp/m7G///u+y6iV4Er+fZ/ozZjgtics4ehRYtQr47/+2XTckrCYqL+fqbJYnZcvL4/z74uYRPIhWYnHqVClrGzVvvsmhnPfdZ3vTCav4V6/mjXK2uHn69QPGjbO4IUGwn6IiYN8+ieaJGqU4mufqq7kesM0krOIPBDix3sSJFjZSWsq7w+64Q/awC54kL4//tGfNcloSl7FlC1BSAnznO440n5CKXymO3582zeIohPfe45AHcfMIHsXvB665htPOC1GQm8vK5447HGk+IRV/cTFw+LBNbp6MDGDUKIsbEgT72bcP2LZNonmiprISeOstNpO6dHFEhIRU/Pn5/HnjjRY2cuwYrx7feae4eQRPopVYFP9+lKxYwfGvDrl5gARV/IEAF1Tv3dvCRhYt4hV7cfMIHiUvDxgxAhgwwGlJXEZuLmfpdTD+NeEU/+nTvOHEFjfPsGFAZmbD9wqCyzhxgnOLyWw/Sk6d4m3Od98NNG/umBgJp/hXruT1Vkvj948c4W+FzPYFj7J0KRu04t+PkgULOI7cQTcPkICKPxDg8pbjx1vYyMKFHDokil/wKH4/ZxqQuIUoyclhL8DokGQItpJQir+mhnOGz5hhcZJMnw/IygIGD7awEUFwhvJyzjQgJRajZPduYP16nu07/B+XUIp/0yb2TVrq3z9wgF+uzPYFj7JiBSebFTdPlLz+OufkuecepyVJLMUfCPD/+/TpFjayYAF/iuIXPEpeHrtLJ0xwWhIXoZVXnDbN4nDCyEgoxZ+fD1x1Ff/RWobPB2RnW5zyUxCc4fJlriI6a5aUjo6KtWuBgwcdX9TVSBjFf+wYu3osdfPs2QMUFspsX/AsH38MnD0rYZxRk5PDycHi5D8uYRT/ihX8aaniX7iQP+fOtbARQXAOv5/LlE6b5rQkLuL8ed7QOXeuxTVeIydhFH9+PtCrl8XhZz4f+5L69rWwEUFwhpoaYPFijopr3dppaVyE38+hUDaXV6yPhFD8lZW8cWvmTAujqHbt4oxV4uYRPMrGjVw0SqJ5oiQ3F0hPtzgHfHQkhOJft479kpbu1vX5eFQRN4/gUfLyeEHX8qp1XuLIEa7J8Z3vxFXp1fiRxEICAU6LMWWKhY34fDyi9+ljYSOC4Bx+PzBpEtC5s9OSuIg33uBd/A6UV6yPhFH83/qWhTVBi4uB7dvFzSN4lp072ZsZJ0Ep7kApdvNccw0wcKDT0pjwvOI/eJD1suVunqQk4PbbLWxEEJzD7+fP2bOdlcNVFBbyhDCOFnU1PK/4AwH+tCyMUylW/JMmSf05wbPk5QHjxgGpqU5L4iJyc4GWLR0rr1gfCaH4+/e3MF/a1q3Al1+Km0fwLEeOAAUFEs0TFZcvA2+/zSZSp05OSxOCpxX/pUvAhx9aHMbp83GqzzlzLGpAEJxl8WL+FP9+FCxfDpSWxk2Khtp4WvF//DFw4YINbp6pU4Fu3SxqRBCcxe9ni3noUKclcRG5uUD37sANNzgtSVg8rfjz83mH4aRJFjWwcSOwf7+4eQTPcvo0sGaNzPaj4uRJLlF2zz2OllesD88qfqVY8U+ebOH2cp+PX6x8KwSPkp8PVFWJfz8qfD5OFxCnbh7Aw4r/yy+BvXstdPPU1HDu/enTZUeL4Fny8jjH1bhxTkviInJygJEj47oupWcVf34+f1qm+D//HDh8WNw8gme5eJHXKG+5Ja6yDcQ3O3dyCFQcz/YBDyv+QAAYNoxzI1mCz8cxurNmWdSAIDjLBx9wcIR4MqMgjsor1ocnFX9ZGUf0WLZbt7qac+/PnGlhHghBcBa/H+jY0cLgCK9RU8OKf/p0oGdPp6WpF08q/g8/5LUVy9w8n3wCfPONuHkEz1JVBSxZwpOnFi2clsYlrFkDHDoU924ewKOKPxDgibhlxaB9Pq6kc/PNFjUgCM7y2WcclSjRPFGQk8OKxwUJjTyn+JVixX/DDRaF0FZVAe++y0q/bVsLGhAE5/H7eQlrxgynJXEJ5eWsF+64wxXlyTyn+IuKOLeIZW6ejz4CTpwQN4/gWZTiMM5p04B27ZyWxiW89x7X1o3DTJzh8Jzi17Jx3nijRQ34fPxtsKwBQXCWrVuBAwfEzRMVublAv34W+pdjS4OKn4haEVEBEW0johIieip4fm7w5xoiyq7n+f1E9AURbSWiTbEUPhz5+cDYsRYtql++zCP77NmuMOcEoTHk5XFE4re/7bQkLuHQIWD1al7UtSwbZGxpFsE9FQAmK6XKiag5gE+JaDmAYgBzALwcwe+4XilV2gQ5I+LUKd5X9cQTFjXwwQecvETcPIKH8fu5imhKitOSuAStvKILonk0GpzxK6Y8+GPz4KGUUjuUUrsslS5K3n+fQ2kti9/3+TiwOU4z7glCU/nqK+CLL2TTVsRo5RUnTuTCHy4hIh8/ESUT0VYAxwGsUkptiKINBWAlERUS0UP1tPEQEW0iok0nTpyI4tfrBAKcHTm7TsdTE7h0iW3gW2/lcAdB8CB5efwpij9CNm7kNA0uWdTViMTVA6VUNYBRRNQJgJ+IMpVSxRG2MUEpdZSIugNYRUQ7lVJrw7QxH8B8AMjOzlYR/m4Tn3zCu3anTgWysjhPUlYWp25oskv+/feBc+fEzSN4mrw8/s706+e0JC4hNxdo1QqYO9dpSaIiIsWvoZQ6Q0RrAMwA+/gjeeZo8PM4EfkBjAcQovhjwZ//DCxbxiGdf/sb5xkBeKFq8GB9INA++/SJYi3G5wO6dAGmTLFCdEFwnGPHeOPWk086LYlLqKjg8oq33MIuYBfRoOInohQAlUGl3xrAVAC/j+SXE1FbAElKqbLgv28A8OumCFwfs2bpOdOqqzkt87ZtPBBs2wZs2MD6W6Nz59DBYPjwMNbBhQu8f33evLgtrCAITWXpUnZZi5snQgIBjihx0aKuRiQz/l4AcogoGbwmsEAptYyIbgXwAoAUAPlEtFUpNZ2IegN4RSk1E0APsGtIa+stpdQKS3pSi+RkICODj9tv18+fPcuLV9pgUFQE/P3vvPcCYOtg0CDzgHDV4QC6nT8vbh7B0/j97OIZOdJpSVxCbi7HjU+b5rQkUUNKNcqdbinZ2dlq0ybLQ/7/SU1NqHVQVATs28fXF2AuJtHHuOtbRzE8q5nJOmjTxjYxBcEyyso4MOKRR4DnnnNaGhdQWgr07g386EfAs886LQ0AgIgKlVIRhbZE5eP3KklJwMCBfNx2m37+3DmgZEM5sm/Kx7qM+3GxshlefdVsHWRkhLqLrrjCNfs4BAEAF1y5fFl260bMO+/EfXnF+hDFXw8dOgBXly4FKi/iur/eiXXXsXWwb5/ZOigs5PT8Gh07hl87kJxuQrySl8cbtq65xmlJXEJODpdWdKlfTBR/Q/h8XHR04kQAPMsfMICPOXP0286dA4qLza6if/yDk/YBbAGEsw7S0sQ6EJzl8mVOdTJ3Lq+NCQ2wfTuwaZOrfWKi+Ovj7Fm2gR9+uMFvRIcOPFsyzphqaoD9+83WwZYtwKJF+j2adaAdWVlAZqZYB4J9fPQRT1wkmidCXn+d9cHddzstSaMRxV8fixfzdKiR0TxJSbyLu39/s++0rIytA21AKCriAIGyMr5OxOsNta2Dvn3FOhBij9/PE42pU52Is/5YAAAUv0lEQVSWxAVUV7PinzED6NHDaWkajSj++vD5eKX2qqti+mvbtweuvpoPjZoaToVrtA62beNkoFrgVYcO4a0DyZkuNJaaGp7f3Hgjb0AVGuCjj7jgh4vdPIAo/ro5dQpYuRL48Y956m4xSUkcQ92vn9nkLi8PtQ7eeINNc4AtgAEDwlsHNogtuJwNG7h8tETzREhODvtntZ2iLkUUf134/Vxm0eFNW+3ascFhNDqUCrUOiopYZM06aN8+vHXQvr0z/RDik7w8oFkzCyvWeYmyMjbB773X9eaRKP668PnYOW9Jqs+mQQSkp/NhrOtcXg6UlJitgzffBF58Ub8nnHWQni7WQSKiFE8WJk8GOnVyWhoX8O67nL7FZZk4wyGKPxwnTnBFnccec9Vqart2wJVX8qGhFHDwYKh1kJenWwft2oVaByNGiHXgdXbsAL78Enj0UaclcQm5uTxzMi7OuRRR/OF4911evfdAbh4i9vf37Wt2S54/H2odvP028NJL+j39+4daB/36iXXgFfx+/nS5u9oeDhzghd2nnnLVZLAuRPGHw+fjTG1ZWU5LYhlt2wLjx/OhoRSXD61tHSxebLYORowwDwgjRnDEkeAu8vJ47ah3b6clcQFvvMGf993nrBwxQhR/bb7+Gvj4Y+DnP/fEyB4NRLyTOC3NXGj7wgWzdbBtG4+NLxuqLWtZHY3WQf/+Yh3EK4cO8ebTZ55xWhIXoJVXvPZaz1SoEcVfm0WL+EV7wM0TK9q0AcaN40NDKeDw4VDrYOlSjg0H2KqobR2MHCnWQTyweDF/ShhnBGzYAOzeDTz+uNOSxAxJy1ybiROBM2c4eF6ImgsXOJWJce1g2zbg9Gn9nvT0UOtgwACxDuxkyhQ2brdvd1oSF/DDHwKvvcYlyuJ41iJpmRvLoUNce+7XlhUJ8zxt2nAErDEKVine7FjbOli2TLcO2rQJv3YgYYax59Qp9mZ6aAJrHRUVnIL51lvjWulHiyh+I1puZXHzxBQiIDWVj5tu0s9fvGi2DrZtY0/b3/6m39O3b3jrQLJINp5lyzhoTZKyRcCyZWyueiB234i4eoxceSUnZduyxf62BQBsHRw9Gmod7NrFygpg6yAzM3TtQKyDyJgzBygoYAM3weIXomf2bGDjRv7PivPZhrh6GsP+/fxt+N3vnJYkoSEC+vThw5hG4NKlUOvgvfeAV17R70lLC7UOBg6M+++rrVy4AKxYATzwgCj9Bjlxgguq/+QnnvsjEsWvsWABf95xh7NyCGFp1QoYM4YPDc06MC4iFxVxCQXNOmjdOrx10LmzM/1wmpUr2cUm0TwR8PbbnK/LpeUV60NcPRpjxwInTwKffMLOaJkOuZZLlzgdQe0U1ydP6vdccYV5IMjK4gppHpvYhXD//cCSJRyg0ry509LEOWPH8mdhobNyRIi4ehrD2bO8LTstjUstjh+vJ77JzvbUir7XadUKGD2aDw2lOHyxPuugVavw1kGXLs70I9ZUVfE+i5tvFqXfIMXFwObNwPPPOy2JJYji1ygpYU2wYQMfBQX6LhciYOhQHgS0ASEzU749LoKIUxP07s3FkzQqKkKtgyVLgFdf1e9JTQ1vHTRz2bfnk084lFOieSLg9df5Bc+b57QkliCunvo4dYpX9AsK9AGhtJSvtW7NDmfjYCC1ET2BUlycpLZ1sGMHz5oBtg6GDw+1Drp2dVb2+vjRjzhUtrRUajrXS3U1W/5jx/IswCVE4+oRxR8NSnH0j9Eq2LyZncoA0L272UU0bpzEGHqIigpg587QtYMTJ/R7+vQxRxWNHMn5/py2DpTiecno0bohK9TBypXA9Om8r+f2252WJmJE8dtJZSXwxRfmwWDHDv364MFmq2DkSKBFC+fkFWKOZh0Y01Rs365bBy1bhloHWVn2WgeFhbxU9dprvMAr1MM993AY5zff8MtzCaL4nebs2VAX0bFjfK1lS552GQeD/v3FReQxLl8OtQ6KivQ/A4DXG8JZB1YsHf3iF8D//A+3361b7H+/Zzh3DujZk3fqGkvXuQBR/PGGluheswg2bOAp2IULfL1r11AXUTw7i4VGc+yYeSDYto0NxMpKvt6iRXjroKnKOjMTSEnhWiJCPbz6KvDgg8C6da6rtCWK3w1UVXEkkdFFVFKiVzwZONBsFYwa5SqzU4icy5c5JUVt6+Cbb/R7evUKtQ4GD47MOvjyS7Yknn8e+PGPreuHJ5g0iXcF7trlOitc4vjdQLNm/A3OygIeeojPlZVxdQzNKvjoI66WDvA3fNQo82CQkeG6P04hlBYtOBPpiBHm88ePh64drF7NA4X23LBhodZBSor59+Tl8aeEcTbA/v2ctvTppz3/vZIZf7xz5IjZRbRpE1Beztc6d2a3kOYiGj8+9FsveIrKyvDWwddf6/f07GkeCH7wA47o+eIL5+R2BU8/DfzylzwA9O3rtDRRI64eL1NdzU5ho4voiy/0xPb9+pnXC0aP5j0Hgqc5cSJ07WD7dt066NiR6wsJdaAU+8NSU127ECKKP9E4f573ExgHg4MH+VqzZjz1M7qIBg+WclcJQGUlZxh/+mngkUfMO5aFWqxbB0yYwIu73/ue09I0ClH8Atv+BQW6i2jjRg5VAzjvkOYi0gaDnj2dlVcQnOThh7mg+rFjQPv2TkvTKETxC6HU1LBz2LheUFSk7zJKSzO7iMaMkX39QmJw6RKHTd10E/DGG05L02gkqkcIJSmJE80NHapv3bx4kX0BRhfRokV8LTmZg7+NVsHQod7PWywkHkuX8gKIx8or1keDM34iagVgLYCW4IFikVLqSSKaC+BXAIYCGK+UCjtFJ6IZAP4EIBnAK0qpZxoSSmb8DnL8uNlFVFCgrwq2a8f7/o2DQZ8+zsorCE3l29/mCdCBA66e2MR6xl8BYLJSqpyImgP4lIiWAygGMAfAy/UIkgzgLwCmATgMYCMRLVFKbY9EOMEBunfnhO0338w/K8U7gIwuouee07ea9uljdhGNHetaH6mQgBw7xkUZ/vM/Xa30o6VBxa/YJAgGjqN58FBKqR0AQPVvdBgPYI9Sam/w3ncAzAYgit8tEHGY26BBwH338blLlzhe0Ogi8vv5WlIS7yoyDgbDhzufnlIQwvH22xwirf1tJwgRfRuDM/dCAAMB/EUptSHC398HwCHDz4cBXBmVhEL80aqVrtQ1Tp7kyCFtMFi8WK9m0qYNWwJGF9EVV3h+d6TgAnJy+G9z+HCnJbGViBS/UqoawCgi6gTAT0SZSqniCB4N980Ou6hARA8BeAgA0tLSIhFLiCe6duVAcS1YXClg716zi+iFFzipPcDho7XLW3bs6Jz8QuJRVARs3Qr8+c9OS2I7UdnfSqkzRLQGwAywj78hDgO4wvBzKoCjdfzu+QDmA7y4G41cQhxCBAwYwMfdd/O5y5f18pbaYKBVOCIChgwxDwYjRkh5S8E6tPKKd93ltCS206DiJ6IUAJVBpd8awFQAv4/w928EkEFE/QAcAXAXgLsbK6zgclq04Jl9djZvJQWA06c5/5DmIgoE2PwG2KVUu7xlerq4iISmU1XFMfs33ZSQ+a0imfH3ApAT9PMnAViglFpGRLcCeAFACoB8ItqqlJpORL3BYZszlVJVRPRvAN4Hh3O+qpQqsagvghvp3BmYNo0PgF1EBw6YrYIXXwT++Ee+npKiDwLjx/PRubNz8gvu5IMPOO/1d77jtCSOIDt3hfinshIoLjYPBjt26LULBg0yu4iysqS8pVA/8+YB77/PqU08UudCUjYI3ufcObOLaMMGvXJJixah5S0HDBAXkcCcPcvBBQ88APzlL05LEzMkZYPgfTp0ACZP5gPg2f/hw+Y6x6+8okdsdOkS6iKS4rOJycKFvBclQd08gMz4BS9TVcVJ6Y0uopISvXbBgAFmF9GoUbygLHiba6/l1CQ7dnjKCpQZvyAAei2CkSOB73+fz5WXc6F7bTD45BPevQlw6GhWlnkwyMiQ2gVeYu9efue//a2nlH60iOIXEot27YDrruND4+hRs4soNxf461/5WqdOobULund3Rnah6bz+Oiv8e+91WhJHEVePINSmuhrYudPsIvriCz4PcD1WY53jMWM4LYUQ3ygFDBzIe0E+/NBpaWKOuHoEoSkkJ3PuluHDOfIDAC5c0MtbaoPBggX6/SNHml1EQ4aIiyje+OwzdvX88pdOS+I4ovgFIRLatAEmTuRD49gxc92Cd94BXg5mKW/fPtRF1KuXM7ILTG4uv8fbbnNaEscRV48gxIqaGmD3bvN6wbZtennL1FSzi2jsWF5zEKzn4kWO3Z89mwcADyKuHkFwgqQkdvEMGaLHiF+6pJe31AaEd9/V78/MNLuIhg1LqIIgtrFkCW/6S6DyivUhM35BsJvSUrOLaMMGTlYHcIH72uUtU1OdldcL3HQTZ4bdv9+zA6vM+AUhnunWDZg5kw+Ao0327DG7iJ5/ntNYA0Dv3uZdx9nZvHNZiIxvvuG8PI895lmlHy2i+AXBaYh4o1hGBnDPPXyuokIvb6kNCHl5+v21y1tmZkp5y7p46y0OxU3gFA21EVePILiFU6f08pbaYFBaytdat+bFYuNgkJaW0LtT/0lWFmfgLChwWhJLkeycgpAIKAXs22d2EW3erJe37NHD7CIaN453IicS27ZxDqb/+z+9+I9HER+/ICQCRED//nxo5QMrK0PLWy5dqj9jLG85fjxvPPNy7YKcHM7BlIDlFetDZvyC4HXOng11ER07xtdatuSUE0YXUb9+3nARVVUBffoAEyYA773ntDSWIzN+QRB0OnYEpk7lA2AX0cGDZhfR/PnAn/7E17t1C61d0KWLc/I3lpUrOf2yLOqGIIpfEBINIk4017cvMHcun6uq4vKWxsFg+XK9vOXAgeZdx6NGxX/JwpwcoGtXPWxW+Cfi6hEEITxlZXp5S21AOHqUr7Vowcrf6CIaODB+XERnznCKhu9/H3jhBaelsQVx9QiC0HTatweuv54PDWN5y4IC4LXXOGIGADp31l1DmmWQkuKM7AsWcHSTuHnCIjN+QRAaT3U1l7c0uoiKi/Xylv36mV1Eo0fzngOrmTiR9z2UlMSPFWIxMuMXBMEekpOBESP4ePBBPnf+vLm85WefccpqQC+HaRwMBg+Obe2Cr77iNn/3u4RR+tEiil8QhNjSti0XNL/2Wv3c11+bXURvvgm8+CJf69iRN5cZ1wt69Gh8+7m5Ul6xAcTVIwiC/dTUcHlL42BQVKTXLkhLC61dEEl5y5oaYMAAXmhetcraPsQZ4uoRBCG+SUriRHPDhgH338/nLl7klBPG9YKFC/lacjInojMOBkOHhmbb/PRTTr3861/b2RvXIYpfEIT4oHVr3mU7YYJ+7vhxs1WwYAFvNgM46ig72+wiys1lV9OcOc70wSWIq0cQBPdQU8O1CzSLoKAA2LqVcxRpJCfrLqMEQlw9giB4k6QkYNAgPu67j89dusTKf/Fi4JlngCeecFZGFyAzfkEQBA8QzYw/hsGzgiAIghsQxS8IgpBgiOIXBEFIMETxC4IgJBii+AVBEBIMUfyCIAgJhih+QRCEBEMUvyAIQoIRlxu4iKgMwC6n5YgR3QCUOi1EDPBKPwDpSzzilX4AzvWlr1IqopJn8ZqyYVekO9DiHSLa5IW+eKUfgPQlHvFKPwB39EVcPYIgCAmGKH5BEIQEI14V/3ynBYghXumLV/oBSF/iEa/0A3BBX+JycVcQBEGwjnid8QuCIAgWYaviJ6K5RFRCRDVElG04fw8RbTUcNUQ0ioja1zpfSkTP1/G7f0ZEe4hoFxFNj6d+BK+1IKL5RLSbiHYS0W1hfm86EV00PP+Slf2wsi/B+2x7J03oy5qgfNq17mF+r63vxap+BO+L+3diuGcJERXX8Xtd8V2JpC/B67a+FyilbDsADAUwGMAaANl13DMCwN46rhUCuDbM+WEAtgFoCaAfgK8AJMdTPwA8BeA3wX8nAegW5pl0AMXx/k4i7Iut76QJfanzXqfei4X9cMU7CZ6bA+Ctuv7f3fJdibAvtr8XW+P4lVI7AICI6rttHoC3a58kogwA3QF8EuaZ2QDeUUpVANhHRHsAjAfweVNlDkcj+/EAgCHB52sQJ5tVLOyLre8kKEuj/77iCQv74Yp3QkTtADwK4CEAC6ySLVos7Ivt7yUeffx3Ivwf9DwAPhUcImvRB8Ahw8+Hg+ec5J/9IKJOwXNPE9FmIlpIRD3qeK4fEW0hoo+J6Fu2SNowjelLPL4TIPzf12tBE/0XVPe3Ot7eS2P64ZZ38jSA/wfgQgPPxds7ARrXF9vfS8xn/ET0AYCeYS49oZRa3MCzVwK4oJQK5wu7C8B9dT0a5lyTwpVi3I9mAFIBfKaUepSIHgXwLEL78zWANKXUSSIaCyCPiIYrpc65sC8xfydBeWL993WPUuoIEbUH8C64H7m1Ho35e3GoH3H/ToK+8YFKqZ8QUXo9j8b9dyWKvljyXuoj5opfKTW1CY/fhfBuniwAzZRShXU8dxjAFYafUwEcbYIcse7HSfCI7w/+vBDAg2HarABQEfx3IRF9BWAQgCZVnneiL7DgnQCx//tSSh0JfpYR0VtgEzu31j0xfy9O9APueCdXAxhLRPvB+qk7Ea1RSk2q1aYbvisR9QUWvZf6iBtXDxElAZgL4J0wlxvyZy4BcBcRtSSifgAyABTEXsqGCdePoHtqKYBJwVNTAGwP82wKESUH/90f3I+9FotcJ03pC+LonQDh+0JEzYioW/DfzQHcDCDE2oyn99KUfsAF70Qp9aJSqrdSKh3ARAC7wyjKuHonQRka3Rc48V6sXDkOs3p9K3h0qwBwDMD7hmuTAKyv47m9AIbUOjcLwK8NPz8BXg3fBeDGeOsHgL4A1gIoAvAh2Ew19QPAbQBKwCv8mwF8Ox7fSSR9sfudNKYvANqCI8WKgv/vf0IwmsLJ92JVP9zwTmo9mw5DJIwbvyuR9MWJ9yI7dwVBEBKMuHH1CIIgCPYgil8QBCHBEMUvCIKQYIjiFwRBSDBE8QuCICQYovgFQRASDFH8giAICYYofkEQhATj/wPBg6sewcW44AAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plt.plot(EN0213023991M_lon, EN0213023991M_lat, 'b')\n",
"plt.plot(EN0213110924M_lon, EN0213110924M_lat, 'r')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment