-
-
Save kimdwkimdw/5e290a6ac9c4816e2f03343a3654735e to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import argparse | |
import os | |
from glob import glob | |
import numpy as np | |
from PIL import Image | |
from tritony import InferenceClient | |
def preprocess(img, dtype=np.float32, h=224, w=224, scaling="INCEPTION"): | |
sample_img = img.convert("RGB") | |
resized_img = sample_img.resize((w, h), Image.Resampling.BILINEAR) | |
resized = np.array(resized_img) | |
if resized.ndim == 2: | |
resized = resized[:, :, np.newaxis] | |
scaled = (resized / 127.5) - 1 | |
ordered = np.transpose(scaled, (2, 0, 1)) | |
return ordered.astype(dtype) | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--image_folder", type=str, help="Input folder.") | |
FLAGS = parser.parse_args() | |
client = InferenceClient.create_with("densenet_onnx", "0.0.0.0:8001", input_dims=3, protocol="grpc") | |
client.output_kwargs = {"class_count": 1} | |
image_data = [] | |
for filename in glob(os.path.join(FLAGS.image_folder, "*")): | |
image_data.append(preprocess(Image.open(filename))) | |
result = client(np.asarray(image_data)) | |
for output in result: | |
max_value, arg_max, class_name = output[0].decode("utf-8").split(":") | |
print(f"{max_value} ({arg_max}) = {class_name}") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment