Skip to content

Instantly share code, notes, and snippets.

@kiransair
Created December 10, 2024 09:11
Show Gist options
  • Save kiransair/f560548016e5227633647f967051398d to your computer and use it in GitHub Desktop.
Save kiransair/f560548016e5227633647f967051398d to your computer and use it in GitHub Desktop.
TF_Forum_53230.ipynb
Display the source blob
Display the rendered blob
Raw
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"provenance": [],
"authorship_tag": "ABX9TyPrsik1ULc5MzXHkLI4cUlt",
"include_colab_link": true
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"language_info": {
"name": "python"
}
},
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "view-in-github",
"colab_type": "text"
},
"source": [
"<a href=\"https://colab.research.google.com/gist/kiransair/f560548016e5227633647f967051398d/tf_forum_53230.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"id": "TgVqDnw70c3b"
},
"outputs": [],
"source": [
"import tensorflow as tf\n",
"import keras\n",
"import numpy as np"
]
},
{
"cell_type": "code",
"source": [
"mnist=keras.datasets.mnist.load_data()"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "fHIM9Rzu0jXB",
"outputId": "7d95e3ec-a9fb-4f5d-f699-6d2a91ae00e9"
},
"execution_count": 2,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz\n",
"\u001b[1m11490434/11490434\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 0us/step\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"(x_train,y_train),(x_test,y_test)=mnist"
],
"metadata": {
"id": "7wpn8-6T0lGm"
},
"execution_count": 3,
"outputs": []
},
{
"cell_type": "code",
"source": [
"x_train=x_train.astype('float32')/255\n",
"x_test=x_test.astype('float32')/255"
],
"metadata": {
"id": "cHsvwC5R0m4x"
},
"execution_count": 4,
"outputs": []
},
{
"cell_type": "code",
"source": [
"y_train=keras.utils.to_categorical(y_train,10)\n",
"y_test=keras.utils.to_categorical(y_test,10)"
],
"metadata": {
"id": "YIkk9k3H0opj"
},
"execution_count": 5,
"outputs": []
},
{
"cell_type": "code",
"source": [
"from keras import activations"
],
"metadata": {
"id": "ZgFK1Z9T0qeb"
},
"execution_count": 6,
"outputs": []
},
{
"cell_type": "code",
"source": [
"model=keras.Sequential([\n",
" keras.Input(shape=(28,28,1)),\n",
" keras.layers.Conv2D(32,kernel_size=(3,3),activation='relu',),\n",
" keras.layers.MaxPooling2D(pool_size=(2,2)),\n",
" keras.layers.Conv2D(64,kernel_size=(3,3),activation='relu'),\n",
" keras.layers.MaxPooling2D(pool_size=(2,2)),\n",
" keras.layers.GlobalAveragePooling2D(),\n",
" keras.layers.Dropout(0.5),\n",
" keras.layers.Dense(10),\n",
" keras.layers.Activation(activations.softmax)\n",
"])"
],
"metadata": {
"id": "TevJaA9B0s0T"
},
"execution_count": 7,
"outputs": []
},
{
"cell_type": "code",
"source": [
"optimizer=tf.keras.optimizers.Adam()"
],
"metadata": {
"id": "kP5yH8lE0uY_"
},
"execution_count": 8,
"outputs": []
},
{
"cell_type": "code",
"source": [
"model.compile(loss=\"categorical_crossentropy\", optimizer=optimizer,metrics=['accuracy'])"
],
"metadata": {
"id": "UYw1wJex0wOK"
},
"execution_count": 9,
"outputs": []
},
{
"cell_type": "code",
"source": [
"model.fit(x_train,y_train,epochs=2)"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "JlUoFbHG0yBw",
"outputId": "5b311bbe-d080-49cd-d7d5-6b45e7ea43e5"
},
"execution_count": 10,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Epoch 1/2\n",
"\u001b[1m1875/1875\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m56s\u001b[0m 29ms/step - accuracy: 0.3622 - loss: 1.7816\n",
"Epoch 2/2\n",
"\u001b[1m1875/1875\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m85s\u001b[0m 30ms/step - accuracy: 0.7221 - loss: 0.8613\n"
]
},
{
"output_type": "execute_result",
"data": {
"text/plain": [
"<keras.src.callbacks.history.History at 0x7cbdc341e8c0>"
]
},
"metadata": {},
"execution_count": 10
}
]
},
{
"cell_type": "code",
"source": [
"logits = model.predict(x_test)"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "TJ29jZon00Lm",
"outputId": "d4efd224-3522-40aa-d7dc-920d973386cd"
},
"execution_count": 11,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 15ms/step\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"logits[0]"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "RuTQV-Bb1Qt_",
"outputId": "6fd9d7e9-4208-4909-b059-d4849115f8d8"
},
"execution_count": 12,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"array([2.7764330e-04, 9.4532346e-08, 2.8229714e-03, 1.0156622e-05,\n",
" 1.4043928e-05, 5.8893958e-04, 5.5398455e-06, 9.7335368e-01,\n",
" 4.8517436e-06, 2.2922000e-02], dtype=float32)"
]
},
"metadata": {},
"execution_count": 12
}
]
},
{
"cell_type": "code",
"source": [
"sub_model = keras.Sequential(model.layers[:7])"
],
"metadata": {
"id": "z0AQof361RO1"
},
"execution_count": 13,
"outputs": []
},
{
"cell_type": "code",
"source": [
"x_test_ = tf.expand_dims(x_test, axis=-1)"
],
"metadata": {
"id": "XBAfjlLR1XYS"
},
"execution_count": 14,
"outputs": []
},
{
"cell_type": "code",
"source": [
"logits = sub_model.predict(x_test_)"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "Pn0s9k-E1bn4",
"outputId": "4cb63591-fe15-4273-e888-482b59b0a001"
},
"execution_count": 15,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 11ms/step\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"logits[0]"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "mW2aGRCe1iji",
"outputId": "7e902e00-52b1-43cb-c1dd-545d14b6bab4"
},
"execution_count": 16,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"array([ -2.173252 , -10.1584015 , 0.14595598, -5.481463 ,\n",
" -5.157399 , -1.4212654 , -6.087623 , 5.9889135 ,\n",
" -6.220251 , 2.2402632 ], dtype=float32)"
]
},
"metadata": {},
"execution_count": 16
}
]
},
{
"cell_type": "code",
"source": [
"tf.nn.softmax(logits[0])"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "ZNqTK98i1l5A",
"outputId": "a8b305e5-933f-4285-d560-3232d2344028"
},
"execution_count": 17,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"<tf.Tensor: shape=(10,), dtype=float32, numpy=\n",
"array([2.7764330e-04, 9.4532354e-08, 2.8229717e-03, 1.0156622e-05,\n",
" 1.4043929e-05, 5.8893964e-04, 5.5398459e-06, 9.7335374e-01,\n",
" 4.8517441e-06, 2.2922002e-02], dtype=float32)>"
]
},
"metadata": {},
"execution_count": 17
}
]
},
{
"cell_type": "code",
"source": [],
"metadata": {
"id": "WEeFGO-41pJY"
},
"execution_count": null,
"outputs": []
}
]
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment