Texte centré
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| for params in model.parameters(): | |
| params.requires_grad = False | |
| # Où model est un modèle que vous avez déjà pré-défini. |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| import torch | |
| parameters_list = list(model1.parameters()) + list(model2.parameters()) | |
| optimizer = torch.optim.Adam(params=parameters_list) | |
| # Il suffit donc de concaténer les listes des paramètres des différents modèles que l'on veut optimiser. |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| nombre = 123456789 | |
| print(f"Voici mon nombre : {nombre:,}") | |
| # Ceci va afficher 123,456,789 |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| total_parameters = pytorch_total_params = sum(p.numel() for p in model.parameters()) | |
| print(f"Nombre de paramètres : {total_parameters:,}") | |
| # model est un modèle que vous avez déjà défini à l'avance. |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| from scipy.fft import fft | |
| y = fft(x) # x est un array numpy que vous avez défini au préalable. | |
| y = y[:len(y)//2] # On coupe la réponse en deux, car la seconde moitié est en miroir avec la première, donc redondante. |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| import torch | |
| x = torch.cat([x, x, x], dim=1) # où x est votre tenseur initial. |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| frequencies = df.value_counts(subset=column_name) | |
| # df est une dataframe que vous avez pré-définie | |
| # column_name est le nom de la colonne dont vous comptez les occurrences de chaque valeur | |
| # frequencies est une dataframe qui indique le nombre d'occurrences des valeurs de column_name | |
| # Pour accéder précisément au nombre d'occurrences d'une valeur de column_name, utiliser la ligne suivante: | |
| value = df.value_counts(subset=column_name)[value_name] |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| import requests | |
| r = requests.get(url) # où url est votre lien. | |
| with open(file_name, "wb") as file: # où file_name est le nom du fichier que vous voulez créer. | |
| file.write(r.content) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| my_variable = 1 # on a une variable my_variable à laquelle on affecte une valeur quelconque, ici 1. | |
| variable_name = f"{a=}"[:-2] | |
| # variable_name est le nom de notre variable, en l'occurrence, il s'agit de la chaîne de caractères "my_variable". |