Skip to content

Instantly share code, notes, and snippets.

Embed
What would you like to do?
test.ipynb
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"Collapsed": "false",
"colab_type": "text",
"id": "AuCkj0Qwywjy"
},
"source": [
"# The Datasets API: Features Overview\n",
"\n",
"This tutorial provides an overview of the [Datasets data source](https://docs.dimensions.ai/dsl/datasource-datasets.html) available via the [Dimensions Analytics API](https://docs.dimensions.ai/dsl/). \n",
"\n",
"The topics covered in this notebook are:\n",
"\n",
"* How to retrieve datasets metadata using the [search fields](https://docs.dimensions.ai/dsl/datasource-datasets.html) available\n",
"* How to use the [schema API](https://docs.dimensions.ai/dsl/data-sources.html#metadata-api) to obtain some statistics about the Datasets data available (a standalone version of the charts generated in this section is also available online: [dataset fields overview ](http://api-sample-data.dimensions.ai/dataviz-exports/1-introducing-datasets/dataset-fields-overview.html) | [distribution of dataset fields per years](http://api-sample-data.dimensions.ai/dataviz-exports/1-introducing-datasets/dataset-fields-by-year-count.html) )."
]
},
{
"cell_type": "markdown",
"metadata": {
"Collapsed": "false",
"colab_type": "text",
"id": "hMaQlB7DG8Vw"
},
"source": [
"## Prerequisites\n",
"\n",
"This notebook assumes you have installed the [Dimcli](https://pypi.org/project/dimcli/) library and are familiar with the *Getting Started* tutorial.\n"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"Collapsed": "false"
},
"outputs": [
{
"data": {
"text/html": [
" <script type=\"text/javascript\">\n",
" window.PlotlyConfig = {MathJaxConfig: 'local'};\n",
" if (window.MathJax) {MathJax.Hub.Config({SVG: {font: \"STIX-Web\"}});}\n",
" if (typeof require !== 'undefined') {\n",
" require.undef(\"plotly\");\n",
" requirejs.config({\n",
" paths: {\n",
" 'plotly': ['https://cdn.plot.ly/plotly-latest.min']\n",
" }\n",
" });\n",
" require(['plotly'], function(Plotly) {\n",
" window._Plotly = Plotly;\n",
" });\n",
" }\n",
" </script>\n",
" "
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"==\n",
"Logging in..\n",
"\u001b[2mDimcli - Dimensions API Client (v0.7.4.2)\u001b[0m\n",
"\u001b[2mConnected to: https://app.dimensions.ai - DSL v1.27\u001b[0m\n",
"\u001b[2mMethod: dsl.ini file\u001b[0m\n"
]
}
],
"source": [
"!pip install dimcli plotly tqdm -U --quiet \n",
"\n",
"import dimcli\n",
"from dimcli.shortcuts import *\n",
"import os, sys, time, json\n",
"from tqdm.notebook import tqdm as progress\n",
"import pandas as pd\n",
"import plotly.express as px\n",
"from plotly.offline import plot\n",
"if not 'google.colab' in sys.modules:\n",
" # make js dependecies local / needed by html exports\n",
" from plotly.offline import init_notebook_mode\n",
" init_notebook_mode(connected=True)\n",
"\n",
"print(\"==\\nLogging in..\")\n",
"# https://github.com/digital-science/dimcli#authentication\n",
"ENDPOINT = \"https://app.dimensions.ai\"\n",
"if 'google.colab' in sys.modules:\n",
" import getpass\n",
" USERNAME = getpass.getpass(prompt='Username: ')\n",
" PASSWORD = getpass.getpass(prompt='Password: ') \n",
" dimcli.login(USERNAME, PASSWORD, ENDPOINT)\n",
"else:\n",
" USERNAME, PASSWORD = \"\", \"\"\n",
" dimcli.login(USERNAME, PASSWORD, ENDPOINT)\n",
"dsl = dimcli.Dsl()"
]
},
{
"cell_type": "markdown",
"metadata": {
"Collapsed": "false",
"colab_type": "text",
"id": "Ie80RSRpLpUz"
},
"source": [
"## 1. Sample Dataset Queries\n",
"\n",
"For the following queries, we will restrict our search using the keyword 'graphene'. You can of course change that, so to explore other topics too."
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"Collapsed": "false",
"colab": {},
"colab_type": "code",
"id": "guL7N-ieLf9H"
},
"outputs": [],
"source": [
"TOPIC = \"graphene\" #@param {type: \"string\"}"
]
},
{
"cell_type": "markdown",
"metadata": {
"Collapsed": "false",
"colab_type": "text",
"id": "nJU1GHK4LpU0"
},
"source": [
"### Searching datasets by keyword\n",
"\n",
"We can easily discover datasets mentioning the keyword `graphene` and sorting them by most recent first. "
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"Collapsed": "false",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 34
},
"colab_type": "code",
"id": "tj-vWKW2LpU1",
"outputId": "91e43a4c-3895-4645-83e2-a140bc9fa4b3"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Returned Datasets: 100 (total = 832)\n",
"\u001b[2mTime: 0.62s\u001b[0m\n",
"WARNINGS [1]\n",
"Field 'license' is deprecated in favor of license_name. Please refer to https://docs.dimensions.ai/dsl/releasenotes.html for more details\n"
]
}
],
"source": [
"df = dsl.query(f\"\"\"\n",
"search datasets \n",
" in full_data for \"{TOPIC}\" \n",
"return datasets[basics+license] \n",
" sort by date_created limit 100\n",
"\"\"\").as_dataframe()"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"Collapsed": "false",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 471
},
"colab_type": "code",
"id": "IIk3--fUcATf",
"outputId": "996f60fa-073d-41a0-a022-8bf1fc863f41"
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>id</th>\n",
" <th>keywords</th>\n",
" <th>authors</th>\n",
" <th>title</th>\n",
" <th>year</th>\n",
" <th>license.url</th>\n",
" <th>license.name</th>\n",
" <th>license.value</th>\n",
" <th>journal.id</th>\n",
" <th>journal.title</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>12900395</td>\n",
" <td>[wound dressing, biopolymer, pyocyanin, Pseudo...</td>\n",
" <td>[{'name': 'Andrew C. Ward', 'orcid': ''}, {'na...</td>\n",
" <td>Table_1_Toward a Closed Loop, Integrated Bioco...</td>\n",
" <td>2020</td>\n",
" <td>https://creativecommons.org/licenses/by/4.0/</td>\n",
" <td>CC BY 4.0</td>\n",
" <td>1</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>12900389</td>\n",
" <td>[wound dressing, biopolymer, pyocyanin, Pseudo...</td>\n",
" <td>[{'name': 'Andrew C. Ward', 'orcid': ''}, {'na...</td>\n",
" <td>Data_Sheet_1_Toward a Closed Loop, Integrated ...</td>\n",
" <td>2020</td>\n",
" <td>https://creativecommons.org/licenses/by/4.0/</td>\n",
" <td>CC BY 4.0</td>\n",
" <td>1</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>12900392</td>\n",
" <td>[wound dressing, biopolymer, pyocyanin, Pseudo...</td>\n",
" <td>[{'name': 'Andrew C. Ward', 'orcid': ''}, {'na...</td>\n",
" <td>Data_Sheet_2_Toward a Closed Loop, Integrated ...</td>\n",
" <td>2020</td>\n",
" <td>https://creativecommons.org/licenses/by/4.0/</td>\n",
" <td>CC BY 4.0</td>\n",
" <td>1</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" id keywords \\\n",
"0 12900395 [wound dressing, biopolymer, pyocyanin, Pseudo... \n",
"1 12900389 [wound dressing, biopolymer, pyocyanin, Pseudo... \n",
"2 12900392 [wound dressing, biopolymer, pyocyanin, Pseudo... \n",
"\n",
" authors \\\n",
"0 [{'name': 'Andrew C. Ward', 'orcid': ''}, {'na... \n",
"1 [{'name': 'Andrew C. Ward', 'orcid': ''}, {'na... \n",
"2 [{'name': 'Andrew C. Ward', 'orcid': ''}, {'na... \n",
"\n",
" title year \\\n",
"0 Table_1_Toward a Closed Loop, Integrated Bioco... 2020 \n",
"1 Data_Sheet_1_Toward a Closed Loop, Integrated ... 2020 \n",
"2 Data_Sheet_2_Toward a Closed Loop, Integrated ... 2020 \n",
"\n",
" license.url license.name license.value \\\n",
"0 https://creativecommons.org/licenses/by/4.0/ CC BY 4.0 1 \n",
"1 https://creativecommons.org/licenses/by/4.0/ CC BY 4.0 1 \n",
"2 https://creativecommons.org/licenses/by/4.0/ CC BY 4.0 1 \n",
"\n",
" journal.id journal.title \n",
"0 NaN NaN \n",
"1 NaN NaN \n",
"2 NaN NaN "
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.head(3)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"Collapsed": "false"
},
"outputs": [
{
"data": {
"application/vnd.plotly.v1+json": {
"config": {
"plotlyServerURL": "https://plot.ly"
},
"data": [
{
"domain": {
"x": [
0,
1
],
"y": [
0,
1
]
},
"hovertemplate": "license.name=%{label}<extra></extra>",
"labels": [
"CC BY 4.0",
"CC BY 4.0",
"CC BY 4.0",
"CC BY-NC 4.0",
"CC BY-NC 4.0",
"CC BY 4.0",
"CC BY 4.0",
"CC BY 4.0",
"CC BY 4.0",
"CC BY-NC 4.0",
"CC BY-NC 4.0",
"CC BY-NC 4.0",
"CC BY-NC-ND 4.0",
"CC BY 4.0",
"CC BY-NC 4.0",
"CC BY 4.0",
"CC BY 4.0",
"CC BY 4.0",
"CC BY 4.0",
"CC BY-NC 4.0",
"CC BY-NC 4.0",
"CC BY-NC 4.0",
"CC BY-NC 4.0",
"CC BY-NC 4.0",
"CC BY-NC 4.0",
"CC BY-NC 4.0",
"CC BY-NC 4.0",
"CC BY-NC 4.0",
"CC BY-NC 4.0",
"CC BY 4.0",
"CC BY-NC 4.0",
"CC BY-NC 4.0",
"CC BY 4.0",
"CC BY-NC 4.0",
"CC BY-NC 4.0",
"CC BY-NC 4.0",
"CC BY 4.0",
"CC BY-NC 2.0",
"CC BY-NC 4.0",
"CC BY-NC 4.0",
"CC BY-NC 4.0",
"CC BY 4.0",
"CC BY-NC 4.0",
"CC BY 4.0",
"CC BY 4.0",
"CC BY 4.0",
"CC BY 4.0",
"CC BY-NC 4.0",
"CC BY 4.0",
"CC BY 4.0",
"CC BY 4.0",
"CC BY-NC 4.0",
"CC BY-NC 4.0",
"CC BY 4.0",
"CC BY 4.0",
"CC BY 4.0",
"CC BY 4.0",
"CC BY 4.0",
"CC BY 4.0",
"CC BY 4.0",
"CC BY 4.0",
"CC BY 4.0",
"CC BY 4.0",
"CC BY-NC 4.0",
"CC BY 4.0",
"CC BY 4.0",
"CC BY 4.0",
"CC BY-NC 4.0",
"CC BY-NC 4.0",
"CC BY-NC 4.0",
"CC BY 4.0",
"CC BY 4.0",
"CC BY 4.0",
"CC BY 4.0",
"CC BY 4.0",
"CC BY 4.0",
"CC BY 4.0",
"CC BY 4.0",
"CC BY 4.0",
"CC BY 4.0",
"CC BY 4.0",
"CC BY 4.0",
"CC BY 4.0",
"CC BY 4.0",
"CC BY 4.0",
"CC BY 4.0",
"CC BY 4.0",
"CC BY 4.0",
"CC BY 4.0",
"CC BY 4.0",
"CC BY 4.0",
"CC BY 4.0",
"CC BY 4.0",
"CC BY 4.0",
"CC BY 4.0",
"BSD 3-Clause",
"CC BY-NC 4.0",
"CC BY-NC 4.0",
"CC BY 4.0",
"CC BY 4.0"
],
"legendgroup": "",
"name": "",
"showlegend": true,
"type": "pie"
}
],
"layout": {
"autosize": true,
"legend": {
"tracegroupgap": 0
},
"template": {
"data": {
"bar": [
{
"error_x": {
"color": "#2a3f5f"
},
"error_y": {
"color": "#2a3f5f"
},
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
}
},
"type": "bar"
}
],
"barpolar": [
{
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
}
},
"type": "barpolar"
}
],
"carpet": [
{
"aaxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"baxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"type": "carpet"
}
],
"choropleth": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "choropleth"
}
],
"contour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "contour"
}
],
"contourcarpet": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "contourcarpet"
}
],
"heatmap": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmap"
}
],
"heatmapgl": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmapgl"
}
],
"histogram": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "histogram"
}
],
"histogram2d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2d"
}
],
"histogram2dcontour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2dcontour"
}
],
"mesh3d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "mesh3d"
}
],
"parcoords": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "parcoords"
}
],
"pie": [
{
"automargin": true,
"type": "pie"
}
],
"scatter": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter"
}
],
"scatter3d": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter3d"
}
],
"scattercarpet": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattercarpet"
}
],
"scattergeo": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergeo"
}
],
"scattergl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergl"
}
],
"scattermapbox": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattermapbox"
}
],
"scatterpolar": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolar"
}
],
"scatterpolargl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolargl"
}
],
"scatterternary": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterternary"
}
],
"surface": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "surface"
}
],
"table": [
{
"cells": {
"fill": {
"color": "#EBF0F8"
},
"line": {
"color": "white"
}
},
"header": {
"fill": {
"color": "#C8D4E3"
},
"line": {
"color": "white"
}
},
"type": "table"
}
]
},
"layout": {
"annotationdefaults": {
"arrowcolor": "#2a3f5f",
"arrowhead": 0,
"arrowwidth": 1
},
"coloraxis": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"colorscale": {
"diverging": [
[
0,
"#8e0152"
],
[
0.1,
"#c51b7d"
],
[
0.2,
"#de77ae"
],
[
0.3,
"#f1b6da"
],
[
0.4,
"#fde0ef"
],
[
0.5,
"#f7f7f7"
],
[
0.6,
"#e6f5d0"
],
[
0.7,
"#b8e186"
],
[
0.8,
"#7fbc41"
],
[
0.9,
"#4d9221"
],
[
1,
"#276419"
]
],
"sequential": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"sequentialminus": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
]
},
"colorway": [
"#636efa",
"#EF553B",
"#00cc96",
"#ab63fa",
"#FFA15A",
"#19d3f3",
"#FF6692",
"#B6E880",
"#FF97FF",
"#FECB52"
],
"font": {
"color": "#2a3f5f"
},
"geo": {
"bgcolor": "white",
"lakecolor": "white",
"landcolor": "#E5ECF6",
"showlakes": true,
"showland": true,
"subunitcolor": "white"
},
"hoverlabel": {
"align": "left"
},
"hovermode": "closest",
"mapbox": {
"style": "light"
},
"paper_bgcolor": "white",
"plot_bgcolor": "#E5ECF6",
"polar": {
"angularaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"radialaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"scene": {
"xaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"yaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"zaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
}
},
"shapedefaults": {
"line": {
"color": "#2a3f5f"
}
},
"ternary": {
"aaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"baxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"caxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"title": {
"x": 0.05
},
"xaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
},
"yaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
}
}
},
"title": {
"text": "Share of different license of the 100 most recent datasets about 'graphene'"
}
}
},
"image/png": "iVBORw0KGgoAAAANSUhEUgAABKIAAAHCCAYAAADcqGF3AAAgAElEQVR4XuzdB3gUxf8G8DchQOi9iZSIdEQQBBH/VClSBem9SOidQATpRaR3laJIEwlFOggCgoCIIlWUohTpgUBCSE/+z3dw73cJd8leyubKu8/jo+b2dmc+M1f2vZlZt5iYmBhwowAFKEABClCAAhSgAAUoQAEKUIACFKBACgu4MYhKYWEengIUoAAFKEABClCAAhSgAAUoQAEKUEAJMIhiR6AABShAAQpQgAIUoAAFKEABClCAAhQwRIBBlCHMPAkFKEABClCAAhSgAAUoQAEKUIACFKAAgyj2AQpQgAIUoAAFKEABClCAAhSgAAUoQAFDBBhEGcLMk1CAAhSgAAUoQAEKUIACFKAABShAAQowiGIfoAAFKEABClCAAhSgAAUoQAEKUIACFDBEgEGUIcw8CQUoQAEKUIACFKAABShAAQpQgAIUoACDKPYBClCAAhSgAAUoQAEKUIACFKAABShAAUMEGEQZwsyTUIACFKAABShAAQpQgAIUoAAFKEABCjCIYh+gAAUoQAEKUIACFKAABShAAQpQgAIUMESAQZQhzDwJBShAAQpQgAIUoAAFKEABClCAAhSgAIMo9gEKUIACFKAABShAAQpQgAIUoAAFKEABQwQYRBnCzJNQgAIUoAAFKEABClCAAhSgAAUoQAEKMIhiH6AABShAAQpQgAIUoAAFKEABClCAAhQwRIBBlCHMPAkFKEABClCAAhSgAAUoQAEKUIACFKAAgyj2AQpQgAIUoAAFKEABClCAAhSgAAUoQAFDBBhEGcLMk1CAAhSgAAUoQAEKUIACFKAABShAAQowiGIfoAAFKEABClCAAhSgAAUoQAEKUIACFDBEgEGUIcw8CQUoQAEKUIACFKAABShAAQpQgAIUoACDKPYBClCAAhSgAAUoQAEKUIACFKAABShAAUMEGEQZwsyTUIACFKAABShAAQpQgAIUoAAFKEABCjCIYh+gAAUoQAEKUIACFKAABShAAQpQgAIUMESAQZQhzDwJBShAAQpQgAIUoAAFKEABClCAAhSgAIMo9gEKUIACFKAABShAAQpQgAIUoAAFKEABQwQYRBnCzJNQgAIUoAAFKEABClCAAhSgAAUoQAEKMIhiH6AABShAAQpQgAIUoAAFKEABClCAAhQwRIBBlCHMPAkFKEABClCAAhSgAAUoQAEKUIACFKAAgyj2AQpQgAIUoAAFKEABClCAAhSgAAUoQAFDBBhEGcLMk1CAAhSgAAUoQAEKUIACFKAABShAAQowiGIfoAAFKEABClCAAhSgAAUoQAEKUIACFDBEgEGUIcw8CQUoQAEKUIACFKAABShAAQpQgAIUoACDKPYBClCAAhSgAAUoQAEKUIACFKAABShAAUMEGEQZwsyTUIACFKAABShAAQpQgAIUoAAFKEABCjCIYh+gAAUoQAEKUIACFKAABShAAQpQgAIUMESAQZQhzDwJBShAAQpQgAIUoAAFKEABClCAAhSggEsHUVFRUbjv/xgRkZHIkT0rsmTK8EKPOHnmT5y7+A9avPcOcmTL4nQ95p+bd3H81/PKQerfoeW7yOCZXnc9Q0PDse67H1DcqyD+r2p59byw8AhEREQig2c6pEmTxnSswKBg7Dv8G27f9UfatB54r05VFHk5H6z9XXch7HzHHfuOI+BJEDq3qq9KKv0uJDQc6dKlRbq0HnZeemOLJzY//HQKV6/dRlR0NN58vRSqvlHa5kJs33cMQU+foUOLd21+blKeIGWOjopW/Tu+LTIyCjdv30fuXNktvu+YP9eWfZNSdj7XPgWO/3YBFy/fQOsmNZElc0b7LKQDlEo+k1Zv2gevQvlRu3pFBygxsP/wb7hx+z4a1q6Cl/LlsusyO8p3JUcytesGZ+EoQAEKUIACSRRwySDq3oNHWPTVFmzedSQWX6aMnqhT/Q10bdMApYsXUY/NXeqH5et24ruvpqC418tJ5Lavp//y+0V0H/pprEId2DgX+XLn0F3QhwGBqNFiEN5v+A6m+n6onjdu5pfYtPMwvpgxHO9UeU397dHjIDTvPgaPAgJNx541ri+qvlHG4t8lpLLH7djJ8/j51B/o2PJd5MuTU1cROw2Yit/PX8aFQyvV/hKS+E5dil4dm2BIr1a6juEKO8XExMDbZxaO/XrBVN12zetg7NAuFqsfX1u07TMR/9y4g192fW4o3czP1mPlt3vw844lFkMDCWknzfka3+35yVSuEsUKYf6kAShcMF+sstqyr6GVTOTJvt12EHfuPXSJPi+B5PxlG+FVuABavPd/iRR7/rRPFq7Fmk37sGfdDBR6Ka9Nx0rM+5VNJ7Bx59TsA0+DQ1C1cV8V6swe38/Gkid99xu37mHjjh9R463XUfn1kroOOHLK59i5/2esWzIWr5cppus5qbWTo3xXciTT1GpLnpcCFKAABShghIDLBVFygdB5wFSc+eOqChLqvvMGcmbPgr+u3sSxX88j+Fkohvdpix7t3lP+jvLlKjGdpcewT3Hi1EUsmDIINd96Hc9CQpEpUwakcXfXfThLQdSytTvw4/Ez8OnXzvTleema7Zi/fBO8OzVFj/aNkNYjDaKjo9UFlqW/Z8zgqbsMRu742ddbVYi54YvxKFvSS9ep4wZRP/1yDp+v2oam9d9G22a1dR3DFXY6de4SOg+cpkbWTRjeDXlyZ8fTpyHIljWTxerH1xZGBlEyou/3C1fw25m/sOKbXaqs1oIo7SJIRnnVq1EZf1+/g3Vb9kNC8P3fzkbWLP+rqy37OkL/6DJoGn47e8kUyDpCmRNbRhl9U6Heh6j1dgUsnjYksYdRz0tKEJWY96skFTaBJ6dmH0jtIOrk6T/Rbch0jOrfHl1aN9DFPG3BGqzdvB87Vk9XI7nseXOU70qOZGrP7c2yUYACFKAABZIq4HJBlIyCGjtjBVo2+j9MHtkzll9IaBi+XL8buXJkhYzEcPYgqkqjPsicKSMO+M1JdD+yFERZOpiMAJKRQN+vn4WC+XObdrH290QXKIWfmJgLu7hBVAoX0WEPL6PoZDTd9DHeaFrv7QTrYS9BlIyQ6zlsRqzyWgqitNeKjIBa/9k4pE+XVj1HglgJaqeM6mkaPWPLvglC2ckOqRlCGE3AIMqyeGr2AUcMopas/A6LV36HI1sWIGeOrEZ3Y5vO5yhBlCOZ2tQA3JkCFKAABSjgYAIuF0RNmL0SftsPYf6kgXi3RqUEm0v7crVyvi8O/PQ7Dhw9hX9vP8Dblcti9ODOsX6l3Lr3KDbt/BH/3vGHTP97+aU8akTQh+0bQy4+tU2m5Xx/6CQ+HtoF1/+9i4NHf8etu/7o1qYh3qxQSq0htHrjPuw+eALn//xHHadG1dcx6MMPElxPRs4h6zYtWbUVh479rtbaKVfKC03erYaOLevB3d1NHX/gmAX48eczaiRG5fLPpwm8V7dqggHArh9+VqOYtBFlVSqUUgGT+dS8bd8fw54DJzB6UCdV9jlL/bD+ux/UaDMZeSVbsaIvwc3d3eLfZUSabH9fv40FKzbjt3OX1JS+iuWKo1/X5nj7zXImy08Xf4P7/gGY8XFvbN93HL+c/hPBwSH4eEhn5MmVXa0/tfDLLWq027Wbd1U7yFQZmVqnjfy6cOkaFn+5BR80qanaYfv3R/HHpetqX5k6p5V5484fIaO9pP2lXbNnzazK0fb9OqZ9LHWouEHUxcvXsXDFZrRpVluNmNA2uVCSQOLE7xfVtDJZP6v6m6+pUDR/3ufTAPWYaP1rQI+Wqm3i67P+j56oUTxHT57D3fuPlFmFsq+qc75W+hVT2X48fhpf++1V/TF9+nSoUOZVjOjbVpVRzyajnT5ftR2nL1xWz6/0WgkM693aNB1N1tFa+NVmZSv9NVf25xdd8ycPtLjeUkJtoY2IksBHXcidOKuOJ9NyfPq1f+F1lJT6yevt9j1/dfxJc1dBRj5YCqK0EFzcurd9PuJSNlmnrUlnXzUS7PNPh6m/2bKvNX+tH/Tv/j627P4JB47+jqfBz9RIrDGDOyEw6BkWfrkZh0+cRVhYuJpG+/GQLmqEqPkm04k27zqsXvNFC+VX+w3q+YF679C2hPrR1PlrsHXvT7HeA+S5Y4Z0jhVMm59Xe13K66vwS3khfeTS3/+q9972LeqqXfW2m0yLkuDy7MW/8eDhY5QpURT1a1ZW7wXamnh6jqW93/Tv9r7VfiUjS4eMW6xeU+bvr56e6TBnQv94Xy7yPjf7iw2qTeS/K5UvAfmBRN6PzKfm6fmsSeg1ItNIfz3zF27fe6jOJe/V9WtUVn3TPPRIqG21CiX03pRQH5D3RZkG//v5K6qfyntLtcrl0LFF3XinQcv6ezJq7M8rN9R7mHzOyHt3q8Y11YhTD4/n6xRqQVSDWm+qKfgbth9UI/Tks6hbm/fUj1PmW0Kfo7KvnHvMJ8vVa1frk9oxfCZ9htw5s2HUgA44e/EqpP7a53mxwi+p3Sq+VlxN0ba2yWhJed7pfctjvQ/KZ+zazfvU8aStGtaqotack9eGNtoqvu8Zr3oV1GUWGhaOYeMXq3IWLJAHG7YdVO9vYtalVQO0alLTVHRbvivJkxLqL7KPLZ9leo9pzTTeFyYfpAAFKEABClAg2QVcLojadeAE5Aviu/9XCdM+6hXrYsqSrvblSntMvuA+CQw2BU27Vk83Lcg9evpybN3zkwpM8uXJgXsPAtTaQHIxsvWrqSjw32Kj2jElzJCLO22TEVqyKHr/j+aZQqJ3a1RWF9FyoVCmRBGs/3x8vFPnZGHj9v0mqQsX2b/4K4Xw29m/1AW+FhbJPh0HTFFfYmWT/WRr3aSWCkesbRLCzFu2UT0sX3hlmqNM7ZPNPIiSqWty0bdx2US11pYW/pmfS/7u7u6uQsG4f5/k0wOy8Gm3wdPVYxLOZfRMr0xkW/LJENSs9jzAkcBB6iHhhVYf+btMZciWOSNaeU9QbSUX0GVLFlXrbcgmUy+1wEt8+4z636gwmbIp08EuXb2p9t299lMVmKza+L0KoqQt5HgZMzxf1F0uJOrXfNOqW9wgShYf/nD4TBUGaItpywiY1v+VVfrYy/nz4PQfV9S5tOBCr4nePisXWm36TDCFlV6FCuCvv2+qen/QuAakHWSTUYKzP/9W/bdcxMkFj/Qv2Q5unIe8ubNbrbs8sP/Ibxg8dqHaR4Igubg5dOy0+v8tKyari0YJO+av2GS6IM6aOaPqH2sWjrEYRCXUFlq/0Aom/UPCPblINa9bctTPvPIS8ErwZymIkkBMfo1fMWck3nqjjOlpsjZWudrdVZ/aufp5n7dlX2v4cfuBvM7vPghQxuYe5n/v2qYhRvZrZzqkBC+r/PaqIKBqxVK4/u89UyC1adkkSLiipx9p0wzlwNr7jfy3rNUTd20s7eTa61L21/qbPNas/tv4ZLS37n4Z93XjmT4dJBiVvvDNZ2NRvnQx3cfS068k8Og+dLqpzFp9M2XMgJXzfK2+VqRdmvf42PT+8krhl3Dpn5vqvVs28yBKz2dNQq+R/2sxSAWQFcoWR5bMGVSQI2G99I11iz9Wn2t62lbKpue9Kb4+EBUVjSZdPlL1lM8WWZT99IWr6r07oRGSEjK+13GU6qOlixdGWg8P0zT7nu0bYVjvNuq4WhClNYAEOPnz5DC1k3wfaN6gunpYz+eo7CfBV902w1TgNW5Y11htKyOOJUzzWzpRBV6jpy9TbamdV3aWoG2Yd2urfUKeJwGu9l4sO0p4LFO75XuFfDZGRESp0FM288/h+L5nVH69RLKYyXcWLcDT+7mjt7/IfilxTEumVhuAD1CAAhSgAAUokGICLhdEycWHfEGUTb7IyaLYEorIP2WKF3nholf7IiTB1ejBndRC3jKiSIILWVTZfBFRGdmQL3d2mK9vtHrj95i+aJ36kqqtB6QdU87v07cdqlUqq+6gJlN1ZOTOiEmfof37dTGyf3t1VzUJfCbOXqkWAF84dZD6NdfaJhf042d9pZ4vI5JkBJRcTPTxnaN+yTQvb9la3dQv7qsWjE6wg8mv5vXaDldfomWUiTa97t87D9CgvU+8QZQcvP/oeSp8iPvLrqW/i2+zbmPURdH2r6fhlSLPfz3WLjjk19htK6epv2kXhvK3ob1aq4uosLAI5M2TA58uWof1Ww+oCxkZEebm5qZGF7TqNV4d+8fN89Uv1toFrxxDpkfJhals2tQv8zXDkmNqnqUgSlvgXUZgab+QR0fHqBFNMnLrvTpVdJvo7bNaObQLe60TyEX/1eu31Og4rX3lYnr5rJGm9Zrkl+ox05erX99lzRNrmyy4LReJckFpvs6JZi4jvpbOHK6eLoGHBB9ysS4XWAltCU3Nk2CyX7f30bNdIxWYyIL5DTv4qADi7IEvlWtS6xe3jPEFUbJIuSzWvGHpBJQtUTTWU7VQQFtc3ZZ9rTlp/UDCQ3kvkL4u/f/9Hh+rC2IJBeXvMhVZTJp2Ha3udKmFYVeu3ULzbmPUa2rF7JHI/N9dRbXjygW+XOjr6UdSRlunZZkHxPKakPdqCT3D5a6ckVHqfSehfilT5KS+8nqXUa1yF0bZxGH52p1oWKeKGhGl51jm7zcJ9avETM2TkS8yWqNv1+YY0L2FqVm19wbzIErvZ018rxEZgVTilZdNP6TI+83Q8YtUcKzdnENP29ryfm2tD2jhinmwIQGt3EEzd45sqFDuVatvB/L5JiNZ5f1b2+SOmY06+6qgTXtNaUGUfIZN9ulhGo0qPwZ16DdZjQjbteZT9b6g93NUbxAl5UrMGlFxKy1hugR2Elp/NdfX9COAvJ4bdIj9ORzf9wz5rpEUs9Pnr6gfs8zN9H7u2NJfUuKYCX2u8HEKUIACFKAABYwRcLkgSljli+eUeati/couf5dfVGX0iQxzlwBHNmvrHnzz3Q+YMm+1mmohF3rmm3zBu37zLvwDAnHln3/V1CfzETjaMSXQMZ/+JMfo5ztXjfyRi44Cef93u2ZZh6b3yNnqAkUuVKxtvUbMVAHZ4S0L1AWmtml3yOvZobHpF1hbgiitvnGDB0trRMUdESVlsCWIkgBBAqbWTWvh48GdY1VVLmSk/U59v0wFd1oQFTfgkouq1+p0V1+Ut3/9CdzdnrenbHJx9vnqbabAQ7vgNQ8LZT8ZGdSi51g1aklGL2nPTepi5XGDKPliXr5uz+df6s1G2JlX3BYTvX1WuzCSEQizxvWzuCj41xv2YMaS9fh0TG8VXGibBBdvN+ufYJCpXbB0aVVfTVEx37SLUm30UHIHUZbumjdswmLsPXTSNJIrqfWL+zqML4jSzi0hqvlFsxyjcWdfFZZoAZkt+1p7L7DWD7RgI+4CyBIsSsB4aNM8NUVTpknJMWR6pATx5m0vYb6EQDLaQ08/kucmNoiSsL5b24axqqm33bSQIe4oOPOD6T2WPMfaIvhx+1VigigxldfVke8WxpoeGd9i5Ql91iQUnMuPHDJ9+849f/g/CsThn8+oIEobdaqnbW15b7LWB7Ryys0sZPp12rQeVj/jrD0ggZSMILv/4DEePQ7Ems37VN2Ob1+sbgIQ3xpR8sOSfA7IeonyPUDv56jRQZSMcpMfWGaO64tGZneWtfQ5HN/3DM0wOczkJgsy2lvv544t/SUljmlzx+ITKEABClCAAhRIEQGXDKI0SZliJL8K/3XlJn46ec40tUvu2CUhiGzWvghpU/zkAr1JvWpq38v//IuRU74wTekybzHzKS/xLeopv2pqUzEstbisyTBxRHernaFO62GIiIxUi5uab9oXVbmglAtL2WwJorQ7zcgaNrIehralRBCl2cbX4/d9Oxsv5ctl9cJQu0CI7xha21kLorRjmJsndGFn6XwJTc2Ti8n67Uag8btvYcbHz0frxd1sMdHbZyUAq9fOR41Wkk0CKZlWKmtlycg/2bSROdYc5aItvsXuZUSXLEhvPtJBO5Z2gb15xWSULFYo2UdEWQqitPpo/Sep9YvrEl8QJSMVZaSFNmXV/LnyupV2uHBopfqzLftaaxtr/UCCRQlfzEcbyjG09pBRITKlyFpgJftqwZmUV08/kuckNoiKGxDb0i+1/ifvmebr2Zib2dIHrAVRcfuVrUGUrMNUs+VgU7hnXj5LQZTez5r43q++//EkJs9braYCxt0WTR2M2tUr6mpbW96brPUBqc/73T9WxZCRwm9XLge5s2SLhv+nRjPGt0n/+2zVNvUDg6Xt6LZFaj2/+IIomXosU5C1qZp6P0eNDqK0fhb3tRtfEKWNbjO3SU4zbZS13s8dW/pLShwz3s7EBylAAQpQgAIUMEzApYOouMraRYt8Af5yzij1sLUvQjKqQn4F18KMx4FPUb3ZAPUcma4iYU2hl/LiSVAwWvYcC71BlPar+FTfDy12ArlAlLDA2mbtTniyaHe1pv3VotpLpg9VT7cliNLubqetl6SdPyWCKG1ahKx3YW2Kliw0LFMgrV0YykKoMtVIphXJNEVL2xuvFVfr01gLou77P0btVkPUBawW/qVEECW/2jfrNvqFtYvMy2yLid4+K8eXizNZ92rPoV9iBaDaSD9tXReZMiijZOJualpTnBGBlsptaZ0XWSx55bd71FRPGRloxIgoGcUoo/u0ICqp9YvrEV8QJQvUy0i81QtH443XSsR6qrxuc2TPgr3rZqq/27KvtfcCa/1Au+iOezGrrQelBVGaTdw7Xcr5ZKSgjBg8f/ArNeU1oX4kz0nOIEpvu8kadLJGXXzrDOk9ltTB2vtN3H5laxClLVhvvsaP1q5xgyhbPmusvV8dO3kevXxmqdBn8IetUL70K2pUy4GfTmHinK+hBVF63iNseW+Krw9IqPPZqq3YfeCEGhkmm0yjWzX/I3gVLmD1M097rchaczKF89WiBdWUNfnxRNYEtCWI+vbz8eozQ+/nqNFBlDZqMe5oaluDqOQw0wLtDV+MR9mSXrq/K9nSX/R+ltlyTKsdiQ9QgAIUoAAFKGCogMsFUXKBYG3Yv3bxIF/OtXUl9H4RkrUsBn28ADK1YPCHH5gaUVvXSG8QpX1R/3XPF6a7OdnSI7TRN7/tXQpZlFfbLE0zsyWI0hziXkSnRBClTSOMu1aKJQdrF4ayIHalBt4qtFuzaEy8hIkJoszX2kqofRIaESXTIyo19FZ34pPjWtpsMdHbZ+OeR9ZQkotAuYCTizG5KNMuZJfP9lFrmdm6adMQB/ZoiT5dmsV6+pBxi7Dv8K+mqWCJDaIstYXewCCp9YvrEV8QJetDyYgGmW5qfoctbUSceQBuy74pFURpU2zN11aSc8l0rmpN+qlgUltPyrwMlvqRPJ6cQZTedpMpzT2HzVB9T/qgpU3vseS5evuV9llififE+F472mgd8z6g7R83iLLls0arW9zXiBY6Lps5ItZdSLW138yDqITa1pb3Jr19QBbF/3L9LjWCUMIlCcKtbRLim0/B0/bTFnTXE0Rp70U/bV2IHNmyQO/n6D3/ANRpNdS0gL55Gc0XK5e/a9MczdcctPX9VG52IDcyiPseYmsQlRxm2jICx7YtVtO69X7u2NJfUuKYtppzfwpQgAIUoAAFUkbA5YIouVCU9Vk+7NDYtPiuRnvw6O8YMGZ+rFFDer8Iab+8xw1P5Jbjo6Z+oXtElHbxZ76mlFY+mbL35GnwCwsdm3eNOUv9sGLdTowf1jXWHfC0X+xnju2DRnXfUk+xJYja9cPP8Jn8+QujdjSz+O6aJ+eyZY0o7Rf/uHcbVBfBUVFqAVvtLnXWLgxlX+1iYvG0IaaFaTUruW25/Mou62jZEkR9s+UHTJlveW0way/RhIIoeV5r7/FqzTJZOF4WkNc2udW8LBQvI+GqNxvwwh0YLZno7bOyVocshi8jCbRNLqCrNx+gRiTItCstSJKQbOX8j9T+2iYXz6cvXME7VV6z+u4k035kIW6ZwifrX2nTbLTF72VdrD1rZ6hRNbYGUfG1hd7AIKn1i1vx+IIomXonU37EUgJduSuZbNrdKM2noNmyrzX8pI6I0l4XshaNrEmjbdpoUJm+LNOY9fQjea52sa/nTouyv7XXpTymt920/ifvJTKyS6ZoaZuUO0+ubPj7xh11F0s9fVxvv9LeX6V/a6PcrL5I/ntAm55pvih5UHAIBo6Zr0IM7e+2fNZYe43InWNlipR5wCzvrZ8sXKdGDGpBlJ62teX92lofkBtZyKgsGQGlbTJtXm4sITfnkJt0WNu0UcTmd6qUEcAy4kvKn1AQZekmGHo/R7XAUdp595oZprUltbXxtHXUpOzaj0EyQvfjIbHXPkyob2iPayGO/FCwfJaPurug3MX381Vb1V1dLd01z9LUvKSayWeVfGaZ10/v544t/SUljqnXmvtRgAIUoAAFKJCyAi4XRGm/4mnrUMjd8oJDQnH81/Omxcu3fDlF3U1INr1fhC79/S9a9Hi+xoXcHS9/3pzq4kEWDpdN74goCQAadhyp1u2QO4rVfrsCwiMicPbi39hz8Be1aLYsnm1tM78zmIzOKu5VEDIqQO64JwHclhWTTRfAtgRR4RGR6jbVUq56NSqj1KuFcercZYu3jU7qYuVSN+0CStqp8wf18VL+3Lh28w4OHP1dLeqsraUTXxClfVmW48n0Opn+9cD/sbrV+IlTF01r9dgSRGkXGHLB1L3te+oOXnJREF8YoyeIkltKy2gB2WQEgARPcuEiFxeygL6cS6+J3j6rXdBK0FDp9ZJq8XexkKDBfFH8wWMXqgWM5U5NHzSuicwZPfHH5euQcFJGSWlrjlnrk9odscSpbbM6ag2zL1ZvV2sizZ3Y3xQq2hpExdcWtgQGSa3fnXsP1cgu2WQkk/TPgT1bIqNnenU3TvPppdqFuEyRlTV4ZJ06uZmB9PN962fHWjDeln0t2Sc1iJK7lnUeOA2/n7+sFkauWa2CusugtKds2vRGvf1IW/xcRinKdHnBM/AAACAASURBVM67Dx6hU8t6akqYpS2+IEr219tu0tcWrNikwtBOH9RD1iwZcfzXC+r9VFsTSO+xbOlX2oLXzRu+o348ELv47jApd/icPHeVCmPaNK0FufPb7oO/mNZw0oIoWz5rrL1Gbt/1V1PwxETuminbgaOn1Mgi2bQgSm/b6n1vstYH5nyxQQVj0j5lShRF8LMQbN17VAVJX80dhSoVS1v9zBs+cYlqSwkSa71dAQ8ePsHWvT+ZpvfFDaLktSbvY7IunQT9EgTL565MWZfXpWy2fI52GzJdfdbLc18v+yrOXryq7hArm3lQ8ywkFLU+GKLOJT9YSTnkPTe+z3NLlfb2mW363JX209b4k331BlG2mmnHLu71MmQUmLxXy/b1/I9Q+fWS6r/1fu7Y8vmeEse02pH4AAUoQAEKUIAChgq4XBAlF/ybdx1Wd4eKu8k0imHerWONEJm/fBOWrtmOrSunqrUntE0bFWB+9xrtQkLbR74ktm5SExLMyF2f5O5Pslk7pvY8+XIsX8y3fX8sVhFl2oZMUShfuli8ncTSQrZStymjeqpbuGubBFFykbxynq+uTifBSB/fuaYvvvJFWkKTecs2omWj/1MLUssmUwdkCoGEXtpoG21E1Jn9K+Dh8XwkiGzW/i6PibFMITH/oi3nlKBPpjfIFl8QJY9fuHQNnyxYqy6mzTdZGNy3fwd10aetlxJ3FJm2RpScT0araNtX3+6GtLW2qHx8CyHLc+IGUdp0objTK6QcUxesUUGGtkl489GAjqbbl+sx0dtnL/z1jxoBEddGRrp8NLCjukiSTaY5rtywB19+s8t0cSd/l2Cqd+dmpgtZa51IRlosXbNDvQ60Tdpx7NAuaFrv+UWwbNodocwvbhLqmNbawlq/mDp/DdZt2Y8fNsxRYXFy1E9CzR7DPrVY1Lh3mZRpmGM+Xa4unLVNHBdOGYRXivzv9vOqXDbsa+nk1vqBNtoj7l3ztDVfzNeBk9EWE+esVK9F8/LO+Li3WhdGvcZ09iMZQSdlMg8JLN1BUDuPtdel9rjefin9b8O2Q5i7zC9W/5UbN8jIFJliqPdYtvQrCXUWr9xisjOf8m2pvaSc8l4qi2ZrmwQrskmwISOrZOSNbHo/a2RfS6+RFu+9g3Ezv4r1OShBjvzAIGGqNopUb9vKefS8N1nrA39cvqbeH8xv1KGtX9WxpfUfXuS88j498OP5ppuNyN/k/V0WgJfXpjZ1TAIgGQkk7/lhYeGx+oL5SGHNXu/nqLRzv9FzTWWXcg/r3UZ9hsuoW5nirG1yR9xla3aY3nPju0GFtfc++VFIpi3+/NsfiIyMUmGX3NFUQmPzkdTxfc/Qa6ZNGdVGqmkL28t3mykje8Sa1qn3c0erl57+khLHTOgzhY9TgAIUoAAFKGCMgMsFURqr/Nof8OQp/B8+VtOFCuTNlahbRsdtJvkV++btB8iQIT2KFMxnGqqfmOaUC5M79x6pNVny5ckRa80nPceTL+ISar1cII8awp8cW3R0jBrFER0Tg8IF8yKNu3tyHDbeY8g0C/kVNmf2rOq25jKNy9ZNLjRl5IqsmyUL2WrTomw9jnn/uXXHH5kyeao1RZJzk/o+fByE3DmyWm235DDRyiyBx53/7pxXIE9Oq3epkteM9ClZgF8uRLJkymBTtWUay41b91UQKRfUydV3pFzJ0RZJrZ8tGGJ+/dY9NTXUPBy2dAxb9rWlDLbsKxfxMoUpV45s6vVjrZx6+pH0gzv3H6p6yw0HkrrpbTfZT0bLhIaFIW9uy++neo9lS5nlM0G9ZnLn0PUZI9Px/r19HwXz50bWLJmsnsqWzxprrxEJJB48eqzea+Q1bW3T+x4hz9fz3mStD8hz7z4IUKOFxMv8R4v4zLXPJRl19FK+3LFGFlp6Xlh4hOrP7m7uKFooX7yfB3o+R+WzWt7b4OaGwvLe9t+0W2tlFvcYxCBPzuxJ+o6gHf+nX86h98jZKli1dnOOuGXRY2Z+p8EZY/uo9393NzeLN66w5TVhvq+e/mLrsVPimLaWgftTgAIUoAAFKBC/gMsGUewYFKAABShAAQpQwJEEZBpk5swZ1Aht+YHp6vXb6gYTMprsgN+ceANFW+tpHkTNHt/P1qdzfwpQgAIUoAAFKGBVgEEUOwcFKEABClCAAhRwAAFtncu4Rf10TG80qVctWWvAICpZOXkwClCAAhSgAAXMBBhEsTtQgAIUoAAFKEABBxCQO46eu/i3miYn0/YLFciD8mWKqWm+yb3JlMOte4+paaKyRiU3ClCAAhSgAAUokFwCDKKSS5LHoQAFKEABClCAAhSgAAUoQAEKUIACFIhXgEEUOwgFKEABClCAAhSgAAUoQAEKUIACFKCAIQIMogxh5kkoQAEKUIACFKAABShAAQpQgAIUoAAFGESxD1CAAhSgAAUoQAEKUIACFKAABShAAQoYIsAgyhBmnoQCFKAABShAAQpQgAIUoAAFKEABClCAQRT7AAUoQAEKUIACFKAABShAAQpQgAIUoIAhAgyiDGHmSShAAQpQgAIUoAAFKEABClCAAhSgAAUYRLEPUIACFKAABShAAQpQgAIUoAAFKEABChgiwCDKEGaehAIUoAAFKEABClCAAhSgAAUoQAEKUIBBFPsABShAAQpQgAIUoAAFKEABClCAAhSggCECDKIMYeZJKEABClCAAhSgAAUoQAEKUIACFKAABRhEsQ9QgAIUoAAFKEABClCAAhSgAAUoQAEKGCLAIMoQZp6EAhSgAAUoQAEKUIACFKAABShAAQpQgEEU+wAFKEABClCAAhSgAAUoQAEKUIACFKCAIQIMogxh5kkoQAEKUIACFKAABShAAQpQgAIUoAAFGESxD1CAAhSgAAUoQAEKUIACFKAABShAAQoYIsAgyhBmnoQCFKAABShAAQpQgAIUoAAFKEABClCAQRT7AAUoQAEKUIACFKAABShAAQpQgAIUoIAhAgyiDGHmSShAAQpQgAIUoAAFKEABClCAAhSgAAUYRLEPUIACFKAABShAAQpQgAIUoAAFKEABChgiwCDKEGaehAIUoAAFKEABClCAAhSgAAUoQAEKUIBBFPsABShAAQpQgAIUoAAFKEABClCAAhSggCECDKIMYeZJKEABClCAAhSgAAUoQAEKUIACFKAABRhEsQ9QgAIUoAAFKEABClCAAhSgAAUoQAEKGCLAIMoQZp6EAhSgAAUoQAEKUIACFKAABShAAQpQgEEU+wAFKEABClCAAhSgAAUoQAEKUIACFKCAIQIMogxh5kkoQAEKUIACFKAABShAAQpQgAIUoAAFGESxD1CAAhSgAAUoQAEKUIACFKAABShAAQoYIsAgyhBmnoQCFKAABShAAQpQgAIUoAAFKEABClCAQRT7AAUoQAEKUIACFKAABShAAQpQgAIUoIAhAgyiDGHmSShAAQpQgAIUoAAFKEABClCAAhSgAAUYRLEPUIACFKAABShAAQpQgAIUoAAFKEABChgiwCDKEGaehAIUoAAFKEABClCAAhSgAAUoQAEKUIBBFPsABShAAQpQgAIUoAAFKEABClCAAhSggCECDKIMYeZJKEABClCAAhSgAAUoQAEKUIACFKAABRhEsQ9QgAIUoAAFKEABClCAAhSgAAUoQAEKGCLAIMoQZp6EAhSgAAUoQAEKUIACFKAABShAAQpQgEEU+wAFKEABClCAAhSgAAUoQAEKUIACFKCAIQIMogxh5kkoQAEKUIACFKAABShAAQpQgAIUoAAFGESxD1CAAhSgAAUoQAEKUIACFKAABShAAQoYIsAgyhBmnoQCFKAABShAAQpQgAIUoAAFKEABClCAQRT7AAUoQAEKUIACFKAABShAAQpQgAIUoIAhAgyiDGHmSShAAQpQgAIUoAAFKEABClCAAhSgAAUYRLEPUIACFKAABShAAQpQgAIUoAAFKEABChgiwCDKEGaehAIUoAAFKEABClCAAhSgAAUoQAEKUIBBFPsABShAAQpQgAIUSIRATHgY3NKlT8Qz+RQKUIACFKAABSjgugIMoly37VlzClCAAhSggEsLxDwLRvTDe4h59ADRAQ8R/fgRYgIDEBP0BDFPAxET/BQxIcGICQlBTHgoEB4GeY62Xa/YHUvud0HatPjvHzf173RpAQ8PIK0HkCmTG7JmAbJmBrJmcUMW+e8s2t/ckDGjSzcBK08BClCAAhSggAsKMIhywUZnlSlAAQpQgAKuIiCjlqJv/oOoW9cRffsGou7+i+i7txB9/7YKm5KySRC18G6XpBxChVb587ohX1435M+L//4t/+0GT88kHZpPpgAFKEABClCAAnYpwCDKLpuFhaIABShAAQpQwFYBGckUdfVPRP5zCVHXLiHq+lUVPqXUlhxBVHxly5b1eUhVzEv+cUeRl4Hs2dxSqjo8LgUoQAEKUIACFDBEgEGUIcw8CQUoQAEKUIACyS0Q9e81RP11FpF/nUfU5Qtq1JORW0oHUZbqogVThQu6ofDLz/9Jz2WqjGx2nosCFKAABShAgSQKMIhKIiCfTgEKUIACFKCAMQLRD+4i8tyviLxwChFnfkFM4GNjTmzlLKkRRMUtSqaMQJmS7ihT0k39kysnR0ylaqfgySlAAQpQgAIUSFCAQVSCRNyBAhSgAAUoQIHUElCh0+8/I/L0z4i68XdqFcPiee0hiDIvmLu7hFISSLmjbCk3FCzAUMquOgwLQwEKUIACFKCAEmAQxY5AAQpQgAIUoIBdCUScPIKIX39CxG9HU33UU3ww9hZExS3rq15uKFPKDeXLuKNoYYZSdtXJWRgKUIACFKCACwswiHLhxmfVKUABClCAAvYiEHHqGCJ+PoSIE4cQE/LMXooVbznsPYgyL/yrrzwPpMqXdcPLLzGUcogOxkJSgAIUoAAFnFSAQZSTNiyrRQEKUIACFLB3AbnDXfjRfYg4+gOiA/ztvbgvlM+Rgijzwpcu4YbX/gulZPFzbhSgAAUokDwC2/ZE2XSgdGnd0LCuu03P4c4UcAYBBlHO0IqsAwUoQAEKUMBBBGLCQhH+425EHN6DyEsXHKTUlovpqEGUeW1khFSVN9zVP7LGFDcKUIACFEi8wMZtUdjzQ7TuA7RqliZZgqioqCj4BwQie9bMSJ8u7Qvnj4mJgf+jJ8jgmR6ZM2XQXb7U2jEoOASRkZHIkS1LahWB501hAQZRKQzMw1OAAhSgAAUoAET9cwnhB3Yg/OBOxISHOQWJMwRRWkMUyPdfIFXJDfnycJSUU3RQVoICFDBcwOgg6sate5i2YC2OnDhrqmvVN0pjmHcblCvlhafBIViwYhPWbt5verxoofzo26U5mtSr9oLP9n3H4Dt1qenvmTJ6ol6NyhgzuBNCQ8PRsONIjOjTFm2a1Tbts3TNdqzfehC71kyHZ/p0Vs3nLvXD8nU78fOOJciSOaPF/Z6FhGLUlKU4cPSUevz1MsWwYMog5M6ZzfC25AlTVoBBVMr68ugUoAAFKEABlxaQhcfD921FxOmfnc7BmYIorXE8PGAaIVWuNAMpp+u0rBAFKJCiAkYGUU8Cg1Gv3XBUrVgGPv3aIn/eXLh28y6+Wr8LpYsXQZfWDdBrxEzcvvcQU0d9iDIli+LBw8fYuf84/rh0HfMmDbAYRM1Ysh5+X0xAVHQ0JOgaPHYhBvZoic6t6uObLT9g7jI/7Fk7AzlzZMW/tx+gQQcfLJk+FDXfet2q7Xd7fsKY6cvV4/EFUSvW7cSGHYewesEYZMiQHn1HzcErRQpgkk+PFG03Htx4AQZRxpvzjBSgAAUoQAGnFwj/YTvC9m5G1LXLTltXZwyizBureDE3VKvsjhpvc86e03ZiVowCFEhWASODqIUrNqvQZt83s+DpGXskUmhYOE6dvYRePrOwZcVklChWKFY95XFLo5dkRJQEUUe2LDDt37izLzq1rIf2LepCpgC28p6AciWLYvLInujnOxdp03pg/uSBVh1PnvkT/T+ah4kjumPEpM/iDaJae49Hg1pV8GGHxup4ew+dxLAJi3H+4Fdwc+OPI8naWVP5YAyiUrkBeHoKUIACFKCAMwmE7dqAsF1+iL5/x5mqZbEuzh5EaZV+pagbalV3x9tVGEg5fadmBSlAgSQJGBlEefvMhlfh/PhoYEeLZZbRRZt3H8HO1dN110mCqMlzV2For9aIiIrCmQtX8PeNO/h6ni+yZsmkjnP6/BV0HDBFjbha5bcXB/zmIF+enJY/J/+9BwmX5k0cgLx5cqB5tzHxBlFVGvXBlFE9Ub/mm+p4MnJLnn98+2LT+XVXhjvatQCDKLtuHhaOAhSgAAUo4BgCYTu/Rdj29Yh+9MAxCpwMpXSVIEqjKvGqG2pXd8ebbzCQSobuw0NQgAJOKGBkECVT4to0rY2e7RtZlJwybzVu3LqPpTOH65bW1ohqVKcqomNiEPQ0BEdPnkPfrs0xoHsL03HGzfwSm3Yehu+ADmrKnqVNpg626TMB3do0RPv36+LKtVvxBlGyoHq52t1jTfO7eu02mnUbjf3fzkaBfLl014M72r8Agyj7byOWkAIUoAAFKGC3AmHfb0HY1rWIfnDXbsuYUgVztSBKcyxb6vkIqYrlGUilVN/icSlAAccUMDKIkhFRRV7OpxYSt7QldkRU3Kl5v575C10Hf4KDG+chb+7s6lTaSCWZwidrRVnatGl1MnJKtoDHQZCgq22z2mjdtJZaxyruJiOipvp+qBZINz9PfOtKOWZPYakZRLEPUIACFKAABShgs0D40f0I27IaUTeu2vxcZ3mCqwZRWvtVKOeOBnXcIWtJcaMABShAAcDIIGreso3YtOsw9q6bgYwZPGPxy93nTp27jN4jZ2PD0gkoW6LoC4/HfY7sYGmNqIcBgajRYhDWLBqDiuWKq+NcunoTLXqOxZHvFiJn9iwWm15GMx089rvpsYePnmDVxu/V6Kr3aldFsaIvvfA8mYbXsFYV9OQaUU7/cmIQ5fRNzApSgAIUoAAFkk8g8uIZhG78CpHnfk2+gzrokVw9iNKarV4td9Sv444c2RhIOWhXZrEpQIFkEjAyiHr0OAgNO/igQtniGNm/HQrmz/38rnnf7ka5kl5qypyMZLrnH4BJI3qgfJlXcN//MXYfPIGLl65bXGBcC6LWfzZOLUz+KCBIHe/U+cuxAi89QVRcUktT8+TYPxw5pUIu2Zav2wm/HYewasFoZPRMj76+c3nXvGTqm/Z2GAZR9tYiLA8FKEABClDADgWiAx4idMNyyN3wuD0XYBD1v56QK4ebCqPq1uB0Pb4+KEAB1xUwMogSZQl3pi1YgxOnLprQK5UvgVH926NsSS88DnyKuUv9sHHHj6bHixbKj75dmqNJvWovNJS2RpT2QKaMnnizQikM6dUKxb1eNu2fXEHUzM/Ww2/7Ifyy63N1bBnJ5TP5cxw6dlr9f7lSXlg0dTDy5Ho+JZCb8wgwiHKetmRNKEABClCAAikiIAuRh65fhpiw0BQ5vqMelEHUiy1Xqrgb6tdOg/JlOTrKUfs1y00BCiRewOggSitpeEQk/B89QfasmV6Ypif7REVHw//hY6RPnw7Zs2ZOfAUNemZgUDCkTrlzZjPojDyN0QIMoowW5/koQAEKUIACDiIQefE0Qtd9gci/zjlIiY0tJoMo697vvOWOxvXckSc3AyljeyXPRgEKpKbAtj1RNp0+XVo3NKzLkaQ2oXFnpxBgEOUUzchKUIACFKAABZJRIDoaIWuWIGzH+mQ8qPMdikFU/G2aI7sbmtR3R83qvMhyvt7PGlGAAhSgAAUSL8AgKvF2fCYFKEABClDA6QQiTh1DyKpFiL59w+nqltwVYhClT7TS6+5o3MAdhQtydJQ+Me5FAQpQgAIUcG4BBlHO3b6sHQUoQAEKUEC3QMjK+Qjb5ad7f1ffkUGU/h7g6Qk0qZ+GU1D0k3FPClCAAhSggNMKMIhy2qZlxShAAQpQgAL6BCL/+B0hX85D1I2r+p7AvZQAgyjbO0KZkm5o0iANShTj6Cjb9fgMClCAAhSggHMIMIhyjnZkLShAAQpQgAKJEgjd/LW6Ix432wUYRNlupj2jVTOOjkq8Hp9JAQpQgAIUcGwBBlGO3X4sPQUoQAEKUCBRAtGPHiBk2UxE/HYsUc/nkzgiKql9oGold7Rq5g5Z1JwbBShAAQpQgAKuI8AgynXamjWlAAUoQAEKKIGI347i2RefIubxI4okQYAjopKA999TC+R3Q+tmaVC+LMOopGvyCBSgQGoLhPp9aVMR3NJ7In2zDjY9hztTwBkEGEQ5QyuyDhSgAAUoQAGdApyKpxNKx24MonQg6dzl/UZp0KSBu869uRsFKEAB+xQIWbMEYdvW6S5chk79kiWIioqKgn9AILJnzYz06dK+cP6YmBj4P3qCDJ7pkTlTBt3lS40dE6pLUsskDpkzZoCnZ7qkHorPT4IAg6gk4PGpFKAABShAAYcRiIzAsyXTEP7TPocpsr0XlEFU8rZQpdefT9XLk5ujo5JXlkejAAWMEjA6iLpx6x6mLViLIyfOmqpY9Y3SGObdBuVKeeFpcAgWrNiEtZv3mx4vWig/+nZpjib1qr3Asn3fMfhOXWr6e6aMnqhXozLGDO6E0NBwNOw4EiP6tEWbZrVN+yxdsx3rtx7ErjXT4Zn+xXBHO2bFcsWxZtEY0/Nae49Hl9YN0LTe2+pvCdXFWhuGR0Tiw+EzEBIaBr+lE602tRy/r+9cXLt5V+3zQeMaGDe0Kzw80hjVPXgeMwEGUewOFKAABShAAScXiLr5D54tnoKov/9y8poaWz0GUcnvnS+PGzq1SYPSJRhGJb8uj0gBCqS0gJFB1JPAYNRrNxxVK5aBT7+2yJ83lwpZvlq/C6WLF1EhT68RM3H73kNMHfUhypQsigcPH2Pn/uP449J1zJs0wGIQNWPJevh9MQFR0dEqHBo8diEG9miJzq3q45stP2DuMj/sWTsDOXNkxb+3H6BBBx8smT4UNd963SKvBFGT565C8LPQWPuZB1F66mLp4DLS6+NPV+C7PT+hTIki8QZR3j6zkTmTJ6b59sKdB4/QtvcEjB3axRSEpXTf4PFjCzCIYo+gAAUoQAEKOLFAxKljeLZgEmKePXXiWqZO1RhEpYx72rRA5zZp8HYVTtVLGWEelQIUSCkBI4OohSs2Y8OOQ9j3zawXppmFhoXj1NlL6OUzC1tWTEaJYoViVVketzZ6SYKoI1sWmPZv3NkXnVrWQ/sWdSHT5lp5T0C5kkUxeWRP9POdi7RpPTB/8kCrpBJErfLbi7crl8PhE2exadkkuLu7wTyISqgulsoqJ1y2dgd2HTiBJu9Ww56DJ6wGUYFBwajWtD/WLvoYFcq9qso6df4a3L3/CAunDkqp7sDjxiPAIIrdgwIUoAAFKOCkAmHfb0HI8tlOWrvUrxaDqJRtg/cbp0GT+gyjUlaZR6cABZJTwMggSkb4eBXOj48GdrRYhRXrdmLz7iPYuXq67ipqo5eG9mqNiKgonLlwBX/fuIOv5/kia5ZM6jinz19BxwFT1IgrCZgO+M1Bvjw5Ewyils3yQfVmAzBnQn80qPVmrCAqobpYOvj3P57E5HmrsXHpBPx4/Az8dhyyGkRdvXYbzbqNxqFN85AnV3Z1uNUbv8e274/GO4pKNxx3tFmAQZTNZHwCBShAAQpQwP4FQr9djtBNK+2/oA5cQgZRKd94dWu4o/0HXL8j5aV5BgpQIDkEjAyiZEpcm6a10bN9I4tFnzJvNW7cuo+lM4frrpq2nlOjOlURHRODoKchOHryHPp2bY4B3VuYjjNu5pfYtPMwfAd0UFP2ZHv0OAgrN+wx7VO+1Ct4t0YlaCOiZP2mz1dvw/bvj2Hbyqlo13eSaY2ohOoStwLnLv6NnsNn4Ku5o1C2pBc2bDsYbxClhWfHty82BWp+2w/hs1XbVJDGzXgBBlHGm/OMFKAABShAgRQVeLZsJsL3bU3Rc/DgAIMoY3pBlTfc4d2VYZQx2jwLBSiQFAEjgygZRVTk5XxqIXFLW2JHRMWdmvfrmb/QdfAnOLhxHvLmfj6aSNaYkql1MoVP1oqSTdafmrdso6koVSqWRvMG1WMFUbJ4ep3WQzF6UCes3bzPFEQlVJe49ZOQ7fhvF1Djv3WpLl6+jj8uXcMHjWuiX7f3kSXOnQG1EVE/bp6P3DmzqcNxRFRSenrSn8sgKumGPAIFKEABClDAbgSC545DxPEDdlMeZy4IgyjjWlcWLx/e38O4E/JMFKAABRIhYGQQJaHPpl2HsXfdDGTM4BmrtM9CQnHq3GX0HjkbG5ZOQNkSRV94PO5zZAcZvRQ3iHoYEIgaLQapO97Jne9ku3T1Jlr0HIsj3y1EzuxZ4pUyHxElO8p0vpUb9iKDZzr06dJMLRaeUF3ilvWnX87hzys3TOf9/fxlnL34N7q2boAOLeq+4GFpjSgJs+49COAaUYno58nxFAZRyaHIY1CAAhSgAAVSWSAmPAzBs0Yj8vSJVC6J65yeQZSxbe1VxA1jhjGMMladZ6MABWwRMDKIkqlwDTv4oELZ4hjZvx0K5s/9/K553+5GuZJeasqcjGS65x+ASSN6oHyZV3Df/zF2HzyBi5euW1xgXAui1n82Ti1M/iggSB3v1PnLsQKvpARRoaHhqNd+BB4FBGL6GG8VRCVUF1mPKr7N0tS8YRMWo0C+XPDp2049Ve4gmCVzRkz1/RB37j1UUwN51zxbenfy7ssgKnk9eTQKUIACFKCA4QIxwUEInuGLyItnDD+3K5+QQZTxrV+wgBsm+jKMMl6eZ6QABfQIGBlESXmuXLuFaQvW4MSpi6biVSpfAqP6t1drJz0OfIq5S/2wccePpseLFsqPvl2ao0m9ai9USVsjSnsgU0ZPvFmhFIb0aoXiXi+b9k9KECUHkeBo4pyvTUGUnrrYGkTJHSpd8QAAIABJREFUiC2vQvnV4uiyXf/3HrxHzsK/tx+o/2/Z6P8wflg3eHhw6reevp3c+zCISm5RHo8CFKAABShgoEBMYACefjoKUZf/MPCsPJX6UluxOxbe7UIMgwVy53LD9HEMowxm5+koQAEdAkYHUVqRwiMi4f/oCbJnzfTCtDTZJyo6Gv4PHyN9+nTInjWzjpqk3i4J1SWpJZMRYpkzZoCEbNxST4BBVOrZ88wUoAAFKECBJAnEPAnA0+k+iLr6Z5KOwycnToBBVOLckuNZWTIDc6emTY5D8RgUoAAFkk0g1O9Lm47llt4T6Zt1sOk53JkCziDAIMoZWpF1oAAFKEABlxOICXqCp9OGM4RKxZZnEJWK+ADSpwMWz2QYlbqtwLNTgAIUoAAFbBdgEGW7GZ9BAQpQgAIUSFWBmJBnCJ42DJF/nU/Vcrj6yRlE2UcPWD6fYZR9tARLQQEKUIACFNAnwCBKnxP3ogAFKEABCtiHQHQ0nk4ajMg/freP8rhwKRhE2UfjcwFz+2gHloICFKAABSigV4BBlF4p7kcBClCAAhSwAwG5O17Erz/ZQUlYBAZR9tMHqrzhDu+uvPOR/bQIS0IBClCAAhSwLsAgir2DAhSgAAUo4CACzxZPRfiPux2ktM5fTAZR9tXGzd9Lg6YN3e2rUCwNBShAAQpQgAIvCDCIYqegAAUoQAEKOIBAyKpFCNux3gFK6jpFZBBlf23drkUavFuLYZT9tQxLRAEKUIACFPifAIMo9gYKUIACFKCAnQuEbVuHkDVL7LyUrlc8BlH22ebd2qfBO28xjLLP1mGpKODcAhNv/2pTBTO4e2Bk/go2PYc7U8AZBBhEOUMrsg4UoAAFKOC0AuE/7cOzBROdtn6OXDEGUfbbev16pMEbrzOMst8WYsko4JwCo24dx4y7p3VX7tOC1ZIliIqKioJ/QCCyZ82M9OlevJNoTEwM/B89QQbP9MicKYPu8qXGjgnVJTXKpPec0dExePAwALlzZkOaNFy3MD43BlF6exX3owAFKEABChgsEPnnWTwd18/gs/J0egUYROmVMn6/7NncMLh3GhQq6Gb8yXlGClDAZQWMDqJu3LqHaQvW4siJsybzqm+UxjDvNihXygtPg0OwYMUmrN283/R40UL50bdLczSpV+2Fdtq+7xh8py41/T1TRk/Uq1EZYwZ3QmhoOBp2HIkRfdqiTbPapn2WrtmO9VsPYtea6fBMn87qMSuWK441i8aYHm/tPR5dWjdA03pvq78lVBdLnWrczC+xaedh9OnSDAN7tFS7BD19hrea9MPeb2bi5QJ5oO2jPb9Y0ZfQvME76PRBPYuhXdzz3LrrjxY9Pka79+timHdrq337x5/PwGfSZwh+Fqr2mTC8G1o3reWyr4WEKs4gKiEhPk4BClCAAhRIBYHoxw/x9OM+iL5/JxXOzlPqEWAQpUcp9fYpXswNQ3p7IH361CsDz0wBCriWgJFB1JPAYNRrNxxVK5aBT7+2yJ83F67dvIuv1u9C6eJFVMjTa8RM3L73EFNHfYgyJYviwcPH2Ln/OP64dB3zJg2wGBrNWLIefl9MQFR0tAqHBo9dqEKezq3q45stP2DuMj/sWTsDOXNkxb+3H6BBBx8smT4UNd963WJjS7g1ee4qFdCY72ceROmpi7Ug6uCx03gUEIgfN89XI5ECg4JRrWn/WEGUBHLD+7RVwdyZC1ew8KsteKNcccyZ0C/ekUtBwSHo2H8yrl67jZ4dGlsNoiSkq9FyEAZ0b4GOLd+FlEnctDDMtV4F+mrLIEqfE/eiAAUoQAEKGCrwdOowRJ75xdBz8mS2CTCIss0rNfauXtUd3TtwekRq2POcFHBFASODqIUrNmPDjkPY980seHrGHokUGhaOU2cvoZfPLGxZMRklihWK1RzyuLXRSxJEHdmywLR/486+6NSyHtq3qAuZNtfKewLKlSyKySN7op/vXKRN64H5kwdabW4Jolb57cXblcvh8Imz2LRsEtzd3WAeRCVUF0tllRPKaKdsWTLhl9N/4o3XSmBU//YWgyiZmijl1ba/r99Gu76TMKp/B3zQuIbFsktd+4+ej/x5c6pRVgUL5LEaRMloKLH4fd9ypEvroY4nbh1avKuCKW4vCjCIYq+gAAUoQAEK2JlAyMr5CNvlZ2elYnHiCjCIcow+8X6jNGjSgOtFOUZrsZQUcGwBI4Mob5/Z8CqcHx8N7GgRbcW6ndi8+wh2rp6uG1UbvTS0V2tEREWp0UN/37iDr+f5ImuWTOo4p89fQccBU9SIKwmYDvjNQb48ORMMopbN8kH1ZgMwZ0J/NKj1ZqwgKqG6WDu4BFGyLtbbb5ZDz2EzsP/b2ZDphHFHRMUNouR4wyYsVmtmTfX90OLhpy1YgyvXbmHpjBEYNfWLeIMov+2HsHLDnljWA8csUO0zrHcb3f6utCODKFdqbdaVAhSgAAXsXiD8h+149sWndl9OFhBgEOU4vcC7SxpUqcQwynFajCWlgGMKGBlEyZS4Nk1ro2f7RhaxpsxbjRu37mPpzOG6MbU1ohrVqYromBgEPQ3B0ZPn0LdrczXtTNu0dZd8B3RQU/Zke/Q4SIUx2la+1Ct4t0YlaCOi/JZOxOert2H798ewbeVUNSJJWyMqobqcvXgV+4+cMh27cd23ULJYITUiSoIoCXu6DZkOWf9K1nHSE0TNX74Jx349j28/H/+Cj0xBXOm3R01RlABu+MQl8QZREvrtOfQLpI7aJutFZcqUQa0Vxe1FAQZR7BUUoAAFKEABOxGIuvongj6y/MucnRSRxTATYBDlON0hcyZgcG8PeBXh4uWO02osKQUcT8DIIEpGERV5OZ9aSNzSltgRUXGn5v165i90HfwJDm6ch7y5s6tTyRpTMrVOpvDJWlGyyfpT85ZtNBWlSsXSaN6geqwgStZoqtN6KEYP6oS1m/eZgqiE6nLyzJ/4bvdPpmO3bV4b5UsXixVEaSO11i0Ziw79JsdaI8rSiCgJl2T01CSfHi/wSTBWpGB+yMLmsh04egoZM3jivdpV4N2p6Qv7Wx0RVaRAvAucO14PT74SM4hKPkseiQIUoAAFKJAkgaBRPRD1z6UkHYNPNk6AQZRx1slxphKvusFngAfcmEUlByePQQEKWBAwMoiS0GfTrsPYu26GCknMt2choTh17jJ6j5yNDUsnoGyJoi88Hvc5soOMXoobRD0MCESNFoPUHe/kzneyXbp6Ey16jsWR7xYiZ/Ys8fYF8xFRsqNM51u5YS8yeKZTd7uTu+YlVBdLZZVjmY+Ikv/vP3oewsMjcOzXC/EGUdoaUeOGdrV490AJlp4EBZvqte37o8iaOZMK1izdCc/SGlESZnVp1YBrRFnpHQyi+BZKAQpQgAIUsAOBZ8tmIXzfd3ZQEhZBrwCDKL1S9rOfrBUla0ZxowAFKJASAkYGUTIVrmEHH1QoWxwj+7dDwfy5n98179vdKFfSS02Zk5FM9/wDMGlED5Qv8wru+z/G7oMncPHSdYsLjGtB1PrPxqmFyR8FBKnjnTp/OVbglZQgSu4wV6/9CHWnu+ljvFUQlVBdZAqfpS1uEHXx8nW06vV8qp12xzrZJzDoGYb3aYPAp89w9o+rWPL1VlSvXA7TPuqlFk5PaIs7Ne/k6T8xbeFazJs4QI1KkzpVauiNkf3aoWPLemoE1dDxi3nXvHhgGUQl1Ov4OAUoQAEKUCCFBcJ/3INni6ek8Fl4+OQWYBCV3KLGHG9oXw+ULZXwhYcxpeFZKEABZxIwMogSN1lMWxbVPnHqoomxUvnnd48rW9ILjwOfYu5SP2zc8aPpcVlHqW+X5hZHAmlrRGk7y9S1NyuUwpBerVDc62XTMZISRMlBNmw7iIlzvjYFUXrqYjWIypYl1vQ3CY32HPwlVhC1aedh9XSpjwRHjetWUyOV5I5/era4QdShY6fV6CvzOxJqf9OON3ZoF7RrXkfP4V1yHwZRLtnsrDQFKEABCtiLQPT9Owjy6YqYkGf2UiSWQ6cAgyidUHa22ytFn0/RS5vWzgrG4lCAAg4vYHQQpYGFR0TC/9ETZM+a6YVperJPVHQ0/B8+Rvr06dTi3va8JVQXey67ON+9/wh5c2XXHXLZc31SsmwMolJSl8emAAUoQAEKJCAQ/OkoRPx2lE4OKMAgygEb7b8iN6zrjlbNOEXPcVuQJaeAfQpMvP2rTQXL4O6Bkfkr2PQc7kwBZxBgEOUMrcg6UIACFKCAQwqE7fJDyMr5Dll2FhpgEOXYvWBgLw+8Xo5T9By7FVl6ClCAAhRwRAEGUY7YaiwzBShAAQo4vEDUresIGtYZiIl2+Lq4agUYRDl2yxd++fkUvQwZHLseLD0FKEABClDA0QQYRDlai7G8FKAABSjgFALB00ci4tQxp6iLq1aCQZTjt3z92u5o8z6n6Dl+S7IGFKAABSjgSAIMohyptVhWClCAAhRwCoHwfVvxbNlMp6iLK1eCQZRztP6QPh4oV5pT9JyjNVkLClCAAhRwBAEGUY7QSiwjBShAAQo4jUDMkwAEDmmPmOCnTlMnV60IgyjnaPlXvdwwcpAH3N2doz6sBQUoQAEKUMDeBRhE2XsLsXwUoAAFKOBUAs8+n47wAzucqk6uWhkGUc7T8s3ec0ezhpyi5zwtyppQgAIUoIA9CzCIsufWYdkoQAEKUMCpBCLP/IKnU4c5VZ1cuTIMopyn9WU0lIyKktFR3ChAAQokVuCPbVE2PTVNOjeUbMjhmDahcWenEGAQ5RTNyEpQgAIUoIAjCASN9kbUlT8coagsow4BBlE6kBxoF1knStaL4kYBClAgsQLnNkbhrz3674b7Wqs0yRJERUVFwT8gENmzZkb6dGlfKH5MTAz8Hz1BBs/0yJzJvm8VmlBdzCsXGhqOR0+CkD9PTri76/shQRwyZ8wAT890iW1mPi8ZBBhEJQMiD0EBClCAAhRISCBszyaEfDk3od34uAMJMIhyoMbSWVS5g57cSY8bBShAgcQIGB1E3bh1D9MWrMWRE2dNxa36RmkM826DcqW88DQ4BAtWbMLazftNjxctlB99uzRHk3rVXqji9n3H4Dt1qenvmTJ6ol6NyhgzuBMk9GnYcSRG9GmLNs1qm/ZZumY71m89iF1rpsMz/YvhjnbMiuWKY82iMabntfYejy6tG6BpvbfV3xKqS9zCDhyzAAeOnlJ/zpkjK1o0fAfDerex2mxy/L6+c3Ht5l21zweNa2Dc0K7w8OC07MT09aQ+h0FUUgX5fApQgAIUoEACAjEhzxDY7wPEBAfRyokEGEQ5UWP+V5VsWYGPh3sgR3Z9v6w7nwBrRAEKJEXAyCDqSWAw6rUbjqoVy8CnX1vkz5tLhSxfrd+F0sWLqJCn14iZuH3vIaaO+hBlShbFg4ePsXP/cfxx6TrmTRpgMYiasWQ9/L6YgKjoaBUODR67EAN7tETnVvXxzZYfMHeZH/asnaHCn39vP0CDDj5YMn0oar71ukU6CaImz12F4GehsfYzD6L01CXuwRd9tQX1a76JwgXz4sSpP9Dvo3lY/9k4vFb6FYvl8PaZjcyZPDHNtxfuPHiEtr0nYOzQLqYgLCntzufaLsAgynYzPoMCFKAABShgk0DImiUI27bOpudwZ/sXYBBl/22UmBI2ru+OFo35C3li7PgcCri6gJFB1MIVm7FhxyHs+2bWC9PMQsPCcersJfTymYUtKyajRLFCsZpGHrc2ekmCqCNbFpj2b9zZF51a1kP7FnUh0+ZaeU9AuZJFMXlkT/TznYu0aT0wf/JAq00vQdQqv714u3I5HD5xFpuWTVLT6MyDqITqYqmscU9Yp/UwtGteG96dmr5QlsCgYFRr2h9rF32MCuVeVY9Pnb8Gd+8/wsKpg1y926ZK/RlEpQo7T0oBClCAAq4iEH33XwQOaucq1XWpejKIcs7mzpTx+aioPLk5Kso5W5i1okDKCRgZRMkIH6/C+fHRwI4WK7Ri3U5s3n0EO1dP111hbfTS0F6tEREVhTMXruDvG3fw9TxfZM2SSR3n9Pkr6DhgihpxJQHTAb85yJcnZ4JB1LJZPqjebADmTOiPBrXejBVEJVSXhCpw/d97aNRplNWRWVev3UazbqNxaNM85MmVXR1u9cbvse37o/BbOjGhw/PxFBBgEJUCqDwkBShAAQpQQBN49tknCD+4kyBOKMAgygkb9b8qNajjjtbNOSrKeVuYNaNAyggYGUTJlLg2TWujZ/tGFiszZd5q3Lh1H0tnDtddWW09p0Z1qiI6JgZBT0Nw9OQ59O3aHAO6tzAdZ9zML7Fp52H4DuigpuzJ9uhxEFZu2GPap3ypV/BujUrQRkRJ4PP56m3Y/v0xbFs5Fe36TjKtEZVQXeKrgKyD1XnQNGTLkgkr5oxEGrkNapxNC8+Ob19sCtT8th/CZ6u2qSCNm/ECDKKMN+cZKUABClDARQSi/v4LQb49XaS2rldNBlHO2+bp0j0fFfVSfo6Kct5WZs0okPwCRgZRMoqoyMv51ELilrbEjoiKOzXv1zN/oevgT3Bw4zzkzf18NJGsMSVT62QKn6wVJZusPzVv2UZTUapULI3mDarHCqIkNKrTeihGD+qEtZv3mYKohOpiraVkAfVBYxfi7oOHWLVgtLproKVNGxH14+b5yJ0zm9qFI6KSv//bckQGUbZocV8KUIACFKCADQLB88Yj4tgPNjyDuzqSAIMoR2ot28tap4Y7OnzAUVG2y/EZFHBdASODKAl9Nu06jL3rZiBjBs9Y6M9CQnHq3GX0HjkbG5ZOQNkSRV94PO5zZAcZvRQ3iHoYEIgaLQapO97Jne9ku3T1Jlr0HIsj3y1EzuxZ4m1w8xFRsqNM51u5YS8yeKZDny7N1GLhCdXFUlll3acBY+YjLDwCS2eMQLasz6cOWtosrRElI8buPQjgGlGp9HJlEJVK8DwtBShAAQo4t0Dk5Qt4Oqa3c1fSxWvHIMq5O4DM7pBRUYVf5qgo525p1o4CySdgZBAlU+EadvBBhbLFMbJ/OxTMn/v5XfO+3Y1yJb3UlDkZyXTPPwCTRvRA+TKv4L7/Y+w+eAIXL123uMC4FkTJ3edkYfJHAUHqeKfOX44VeCUliJJRTPXaj8CjgEBMH+OtgqiE6iLrUZlvErS19p6g/iRrTmXMkF79d5o0afBSvlzqv4dNWIwC+XLBp+/zdTrlDoJZMmfEVN8PcefeQzU1kHfNS76+b+uRGETZKsb9KUABClCAAjoEgueOQ8TxAzr25C6OKsAgylFbTn+5a1V3R6c2HBWlX4x7UsC1BYwMokT6yrVbmLZgDU6cumiCr1S+BEb1b4+yJb3wOPAp5i71w8YdP5oeL1ooP/p2aY4m9aq90FjaGlHaA5kyeuLNCqUwpFcrFPd62bR/UoIoOciGbQcxcc7XpiBKT13MCyvhWp1WQ18ov0wT1O74JyO2vArlV0GVbLKguffIWfj39gP1/y0b/R/GD+sGDw++x6fGq5ZBVGqo85wUoAAFKODUAlFX/0TQRx86dR1ZOYBBlPP3AlkravxID+TLw1FRzt/arCEFki5gdBCllTg8IhL+j54ge9ZML0zTk32ioqPh//Ax0qdPZ3UdpaTXPnmOkFBdknoWCbEyZ8wACdm4pZ4Ag6jUs+eZKUABClDASQWeLZqC8MP/u3OMk1bT5avFIMo1ukCTBu54vxF/MXeN1mYtKZA0gT+2Rdl0gDTp3FCy4Yt3ebPpINyZAg4owCDKARuNRaYABShAAfsViL5zE4GD29tvAVmyZBNgEJVslHZ9oJw53DBhpAcyZrTrYrJwFKAABShAAYcRYBDlME3FglKAAhSggCMIhKycj7Bdfo5QVJYxiQIMopII6EBPb9cyDd6tyVELDtRkLCoFKEABCtixAIMoO24cFo0CFKAABRxLIOZZMJ70agJERDhWwVnaRAkwiEoUm0M+qUghN4wd4eGQZWehKUABClCAAvYmwCDK3lqE5aEABShAAYcVCNu2DiFrljhs+Vlw2wQYRNnm5eh79+qcBlUrc1SUo7cjy08BClCAAqkvwCAq9duAJaAABShAAScRkLWhZI0obq4hwCDKNdpZq2XZUm4Y2pejolyr1VlbClCAAhRICQEGUSmhymNSgAIUoIDLCUScPILgmR+5XL1ducIMolyv9UcO8kCJYm6uV3HWmAIUoAAFKJCMAgyikhGTh6IABShAAdcVkBBKwihuriPAIMp12lqrad2a7mjfMo3rVZw1pgAF9Amc2aRvP20vj/RA2Sa2PYd7U8AJBBhEOUEjsgoUoAAFKJC6AtH3byNwQJvULQTPbrgAgyjDyVP9hDmyu2HyRx7w9Ez1orAAFKCAPQr89g1wYYf+klVqb0gQFRQcgsjISGTLkhnu7kkf1RkVFQX/R08QHR2DvHlyII27/vXz1HMDApE9a2akT5dWWQUGBePoyfNoWLsK3NySXj79DcA9U0uAQVRqyfO8FKAABSjgNAKhG79C6IYVTlMfVkSfAIMofU7Otlf3DmlQvar+iy5nqz/rQwEKxCNgYBC1fd8x+E5daipMpoyeqFejMsYM7oSMGZ6n5bLPlt1HcOLURdN+EvbMHt9P/X+d1sNw78Ej9d85c2RFca+CaN2kFt6rU9VqJb/ddhCT5nxtejxfnpxYOGUgypb0irdr3Lh1D9MWrMWRE2dN+1V9ozSGebeBm7sb2nhPwNkfViBNGo46dYXXGIMoV2hl1pECFKAABVJUgIuUpyiv3R6cQZTdNk2KFqx8WTcM8uai5SmKzINTwFEFDA6iZixZD78vJiAqOhoS9AweuxADe7RE51b1cfr8FXQcMAU+fduhWYPqiImJwfm//sGyNTuwZtEYUxDVpVV91P2/NxDwJAhHTpzDkpXfYWS/dujapqHFVpBwS0YzVSpfAlFR0Rg+8TNERkXiyzmjrLbak8Bg1Gs3HFUrloFPv7bInzcXrt28i6/W70Lp4kVQ6fWSDKIctc8nstwMohIJx6dRgAIUoAAFRCDy/G94OmkwMVxQgEGUCzb6f1UeN9IDhQty+ojr9gDWnAJWBFIhiDqyZYGpMI07+6JTy3po36IuNu08jHEzv8SZ/Svg4WF5lJGMiBrSqxWa1X/bdIxdB07AZ9Jn2LHqE3gVLpBgU8u+0TExplFWlp6wcMVmbNhxCPu+mQVPz3SxdgkNC8fV67djBVEy0uvor+fxKCAQxYq+hAHdW6B+zTfV8ybMXomqFUubRm0dOnYaew7+guljvNXj32z5AWs278ODh49R5OV86rk1q1VAaGg45i/fiB0//IysmTOiQ4t38UGjGi+UJ8EKc4dkEWAQlSyMPAgFKEABCriqwLOlMxC+f5urVt+l680gynWbv0kDd7zfiNNHXLcHsOYUsI8gavLcVRjaqzUioqJw5sIV/H3jDr6e54usWTKpKXcSNNV6uwI+aFwDJYsVRsH8uWMV3FIQJSOnqjbui9GDOuH9hu9Ybeqte4/iwE+ncOXaLcyZ0B8lixWyuq+3z2x4Fc6PjwZ2tLjPhUvXYgVRazfvV9MEZbrgj8fPYM4XG3B02yI1EqvLoGl4r3ZVFbbJ9t2en/C1315sWTHZNAps7sT+KkSTUWGRkVFqXwmwLl29qYI32SbO+Rp9ujRD03r/C+HYr40TYBBlnDXPRAEKUIACTijwpPt7iAkOcsKasUoJCTCISkjIeR8vkP/5ouXcKEABCsQSMHhElIwcalSnqhqRFPQ0BEdPnkPfrs3VKCDZTp7+E4tXfqf+LVvRQvnVVD0Jp2SzFETJ39v2mYi33iiDod6trTbw/OWb8NvZv3DPPwCTfXqgSsXSePQ4CCs37DE9p3ypV/BujUpo0MEHbZrWRs/2jSweL24QJQua/3n1Jv68fEONbFr45WZs+GK8WocqviDq+G8X8OHwmfj802GoVqmsaSSYjIaq1NBbrZ9VsVxxVYbNu47gvn8A5k8eyE6cCgIMolIBnaekAAUoQAHnEIj45TCCZ412jsqwFjYLMIiymcypnjCsnwfKlOT0PKdqVFaGAkkVMDiIkjWizKfm/XrmL3Qd/AkObpyHvLmzm2oT/CwUl/6+idUbv8feQydxfPtiNWoqvhFRY4d20TVaaOma7Vi9aZ8qh4RG85ZtNJ1XwqnmDapDRkTJNDkJgixt5kFUaFgEeo+crcpb95038FK+3Ph89TZ889lYlC9dLN4gKiIiEmKybst+dZoGtd5Ui6HLiLEmnX1RrpQX0nr870eEfHlyxDulMKndgc+3LsAgir2DAhSgAAUokEiBZ4umIPzw/375S+Rh+DQHFWAQ5aANl0zFbljXHa2acXpeMnHyMP/f3n1AR1Xt7R9/piQkQAhFuoB0kCJSVES6VBFRyhVEBRFFFLACFjoi9q4IqFhey1WvXuXapYgiCqIoIoINQeklvU1515lIiUnIJExmzjnznf9yock+e/9+n33uWi/P/5w9CNhDIMJB1P6Dyepy4cTAYeTGq3KHvz3vMO6Ov/YGnk5a8vBUdTitWYFB1LufrNEtcxbog5fv1ck1qxa5Lx99uk7XT3/suN94Z4RTb7z7qT546Z58NaVnZOq37buOvJq3fPW3gUPX1yx9QgnlywbWb9Ft1JEg6oob71bnM1tr9L/6BX537Kt5h4tNTknTdz/+GjgTqtEptQOvBHY8/1r9e+FMtWhySpE9MaD0BQiiSt+YFRBAAAEEbCqQdHkf+TPSbNodbRUlQBBVlJC9f28cVm4cWs4HAQQQOCIQgSDqlSeny3iV7cDBFD376ntav3FrIPB57t8f6KdftmvUsL5qWL+29uw9qGdeeVdGcPTxq/cfeSJq5OBegSePDh4yvjXvu8DTRzNvGqWh53crcGMfe/ZNderQUs0b1dPeA4c0Ze5TgQO/j/etecYre31H3KI2LRpr8rUXB86qCnxr3qvvqWXT+nm+NW/q9KPDAAAgAElEQVTdhi0ywqbXF81SjWqV9d6yL3Xnwy8eCaKefO6/Ml7BM16p+3PnPs1/7CWlZWQGzohauWaDjBDq3M7t5HQ6dcf8xUqsUF53XH+pxt58r7Kyc3TXbVepWpWK+vHnbVr/3VaN+lfB3w7IXV26AgRRpevL7AgggAACNhXIWb9aafMn27Q72gpGgCAqGCV7j7ntRrca1OP1PHvvMt0hUAyBMAdRxhlRhz/lysapQ5tmgcO4G9c/ORDWGE8ibdz825ExTRrW0YwbLleblo0CPzNezTMONTc+xsHgxgHhwwf1VK8u7Qtt+vb5iwNPIR3+GGcuGd9YV9TTU8ah5vMeeVFfrv/xyLXtWjfRlGuHy+FwauhVMwJPVRn/fuPMxwOBWaDGTm217PP1MgK3Vs0bBJ6eMn5vHDxu9Ny2VRPtP5ik1xbO0pr1mzTxjkdkvIpofDp1aKWZN49SrepVAmdZzbpvSSCsOvwZd+lATRhzUTE2mKGhEiCICpUk8yCAAAIIRJVAxuL7lPXhW7br2Stpv88hv6SqTr+cxewwye9QosO42v4fgij773FRHRrfnGd8gx4fBBBAICAQxiAqWHHjKSDjaafy5eID/4Tik53jCRz0bcxnfJNdcT7GtfsOJKlihXL5XtM7dh7jNUOn06FKiQkFTm8EaCdVTpTLlfcVaeNb/4wnsMrGl1F8XJl812ZmZSspJU0nVaqQ79ri9MHYExMgiDoxP65GAAEEEIhSgeTxQ+Tbt8tW3b+Z6dZLGTFHeopzSLeVz1Jzty9Pnzl+6aaUOGX7pQWJuf+/jvt8Ds1NLaM9PocqOfyB62q7cgOpJ9NjA2Mnlcu2lRdBlK22s0TNNGno0OSJvJ5XIjwuQsCOAhveKF5X7jJSiwHFu4bRCNhAgCDKBptICwgggAAC4RXw/vqTUqaOCe+iYVjt/Sy3Kjj8Oj3GK48cmp0SK+MJqQcqZB1Z3YiW7kqN1Tc5LlVx+o8EUf/NdOvrHJdmJ2RpXmqsTnH5NSI+J/B01bVJcXo0MTPwhJWdPgRRdtrNkvcy51a3atbg9bySC3IlAggggEC0CRBERduO0y8CCCCAwAkLZL75gjJffuqE5zH7BLNSysh4FmpWwtEg6vmMGH2W7VKXWG/gz8NPRM1PjdVJTr+uLJujFzNitNXjDFz3SFqsjIfmr7XZ01DG3hFEmf0ODk99wy9yqWdXXs8LjzarIIAAAgjYQYAgyg67SA8IIIAAAmEVSJ09SZ6NX4d1zXAu9l6WOxAy7fQ6NLV8tpr8/WresiyXFmfE6qEKmVqd7ZLxBNXhIMp4re/bHFcgfDJCqbouv3qW8WhSUpyeTMxUBadff3mdquPK+5pfOPsK9VoEUaEWteZ87do4dc3ovGeUWLMTqkYAAQQQQCA8AgRR4XFmFQQQQAABmwj4s7OUNLKnTbopuI2n0mP0g8elJJ80sVyO2sV4tcnj1OyUMpqRkHtm1FuZ7jxB1G6fQzNSyijDLxmnTM1IyNYrGW5VdPrVKdaru1LLKEZ+xTqkuxOylGiD1/QIomz9P4Ogm6uYKN03++jZakFfyEAEEEAAAQSiVIAgKko3nrYRQAABBEomkPPtGqXNu7lkF1vsqucyYvRBllsvVczQ/Wmx+iHHqTYxuU80/ep1apfXobNjvbqibI7K//1NecZTVDVdfu3wOnRzcpyeqpipF9JjFOfIfW3v+uQ4DSyTox5ljNOnrP0hiLL2/oWy+luvd6thfc6JCqUpcyGAAAII2FeAIMq+e0tnCCCAAAKlIJD50gJlvvViKcxsvimXZ7v0RFqsXqmUobXZLm31Hj0Hx3hCapvXqX5lPBoSl6P4f/wd/M7UWJ3s8uvy+BxNTI4LjDP+uTc1NvCa3tVlc8zXcDErIogqJpiNhw8+36V+53JOlI23mNYQQAABBEIoQBAVQkymQgABBBCwv0Dq9PHybP7Olo0uTo9Rhxivmrp9gW+7m5daRmUc/jzfmne48X++mncsyO9ep6Yml9HTFTNVzuHXk+mxgV+PK5utiUlxGhqfEzjs3Oofgiir72Do6j+tpUMTxrpDNyEzIYAAAgggYGMBgigbby6tIYAAAgiEWMDj0aER3UI8qXmmm5caq29yjh66XMPp163ls1TL5c9X5PGCKOMsqcZun4bH5z71tMXj1H1psUr1O1Tb6QucH3X4VT7zdF/8Sgiiim9m1yvKlZUevotzouy6v/SFAAIIIBBaAYKo0HoyGwIIIICAjQU8P36r1BnX2bhDKccv7fU5VM6hkB8ofsjnCBxebpcPQZRddjI0fUy72a16dTgnKjSazIIAAgggYGcBgig77y69IYAAAgiEVCDr7ZeU8eITIZ2TyawrQBBl3b0rjcr/daFLvbpxTlRp2DInAggggIC9BAii7LWfdIMAAgggUIoCaQ9OU84Xy0txBaa2kgBBlJV2q/Rr7djBqTEjj77aWvorsgICCCCAAALWFCCIsua+UTUCCCCAQAQEkicMk2/3XxFYmSXNKEAQZcZdiVxNJ9dyaOYUDiyP3A6wMgIIIICAVQQIoqyyU9SJAAIIIBBRAX/yISVdOSCiNbC4uQQIosy1H2aoZvHDHFhuhn2gBgQQQAABcwsQRJl7f6gOAQQQQMAkAp7v1yl1zvUmqYYyzCBAEGWGXTBXDcYTUcaTUXwQQAABBBBAoHABgijuDgQQQAABBIIQyPrfq8p47tEgRjIkWgQIoqJlp4Pv0zgjyjgrig8CCCCAAAIIEERxDyCAAAIIIHBCAukL5it72dITmoOL7SVAEGWv/QxFN316ODX0Ag4sD4UlcyCAAAII2FeAJ6Lsu7d0hgACCCAQQoHUO8bJs2VjCGdkKqsLEERZfQdDX3+LZg7dcA0HlodelhkRQAABBOwkQBBlp92kFwQQQACBUhNIGt1P/rSUUpufia0nQBBlvT0r7YorJEgPzOXA8tJ2Zn4EEEAAAWsLEERZe/+oHgEEEEAgDAL+QweUdNXAMKzEElYSIIiy0m6Fr9ZH58coPj5867ESAggggAACVhMgiLLajlEvAggggEDYBTybv1Pq9PFhX5cFzS1AEGXu/YlUdXxzXqTkWRcBBBBAwCoCBFFW2SnqRAABBBCImED2p+8r/bG5EVufhc0pQBBlzn2JdFUTxrp0Wku+OS/S+8D6CCCAAALmFSCIMu/eUBkCCCCAgEkEMl9/Vpn/ftok1VCGWQQIosyyE+aqY8Rgl3p0IYgy165QDQIIIICAmQQIosy0G9SCAAIIIGBKgfQF85W9bKkpa6OoyAkQREXO3swr9+nh1NALXGYukdoQQAABBBCIqABBVET5WRwBBBBAwAoCqXfeKM+Gr6xQKjWGUYAgKozYFlqqfRunxo0miLLQllEqAggggECYBQiiwgzOcggggAAC1hNIuekyebf/ar3CqbhUBQiiSpXXspPXr+fQ7Te6LVs/hSOAAAIIIFDaAgRRpS3M/AgggAAClhdIGnOe/ClJlu+DBkIrQBAVWk+7zFYhQXpgboxd2qEPBBBAAAEEQi5AEBVyUiZEAAEEELCVgNerQ8O72qolmgmNAEFUaBztOMvCB2Pk5LxyO24tPSGAAAIIhECAICoEiEyBAAIIIGBfAd/B/Uq++gL7NkhnJRYgiCoxne0vfHhejMqVs32bNIgAAggggECJBAiiSsTGRQgggAAC0SJgnA1lnBHFB4F/ChBEcU8UJnDXdLeqVnEAhAACCCCAAAIFCBBEcVsggAACCCBwHAHP5g1KnX4tRgjkEyCI4qYoTGD6LW7VPZkgijsEAQQQQACBggQIorgvEEAAAQQQOI5AzvrVSps/GSMECKK4B4IWuGWCW00bEUQFDcZABBBAAIGoEiCIiqrtplkEEEAAgeIKZH/+sdIfnlncyxgfBQI8ERUFm1zCFq+70qU2rTitvIR8XIYAAgggYHMBgiibbzDtIYAAAgicmED2J+8o/am7T2wSrralAEGULbc1JE2NGelSxw4EUSHBZBIEEEAAAdsJEETZbktpCAEEEEAglAJZ772ujGcfCuWUzGUTAYIom2xkKbQxfLBLPbsQRJUCLVMigAACCNhAgCDKBptICwgggAACpSeQ9fZLynjxidJbgJktK0AQZdmtK/XCB53n0oDeBFGlDs0CCCCAAAKWFCCIsuS2UTQCCCCAQLgEMt98XpkvLwzXcqxjIQGCKAttVphLHdjPqYF9XWFeleUQQAABBBCwhgBBlDX2iSoRQAABBCIkkPn6s8r899MRWp1lzSxAEGXm3YlsbQRRkfVndQQQQAABcwsQRJl7f6gOAQQQQCDCApmvPSPjHz4I/FPgt7aj9fjOy4BBIJ8AQRQ3BQIIIIAAAoULEERxdyCAAAIIIHAcAYIobo+CBFZ1vVy/pJytjTubAIQAQRT3AAIIIIAAAsUQIIgqBhZDEUAAAQSiT4BX86Jvz4/X8S+nNldStZ76bF8v/bG/AjgIFCjAE1HcGAgggAACCBQuQBDF3YEAAggggMBxBDisnNvjsMCiIRPULz1bz2+9UAdSywCDQKECBFHcHAgggAACCBBEcQ8ggAACCCBQIoGsd15WxguPl+haLrKHwFfnnK0vqg7TON8azVh/tTwee/RFF6UnQBBVerbMjAACCCBgfQGeiLL+HtIBAggggEApCmS9/4YynnmwFFdgarMKeN1uzRs7Wt23nqkOFT7R7V9cZdZSqctkAgRRJtsQykEAAQQQMJUAQZSptoNiEEAAAQTMJpC9bKnSF8w3W1nUU8oC7w3oq6XVztYNWxNVs9a3mvEp345XyuS2mn7oBS716eG0VU80gwACCCCAQKgECKJCJck8CCCAAAK2FMj+/BOlPzzDlr3RVH6BvbVqavbwgWr3e2ddlL1V/vK7NWfFv6BCoFgCY0a61LEDQVSx0BiMAAIIIBA1AgRRUbPVNIoAAgggUBKBnPVfKG3+LSW5lGssJvDC8CF6snpNzf2yn7rXXaq9itE9nw6yWBeUawaBG65xq0UzhxlKoQYEEEAAAQRMJ0AQZbotoSAEEEAAATMJeDZ/p9Tp481UErWEWOCn1i01s39nNd3VXOd+0lQ9Oy/SLzkN9NBn/UK8EtNFi8DMKW6dXIsgKlr2mz4RQAABBIonQBBVPC9GI4AAAghEmYB3+29KuenSKOs6etp9+MpLNbOKT4s3DlLzHVk6s/lCfZPdVQu+6BE9CHQacoEH5saoQkLIp2VCBBBAAAEEbCFAEGWLbaQJBBBAAIHSEvAd2q/kqy4oremZN0ICq7t21oxOLZSYfJImftZFTSpvUrPEp7TKe4meW9spQlWxrF0EFj8cY5dW6AMBBBBAAIGQCxBEhZyUCRFAAAEEbCXg8+rQxV1t1VI0N5MVF6e5Y0fqsbIZmv1Hd536XkN17PqRann/Tx/5r9Or69tHMw+9h0DAeBLKeCKKDwIIIIAAAggULEAQxZ2BAAIIIIBAEQJJY86TPyUJJ4sLvDOwv6a3qq39OR49te5CxaxLUK/+Lykxfbnezpyot79vZfEOKd8MAsbZUMYZUXwQQAABBBBAgCCKewABBBBAAIESCaTcfJm8f/xaomu5KPICO+vW1exh/fWKK0UjD7bWsOXt5U7PUI+uixWbuVWvHpyojzc3iXyhVGALgZbNHbp+HEGULTaTJhBAAAEESkWAJ6JKhZVJEUAAAQTsJJB6543ybPjKTi1FTS9LLhmmaXXjlerz6OGt/VXr41qq23ib2jdaKPky9ezOifril3pR40GjpS/Q5WynLvuXq/QXYgUEEEAAAQQsKkAQZdGNo2wEEEAAgfAJpC+Yr+xlS8O3ICudsMAPp7fRzD4d9bE/WS2zq2rWmj7y/RCn085cp8Zln1JOXDU9+esEfbejxgmvxQQIHCsw6DyXBvR2goIAAggggAAChQgQRHFrIIAAAgggUIRA5uvPKvPfT+NkEYH7rrpMd1byBqq9YfdZ6vpRS+WkSOec+55qZL+qrIQGemDTBP2yp5JFOqJMKwmMGelSxw4EUVbaM2pFAAEEEAivAEFUeL1ZDQEEEEDAggLZn76v9MfmWrDy6Cr50x5dNeOs5vrWmxJo/JnvL1TCZ1UC/967/3OqkLpc6RWaa+76CdqTVDa6cOg2bAK3THCraSNH2NZjIQQQQAABBKwmQBBltR2jXgQQQACBsAt4Nn+n1Onjw74uCwYnkJ6QoDlXXKwFcem5oVNqA137WRdl/+ZWYpUkde24SLHJG5Wc2Ea3fz5BGVmc3xOcLKNKInDXdLeqViGIKokd1yCAAAIIRIcAQVR07DNdIoAAAgicgIDv0H4lX3XBCczApaUl8OaF52v6qdW1w5MRWGLOHz3U/N0G8vulBs1/1un1FsqRvkcHEs/U5GXXlFYZzIvAEYGFD8bIyZt53BEIIIAAAggUKkAQxc2BAAIIIIBAEAJJo/vJn5b7yhefyAtsb1Bfswf30evO3D2p6IvTk+sukPvrhMB/n372GjV0Lwj8++4KXXX78tGRL5oKbC9QMdGh+2a7bd8nDSKAAAIIIHAiAgRRJ6LHtQgggAACUSOQevvV8mz9IWr6NXOjiy+7WHfUilWWP/dA8ksPtNbQ5e2VtSf3MZQuvd9Wtcz/BP59e0JvzVoxwsztmKa2MmWkOrUd+vMvvzIyj5YVHy+dXNOhlDRp125/vnqN19D27s//c9M0FsZCGpzi0G03EESFkZylEEAAAQQsKEAQZcFNo2QEEEAAgfALpD95l7KX/y/8C7PiEYEN7dtpZq8ztMKXfORnj2w5TzU/qXnkv/ue97TKp6wK/Pcv5c/XXSsHI1iEQItmDo0b7VZ8XO7Ar9b7tPC53JDvzjvcql716HlHRkA1516P9uzzB0Ir42Bu47rsbOmRhR799HNuIGWEMTEx0qx7PFHl37mjU5dfzBlkUbXpNIsAAgggUGwBgqhik3EBAggggEA0CmQtfVUZzz8aja2bouf540bp7sScI7W0yqqmmWt6y7cpNz2pUmO/zmm3UDEpPwX+e1PZIXpg1QBT1G7mIurVcWjazW4dOOjXux/7tO4bn8qVc2j3ntxA6cbxbn3+pU/ffO9Tg3oO3XStWz9u8euBJzwaM9KlZk0cumW6R/OmubVrd24YdXIth2ZMdmvu/R5t2x5dT0qNGOJSj84cEGXme57aEEAAAQQiL0AQFfk9oAIEEEAAAQsIeL5bq9S5N1igUnuVuKxXT804o5E2elKPNHbTro7q/FEL5fz9o8atN6t1jYVyZB4IjPmmzCV6fHUve0GUUjfTbnGrbm2Hrrk5R54iHl4yXt177O4Yffm1T4tf8OrO291KTpHufsSjSVe7VbuWNHmGR9NvccvnUyCIirbPlEluNW7AN+ZF277TLwIIIIBA8QQIoornxWgEEEAAgSgV8CcfUtKVPGETru1PrlRJcy4fosVl0vMs+cx3Fynh88pHftah8yrVczx95L+/cF+hp7/sEq4yLb/Ogvtj5PVJmZlSXJx08JBfT7/o1W/bjj7JZLx6N36MO/BEVEamX3fe79XBJL/GXuZS44aOQPhkhFK790pLP/Dq1hvcmjE/9/W9Rg0c2rwlep6KevyeGBmBHR8EEEAAAQQQKFyAIIq7AwEEEEAAgSAFkq8bKt+enUGOZlhJBV4bMkjTm1TRLu/RE7P7pjbUNas6K/v3owdBd+/zH1XJePvIMst0jV76+sySLhuV1y1+OEbp6dKX633KyZG6dnLK5ZIm3ZqjrKxckvLlFHjKqUKCQzke6cEnPPp1mz8QTN18nTsw3u+XHnrKo0uGuJSaJn262qfRI1zy+SWfV5p5d24wZedPtZMcgVcU+SCAAAIIIIDA8QUIorhDEEAAAQQQCFIg7YFpylmzPMjRDCuuwO9NGmvWoJ56y5GS59K523qq6bv1j/zM6faqb99FKpu8JvdnDqfezZmk/2w4rbhLRv14I4h69yOf/rM093DyU5s6AudCPfmMV19v8OXxcTikh+bFKDXNr9vnHn3tznjq6edf/WrWOPcMqdvmeDRutCtwgLnx2t4j82P02Rqf/v1W7hp2/bRr49Q1ozmo3K77S18IIIAAAqETIIgKnSUzIYAAAgjYXCDrv/+njP970uZdRqa9BaOG644aLnmNR2v+/lTxxuvxdRfItb78kZ/VqLNbZ7VeKHfKL4Gf+WPi9UbyRL2/qXlkCrf4qk/cG6PNW/2BQ8aNz2ktnZow1hV4Pe+LtXmDKOP3M6e4VTHRoetvO3pw/GGCu6a7tXefAgeZP3p3jNau9+n5V72ae5tbaenSXQ/Z+8yoQee5NKA3B5Vb/H8SlI8AAgggEAYBgqgwILMEAggggIA9BDybvlHqzAn2aMYkXaw/60zN6N5Wn/mS81R0+YHTNHh5e2XtOXrwc/PTv9epVRbKkZ37xJQvrqJe2DNRq7Y2MEk31itj4lVutTrVoXse9ejQIWnSOJeqV3XohttzFBPj0LVjXPrve97AE08d2jp16TDXkW/NO7ZbYw5jLuO8KOP8qNtuzH1F7a4Hc0OpT1b69Ob/7P1ElNF/6xYcVG69/xVQMQIIIIBAuAUIosItznoIIIAAAtYV8OTo0Iju1q3fZJXfOX607kvIzlfVo1vOU41Paub5+ZndlquO77kjP/OUraFFf0zQ19tqm6wra5VjHEQ+a6pblSvlBijGt90994pXn3/pU2IF6a5pMYqNPdqTcc7TnPs8ysjI2+fdM9za8Zdfjy7KDZvat3FqzEiX3G4FnoaadY8ncBC6nT8cVG7n3aU3BBBAAIFQChBEhVKTuRBAAAEEbC+QOu0aeX763vZ9lmaDH/XtpentGmizJzXPMm0ya2j6mnPl/TEuz8979ntVldLeO/Kz7PL19PCWCfpp50mlWWZUzW0EURUrSL/94Q8cPH7sxwikalZ36M+dfqXk3bIijapXc2j3HnsHUAZCE+PbAydyUHmRNwQDEEAAAQQQMI739Pv/+X9u4IIAAggggAAChQlkvrRAmW+9CFAJBA5Urao5Iy/Ukti0fFffvPNsnfPRqco55ldx8Vnq2XOR4pPXHRmfkdBEd2+YoB0HE0pQAZcgUDoCFw1wqX8vzocqHV1mRQABBBCwmwBBlN12lH4QQAABBEpVIOebNUq76+ZSXcOOk7887CJNb1RR+7xZ+dp7dsNFKr+6cp6f126wQ2c0WyhX6h9Hfp5aoZVmfDlBSenHvCtmRyx6spzArde71bA+50NZbuMoGAEEEEAgIgIEURFhZ1EEEEAAAasK+LOzlDSyp1XLD3vdP5/aXLPO76alynsYuVFI/5TGunpVJ2Vvy/tKU8sO36pZwgLJk3mk3oOJ7TVlxXWBM4z4IGAmgYTy0oN3xpipJGpBAAEEEEDA1AIEUabeHopDAAEEEDCjQOrsSfJs/NqMpZmqpseuGKlpVQs+H2je7z3V+L36+eo9u8eHquV5Kc/P9ySeo9uWXWmq3igGgcMCZ7V36spLXYAggAACCCCAQJACBFFBQjEMAQQQQACBwwKZb72gzJeeAqQQga/OOVszupymNd78T0FV9ZbVo+sGyrW+fL6re/X/PyWmfpTn539W6KkZyy/FGgHTCowc5lK3TpwPZdoNojAEEEAAAdMJEESZbksoCAEEEEDA7ALeX39SytQxZi8z7PV53W7NvfpyPVT+6Ct1xxZxxf42GrS8nbL25j1Lp3xiqrp3XqQyyRvy1Pxb+f66c+WwsPfBgggUR2DWVLdq1+R8qOKYMRYBBBBAILoFCKKie//pHgEEEECghALJ4wfLt293Ca+232XvDeir6afV1c+e/N+IZ3T72E8DVH1ZjXyN12vyu9o1XChn2l95fvdT2Qt176oL7AdFR7YSOKWuQ3fclPeMM1s1SDMIIIAAAgiUggBBVCmgMiUCCCCAgP0FMhbfr6wP37R/o0V0uLdWTc0ePlAvulMLHNkuq4ZuX91L3s1l8v2+zVlr1SjuKcnnyfO77+Iu1iOf9416WwDMLzCgt1ODzuN8KPPvFBUigAACCJhJgCDKTLtBLQgggAAClhHI+eYLpd11i2XqLY1CXxg+RNPrJ+iQN7vA6Sfv7KSOHzaXJz3/rzuf+z9Vz34t3y++irlcC9d0L41ymROBkAtMmeRW4wa8lhdyWCZEAAEEELC1AEGUrbeX5hBAAAEESlMg6bJe8mdmlOYSppz7p9YtNbN/Z73vz38Y+eGCl2wYrHKrKxVYf5/zlighZUW+333qvErPrz3blD1TFAL/FDi5lkMzp/BaHncGAggggAACxRUgiCquGOMRQAABBBD4WyD98TuVvfK9qPJ46MpLNauKr9CeB6Q01thPOyn7j/x/Qa9UNUmdz1yo2OQf8l3/gW+iXvumbVRZ0qy1Bfr2cGrIBbyWZ+1dpHoEEEAAgUgIEERFQp01EUAAAQRsIZCzdpXS7r3VFr0U1cTqrp01o1MLrfOmFDr0rt/PVaP3Tinw9w1bbFWbkxfKkbE37+9dsXozfaL+t7FlUSXwewRMJXDTtW41b8JreabaFIpBAAEEELCEAEGUJbaJIhFAAAEEzCqQdEV/+VMLf0XNrHUHW1dWXJzmjh2px8oW/gpiDW95Pbz2fDm/KVfgtG07rVYD18J8v/PHJujlAxO17KfGwZbDOARMIVCjmkNzb+e1PFNsBkUggAACCFhOgCDKcltGwQgggAACZhJIX3Svsj/6r5lKClkt7wzsr+mtauv3gk4b/3uVMftP1wXL2iprX8FPhnTt/V9Vzcz/7YLe+Kp65s8J+vK3uiGrl4kQCJdAzy5ODR/Ma3nh8mYdBBBAAAF7CRBE2Ws/6QYBBBBAIMwCno3rlTp7YphXLd3ldtatq9nD+usVV+Gv4RkVPLH5fFVdXr3QYvoNWKxyyZ/l+31OuZP1+C8TtPHPwq8t3Q6ZHYETE7j5OreaNea1vBNT5GoEEEAAgexDSl4AACAASURBVGgVIIiK1p2nbwQQQACBkAkkXz9Cvr/+CNl8kZxoySXDdEfdeKX5PIWW0T6zlm5f3VOen8oUOOakmvvUqd1CxSRvyff7rISGunfjRP2+LzGSbbI2AiUWaFTfoanX81peiQG5EAEEEEAg6gUIoqL+FgAAAQQQQOBEBTLfWKLMVxef6DQRvf6H09toZp+O+th//POupvzVSWd92FyeQo6ManLaj2pV/Sk5Mg/l6yetwqmavW6C9qfER7RXFkfgRASGDXKpd3fniUzBtQgggAACCES1AEFUVG8/zSOAAAIIhELAt2enkq8bGoqpIjLHfVddpjsreYtc+7lvh6jsFxULHdehy6eqp2cK/H1S4um6bdUEZeXwF/gioRlgWoHYWGnOrW5VqcxreabdJApDAAEEEDC9AEGU6beIAhFAAAEErCCQdu+tylm7ygqlHqnx0x5dNeOs5vrWe/yzoC5IaaIxKzspa3vhhzN37/OGqmS8U2D/+xM7asqyqy1lQ7EIFCTQsYNTY0ZySDl3BwIIIIAAAiciQBB1InpciwACCCCAwN8CRghlhFFW+KQnJGjOFRdrQVx6keXO/62XGr5fr9Bx7hiP+vRZpPjkLwscs6tCN92xfFSR6zAAASsIXHelS21a8VSfFfaKGhFAAAEEzCtAEGXevaEyBBBAAAGLCVjh0PI3Lzxf00+trh2FHfL0t3ltT4IeXDtAjm/LFboLNertUseWC+VK+bXAMX8k9NHsFcMttouUi0DBArVrOjRrKoeUc38ggAACCCBwogIEUScqyPUIIIAAAgj8LZD1zsvKeOFxU3psb1Bfswf30evO47+GZxQ/dn9bnf/J6craX/g5OM3bfqcWlRdK2akF9ru1/EDdvfIiU1pQFAIlERjYz6mBfXktryR2XIMAAggggMCxAgRR3A8IIIAAAgiESMCfnqaksedLOdkhmjE00yy+7GLdUStWWf6iDyR/4sfzVXVF9eMufFa3T3Sy74VCx/wQP1QPfnZeaIpnFgRMIJBQXpp+i1uVKnJIuQm2gxIQQAABBCwuQBBl8Q2kfAQQQAABcwlkLHlEWe/+2xRFbWjfTjN7naEVvuQi6zkzo7amru4pz5bY4449t98rqpj2fqFjvo4dqSe/OLfI9RiAgJUE+vdy6qIBPA1lpT2jVgQQQAAB8woQRJl3b6gMAQQQQMCCAr6d25U8KfLnIs0fN0p3J+YEJXjrn+fojA+byZNZ+PC4cpk6t/sixSV/Xeigz11j9OxXnYNak0EIWEUgPi73aaiqJ/E0lFX2jDoRQAABBMwtQBBl7v2hOgQQQAABCwqkPzZX2Z8W/tRQaba0rFdPzTijkTZ6Cj676Z9rP//NEMWvqXjckuo03K72TRfKlbq90HGf+K/Vy+s7lGZrzI1ARAR6d3dq2CCehooIPosigAACCNhSgCDKlttKUwgggAACkRTw/rJZKbdeGdYSkitX0pzLhmhxmfSg1h2U3ExXrOyorB3H/wt2qzPWq2n5pyRPVsHzOl16J2uS/vtd66DWZRACVhKIiZGm3+xWzRo8DWWlfaNWBBBAAAFzCxBEmXt/qA4BBBBAwKICaQ9OU84Xy8NS/WtDBml6kyra5T3Ou3XHVHLPr71V/4O6RdbWqccHqul5udBx/piy+nfSRH30Y7Mi52IAAlYU6NHZqRFDeBrKintHzQgggAAC5hUgiDLv3lAZAggggICFBTxbNir1jnGl2sHvTRpr1qCeesuREtQ6dTyJuv+r/nJsKFfk+F79X1Ri6seFjvPFVdZzuybo81/qFzkXAxCwooDDkXs2VJ3aPA1lxf2jZgQQQAAB8woQRJl3b6gMAQQQQMDiAmkPTlfOF8tKpYsFo4brjhouef3+oOa/el879f+kjbIPHP8v1QmVUtSt0yKVSf6u0Hk95WpqwW8T9e32mkGtzSAErCjQ7RynRg7laSgr7h01I4AAAgiYW4Agytz7Q3UIIIAAAhYW8P66WSlTQ3tW1PqzztSM7m31mS85aJkFPw5UlRXVihx/StPf1LbBU3Km7Sp0bHbCKXrgx4n6eXflIudjAAJWFYiPl26/wa0a1Xkayqp7SN0IIIAAAuYVIIgy795QGQIIIICADQTSn5yn7OXvhqSTO8eP1n0J2UHPdXbGybpldQ95tsQWeU2bjl+pUexTkt9b6NiMCk0175sJ2nmofJHzMQABKwuc39epC/rxNJSV95DaEUAAAQTMK0AQZd69oTIEEEAAARsI+HZuV/Kk4SfUyYd9e2lGuwba7EkNep7b/uyi9h80kbeQL7s7dqLOvZaqetbrx507JfE0TVt9nVIzY4KugYEIWFGgWlWHbrvBrfJFH6VmxfaoGQEEEEAAgYgLEERFfAsoAAEEEEDA7gIZLz6hrLdfKnabB6pW1ZyRF2pJbFrQ1xovEj2/fojivqwY1DV9z3tW5VNWHnfswcQzNHn5eAV5HFVQ6zIIAbMKjBjsUo8uTrOWR10IIIAAAghYXoAgyvJbSAMIIIAAAmYX8GekK/m6ofKnJAVd6svDLtL0RhW1L5hHmv6edXBSM13+aUdl7Sj6laJK1Q6qyxmLFJO86bg17UnsrNuWjQm6bgYiYGWBhqc4dOsNbiu3QO0IIIAAAgiYXoAgyvRbRIEIIIAAAnYQyHr/DWU882CRrfx8anPNOr+blir4w8iNSe/9tY9O+aBOkfMbAxq23KI2tRfKkbHvuON3VDhXM5ePDGpOBiFgB4GrLnfpjLY8DWWHvaQHBBBAAAHzChBEmXdvqAwBBBBAwGYCKbdfJe/Wwp9AeuyKkZpW1V+srk/JSdS9X50nfVc2qOvan/O5TnEuKnLsr+XP07yVQ4scxwAE7CLQppVT111Z9NOEdumXPhBAAAEEEIiUAEFUpORZFwEEEEAg6gQ8332l1Lk35uv7q3PO1owup2mNt3hPQY3b2179PjlN2QeD+4r5br3f0kmZbxXpvrnsRbpv1cAixzEAAbsIOBzS1EluNawf3P+W7NI3fSCAAAIIIBAJAYKoSKizJgIIIIBA1AqkL5iv7GVLA/173W7NvfpyPVQ+s9geT20aqMorqwV3ncOvfuctUrnk1UWO3xA3XI9+3qfIcQxAwE4C/Xs5ddEAnoay057SCwIIIICAeQUIosy7N1SGAAIIIGBDAX/yQSVPGqF3u3fSiBZVit1hp4w6uuXz7srZGhvUtdVq79XZbRbKnbK1yPFfxozSojXdihzHAATsJFC7pkNTJrlVNt5OXdELAggggAAC5hUgiDLv3lAZAggggIBNBZ788j8a795d7O7u2NFFbT9oIm92cJc2PW2TWlZ7So6sor+tb6VjnF5Yd1ZwEzMKARsJjBnpUscOHFBuoy2lFQQQQAABkwsQRJl8gygPAQQQQMA8Al6vVy5X/td3/H6/UlLTVSGhXNDFDvj5Xf0vaVtQ491+p55dP1hxXyUGNd4YdEbXlarrfzao8e95J+mNb08PaiyDELCTQPvTnRo3ilfy7LSn9IIAAgggYH4Bgijz7xEVIoAAAgiYQGD7X3vUd8RkffTq/apV/egrdWs3bNbM+5YoOTVdHU5rqnunjQuEVUY4dfE1szX2kgE6t3O7fB38lHlIzX54ucjOhiY116Urz1LWn8H/ZblH39dVOT33HKrjftxl9J/UiXr3hxZFjeT3CNhOICYm94DyenU4oNx2m0tDCCCAAAKmFiCIMvX2UBwCCCCAgBkERoyfow2bfgmU8s8gavLcBTq9RWMNG9hNvS6+RQ/NvlatmzfUyi++1UOL39Abi2bL6Sz4L7qP7vleE7d/VmiL9/3SR/U+rBM0QWyZHPXqtUjxyV8VeY2/TAW9uG+iVm5pVORYBiBgR4GB/Zwa2Df4gNeOBvSEAAIIIIBAJAQIoiKhzpoIIIAAApYS2LPvkHbt3a/h18zJF0T1GHqj7pw6Rh3btdBVt9yvnp3bauiAbho8drquv3KwunZsc9xee219Rx8n78gzJjEjTou/Hix9H/zpybVO+UtnnrpQrtTfi7T1lq2mxdsnau3vJxc5lgEI2FGgTSunrruSEMqOe0tPCCCAAALmFyCIMv8eUSECCCCAgAkEdu87qB5DbsgXRN006wmdcXrzQPjUb+TkwKt5u/Yc0NMvv6tXnpyujMwspaZlqtpJFQvsYlt2ilr88KrSfDmB37f/vZ6mvNerWB23aLdBzSsulHLSirwup3wdPbJlon7cWbXIsQxAwI4CVSo7dOM1LlWvxit5dtxfekIAAQQQML8AQZT594gKEUAAAQRMIFBYELV67Ubdcc8zgQqbNDhZD8+ZoIvGTNMd11+qnbsP6MFFrynG7dZZ7U7VvKlXFtjJC/u36LLfP9HCHy5QpU+LFxB17P6xantfDEoos0Ij3b1horYfqBDUeAYhYEeBq0e51OF0viXPjntLTwgggAAC1hAgiLLGPlElAggggECEBQoLooyyjG/T23cwWdVPqqR3Plqt195ZoecfuU0XjpmmyeMvVttWTdS291gtf/2hQp+MWvpssjI/D/5VPGPdc/u9rIppHwQlk1ahpWZ+dZ0OpsUFNZ5BCNhRoH8vpy4awCt5dtxbekIAAQQQsI4AQZR19opKEUAAAQQiKHC8IOpwWTk5Hg24/FbNmzpWLZvVD4RP7790j+rUqibjLKm5k6/Q2R1aFtrFx7M9OvSHv8guy5ZPV49uixSX/E2RY40BSYntNGXldfJ4eRUpKDAG2VKgZXOHrh/ntmVvNIUAAggggICVBAiirLRb1IoAAgggEBGBrOwc7d57QP0umaKlz9+l2jWrKjYm/19oX//fSn24Yp0W3ntToM6hV83QxDGD1a51E3XoN06r3npUlSsmFNrDwW1+fTLHc9we6zT6Qx2aLJQzNe8B54VdtC/xbE1ddlVE3FgUAbMIJFaQbhzvVu2ahLFm2RPqQAABBBCIXgGCqOjdezpHAAEEEAhS4Iz+45SWnnlkdOVKFbTqzUfyXG08DdVj2I16Yt71atW8QeB37y77Uvc9+apyPB4NOLejplw7vMgV335+k/Z8UlkVY6rkG9v6zK/VpMyjRc5xeMDOCt01bfnlQY9nIAJ2FbjyUpfOas+5UHbdX/pCAAEEELCWAEGUtfaLahFAAAEELCbg8XiVkZWthHLBnf/UotsoDW4/UK0PnZ+n03N6vq8aOa8E3f22hL6as+LioMczEAG7ClzQz6Xz+xJC2XV/6QsBBBBAwHoCBFHW2zMqRgABBBCwsYARRI0fNUitDgzQnk2550X17v+8KqQuC7rrreUG6e5PBwU9noEI2FXg7DOcuuISDie36/7SFwIIIICANQUIoqy5b1SNAAIIIGBTgcNB1JiLBunzew+oZ+MJxep0Y/wwPfRZ/2Jdw2AE7CjQqIFDk652K54virTj9tITAggggICFBQiiLLx5lI4AAgggYD+Bw0HUtaMGybN9i9zLZwXd5LrYS7Xgi55Bj2cgAnYVMA4nN0KouidzOLld95i+EEAAAQSsK0AQZd29o3IEEEAAARsKHBtEBdr7bbW06vEiO/3MOVZL1nYqchwDEIgGgWtGu9SuDedCRcNe0yMCCCCAgPUECKKst2dUjAACCCBgIgGv1yuXK/8ZNH6/Xymp6aqQUK5Y1eYLooyrf1gqff1yofN85L9Or65vX6x1GIyAXQUGn+9Sv3MJoey6v/SFAAIIIGB9AYIo6+8hHSCAAAIIREhg+1971HfEZH306v2qVb3KkSrWbtismfctUXJqujqc1lT3ThsXCKuMcOria2Zr7CUDdG7ndgVWXVAQ9db7n+mt197Qkq578l3zdvaNevv71hESYFkEzCVwblenLr6Iw8nNtStUgwACCCCAQF4BgijuCAQQQAABBEogMGL8HG3Y9Evgyn8GUZPnLtDpLRpr2MBu6nXxLXpo9rVq3byhVn7xrR5a/IbeWDRbTmfBZ9cUFEQ9vuQtPbHkLf0wp0Puq3p/f15Ju1Ufb25aguq5BAH7CZzZzqmxlxFC2W9n6QgBBBBAwG4CBFF221H6QQABBBAIi8CefYe0a+9+Db9mTr4gqsfQG3Xn1DHq2K6FrrrlfvXs3FZDB3TT4LHTdf2Vg9W1Y5tCazxuELViibT8fmn7ej1zcJZW/1ovLL2yCAJmFzi1qUM3jnebvUzqQwABBBBAAAFJBFHcBggggAACCJRQYPe+g+ox5IZ8QdRNs57QGac3D4RP/UZODryat2vPAT398rt65cnpysjMUmpapqqdVDGwsvHE0+Hno4x/Hz9qkIxvzTv8OfJE1Iol+munV6+/+Je+21GjhFVzGQL2EqhT26EZkwmh7LWrdIMAAgggYGcBgig77y69IYAAAgiUqkBhQdTqtRt1xz3PBNZu0uBkPTxngi4aM013XH+pdu4+oAcXvaYYt1tntTtV86ZeKeMpqGM/U64bocuG9C4wiDJ+uHO3X08+49Vfu/yl2h+TI2B2gYqJDt03mxDK7PtEfQgggAACCBwrQBDF/YAAAggggEAJBQoLoozpjG/T23cwWdVPqqR3Plqt195ZoecfuU0XjpmmyeMvVttWTdS291gtf/2hI09GFVbGsU9EHR6Tmird86iHMKqEe8dl1hcwvqzyqQdirN8IHSCAAAIIIBBlAgRRUbbhtIsAAgggEDqB4wVRh1fJyfFowOW3at7UsWrZrH4gfHr/pXtUp1Y1GWdJzZ18hc7u0PK4RRUURB2+YPpdhFGh21FmsopA2XjpkfmEUFbZL+pEAAEEEEDgWAGCKO4HBBBAAAEESiCQlZ2j3XsPqN8lU7T0+btUu2ZVxcbkf0Xo9f+t1Icr1mnhvTcFVhl61QxNHDNY7Vo3UYd+47TqrUdVuWJCiYMo40LCqBJsIJdYVqBGNYfm3s7reJbdQApHAAEEEIh6AYKoqL8FAEAAAQQQKInAGf3HKS0988illStV0Ko3H8kzlfE0VI9hN+qJederVfMGgd+9u+xL3ffkq8rxeDTg3I6acu3wIpc/3hNRhy+ec59H27ZzZlSRmAywtEDjhg5NmUgIZelNpHgEEEAAgagXIIiK+lsAAAQQQACBcAt4PF5lZGUroVx8UEsHE0QZEz3+tFfffOcLak4GIWA1gXanOXXNFS6rlU29CCCAAAIIIPAPAYIobgkEEEAAAQRMLhBsEGW08da7Xi39gDDK5FtKecUUaN/GqXGjCaGKycZwBBBAAAEETClAEGXKbaEoBBBAAAEEjgoUJ4gyrvpirU9Pv+iFEAFbCBBC2WIbaQIBBBBAAIEjAgRR3AwIIIAAAgiYXKC4QZTRzrff+/TYYsIok28t5RUh0LenU0MG8iQUNwoCCCCAAAJ2EiCIstNu0gsCCCCAgC0FShJEGRCbt/q16HmPkpJtyUJTNhZwuaQRg13q2slp4y5pDQEEEEAAgegUIIiKzn2nawQQQACBUhTw+fwy/p/Lmf8v0UnJaUqsUK5Yq5c0iDIWMb5J79mXvNrxF9+oVyx0BkdMoGZ1h4YPdunUpo6I1cDCCCCAAAIIIFB6AgRRpWfLzAgggAACUSjg9/s18/4lgc5n3Tz6iMCefYc0ee4C/bLtL9WpWVV333G16tSqFvj9gwtfU3Z2jqZcN6JAsRMJoowJDx7y66U3fHyjXhTej1ZruXULR+BJqJOqEEJZbe+oFwEEEEAAgWAFCKKClWIcAggggAACRQh8sGKt5j78gg4cTNaQAV3zBFGvL12p1es26oGZ1+r2+YvVqH5tjf5XP+3df0jnXTpV7zx/l6qfVKlUgqjDk772X68+WMY36nEjm1OgZ1enhl/EeVDm3B2qQgABBBBAIHQCBFGhs2QmBBBAAIEoF8jIzFJySpoeXPi6ypSJyRNETb/3GVU7qZKuG32hnn75XW3a8rvunzFedz/+stwup24a969C9U70iahjJ17xmU8vveGVjzwqyu9W87QfFycNHch5UObZESpBAAEEEECgdAUIokrXl9kRQAABBKJQYM6Dz8vj9eYJol59e7m++ubHQPhkhFL169ZU325n6ILRt+v9/7sncG7Un7v2qW7t6gGxtd9uDvxjfL76+99/WJH7yt+Jfn7Y7NfLb3i1aw/nRp2oJdefmECThg4NucClBvV4Fe/EJLkaAQQQQAAB6wgQRFlnr6gUAQQQQMAiAgUFUTt379fEaY8oOTVdZWJj9Nidk7Tk1fdVqWKCup99uiZOe1TxcbEqG19Gi+67Rf/3n4/1xJK3jnTctGEd/efpOSET2LvPODfKq+83EUaFDJWJiiVgvIpnPAnldhfrMgYjgAACCCCAgMUFCKIsvoGUjwACCCBgPoGCgqjDVRpPPdWucZL++HO3hoydoY9euV8L/+8dxceVCby2N+r6+Ro+qKf6dOsQlsb++55X77zPe3phwWaRgEBCeWnIQJc6nZn/WyUhQgABBBBAAAH7CxBE2X+P6RABBBBAIMwCxwuiDpdy2/zFqle7uq6+9HxdNnGeBp/XVRf06RT4xr1KiQmadOXgsFW96Se/jEDql994Oips6FG60KlNc1/Fq1ubV/Gi9BagbQQQQAABBEQQxU2AAAIIIIBAiAS8Xq9yPF7Ne+RFeb0+TbvhMsXEuOVy5n3y49dtf+nia2Zr2WsPqny5eD2w8LVABTeMHaJLJ8zTFcP7qUentiGqKrhpPB4Fwqj3PubpqODEGFUcAeP1uwG9XRrQh6egiuPGWAQQQAABBOwoQBBlx12lJwQQQACBiAj8++3lmvXAc3nWnjN5jC7q3znPzybPXaBTG5+iUf/qG/j5T79s19R5C7XvQJKaN6qn+2eOV0K5+Ij08N0PuU9HbdvO01ER2QAbLtq6hUMD+nAguQ23lpYQQAABBBAokQBBVInYuAgBBBBAAIHQCxxMSgm8lhfpT2Zm7tNRH63g6ahI74WV1zfOgjKegjIOJeeDAAIIIIAAAggcFiCI4l5AAAEEEEAAgQIFftzi14fL+WY9bo/iC5zZzqkBvZ2qWYOzoIqvxxUIIIAAAgjYW4Agyt77S3cIIIAAAgicsMCqL3z6YJlPu/bwut4JY9p8gto1Herd3ck34tl8n2kPAQQQQACBExEgiDoRPa5FAAEEEEAgSgTS0qQPlnsDgZTXGyVN02bQAokVpJ5dXDq3q1OxsUFfxkAEEEAAAQQQiEIBgqgo3HRaRgABBBBAoKQCv//hD4RRa7/h/KiSGtrpOuMLIY3wqWcXp6pU5jU8O+0tvSCAAAIIIFBaAgRRpSXLvAgggAACCNhY4NvvfVrxuU8bf+R1PRtv83Fb69jBGTiI/JQ6BFDReg/QNwIIIIAAAiURIIgqiRrXIIAAAggggEBAYN03uYHU5q0EUtFyS5zW0qHu57jUsjkBVLTsOX0igAACCCAQSgGCqFBqMhcCCCCAAAJRKvDF2txA6pffCKTsegsYAVSXji4Zf/JBAAEEEEAAAQRKKkAQVVI5rkMAAQQQQACBfALGN+ytXO2TcZYUH3sIEEDZYx/pAgEEEEAAAbMIEESZZSeoAwEEEEAAARsJfPW1T6vXcoaUlbeUAMrKu0ftCCCAAAIImFeAIMq8e0NlCCCAAAIIWF5g009+rf7KpzXr+JY9K2ym8S14Z7R1Bv5p3YJX8KywZ9SIAAIIIICA1QQIoqy2Y9SLAAIIIICABQX+2OGXcY6UEUqlpVuwAZuXXL2qQ2e0cwQCqJrVCaBsvt20hwACCCCAQEQFCKIiys/iCCCAAAIIRJfAwUN+ff2tXxt+8OnHLZwjFendN7757vATUG53pKthfQQQQAABBBCIBgGCqGjYZXpEAAEEEEDAhALGU1IbNuaGUhxuHr4NqlHNoRbNHGrfxqnGDXn6KXzyrIQAAggggAAChgBBFPcBAggggAACCERcYMvPuYGUEUzt2sOTUqHekJNrOdSymUMtmjvVvAnhU6h9mQ8BBBBAAAEEghcgiAreipEIIIAAAgggEAYB44DzTT/5tGmzX3/8SShVUvJT6h4Nnxo3IHwqqSPXIYAAAggggEBoBQiiQuvJbAgggAACCCAQQoFft/kDgZQRTG35hVDqeLRxZaSmjZ1q1tihpo0cqnsy4VMIb0WmQgABBBBAAIEQCRBEhQiSaRBAAAEEEECgdAV27jICKb+McGrbdl7hM7SNb7g71Xjlrqkz8KfbVbp7wOwIIIAAAggggMCJChBEnagg1yOAAAIIIIBARAQOHPQHDjn/7Y/cYMr4Jy09IqWEZVGHQ6pfz5H7T12HmjRyqHJFnnoKCz6LIIAAAggggEDIBAiiQkbJRAgggAACCCAQaYHde/0yvo1v+59+7fjLrx1/SgcOWfOVPuNpp2ODJ+PMJz4IIIAAAggggIDVBQiirL6D1I8AAggggAACxxUwnpLKDaX82v6XXzt3+5WcIiWn+JWVFVm8uDipRjVH4J/qgT+V+2dVh2JjI1sbqyOAAAIIIIAAAqUhQBBVGqrMiQACCCCAAAKWEDCCKCOQMoKppL//NP47I0NKz9Dff/qVkXn4v/2BnzsdkjtGinEb/ziO/vvfPytTRoqPcyg+3vhTio93BP4se8x/G+FTYgVLMFEkAggggAACCCAQMgGCqJBRMhECCCCAAAIIIIAAAggggAACCCCAwPEECKK4PxBAAAEEEEAAAQQQQAABBBBAAAEEwiJAEBUWZhZBAAEEEEAAAQQQQAABBBBAAAEEECCI4h5AAAEEEEAAAQQQQAABBBBAAAEEEAiLAEFUWJhZBAEEEEAAAQQQQAABBBBAAAEEEECAIIp7AAEEEEAAAQQQQAABBBBAAAEEEEAgLAIEUWFhZhEEEEAAAQQQQAABBBBAAAEEEEAAAYIo7gEEEEAAAQQQQAABBBBAAAEEEEAAgbAIEESFhZlFEEAAAQQQQAABBBBAAAEEEEAAAQQIorgHEEAAAQQQQAABBBBAAAEEEEAAAQTCF6lPMgAAByxJREFUIkAQFRZmFkEAAQQQQAABBBBAAAEEEEAAAQQQIIjiHkAAAQQQQAABBBBAAAEEEEAAAQQQCIsAQVRYmFkEAQQQQAABBBBAAAEEEEAAAQQQQIAginsAAQQQQAABBBBAAAEEEEAAAQQQQCAsAgRRYWFmEQQQQAABBBBAAAEEEEAAAQQQQAABgijuAQQQQAABBBBAAAEEEEAAAQQQQACBsAgQRIWFmUUQQAABBBBAAAEEEEAAAQQQQAABBAiiuAcQQAABBBBAAAEEEEAAAQQQQAABBMIiQBAVFmYWQQABBBBAAAEEEEAAAQQQQAABBBAgiOIeQAABBBBAAAEEEEAAAQQQQAABBBAIiwBBVFiYWQQBBBBAAAEEEEAAAQQQQAABBBBAgCCKewABBBBAAAEEEEAAAQQQQAABBBBAICwCBFFhYWYRBBBAAAEEEEAAAQQQQAABBBBAAAGCKO4BBBBAAAEEEEAAAQQQQAABBBBAAIGwCBBEhYWZRRBAAAEEEEAAAQQQQAABBBBAAAEECKK4BxBAAAEEEEAAAQQQQAABBBBAAAEEwiJAEBUWZhZBAAEEEEAAAQQQQAABBBBAAAEEECCI4h5AAAEEEEAAAQQQQAABBBBAAAEEEAiLAEFUWJhZBAEEEEAAAQQQQAABBBBAAAEEEECAIIp7AAEEEEAAAQQQQAABBBBAAAEEEEAgLAIEUWFhZhEEEEAAAQQQQAABBBBAAAEEEEAAAYIo7gEEEEAAAQQQQAABBBBAAAEEEEAAgbAIEESFhZlFEEAAAQQQQAABBBBAAAEEEEAAAQQIorgHEEAAAQQQQAABBBBAAAEEEEAAAQTCIkAQFRZmFkEAAQQQQAABBBBAAAEEEEAAAQQQIIjiHkAAAQQQQAABBBBAAAEEEEAAAQQQCIsAQVRYmFkEAQQQQAABBBBAAAEEEEAAAQQQQIAginsAAQQQQAABBBBAAAEEEEAAAQQQQCAsAgRRYWFmEQQQQAABBBBAAAEEEEAAAQQQQAABgijuAQQQQAABBBBAAAEEEEAAAQQQQACBsAgQRIWFmUUQQAABBBBAAAEEEEAAAQQQQAABBAiiuAcQQAABBBBAAAEEEEAAAQQQQAABBMIiQBAVFmYWQQABBBBAAAEEEEAAAQQQQAABBBAgiOIeQAABBBBAAAEEEEAAAQQQQAABBBAIiwBBVFiYWQQBBBBAAAEEEEAAAQQQQAABBBBAgCCKewABBBBAAAEEEEAAAQQQQAABBBBAICwCBFFhYWYRBBBAAAEEEEAAAQQQQAABBBBAAAGCKO4BBBBAAAEEEEAAAQQQQAABBBBAAIGwCBBEhYWZRRBAAAEEEEAAAQQQQAABBBBAAAEECKK4BxBAAAEEEEAAAQQQQAABBBBAAAEEwiJAEBUWZhZBAAEEEEAAAQQQQAABBBBAAAEEECCI4h5AAAEEEEAAAQQQQAABBBBAAAEEEAiLAEFUWJhZBAEEEEAAAQQQQAABBBBAAAEEEECAIIp7AAEEEEAAAQQQQAABBBBAAAEEEEAgLAIEUWFhZhEEEEAAAQQQQAABBBBAAAEEEEAAAYIo7gEEEEAAAQQQQAABBBBAAAEEEEAAgbAIEESFhZlFEEAAAQQQQAABBBBAAAEEEEAAAQQIorgHEEAAAQQQQAABBBBAAAEEEEAAAQTCIkAQFRZmFkEAAQQQQAABBBBAAAEEEEAAAQQQIIjiHkAAAQQQQAABBBBAAAEEEEAAAQQQCIsAQVRYmFkEAQQQQAABBBBAAAEEEEAAAQQQQIAginsAAQQQQAABBBBAAAEEEEAAAQQQQCAsAgRRYWFmEQQQQAABBBBAAAEEEEAAAQQQQAABgijuAQQQQAABBBBAAAEEEEAAAQQQQACBsAgQRIWFmUUQQAABBBBAAAEEEEAAAQQQQAABBAiiuAcQQAABBBBAAAEEEEAAAQQQQAABBMIiQBAVFmYWQQABBBBAAAEEEEAAAQQQQAABBBAgiOIeQAABBBBAAAEEEEAAAQQQQAABBBAIiwBBVFiYWQQBBBBAAAEEEEAAAQQQQAABBBBAgCCKewABBBBAAAEEEEAAAQQQQAABBBBAICwCBFFhYWYRBBBAAAEEEEAAAQQQQAABBBBAAAGCKO4BBBBAAAEEEEAAAQQQQAABBBBAAIGwCBBEhYWZRRBAAAEEEEAAAQQQQAABBBBAAAEECKK4BxBAAAEEEEAAAQQQQAABBBBAAAEEwiJAEBUWZhZBAAEEEEAAAQQQQAABBBBAAAEEECCI4h5AAAEEEEAAAQQQQAABBBBAAAEEEAiLAEFUWJhZBAEEEEAAAQQQQAABBBBAAAEEEECAIIp7AAEEEEAAAQQQQAABBBBAAAEEEEAgLAIEUWFhZhEEEEAAAQQQQAABBBBAAAEEEEAAAYIo7gEEEEAAAQQQQAABBBBAAAEEEEAAgbAI/D+tglLV9X2u1QAAAABJRU5ErkJggg==",
"text/html": [
"<div>\n",
" \n",
" \n",
" <div id=\"e6ba3620-d0b0-4d96-b3ee-6409e69cc239\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div>\n",
" <script type=\"text/javascript\">\n",
" require([\"plotly\"], function(Plotly) {\n",
" window.PLOTLYENV=window.PLOTLYENV || {};\n",
" \n",
" if (document.getElementById(\"e6ba3620-d0b0-4d96-b3ee-6409e69cc239\")) {\n",
" Plotly.newPlot(\n",
" 'e6ba3620-d0b0-4d96-b3ee-6409e69cc239',\n",
" [{\"domain\": {\"x\": [0.0, 1.0], \"y\": [0.0, 1.0]}, \"hovertemplate\": \"license.name=%{label}<extra></extra>\", \"labels\": [\"CC BY 4.0\", \"CC BY 4.0\", \"CC BY 4.0\", \"CC BY-NC 4.0\", \"CC BY-NC 4.0\", \"CC BY 4.0\", \"CC BY 4.0\", \"CC BY 4.0\", \"CC BY 4.0\", \"CC BY-NC 4.0\", \"CC BY-NC 4.0\", \"CC BY-NC 4.0\", \"CC BY-NC-ND 4.0\", \"CC BY 4.0\", \"CC BY-NC 4.0\", \"CC BY 4.0\", \"CC BY 4.0\", \"CC BY 4.0\", \"CC BY 4.0\", \"CC BY-NC 4.0\", \"CC BY-NC 4.0\", \"CC BY-NC 4.0\", \"CC BY-NC 4.0\", \"CC BY-NC 4.0\", \"CC BY-NC 4.0\", \"CC BY-NC 4.0\", \"CC BY-NC 4.0\", \"CC BY-NC 4.0\", \"CC BY-NC 4.0\", \"CC BY 4.0\", \"CC BY-NC 4.0\", \"CC BY-NC 4.0\", \"CC BY 4.0\", \"CC BY-NC 4.0\", \"CC BY-NC 4.0\", \"CC BY-NC 4.0\", \"CC BY 4.0\", \"CC BY-NC 2.0\", \"CC BY-NC 4.0\", \"CC BY-NC 4.0\", \"CC BY-NC 4.0\", \"CC BY 4.0\", \"CC BY-NC 4.0\", \"CC BY 4.0\", \"CC BY 4.0\", \"CC BY 4.0\", \"CC BY 4.0\", \"CC BY-NC 4.0\", \"CC BY 4.0\", \"CC BY 4.0\", \"CC BY 4.0\", \"CC BY-NC 4.0\", \"CC BY-NC 4.0\", \"CC BY 4.0\", \"CC BY 4.0\", \"CC BY 4.0\", \"CC BY 4.0\", \"CC BY 4.0\", \"CC BY 4.0\", \"CC BY 4.0\", \"CC BY 4.0\", \"CC BY 4.0\", \"CC BY 4.0\", \"CC BY-NC 4.0\", \"CC BY 4.0\", \"CC BY 4.0\", \"CC BY 4.0\", \"CC BY-NC 4.0\", \"CC BY-NC 4.0\", \"CC BY-NC 4.0\", \"CC BY 4.0\", \"CC BY 4.0\", \"CC BY 4.0\", \"CC BY 4.0\", \"CC BY 4.0\", \"CC BY 4.0\", \"CC BY 4.0\", \"CC BY 4.0\", \"CC BY 4.0\", \"CC BY 4.0\", \"CC BY 4.0\", \"CC BY 4.0\", \"CC BY 4.0\", \"CC BY 4.0\", \"CC BY 4.0\", \"CC BY 4.0\", \"CC BY 4.0\", \"CC BY 4.0\", \"CC BY 4.0\", \"CC BY 4.0\", \"CC BY 4.0\", \"CC BY 4.0\", \"CC BY 4.0\", \"CC BY 4.0\", \"CC BY 4.0\", \"BSD 3-Clause\", \"CC BY-NC 4.0\", \"CC BY-NC 4.0\", \"CC BY 4.0\", \"CC BY 4.0\"], \"legendgroup\": \"\", \"name\": \"\", \"showlegend\": true, \"type\": \"pie\"}],\n",
" {\"legend\": {\"tracegroupgap\": 0}, \"template\": {\"data\": {\"bar\": [{\"error_x\": {\"color\": \"#2a3f5f\"}, \"error_y\": {\"color\": \"#2a3f5f\"}, \"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"bar\"}], \"barpolar\": [{\"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"barpolar\"}], \"carpet\": [{\"aaxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"baxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"type\": \"carpet\"}], \"choropleth\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"choropleth\"}], \"contour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"contour\"}], \"contourcarpet\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"contourcarpet\"}], \"heatmap\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmap\"}], \"heatmapgl\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmapgl\"}], \"histogram\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"histogram\"}], \"histogram2d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2d\"}], \"histogram2dcontour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2dcontour\"}], \"mesh3d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"mesh3d\"}], \"parcoords\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"parcoords\"}], \"pie\": [{\"automargin\": true, \"type\": \"pie\"}], \"scatter\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter\"}], \"scatter3d\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter3d\"}], \"scattercarpet\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattercarpet\"}], \"scattergeo\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergeo\"}], \"scattergl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergl\"}], \"scattermapbox\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattermapbox\"}], \"scatterpolar\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolar\"}], \"scatterpolargl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolargl\"}], \"scatterternary\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterternary\"}], \"surface\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"surface\"}], \"table\": [{\"cells\": {\"fill\": {\"color\": \"#EBF0F8\"}, \"line\": {\"color\": \"white\"}}, \"header\": {\"fill\": {\"color\": \"#C8D4E3\"}, \"line\": {\"color\": \"white\"}}, \"type\": \"table\"}]}, \"layout\": {\"annotationdefaults\": {\"arrowcolor\": \"#2a3f5f\", \"arrowhead\": 0, \"arrowwidth\": 1}, \"coloraxis\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"colorscale\": {\"diverging\": [[0, \"#8e0152\"], [0.1, \"#c51b7d\"], [0.2, \"#de77ae\"], [0.3, \"#f1b6da\"], [0.4, \"#fde0ef\"], [0.5, \"#f7f7f7\"], [0.6, \"#e6f5d0\"], [0.7, \"#b8e186\"], [0.8, \"#7fbc41\"], [0.9, \"#4d9221\"], [1, \"#276419\"]], \"sequential\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"sequentialminus\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]]}, \"colorway\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#FF6692\", \"#B6E880\", \"#FF97FF\", \"#FECB52\"], \"font\": {\"color\": \"#2a3f5f\"}, \"geo\": {\"bgcolor\": \"white\", \"lakecolor\": \"white\", \"landcolor\": \"#E5ECF6\", \"showlakes\": true, \"showland\": true, \"subunitcolor\": \"white\"}, \"hoverlabel\": {\"align\": \"left\"}, \"hovermode\": \"closest\", \"mapbox\": {\"style\": \"light\"}, \"paper_bgcolor\": \"white\", \"plot_bgcolor\": \"#E5ECF6\", \"polar\": {\"angularaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"radialaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"scene\": {\"xaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"yaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"zaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}}, \"shapedefaults\": {\"line\": {\"color\": \"#2a3f5f\"}}, \"ternary\": {\"aaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"baxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"caxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"title\": {\"x\": 0.05}, \"xaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}, \"yaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}}}, \"title\": {\"text\": \"Share of different license of the 100 most recent datasets about 'graphene'\"}},\n",
" {\"responsive\": true}\n",
" ).then(function(){\n",
" \n",
"var gd = document.getElementById('e6ba3620-d0b0-4d96-b3ee-6409e69cc239');\n",
"var x = new MutationObserver(function (mutations, observer) {{\n",
" var display = window.getComputedStyle(gd).display;\n",
" if (!display || display === 'none') {{\n",
" console.log([gd, 'removed!']);\n",
" Plotly.purge(gd);\n",
" observer.disconnect();\n",
" }}\n",
"}});\n",
"\n",
"// Listen for the removal of the full notebook cells\n",
"var notebookContainer = gd.closest('#notebook-container');\n",
"if (notebookContainer) {{\n",
" x.observe(notebookContainer, {childList: true});\n",
"}}\n",
"\n",
"// Listen for the clearing of the current output cell\n",
"var outputEl = gd.closest('.output');\n",
"if (outputEl) {{\n",
" x.observe(outputEl, {childList: true});\n",
"}}\n",
"\n",
" })\n",
" };\n",
" });\n",
" </script>\n",
" </div>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"px.pie(df, \n",
" names=\"license.name\", \n",
" title=f\"Share of different license of the 100 most recent datasets about '{TOPIC}'\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"Collapsed": "false",
"colab_type": "text",
"id": "mPFb8jyzLpU4"
},
"source": [
"### Returning associated grants and publication data"
]
},
{
"cell_type": "markdown",
"metadata": {
"Collapsed": "false",
"colab_type": "text",
"id": "13MuQ3YKLpU5"
},
"source": [
"Whenever the information about the publication associated to a dataset is available, it can be retrieved via the `associated_publication_id` field. Similarly, links between datasets and grants are exposed via the `associated_grant_ids` field. "
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"Collapsed": "false",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 34
},
"colab_type": "code",
"id": "4laaMLN7LpU6",
"outputId": "429719c5-5ce6-42fe-cd9b-4ba872672220"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Returned Datasets: 50 (total = 218)\n",
"\u001b[2mTime: 0.63s\u001b[0m\n"
]
}
],
"source": [
"dfPubsAndGrants = dsl.query(f\"\"\"\n",
"search datasets \n",
" in full_data for \"{TOPIC}\" \n",
" where associated_grant_ids is not empty\n",
" and associated_publication_id is not empty\n",
"return datasets[basics+associated_publication_id+associated_grant_ids+category_for] \n",
" sort by date_created desc limit 50\n",
"\"\"\").as_dataframe()"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"Collapsed": "false",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 679
},
"colab_type": "code",
"id": "3YrkqDECcAT1",
"outputId": "24c2c796-3004-4a77-ccbd-4b815f970bcf",
"scrolled": true
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>associated_grant_ids</th>\n",
" <th>title</th>\n",
" <th>authors</th>\n",
" <th>associated_publication_id</th>\n",
" <th>category_for</th>\n",
" <th>year</th>\n",
" <th>keywords</th>\n",
" <th>id</th>\n",
" <th>journal.id</th>\n",
" <th>journal.title</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>[grant.2761799, grant.8158983]</td>\n",
" <td>Supplementary information files for Probing th...</td>\n",
" <td>[{'name': 'Ya-Wei Zhou', 'orcid': ''}, {'name'...</td>\n",
" <td>pub.1129903102</td>\n",
" <td>[{'id': '2203', 'name': '03 Chemical Sciences'...</td>\n",
" <td>2020</td>\n",
" <td>[DFT calculations, spectroelectrochemistry, re...</td>\n",
" <td>12789110</td>\n",
" <td>jour.1039901</td>\n",
" <td>Applied Catalysis B Environmental</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>[grant.7019622, grant.8145503]</td>\n",
" <td>Density Functional Theory Study of Single-Atom...</td>\n",
" <td>[{'name': 'Chunjin Ren', 'orcid': ''}, {'name'...</td>\n",
" <td>pub.1127742907</td>\n",
" <td>[{'id': '2210', 'name': '10 Technology'}, {'id...</td>\n",
" <td>2020</td>\n",
" <td>[SAC, N 2 H adsorption, g-C 3 N 4 nanosheet, N...</td>\n",
" <td>12326369</td>\n",
" <td>jour.1298581</td>\n",
" <td>ACS Applied Nano Materials</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>[grant.7019622, grant.8145503]</td>\n",
" <td>Density Functional Theory Study of Single-Atom...</td>\n",
" <td>[{'name': 'Chunjin Ren', 'orcid': ''}, {'name'...</td>\n",
" <td>pub.1127742907</td>\n",
" <td>[{'id': '2210', 'name': '10 Technology'}, {'id...</td>\n",
" <td>2020</td>\n",
" <td>[SAC, N 2 H adsorption, g-C 3 N 4 nanosheet, N...</td>\n",
" <td>12326366</td>\n",
" <td>jour.1298581</td>\n",
" <td>ACS Applied Nano Materials</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" associated_grant_ids \\\n",
"0 [grant.2761799, grant.8158983] \n",
"1 [grant.7019622, grant.8145503] \n",
"2 [grant.7019622, grant.8145503] \n",
"\n",
" title \\\n",
"0 Supplementary information files for Probing th... \n",
"1 Density Functional Theory Study of Single-Atom... \n",
"2 Density Functional Theory Study of Single-Atom... \n",
"\n",
" authors \\\n",
"0 [{'name': 'Ya-Wei Zhou', 'orcid': ''}, {'name'... \n",
"1 [{'name': 'Chunjin Ren', 'orcid': ''}, {'name'... \n",
"2 [{'name': 'Chunjin Ren', 'orcid': ''}, {'name'... \n",
"\n",
" associated_publication_id \\\n",
"0 pub.1129903102 \n",
"1 pub.1127742907 \n",
"2 pub.1127742907 \n",
"\n",
" category_for year \\\n",
"0 [{'id': '2203', 'name': '03 Chemical Sciences'... 2020 \n",
"1 [{'id': '2210', 'name': '10 Technology'}, {'id... 2020 \n",
"2 [{'id': '2210', 'name': '10 Technology'}, {'id... 2020 \n",
"\n",
" keywords id journal.id \\\n",
"0 [DFT calculations, spectroelectrochemistry, re... 12789110 jour.1039901 \n",
"1 [SAC, N 2 H adsorption, g-C 3 N 4 nanosheet, N... 12326369 jour.1298581 \n",
"2 [SAC, N 2 H adsorption, g-C 3 N 4 nanosheet, N... 12326366 jour.1298581 \n",
"\n",
" journal.title \n",
"0 Applied Catalysis B Environmental \n",
"1 ACS Applied Nano Materials \n",
"2 ACS Applied Nano Materials "
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dfPubsAndGrants.head(3)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"Collapsed": "false",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 542
},
"colab_type": "code",
"id": "oVMFOGDdcAUA",
"outputId": "cd5d5a48-d05b-4ad3-f680-dee46da017ea"
},
"outputs": [
{
"data": {
"application/vnd.plotly.v1+json": {
"config": {
"plotlyServerURL": "https://plot.ly"
},
"data": [
{
"alignmentgroup": "True",
"bingroup": "x",
"hovertemplate": "journal.title=%{x}<br>count=%{y}<extra></extra>",
"legendgroup": "",
"marker": {
"color": "#636efa"
},
"name": "",
"offsetgroup": "",
"orientation": "v",
"showlegend": false,
"type": "histogram",
"x": [
"ACS Applied Bio Materials",
"ACS Applied Bio Materials",
"ACS Applied Materials & Interfaces",
"ACS Applied Materials & Interfaces",
"ACS Applied Materials & Interfaces",
"ACS Applied Materials & Interfaces",
"ACS Applied Materials & Interfaces",
"ACS Applied Nano Materials",
"ACS Applied Nano Materials",
"ACS Omega",
"Applied Catalysis B Environmental",
"Chemistry of Materials",
"Chemistry of Materials",
"Frontiers in Bioengineering and Biotechnology",
"Frontiers in Bioengineering and Biotechnology",
"Frontiers in Bioengineering and Biotechnology",
"Frontiers in Chemistry",
"Frontiers in Chemistry",
"Frontiers in Chemistry",
"Frontiers in Chemistry",
"Frontiers in Chemistry",
"Frontiers in Chemistry",
"Frontiers in Chemistry",
"Frontiers in Chemistry",
"Frontiers in Chemistry",
"Frontiers in Chemistry",
"Frontiers in Chemistry",
"Frontiers in Chemistry",
"Frontiers in Energy Research",
"Frontiers in Materials",
"Frontiers in Materials",
"Frontiers in Materials",
"Frontiers in Microbiology",
"Industrial & Engineering Chemistry Research",
"Inorganic Chemistry",
"Journal of the American Chemical Society",
"Journal of the American Chemical Society",
"Journal of the American Chemical Society",
"Liquid Crystals",
"Nano Letters",
"Organometallics",
"Organometallics",
"PLoS ONE",
"PLoS ONE",
"PLoS ONE",
"PLoS ONE",
"Royal Society Open Science",
"The Journal of Organic Chemistry",
"The Journal of Organic Chemistry",
"The Journal of Physical Chemistry C"
],
"xaxis": "x",
"yaxis": "y"
}
],
"layout": {
"autosize": true,
"barmode": "group",
"legend": {
"tracegroupgap": 0
},
"template": {
"data": {
"bar": [
{
"error_x": {
"color": "#2a3f5f"
},
"error_y": {
"color": "#2a3f5f"
},
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
}
},
"type": "bar"
}
],
"barpolar": [
{
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
}
},
"type": "barpolar"
}
],
"carpet": [
{
"aaxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"baxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"type": "carpet"
}
],
"choropleth": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "choropleth"
}
],
"contour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "contour"
}
],
"contourcarpet": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "contourcarpet"
}
],
"heatmap": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmap"
}
],
"heatmapgl": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmapgl"
}
],
"histogram": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "histogram"
}
],
"histogram2d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2d"
}
],
"histogram2dcontour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2dcontour"
}
],
"mesh3d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "mesh3d"
}
],
"parcoords": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "parcoords"
}
],
"pie": [
{
"automargin": true,
"type": "pie"
}
],
"scatter": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter"
}
],
"scatter3d": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter3d"
}
],
"scattercarpet": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattercarpet"
}
],
"scattergeo": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergeo"
}
],
"scattergl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergl"
}
],
"scattermapbox": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattermapbox"
}
],
"scatterpolar": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolar"
}
],
"scatterpolargl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolargl"
}
],
"scatterternary": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterternary"
}
],
"surface": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "surface"
}
],
"table": [
{
"cells": {
"fill": {
"color": "#EBF0F8"
},
"line": {
"color": "white"
}
},
"header": {
"fill": {
"color": "#C8D4E3"
},
"line": {
"color": "white"
}
},
"type": "table"
}
]
},
"layout": {
"annotationdefaults": {
"arrowcolor": "#2a3f5f",
"arrowhead": 0,
"arrowwidth": 1
},
"coloraxis": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"colorscale": {
"diverging": [
[
0,
"#8e0152"
],
[
0.1,
"#c51b7d"
],
[
0.2,
"#de77ae"
],
[
0.3,
"#f1b6da"
],
[
0.4,
"#fde0ef"
],
[
0.5,
"#f7f7f7"
],
[
0.6,
"#e6f5d0"
],
[
0.7,
"#b8e186"
],
[
0.8,
"#7fbc41"
],
[
0.9,
"#4d9221"
],
[
1,
"#276419"
]
],
"sequential": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"sequentialminus": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
]
},
"colorway": [
"#636efa",
"#EF553B",
"#00cc96",
"#ab63fa",
"#FFA15A",
"#19d3f3",
"#FF6692",
"#B6E880",
"#FF97FF",
"#FECB52"
],
"font": {
"color": "#2a3f5f"
},
"geo": {
"bgcolor": "white",
"lakecolor": "white",
"landcolor": "#E5ECF6",
"showlakes": true,
"showland": true,
"subunitcolor": "white"
},
"hoverlabel": {
"align": "left"
},
"hovermode": "closest",
"mapbox": {
"style": "light"
},
"paper_bgcolor": "white",
"plot_bgcolor": "#E5ECF6",
"polar": {
"angularaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"radialaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"scene": {
"xaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"yaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"zaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
}
},
"shapedefaults": {
"line": {
"color": "#2a3f5f"
}
},
"ternary": {
"aaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"baxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"caxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"title": {
"x": 0.05
},
"xaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
},
"yaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
}
}
},
"title": {
"text": "Overiew of journals linked to the most recent 100 datasets about 'graphene'"
},
"xaxis": {
"anchor": "y",
"autorange": true,
"domain": [
0,
1
],
"range": [
-0.5,
20.5
],
"title": {
"text": "journal.title"
},
"type": "category"
},
"yaxis": {
"anchor": "x",
"autorange": true,
"domain": [
0,
1
],
"range": [
0,
12.631578947368421
],
"title": {
"text": "count"
}
}
}
},
"image/png": "iVBORw0KGgoAAAANSUhEUgAABKIAAAHCCAYAAADcqGF3AAAgAElEQVR4XuzdCbhN1f/H8a+LDGUqFFHhHw1KgyYNNJBSikiSIpKSMTInkSEhs8iQqUSUiAZDSppIc2lOKUrmKa77f76r9v2dezv3nH3uPsM6Z7/38/yffz9373XWfq119jn7c9ZaO09GRkaGsCGAAAIIIIAAAggggAACCCCAAAIIIBBjgTwEUTEWpngEEEAAAQQQQAABBBBAAAEEEEAAASNAEEVHQAABBBBAAAEEEEAAAQQQQAABBBCIiwBBVFyYeREEEEAAAQQQQAABBBBAAAEEEEAAAYIo+gACCCCAAAIIIIAAAggggAACCCCAQFwECKLiwsyLIIAAAggggAACCCCAAAIIIIAAAggQRNEHEEAAAQQQQAABBBBAAAEEEEAAAQTiIkAQFRdmXgQBBBBAAAEEEEAAAQQQQAABBBBAgCCKPoAAAggggAACCCCAAAIIIIAAAgggEBcBgqi4MPMiCCCAAAIIIIAAAggggAACCCCAAAIEUfQBBBBAAAEEEEAAAQQQQAABBBBAAIG4CBBExYWZF0EAAQQQQAABBBBAAAEEEEAAAQQQIIiiDyCAAAIIIIAAAggggAACCCCAAAIIxEWAICouzLwIAggggAACCCCAAAIIIIAAAggggABBFH0AAQQQQAABBBBAAAEEEEAAAQQQQCAuAgRRcWHmRRBAAAEEEEAAAQQQQAABBBBAAAEECKLoAwgggAACCCCAAAIIIIAAAggggAACcREgiIoLMy+CAAIIIIAAAggggAACCCCAAAIIIEAQRR9AAAEEEEAAAQQQQAABBBBAAAEEEIiLAEFUXJh5EQQQQAABBBBAAAEEEEAAAQQQQAABgij6AAIIIIAAAggggAACCCCAAAIIIIBAXAQIouLCzIsggAACCCCAAAIIIIAAAggggAACCBBE0QcQQAABBBBAAAEEEEAAAQQQQAABBOIiQBAVF2ZeBAEEEEAAAQQQQAABBBBAAAEEEECAIIo+gAACCCCAAAIIIIAAAggggAACCCAQFwGCqLgw8yIIIIAAAggggAACCCCAAAIIIIAAAgRR9AEEEEAAAQQQQAABBBBAAAEEEEAAgbgIEETFhZkXQQABBBBAAAEEEEAAAQQQQAABBBAgiKIPIIAAAggggAACCCCAAAIIIIAAAgjERYAgKi7MvAgCCCCAAAIIIIAAAggggAACCCCAAEEUfQABBBBAAAEEEEAAAQQQQAABBBBAIC4CBFFxYeZFEEAAAQQQQAABBBBAAAEEEEAAAQQIougDCCCAAAIIIIAAAggggAACCCCAAAJxESCIigszL4IAAggggAACCCCAAAIIIIAAAgggQBBFH0AAAQQQQAABBBBAAAEEEEAAAQQQiIsAQVRcmHkRBBBAAAEEEEAAAQQQQAABBBBAAAHfB1Hp6eny6+9/SlpampQ9vqSkpeVJeK84+PchOXTosBQqeJTkzZs34fVxWwG1XP72evnux82SfuSIXFDtNLnovNNzPPzw4XQ5cPBvKXBUfsmfP5/bl7F+P+1Pr676wJz7mZVP8Vzfxa+vle07d0vzRnVMWRkZGbJ33wHJlzevFCx4VMTla902b/lTWtxaV/LkiV1/X7vuc/nym5+l8Q01pcgxhSOuZ6wP+GXzH/La6g/lkvPPkNNPPTnWL0f5SSyg1zbdwl2P9X255Y+/pFzZ0nJUmGtaJPu6oVu49C35+9BhaVL/Sje7s08OAsl2Xdi2fZe89OoaOaFUCbn+6outb9eXX39Hdu/ZJ7c3uMbauiabqbWQVAwBBBBAAIEQAr4Non76ZYv0HzFd3lv/ZRaeqy49T/p2vlNKlyyesI7z8LCp8sKS1fLU4w/KZReelbB6RPLCGo606faEvPPh55mH3XbTVcYyp23ey6vkkeHTpX2rhtK2ef1IXs7qfTWAaf3gMOnd8Y6ofNm+44HH5KPPvpHPV0035/3Lb3/ItU27SdXTKsjcif0itmjTbbis+eBT+XTFtJgGr4PHzJZZL7wuy+Y8LuXLls6xnhpajpo8XyqcVEYaXHd5xOcT6oBQZb/13ifStvsIebjLXb67eZ+7aKX8tmWbdLqnUVS9bS3My/nqte3Wex8xpzZvUv+gp6jhU+d+4+TjL77L/HvtK6rL4F73SKGCBbIcE8m+kXjWa95Ddu3ZJ28tHB3JYeZHg1i9/yKqyL87J7o+ib4uRNpXf/j5N7nhzp5y+UVny8ShXXJDHtdjmrTtL1rn91+ZGNfXjeTFks00knNjXwQQQAABBGwR8GUQ5QQF2gg1qp8pF557uujoHP0CqjcSRxcuKM+M6pmwURKTZy+WN9d+LN3uv02qnVHJlr4Ssh7rP90ozdsPMl+GH3mwhZQqWVz27NkvxYoeneNxK9asl6nPLpVGN9SUm+telhTn6aaSsQ6i/ti2w9z0Vjy5jDza7W43Vcqyj21BlI7+O6d2a6lV4xwZN6hTxOcT6oBQZSf6hjOqJxphYXd2GCTrPtmYGW5GeHjS7Z6b89WRMV9886MseeNdeeOtdXJG5ZODBlE6gvW6Zt3NSKhb6l0hZ1apIG++s0HefPdjufSCs2TSsAczvSLZN1Lk3AZRsXz/RXoOun+i65Po60KkffXPv3ZKzYYd5cbaNWRI7za5IY/rMckQRCWbaVwbkBdDAAEEEEAgSgK+C6J0ikX9Fr3lx02/S/cHbpc7/53upJ7OL7FTnn1FLjjnNJn+ZI8oMad+MTqCS0dy6Rdh/ULs5y3WQZRXW4KofwQTfcPptR29HB/pza6X17Lh2Nyc77jpL8r46S9mVj+nIEoD9fa9R5tRdTq6znyWpKfLXR2HmJGMr8waKieXO978eyT7RupGEBWpWPD9E31diLSvarh5Xp17zHcZ/U5j+5YMQVSymdre5tQPAQQQQACBYAK+C6J0vZ3ujz31n1+qHRwNo+rf1csEVdNGdjejpUY9/YJ8/e3P0qfznVL2+OOyOC545S15Y/WHcn+Lm81UKd2+/2mzjJ6yQNZ9ulH+2r5Lzq16qtx/101S44KqmccOHfesbP1zuzze5155+fW18v6Gr2Tv3v3Sp1NzWbvuC1m24j3p1eEOKVe2VOYx4cr99MvvZcIzL5l1Im6ofUnmcY+OeEaOZGSYkUrOpmtKvLryfenWrqlUKH9CyHeHjnaaOONl2fD5N1KgwFFy/lmVpcu9jeWkE/+5uVLTMdMWiI4gUIPjihc1/z5qQPugaz9988MvMvKpeZmveccttbPY/L71Lxkx6XnjoH661lLrpvWy7PPBx1/JtGeXSsum15m1qJxNpxsNGDlDatesnjnN68Vlb8trqz4w7ffTL7/LyjUfmXXBdI2kwoULyripC+WWG2qaf3v5tTXyxcafpHKl8mbaUs2Lq2WW/cmX38nEZxbJdz9vNueqI+f0fO9sdK0ZzeNswYIo/WI796UVsmT5u2ZawjFHF5bTTz1J6te5VK6tdUFI/+xT83TEQMe+Y+TsMytlTml0zvGBuxuKrsGhN7xaRx3x16tj8yxtHCyI2rV7rwwcNdOMYut4TyOpUqm8676sO2o7DX/qeVn93ifmv88/u7LsP3DQWIaamrdv/wHp9PA4M1VQPaufXcW8rq59NeKRdua/Dxz4W8bPeElWvfORWX9MzW+45hJp1rB2yKmF4cp2bjj1fabv+1Btr/VQozFTF8o7H35mrg/aR3QqYbOG10jetLSQbei0T7uWN8vCpW/LijUfyZ69+0Snb+kUzl2798mYqQuM38GDf5spuX063SnHFi+Spdxw70XdOVxfe2zULHnp1bfNOmOB/bt3p+Zy4gklg56HruXWpd84OfesU03gMn/Javnsq+/N2l/9u7aMqK/s2btfJs16Wd776EvzXtCQRkcO6VTeE0of67os5xrarsXNoqGRtqduda+8ULrd31SKHF3I/O/cnK/p0zt2y46du00ZN97VK8cRUT0HTZJFr70jz07oK2ef/r8RrPrZ0PfxKdL1vibSssl1ppxI9g3VofR9NXrKC+ac9X2j/eXt9z8112dnap6uK6fTY7/69mfRa6q2t/bZRvVqmjbMly+vhHuPuCnDqeeX3/wkT89ZIh999q3p29qul1SvKs0aXC3Hl/qnXTWgmzn/dVm68j357KsfzOfbFRdVkw6tbzHtFa4+4fp2KDO312/nutDtvtvMNUzXkdv43SbzOR5slLKb9+SzC5ebtnqsZ2spUex/72n9N/2b8/0ht331zFot5IGWDeS+u27KJNCRsyMnzzev63wPqVyxnOkL/bu1lFLH/bP8QKjvIr9t3ebqM8+5vrW540ZZ9NoaWbX2Y9MHLjn/TOndsXmWpQ6cIOq5CQ+HfN86J/Lm2g3yzLxXTX/R/n3OGf9n3lNOuBt4bdL+/czzy8ySC9rntO+1uO26LNfncH3Qed1gpiEv8vwRAQQQQAABBCIS8F0QpV/05ix8w6yloNPIgm3zl7wp/YZNk85tGkvr2+vJ84tWSv8Rz0iHVrfIvc1vzDzkyJEMuabJg+YL1+oFo83NswYkLToOMfvoqKrCBQuYKRq6jR/cSWpe8k9goV/G9IuV3lTr/3e2xTOHyJI31ppAaf7k/pnTA92Uu/XPHXJlo05Zpjjpl86rb/1n3YjXnnsi80ZT18bRL6gfLnvqP2uYBJrolBQNPXTTGzz90rfqnQ3mfy+cMsDc2Mxf/KaMmvKC+bKrNxZFjylsFn+fNaZ30CBKb1h09NS27bvNdBadXqZTWnTbtHmr3NL6YXPTpO1TtEhh83r6vx/r0TpzCt8rK96Tbo9OkGEP3yfXX3VRZpU1qKjfope0ur2edGnT2Pz7yEnzzA2STnMMXMNlwEOtpNRxxcw6Qc6mX151OqHeeOi2dPbQzMBNv2z3HvK0OWcN7/btP5h58xvYtsGCKGfdL/U598xTzWLhOjVKX2/FvP+9frD+mD2I0mDm/Lpt5JrLzzdhX+A5OsdrHXfu2vvvwsml5JWZQzIXWs4eROnN1j1dnzCjNwJHCbrpc/p62u433d3H/P9Typ8gFU8qKxt/2GSCMN1CBVEaSrTsPMQEVrrpqBPdji5cyIxI1CmzTe9/1Pxd/3ZqxfKy7pOvTdk6nVP7RE5buLKdG043ba/n1qjNI8ZTz/HMKqeYKVu63X3bdfJg2yY51iNY++i5/P7HdmOm1wANZLSPB/77XbfWlYfuvy2zXDfvRd05XF97aODEzLo73nrc8H73Z/b17CejlhfVu8/010OHD5t663ZsiaIm+HDbV3QR4Mb/OmofLXdCKdnwxbemPCewcVuWcw116hroqNcTZ9pqbs43+/nrTWlOI6Kc9+f61yabBy84m17nGt3Tz6wTp2GjbpHsm1OH+mDDV9Ki0z+fMXpNK170GPnwk69N/3HaQ//2869bzJRBbTMNvfPny2dCVN2vVdPrpcu9t0q494ibMvS1nDV19L81/NaAcsPn35n3izNKVtfaatfzSfN5qOHZNVdUzwxJ1Pa5if1k//6DIa8H4fp2qDeh2+t39uuCXrP1wRAaPuv28jODpOLJZc1/u31P6o9BuvaTXuudUE6Pd9ZJHD+kswmFc9tXh46dI5deeFbmmpL6XeCGO3tkho/6efX5xh+DXpNDfRf5+PNvXX3mOZ+xjn/gdUzPVz8DnMX73b5vtaypzy2V4RPnmmL1Bxv9fuB8Vqyc/6QJuJxrk/Pa2rd0vUHne1XgKG03fdD5USG7acgLPH9EAAEEEEAAgYgFfBdE3dN1mFlQO9TNsQYEOjzeuZnRkRCX3NjOfIF8Y+7wzFEYzn46oqdn+2bm115n2l/gl1Xny3ylU8rKoumDTCM5X8b03zrf09jcjB48eEhKlyphRgsEBlGRlKvTM/SX0HcXTzD1dEI0fU1n8WwN0C6+4T457f9Okhmje+XYaQLXM9GAzBk55XxRD1z/ZMa8V80vqxoeaADnZtOAqV2vJ7MEUc4X8cCAafOWbXJzy96myOXzRppfznMTROkXVP2VW3+lPeqo/OamUX8l1yBK22Fg91aZIxrUf+y0hSZg0KBBN/1yrw+Zc35J1n/TL8WN2/QzIZ3eyOuWPYjSX/kvuK6t6T+BX8i1PB29pDeFobZIgigNp3p1vEOOL1nC9Ec9N+3vc8b3zVxvLDCI0lBBpxXpiCQN7jTA0y2SPueEu/prvP4q72zOTWO4xcpDrQmjIWe/J6ZJ05uvNiMEtU9rENe2xwjRG/LA8wpm6GaNKDdtr6Psnntphbmp1tFY+rRBDfA0aNAb1DcXjJKSxxbLsRmdGzW9mdLz0H31+Jvv7mNuDrX/6L8fV6KouXnUETj61MwlM/8JHNy+F932tUin/wTe7Gkfu7PxtWaNMn36lY6icnvdc/qEjja8p9kN5tz0eqTvA70BvO6qC12X5VxDdTRJq9uuNz8E6Cimurd3M4afrJiaORIi0vPN3pChgqhrb+9m2tB5mIBzrP6b/k3b3BndF8m+wTqTvi8btOprRgY+PbybuZY579frm/f4Jxz/d7FyfZ/oKE/t386m7aX76ag7Z7HoUO8Rt2XoaL6JMxaJhvsNr//ngQN6069PUS1ZopicU/X/ZOmK96TroxPMe/mhdk1NMKEjEfsPn24ezjHmsQ6iDwvJqT5u+3ZOb0K312/n800/k/Uz4dQK5UyR0+YulScmzDVrGuooQLfvST3WbRCl+3rtq1qGM/Kue7um5r3qbDpCT0fqBV6TQ30X2bFzj6vPPOf6pj8OaKCso760Hbs8Mt6Mzg0Mg9y+b52Hcmio9fQTD2WuN+kEinpeen7OtUk/3x/ufJcZEa6fE+9/9KW07Dw0yyLubvtgyA9k/ogAAggggAACURHwXRDl3Ajol3D94hJsc37d1V92Jz/RzeyiI2H0C5AuYl692j/Th5ybqgVTBpipTPoLnH7JanxjLenTsXmWovXLpY7GcX41d76MbXj96f+MGtIAJDCIiqTcQaNnyewFb5jAS29ANHQ4cPCg6EgEvcnV4OmHTb/LDc17/Gcof3aLDZ99K80eGBh07Qnny/K7i8ebX7+jEUTpTdbZV7cy9XYCO6dOTjDk/HKcmyBKpwKcdXrFLKeZ03ogOiJKb/gCRzM4B+7YtUd0euEf23bKzp17zJQ2Hd2hI8R0yymI0v6mo9ycKY1u38GRBFEvThuYeeOk5T/74nIZ+ORMcyPsTAF0gqiPXn/ajCrTX/Xb391Q2t75vycXRtLnLry+rbnxf+vFMVmmkrl9al6oG2EnOF69cLTpv87m3GQEjnwL5ukmiMr+1Lzsba9ByVlXtTSj/V5+ZrCkaRr576b9cuLMRWEDWOdGLXv7ONeQwKA38Hqz6oUnTfDp9r2YN2+aCT3D9bVIb3admz0dtaHvwcDNbV/JlzfNvL/VMXCEXm7K0hA5p7VmujwyTl5d9YE4Iya0/EjPN3tfChVEaf/XLftTwJwRqjq1eOqI7mafSPYN1p+dvhnsGpnTGlEaJukIxa1/7JC/duySWQteN0HW2pfHSdEiR7taHDxcGc71Wadm6TT0/Pnz/af69/cYaUZDaQhSpvT/pri/u/4Lufeh4ZmfR+GCqHB9O9x1Ndz1O6fPBGfdIO2/r84Z5vo9qZ+P8QyiAq9XS2c9nmX6crBrcqjvIm4/83K6vukPPU3vG2C+EzlLA7h93+oUu8fHPydDe99rgnpn08+aGvXbmenf+n3GuTYF/hik+2oQqqM49frpBPpu+2C4PsTfEUAAAQQQQMC7gO+CKJ3SoCMpAqepZWd0bvpuqnuZDPp36o/zVDhnlJTz66z+ajp3Yj9ThBOOhGqW1+cON+tMhVqwM3sQFUm5b6xeJx0fHmOmLF116blmJJeGYtt27DLhlo7c0KCkx2OTZPqoHlnWV8pebx2loPsF/srt7ON8oXVCuGgEUfrrfZ3bukr9OjVkcK+sT/9xzkvPpWmDq3M1Iip7CKDnktNNhzOl0fn1W/fVkXGPDJ9ubnKzb6GCKN3X+YVa/1v7zHlVTzXreOkTtsJtXoIop+/ol3ln3TAniFJnXdvGGdEXWA+3fU5HNegTm4JNW4pGEHVV4y5mKlj2R9JrsHpFgw5ZpicGc8xNEJW97QOnt+bUVoG+wfbJ6UZNb7T0hitwBKUe79g5C11H8l5009ciDWZyutmL5LqnN4b6/q53zcXyeJ9/wpvsm9t+F+oa6tz0O9dafY1Izzd7vUIFUdpHdQraf0ZE/faHXNu0W5Y+Gsm+wXxeX/2hdHp4bJapx85+2YMoDfYnzFhkrvvBtjWLxpppfaHeI27L0GD+5pZ9zMtoUFSjelWztl+DupebkWq6OT8C5fQecq61oerjpm/nVL7b63eoxcr1xwkNAz9dMU2WLF/r+vMxnkGUc70K9j7LKYjSH9+yB6mRfObldH1zRpPrNHtdDkG3nL77ZH/fOv87p/Z0prWHujZpnzt0KD1z+rvbPhjuM5m/I4AAAggggIB3Ad8FUc6XG/2FWr8oB9ucm76OrW8R/YVXN72JqtvsITMFQ7+w6YLXuuh54PpGzjQiHZ6e0/S0OjWrS+FCBSMKoiIpV9daubxBBzOt8OLzzzQjXvSGTIfY6xQyre/X3/1sRk2tWzYp8yYhmIPzusGehDdswnMyfe4ycUYZRSOI0sXYdUpS4PouTr2caXw6ta5Fk7oxD6Kc0QyBQdTt9w8wo9p0apL+uy6WWqJ4Ubn+ju5mqlVOI6L0HHQKyoIlq0XXHwtcE8yZXhDqrewliNLQTEeIBAuinNfU0RW6npeOjnA2t31ui65F0rxH0PWaohFE6QgSXdg9+zpazg1OsBE6gZa5CaKyt73TLzVA1GlFwbbzzjo15Ei3nG7UdP0TXQclexCl01z1PeUEUZG8F930tUiDmVA3e277ym9b/jLrtwV7f0fa70JdQ3UEoI4EjFcQ5VwXPlk+JXMdNj0fZ/SSLsLet/Od5hQj2TdYP3OeThq4Xp6zX/YgasyUBWa0nobkOg3y/0450aypo6NmdX0zN0GU2zK0DhqATJjxkpmCp6NWdNM1q2aM6mnW7HFGTua0rpteT3VB8JDBmIfrqNvrt5sg6rOV08x0Qp027Obz0fnesfz5EZkL8qtP9jWi9N8ifW9m7yfOUgDBro2RBlFuzcIFUfowj3GDOpmq5hREZX/fOtP0dRpv4HR453wLFSxgRvlGEkS57YPev1pTAgIIIIAAAgiEE/BdEOXcNAUu9ByIpIHTbfc9asKC7AuaO0PFB/W8xzx1Sp/M8t6SCXLMv09ncqYLZV8rJ1gjRDIiKpJy9bX0Zk+nEVStUsEsWDtvUn8TpF1964OiT83Ztn2nmU7nTBfJqZM4U8yyT9vS/fVXef113pk6FI0gylmEW0M8XWsqcNMnC+kUuJH920mdmhdkrjeSfbRWqMXKIxkRlT2M0LVnLr+5vRnN5IyAc+qnwV+4ICrwXPQ89QlX/Uc+YxZpdqbI5NQOsQqidLqeTp3QQFGnOUwa1lUKFvhn9ILbPufcBAROP3LOI9IgKvBXc6cM59zXvTops276t1BTJwMdnZvaYGXndMOZve11gf7zr21jbpJnjf1nrbJIN69BVCTvRTd9LdKb3VA3e277ivP+1gW2dW2vYJvbsvRYtze0um+k55u9bqFGRD3Yf7wsW/m+OKNDnWOdHzQCH3IRyb7BfJw+G/gjibNf9iBKPwcCp+A5+/Ua8rS8tOzt/wRRwd4jbsvIXtefftkiU597xTzIQkMwDROcNgj3gIxQ71k3fTuYWyTX75yuCzo6TEcY65Mddep4JO9JZ4257FNwYxFEOdcrHZm2dvH4LE+MiySIisQsp+ubM21XfzzSH5Eied860z0D10IL1raRBFFu+2Ck13f2RwABBBBAAIHIBXwXRAUuMJr9V2UNa/Tpak9Onm8Wdp49ro9ZlNjZ/vxrp5mGpEPCdSpG4LoHuo+uPXFp/QfM1ISXpj0mZY7/3zoY+iVWF27VECXUlzH9W/apeZGUq8c7o5X0vwMX2x4xaZ5MmbPEvH6wG5ns3ccZXaXnq2u6OFMsdPHw2k0eNGu9LJv9uDGKRhClr6+jtnQB8MDQSJ+c1rD1Pwv0vvrsMClXppR8+PHXclfHweYx5LrGj266NsbsBa/LkLFzgj41z0sQ5QRc2cMIZ7RMqKl56vjpV99nPjHRcdZFwnUh18CnIwZ7C8cqiNLpJbr1GPSUGSFR+4rqMrzffWZURyR9zpluFLgA7u69+6V971FmGmy4xcq1Dnqj76y9Emjg9Nl+Xe6SW+tfmfkn59fzYX3bmsVpQ205le02iNKynTbQX/X11/3ATfuijvgIXMMqe328BlFu34vbd+x21decIDlwHaVQhqFu9iLpK877W9d20fDT2fQBC3pd0VExXq+hwUZERXq+2S1CBVHOqEPnSXTOtUgfFKAPAQi87kSyb7D2cK69+uRGDb6cp/TpDw66cL4+3t6ZxuqM/nDW8dPydCThPd2eMD+0OCOiQr3/3JahI1bPPr2iGQHlbM5TA3UBcl2I3PlcC/aUSR1pvHPPXjmz8inm8GDvWS/X0Uiu3zldF5xg8c5GdczTRd2+J/XzUUem6eiywIdw6MMKdESVXnudtQ/13L32VS3DCVyc19PPxvc++sJMLVfr7IuVB5uaF4lZsOubjszUEdna5wPPz22A7AR9+l1s+qiemU/d0/PT69GGz781TwmMJIiKpA+G/FDhjwgggAACCCDgWcB3QZSKBT6eWYevn1+tihw5ckTWfPCZuXHWIGnakz0yvxQHKjsL4eq/PTuhb+ZT1px9nJE7WkbzW+pI2RNKyo+bfpMVaz4yT9dy1hGJZESUea1/RwSFK1f3fXPtBrm/55OmSoG/wOq0Mh1qr9vMMb3kvLP+dyOYU09ynoakI4Ga1L/KrNfz1MyXTRDnjE7SY6MVRDlfPvU89Vd0nYKz4JXVok8oDFw4XJ/+dPWtXcwUEP83hhQAACAASURBVJ36UqJ4EXPezqOdAxexzikECOwL2Reszj4qRn+lv+rWLubmQwMbXfT8m+9/MU/70i1UEBX4hf7KS8+VMqWPFb1J0ylZOvpr2sjuWQLP7G0RyyBKny7096HD0rb7cDPCL3Aakds+p0+T01/89Sb01htrmSepLV35vrHSzU0Q5SxKruuy6c2oPjFJn4gU+BQ0nSZ7aoUTRRc31mkxOqVQp0NqcBZqy6nsSIIo5+mI+jo6LVPb/48/d8gHH39l3MKFiV6DKH1dN+9Ft31NA3etkwarOr3l9z/+kjsa1s4SngeahrrZi+T65DxpVI/RkTIaPOnothnzXzNP22rZ5DrX1zq3N7T6WpGerx6jawXqiEHddKqk9u97/n2qpIaRzkMHdKRX7aZdTX9v1vAaqVyxvLzz4WfmBtxZUNmxjGTfnPq08xmk1+Qra5wrP/3yu1nrTTetoxNEOaOv9EZe66sPV9CRvM60ucAgKqf3iNsyNHDQ9b10vbkzKp8ie/ftl5deXWMCL72+XXju6eZ1dXq7OukTV6+scY78feiQfPLl92ZEmfNUV9M3/n26beD1oFG9mma0r/bZSK+jkVy/neuCBuO6xpWOgPpa++i8V42xMwrY7XtS93N+ONHPNZ2OrRaL31ibeY0MDGpy01ez95XA95n2CX1KotPu2a/JOb2PIjFzrm/6OaijzTUgXf3ux+ZzO/to2Ujetx37jjEP09Dg9ZZ6NeWYwgXli29+kleWv2ueGDlqQPuIgqhI+mDIDxX+iAACCCCAAAKeBXwZRKmaPjlOHxutwVPgpl/YNZQ4vmSJoLg6pUqf8BPsqUXOAXoDojcuGtY4m34B1dE7OkJJt1BB1LjpL8r46S+am2z9YhdJubqvs35O9jrqr6I1b+lovvw6T+8L14N0JNekWYvNr9mB56JrntxYu0bmv+mN5NCxc7I8VTBc2TpCrEOf0VnW2dJj9N91UdrAL8462kCnCAY+jclZwNx5Hb1x0JtpHRHV+vZ60rlNY/OnUU+/IJNmvSwvTX/MrJMSuL3zwWdmhED2ETdOEBU44uqjz76RDn3HZN48aDntWtws059fJieWKZW5RpQGJa26PG4WideF1XXEiK4Rkn2Rc30qY78u/4wECrXlFERpIPbkow+EPEdnBEbgL/E6UkNvtnRElAZRuukIJv0VXUOBLm0amxFlurnpy9pHdBShBmvO5owa0pES+oSpcOeoAcq46QszjfT94iyeqwshPzTwKVM3Z9NpRPpodZ0SGW7LqexI2l5f4/ONP8rg0bNF+0HgposC92h3e5bRINnrlFMfdEZ8ZZ+y4yxivnT20MzAw8170W1f02BJ6xQYTDhP2gzmqe9FHR2T/clUgfu66Su6v7o/NnqWCeadTUOVng80k3Oq/p/rfpfTNfSxUbNkzsI3JHA9nkjPVyuh12C9FgfbdISPjvRxNn3QwgO9R2Xpo/ojx9C+baXIv1O3c7NvsNfeuWuvdH10vLzz4eeZf9b36+LX12ZZ2F+vYe37jMqyJp32VR3Zq+HpO4vGSbGi/6wLl9N7xG0ZGsjrZ4SOtnE2fQ93bN3IhHPOpiPfRjz1fGZw5vy7hhX6w8PZp1fKsT76gBEv11G312/nuqDhR2Af1WvYk/0fkNNPPTnzfNy8J52d9Ro5efbizGM1jNPPaA24ApcByE1fDdZPNESds2C5fP39JjmpbGm56rLzzLVLpwMGTgcP9V3ErZkTROn5aF9yNl0vs1eHO7I8oTiS961OM9TP16nPvpLl+4C2zb3N65sHm4S6Nul01cPp6eYzKNI+GPSNzz8igAACCCCAQNQEfBtEOYL6q9/Pv26VtLxpclLZUmFHV0Qir4HQlj+3y7HFi5rH2gdO84uknOz7xqrcUHVynPLly2tChbxpaV5OwRyrC3f3GzYty3QFp1ANzTb//qfsO3DQjJpwpqBkf1Gd3rDp161mzavAqZCeK5dDATq1U9c/0U2/3DvTFd28nt60/P7HdvPF+YRSJbIsDu7m+ETu46bPaZj1y+atcuIJJXN9bjqaaufuvSYIzv4IeL2B1htZnZqp7R3pFqrsSMrSm6Pftmwza1bp4s/hRmRFUrabfd28F932NS3rt63bTKCnow+jsbnpK/o6ut+2HbulZImiOban27Lc1jsW5xv42tt37jaLdutoKQ1iQm2R7BusHA2JduzcLSeXPyHH66NeRzdt3ir6lNeyx5fMDJ5yqlew90gkZWh76TVOz13fw/p5EWzT/qmL1+v0reNLlciy/lvg/sHq47ZvB3vdSK/f+vo6OrPI0YXlxDIlc/wMd/Oe1Po4be6mLWLRV0OFTjn1CTdmgSM+9dx0HcoTSh+XZTqd2/dosP102QS9/pvPhlLH/ifczU3ZbvtgbsrmGAQQQAABBBAIL+D7ICo8EXtEU0BHlegN76G/D0n3QZPMCILsi/xG8/UoCwEEEEAAAT8J6Mi0l15bIxdUq2ICSA0iX3x1jegDV9w8qTVSq1DT3yMti/0RQAABBBBAwB8CBFH+aGdrztKZNuNUSIfu5/Q4b2sqTUUQQAABBBBIEgHnaXXZq6vTwZ94+P6wI+MiPU2CqEjF2B8BBBBAAAEECKLoA3EV0EW6dRFgXfRc17+6+Lwz4vr6vBgCCCCAAAKpLKAPoPj0y+9Fn4a3a88+szSAPtlTF66PxabB18bvf5FrLj8v19OyY1EvykQAAQQQQAABewUIouxtG2qGAAIIIIAAAggggAACCCCAAAIIpJQAQVRKNScngwACCCCAAAIIIIAAAggggAACCNgrQBBlb9tQMwQQQAABBBBAAAEEEEAAAQQQQCClBAiiUqo5ORkEEEAAAQQQQAABBBBAAAEEEEDAXgGCKHvbhpohgAACCCCAAAIIIIAAAggggAACKSVAEJVSzcnJIIAAAggggAACCCCAAAIIIIAAAvYKEETZ2zbUDAEEEEAAAQQQQAABBBBAAAEEEEgpAYKolGpOTgYBBBBAAAEEEEAAAQQQQAABBBCwV4Agyt62oWYIIIAAAggggAACCCCAAAIIIIBASgkQRKVUc3IyCCCAAAIIIIAAAggggAACCCCAgL0CBFH2tg01QwABBBBAAAEEEEAAAQQQQAABBFJKgCAqpZqTk0EAAQQQQAABBBBAAAEEEEAAAQTsFSCIsrdtqBkCCCCAAAIIIIAAAggggAACCCCQUgIEUSnVnJwMAggggAACCCCAAAIIIIAAAgggYK8AQZS9bUPNEEAAAQQQQAABBBBAAAEEEEAAgZQSIIhKqebkZBBAAAEEEEAAAQQQQAABBBBAAAF7BQii7G0baoYAAggggAACCCCAAAIIIIAAAgiklABBVEo1JyeDAAIIIIAAAggggAACCCCAAAII2CtAEGVv21AzBBBAAAEEEEAAAQQQQAABBBBAIKUECKJSqjk5GQQQQAABBBBAAAEEEEAAAQQQQMBeAYIoe9uGmiGAAAIIIIAAAggggAACCCCAAAIpJUAQlVLNyckggAACCCCAAAIIIIAAAggggAAC9goQRNnbNtQMAQQQQAABBBBAAAEEEEAAAQQQSCkBgqiUak5OBgEEEEAAAQQQQAABBBBAAAEEELBXgCDK3rahZggggAACCCCAAAIIIIAAAggggEBKCRBEpVRzcjIIIIAAAggggAACCCCAAAIIIICAvQIEUfa2DTVDAAEEEEAAAQQQQAABBBBAAAEEUkqAICqlmpOTQQABBBBAAAEEEEAAAQQQQAABBOwVIIiyt22oGQIIIIAAAggggAACCCCAAAIIIJBSAgRRKdWcnAwCCCCAAAIIIIAAAggggAACCCBgrwBBlL1tQ80QQAABBBBAAAEEEEAAAQQQQACBlBIgiEqp5uRkEEAAAQQQQAABBBBAAAEEEEAAAXsFCKLsbRtqhgACCCCAAAIIIIAAAggggAACCKSUAEFUSjUnJ4MAAggggAACCCCAAAIIIIAAAgjYK0AQZW/bUDMEEEAAAQQQQAABBBBAAAEEEEAgpQQIolKqOTkZBBBAAAEEEEAAAQQQQAABBBBAwF4Bgih724aaIYAAAggggAACCCCAAAIIIIAAAiklQBCVUs3JySCAAAIIIIAAAggggAACCCCAAAL2ChBE2ds21AwBBBBAAAEEEEAAAQQQQAABBBBIKQGCqJRqTk4GAQQQQAABBBBAAAEEEEAAAQQQsFeAIMretqFmCCCAAAIIIIAAAggggAACCCCAQEoJEESlVHNyMggggAACCCCAAAIIIIAAAggggIC9AgRR9rYNNUMAAQQQQAABBBBAAAEEEEAAAQRSSoAgKqWak5NBAAEEEEAAAQQQQAABBBBAAAEE7BUgiLK3bagZAggggAACCCCAAAIIIIAAAgggkFICBFEp1ZycDAIIIIAAAggggAACCCCAAAIIIGCvAEGUx7bZvG2/xxI4HAEEEEAAAQQQQAABBBBAAIGcBcoeVwgeBFJGgCDKY1MSRHkE5HAEEEAAAQQQQAABBBBAAIGQAgRRdJBUEiCI8tiaBFEeATkcAQQQQAABBBBAAAEEEECAIIo+4BsBgiiPTU0Q5RGQwxFAAAEEEEAAAQQQQAABBAii6AO+ESCI8tjUBFEeATkcAQQQQAABBBBAAAEEEECAIIo+4BsBgiiPTU0Q5RGQwxFAAAEEEEAAAQQQQAABBAii6AO+ESCI8tjUBFEeATkcAQQQQAABBBBAAAEEEECAIIo+4BsBgiiPTU0Q5RGQwxFAAAEEEEAAAQQQQAABBAii6AO+ESCI8tjUBFEeATkcAQSsFhjyRD7Zt8+OKjZqmC5nV82wozLUAgEEEEAAAQQQiKNA2eMKxfHVeCkEYitAEOXRlyDKIyCHI4CA1QIEUVY3D5VDAAEEEEAAAZ8IEET5pKF9cpoEUR4bmiDKIyCHI4CA1QIEUVY3D5VDAAEEEEAAAZ8IEET5pKF9cpoEUR4bmiDKIyCHI4CA1QIEUVY3D5VDAAEEEEAAAZ8IEET5pKF9cpoEUR4bmiDKIyCHI4CA1QIEUVY3D5VDAAEEEEAAAZ8IEET5pKF9cpoEUR4bmiDKIyCHI4CA1QIEUVY3D5VDAAEEEEAAAZ8IEET5pKF9cpoEUR4bmiDKIyCHI4CA1QIEUVY3D5VDAAEEEEAAAZ8IEET5pKF9cpoEUR4bmiDKIyCHI4CA1QIEUVY3D5VDAAEEEEAAAZ8IEET5pKF9cpoEUR4bmiDKIyCHI4CA1QIEUVY3D5VDAAEEEEAAAZ8IEET5pKF9cpoEUR4bmiDKIyCHI4CA1QIEUVY3D5VDAAEEEEAAAZ8IEET5pKF9cpoEUR4bmiDKIyCHI4CA1QIEUVY3D5VDAAEEEEAAAZ8IEET5pKF9cpoEUR4bmiDKIyCHI4CA1QIEUVY3D5VDAAEEEEAAAZ8IEET5pKF9cpoEUR4bmiDKIyCHI4CA1QIEUVY3D5VDAAEEEEAAAZ8IEET5pKF9cpoEUR4bmiDKIyCHI4CA1QIEUVY3D5VDAAEEEEAAAZ8IEET5pKF9cpoEUR4bmiDKIyCHI4CA1QIEUVY3D5VDAAEEEEAAAZ8IEET5pKF9cpoEUR4bmiDKIyCHI4CA1QIEUVY3D5VDAAEEEEAAAZ8IEET5pKF9cpoEUR4bmiDKIyCHI4CA1QIEUVY3D5VDAAEEEEAAAZ8IEET5pKF9cpoEUR4bmiDKIyCHI4CA1QIEUVY3D5VDAAEEEEAAAZ8IEET5pKF9cpoEUR4bmiDKIyCHI4CA1QIEUVY3D5VDAAEEEEAAAZ8IEET5pKF9cpoEUR4bmiDKIyCHI4CA1QIEUVY3D5VDAAEEEEAAAZ8IEET5pKF9cpoEUQENnZ6eLnnypElaWp7/NP/uvfvl8OHDUqJYkSx/I4jyyTuF00TApwIEUT5teE4bAQQQQAABBKwSIIiyqjmojEcBgqh/AQ8c+FtubfuItGl2o9xQ+5JM1n37D0j3gZNkxZr15t+qnVFJRg/sICWPLWb+N0GUxx7I4QggYLUAQZTVzUPlEEAAAQQQQMAnAgRRPmlon5wmQZSIDJ84V6Y+t9Q0+dDe92YJoqbMWSLPL14lM0f3lkKFCsh93UdIxZPLyKPd7iaI8smbhNNEwM8CBFF+bn3OHQEEEEAAAQRsESCIsqUlqEc0BAiiRGTHrj1y8ODf0vT+gdKlTeMsQVTjNv3k2loXSuvb6xnvV1d9IF0eGSefrZwmefLkYURUNHohZSCAgLUCBFHWNg0VQwABBBBAAAEfCRBE+aixfXCqBFEBjXzt7d2kfcuGWYKoC69vKwO7t5I6NS8we36x8SfRcGrty+OkaJGjZeuOgz7oJpwiAgj4VWDg0DTZt8+Os2/SKEOqnZVhR2WoBQIIIIAAAgggEEeB0sULxPHVeCkEYitAEBUiiMrIyJCqV7aU8UM6S82Lq5k9v/txs9Rv0UvemDtcyhx/nBxOPxLbFqJ0BBBAIIECXfumy569CaxAwEu3uiNNLjjvvw+TsKN21AIBBBBAAAEEEIidQL68abErnJIRiLMAQVSIIEr/pCOiHuvRWmpfUd3s6YyIenfxeClyTGGm5sW5w/JyCCAQXwGm5sXXm1dDAAEEEEAAAQSCCTA1j36RSgIEUWGCKJ2GV7fWhdKKNaJSqd9zLggg4FKAIMolFLshgAACCCCAAAIxFCCIiiEuRcddgCBKRA4fTpfD6elyU8ve0rZ5fbnuqoukwFH5zWLkT89ZIvMWr5IZo3tJ4YIF5L4eI3lqXty7KS+IAAKJEiCISpQ8r4sAAggggAACCPxPgCCK3pBKAgRRIvJg//GybOX7Wdp18cwhUqH8CbJv/wHpNmCirHpng/l71dMqyNjHOkqp44qb/7152/5U6g+cCwIIIJBFgCCKDoEAAggggAACCCRegCAq8W1ADaInQBDl0nLX7r3y96HDUvLYYlmOIIhyCchuCCCQlAIEUUnZbFQaAQQQQAABBFJMgCAqxRrU56dDEOWxAxBEeQTkcAQQsFqAIMrq5qFyCCCAAAIIIOATAYIonzS0T06TIMpjQxNEeQTkcAQQsFqAIMrq5qFyCCCAAAIIIOATAYIonzS0T06TIMpjQxNEeQTkcAQQsFqAIMrq5qFyCCCAAAIIIOATAYIonzS0T06TIMpjQxNEeQTkcAQQsFqAIMrq5qFyCCCAAAIIIOATAYIonzS0T06TIMpjQxNEeQTkcAQQsFqAIMrq5qFyCCCAAAIIIOATAYIonzS0T06TIMpjQxNEeQTkcAQQsFqAIMrq5qFyCCCAAAIIIOATAYIonzS0T06TIMpjQxNEeQTkcAQQsFqAIMrq5qFyCCCAAAIIIOATAYIonzS0T06TIMpjQxNEeQTkcAQQsFqAIMrq5qFyCCCAAAIIIOATAYIonzS0T06TIMpjQxNEeQTkcAQQsFqAIMrq5qFyCCCAAAIIIOATAYIonzS0T06TIMpjQxNEeQTkcAQQsFqAIMrq5qFyCCCAAAIIIOATAYIonzS0T06TIMpjQxNEeQTkcAQQsFqAIMrq5qFyCCCAAAIIIOATAYIonzS0T06TIMpjQxNEeQTkcAQQsFqAIMrq5qFyCCCAAAIIIOATAYIonzS0T06TIMpjQxNEeQTkcAQQsFqAIMrq5qFyCCCAAAIIIOATAYIonzS0T06TIMpjQxNEeQTkcAQQsFqAIMrq5qFyCCCAAAIIIOATAYIonzS0T06TIMpjQxNEeQTkcAQQsFqAIMrq5qFyCCCAAAIIIOATAYIonzS0T06TIMpjQxNEeQTkcAQQsFqAIMrq5qFyCCCAAAIIIOATAYIonzS0T06TIMpjQxNEeQTkcAQQsFqAIMrq5qFyCCCAAAIIIOATAYIonzS0T06TIMpjQxNEeQTkcAQQsFqAIMrq5qFyCCCAAAIIIOATAYIonzS0T06TIMpjQxNEeQTkcAQQsFqAIMrq5qFyCCCAAAIIIOATAYIonzS0T06TIMpjQxNEeQTkcAQQsFqAIMrq5qFyCCCAAAIIIOATAYIonzS0T06TIMpjQxNEeQTkcAQQsFqAIMrq5qFyCCCAAAIIIOATAYIonzS0T04zoUHUBxu+kmJFjpbKlcpn4f5j2w55d/0Xcv1VF0nevHmtbgqCKKubh8ohgIBHAYIoj4AcjgACCCCAAAIIREGAICoKiBRhjUBCg6j2vUfLmVVOkbZ31s8CsnnLNqnd5EFZPHOIVCh/gjVYwSpCEGV181A5BBDwKEAQ5RGQwxFAAAEEEEAAgSgIEERFAZEirBGwMoj6YuNP0rhNP1k6e6icdOLx1mARRFndFFQOAQRiIEAQFQNUikQAAQQQQAABBCIUIIiKEIzdrRZISBDVc9Ak2b5zj6z/dKOUKF5EKpQvk4n096FD8t76L+WMyifLvEn9rcbTyjEiyvomooIIIOBBgCDKAx6HIoAAAggggAACURIgiIoSJMVYIZCQIOrhYVNl5669sv6zb6ToMYXl/045MROjQIH8cuE5p8sVF1eT0iWLW4EUqhIEUdY3ERVEAAEPAgRRHvA4FAEEEEAAAQQQiJIAQVSUICnGCoGEBFHOmb+47G05vlQJueT8M63AyE0lCKJyo8YxCCCQLAIEUcnSUtQTAQQQQAABBFJZgCAqlVvXf+eW0CDK4T5yJEP2Hzj4H/2jCxe0vkUIoqxvIiqIAAIeBAiiPOBxKAIIIIAAAgggECUBgqgoQVKMFQIJDaK2/rlDJs16WV598wP5a/uu/4CsfXmcFC1ytBVQOVWCIMrq5qFyCCDgUYAgyiMghyOAAAIIIIAAAlEQIIiKAiJFWCOQ0CBq0OhZMnvBG/JAywZS9oSSkj9f3iwwta+oLvnz57MGK1hFCKKsbh4qhwACHgUIojwCcjgCCCCAAAIIIBAFAYKoKCBShDUCCQ2iLm/QQW69oZa0b9XQGpBIK0IQFakY+yOAQDIJEEQlU2tRVwQQQAABBBBIVQGCqFRtWX+eV0KDqLbdR0j5sqWld8c7klafICppm46KI4CACwGCKBdI7IIAAggggAACCMRYgCAqxsAUH1eBhAZR73zwmXTqN1ZemTVUSh5bLK4nHq0XI4iKliTlIICAjQIEUTa2CnVCAAEEEEAAAb8JEET5rcVT+3wTGkR1e3SCvLLivRyFWaw8tTsfZ4cAAvYLEETZ30bUEAEEEEAAAQRSX4AgKvXb2E9nmNAgavnb62XTr1tz9G7a4GopcFR+q9uDEVFWNw+VQwABjwIEUR4BORwBBBBAAAEEEIiCAEFUFBApwhqBhAZR1ih4qAhBlAc8DkUAAesFCKKsbyIqiAACCCCAAAI+ECCI8kEj++gUExpEZWRkhKTOkyeP9U1BEGV9E1FBBBDwIEAQ5QGPQxFAAAEEEEAAgSgJEERFCZJirBBIaBDVse8YeeOtdTlCsEaUFX2ESiCAgI8FCKJ83PicOgIIIIAAAghYI0AQZU1TUJEoCCQ0iHrrvU/kty3b/nMaY6YtlDMrnyKjB3aQo/Lni8Jpxq4IRkTFzpaSEUAg8QIEUYlvA2qAAAIIIIAAAggQRNEHUkkgoUFUTpALl74lg8fMlrdfGksQlUq9jXNBAIGkEyCISromo8IIIIAAAgggkIICBFEp2Kg+PiUrg6iff90i1zXrLgumDJAqlcpb3TyMiLK6eagcAgh4FCCI8gjI4QgggAACCCCAQBQECKKigEgR1ghYF0QdOZIhc19aIQNHzZQ3F4ySkscWswYrWEUIoqxuHiqHAAIeBQiiPAJyOAIIIIAAAgggEAUBgqgoIFKENQIJDaIeHjZVVr6zIQvGX9t3mf9d75qL5fE+ba2ByqkiBFHWNxEVRAABDwIEUR7wOBQBBBBAAAEEEIiSAEFUlCApxgqBhAZRryx/V37Y9HsWiKMLFZQaF1SVyhXLWQEUrhIEUeGE+DsCCCSzAEFUMrcedUcAAQQQQACBVBEgiEqVluQ8VCChQVQqNAFBVCq0IueAAAI5CRBE0TcQQAABBBBAAIHECxBEJb4NqEH0BBIeRB38+5DoyKiN322SfQcOSvmypaVurQulXNlS0TvLGJZEEBVDXIpGAIGECxBEJbwJqAACCCCAAAIIICAEUXSCVBJIaBD15187pdkDA+WXzX8Y06MLF5S9+w6Y/x7Zv53UqXmB9dYEUdY3ERVEAAEPAgRRHvA4FAEEEEAAAQQQiJIAQVSUICnGCoGEBlG6WPmyle/LuMGd5OzTK0mBo/LLDz//Jk9MnCur3tkg65ZNkoIFj7ICKqdKEERZ3TxUDgEEPAoQRHkE5HAEEEAAAQQQQCAKAgRRUUCkCGsEEhpEXdW4i9xQ+xLp0qZxFpCvv9skDVv1leef6idnVqlgDVawihBEWd08VA4BBDwKEER5BORwBBBAAAEEEEAgCgIEUVFApAhrBBIaRDVo1VeqnVFJHnmwRRaQDzZ8JS06DSGIsqabUBEEEPCrAEGUX1ue80YAAQQQQAABmwQIomxqDeriVSChQdSISfNkypwl0r9rS7ngnNOkRLFjZN0nG2XizEWyecs2WTlvpOTLl9frOcb0eEZExZSXwhFAIMECBFEJbgBeHgEEEEAAAQQQEGGxcnpBSgkkNIg6cOBv6dB3jKz54NMsqMeWKCqjB7SXc6ueaj02QZT1TUQFEUDAgwBBlAc8DkUAAQQQQAABBKIkwIioKEFSjBUCCQ2iHIENn30rG7/fJPv2H5RyZUtJjepnSuFCBa0AClcJgqhwQvwdAQSSWYAgKplbj7ojgAACCCCAQKoIEESlSktyHiqQ0CDqy29+kqUr35fGN9SU8mVLZ7bIpFkvS+mSJeTmupclvJWWv71eOvQZ/Z96rH9tsnnKH0FUwpuICiCAQAwFCKJiiEvRCCCAAAIIIICASwGCKJdQ7JYUAgkNonoPeVq++OYnmT+5v+RNS8sEe3bhchk4aqasWzZJf79L3gAAIABJREFUChY8KqGQb7y1TnoNnizzJvXPUo+TTiwtefLkIYhKaOvw4gggEGsBgqhYC1M+AggggAACCCAQXoAgKrwReySPQEKDqPoteslNdS6VVrfXyyL2x7YdUuuWTrJwygCpXKl8QjU1iOo/4hl5a+F/R0VpxRgRldDm4cURQCDGAgRRMQameAQQQAABBBBAwIUAQZQLJHZJGoGEBlFN2vaXMyufIg93uSsLmD45784Og2TxjMFS4aQyCcXUIKpj3zFyU93LpOBR+aV6tSpyba0LJG/ef57mRxCV0ObhxRFAIMYCBFExBqZ4BBBAAAEEEEDAhQBBlAskdkkagYQGUUPHPSsz5r0qc8b3laqnVTDT87b+uUMeHjZV1n+6Uda8NFby58+XUMzPvvpBXlv9oRQ7prD8+vufMnfRSml689XSp1NzU6/D6UcSWj+vL77+4wyvRUT1+POq5YlqeRSGAALeBLr2TZc9e72VEa2jW92RJhecxzUiWp6UgwACCCCAAALJI5Av7/+WskmeWlNTBIILJDSI2rlrrzRo1Ve2/PGXHF24oJxYppRs/G6TqemQ3m3kxto1rGu3hUvfkj5Dp8gny6eYUVFbdxy0ro6RVGj5qjyyfKUdN3bly4ncd09yB3uR2LMvAskgMHBomuzbZ0dNmzTKkGpn2RWe2yFDLRBAAAEEEEAg1QVKFy+Q6qfI+flIIKFBlDrv23/AjDLSkUf79x+Uk8ufIDfUvsRM2bNxe/v9T+Xeh4bLulcnScECRyX91LyVb6aJ/p8NW7lyGdLm7nQbqkIdEEDgXwGm5tEVEEAAAQQQQACBxAswNS/xbUANoieQ8CAqeqcSm5JmL3hDKlcqJ1WrVJDtO/fIQwMmylFH5ZOpI7qbF0z2NaIIomLTbygVgVQRIIhKlZbkPBBAAAEEEEAgmQUIopK59ah7dgGCqDB9YsSkeTJlzpLMvc6teqqZNliuTCmCqCi/nxgRFWVQikMgCgIEUVFApAgEEEAAAQQQQMCjAEGUR0AOt0qAIMpFcxw4+Lf8uW2nHHNMISle9JgsRzAiygWgy10IolxCsRsCcRQgiIojNi+FAAIIIIAAAgjkIEAQRddIJQGCKI+tSRDlETDgcIKo6FlSEgLREiCIipYk5SCAAAIIIIAAArkXIIjKvR1H2idAEOWxTQiiPAISREUPkJIQiIEAQVQMUCkSAQQQQAABBBCIUIAgKkIwdrdagCDKY/MQRHkEJIiKHiAlIRADAYKoGKBSJAIIIIAAAgggEKEAQVSEYOxutQBBlMfmIYjyCEgQFT1ASkIgBgIEUTFApUgEEEAAAQQQQCBCAYKoCMHY3WoBgiiPzUMQ5RGQICp6gJSEQAwECKJigEqRCCCAAAIIIIBAhAIEURGCsbvVAgRRHpuHIMojIEFU9AApCYEYCBBExQCVIhFAAAEEEEAAgQgFCKIiBGN3qwUIojw2D0GUR0CCqOgBUhICMRAgiIoBKkUigAACCCCAAAIRChBERQjG7lYLEER5bB6CKI+ABFHRA6QkBGIgQBAVA1SKRAABBBCwQmDuvLxW1EMrcU61I1KlcoY19aEi9gkQRNnXJtQo9wIEUbm3M0cSRHkEJIiKHiAlIRADAYKoGKBSJAIIIICAFQKPDsonhw9bURVpdls6QZQdTWFtLQiirG0aKpYLAYKoXKAFHkIQ5RGQICp6gJSEQAwECKJigEqRCCCAAAJWCBBEWdEMVMKlAEGUSyh2SwoBgiiPzUQQ5RGQICp6gJSEQAwECKJigEqRCCCAAAJWCBBEWdEMVMKlAEGUSyh2SwoBgiiPzUQQ5RGQICp6gJSEQAwECKJigEqRCCCAAAJWCBBEWdEMVMKlAEGUSyh2SwoBgiiPzUQQ5RGQICp6gJSEQAwECKJigEqRCCCAAAJWCBBEWdEMVMKlAEGUSyh2SwoBgiiPzUQQ5RGQICp6gJSEQAwECKJigEqRCCCAAAJWCBBEWdEMVMKlAEGUSyh2SwoBgiiPzUQQ5RGQICp6gJSEQAwECKJigEqRCCCAAAJWCBBEWdEMVMKlAEGUSyh2SwoBgiiPzUQQ5RGQICp6gJSEQAwECKJigEqRCCCAAAJWCBBEWdEMVMKlAEGUSyh2SwoBgiiPzUQQ5RGQICp6gJSEQAwECKJigEqRCCCAAAJWCBBEWdEMVMKlAEGUSyh2SwoBgiiPzUQQ5RGQICp6gJSEQAwECKJigEqRCCCAAAJWCBBEWdEMVMKlAEGUSyh2SwoBgiiPzUQQ5RGQICp6gJSEQAwECKJigEqRCCCAAAJWCBBEWdEMVMKlAEGUSyh2SwoBgiiPzUQQ5RGQICp6gJSEQAwECKJigEqRCCCAAAJWCBBEWdEMVMKlAEGUSyh2SwoBgiiPzUQQ5RGQICp6gJRkvUD6EZH+A/NZU88WzdOlYoWMkPUhiIptcz0zK698932e2L6Iy9Ivq3FE6lxzxOXe7IaAyCef5ZH5C/JaQVG4sEiProetqAuVSB4BgqjkaStqKkIQRS9IJQGCKI+tSRDlEZAgKnqAlGS9AEGUtyZq1DBdzq4aOjjz9grxP5ogKv7mvGL0BAiiomdJSYkRIIhKjDuvmjsBgqjcuXGUnQIEUR7bhSDKIyBBVPQAKcl6AYIob01EEOXNL9zRjIgKJ8TfswsQRNEnkl2AICrZW9Bf9SeI8ld7p/rZEkR5bGGCKI+ABFHRA6Qk6wUIorw1EUGUN79wRxNEhRPi7wRR9IFUEyCISrUWTe3zIYhK7fb129kRRHlscYIoj4AEUdEDpCTrBQiivDURQZQ3v3BHE0SFE+LvBFH0gVQTIIhKtRZN7fMhiErt9vXb2RFEeWxxgiiPgARR0QOkJOsFCKK8NRFBlDe/cEcTRIUT4u8EUfSBVBMgiEq1Fk3t8yGISu329dvZEUR5bHGCKI+ABFHRA6Qk6wUIorw1EUGUN79wRxNEhRPi7wRR9IFUEyCISrUWTe3zIYhK7fb129kRRHlscYIoj4AEUdEDpCTrBQiivDURQZQ3v3BHE0SFE+LvBFH0gVQTIIhKtRZN7fMhiErt9vXb2RFEeWxxgiiPgARR0QOkJOsFCKK8NRFBlDe/cEcTRIUT4u8EUfSBVBMgiEq1Fk3t8yGISu329dvZEUR5bHGCKI+ABFHRA6Qk6wUIorw1EUGUN79wRxNEhRPi7wRR9IFUEyCISrUWTe3zIYhK7fb129kRRHlscYIoj4AEUdEDpCTrBQiivDURQZQ3v3BHE0SFE+LvBFH0gVQTIIhKtRZN7fMhiErt9vXb2RFEeWxxgiiPgARR0QOkJOsFCKK8NRFBlDe/cEcTRIUT4u8EUfSBVBMgiEq1Fk3t8yGISu329dvZEUR5bPHsQdTnX+bxWGJ0Dz/z9IyQBa58M030/2zYypXLkDZ3p4esSrL52uCaynXYtUtk06/2vOdKlxIpVTLn9xxBlLfeSBDlzS/c0QRR4YT4O0EUfSCUwP79It//aM9ncvGiIieeGPp7MEFUbPs039uj60sQFV1PSkusAEGUR//sQdTLr6TJBx/aEeycViVDbm8SOthJtiDqw/VpsmixHb7Fi4l06XjYYw/icC8CGkQ98WQ+L0VE9dj296cTREVVNGthBFExxBURgqjY+qZi6Z98lkfmL8hrxakVLizSoyufyYlsDA2iBg+z5zP53lbpBFGJ7BAiMmlqXvnlFzvCyStrHhH9v2TeCKKSufWoe3YBgiiPfYIgyiNgwOFuRkQRREXPOxVKIojy1ootmqdLxQqhfy0e8kQ+2bfP2+tE62iCqGhJBi+HICq2vqlYOkFUKrZq7s+JICr3dnpks9vSpUrl0J/J3l4h/kcTREXXnCAqup6UllgBgiiP/gRRHgEJoqIH6MOSCKK8NTpBlDe/aBz9zKy88t33dvxaTBAVjRb1VxkEUf5q73BnSxAVTij03wmivPmFO5oRUeGE+DsC8RUgiPLoTRDlEZAgKnqAPiyJIMpboxNEefOLxtEEUdFQpIxECRBEJUreztcliPLWLgRR3vzCHU0QFU6IvyMQXwGCKI/eBFEeAQmiogfow5IIorw1OkGUN79oHE0QFQ1FykiUAEFUouTtfF2CKG/tQhDlzS/c0QRR4YT4OwLxFSCI8uhNEOURkCAqeoA+LIkgylujE0R584vG0QRR0VCkjEQJEEQlSt7O1yWI8tYuBFHe/MIdTRAVToi/IxBfAYIoj94EUR4BCaKiB+jDkgiivDU6QZQ3v2gcTRAVDUXKSJQAQVSi5O18XYIob+1CEOXNL9zRBFHhhPg7AvEVIIjy6E0Q5RGQICp6gD4siSDKW6MTRHnzi8bRBFHRUKSMRAkQRCVK3s7XJYjy1i4EUd78wh1NEBVOiL8jEF8BgiiP3gRRHgEJoqIH6MOSCKK8NTpBlDe/aBxNEBUNRcpIlABBVKLk7Xxdgihv7UIQ5c0v3NEEUeGE+DsC8RUgiPLoTRDlEZAgKnqAPiyJIMpboxNEefOLxtEEUdFQpIxECRBEJUreztcliPLWLgRR3vzCHU0QFU6IvyMQXwGCKI/eBFEeAQmiogfow5IIorw1OkGUN79oHE0QFQ1FykiUAEFUouTtfF2CKG/tQhDlzS/c0QRR4YT4OwLxFSCI8uhNEOURkCAqeoA+LIkgylujE0R584vG0QRR0VCkjEQJEEQlSt7O1yWI8tYuBFHe/MIdTRAVToi/IxBfAYIoj94EUR4BUzyI+npjHtnwcVr0kDyW1KRxesgSfv01j7z9jj31rX9DuhQqlHOVCaK8dYhUDKLmzsvrDSWKR5cvlyE1LjkSssRkC6JeWJhXDh+OIpKHovLlE7mlQehr2mtvpMn27Xk8vEp0Dw13DX5nbZps+iV56ptsQdT3P+SRDz605zOu0S3pkjdEdf74M4+sWGlPfa+7Nl2KFs35PUEQ5e164SaIsukzrlKlDKl+XujPuElT88ovllzT3ARRNvkWPjpDbrw+q2/Z40J8KfbW/TgagbgLEER5JCeI8gjogyBq9nN23BjrTdvDvULfQWoQ9dQUO+qrXaNnt8MEUdF7i/2npFQMosZOzCtbt9pxI1+39pGUDKI+/tQO32pnZbgKomwJ1ytVzJC77ggdnGkQtex1O4KH0qUz5IG2oeubjEHU9Jn2fMb163M4bBA1Zrw99e3a6TBBVAw/k90EUSNG5ZMdO2NYiQiKrn/DkZQLoubMzStffW3HZ9wF1Y8QREXQH9k1+QQIojy2GUGUR0CCqOgBhimJICr21O3vT5dSJTNyfKH0IyL9B+aLfUVcvgJBlEuoXO5GEJVLOJeHEUS5hMrlbgRRuYSL4DCCqAiwcrHrva3S5cQTc/5M1iIfHZTPmlGeBFG5aOQIDnEzIoogKgJQdkXAowBBlEdAgiiPgARR0QMkiIqbZU4vRBAV2yZo1DBdzq4a+qaCEVG5b4PLahyROteEnmahU/MYEZU7Y0ZE5c7N7VGFC4v06Bp61K9OzWNElFvR/+7HiKjc27k5kiDKjVLu9yGIyr0dRyIQCwGCKI+qBFEeAQmiogdIEBU3S4KoxFATRMXWnSAqtr4EUbH1JYiKra+WThAVW2OCqNj6EkTF1pfSEYhUgCAqUrFs+xNEeQQkiIoeIEFU3CwJohJDTRAVW3eCqNj6EkTF1pcgKra+BFGx9yWIiq0xQVRsfSkdgUgFCKIiFSOI8iiW8+HlymVIm7tDL4z64fo0WbTYjoVcixcT6dIx9DQAfWoei5XnvsuwWHnu7dwcyRpRbpRyvw9rROXezs2RrBHlRin3+7BGVO7t3B7JGlFupXK3H2tE5c7N7VEsVu5WKnf7sVh57tw4KnkECKJcttXuvfvl8OHDUqJYkSxHMCLKJaCL3QiiXCB52IXFyj3guTyUNaJcQuVyN0ZE5RLO5WGMiHIJlcvdGBGVSziXhzEiyiWUh92YmucBz8WhjIhygeRhF0ZEecDjUARiIEAQFQZ13/4D0n3gJFmxZr3Zs9oZlWT0wA5S8thi5n8TREWvVxJERc8yWEkEUbH11dIJomJrTBAVW1+CqNj6EkTF1pcgKra+WjpBVGyNCaJi60sQFVtfSkcgUgGCqDBiU+YskecXr5KZo3tLoUIF5L7uI6TiyWXk0W53E0RF2tvC7E8QFWXQbMURRMXWlyAq9r4EUbE1JoiKrS9BVGx9CaJi60sQFXtfgqjYGhNExdaX0hGIVIAgKoxY4zb95NpaF0rr2+uZPV9d9YF0eWScfLZymuTJk4cRUZH2uBD7E0RFETNIUQRRsfUliIq9L0FUbI0JomLrSxAVW1+CqNj6EkTF3pcgKrbGBFGx9aV0BCIVIIgKI3bh9W1lYPdWUqfmBWbPLzb+JBpOrX15nBQtcjRBVKQ9jiAqimKRFUUQFZlXbvZmal5u1NwfQxDl3io3exJE5UbN/TEEUe6tcrMnQVRu1CI7hql5kXlFujdBVKRike1PEBWZF3sjEGsBgqgQwhkZGVL1ypYyfkhnqXlxNbPndz9ulvoteskbc4dLmeOP+8/Rs55Pl1VrjsS63VyVf85ZafJA67wh9120LF0WLbWjvhVPySO9OucLWd/V7xyRGXNDP1nPFU4Udjru2DwytF/o+n782REZM9mO+ubPLzLhifwhz/yHnzLksRGhnwQYBTrXRYwanF+OLpzz7tt3ZEi3fvbUd0CvfFLm+Dw5Vjg9XeTeLodcn3+sd3ywXT45vXLO9dXX79TrkOzZG+uauCv/njvzykXnh35qZr8hh+XX3zLcFRjjvW69Oa/UuTJ0fUeMPyxffG1HfetenSaN6of+zHh6Zrq8+6EdnxkXV0+T1s1D13f+onRZttyO+p5RJY90uT/0Z8ZrK4/I8y/a8ZlxYpk80r9H6Pq+t+6ITJ5hR32POVrkyUGhP+O+3Jghw8fZ85nx1Ij8kjdEF/5tS4b0HWRPfYf1zycliuf8mbF3n0jHnvZ8xvXukk8qnBz6M+6+rofkkCVVbn9PXqlWNfRnRvf+h2XbX3Z8ZtzZJK9cUSN0fQeNPCzf/2hHfetflyb164b+zBj7dLps+NSOz4xal6bJHbeGrm+Mv8ZQPAIxFSCICsOrI6Ie69Faal9R3ezpjIh6d/F4KXJMiDvkmDYbhSOAAAIIIIAAAggggAACCCCAAALJJ0AQFabNdBpe3VoXSqsc1ohKvianxggggAACCCCAAAIIIIAAAggggEBiBAiiwrg/PWeJzFu8SmaM7iWFCxaQ+3qMzPLUvMQ0G6+KAAIIIIAAAggggAACCCCAAAIIJJ8AQVSYNtu3/4B0GzBRVr2zwexZ9bQKMvaxjlLquOLJ19rUGAEEEEAAAQQQQAABBBBAAAEEEEigAEGUS/xdu/fK34cOS8lji7k8gt0QQAABBBBAAAEEEEAAAQS8CBw+nC7f/7RZKlcq76WYuB77+dc/yJlVKsT1NXkxBJJJgCAqmVqLuiKAAAIBAjpS84dNv0mzhrXlqPyhn25lA9xvW7bJlGdfkfvuukmOK1HUhiqFrEOy1Tc9PV0eGzVLmtx0lVRJgi/ryVbfDZ99K08+PV96tm+WFL579x2QFp0GS9s7b5KrLzvP+vebVvDNtRvkcPqRpKmvXoN//f1PadbwmqTwTbbPjKRADahksn1mJFN99frb7IGB0vjGWtL+7obWf4fYvXe/XH9Hd6l0ctmk+cxItvcb9U1+AYKoJGjDjd9tkpdeWyOtmtaTY4sXsb7GOnpswjMvSYPrr5DKFctR3ygLJJtv+pEjMnnWYjnt/06SWjXOibJG9Io7ciRDlq16X1a985HkTUuTqy47T664uJoUOCr048CjV4PISjpw4G+5vnkP2fLHX1KubCnp+UAzq3317Lo9OkFeWfGeOdHu7ZrKbTdfbXWAlmz1nffyKnlk+HTje9tNV0m7lg2s/sxItvrqtaxDn9Fmqr769urQTPLmtfvR2tPmLpUnJsyVi847XYb0uldKl7R7WYEPPv5KHnliuhxfqoT079pSypctHdmFMY57O9fg+nVqSKd7GsXxlXP3UoGfGb063GF9eKZB9QtLVssbb62XfHnTpE6tC8zDgwoWPCp3AHE4Sj8z3nz3Y/NK3e67TRrdUFPy5MkTh1fO3UsE1rdzm8bSpP5VkpZmb31//nWLDJ/4vLzx1jrzHaLpzVdLfot/hNMwavLsxTJlzpKk+EzOXS/iKARyL0AQlXu7uBypH2j39xhpXkuf3NelTeO4vG5uX+SnX7ZIm4eekF82/yFnVD5Z5k3qn9ui4nIc9Y0ts/4i/9DA/62x9u6SCVLk6EKxfdFclK5Dvu/rMULe+fBz8z47tlgRWbJ8rRz8+5CMGtBBKpQ/IRelxvYQ/XIzY/5rsviZwfLamx/IsAnPSbUzKkn3B26X/zvlxNi+eC5KX//pRmnefpA8N+Fh2bv/gAwaPcv46g1RzYur5aLE2B6SbPXVgPqaJg9KuxY3y5WXnitDxz0rH2z4Sjq2biRN6l8p+fLZFZgkW321t+nIlzq3dZV+Xe6SQoUKyI21a8S2E3osXW/kG7TqK+dWPVWqV6sitS+vbvVNvHO6C5e+JX2GTpEV80fK8SVLeFSI3eHONXjprKFyjIWfa9nPXOv74rK3pezxx0mdmheYkSW6ZWRkWBeW6FIYrR98XL769mdpfXs984PQ4jfWSlpamowb1MnKZTICPzMOHT4sXR+dKDdcc7F0uffW2HVCDyUH1jc9/Yh0H/SUVD+7ijzWo7WHUmN/qH52XHJjOzm6cEEpUbyItd8hAiXu7DDI9GXd9DP51htrWR2gxb4VeQUE/hEgiLK4J8yY96q5mRjSu41J1O9pdoPVX3zf/+hLeaD3KLm57mWio0v+PnRIHu12t7XC1De2TbN5yzZp1+tJObpQQdFfjCfOfFlWzBsR2xfNZen6PnthyZsyf3J/OenE400pehP3+Pjn5PXV68y/2zQaccuf2+WqRp2lT6fm5hdB3fTLmRqXPq64tGhSN5cSsTlMR5Lc1ra/Gd0w4pF2mb7zl6yWDzd8JcMevi82L5zLUpOtvnqa2ldffv0dWf78iMxRZmvXfW5Gp+qNW5FjCudSIzaHJVt9VaHLI+Nk6587ZOaYXtbduAdrpedeWiEjnnpels1+XI5Ngqmweg579u6X6+7oLnc2qmO+89i6OddgvWnX7zzZN7W/6LwzrPkRw6nvxKFdREfJ3Vz3cvO5rNvDw6bKWadVzAymbDAfPGa2aCD54rTHTHCmm/5g9GD/8VKgQH55vE9bG6qZWQfnM6NyxfKZQY4zlcz5AU5/oNXRyzZswer7w8+/yQ139pTFM4dY02+DWen3tRVr1suLUwfKotfekeET58ojD7aQKpVOkhLFjrHuWqd1bd97tHH9fes2GfjkTLngnNOk+S11rKyvDf2TOvhHgCDKwrY+dOiwDBw1U5aueE/0S8MZlU+R869tY26GTz/1ZAtrLDJ/8ZvS74lp0qdjc2na4GrR9P/aWhdaO/Sb+sa2G338xXdyT9dhcs0V1c3oganPviJfbPxJxjzWIbYvnIvSt23fJVc06CAj+7czvxIHbvplrdE9/eThzneaEEVvREcNaC8liiV2imzPQZPMFzD9RbDzPY3NDYRtI14CHZ0RDvpveoOpa9YUK3p0LlorPockW32dGwjVufyis+Wh+2+TiieXjQ9WLl4l2eqrp/jhx1/LXR0Hy/OTHpEzK59izvrr7zZJqWOLWXfjo3XbuWuv1L7tQXng7obmPWd7fZ1u9OTk+eba9srMIVaP3tJr8Lc//irPTexnpnJn+dxIT5cOfcdIvWsukeuvuigX75DoH6L13b5zj/lOefv9A+SuW+vKtbUukM+++kGatO0vi6YPkkqn2HHN+GPbDql1Syfzo4XWMXDT7xZa/3WvTpKCBeyZoud8ZiyYMiBz/Tj9IaD1g8PkrRfHyJ69++S6Zt1l9tg+ck7V/4t+A0dYolPfJx6+T677t48617hlcx63dkqsLlZ+4129ZPyQzpkjqfVap9PzdP2oWpecIx1b3xKhRux211Hf9Vv0kmtrXpA5Mk4DVX0v6uwR2+obOwlKRiC4AEGUZT1jx6490unhsWZKhY6E0qH/X37zk7kZXrdsUuYXs/0HDor+4vbx599JqeOKy3VXXWiG38d7LrqOGnli4vOio7duqXeFWdMhI0PkrKtaypQRD8nF551hhKlv7jqaW1+b1jfSNYB03QH9Ujt3Yj8pVLCAdOw7xjzpRKcN2bbNXbRSxk5bKKvmjwy63svvW/+SE0ofa341/nHT7/LMqJ5xf58F+yKuX2h3790nQ8bOMX8e+Ug7Y2zbzbGukXB1485y7x03miljOhJGpwQMeKiVucn486+d8tf2XdY8CSfZ6qtt37b7CDMK9fG+95oRULNeeD1zKrdtvuHqq+fx3kdfyCXnn2nNpUKvw43aPCJnnVYhc5SvTh268a6eUqF8GfPjy3lVT7Vq1NnQsXNk9XufmFEDepNme321sXX9F71Zf/LRB6T2FdXNdWHpyvelcKECctmFZ5nvOjZsThiSU6igD2TQa1u5MnaMfnHqu3jGYKlwUhkzXVPXtLr8wrPljgcGZk7ptsFW6/Dsi8vNqJHA77xO3fQHrcZt+smHy54y3y1s2JzPDO2fGqJpyKdTSkdNeUEuPvd0M+JXR4fr9+CpI7onvMpOfXVUjt5r6HS8qqdVkOnPL5MG111uFta2dXM+6yYNezBLFfXH5cfHP2tGBNs0+levBU/NXPSfetlaX1vbnXqlrgBBlEVt+8Om36Vt9+FSpvRxcvmFZ8mISfPkprqXySnljpeXXl0jS2YOMbXVG+PG9z4i+fPlMyOO9MNNb6b1i7AOE4/XWgU6hP6hARPl069/MAHDpFmL5YRSJaR5ozrS9dEJsnL+k2ZhVOqbu07m1teW9Y30BnLCjJdk/PQXzSIDBoV3AAAgAElEQVSSK9Z8JN/9tFl6tW8mg8bMNqPlnF83NYzQdYwaXn957nCieNT0uctkzQefyuQnuuVY6ucbf5Rb2zyS8FGJatz0/kfNza8G1brpCEr9UqO2xxxT2Nwc6w3G3U2vz5zSEEWuiIvS69ji19fKK7OGZP6CrWvf6Vph551VWfo+PkU++/pHGfXoA3LiCSUTvvhzstX3rfc+MUFU4IgGHamhN2w69cY233D11dEwOnrj+af6mZvmwoUKRtznonmATnl9bfWH0m/YNFn1wpOZYYj++DJ5zhJj/OmX35v1PxY8PSDhU2+0vlu37ZCbWvQ2o190hJxuNtZXpyp99/PmzJENerOu6wpOG9ndeOoINF33TteB0QXixz7WUS489/RoNm/EZQW7BgcWolP+W3YeKktnD82c5h3xi0TxAKe+559dxYyU1O3a27uZHw016NOHG7z+3HAzQlWDwBNKH5fwB0joUhTrPtlo+m/2TYN2XStKQ7VDh9PlSPqRhI+cC/zM+O7HX80C63oN1h9i777tevno82/MyKiFUwZY8YNLYH137t5rpvnrwxcuqX6mXHP5+YZc1w3T96Bef08u989yBYnenDVzX35mUJYRv856g23uuFHuaFg74f3BcdJp3Fc26mR+dAv8rmtrfRPdvry+PwUIoixqd/3w/eW3P8wNu/6Cqb+sjJm6wHyo1b3yQhne735z03l7uwEmhNJfVpynh+hIKn2aj/4SMHpgh/8MFY/FaeoNxcz5r8vA7q1M4HTg4N8y+4XXTYCmU4bef2Ui9fUA78ZXi7dlfaNNm7dK38enSqfWjczQc/0io082GTxmjnmy20vTHzPh08bvf5EGd/cxfURHGl135UVmLZBETS17Y/U66TVksqyYNzJoiKvnoYtsb/x+k9xy/RVy1hmVTOiTfTqGh6Z2fajWtePDY8yva2qXfdObTR3dpU8o1C/yOipt2sgeCXvMsbMuiU5ndL7gBtbZmRZy/tmVRYP4gwf/lvGDO5uFlROxJVt9tW/e1LK3XFq9qlmkPvtmm2+4+moIUbfZQ2Yh4r//PmRGIOp5OVPL4t0ndAqhTlvSTaeT3n3bdea/dTrvdc0eMjfzzrSWASNnyPaduzPXQIt3XfX1dOSWPklz3/6DZvqgcyNva32dqUs6tfjIkSPmu87CqQOl0sllzHlccVE16d3xDkPpLLTt/CCXCF99TecaHLg+n1MXZ3H4WjXOzXywzHc/bjbtcmrFcgkZSet8vr0xd7gULfLPdOjLG3SQwT3vkZ6DJ8sDLRuYhxnod8sb7uop23fsNv+mP3Im6omQryx/VwaPnSMr543M8r3gty3bzPWu/d0NzQ+eT89ZIqvf/VhmjO6VqO4g4T4z9IdCrbOO8NQ+k+gtWH21P/Tv2kKuuvQ8Uz29jumaRvqdp0CBo8wPzKMHdJAy/67VlYhzcEZ0ah31h87ATR/Uok9g1RFp+pmha2TqEwsTvTk/AumyKoHfF22tb6K9eH1/ChBEJUG7t+g0RGpUP1M07V+55iOzILgu+nx8qaw3onqzr9MHdG2FRA5NnThjkby/4UsTlFHf6HewQF+36xvptM1Ebfo47hYdh8iG1582AevdXYaaYesPd7nLjCTQX4+1bydqXr+zaOcJpY6TQT1b/+e9o2u16fpng3rcI3/8tUMmz15ipqEmYpqh3tB89d2mzDVqAts0+82mGSn50krzhV2/UCbql01t47NOr/if7qe/1Ou0EF33rm/nO83UsgVLV5vRETqdLFnqq2s8qPXuPfulyv+Vj3tAqaMYihc9JvMm04HOydfW+mq9Rz39gix/e50ZOaA3wRqmakBR6ZQTRYPuKhXLx/3XbvUdNn6ufP/zZjMiUqcD6SiSb3/4Ncui5b2HPC0nlDpW2rdqmNnXA59Gpg9vGDdtobnu6RPAYrXt3rPPhDY6dV+nEev7y2199VoY74BdXZatfF90JMmt9a80I6Defv9Tufeh4bJm0VjTt3XTvqBrT36+arr53/ojXaN6NeN+c6zX4IVL3zbTgLSuD7VrKqdWKGfqpDfDepO5fN5IHVIiD/afYEbb6qbTpvWhAc7C27Fq/+zlan1/3LQly/pPF17f1tRdQwnnvabHaX/V5R4Gj51t+rJOkYz3cg9aDw3Fbr67j5x9ekUzTUwDNH0fmoXKjzrKjJjTNXZ0tIluuhD/BdWqmKeRJWL0Tk6fcVq3Zxcul5GT58myOcOseeBJ9vrqSMSqVSrIfXfdZDzbdBsuBw4elHGDO5uHzXQbMMGEU4mcVqgh9dBxcyQwUNW6OusNahipP2jpKMum7QaYfpPI9dn0h7UbmvcwIanWy9lsrW+8rke8DgLZBQiiLO8T+sXgonr3ydDe95r1VfSDWDcdHRVs02lw+qE86un55gvFReedbkYixHORc13QWYd36zBw6hv9Dhbo63Z9o/lL3pQFS1abflCrxjlmvY14fcHUGyKtp37hXf72ejNyz5m2aW4opiyQ9z76UmaN7W2wdNiy88tt9PWCl6hrJvQZ8rQZwaVfXkqVLCGN6l0hZY8vKbWbdpV7bq8ndza+1hz83vovTZj26YppkpaWJ15VDPs6wW42bfxl0zkR/dVb6xz4BT3Z6qthz2OjZpqbfn0ako4msGH6kBoH87W5vho01b39IXl6eLcs60M5i+qeUv4E82u3fq7oGizx3nQkZ+WK5TLXbJw3qb+cUfmfh4c4Nxdzxvc1a6088/yrMnHGS+Zvt9SrKR1b3WKmSOp1Jth0o1icy0+/bDEhjQY8usZkTvXVQELX9dOnlOlULb3+dbu/qRnlnKhNbzpnLXjdfGY4mwZPr6/+0ExB1eu0rjsY+DkS77o6Tyl95vllmSOIrmnyoLkB1nV29Ob+y29+Np9ruqC9jladPu9VM/o3USP8HKMza7Uw/+ms46kB2qq1G8z3gzpXVDejbS+5sZ28MmtoQoIdrZuO8u81aLLodKz/Z+8swKyquje+DEBUSgQBERRFJCWlQ4buhqG7a4Chu2HobhiQ7i4pKZGSEEEEFAvFls9Awe/5Ld3XM5d7ZwDnnDODdz/P//l/wuWcdfbZZ8e73vW+5tsvmCerJotgTPYeOUcdyGaM6iqfXftapoevkya1y+ozMM/FhLWZZyhVp5vqcdWtWuKOIfrrrzflwuVPVBjcTVdevq0PLn2qZjJGhsDqnAdwVafNYAWBqdpgnfOVXLLzGwRQvXz1Cw/oa+7Vtud4iR8/XoQzERpifGfe5jN2xufr2uj7ep+9YnK8TvdP4H6BHqAHAkBUDB8HZDeDanXx2MozibHRbRuJ6PPgceGyk41a8+py+eMvhI1S64aV9N84ke3kkF6pVEG1NA7EG/0DzNq/d6NvhL5Y7xGzdTNEW7put2RMn0ap+U4APjMXbZSPP/tS3fMQoq1bNUia1y3v6Riyb0mTJJARvVvKybMXpX77YXoAQR8GBpWTjVImykU4MFJiOOuNjbJ2237ZFD7CEwt/duLMxQhlLz/e+Fm13JwC97z7xBgaWA+b/CYmZjaJCwZRqeBQad2gUgRnzdgWrxEiXT5zoNpdA0iNm7lCD8iUnrrV/PVvTI2XfgJY4ABpddY09ucTB3eQEkVyeUCgRZN7q76YGw2GJ2A05UumodHF+yZBNHXBOtXJC+vXWoHsGYs2KJuAucWIRTsZd1Tx7jv8rrTtNUE15/K8+ooyjY6dvqDMardKs06/f0mC2wzxaPIZXTE0MJEpKFe/p9SrGqSC/DTKn9DxKl00t+MxA0LCLNp3+JQcO3VeXfTOXfhID+6mHJ0Y0XwsXjNEurauraVwjAnYXm6sGYxXWHmUTB86elZahI7RsjFKY5es3aWsLdbiI5una7m6m5qOMFzOXfxI9QMzZ3hB37cZH5RxAg6bBlA5ZsZyZcVQwtW7Yz3HGXPWb3v4pDfk4NGzsn7+sDukBwB3OvWfoj+nmgGtuQFdG7viBMgY6Dt6nlZaAALPWrxRti8J8zzKolU7dF5AboM+xtnS7RJZgjPzws7lYz1MQ8PAR88vaZJEmpDZc+ikgpk418FMdKtFFS+lhTD/2DPjCAn5gKRxoAV64EHugQAQFQveLlkVSu0AkchaYl8ambAyVqHVyhbROmkah9SW3cfqQudE3TSbQg5CxByIN/oHmLV/o9I34u7dh86QGzd+UbtbGhtgDn1cZ8HEXo4Ik5JpX7vtgB7SrZbMuw+eUC0CssbZMr0odVoPEkAdjfP7nySkZU0JrhLk6UTozojBspG3u6FHQYbbahNsSiHNMwDywYhhA0HcQ0KbKuPM6ebrsBlVZpMY+XevZnrJkTFg7ROYm2xsB3Zt7AH47iZetxwBfcWLJl6Rqh2lR7u6WqpJI2ubLaiZx6I7EO/dfQnMRUMnLlINpjTP/iOMC6uEwzoAhGkkNyh1AISICY6A1sMFDGYYEOg0BhX6S2+FcZKrdEtlcRmx6LvrFXt+ZY03ZfKnVJOLxJEpNYalkatMS1k2vb/jrAfrEwPm4eKVPXN6LW9Ds6h3x/oyd8lmWbx2l4qBmxJHyp+mLVwv25eMdk3cHmc6tDthyXFwB5S2HtbHz1qpB2KSLA899LCWJZcsmltZPG403jMaoyQqKYU0e0r+vEi1jlKnSpDqXFk1HSl7w80QtokbABr9ZMTXs2V80aMfxp+bcU15GWAlpgfb974jbRtVUfdppxlSzAWDxoVruSaJ4GbB5Txj84cf/6d6XMTVtXUt1XSr0aK/alAiU0D79vufZMWGPZI40ZNSKE9W200Q0DJ7Pk0KOXDktIQOmeFhKptSN/ZcgO8kP9mDmf2kG2PX3BNdPthxpqTQuJsiZcJZZ9jEN2Tb3nd03v3m2x+1bNZq4OB07FHFCyDYecAU/b6SP51EpoWvkwpB+SOUezsdc+B+gR6wuwcCQJTdPRzN1ydzUrxmF52YKBfylbFEvHr73qOyctZAj0gxi/S7732oIo9OtkC89vZ2VPpG3N2APVaradw8+ofNk+kjQxzZUBr3EDYy85dvVbFvFlr0rlh0YWut23ZAyCAaDQA2YWzkrOUBvmjNdvUwYCrfEcw+06zlbxySxkxfrnoVODmZjfCOZWM0e+t2iyqzaTQMOCC/XiC7oCPmlmA8fRVVvDHNft70H+PViLgaa3HKGhgDOBjicBhcNUhdTd3U7ott8TIm0LLB+hzdMBoHDUqGDPhHudvew6eUbYk4txtiugCqjz7yiB6Glqx9U6Yv3CD7Vk/0HHzXbNkvI6cs9sxrzLu5X31FE0NuNGu8ZN9hqVrdvDh44qpm2JVusmFYN2DmpHk2uafEhdjQAjL6LyRWSgeHqs4cB3s0p3DzZW1z63tjLUMzzKwFpp/R2EEuARfRwePDZfvSMEmSKIEOA+9yMjSxrNoydo0VAAiSlwAgpYrmlsPHz2lZKTpXOJsaTcee7evJhUtXpV/YPAmuHORJdNoVl7/rwkBr1jVMVs8Z5Ok7QJ8KDXtJ0fzZI4C9ML+++e4HZak5UQ3gK2YSLCMmLVZWOIBI+aD8WnaKjtveVeM9e3gAnkPH3pNZYV21LLFas/4S/7G4kil9Wi2dxUG7T8f6tjNtmWPpNxJrlLYtXvOmMtYXTe6jLB3AHUA9SlBpJEOnhq+TSUM6aImh0414zTnIqiN18cpnqimHYcvgbk3VQAdwmG/PyEA4HatZw3zFy5+x3sGs7du5oVQokV+dFzH2gYnmJsPajX4K3PO/0wMBICoWvmsWYgTLWShKFs4ljz0WT8vwTHaQjFaDjsPkm+9+krljQ7XEyXsCdPKxA/Ha29v+9I3SpU3luTGZGBZha6beuoDbG6EI5aLU9y+Y0FM1BlZt2qeukGRXYRDxDEE1Q6Rb69oqWEsDCMpdppUH6DECtmZzz/PkzZlJS6KcaNbyt5deeFYKVW6vtOmjpy5oiVmtisVUYJVngFLtFhvG9AUlN5FlNmGbwCjJnvklzYhTgoGwplVI2ckxElW8d2M/72S8ZKwLV+mggtC4/DHvdug7UX759aZudAPx/vuvsmqzflKm2GvSqsFfLAFAFMDrwxunytXPvlJHu/rVS+pcAmhsnd+cXPOMKDmlj2u2/OX8FjfOo2JK67u3DZYaFYoKrJm6bYfIuvlD79A6+fe9dfdXMPEC2pSs3VUBkdQpk+kFYA1s3f2O7Fw+RgApOAgBUnOgK5LvVSleMIcjyQtfTwOzFocvq1kLB2NKtZZO668HZHQpET8ngcAzYZvubexy9z11f7/8+Zdf9TAP+Fss/6ty9sJHkiZVci2F4+9K1+0ubRpW8ugG/Xbzdy3lgyGKZhf6XuXq95AVMwd4ytHuL5K7+1eUjS7fsFuuXL2mwB9OyOhc+dJ0nB6+XsuHKKV3q3nP82YcW0v1qByo2Ki3zsWMX8YI+w6+Q9hUTja+t6173tHEFXtyLb16LK6+b9NghgM2UCJryiWPb5+l4A/zGyx2Eo+AmXaDEjBUeffHTl3QkjYYv8RBY1wXzJNF6lQuLuNnr1JGHRq2FUrmF0qpGd95c2VyHPijb/hmSGxiYkBS88bPv0rFkvm1MgMnYbRrj5w4J8tnDPD5+nnu6QvX63eZNElCW4eId7yUPA4ev1DCJ/SUsTNX6N4MhhzJWH9AlJPx2toZgYv/p3sgAETF0tfPQnzg6Fk5/d4lSZXiac2ysRGH/kuj1j908HQ5c+GK6y565kAQiNfewWbVN+rQpJo6jGB9DYWejRAbSPRLlk7v5/hGjEWVgzqCzr6atWzBZIv2HnpXBV/fWjtJEiV4Qi2QywXl0xISxn/HfpOlfIn8jjmjwHY5dOys6lshjkoJDhoa0OonqDnAhyqmbGXDpH02hQRXKa6ZbSf0uKx9G1lm88TpD1QXxBxAcSmq3qK/lkGaUkgyuQjjr5s3VJ3C7G6Rxct8VrZedxnUrYmULZ5XQwFchQ1BmSTN6Xi5J9/UknW7tGzo7ePn5NwHH6muzROPx3/g4uWAATBEf8M+cqKZAxklez/89D9lzXF/AGyr4yKxGHfLtzdNV0DCjXg5oCMMjlV7xVIF1DX23MWPZdWsgVqOFdx2sAINlJiZNmrKEqlVubhjgLr3e2OOpVQIVupbR05r6ZspX4ENk/DJJ1TXD0b1nCWblaFKOYwbDdYQc9JXX3+nACQNsN2sacZZT93e5CEFVziAcjh1ev4l1vfYf+0+oqD0tiWjlTEC82Xlpr0RdIPmLdsqb6zeKVveGClx48RR1+EX06bSkm8nG4YBvGOcHTnkems6MkeXa9BTWtStoIAOwCAAy+Px42lSxul4Td94l8zz5wAmCRM8LqP7ttafkUgi1mXrdun8Ybd7pa/3ZgC0sTOWy/kPr8rM0d10rjJsamPUYMTBDYOOa6ExVrZ+D5k3rrurIDaMxPrVSup8e+PnXwT9PpPshuWFBilMrhG9W9yxz+QZSHjZ1RiPiRI+oQwpAGoY3j3aBet+ccXGvcI+k6oQnIR9NfaoE+eultWb9/kVmI/O2K3xcn6bumCtmjHQWPuGTXpD0qVJFUE30Xp/p+ONzmcPXCvQA6YHAkDUAzIW2KBD+bdmhJikcPxqUL2kp+48sscl6+LURiIQr70DD0pv5cZ9ZHBoU49+DXdkEw/tOzIbXsYNm6RHHnlYMmV43vbMlilbwO0RRg4MJzLJ0KoRl0REFXo4or87loYpKALzgPI+k8W3tzfvvDpsraLVOqkdd57sr+gPyLjuPnBSNzCGDVOldEE5c/6KAhQLJvTyuGw5Fa+vzCZlRIB6ADpGcJmNWsk6oTK0e1MpkCeLMk/I0OXOlkE37KbZvZH0l4mNyn7erXjpF3S23jp8SuLGjSO1KxVXt7EHLV4O06s27ZUvr38X4QBt93igf5kLdu47Khw2K5UuqCCYL0dAyqEo58W5zl+8gFOPxYtnq14Mh3nKP2A/ccCEBcocQUwDx8zXci10r2gxwf0NNs78ZVtl+76jEj9eXC0xLJw3m082DIAwc9nSdbs0flgQiEI72XiHvOsPr3ymbqyULA3v2VzZIoCARh+GmACDSIJUaNhThnRvpiWeMFGcasyrgLdBhXIpa50GQILwPqwNGvuuYtU764GePzdle9429daYnWB+om1EmSngmGHD8N6nha+XbYtHKyuqUacRCqwmSZxASBy56RhKUmDK/LWqH0mVAEwdUzYNw+z27dsKmOB2SBIG1jJMZjca+pP12g+T7JlfVFCJuI0GmokHsAqA0qpphCj+M08ncSNkvSffWLbiTfV/w5Lq3aH+Hd8Tv1m/7aC6hFqd9z649Il+CyQW7WYbER+gdJue42T+hJ6exAl738fixo10DjASAHyzTmr6MS7RJLVqTrIfIgETWX+5Fa9rgzBw4weuBwJA1APySmG8DJ2wSDbuPKTCrtTKkzWs1qyfUNsPPT2yRpkTDAMWcevB067uCcRrV8/+c13GQs9hs6Rjs+rKyiFLROkQGxl/tHoOTgPGLFAXFxrgUP+QhppBtKtBSScryMYQXQ3YfbC7cIecNjxEfv71NylTN1Rp7DCiEMpsEjJKxWqtwsZ2xefvukbTClFMyguxX6aPOTB7s3dgJ97+80+pU6W4JE+axDVLbJ7Fl7CveRbj9jZu1kplRnCAhlXHZtkAhjB+vC2J7ex7X46AlPuiCQLowEHoQYjXsA2aB5eXmhWL2dmlEa59N/1rMvaUOA3o2kgP9G7F68sREDAFnRuAQNhTvuLloTkc8VvDkrCzkxG437HvqDSsWVpvQ8lYhhef8ySFEDFX97dqJZTJjPEBeiu4gNWq/LqrB076yJfDKc8TMmCqlq6ggbZw1Q6pWqaQNKhZygOu2dmn1mubshQD/nprcZnfUmoIqEKSDcYqJi5OmLZwf/ZVsJABbkw5FQmWDC+mkZ7tg3W9YEx+8vl1BSx9le0x18FYTZ8utbKbKX/qMXymMiesZdTR3e983198+a2HxcwhHhYw+jXlg/IqM6pI3lc9guGwYVhHnHZTg2H25JPxFdgjAXf05Hk1PiDJAqhK0gqTFFOeybd26aPPtPSffRBg5ZGT55TF6GSDzbtj3zEBoMmXK5OUKJxLdh88qXMrTB4AnYlzVus6PHN0V9fd0wA8cMsD4KN8ED0200wfU8ZHKXXtysWlc//JUq1cEWXO0WBXpkyeNILxhN39bfbABfNkVdCvaZ1yUQLRPB/fbGRAsF1xw7pHdgVWV5G82bS82LDN/N3TzXjt6ofAdf9bPRAAoh6w9002jUPZjf/9rOV5OLjMHdvdLy2dzQbi5mwgMr38vG6WYHk41QLx2tvTlAZAUSY7bzbCaNr4AhKMJTIbdUr72Ay9deSUgln9Qxpp9ju6G3pRgKVr5gzRDS8lb0ffPS/PJEsi+XJm0o03ACtZ+Dem9JU//7ytWbViBXKoow9t39un5OtvfpDXcrziuFgmsaIpgJ37oNAmuhn2xYZBF+aX325K6hTJdNObN0cmGTewrccxDhYFOk3oTNltmQ4QBcAIo4zmrc9lmJSNa5aW+PHj/Z0VHyW3b91W/ZDC+bLZzpKzjrOo7OcflHj/vH1btWE4MMGqcqpF1b/EAZNSdWwqF5eRU5YoKAyo4ka8vhwMMUBYtGqnlqHDePEVLyVarIkwZAC5nW4AZYg8I1xPowRqyd/ub2jcVGjQU3q2ryufX/taVm95S5kQObO+rL+lTIP50Sng3RcbBpAE5g6HOVzAaPQlzNDyJfI5Au75e2eAUq/XDFHWkWEa8VsDWMO0pTzaOIAhtGzEzu0cBzBYPvviuuc9ci/YMI1DRqorLIdMki5r5g7R74kDMGy/9fOHKVBC2SGgKg3beQShGduI3VNy5GSjhPTE2YuqxUWJeqvuY+XghikeANKURb63d4HfsOh/f+X59/ssxmkMpzwEnhm7H316zSOujaaYed84AE6dv1aZiNNGdNaELe56vYbPUvY4+2XmCTccARnDBSq1U5c/43hNnxjzIUo70Z3z10ju/v7HLVsccNmfmDl1wqD2YtUfZT4OqtVFzw2Unm5687AsXrNT51qjhecm8xMAddf+E/LHrVtRui2b+Yz1zclkkPWdAvjBsD5/6aq0ql/Rs0f09d5jQrz3+90G/l2gB0wPBICoB3AskEk5f/Fj+fNPUXDJn20tQqpdB02Xjz+7JrNGd5NJc1fL86lTOG4VGojX/kFIeQv16JS1+CpNMMKJOTKn12yXtQFSTpq7RsVr7XCe4YDzePzHfHaCoXMjLsnhkU0mGW4cfeI8ig7AIjlx5qJmCyl9QWDVAFT29+o/d4DdECfOo5rdpDzEOE7xC6N1ZQR2jYOgcdvjN4BQiDCTFXfauQ7geu/ftuKAYJQ4rNt+QDaFj9BnIhuPzg1gGiLRTmuteL9Hq/18qmeSPhDx/nrzdxXrR2wbANbN5t2/gK2NO4/0uFdyYAJUjSnxmtKm8YPaqcuTr3j5piiJypYxnbRtXMWV7gXwa9xppALAaVOnkFlvbPSIq1vdFilNXrt1vzKkEDa+cOlTadx5xF0xm6PrwbzZMFwXtlan/pPl2LaZHs0480ymBAedE1gRgCpONw7LzAdWIN+Xy2rNlgNUM4qxQoNFgx6T0+ADINWAsPnKLMPxj6QM7n+zw7ppeTTaXe9fvCrhE3uqwyzMn7lLN2vMbrA1lJn1xy1l7CGtgPMbboummfJoo3Hj/f4No9bq3htdY4S+XL/tgK61aVM/IyEtaymYD9upaPVO0jy4nOAOS0PCAqMD1l/0HcvU6y65sqLh+LiK3FcvX9RxkM/0A3sY2NN9OzVQ9jRj0gBlp3fP87n/ArAE1Gb/QIP906ROmWhleHEPDAwAb733j0bPav/aSZrgorUMHasMcfaSHuZn1SBpVrd8dL1yW64zYMx8Of3+ZdX0Yx5hX4bpDIYuuO7Zsf/9Nw8S2+L9N88a+LcPbg8EgP34tqAAACAASURBVKgH991G+mRs2tiYQ1dHmwAqqLctckzqmkC89r6Nw8ffk+ZdwyLU9Js7Gr2po1tn+AWM7IoO15aDR89qptvU0JPdBHCijE9BsqEdJahQTs12V2veTzeYmTM4z3igD7zZJaZ+v1rZIh7nL5PF2rt6gn5/gFcIARu3QLv60td1ASCbdB6pZQyv5ciogqh5y7eRaSNDtESAxmbel8iyk3Fa72W1n38Q4uXZAAMBgMwG2K2+5b7W/uW/KSViI96lVS1PWDEpXhiRi1e/KTNHd9GDm694+Q2ghNGMcat/YcPwrcOiRPAbrT4YfRzuKI3f8dYxnb9eev5ZZYd+/8NPUqsV4vePya4V4yTBk4+7FbqW/Y+etsxTZgZYVaPlQCn8WlYdGwDWHPJx26Kkd0CXxo4y+7w7xhtQNfMzYKCZe42zGo6AXVvX9sx55lqwOhDitgukgmVIvyHgDOOEscDca9jJgDrERjNzHdIJSCi42Ux8pkzb9DWyEJQT+WoAawAakelT2vFMsHhhbz2bMpmkS5NSwSbDQKP0bdeB4wqoATwYdg//DQPNjYb0QNfB0yXOo49KrqzpNcFGKSwl8t7NGHycv/SJgleMFf49LHjD0Lb7GWBidRs8Xc5euKIub4xpQDHmqxTJn9LSwsVrd0XQGvOOiT0QoCDJRicTcZTzli3+mgLrMBNxYSUZiAtu31FzVSezculCygBENJxkh5PxefdTbIvX7rEXuP6D0QMBIOrBeI/39BRGxI9/xEG4T8f6ivbnKdtaF2SzAHOofjXTS7ZQfe8l4Ac1XjItyZ5K5Mki3UufRPdvyaiRhfel74DzE3XrJ3fOcXUsQFE/duq8LJsxQH7++VfJV6GtZi45IKVIllRC29aWxp1HqaYVmk2+GgfSF9OkivbyAH/vgyw2OiqmZIjfYSsMAwJbaTZxCL7CIqA0wI1mrNy599snzglZtu1Lwjyh0L96SF42Rh20KB3Zc+ikxoyYvBsbdhNzVPEiCk0mXu2y48VVHTLYc063yOI1Vu1G1DomxcvBMXeZVrJ71XiPZpF3vDAaOXjA9MufO7OK4EdWQmJH35v+9RUvB/0KjXpJldKFVDMmJsQLu+Thhx9WkIO59Y3JffQgPHTCQjly8n1ZPWewjldTWgbL4f0PP1YzAcqJ3GiUuFRs1FsyvpRWGtQoqXMYDB1vgIz+HTdzpZDcwDzF6bFg+oY5C7CPd04zwJlVzJw/Z3zs3H9cLd4Rr0azyzR0vQAw7GbZEtuQCYuUtQMjjlJTmDBWxpEvZ1k3xoG557QF62TBim2SPXN6OXj0zB1i29bYTKLLLYAHgO/y1S+kz6g5kiPzS6qDSnKzTN3uYpzqiNewtt7ZMsMjZUCyxmkmDGOSvQpJQBhoJIV8leyjy4Vuk7depunvQxumapLZ7qYu3u+cEUofiadDs2r6LRn2t0kW+orDPANsqt9+u6nl3+2aVLVV/4w4SLCRjP/s2nUFT9mnFcqTRXXDjLaU6ddvv/9JDV4A+4ykgd196n392Bav0/0TuF/s7YEAEBV73919Rb774AlBHBoB6+Z1y8m6bQdl1NQlSmdmY3lix2xdACjlQrOCTExQ4ZxKXaZMx+n2oMZrmDLQ8utVKyl5Xs3gaskTYpNsJn1lK1t0C5OkSRIpzRphYzJHbtTPo3NFlhAdB5O5hKUVL15c2bjjkIyduULLD/evm6z2wdhhA2Ki+dAQu96HHoogeu7EWEbfCu0qUwZy8cqnUqVJX4/IthH/JUMPaLJt7zuaFeew6aROkOkLNpL12w+VQd2aSPFCOdXCm9KFto0qS3CVIM20EiNuMt98+6OWSVpdfZzoU+s9oorX6IdQikN5y7TwdVIhKL/j5cf++pe5FqYA/3/cwHaqBdR5wBQtHYoJ8QIq1Gw5UNBfaVijtB5qrPFymOO/s7ySTooXyCHLN+zWjDisHru1znyNNV/xcsDgsLNz6Ri5/u33MSpevvVGnUdI0sQJZUiPZqq5hGYepgF8/xyUYEONHdBWRappn3/1jSRPmliz9tZmp4MhottlX88rN3//XcuyYHXBgsGJDu3APiNmK3MjR5b0qhcFQI02z8bw4aonA5sVNpddzCJ/847VXY642evAisNVbcq8NXLl6jWdnxnf6BD2HT1PKDGiwcYlSWB1/nJqfsOdDuBpyxujFEwzAAnrM2YevhprIto8lJ1RGlk2KJ+CWnY2gAYYR2meTe7XwII1hEM8YuA44LrZfvjxf2wDdK/Vqd9kBSMmD+voCan3yDm6h2BNYz88aNwC3e/Q5x2bVteEbUxpRhetZb0K0oD9jaUBzMNsRs+JMk+aHfpc3n0BaEeiqmTh3MryhLX+xVff+GXB8QyvlmimAuaAQQBv6KIBXs8Z210SPBHf1u4mXvSYmMtSPpNUGlQvpXHDjGK84oBsGmLrBXNn0fJCmK1ImzidhItt8dr68gIXf2B6IABEPTCv8u4ehEPC+x98HGFBZULtN3qeXL76uTqx0DhcsGjnzJpeqfa0RZN6O87eeVDjXbhyu8xesllqVSim5VwAJsYB7O7eZPT+ygCPy6b3l6wZ03kujrA1DjRQ8AF0GnQYLh9c/kTpytkypVMXO6ezhQTHBqZ8w57SuFYZBUhoiG6fOH1B8uXKrOVmn3xxXQEUDhQnz36oNHfKXRA996ebFr29eufVAPU4WJB14xCK8xDsgia1y2p5Fqw0snJ8czg7GcAPnQX0VyqUyGf7AR9qP6Aegp3owgA8bVgwTN5975KWPUH/H9ytqc4hHFAxHIDd5VbzF++vv/0ur5VrrQd5nJ4QsmWjW7VpX7FmvJ2O2xovgsVYicNAwwI9JsaLds2oKUulQJ7MkvbZZzzxIjqMdhSaTLBOcKsDaCjfoJcM69ksWjVK7uUdWeMFEAFIHditieqbxMR4YXGhwbd68z4V+OVAxsHMV2kZmXkcRGH1FS+YU8tpAazsdrRkP8C3M6p3K10HcHpDlwdrdOYl2ERzx4RqeQ1zAowCGA57V43X+Yp5j0Mb4rtuaMwZDUQAXsTMKcnasvttNeV474OPtO9JxsWLG1fnMsOeYi6mZM/pBnDXrOto+ea7n6R00dwqEp4i2VMycUgHn6HARqH8DCCwXFBe+fDKZ7J8wx7p0LSaloQ7DQBag2QPMX72Stm2JEx1g2JCY//AvoY5yxgAmHJDWHyUSlZp0kf1olibd+0/rr9326nX2ncmXl+sJ/bNOUu18LC9zPwA4Aqo7UQzbM7IWHA4Bxaq3EHC+rfxmAeQTKjTZrBUKVNY348bjXV46ojOkufVVzx7y3zl2+j3h7th5/5TlM3u73t0OubYFq/T/RO4X8zugQAQFbPfj2PRsZEEeIL1QlZeD0dLwyR1ymRiKPnN6pSL4ObhWHA+bhSb4/3mux+lbL3uyjqhjIUFrU3P8fLwQw+pPoRbjSwsDB4yPlkyPK9Ua7LIZL2rlSssW3cf0bKt4T1bCBuI6Qs3SInCOaV3xzu1C5x4BkQy2/aeIPlyZJSSRXOrrgrZ9xmLNsjiNW/K0mn9dPzSyC5TfmhEz52Iz/seX17/Vhp2GiE4OD3zdBIVK8Ydy9hwc0h+NdOLEtKypjLPyMaTmU2eNIls2nVYQSq7LbutMXMYw6EQTS6yg5QU3vj5V6lYMr8ePDmQpkieVI6cOKf9ivNX9yEzZPrIEFe0bLzjRd9h8PiFEj6hpwJrsE3QsBg0LlyBqMfixVHGCVlPtzTFYJghksuBMbbFa0TCl07vp2AEYrYhLWtoGSeZeFgEbvcvcxbzGk6hvH9c3/zFC3MADSTmEeY7pxvjF4YJmXkabqX8b/TxTKNvSVzATjJ6dLAp48aJY6ujJbEtW79HGW+XPvpcAQ8YfIBglB9v3XNElkztq6ATiS1ctHq0qyvVyxfxmDUARKEFw7jAYQtdFtOYyzO8lMbWMj6YLjD6iBG9sJzZXpbmf4snM99iMmHYnas275PRU5e6qssFWALbaPeBE1o2hGsarmTezWgjAprAVDWgE6X/zbuF6WEeMMWNxt6xVJ1uOsfCrvduPOOVT76QlMmTKvjjVjM6iNkyvqhaTIPHhWspHww0k7SCEVMk76sxZg/M2Kjffpic3TP/DqDRlJaZhIsRvmcPEpmrYXT3PwnOqFh5aEjN/Nu4wRh1AA4/lzKZK6A1fWBlopIw7Nhvspo6YeBCvzcJGRUBlGTeBmR1Sz8qtsUb3eMscL3Y3QMBICp2v79oi54FDf2URjVLK40agAQBY9Ownq5YsoCWjLhZnmXiia3xNgsuJwPHLtCM5aLJvT0bCKyRyTjP1qzyrzJv2VZpHlzep8NdtL10Hxei/I3sMAwtNIBa1K2gzBcW45LB3aRF3fLSsGZp/ZcGmGqJxeyjj2gpl6+Nsp3xAuqt2rRPywqN4DYlIWy8rdk0QB7KIGEauNmM3gRsguI1QmTKsE763dEMA8LoKaDzgH074A72x5TTkt12sllLWwBN2Gihy8Wfr9i4VwE+QBRKA9BTQQgWRgcAIIf5Z5I95WS4GpcpCQMcmbpgrYflCcA+bNIbKjpKOcaKDXsUlCLDmSrF08o2cwOQMjHHtniN/gelsGzCyYCj43bizAdaHouLVUzq36jiRfsKthwgC6y/IvleleIFc7jGJinfoKeut0b8GWCBsj0rmA6Ac/vPPx11tPQus+O/a7YaKMmeSqxsHNYODvEI79+6/adUbNRLjFkDjK+QAVMldcqnVaeHxviHGVqvagnP2mL3pGEO6ujyIcTPPAGbCyDKmGIYIM3uWKK6PmAN5WH+ysIAT1krfBkdsG4sX79b9xVuNJIXmI2snz/sjkM6pW+hQ6bLH7duCcxQdB37hzSKAEhZ53M744cp3abnOAWskyRKoGWlMJIrlSrguS1/ZsrgKKknUeeWriNBMU7zV2wnM0d3jaB7COBauWlfZQCzVhu9KFhHJJBM6Sl9u+fgu7pvc5ohTlIADTzAR+JgDCOlgHFSiSK57HzVd3VtGGQk4xM++bjOCz/e+Fnmju0uL6ZNqcm5YgVyeHTjADGRMyicN5tHj+6ubhKNP4pt8Ubjowcu9QD0QACIegBeYnQ8AqACWSlAJijI1tIVsphMvpRt4WphyrNY6Dgo4zph1QOx22nGgCCxMd548eJo5nXBxJ4e2i+lGaWCQ8UwzqbMX6uW9BxAyBJXLlUwguAkC/fvv99yFKRCjHjttv2aETJaYb2GzxIOb5XLFJLjpy/I5jffFjusme9lfNM32YKaRdAtMrbjRnfF1/Uo53n7+DkVEKbsxW59Jt45oA3ufzCd0r+QWr8tc0CylmmiW8F3yeYtf65M6kZFuZnTzZgGUI6T+eXn9fZkvB+LG1fLWyjbmzC4vTwkDylzAsaUG2Utpl98HSg51P3w0/8UOC1Ru6s0rVNOsmVMp0DfmfOXZeWsQU53q+d+sS1eAoclAMDLmDTZYLRqEOGOaf0bWby4O/EsiPHXrRqkGkgwKI1GjxuDAsYTDm+Na5eRbq1raxb+uVTJlKFqmi9HSxIaL6ZN5SiABgtqz6F3FYRcuXGvHujRsEJ0e9GqnRHMGihB/uWX3zwuYMwrL6RJqWOGw6lTjT0P3/35D6/KR59ck00LR2gcY2cslwNHz8YIB8uo+sJoATHP+nLS4++/+uZ7j9FAVNeLzr/n3gDRjIfWDSsJSbjH4/+1bsG+x0DglRef07X6j1u3FQh6PnUKD0DJmoKT4Lp5QyOw56IzRuu1rKYdxWt2kdA2tTUhSzOGLZTmwVAGOIVdRLIuV7aXlcUMgOV0o/yS8QprGRH+q59/pYxU9uNLp/bTOZnEMnt14uwXNs9jRMK/Za+5Y2mYI/1r7RtKe9HEtO4Ppi5YJ+ErtsnWxaMlaZKEgo4qe6QffryhJhgwVZ1s7BUof/z2u5/0/uy5SBaScNu1crxHvwppgsHjw7WChDGAHiGSFayLTrb7jRdtP1+ag07GHrjXf7sHAkDUf/v9R3h6yq1KB4eq+DMLV5uGlQTGCeVEiGlDxTcsGLIrX13/TsWKSxbJHYFp4pTTTGyL1zikQVdO/8KzqrOTONGT0rbXeNXbWDVrkB6SeQe4c6CxMW/ZFrVtxm4YQWMaG4g1W97SzLgTDWFGDpWUDeLeQnvvwhW1FTc2yPwZ5Q7oSxmXIidi83UPDpSANmH92qgeE2LLOCGxEfbVcFSbNHe1iqCT1cetpkaFotKzfV1HNmhsBgGgyLjBJKIkB8CS0k0YanXbDlH3KVgEOCnVQFfs3fdd0eAxQBkuXtkzv6hATpy4jyq4anWj4oB89OT70mvkHLnxv5+1JK5t4yqOl+yRdceVjJKcInmzKbjLYdPqwGg0zg4de08tm2NLvAiF9xg6U8eI6la0qKHP5mQj+95tyHS5eOUzKVPsNXm9QHYVx/XVvzE5XjTZOvad5BEJpw9jQrwcdmFyfXn9O+nUf3KE+IjR6mjJwe7yx5+rsx2MLg55Zr42Y8LuJBHX59COgDlzcNFqndTy3Jg1GLB1eK8WOmaNdo01MePk+OVeMCXPXfxYy/SMVqIB0nzFQmJu/ztn5IU0KXQOtpYYOh0798tcrLGWkPkTMec3bh2Oda/wwUcyYtJi+fizL7V0sHxQfi2XXbhqu663GIv0aF9XPrp6TaaGr1OnwMnz1mipcu5sGTzAlJN9SykkYvZh/VorG4Y1GXYicyz7hTVb35IlU/vJ9z/c0LkORhGAmhtt3+F3ZVr4emXN0SiH7dy8hu4f0eeatnC9GjUAbLNfp7wfILBkna7KQONbZY+HYQ17N0Agu5tJDhrZB+5HUqtgpfYKYpOArdduiNy6dVvy5sgom948LK0b/qVD6GabPHeNylIYNifVC6XrdtezEqWnhn1GP2ZMn1YThwZ8dSPuqOL1pznoRqyBe/53eyAARP133/0dT07pDQDD5GGdpNfw2VruREPgEAoyBzbv8izKSchaGbc9b6cZO518Ylu8pq+wQkdXA8FyGgDI6L6t9RBJXyI0iYYGzbjDGWt3s4Ho06mBVC5dUEEqu7UVYO8QuykRAVCDFYczT7+QhhonYtol63ST0X1b6ebcTe0H+ghg6e0T5zTTTXkYmUwD5FkH/rptB9TZZUz/Np7sJwe/zv0nK+Nsdlg328XBKdebtWijsgfYeAOEcXgD4EW00+hWmLgBo2CjrZg54G8mgbPsKDaMu/af0JIKsvBrtuyXkVMWqxuVVYgYYDJx4gS6gZ+5cIMyjhACdjpzTGYVZ5zzl66qWDKuUpQae7P3Ylu8ZI/RGKO8c+dbx2XczBWuGB4wH5w4c1EQYedQc/PmHz77N6bGizth2Xo9lAllNIP41mJKvMTCQRGTCNw0TQP0sTpamj/H+n3n/uNahoOFOiC8aU4libgfmXbKX3FQNLpF3gAlDr4c4mOK6C+Aw+9//OFX0Jm5DjYHayHlXOikzRvX3fESZOsaRgkn8TDP+mox4XDMHLF1zzsyZvpymTs2VNc61gGAHVgvYdOXS5w4j0iOzOlVpxTWHNpBebK/osw5GMOsyxPnrJJ+nRs6wgZnnV23bb+CwHUqF9f5AXAVthT7M0oJaTBiegybqYkYXH0rlCrgEd528ngBqGBlFRp9LmPUAPgze8kmTWDyHZ5670OPcUvo4On6vdIo56tTJchWvTbugyM23xt7HsoDMQ8ATINtFDZtqbLAF03qo+8a1iSM690rx7n6ra3fflDGzFiu+1z2ZbBmKdOk9BQ3RipHkKd4Od1z+uePPPKwrJo9WG7fuu3ImPUeb5HFC1vOl+bgzmVj5KnECV2J18nvJXCvmNMDASAq5rwLVyPhMMxihLaOcU2DpUOZjSlTolxs3fYDEcqzELPuHzZPBRNv374tNVoOVNcvsrF2OvnYEa/RqkCbybiVRedL4WDz6KOPeg4GZIdhQD2bIpluxnGfQsuIchAcfGgmQ0vJEIAVWlLHTl+QZbCh/vxTKeJ2xevv2dmwDBwzX7YtHu1xUWTTuHjtLgV8ELONSvshOvs1smshOloo718OU94N3asi1TrqBt57Ew/AV7xmiLq5eLMK7Iod1z8O87C4EC03795o8HBfc/jkNzdv/q5AG9lk1Tn6W+TYrvh8XddYSCOojBuVtRmgmGw9DC+cZto1ruLT8pjM4mPx4jmiVcE899DDDyn4e7/xMv/8fvMPRzZr/uIFHOZQvHrOYN38Llq1Q8tmOTR5t0C8/r8KSocwXtjyxsgIpWH30r9c3YmkgPUpyHYbR0u0mGBwXLl6TV7L8Yomj8598JH0HT3PownjnSRyYp6wavywLlgBYBIFzbqM9ohws64AnjG3lSqSW/ciHEKdbJQYAlz7YoVQhl6ufg9lhpculkdgfSISzFoNWELj3w4Im6elfbDKcW1N8OTjtj7C3kPvqsvxtBGdIwCV3NQYOHgfjru0rCUIQzvdv2Y8sF+AVWZAStZiwKki+V+VF9Ok0oRn45qlJX78ePpt9u5QTxlSgC0k5dxqJIAAo4zmFgBbvXZDNSFECS3s1AFh8xVMQ1PVzYY+F4xgo0UKe5L9OkAe36FxSKaclsQi//2/X35VUxKSoZjQ2L33oeICdr/Z9/DNUyaN9pUV7CPRmat0S9elH3ifJJAxMyBJzH6MZCUsYFh+MNPYF1PGx1j/4PKnqpHG2J0+IsRx1/HI4vWnOXjk5PuuxuvmNxO4tzs9EACi3On3WHdXU57VoVk1zbLSYMqQpcj6Sjqlqno7zcBMwWGicL5syqZyst1PvABDbDZh0NitEXTHQfHWLQXxEiV4IsJGCxe7/e+clq1vjJbLVz+Xyo37eBZjt+Jls/X5ta8jMIher9FZs9rY3Ual/eDkOIjsXpSZdhs8Xd7ePN1T72/9PQclMrJOj10TAxnMsBnLIgC/2I7vOnBcyxfQgSBTyOGJg8hbayc5Qqv37lNKmADBjE4cGzRKTgHKsCDHEn3OmFDNDhp9Me9rAKiw+fUGh+wYK/TX73/c8liJ30+8ZMsnzF4VQfvGjli5pne8MF7QfaHPSQLsPXxKnRjTPJtcwWmrXp+JKRCv/7fDgeGLL7+V1Kn+cti8n/61M+niK3Jvh0jmBRgFHZpU01IoDCcASPj2YCHye2uSyK6xGtl1GascKPnGTfxBhXKpK6BxNQX4R1tl6vx1f5l2jO9hOzPjbvuC7x22KnOvaZRpMQfPCuuqLqhvvX1a/yq0bR09sAYVzuUIO4ZySFg5HOILvZZNnnk6sTSqVcbv4Zh1D/MLADU3GqBt3XZD5IXnUirg+Er6NMpYhjnnnfDke0S3FFMSGLjd2wU7qiVm+scAqesXDPPoFRmWu3XtheWXM1t615wKiReADLZL9QpFPXqO7M93K5P5tiRLmkjlNEhQ1Gk9SEskjWMz3+aqzW/J4jU7ZcXMgY73tUnAHd441cOwNqw+HEKTJkmk4/rUuQ8lV7YMUqpo7ggsa75H9LDsbuzPmHMBpg37rC8gn0Xg3hhkoCUGezJJ4gQybXiIlk473azxMj58aQ7GpHid7p/A/dzrgQAQ5V7fx6o7dx86Q7AJRggV9giAw7hZK5S1wcYsbpxHVUfIOM0YbRvrYuLkA99rvLBRgmqGCI5lxkLWyXjZZI2etlQPD4g8VylTWKm9OIkY/YyWoWP18Ey2ze14rX1DadsXX32jOhWL17wZqfaDk30a1b1wJjzwzmmN218jU/v1dz+odpPTjQ0hm9pPr12XUX1aaQlmmbrdZc7Y0Aj6UMZM4NSbc12zD7b2DaDS008l1gMmB47arQdJ+aB8qhHlqwG0kFkk04xgu9PtXuOF9cBzwThB2N7pBqi0atNeHbeAe31GzZWrn36pgIOvFoj33t7QvfYvV3cj6WJlG1FWmjPby57SQspa0G1DtwY3J+8k0b31SPT8GqD5t99u6uFy2frdgjjx1jdG6bcUVKtLBAdRwIf6HYZp/E6X8vp7WsqIOMBbBZbR74O9CivVmIyYcjIjrmzKEqOnF/1fhT3B3kMn5f2LVyWoUE497Jaq0028D8cwubIWbxLBfdHu2HxdH6Bx1hubtLyYkjYYiTBs85ZvE0GP0riSpXwmqf79mfNXBDAowRPxHQ+b/e4Lz6XQ+/pyEjYHeeNsCfBK6SEgG4LX6Li51ZasfVNgKdOMcQtGKegi0sqXyCchLWoK/Uyzirc7GbNhqhsBfs4d6NSit4QoOyAqYHuHJlW1iuDtk+9rIob3YliLyBY46YALkxODi6XT+kdgdWM0c+3vvTHzNew+EqAbw0c4wv729978GfjE1HidHH+BeznfAwEgyvk+j3V3hNVUv/0w2Rg+XLMp1OmzAHAIwy0E2rfVaeahhx6W4LaDdYMGvdfpdq/xwiBAkwBHDF8WyHbHbwRce7avpxtI+heNj+dSJlMNhddyZBQEKdv2muCpkXczXmt/sFkZP3uVVAjKpyVXZL0j035g3JDNoqEn46tkzu7+NteHps5haOeyML86UEZDisMcds5OZ7LIWB4+9p46UCFMzaZ88rCOEbqIsTFo3EIdGzQ2+DMWbVTxaMo5nW7Q0WFCcX+yg+hRcEju0rKmz1Aob8G5zh9QZXf89xovAObuAyf8Aj92x8vBvW