Skip to content

Instantly share code, notes, and snippets.

$ ti test_verbose
[T 02/07/20 06:58:09.802] [logging.cpp:Logger@68] Taichi core started. Thread ID = 14291
[Taichi version 0.4.4, cpu only, commit c042fba7]
*******************************************
** Taichi Programming Language **
*******************************************
Running python tests...
import os
import numpy as np
import tvm
from tvm import relay
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.quantization import QuantStub, DeQuantStub
from torch.quantization import default_qconfig
import numpy as np
import torch
import tvm
from tvm import relay
from torchvision import models
from torch_frontend import parse_script_module
class WrapperModule(torch.nn.Module):
from collections import OrderedDict
from itertools import product
import torch
import numpy as np
from torchvision import models
import unittest
import random
def set_rng_seed(seed):
In [9]: pt_result[0][:10]
Out[9]:
array([-1.8651257, 0.6217086, 1.0102764, 0.8548493, 0.8548493,
-0.6217086, 0.6994221, 0.3108543, -0.9325628, -0.4662814],
dtype=float32)
In [10]: tvm_result[0][:10]
Out[10]:
array([-1.8651257, 0.6217086, 1.0102764, 0.9325628, 0.8548493,
-0.6994221, 0.6217086, 0.3108543, -0.9325628, -0.543995 ],
WARNING: The TensorFlow contrib module will not be included in TensorFlow 2.0.
For more information, please see:
* https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md
* https://github.com/tensorflow/addons
If you depend on functionality not listed there, please file an issue.
v0.0.4
type tensor_int16_t {
tensor_nil_int16,
v0.0.4
def @main(%X: Tensor[(10, 10, 4), float32], %v26: Tensor[(4, 4), float32], %v25: Tensor[(4), float32]) -> Tensor[(10, 4), float32] {
%0 = full(0 /* ty=int32 */, shape=[10, 4], dtype="float32") /* ty=Tensor[(10, 4), float32] */;
%1 = full(0 /* ty=int32 */, shape=[10, 4], dtype="float32") /* ty=Tensor[(10, 4), float32] */;
%14 = (
let %while_loop: fn (int32, Tensor[(10, 4), float32], Tensor[(10, 4), float32]) -> (int32, Tensor[(10, 4), float32], Tensor[(10, 4), float32]) = fn (%i.1: int32, %y.5: Tensor[(10, 4), float32], %h.5: Tensor[(10, 4), float32]) -> (int32, Tensor[(10, 4), float32], Tensor[(10, 4), float32]) {
%2 = less(%i.1, 10 /* ty=int32 */) /* ty=bool */;
if (%2) {
%3 = add(%i.1, 1 /* ty=int32 */) /* ty=int32 */;
%4 = take(%X, %i.1, axis=0) /* ty=Tensor[(10, 4), float32] */;
v0.0.4
type u {
c0((int32, u[])),
c1(()),
}
def @main(%q: u[]) -> int32 {
@fn(%q) /* ty=int32 */
}
graph(%self : __torch__.RNNLoop,
%xs.1 : Tensor):
%2 : bool = prim::Constant[value=1]() # dynamic_test.py:133:8
%3 : None = prim::Constant()
%4 : int = prim::Constant[value=10]() # dynamic_test.py:132:27
%5 : int = prim::Constant[value=4]() # dynamic_test.py:132:31
%6 : int = prim::Constant[value=0]() # dynamic_test.py:133:31
%7 : int[] = prim::ListConstruct(%4, %5)
%h.1 : Tensor = aten::zeros(%7, %3, %3, %3, %3) # dynamic_test.py:132:15
%9 : int[] = prim::ListConstruct(%4, %5)
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#