Skip to content

Instantly share code, notes, and snippets.


Block or report user

Report or block missflash

Hide content and notifications from this user.

Learn more about blocking users

Contact Support about this user’s behavior.

Learn more about reporting abuse

Report abuse
View GitHub Profile
from IPython.core.pylabtools import figsize
from matplotlib import pyplot as plt
import numpy as np
figsize(12, 3)
def logistic(x, beta, alpha=0):
return 1.0 / (1.0 + np.exp(, x) + alpha))
x = np.linspace(-4, 4, 100)
# Data Import Option
test_data = np.getfromtxt("data.csv", skip_header=1, usecols=[1, 2], missing_values="NA", delimiter=",")
# Remove NA rows
test_data = test_data[~np.isnan(test_data[:,1])]
from sklearn.metrics import accuracy_score, roc_auc_score, classification_report, roc_curve
def performance(y_true, pred, color="g", ann=True):
acc = accuracy_score(y_true, pred[:,1] > 0.5)
auc = roc_auc_score(y_true, pred[:,1])
fpr, tpr, thr = roc_curve(y_true, pred[:,1])
plot(fpr, tpr, color, linewidth="3")
xlabel("False positive rate")
ylabel("True positive rate")
if ann:
annotate("Acc: %0.2f" % acc, (0.1,0.8), size=14)
pip install scikit-image
# Edge Detection
import skimage
image =
edges = skimage.filter.sobel(image)
# HOG (Histogram of Oriented Gradient)
image = skimage.color.rgb2gray(
skimage.feature.hog(image, orientations=9, pixels_per_cell=(8, 8), cells_per_block=(3, 3), visualise=True)
def normalize_feature(data, f_min=-1.0, f_max=1.0):
d_min, d_max = min(data), max(data)
factor = (f_max - f_min) / (d_max - d_min)
normalized = f_min + (data - d_min)*factor
return normalized, factor
You can’t perform that action at this time.