Skip to content

Instantly share code, notes, and snippets.

View murataslan1's full-sized avatar
🎯
Focusing

Murat Aslan murataslan1

🎯
Focusing
View GitHub Profile
@murataslan1
murataslan1 / Avalonia Equivalent:
Created December 5, 2024 10:37
Avalonia Equivalent:
<Window xmlns="https://github.com/avaloniaui"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
x:Class="Calculator.MainWindow"
Title="Cross-Platform Calculator"
Width="800" Height="450">
<Button Content="Calculate" Click="CalculateButton_Click"/>
</Window>
@murataslan1
murataslan1 / Original WPF XAML
Created December 5, 2024 10:37
Original WPF XAML
<Window x:Class="Calculator.MainWindow"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
Title="Calculator" Height="450" Width="800">
<Grid>
<Button Content="Calculate" Click="CalculateButton_Click"/>
</Grid>
</Window>
@murataslan1
murataslan1 / The Equality Trap
Created December 5, 2024 07:45
The Equality Trap
x = 5 # Assignment
if x == 5: # Equality check
print("This checks equality.")
@murataslan1
murataslan1 / Variables: More Than Just Containers
Created December 5, 2024 07:45
Variables: More Than Just Containers
x = [1, 2, 3]
y = x
y.append(4)
print(x) # Output: [1, 2, 3, 4]
class AIAgent:
def __init__(self, domain_expertise, learning_rate):
self.knowledge_base = DomainKnowledgeModel()
self.reasoning_engine = MultiStepReasoningModule()
self.action_executor = TaskCompletionFramework()
def solve_problem(self, context):
problem_analysis = self.reasoning_engine.analyze(context)
action_plan = self.reasoning_engine.generate_plan(problem_analysis)
results = self.action_executor.perform(action_plan)
@murataslan1
murataslan1 / Software 2.0: A data-driven model that adapts dynamically.
Created December 4, 2024 15:03
Software 2.0: A data-driven model that adapts dynamically.
import tensorflow as tf
from recommender_model import create_recommendation_model
# Train on massive user interaction dataset
model = create_recommendation_model()
model.fit(user_interactions_dataset)
# Intelligent, adaptive recommendations
recommendations = model.predict(new_user_profile)
@murataslan1
murataslan1 / Software 1.0: A rules-based approach requiring manual updates for every scenario.
Created December 4, 2024 15:02
Software 1.0: A rules-based approach requiring manual updates for every scenario.
def recommend_product(user_history):
if 'electronics' in user_history:
return ['laptop', 'smartphone']
elif 'clothing' in user_history:
return ['shoes', 't-shirt']
# Dozens of hard-coded rules...
@murataslan1
murataslan1 / 4. Multi-Agent Collaboration
Created December 4, 2024 13:02
4. Multi-Agent Collaboration
class MultiAgentSystem:
def solve_complex_problem(self, problem):
researcher = ResearchAgent()
architect = SystemArchitectAgent()
developer = CodeGenerationAgent()
research_insights = researcher.investigate(problem)
system_design = architect.design(research_insights)
solution = developer.implement(system_design)
@murataslan1
murataslan1 / 3. Strategic Planning
Created December 4, 2024 13:01
3. Strategic Planning
def decompose_complex_task(task):
task_steps = [
"research_requirement",
"draft_initial_solution",
"validate_solution",
"refine_and_optimize"
]
return plan_execution(task_steps)
@murataslan1
murataslan1 / 2. Tool Use: Extending Beyond Pre-Training
Created December 4, 2024 13:01
2. Tool Use: Extending Beyond Pre-Training
class AIAgent:
def execute_task(self, task):
relevant_tools = self.identify_tools(task)
for tool in relevant_tools:
task_result = tool.execute(task)
return task_result