Skip to content

Instantly share code, notes, and snippets.

View nchaimov's full-sized avatar

Nicholas Chaimov nchaimov

View GitHub Profile
@nchaimov
nchaimov / swap-test.cpp
Created March 12, 2013 21:36
Code to reproduce problem with getAssociatedFunctionDeclaration in ROSE with EDG 4.4.
#include "rose.h"
class InheritedAttribute {
};
class visitorTraversal : public AstTopDownProcessing<InheritedAttribute>{
public:
virtual InheritedAttribute evaluateInheritedAttribute(SgNode* n, InheritedAttribute inheritedAttribute);
};
InheritedAttribute visitorTraversal::evaluateInheritedAttribute(SgNode* n, InheritedAttribute inheritedAttribute) { SgExprStatement * expr = isSgExprStatement(n);
if(expr != NULL) {

Keybase proof

I hereby claim:

  • I am nchaimov on github.
  • I am nchaimov (https://keybase.io/nchaimov) on keybase.
  • I have a public key whose fingerprint is D64A E10A 7F24 BC7D 3E1A 7F8A 96F5 E0A5 BC6A 8B88

To claim this, I am signing this object:

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <netdb.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <arpa/inet.h>
int lookup_host (const char *host, int use_canonname) {
struct addrinfo hints, *res;
#ifndef _GNU_SOURCE
#define _GNU_SOURCE
#endif
#include <stdlib.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <netdb.h>
@nchaimov
nchaimov / tau_mem_summarize.py
Last active May 9, 2019 14:39
Create summary of memory allocations across ranks from TAU profiles
#!/bin/env python
"""TAU trial data for TAU Profile.x.y.z format profiles
Parses a set of TAU profile files and yields multi-indexed Pandas dataframes for the
interval and atomic events.
"""
from __future__ import print_function
import csv
import glob
import mmap
#!/bin/env python
"""TAU trial data for TAU Profile.x.y.z format profiles
Parses a set of TAU profile files and yields multi-indexed Pandas dataframes for the
interval and atomic events.
"""
from __future__ import print_function
import csv
import glob
import mmap
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
We couldn’t find that file to show.
"""
`Learn the Basics <intro.html>`_ ||
**Quickstart** ||
`Tensors <tensorqs_tutorial.html>`_ ||
`Datasets & DataLoaders <data_tutorial.html>`_ ||
`Transforms <transforms_tutorial.html>`_ ||
`Build Model <buildmodel_tutorial.html>`_ ||
`Autograd <autogradqs_tutorial.html>`_ ||
`Optimization <optimization_tutorial.html>`_ ||
`Save & Load Model <saveloadrun_tutorial.html>`_
#!/usr/bin/env python
# coding: utf-8
# # Microbenchmarking Neuron Devices (Trn1/Inf2)
# ## Introduction
#
# This guide reviews the best practices for benchmarking performance of Neuron devices. It shows how to separate compilation and execution time, how to isolate the device time from the end-to-end execution time, how to warm-up the device, and covers few pitfalls one should be aware of. This guide provides an example code, in PyTorch, that can be used as a template for measuring performance.
#
# This Jupyter notebook should be run on a Trn1/Inf2 instance (trn1.2xlarge/inf2.xlarge or larger).