I hereby claim:
- I am nchaimov on github.
- I am nchaimov (https://keybase.io/nchaimov) on keybase.
- I have a public key whose fingerprint is D64A E10A 7F24 BC7D 3E1A 7F8A 96F5 E0A5 BC6A 8B88
To claim this, I am signing this object:
#include "rose.h" | |
class InheritedAttribute { | |
}; | |
class visitorTraversal : public AstTopDownProcessing<InheritedAttribute>{ | |
public: | |
virtual InheritedAttribute evaluateInheritedAttribute(SgNode* n, InheritedAttribute inheritedAttribute); | |
}; | |
InheritedAttribute visitorTraversal::evaluateInheritedAttribute(SgNode* n, InheritedAttribute inheritedAttribute) { SgExprStatement * expr = isSgExprStatement(n); | |
if(expr != NULL) { |
I hereby claim:
To claim this, I am signing this object:
#include <stdio.h> | |
#include <string.h> | |
#include <stdlib.h> | |
#include <netdb.h> | |
#include <sys/types.h> | |
#include <sys/socket.h> | |
#include <arpa/inet.h> | |
int lookup_host (const char *host, int use_canonname) { | |
struct addrinfo hints, *res; |
#ifndef _GNU_SOURCE | |
#define _GNU_SOURCE | |
#endif | |
#include <stdlib.h> | |
#include <stdio.h> | |
#include <sys/types.h> | |
#include <sys/socket.h> | |
#include <arpa/inet.h> | |
#include <netdb.h> |
#!/bin/env python | |
"""TAU trial data for TAU Profile.x.y.z format profiles | |
Parses a set of TAU profile files and yields multi-indexed Pandas dataframes for the | |
interval and atomic events. | |
""" | |
from __future__ import print_function | |
import csv | |
import glob | |
import mmap |
#!/bin/env python | |
"""TAU trial data for TAU Profile.x.y.z format profiles | |
Parses a set of TAU profile files and yields multi-indexed Pandas dataframes for the | |
interval and atomic events. | |
""" | |
from __future__ import print_function | |
import csv | |
import glob | |
import mmap |
""" | |
`Learn the Basics <intro.html>`_ || | |
**Quickstart** || | |
`Tensors <tensorqs_tutorial.html>`_ || | |
`Datasets & DataLoaders <data_tutorial.html>`_ || | |
`Transforms <transforms_tutorial.html>`_ || | |
`Build Model <buildmodel_tutorial.html>`_ || | |
`Autograd <autogradqs_tutorial.html>`_ || | |
`Optimization <optimization_tutorial.html>`_ || | |
`Save & Load Model <saveloadrun_tutorial.html>`_ |
#!/usr/bin/env python | |
# coding: utf-8 | |
# # Microbenchmarking Neuron Devices (Trn1/Inf2) | |
# ## Introduction | |
# | |
# This guide reviews the best practices for benchmarking performance of Neuron devices. It shows how to separate compilation and execution time, how to isolate the device time from the end-to-end execution time, how to warm-up the device, and covers few pitfalls one should be aware of. This guide provides an example code, in PyTorch, that can be used as a template for measuring performance. | |
# | |
# This Jupyter notebook should be run on a Trn1/Inf2 instance (trn1.2xlarge/inf2.xlarge or larger). |