Skip to content

Instantly share code, notes, and snippets.

import sys
from sklearn.datasets import fetch_mldata
from sklearn import neighbors
options = [['2', 'uniform'], ['2', 'distance'], ['3', 'uniform'], ['3', 'distance'] ]
index = int(sys.argv[1])
# Fetch MNIST database
mnist = fetch_mldata('MNIST original')
import sys
from sklearn.datasets import fetch_mldata
from sklearn import neighbors
# Fetch MNIST database
mnist = fetch_mldata('MNIST original')
# crop to keep only 0's, 1's and 2's and normalize greyscale to 1.0
L = 18622
X, y = mnist.data[:L] / 255., mnist.target[:L]
from sklearn.datasets import fetch_mldata
# Fetch MNIST database
mnist = fetch_mldata('MNIST original')
X, y = mnist.data / 255., mnist.target
@paulhbenoit
paulhbenoit / shell
Last active February 23, 2017 15:17
smith@wesson:~$ python qPiMc.py
3> 3.168
1> 3.112
2> 3.128
9> 3.14
6> 3.12
10> 3.104
7> 3.152
5> 3.128
8> 3.192
#!/usr/bin/env python
import qarnot
conn = qarnot.connection.Connection(client_token='<YOUR_API_TOKEN>')
task = conn.create_task('pi Monte Carlo', 'docker-batch', '1-10')
d = conn.create_disk('disk')
d.add_file('piMc.py')
task.resources.append(d)
@paulhbenoit
paulhbenoit / shell
Last active February 23, 2017 15:18
smith@wesson:~$ python piMc.py 1 1000
3.112
smith@wesson:~$ python piMc.py 2 1000
3.128
import random, sys
seed = int(sys.argv[1])
samples = int(sys.argv[2])
def in_circle(point):
x = point[0]
y = point[1]
return x**2 + y**2 < 1
@paulhbenoit
paulhbenoit / shell
Last active February 23, 2017 15:18
>>> import math
>>> abs(piMc2(1000,100) – math.pi) # 1000*100 samples
0.0033126535897927134
>>> abs(piMc2(10000,100) – math.pi) # 10000*100 samples
0.002076653589794475
>>> abs(piMc2(1000,1000) – math.pi) # 1000*1000 samples
0.00252734641020691
>>> abs(piMc2(10000,1000) – math.pi) # 10000*1000 samples
0.00011454641020680612
>>> abs(piMc2(1000,10000) – math.pi) # 1000*10000 samples
def piMc(seed, samples):
random.seed(seed)
count = inside_count = 0
i = samples
while i>0:
point = random.random(),random.random()
if in_circle(point):
inside_count += 1
count += 1
i = i-1
import random
def in_circle(point):
x = point[0]
y = point[1]
return x**2 + y**2 < 1
def piMc(samples):
count = inside_count = 0
i = samples